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ABSTRACT

Reservoir Characterization Using Wavelet Transforms. (December 2003)

Nestor Rivera Vega, B.S., Universidad Industrial de Santander;

M.S., The University of Texas at Austin

Chair of Advisory Committee: Dr. Jerry L. Jensen

Automated detection of geological boundaries and determination of cyclic events

controlling deposition can facilitate stratigraphic analysis and reservoir characterization.

This study applies the wavelet transformation, a recent advance in signal analysis

techniques, to interpret cyclicity, determine its controlling factors, and detect zone

boundaries. We tested the cyclostratigraphic assessments using well log and core data

from a well in a fluvio-eolian sequence in the Ormskirk Sandstone, Irish Sea. The

boundary detection technique was tested using log data from 10 wells in the Apiay field,

Colombia.

We processed the wavelet coefficients for each zone of the Ormskirk Formation

and determined the wavelengths of the strongest cyclicities. Comparing these

periodicities with Milankovitch cycles, we found a strong correspondence of the two.

This suggests that climate exercised an important control on depositional cyclicity, as

had been concluded in previous studies of the Ormskirk Sandstone.

The wavelet coefficients from the log data in the Apiay field were combined to

form features. These vectors were used in conjunction with pattern recognition

techniques to perform detection in 7 boundaries. For the upper two units, the boundary

was detected within 10 feet of their actual depth, in 90% of the wells. The mean

detection performance in the Apiay field is 50%.

We compared our method with other traditional techniques which do not focus

on selecting optimal features for boundary identification. Those methods resulted in
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detection performances of 40% for the uppermost boundary, which lag behind the 90%

performance of our method.

Automated determination of geologic boundaries will expedite studies, and

knowledge of the controlling deposition factors will enhance stratigraphic and reservoir

characterization models. We expect that automated boundary detection and cyclicity

analysis will prove to be valuable and time-saving methods for establishing correlations

and their uncertainties in many types of oil and gas reservoirs, thus facilitating reservoir

exploration and management.
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CHAPTER I

INTRODUCTION

1.1 Statement of the problem

The characterization of petroleum reservoirs involves data analysis to generate a 3-

dimensional (3D) reservoir framework describing rock properties and fluid parameters.

The resulting model is used to quantify hydrocarbons and determine the development

scheme appropriate for the reservoir. These integrated studies involve various

disciplines using different data types. The most comprenhensive data sets include well

logs, core analyses, 3D seismic data, hydrocarbon composition, and pressure and

production tests. Core analysis and 3D seismic play a key role in the identification and

correlation of genetic stratigraphic units. However, in practice, only a small percentage

of wells are cored. In addition, 3D seismic data were not recorded for the great majority

of older fields. On the other hand, well logs are usually run on every well. If a

technique could identify and correlate stratigraphic units based only on well log

responses, it would greatly contribute to improved reservoir characterization for fields

with limited core analysis data and lacking 3D seismic information.

To accomplish this difficult task, well log responses should be optimally

processed and transformed. Most well log responses contain numerous nonstationary or

transitory characteristics, including cyclicities, trends, and abrupt changes. Recent

developments in signal analysis indicate that wavelet transforms are an analysis tool well

suited to multiscale, nonstationary processes. Well-log wavelet transformations can

identify cyclicities and important events on individual wells. By using pattern

recognition techniques, improved multiple-well stratigraphic correlations can be

developed by identifying the formation tops and unconformities present on each well.

______________

This dissertation follows the style and format of The Log Analyst.
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This approach would generate the multiple-well correlations automatically. This would

be an improvement compared to the traditional correlations, using visual inspection and

unprocessed signals.

The most widely automated well-log correlation methods adopt the algorithms

used in dipmeter processing. The measure of similarity between two log traces is the

standard correlation coefficient. A segment (window length) of the first log trace is

moved by small increments (step length) past the trace of the second log. The shifting is

performed for a pre-set search range (search length). At each step the correlation

coefficient is computed as a function of depth in a correlogram. A perfect match of the

two traces is achieved at a positive correlation of unity. Lateral changes in thickness

degrade the correlation coefficient slightly. Major changes generate problems that are

tackled by selective stretching of one of the logs (Doveton, 1994, Chapter 6).

In our research, we applied the wavelet transformation and extracted statistical

features for a window at the boundary of interest. We found that the optimal window is

40 ft, 20 ft above the boundary and 20 ft below the boundary. The boundary-feature

matrix may consist of a single or multiple wells in the training set. Then, we proceeded

to select the optimal features and perform dimensionality reduction using principal

component analysis (PCA). Finally, using step length of 1ft and search length of 200 ft,

we computed probabilities to determine the boundary depth in the observation well.

Other attributes that can be extracted from wavelet transformations, and closely

related to stratigraphic units, are the determination of factors controlling deposition

(Prokoph and Agterberg, 1999 and 2000), sedimentation rates and preservation potential

at higher resolution than other techniques such as biostratigraphy, chronostratigraphy, or

sequence stratigraphy (Prokoph and Agterberg, 2000).

To test these methods, we used two data sets, one set from a gas well in the Irish

Sea and another from a prolific oil field in Colombia. For the Irish Sea, we found strong

indications of Milankovitch cycles during deposition. For Apiay, our approach resulted

in boundary detection performance of up to 90% (the boundary was detected within 10 ft

of their actual depth, in 90% of the wells).
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1.2 Objectives and methods

The main objectives of this research were the following:

1. Cyclostratigraphy: Apply wavelet decomposition of well-logs and assess the

wavelengths of the strongest cyclicities to determine if wavelets can aid

cyclostratigraphic analysis.

2. Boundary detection: Apply wavelet analysis of well-logs to the detection of

boundaries to assess the value of the wavelet analysis.

3. Validate the cylostratigraphic procedure with one well in the Irish Sea.

4. Evaluate the boundary detection algorithm using 10 wells in the Apiay field.

All computer programs were written in Matlab. The main advantages of Matlab

are: 1) is a matrix oriented programming language, which is very convenient for our

multi-dimensional problem. 2) Uses many built-in functions saving considerable time in

the computer program designs. This a very useful for the wavelet and statistical

functions. 3) The graphics options are extensive.

The following approach was used in our research:

1. Literature review: We reviewed current techniques for cyclostratigraphy and

multiple-well correlations using well-logs; evaluated the usage of pattern

recognition and wavelet transformation for well-logs; studied signal processing

techniques for 1-D signals; and examined analogous applications in other fields,

such as computer science and electrical engineering.

2. Knowledge acquisition: We studied and developed computer programs for

Fourier analysis, wavelet transformation, and pattern recognition for general 1-D

and 2-D applications. We also researched the techniques for multidimensionality

reduction.

3. Data collection: We gathered data from one well in the Irish Sea and 10 wells

from the Apiay field, Colombia.
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4. Choice of wavelets: We selected various wells to compare the results of different

choices of wavelet families.

5. Pattern recogntion: We tested different approaches for pattern recognition,

feature selection, and dimensionality reduction. This phase helped us on the

selection of the best techniques to tackle our specific problem.

6. Model validation. After selecting the best techniques for boundary detection, we

did a comprehensive validation using different combinations of well-logs and

type of wavelet transformation. The validation was performed for all 7

boundaries in Apiay.

1.3 Organization of the dissertation

Chapter I is the introduction. Chapter II presents the literature review on signal

processing techniques, cyclostratigraphy, multiple-well correlation, and pattern

recognition.

Chapter III discusses the signal processing techniques and compares the

differents methods. Chapter IV covers cyclostratigraphy for one well in the Irish Sea.

Chapter V develops the method for multiple-well correlation using the Apiay field.

Chapter VI presents the summary and conclusions, and Chapter VII proposes ideas for

future work.
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CHAPTER II

LITERATURE REVIEW

2.1 Well-log data analysis

The use of well-log data for sedimentology and stratigraphy has been explored

extensively in the last two decades. In most wells, usually two or more logs are recorded

covering the entire interval of interest at a very high sampling rate (commonly 2 samples

per foot). These advantages have led to various geological applications. A widely used

method is the study of sedimentary successions.

The work by Serra and Abbot (1982) introduced the concept of electrofacies,

which “is primarily a method of describing rock in terms of its log characteristics”.
Serra and Abbot treated each log as a vector component of the n-dimensional set of n

distinct logs. They proposed manual and automatic methods and the main objectives

included the recognition of principal electrofacies traversed by a well, identification of

abrupt changes in sedimentation and sedimentary markers, well-to-well correlation, and

fine-layer analysis to derive layer-by-layer permeability. Electrofacies analysis is

intended to identify zones with similar petrophysical characteristics.

Many studies have continued to use the concept of electrofacies for automatic

facies estimation. Supervised and unsupervised techniques using neural networks have

been proposed (Saggaf and Nebrija, 2000). For permeability correlation, techniques

such as principal component analysis (PCA) and cluster analysis have been utilized (Lee

et al., 2002).

Doveton (1994, Chapter 6) presented a historical perspective of lateral

correlation and interpolation of logs. Most methods of automated correlation of wireline

logs use a single feature to compare the similarity between two well-logs. This feature is

the standard correlation coefficient operating on a pre-set window. Lateral correlation is

considered a difficult task which can be made more consistent if interpreters use the

same criteria.
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The task of cyclicity determination has been approached by semivariograms, Fourier

analysis and more recently by wavelet transformation. Jennings et al. (2000) and Jensen

et al. (2000) have used the semivariogram (SV) of petrophysical data to study

periodicities. The SV determines the degree of similarity between sample pairs as a

function of separation distance. SV’s can also be employed to detect cyclity (Jennings et

al., 2000). However, as in the case of the Fourier transform, the localization of the

cyclic events in space is not possible.

Prokoph and Agterberg (2000) performed Morlet wavelet analysis to gamma-ray

well logs to locate discontinuities and determine high frequency sedimentary cycles.

They found a correlation of the ratio of the predominant gamma ray cycles with the ratio

of Milankovitch spectra, suggesting that climatic cycles were important factor in the

deposition of the Egret member, offshore Canada.

2.2 Signal processing methods

Most well-log responses contain numerous nonstationary or transitory characteristics,

including cyclicities, trends, and abrupt changes. These characteristics are often the

most important part of the signal. For many applications, the best representation of

transient signals is in the frequency domain by using spectral analysis methods.

However, the most common methods for well-log data analysis operate on the space

domain.

The Fourier transform has been the traditional method for spectral analysis.

However, the introduction of wavelets in the 1980s generated new ways to do signal

processing. Wavelet analysis is more effective in representing nonstationary signals.

Thus, wavelets have gained popularity and new applications are being investigated

(Goswami and Chan, 1999).

Wavelet transformation allows multiresolution analysis, in which a signal can be

represented by a sum of components at different resolutions. The capability of

representing a signal in several levels of resolution is the major strength of wavelet

analysis (Goswami and Chan, 1999). Features can be extracted for each one of the
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resolutions and be used for pattern recognition. Goswami and Chan (1999) describe one

example using acoustic signals (1-D) to identify several faults in the wheel bearings of

railroad cars. Goumas et al. (2002) used similar approach to classify washing machines

vibration signals. They performed the wavelet decomposition, extracted statistical

features from the various levels of resolution, combined the features, performed

dimensionality reduction using PCA, and then proceed to the classification.

Wavelet analysis has been applied to detect cyclicity in climate time series (Lau

and Weng, 1995).

2.3 Other wavelet methods in oilfield applications

Other wavelet transform applications in the oil industry include denoising and

conditioning of well pressure data (Athichanagorn et al. (1999) and Gonzalez et al.

(1999), upscaling of rock properties (Panda et al., 2000), seismic data processing

(Chakraborty and Okaya, 1995), measurement-while-drilling data compression to be

transmitted through mud-pulse telemetry (Bernasconi et al., 1999), and identification of

wellbore and reservoir anomalies from pressure transient data (Soliman et al., 2001).

We did not find in the literature wavelet decomposition methods for boundary

identification purposes or multiple-well correlation. However, wavelets have been

applied to production data to estimate the degree of interference, preferential flow paths

and the existence of flow barriers (Jansen and Kelkar, 1997). Ours is a novelty approach

in reservoir characterization.
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CHAPTER III

WELL-LOG PROCESSING METHODS

In this chapter we review the aspects of signal processing and classification methods

related to cylicity and boundary detection. For cyclicity detection, we cover Fourier

analysis, wavelet transform, and the semivariogram. We illustrate some examples to

compare the methods.

The wavelet analysis is performed in two ways. For cyclicity determination, we

use the coefficients from the continuous wavelet transform, and for boundary detection,

in addition to the processing of these coefficients, we perform multiresolution analysis

based on the discrete wavelet transform.

Lastly, we cover principal component analysis. We use this dimensionality-

reduction technique to perform the pattern recognition required in boundary detection.

Principal component analysis has been used by other researchers to define electrofacies

from well-logs and predict permeability (Lee et al., 2002); and analysis of lithofacies

and shale volume estimation (Doveton, 1994, Chapter 4).

3.1 Cyclicity detection

The oil industry has applied different techniques to quantify cyclicity. The Fourier

transform has been a natural choice for cyclicity assessment because of its familiar basis

functions and its widespread use for such analysis (e.g., Box and Jenkins, 1976, Chap.

2). Despite advantages to analysis in the spectral domain (e.g., Gelhar, 1993, Chap. 2),

some authors (Jennings et al., 2000; Jensen et al., 2000) have preferred the spatial

domain, using the semivariogram (SV) to study periodicities. The SV determines the

degree of similarity between sample pairs as a function of separation distance. As we

will see, the localization of the cyclic events in space is not possible with either method.

Wavelet analysis is a more recent tool used to detect cyclicity, e.g., in climate time series

(Lau and Weng, 1995) and sedimentary cyclicities (Prokoph and Barthelmes, 1996). In

particular, Prokoph and Agterberg applied Morlet wavelet analysis to gamma-ray well
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logs to locate discontinuities and determine high-frequency sedimentary cycles.

Wavelets do provide localization in space, which is often needed for cyclostratigraphic

analysis. We briefly review the properties of all three methods below.

3.1.1 Fourier analysis

Spectral analysis methods can be used to help in the interpretation of well logs. The best

known method of spectral analysis is the Fourier transform (e.g., Paupolis, 1962). The

Fourier transform of a finite-energy function f(t) of a real variable t is defined by the

integral

ò
¥

¥-

-= dtetff tjww )()(ˆ (3.1)

where w is the fundamental frequency, and j = 1- .

To maintain the convention used in signal processing, we use t to represent time

or space. A typical well-log is a function of depth, and the most common sampling rate,

Fs, is 2 samples/foot. This customary number is governed by the resolution and

limitations of logging tools. By using the sampling theorem (Proakis and Manolakis,

1996, Chapter 1), the maximum frequency Fmax that can be deciphered, is given by Fmax

= Fs/2. The period of the cycles is the reciprocal of the frequency. For space domain the

period in feet/cycle is known as the wavelength, wl. Thus for Fs = 2 samples/ft, the

minimum wavelength becomes 1 ft. However, considering the limitations of the tools,

we consider that cyclicities from well-logs will be confident for wavelengths larger than

3 ft. Other data sets, such as probe permeameter, with sampling rates of up to 20

samples/ft, can detect cycles as short as a few inches.

Since Equation 3.1 requires integration, it is appropriate for functions described

analytically. Well-logs are sampled signals (discrete in space) and require numerical

algorithms to compute the spectrum. The discrete variable f(n), where n is an integer, is

discretized in space while the frequency variable (w) is continuous. The discrete Fourier

transform is given by (Goswami and Chan, 1999, Chapter 3)
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ww jn

n
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-¥

-¥=
å= )()(ˆ (3.2)

The inverse Fourier transform recovers f(n) by

ò
-

=
p

p

w ww defnf jn)(ˆ)( (3.3)

The frequency vector, w, in cycles per foot is given by

sF
N

n=w (3.4)

where N is the length (total number of samples) of f(n). The wavelength variable is

calculated as

w
1=wl (3.5)

Two uses of the Fourier transform for well-logs are cyclicity and filtering. To

demonstrate the steps and use of Fourier transform for well logs we selected a signal

with added noise (Example 3.1a). The sine function has a wavelength wl = 40 ft with a

sampling rate Fs = 1 sample/ft. The total number of samples is N = 256 (Figure 3.1).

The following are the steps for Fourier analysis on example 3.1:

1) Calculate the frequency vector w using equation 3.4. The Fourier coefficients are

symmetric about w(N/2). Thus, the length of w is N/2.

2) Compute the Fourier transform using equation 3.2. This generates 128

coefficients.

3) Calculate the magnitude of the Fourier coefficients, )(ˆ wf . In general the

coefficients are complex, and the magnitude is given by the norm. For example

the magnitude of the coefficient 3 + 4j is 5.

4) Plot the Fourier coefficients as a function of frequency (Figure 3.1b). The largest

magnitude is at a frequency of 0.027 cycles/ft, equivalent to wl = 37 ft (very

close to the original sinusoid).
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Figure 3.1 Fourier analysis of a sinusoidal signal with random noise.
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5) The noise has high frequency. To remove the noise keep the low frequency

Fourier coefficients (low pass filter). Here, we keep )(ˆ wf for 1 £ n £ 10 and set

)(ˆ wf = 0 for 11 £ n £ 128. Apply the inverse Fourier transform (Eq. 3.3) to the

filtered )(ˆ wf . The resulting filtered signal is given in Figure 3.1c.

The discrete Fourier transform (DFT) plays a key role in digital signal

processing, including filtering, correlation analysis, and spectrum analysis. The

computation of the DFT involves N2 operations. The fast Fourier transform (FFT)

algorithm takes advantage of the symmetry and periodicity of the Fourier matrix, to

reduce the complex multiplications to N log2 N when N is a power of 2. Any sequence

can be augmented with zeros, such that N = 2p , where p is an integer (Proakis and

Manolakis, 1996, Chapter 6).

The Fourier transform has the limitation that it can be evaluated at only one

frequency at a time, i.e. the Fourier spectrum does not provide any spatial-domain

information about the signal. When looking at a Fourier transform it is impossible to tell

when a particular event took place. If the signal does not change much over time

(stationary signal), this drawback is not important. However, most well-log responses

contain numerous non-stationary or transitory characteristics: drift; trends; abrupt

changes; and beginnings and ends of events. These characteristics are often the most

important part of the signal, and Fourier analysis is unable to detect them. The short-

term Fourier transform solves this deficiency by windowing the signal into a two-

dimensional representation of space and frequency (Goswami and Chan, 1999, Chapter

4). The information obtained is a function of the size of the window. The drawback of

the short-time Fourier transform is that, once a particular window size is chosen, that

window is the same for all frequencies. A large window provides good frequency

resolution but a poor spatial resolution, whereas a shorter window provides a better

spatial resolution with poor frequency resolution. The fixed window size of the short-

time Fourier transform is a disadvantage if the signal contains spectral characteristics at

different scales.
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3.1.2 Wavelet analysis

Wavelet analysis represents an advance from Fourier analysis in the form of a

windowing technique with flexible regions. The wavelet transform uses a window

function whose radius increases in space (reduces in frequency) while resolving the low-

frequency contents of a signal (Goswami and Chan, 1999, Chapter 4).

The integral (continuous) wavelet transform of a function f(t) with respect to

some local base function (wavelet) y is defined as

ò
¥

¥-
÷ø
öçè

æ -= dt
a

bt
tf

a
abfW *)(

1
),( yy , a>0 (3.6)

where y* is the complex conjugate of y . The parameters b and a are called translation

(shifting) and dilation parameters, respectively. The wavelet behaves like a window

function. At any scale a, the wavelet coefficients Wya,,b are obtained by convolving f(t)

and a dilated and translated version of the wavelet. To be a window and to recover f(t)

from its inverse wavelet transform (IWT), y(t) must satisfy

ò
¥

¥-
== 0)()0( dttyy (3.7)

The continuous wavelet transform (CWT) provides space-scale analysis and not space-

frequency analysis. However, proper scale-to-frequency transformation allows analysis

that is very close to space-frequency analysis. By reducing the scaling parameter a, the

support of the wavelet is reduced in space and hence covers higher frequencies ranges

and vice versa. Therefore, 1/a is a measure of frequency. The parameter b indicates the

location of the wavelet window along the space axis. Thus, by changing (b,a), the

wavelet coefficients ),( abfWy can be computed on the entire space-frequency plane. A

required condition is that all wavelets must oscillate, giving them the nature of small

waves and hence the name wavelets. The wavelet transform (WT) is an analysis tool

well suited to the study of multiscale, nonstationary processes occurring over finite

spatial and temporal domains.
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The CWT separates out the frequency components of a signal. It is therefore

important that the wavelet used gives the best resolution in frequency. The shape of the

wavelet coefficients at some scale should resemble a sinusoid at the corresponding pure

frequencies. The best wavelet for this purpose is the Morlet wavelet with its Gaussian

modulated complex decaying exponential. The graphical representation of the wavelet

coefficients for the different scales (wavelengths) as a function of depth is the

scaleogram.

One of the most widely used continuous wavelets in geophysics and petrophysics

is the complex Morlet wavelet, which consists of a plane wave modified by a Gaussian

envelope, given by

tjt eet 336.52/2

)( -=y (3.8)

Figure 3.2 shows how the wavelet coefficients are processed, using the Morlet wavelet.

The combination of the various vectors of coefficients at different scales (wavelengths)

form the scaleogram. The depths with the strongest coefficients indicate the position

were that particular wavelength is taking place. The scaleogram provides a good space-

frequency representation of the signal. The conversion from scale to wavelength for the

Morlet wavelet is given by

sF

a
wl

25.1= (3.9)

One major advantage afforded by wavelets is the ability to perform local analysis.

Consider a sinusoidal signal with a small discontinuity – one so tiny that is barely visible

(Fig. 3.3a). A plot of the Fourier coefficients of this signal shows nothing particularly

interesting, a flat spectrum with one peak representing a single frequency. The Fourier

analysis represented by the energy of the coefficients shows a single high energy peak at

65 feet/cycle (Fig. 3.3d). However a plot of wavelet coefficients, known as a

scaleogram (Fig. 3.3c), clearly shows more detail and identifies the exact location in

space of the discontinuity at depth 3085 feet, in addition to the detection of the low

frequency cyclicity of the signal. The wavelet analysis is able to reveal aspects at small

scales (high frequency) and large scales (low frequency).
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Figure 3.2 Continuous wavelet transform using the Morlet wavelet.
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Figure 3.3 Wavelet and Fourier analysis of a small discontinuity.

3.1.3 Spatial statistics

A standard tool used in geostatistical analysis and modelling of rock properties is the SV

which estimates the variability of a property as a function of distance. The SV measures

the weakness of the relationship between measurements of Z located a certain distance

apart. Its standard estimator is

( )
)()(2
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2

zVarkn
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-
-

=
å-
=

+
g (3.10)

where the n samples Z1, Z2, … Zn, Var(Z) is the variance of Z, and k is termed the lag

and is the number of spacings between the samples.
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The semivariance, g(k), is plotted against the separation distance. When k = 0

the semivariance approaches a nugget value which may be zero. When k is large, the

data are not correlated, the SV approaches the sample variance, i.e. the normalized

semivariance given in equation 4 approaches one. SV analysis can be used to determine

the spatial correlation of a petrophysical property.

3.1.4 Comparison of cyclicity detection methods

The three different signal analysis methods described above are used for different

objectives. To demonstrate the advantage of wavelet analysis over the Fourier transform

and the SV for cyclostratigraphic interpretation, we will consider two examples that may

occur in strata. The first instance is a signal with an abrupt change in frequency, which

can represent a parasequence boundary. Figure 3.4 shows the results generated by the

three different signal analysis methods. The synthetic signal has two components, one

from 3000 to 3300 ft with wavelength of 100 ft, and the second from 3300 to 3512 ft

with wavelength of 40 ft. The SV indicates the two components; the Fourier analysis

more clearly identifies the presence of the two frequencies. However, neither of these

techniques can identify the locations of the two components and where the frequency

changes. On the other hand, the scaleogram identifies the two components and defines

the exact location of the transition.

The second example is a signal with two superimposed sedimentary frequencies,

which can correspond to Milankovitch cyclities (Fig. 3.5). The wavelengths are 40 and

100 ft, respectively. The SV and Fourier analysis identify the presence of both

components but cannot define the location in the depth scale. The scaleogram identifies

the presence of the two frequencies, quantifies the wavelengths and produces output that

clearly identifies the fact that the two cycles are superimposed. Comparing Figs. 3.4 and

3.5, the SV and Fourier analysis generate similar results for the two cases of

superimposed cycles and two zones with different wavelength cycles. These examples

suggest that wavelet analysis may be more fruitful than either Fourier or SV analysis for

cyclostratigraphic studies.
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Figure 3.4 Signal analysis results for an abrupt change in frequency, e.g. parasequence
boundary.
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Figure 3.5 Signal analysis results for two superimposed sedimentary cycles (e.g.
Milankovitch cyclicity).
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3.2 Multiresolution analysis

The CWT is useful for cyclicity determination. However, for other applications, it was

found that the CWT was not easy to apply. Meyer discovered that by using certain

discrete values of the two parameters a,b, an orthonormal basis can be obtained. The

basis is of the form (Jensen and la Cour-Harbo, 2000, Chapter 1):

{ } Zks
ss kt Î- ,

2/ )2(2 y
Thus, a will be of the form 2-s and b of the form k2-s

. With these values of a and b, and

using Eq. 3.6, the discrete wavelet transform (DWT) becomes

( )ò
¥

¥-

-- -= dtkttfkfW ssss 2)(2)2,2( 2/ yy (3.11)

By discretizing the function f(t), and assuming the sampling rate to be 1, the integral of

(3.10) can be written as (Goswami and Chan, 1999, Chapter 4)

( )å -»--

n

ssss knnfkfW 2)(2)2,2( 2/ yy (3.12)

The DWT plays an important role in dividing a complicated signal into several simpler

ones and analyze them separately. This concept is known as multiresolution analysis

(MRA). Here, the function is decomposed at various levels of approximations and

resolutions. As a result, a well-log can be decomposed into a low frequency

approximation and several medium-to-high frequency details. Each individual

approximation or detail can be analyzed separately, depending on the application. The

approximation after 4 levels of resolution can be considered as the general form of a

well-log and the details the particular high frequency sedimentation processes for each

well. Figure 3.6a displays the filtering process at each level of resolution and Fig. 3.6b

shows the decomposition diagram for multiresolution. One example of a DWT

decomposition is shown in Fig. 5.19 (Chapter V).

The simplest orthogonal wavelet is the Haar wavelet, which is based on a box

function. Other widely used orthogonal wavelets are the Daubechies wavelets with

different orders that are compactly supported. There are also semiorthogonal wavelets

such as splines wavelets, and biorthogonal wavelets. For our research, we did not
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observe significant differences when using different wavelet families. We chose the

Daubechies wavelets for multiresolution analysis.

a) Filtering process

b) Multiresolution diagram

Figure 3.6 Multiresolution analysis indicating a) the filtering process and b) the
multiresoultion diagram.
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3.3 Principal component analysis

Principal component analysis (PCA) is one of the oldest and most widely used of

multivariate techniques. The fundamental idea of the method is to describe the variation

of a set of multivariate data in terms of a set of uncorrelated variables, each of which is a

linear combination of the original variables. The new variables are obtained in order of

importance so that the first principal components account for the maximum variation in

the original data. The typical task is to determine whether the first few components

account for most of the variation in the original data. If they do, then they can be used to

summarize the data with minimum loss of information, thus providing a reduction in the

dimensionality of the data, which might simplify later analyses (Everitt and Dunn, 1992,

page 45). A very useful analysis is the plotting of the first two principal components.

The goal of PCA is to map vector xn in a d-dimensional space (x1,…xd) onto

vector zn in a M-dimensional space (z1,…,zM), where M <d (Bishop, 1995, Chapter 8).

The vector x can be represented as linear combinations of a set of d orthonormal vector
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=
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The coefficients zi are obtained by

xuz T
ii = (3.14)

which can be considered as a simple rotation of the coordinate system from the original

x’s to a new set of coordinates given by the z’s. If we keep only a subset M < d of the

basis vectors ui, we will use only M coefficients zi. The remaining coefficients are

replaced by constants bi so that each vector x is approximated by an expression of the

form
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This accomplishes the dimensionality reduction since the original vector x with d

degrees of freedom is approximated by a new vector z which has M < d degrees of

freedom.

The covariance matrix å of the set xn is given by

Tn

n

n xxxx ))(( --=åå (3.16)

where the mean vector x is
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The minimum error in the approximation of Eq. 3.15 is obtained by discarding the d-M

smallest eigenvalues of the covariance matrix, and their corresponding eigenvectors

(Bishop, 1995, Chapter 8).

The PCA algorithm starts with the computation of the mean of the vectors xn and then

subtracting off this mean. Then the covariance matrix is calculated and eigenvalues and

eigenvectors are found. The eigenvector corresponding to the M largest eigenvalues are

retained and the input vectors xn are projected onto the eigenvectors to give the

components of the transformed vectors zn in the M-dimensional space (Bishop, 1995,

Chapter 8). The z vectors are also known as the z-scores. An example describing the

PCA steps is presented in section 5.3.4, Chapter V.
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CHAPTER IV

CYCLOSTRATIGRAPHY

Cyclostratigraphy is defined by Schwarzacher (1993) as the branch of geology that uses

analysis of cycles to construct and define the stratigraphic framework. Cycles in rock

successions are common and represent repetitive stratigraphic and depositional

sequences. Eustasy, sediment influx and climate are some of the factors influencing

sequence architecture (Nystuen, 1998). By detecting the periodicity of stratigraphic

successions, it is possible to subdivide hydrocarbon-bearing intervals into zones for

reservoir modeling (Moller and van de Wel, 1998) and to map the zones across a field.

This may contribute to properly up-scaled reservoir flow properties, such as the vertical-

to-horizontal permeability ratio, and to recognition of important flow baffles and

barriers.

4.1 Reasons for geological cycles

Two explanations of the origin of sedimentary cycles are changes in water depth, which

are largely caused by tectonic movements, and changes in climate. These causes may

overlap and an analysis of the sedimentary record may not permit a clear distinction

between the two. For example, it is unclear whether an increase in current energy

represents the shallowing of an environment or an increase in storm activity. Similarly,

an increased terrestrial influx can be caused either by the uplift of some source area, or

by an increased run off due to increased precipitation (Schwarzacher, 1993).

Subdivision of the stratigraphic record by unconformities and bounding

discontinuities, and the relationship of these surfaces to relative sea level fluctuations are

very important in stratigraphic analysis. Five orders of cyclic sea level change have

been defined, ranging from hundreds of millions to tens of thousands of years. Among

these five orders, the fourth- and fifth-order cycles, with durations of much less than one

million years, reflect a regular cyclic control (Plint et al., 1993).
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Sea level changes related to orbitally driven climate cycles are generated by orbital

rhythms known as Milankovitch cycles. Three causes of Milankovitch cyclicity are

precession, obliquity, and eccentricity. Precession refers to the fact that the earth

wobbles like a spinning top; the axis of rotation sweeps out a cone with a period of about

21,000 (21 ky) years. Obliquity refers to changes in the tilt of the earth’s axis with

respect to the plane in which it orbits (41ky years). Eccentricity refers to changes in

shape of the earth’s orbit around the sun, from more circular to more elliptical (100 and

400 ky). These variables, acting in combination, control incoming solar radiation and

affect global climate, resulting in changes of sea level (Plint et al., 1993).

These Milankovitch cycles overlap with fourth-order sequence stratigraphic

cycles (Table 4.1). The parasequences (high-frequency stratigraphic cycles) are a result

of changes between high and low stands. In contrast, the influence of the astronomical

variations of the Milankovitch cycles on cyclic sediments is not always evident

(Schwarzacher, 1998).

4.2 Irish Sea example

For cyclostratigraphic analysis we use the data of well 110/8a-5, located in the

Morecambe gas fields in the East Irish Sea. Production is from the Ormskirk sandstone.

The geological description of this formation is presented in Appendix A.

The formation in this well is divided into three main zones: Zone 1 (4030 – 4127

ft.), zone 2 (4127 – 4187 ft), and zone 3 (4187 – 4270). Zone 1 is sabkha, subdivided

into low-permeability evaporitic and high-permeability non-evaporitic intervals. Zone 2

is subdivided into two high-permeability eolian dune and sandsheet units separated by a

low permeability playa unit. Zone 3 is subdivided into high-permeability channel sand

units separated by low-permeability silts and clay units. In general, the eolian sands

exhibit the best reservoir quality throughout the reservoir, followed by the fluvial

channel-fill sands. Playa lake, fluvial channel abandonment, and clay drape deposits

have the poorest reservoir quality, are non-reservoir and are baffles and barriers to fluid

flow. The sabkha deposits are extremely heterogeneous and exhibit a wide range of
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petrophysical properties since these deposits encompass a spectrum of sub-facies

ranging from eolian wind-ripple deposits to playa margin deposits (Thomas et al., 1998).

Table 4.1 Comparison of cyclic frequencies of sequence-stratigraphic units with
Milankovitch cycles (after Mitchum and Van Wagoner, 1991).
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The data comprise wireline logs, as well as core analyses. The conventional well logs

available for analysis are gamma ray (GR), dual laterolog (LLS and LLD),

microspherical focused log (MSFL), neutron porosity (PHIN), bulk density (RHOB),

and photoelectric factor (PEF). Core plug porosity and permeability measurements are

available for the interval 4040-4270 ft. Probe permeameter measurements were

available for some sections of zones 1 and 3.

4.2.1 Wavelet analysis

Morlet wavelet analysis was performed on the well 110/8a-5 data (Figure 4.1). Given the

large variation of the resistivity and permeability data, the analysis of these signals was

performed on the logarithm of the signal.

Depending on the log, zones 1 and 3 show some cyclicity at 5-7 ft, corresponding

to the thickness of channelized or evaporite cemented deposits. The GR scalogram

indicates the presence of weak cyclicities at 5 and 19 ft for zone 1. The GR does not

respond to the evaporitic sabka facies in zone 1 very clearly. These facies are primarily

characterized by low permeability and high resistivity readings. For the same zone, the

LLD shows much stronger cycles at 6-8 ft and at 17-21 ft. For the fluvial channels of

zone 3, the GR scaleogram shows a strong response, including a change from 4-5 ft

cycles at the base to about 20 ft at the top. Here the DLL shows a similar evolution as

the system moves from humid to more arid conditions. For zone 2, the GR response is

dominated by the one playa horizon at 4148 - 4153 ft. The resistivity scaleogram shows

a strong component at 6 to 8ft wavelength. Clearly, several different measurements are

needed here to assess the spectral character.
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Figure 4.1 Well log, core permeability and Morlet wavelet scaleograms for GR and
LLD logs, well 110/8a-5.

4.2.2 Cyclostratigraphic interpretation

Section 4 showed that wavelet transformation can be a useful tool for cyclostratigraphy,

especially for the case of superimposed cycles. One way to quantify cyclicity is by



29

determining the wavelength with the maximum coefficient-energy. This is found by

computing the arithmetic average of the wavelet coefficients at each scale (wavelength)

for a desired zone. A plot of wavelet spectra energy versus wavelength adequately

identifies the dominant wavelengths for each zone (Figs 4.2 – 4.5).

For this analysis, the wavelet transform was applied to plug (approx. 1 ft. sampling

spacing) and probe permeability measurements, where they were available, in addition to

the well logs. The high sampling rate (20 samples/ft) of the probe permeability

measurement allows the detection of high frequency cycles. On the other hand, the

conventional well logs, sampled every 0.5 ft and having a measurement vertical

resolution of a few feet, would detect cyclicities greater than 3 ft.

Figures 4.2 – 4.5 show the wavelet spectra for zones 1, 2 and 3, respectively. The

three components with peaks for the sabkha unit (zone 1) are approximately 5-6 ft, 11 ft,

and 22 ft; the probe permeability shows strong responses at 1.5 and 6 ft. For the dunes

(zone 2), three peak wavelengths of 4-6, 9, and 23-24 ft are close to those of zone 1.

(The GR peak at 15 ft is caused by the one playa unit in this interval.) The fluvial unit

(zone 3) shows 4-6, 11, and 21 ft as the dominant wavelengths. For this zone, the probe

permeameter shows additional wavelengths at 4 and 10 ft.

Figure 4.5 displays the wavelet spectra for all zones combined. The major

component wavelengths are 5-7, 10-12, and 20-23 ft. These peaks are similar in

wavelength to those detected for each one of the three zones. This suggests that there is

an overall cyclostratigraphic character for the three zones of the Ormskirk Sandstone.

Table 4.2 shows the important wavelengths and corresponding ratios.
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Figure 4.2 Wavelet spectra for zone 1 (Sabkha).

Figure 4.3 Wavelet spectra for zone 2 (Dune).

0

20

40

60

80

100

120

0 5 10 15 20 25

Wavelength, ft

W
av

el
et

am
p

lit
u

d
e,

%

LLD

Core Permeability

GR
Probe Permeability

minor interdunes
w avelength: 5-7 ft w avelength: 11 ft

major interdunes
w avelength: 19-22 ft

w avelength: 1.5 ft

0

20

40

60

80

100

120

0 5 10 15 20 25

Wavelength, ft

W
av

el
et

am
p

lit
u

d
e,

%

LLD

Core Permeability

GR
Core Porosity

w avelength: 9 ft

w avelength: 23-24 ftw avelength: 4 -6 ft



31

Figure 4.4 Wavelet spectra for zone 3 (Fluvial).

Figure 4.5 Wavelet spectra for all zones combined.
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Table 4.2 Wavelengths and ratios in well 110/8a-5.

Important wavelengths, ft Wavelength ratios

Zone 1 5-6 11 22 1 : 2 : 4

Zone 2 4-6 9 23-24 1 : 2 : 5

Zone 3 4-6 11 21 1 : 2 : 5

4.3 Discussion

The Milankovitch precession, obliquity and eccentricity cycles have periods of 21, 41,

and 100 ky respectively, occurring at a 1: 2: 4.8 period ratio. The dominant wavelengths

for the sabkha (zone 1) occur at a 1: 2: 4 wavelength ratio; for the dune (zone 2) at a 1:

2: 5 ratio, and for the fluvial unit (zone 3) at a 1: 2.4: 4.7. For the three units combined

the wavelength ratio is 1: 2: 4. The dune unit is the zone that matches most closely the

Milankovitch period ratios. The similarity of these ratios with the Milankovitch values

strongly suggests that Milankovitch cyclicities are an important factor controlling

deposition in the Ormskirk Sandstone. The influence of the precession and obliquity

cycles are more evident than the eccentricity cycles. However, for the dune, the wavelet

analysis indicates the presence of all three cycles. Hence, climate appears to be an

important influence on the deposition.

One way to support this interpretation is appropriate is by calculating the

sedimentation rates obtained from the wavelet analysis and comparing with values from

previous studies. The Sherwood Sandstone Group deposition spanned the Scythian

(Lower Triassic), estimated to have had a duration of 5 Ma (Herries and Cowan, 1997).

The thickness of a typical section for this formation is 800 ft. This gives an average

sedimentation rate of 5 cm per thousand years (5 cm/ky). This calculation is within the

range 1.5 – 6 cm/ka for observed overall sedimentation rates (Anstey and O’Doherty,

2002). For the dune unit (zone 2), the GR, resistivity, core permeability, and core

porosity coincide on the dominant wavelength of 9 ft. Taking this peak to correspond to
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the obliquity cycle of 41 ky gives a calculated sedimentation rate of 6.7 cm/ky, agreeing

well with the published sedimentation rate of 5 cm/ky Similar results are obtained for

the other units and for the different dominant wavelengths. The fluvial unit (zone 3, Fig.

4.4), for example, shows a dominant wavelength of 4 ft for the core and probe

permeabilities. Relating this wavelength with the precession cycle (21 ky), a

sedimentation rate of 5.8 cm/ky is obtained.

These results support the hypothesis that the Milankovitch cyclicity controlled

the deposition in the Ormskirk Sandstone. The presence of these cycles indicate climatic

control of deposition with corresponding changes in the sea level, as suggested by earlier

researchers (Meadows and Beach, 1993, and Herries and Cowan, 1997).

4.4 Conclusions

The following are general conclusions for cyclostratigraphy:

1. Wavelet analysis generates useful information from well-log responses. It is the

appropriate tool for automated cyclostratigraphy. Two other methods commonly

used, Fourier transform and the semivariogram, cannot be used to interpret cyclicity

in the presence of superimposed cycles.

2. Log and core measurements, responding to different rock and fluid properties, can

give different scaleogram results. The combined results from several logs is

desirable to define zone boundaries or assess cyclicities.

The following conclusions are specific for well 110/8a-5:

3. Wavelet spectral analysis is consistent with geological definitions of the three main

zones in the well used for this study.

4. Amplitudes of spectral peaks appears to correspond with the relative importance of

controlling influences on the deposystem.

5. Wavelet coefficients clearly reflect the different orders of cyclicity that occurred

during sedimentary deposition. The ratios of cycle wavelengths (~5, ~10, and ~21

ft) correspond to ratios of the Milankovitch cycles 21, 41 and 100 k years.
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6. Sedimentation rates calculated from the association of dominant wavelengths and

Milankovitch cycles is about 6 cm/kyear for the Ormskirk Sandstone. This

corresponds well with the sedimentation rates of 5 cm/year from published studies.

This result supports the hypothesis that Milankovitch cyclicity influenced deposition

in the Ormskirk sandstone.
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CHAPTER V

MULTIPLE-WELL CORRELATIONS

Geologists and petrophysicists use well logs to correlate formations across fields and

basins. Multiple-well correlation has usually been a laborious manual process involving

large amounts of visual and qualitative analysis. This task is slow, labor-intensive and

inconsistent. Correlations of a set of logs made by several interpreters may differ

considerably. Multiple-well correlation is complex. Some units may be laterally

continuous over great distances while others may pinch out. Correlations can be

disrupted by unconformities, hiatuses, and faults. Cyclic repetition of lithologies can add

difficulty to the correlation process. In many cases the units cannot be identified

uniquely (Doveton, 1994, Chapter 6, p. 127).

Multiple-well correlation using well logs is usually validated with core and

cuttings analysis. Wireline logs measure physical properties that are indirectly related to

composition and texture of rocks. Therefore, well logs generate lithostratigraphic

correlations that usually do not match coeval units of chronostratigraphy. Correlations

track lithofacies in their migrations through space and time (Doveton, 1994, Chapter 6,

p. 127).

Well-logs do not determine lithology or grain size directly. Consequently,

lithological and textural interpretations are based on calibration of log responses with

core or cuttings. However, logs can be used for qualitative lithological information and

facies recognition and mapping. The typical logs used for lithofacies interpretation are

the SP, resistivity and GR. In most cases the SP and GR have similar patterns (e.g., fig.

5.12 in Galloway and Hobday, 1996). The SP is an indirect measure of permeability and

in general the amount of permeability is associated with the shale content (permeability

decreases with shale content), and the natural radioactivity increases with shale content.

On the other hand, the resistivity log measures resistivity of the rock matrix and pore

fluids. Because rock matrix resitivity is high compared to formation water, measured

resistivity is primarily a function of pore-fluid interaction rather than lithology.
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However, if porosity and permeability are low, as in a tightly cemented or highly

compacted bed, the resistivity readings increase considerably. Resistivity may thus be

used to measure thickness of sand bodies in freshwater zones or in facies successions

characterized by very low intergranular porosity (Galloway and Hobday, 1996).

The choice of log that is best suited for a given stratigraphic correlation has not

received much attention. A poor choice would be use the GR to correlate shale-free

carbonate sequences. Common well-logs measure for the most part shale content and

porosity. Resistivity logs tend to emphasize porosity fluctuations and shale stringers

within sandstones. One author has considered the acoustic velocity the best log for

subsurface correlation. This log is less affected by borehole conditions or fluids and can

discriminate geologic features (Doveton, 1994, Chapter 6, p. 127).

Log patterns may be used at three levels of interpretation: 1) determination of

vertical facies successions and bedding architecture at the scale of sequences and

depositional systems. In a progradational succession, in which upward coarsening is the

result of the increasing number and thickness of sand beds, both SP and GR display a

progressive deflection from the shale baseline to the sand baseline, reflecting the

increasing proportion of permeable sand and decreasing proportion of radioactive clay.

2) recognition and mapping of log facies within correlative stratigraphic intervals.

Comparison of many logs through a genetic stratigraphic unit will lead to recognition of

recurrent log motifs or electrofacies (see example in figure 2.5, Galloway and Hobday,

1996). Idealized SP or GR logs of vertical sequences for the various depositional

models are proposed in the literature. 3) delineation of lateral and vertical textural

relationships of individual sand bodies. However, textural changes within sand sized

sediment are least likely to be displayed by the logs. The characteristic upward-

coarsening and upward-fining textural patterns of progradational and lateral accretion

bedding geometries are recognized in well logs.

The steps involved in facies architecture include the generation of a structural

model and a petrophysical model, using biostratigraphy, seismic, core analysis, and well

logs. The integration techniques involve in many cases expensive data acquisition
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processes such as seismic 3D, coring operations, special core analysis, special

techniques, and a considerable amount of time of an integrated reservoir characterization

team. The contribution of this research is the development and testing of a technique to

automatically identify the units in different wells, starting with the detailed reservoir

characterization performed on a single well or a few wells. We do not attempt to

perform the core description and integration leading to the identification of different

units. We start from a given characterization provided by geoscientists in a few

“training” wells, understand the well log characteristics for each unit defined for

different signals (GR, ñb, Phinl, Rt, Rxo), extract the important features and generate the

unit identification for all wells in the field where the basic set of well-logs have been

acquired.

We want to test whether wavelets will aid in boundary detection. We perform

our analysis for both the well logs and the wavelet transform of the logs and compare the

results. This process involves feature extraction, dimensionality reduction, and pattern

recognition techniques.

5.1 Apiay field

The Apiay field is located in the oil-prolific Llanos basin. The main producing

reservoirs are located in Upper Cretaceous (Coniacian-Campanian) sandstones,

denominated as K2 (lower) and K1 (upper) units. The original oil in place is estimated

in 298 MMBLS with recoverable reserves of 107 MMBLS. The K1 unit is overlain by

the T2 unit (upper Eocene) which consists of estuarine deposits, with characteristic

fining upwards from the gamma-ray log (Malagon, 1997). The information available for

our project comes from 10 vertical wells (Figures 5.1-5.3).
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Figure 5.1 Area of Apiay field and wells analyzed in this study.

The operational unit K2 represents the best reservoir and is composed of massive

braided fluvial sandstones that produce 25 °API oil from an average net pay thickness of

210 ft. The K1 unit is compartmentalized and represents continuous and progressive

transgressional units, formed by the deposition of sandstones and shales having a more

marine-like character. These individuals sands are more laterally and vertically

heterogeneous compared to the underlying K2 unit. The unit complexity is reflected in

the varying oil gravities and reservoir pressures. The K1 unit has been divided into six

stratigraphic units that are correlated throughout the field. From bottom to top, they are

the K1L2, K1L2, K1M3, K1M2, K1M1, and K1U1. The K1L2 and K1L1 units were

deposited in a transitional marine environment of a fluvial dominated delta. Major

facies include distributary channels and interdistributary bays. The K1M3 unit was

deposited in a mesotidal shareface with barrier inlets-and tidal channel-facies. The
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K1M2 units evolved in a fluvial-dominated delta with distributary channels and channel

mouth bar facies. The K1M1 unit was deposited in a mesotidal shorezone with abundant

tidal inlets and some small tidal barriers. The lithological record of the K1 operational

unit ends with the late Eocene deposition of the K1U1 unit over the upper Cretaceous

units. The K1U1 consits of braided fluvial stream facies (Nieto, 1997).

The stratigraphic framework described above is the result of the integrated

stratigraphic studies performed by Nieto (1997) and Malagon (1997). These studies

incorporated data from well logs, 3D seismic, core analysis, production, pressure,

biostratigraphy, and palinology. Figures 5.2 and 5.3 show NE-SW and NW-SE

stratigraphic cross sections displaying the units from the integrated studies, using the GR

and Rt logs. All other wells and Phinl and and rb logs are shown in Figures B1 to B4,

Appendix B. Five of the 10 wells were cored: A-03, A-09, A-011, A-13, and A-16.

In this Chapter we are assuming that the boundary picks from the integrated

study are correct and represent the “true” locations. The boundary with the highest level

of confidence in the integrated study corresponds to the T2/K1 boundary.

5.2 Well-log response to boundaries

To investigate the level of importance of each signal to the boundary definitions in

Apiay, we take the logs of all wells in the field and make the analysis. The logs selected

for analysis in this project are: Rt, Rxo, Phinl, GR, and rb. The resistivity logs typically

range over several orders of magnitude, so the logarithmic transformation is applied to

perform visual inspection of these signals (Bassiouni, 1994). For this research, all

analyses, displays, and transformations of the resistivity logs (Rt and Rxo) are performed

on the natural logarithm of the signal.
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Figure 5.2 Stratigraphic cross section A-A’ (NE-SW) across the Apiay field displaying
the units from reservoir integrated studies. Well logs shown are GR and Rt.
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Figure 5.3 Stratigraphic cross section B-B’ (NE-SW) across the Apiay field displaying
the units from reservoir integrated studies. Well logs shown are GR and Rt.
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Well logs can be used to construct stratigraphic cross sections or perform electrofacies

analysis. It is important to make the distinction between these two techniques.

Electrofacies allocate rock regions with similar petrophysical behavior, typically

influenced by distinctive porosity and permeability correlations (e.g., Lee et al., 2002).

Rock regions do not necessarily correspond to the same geologic time, and the main use

of electofacies is the generation of permeability distributions. Boundary identification is

essential in the definition of stratigraphic units and involves time. A series of boundaries

forms a stratigraphic framework for the purposes of geologic modeling. The

stratigraphic framework is mainly a deterministic model and is coarse, whereas the

detailed geologic modeling is highly stochastic and various plausible detailed models are

obtained. In many cases the dynamic modeling evaluates several realizations. In this

process, the stratigraphic model typically remains unchanged.

To achieve the boundary identification, we need to extract the characteristic

features in the neighborhood of each boundary. This pattern recognition process

depends on the quality of the reservoir characterization. In the case of Apiay, all wells

have logs and their corresponding petrophysical interpretations. Boundary identification

will improve for wells with core analysis and having good matches between stratigraphic

markers and seismic traces. For Apiay, the well with a high level of confidence in the

seismic response for the K1 intra-horizons is A-15. This is a priori information typically

known for oil fields.

The general characteristics at the neighborhood of the most important boundaries

in Apiay, leading to the selection of relevant features are as follows (Figures 5.2, 5.3 and

B1-B4):

5.2.1 T1/K1U1 boundary

The GR is increasing upwards (fining upwards) in the K1U1 section while decreasing

upwards (coarsening upwards) in the T2 portion. The variability in the GR readings is

higher for the K1U1 section. The span of the GR is higher in the K1U1. The mean GR

readings are very similar for both sections. The variability of the Rt is higher in the T2
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section. The Phinl is increasing upwards in the K1U1 section, while decreasing upwards

in T2.

5.2.2 K1L2/K2 boundary

The GR mean values are smaller in K2 than in K1L2. The GR shows fining upwards in

K2 and coarsening upwards in K1L2. The K2 contains intermediate gravity oil, in

contrast to light oil in the K1L2 units.

The T1/K1U1 boundary is in the neighborhood of very well organized sequences

and the confidence on the allocation of this boundary from the integrated study is very

high (more than 90%). This boundary is an unconformable surface recognizable on

seismic sections (Gutierrez et al., 1996).

On the other hand the location of the K1L2/K2 boundary is a much more difficult

task due to the considerable amount of erosion experienced in the K2 unit. Even though

3D seismic contributed significantly to improvements on the determination of this

boundary, some uncertainty remains about its location at the wells (Nieto, 2003).

5.3 Boundary recognition

In this study we use just well logs, which are the typical data available for every well.

We use the wells with the completed data analysis (well logs, petrophysics, core, and

seismic) as the training set. To perform the boundary recognition using well-logs we

will have 1D signals (one for each log) above and below the boundary. If we analyze a

single signal in a window of w/2 feet below and w/2 feet above the boundary, we will

have a vector x = (x1, …, xe) where e is the number of log readings, and e = w x 2 for a

sampling rate of 2 samples/ft. In our classification problem, we are to develop an

algorithm which will assign the upper portion of the boundary to class C1 and the lower

portion of the boundary to class C2. If we increase the number of logging curves to nl,

then the input vector will have e x nl dimensions. Each depth position would generate a

variable with nl values each. A typical 40-ft window would generate an 80-variable

input (80-dimensional space) for each signal.
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The presence of large numbers of input variables can lead to severe problems for

pattern recognition methods (Bishop, 1995). One technique used to improve the pattern

recognition performance is by combining the input variables to make a smaller number

of new variables called features. These can be constructed based on the particular

problem being tackled (Bishop, 1995). In our case, for each well log we will have nf

features. Each one of the nf features is a scalar summarizing the data for a given depth

range. In our boundary detection problem, we perform the analysis in the neighborhood

of the boundary, which leads to the definition of a window length (in depth units). Since

we are interested in defining features that show contrast between the upper and lower

sections of the boundary, we need to define upper-section and lower-section features.

Thus, the upper section of the window will result in nf upper features and the lower

section will also result in nf lower features. Figure 5.4 illustrates the concept of window

length and features, using the T2/K1U1 boundary.

In addition to the reduction of dimensions, the definition of features is necessary

to satisfy the requirement that C1 must be located on top of C2; thus, bed sets in the

neighborhood of a boundary can be assigned to unique class. This is not possible when

using readings at all depth points. The typical non-stationary characteristics of well-logs

would lead to the assignment of different classes within a bed set.

When using a large number of signals (e.g., 5 well-logs), the resulting number of

dimensions of the extracted features is still too large (more than 10 dimensions). We can

further reduce the dimensionality by using PCA.
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Figure 5.4 GR-features at the T2/K1U1 boundary for well A-04, using a window length
w = 40 ft.

5.3.1 Pre-processing

Well-logs may contain abnormally high or low readings. Since we are interested in the

signal response in a window, it is convenient to smooth those abnormal readings as a

pre-processing step before extraction of features. The signal can be smoothed using a

moving average filter (e.g., Goumas et al, 2002) prior to analysis for feature evaluation.

The signal-averaging filter smoothes rapid fluctuations in the signal. This is also known

as a moving average filter and is implemented as follows (Goumas et al, 2002): Let t(n)

and y(n) be the input and output signal respectively. For each data point k å [ë+m, N-m]

of t(n), compute the value

(5.1)

of y(n), where ë is the starting data point of t(n), upon which the filter operates, N the

length of input signal, and 2m the width of the filter, in depth units, on the input signal.
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Considering the well-log tool resolutions, one reasonable choice for these signals is m =

1 to 2 ft, which implies a filter operating on a 2- to 4-ft window, or 5 to 9 data points for

the typical 2 samples/ft acquisition rate. For this project we performed the smoothing

using a filtering-window width of 4 ft.

The pattern recognition process involves the analysis of signals with different

units. As a second pre-processing step, we normalize all the log readings of the

smoothed signal from zero to one for all depths. These normalized signals, ranging from

0 to 1, are convenient considering that we are more interested in the relative changes

observed on both sides of the boundary than the absolute values. The normalized

variable for well-log i (where i = 1, 2, …n represent GR, Rt, Rxo, Phinl, and Rhob) is

given by

)min()max(

)min(
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i
j

ij
i yy

yy
x -

-=
(5.2)

where j =1, 2,…, J are the depth points of signal i.

5.3.2 Feature extraction

To generate the required features, we can develop measures of similarity and abrupt

variations, based on the observations presented above for the Apiay boundaries. Here,

statistics to be used as features include the sample variability, represented by the

coefficient of variation, CV, and the sample mean, mÙ . The max/min ratio is a third

feature. A possible fourth feature is the trend angle, which focuses on differentiating

funnel and bell shapes that may occur, for example, in the GR for fining and coarsening

upwards respectively. This feature reflects some of the techniques used in stratigraphic

analysis. For example, the definition of many stratigraphic units is based on the fining

and coarsening characteristics of the bed sets.



47

5.3.2.1 Definition of features

Now, we proceed to describe the four features we have selected. The first

feature, the sample mean for the upper-section and the lower-section of the window are

given by

(5.3)

and

(5.4)

where b is the number of depth points from the top of the window up to the boundary

and J is the total number of depth points in the window. By construction upp
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(5.6)

b

x

x

b

j

j
i

upp

i

å
== 1

upp

upp
iupp

V

i

i

x

xVar
C

)(=

1
1

+-=
å

+=
bJ

x

x

J

bj

j
i

low

i

low

low
ilow

V

i

i
x

xVar
C

)(=



48

where Var(x) is the variance of x. CV is a dimensionless measure of sample variability.

This quantity is preferred to the sample variance or standard deviation for data from

different populations or sources because of its dimensionless characteristics (Jensen et

al. 2000). One alternative to CV is the LCV which uses L-moments (Hosking and Wallis,

1997). The first two L-moments are defined as follows,

(5.7)

(5.8)

(5.9)

In our testing the CV and LCV applied to the GR gave similar results. Based on this, we

selected the CV as the feature to be used in our analysis for coefficient of variation.

The third feature, the minimum- to-maximum ratio, is a measure of abrupt signal

deviation, which may occur in drastic lithology changes from shale to sandstone. The

min/max ratio, R, is given by

(5.10)

and

(5.11)
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The fourth feature is the trend angle, è, of the signal in the analysis window.

The trend angle is computed with respect to the boundary with depth values decreasing

upwards. If either the upper or lower portion of the window is coarsening upwards (GR

decreasing upwards) the trend angle will be < 90°. For fining upwards (GR increasing

upwards) the angle will be > 90° . The angle is computed using the regression parameter

â1 obtained from linear regression using the least squares method on the corresponding

window section (upper or lower). The linear model is given by

(5.12)

where X is the predictor representing the normalized signal value, Y is the response

representing the normalized distance from the boundary increasing upwards, and å is a

random error. The predicted responses are

(5.13)

The regression parameter is solved as (Jensen et al., 2000)

(5.14)

The trend angles for the sections above and below the boundary are given by

(5.15)
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and

(5.16)

Then trend angle is normalized from 0 to 1 representing the range 0° to 180° .

Thus, è å [0, 0.5] for decreasing upwards and è å [0.5, 1] for increasing upwards. Figure

5.5 illustrates the steps in calculating the GR-trend angle at the T2/K1U1 boundary, for

well A-04. The upper section of the boundary shows a well defined coarsening upwards

trend, while the lower section displays a fining upwards behavior.

Figure 5.5 GR-trend angle at the T2/K1U1 boundary for well A-04, using a window
length w = 40 ft.
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5.3.2.2 Window length for feature extraction

The values of the extracted features depend on the window length, w, selected. Our

algorithm incorporates w as a sensitivity parameter to be optimally determined from the

boundary detection performance. However, when incorporating multiple well-logs and

wavelet transformation, the process is computationally very intensive and becomes

impractical. The best way to perform the boundary detection is by using a unique

window length. We chose w = 40 ft, based on the following observations:

1) We selected w = 10, 20, 40, and 60 ft to find the optimal window length. We

discarded values below 10 because we are not interested in definition of beds.

Values above 60 ft are not practical because they may define sequences which

are beyond the detail of bed sets required in boundary detection.

2) We performed boundary detection for the T2/K1U1 boundary for the window

lengths mentioned above. The results show that w = 40 ft gives the best

performance for boundary detection. The performance for w = 10 ft is very poor,

and the performance of w = 60 ft is better than w = 20 ft.

3) Cyclostratigraphic analysis in Apiay reveals that the wavelengths of the strongest

cyclicities are close to 20 ft. Figure 5.6 shows the GR-wavelet amplitudes of

wells A-03 and A-09 for four stratigraphic units. Most of the energy is at 20 ft or

smaller wavelengths. There are components, however, with wavelengths over 20

ft so that, had we examined the effects of the value of w more closely, we might

have gotten better results with w somewhat larger than 20ft.

4) The strongest cyclicity of 20 ft corresponds to w/2 = 20 ft, which leads to the

optimal window length of w = 40 ft. This coincides with the detection

performance described above.

5) The window needs to be long enough to capture trends within the zones, but

short enough to ensure that it is capturing within-zone features. Given the

characteristics of Apiay the half window, w/2 = 20 ft, satisfies those

requirements.
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-

Figure 5.6 GR- wavelet amplitude as a function of wavelength in wells A-03 and A-09.

5.3.3 Evaluation of features

The gamma-ray is the signal most widely used for correlation. We begin our analysis of

the Apiay data using this signal. Our research will focus on the boundary detection of

the six operating units of the K1 reservoirs, including the top and the base. The K1 unit

is overlain and underlain by the T2 and K2 units, respectively. One of the main

characteristics of the T2 unit is the fining upwards profile observed in the GR log.
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To start the process, we use the GR for the T2/K1U1 boundary, which is one of

the most important boundaries in the Apiay field. Figure 5.7 displays the features

extracted for all wells at the T2/K1U1 boundary for a 40-ft window. The best features

for boundary identification are those which change the most between the upper and

lower sections of the window, and that are consistently different for all wells. Finding

features with these characteristics is a key factor in recognizing boundaries.

Figure 5.7 Features from GR for T2/K1U1 boundary; window size 40 ft. Dots represent
lower window features and crosses upper window features.



54

The best feature to distinguish the T2/K1U1 boundary in Apiay is the trend angle

(Fig 5.7d). By plotting pairs of features, the pairs trend angle-CV (Fig 5.7i) and trend

angle-Min/Max (Fig 5.7f) display the best combinations for class separation (boundary

identification). Here, the mean is a poor discriminator because the stratigraphic units on

both sides of the boundary are mainly controlled by the coarsening upwards profile of

the T2 unit and the and fining upwards trend of the K1U1 unit in the proximity (20 ft) of

their boundary. The GR-mean values for such contrasting bed sets may be very similar.

The separation of the features above and below other boundaries in the Apiay

field are less clear than the T2/K1U1 boundary. The quality of the separation of classes

decreases using 20-ft windows, and improves a little bit for 60-ft windows. Based on

this, it seems reasonable to choose w = 40 ft as the optimal window size. The Phinl and

Rt are logs that show potential for successful pattern recognition at this boundary,

although not so robust as the GR since the separation of classes between the upper and

lower sections of the boundary is less evident.

5.3.4 Dimensionality reduction

Using a single unprocessed signal generates a 4-feature vector (4 dimensions, d = 4). In

the previous section we showed graphically the potential performance of the individual

and pairs of features (single and two-dimensional plotting) for the T2/K1U1 boundary.

Bishop (1995) described the problems which could arise in performing pattern

recognition in high-dimensional spaces, and the improvements which can be achieved by

first mapping the data into a lower dimensionality space. The dimensionality reduction

is achieved using principal component analysis.

The steps for dimensionality reduction (Figure 5.8) are:

1) Feature extraction. Each feature will have two values: the upper feature (from

the upper window) and the lower feature. For two samples per foot the original

dimensionality is reduced from 2w x nl to nl x nf. The input matrix will reduce
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from 2T x (2w x nl) to 2T x (nl x nf). For 5 well-logs and 4 features per well log,

the dimensions will reduce from 400 to 20.

2) Optimal-feature selection. For each feature, the difference between the upper

window value and the lower window value will generate a difference, df. The

analysis of the variance of df leads to the ranking of the features by relevance.

The features having df vectors with the smallest coefficient of variation, dCV, are

the most desirable features for boundary determination. Further PCA on the

training set will lead to the optimal number of features nfopt. The optimal

features will consist of the nfopt features with the smallest dCVs. This process

will have two goals: select the optimal features and reduce dimensions. The

dimension are reduced from nl x nf to nfopt, where nfopt å [2, d]. The steps for

selection of optimal features are described in section 5.3.5.2.

3) PCA. Applying PCA on the optimal feature matrix, F, and selecting the first two

PCs, will reduce the dimensions from nfopt to 2.
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Figure 5.8 Dimensionality reduction process. The example for 5 well logs, window size
of 40 ft, 2 samples/ft, and four features per log, demonstrates how the 400-dimensional
input matrix is reduced to 20 dimensions with feature extraction; then to 10 dimensions
by selection of optimal features; and lastly to 2 dimensions by PCA.

The PCA for the features at the T2/ K1U1 boundary proceeds as follows. For the

raw GR (nl = 1), and using all 10 wells in Apiay (T = 10):

1) Extract the four features (mean, CV, min/max, trend angle) at the boundary using

a 40-ft window (nf = 4, w = 40 ft). This will create 4 features for the upper

section and 4 features for the lower section. For a single signal, the dimension d

= nl x nf = 1 x 4 = 4. For each type of feature, create the feature vector for the
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upper and lower sections. The resulting matrix Ft will be of size 2T x d (20 x 4).

(Table 5.1).

2) Compute the mean and standard deviation (sd) for each feature vector (Table

5.1).

Table 5.1 Features for raw GR at the true K1U1 boundary for a 40-ft window.

well mean Cv min/max trend angle
A-03 0.602 0.334 0.418 0.298
A-04 0.616 0.425 0.308 0.265
A-05 0.441 0.519 0.211 0.254
A-07 0.449 0.469 0.195 0.214
A-09 0.366 0.450 0.201 0.336
A-10 0.386 0.556 0.143 0.113
A-11 0.564 0.358 0.219 0.251
A-13 0.552 0.332 0.392 0.296
A-15 0.450 0.307 0.404 0.336

u
p

p
er

fe
at

u
re

s

A-16 0.386 0.552 0.142 0.086

A-03 0.388 0.711 0.014 0.785
A-04 0.370 0.750 0.000 0.743
A-05 0.371 0.682 0.077 0.740
A-07 0.387 0.779 0.026 0.759
A-09 0.486 0.613 0.037 0.760
A-10 0.353 0.929 0.011 0.772
A-11 0.440 0.668 0.036 0.783
A-13 0.339 0.854 0.000 0.754
A-15 0.461 0.656 0.073 0.825

lo
w

er
fe

at
u

re
s

A-16 0.379 0.841 0.020 0.793

mean 0.439 0.589 0.146 0.508
sd 0.085 0.189 0.142 0.277

3) Standardize the feature vectors by subtracting the mean and dividing by the

standard deviations calculated in step 2 above. This will result in feature vectors

with zero mean and standard deviation of 1. The standardized feature vectors are

presented in Table 5.2.
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4) Compute the covariance matrix for the normalized feature vectors (Table 5.3).

Table 5.2 Normalized features for raw GR at the true K1U1 boundary for a 40-ft
window.

Standardized features

well mean Cv min/max trend angle
A-03 1.929 -1.352 1.909 -0.760
A-04 2.088 -0.867 1.137 -0.879
A-05 0.018 -0.372 0.451 -0.918
A-07 0.117 -0.635 0.342 -1.063
A-09 -0.865 -0.737 0.385 -0.621
A-10 -0.633 -0.178 -0.024 -1.426
A-11 1.475 -1.227 0.511 -0.929
A-13 1.328 -1.362 1.724 -0.765
A-15 0.131 -1.492 1.810 -0.620

u
p

p
er

fe
at

u
re

s

A-16 -0.633 -0.198 -0.028 -1.523

A-03 -0.611 0.645 -0.933 1.000
A-04 -0.817 0.849 -1.028 0.849
A-05 -0.809 0.491 -0.485 0.836
A-07 -0.621 1.002 -0.846 0.907
A-09 0.550 0.125 -0.766 0.908
A-10 -1.020 1.799 -0.951 0.953
A-11 0.010 0.417 -0.778 0.992
A-13 -1.182 1.402 -1.028 0.887
A-15 0.260 0.355 -0.512 1.144

lo
w

er
fe

at
u

re
s

A-16 -0.716 1.334 -0.891 1.026

mean 0 0 0 0
sd 1 1 1 1

Table 5.3 Covariance matrix of standardized feature vectors.

mean Cv min/max trend
mean 1.000 -0.728 0.720 -0.421

Cv -0.728 1.000 -0.916 0.783
min/max 0.720 -0.916 1.000 -0.741

trend -0.421 0.783 -0.741 1.000
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5) Compute the eigenvectors and eigenvalues of the covariance matrix. The

eigenvectors ordered in decreasing eigenvalues (Table 5.4) constitute the

principal components (PCs). The first and second eigenvalues explain 79.4 and

14.4% of the variance respectively. The first two PCs explain 93.8% of the

variance of the data, which is good enough to perform further analysis (Jolliffe,

2002, Chapter 6). The PCs will be contained in matrix PC.

6) Transform the boundary-feature matrix Ft to its corresponding z-score matrix Zt.

The z-scores are the transformed data resulting from PCA. Zt is obtained by

matrix multiplication of the standardized feature vectors and the matrix of PC

coefficients (PC). Thus, Zt = Ft x PC (Table 5.5).

7) The visual representation of the first two principal components (first two z-score

vectors) is shown in Figure 5.9. There is a very clear separation between the

upper and lower features.

Table 5.4 Eigenvalues and Eigenvectors of covariance matrix in order of decreasing
eigenvalues. The Eigenvectors represent the coefficient of the PCs.

PC1 PC2 PC3 PC4

Coefficients
-0.449 0.742 -0.489 -0.097
0.543 0.042 -0.277 -0.791
-0.536 0.002 0.612 -0.582
0.465 0.670 0.557 0.160

eigenvalues 3.174 0.581 0.166 0.079
Variation, % 79.4 14.4 4.2 2.0
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Table 5.5 Z-score transform of the feature vectors (PCs).

well PC1 PC2 PC3 PC4
A-03 -2.976 0.869 0.177 -0.350
A-04 -2.427 0.927 -0.574 -0.319
A-05 -0.879 -0.615 -0.141 -0.117
A-07 -1.075 -0.651 -0.264 0.122
A-09 -0.506 -1.087 0.517 0.344
A-10 -0.463 -1.431 -0.450 -0.012
A-11 -2.035 0.421 -0.585 0.381
A-13 -2.615 0.420 0.357 -0.178
A-15 -2.127 -0.378 1.112 0.016

u
p

p
er

fe
at

u
re

s

A-16 -0.517 -1.498 -0.500 -0.009

A-03 1.590 0.242 0.106 0.252
A-04 1.773 -0.004 0.008 0.142
A-05 1.279 -0.021 0.428 0.106
A-07 1.699 0.187 0.013 -0.095
A-09 0.653 1.019 -0.266 0.439
A-10 2.388 -0.044 -0.052 -0.618
A-11 1.100 0.688 -0.044 0.280
A-13 2.256 -0.225 0.054 -0.255
A-15 0.883 0.972 0.099 0.175

lo
w

er
fe

at
u

re
s

A-16 2.000 0.211 0.007 -0.303

Figure 5.9 PCA for theGR at T2/K1U1 boundary, window size = 40 ft (red crosses upper,
blue circles lower part).
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5.3.5 Depth selection

In our research we perform the boundary recognition assuming that the various

boundaries along the well are independent events. Thus, our process operates on one

boundary at a time. The steps involved in boundary detection are as follows:

1) Choose well-logs to be used in the pattern recognition and perform smoothing

operations on each signal. The signals should include the GR or SP. The number

of well-logs, nl, times the number of features per signal, nf, will determine the

total number of features d = nl x nf.

2) For each one of the observation wells (wells where the boundary is to be

identified), select the depth range spanning all boundaries to be computed. The

top depth is deptht and the bottom depth is depthb. Here, we are performing the

pattern recognition with precision of 1 ft. Thus, for the depth range [deptht ,

depthb] the total number of depth values is H = depthb - deptht + 1.

3) Choose the window length, w, in depth units. The window will be equally split

into upper and lower sections with size w/2 each.

4) Determine the number of depth points in the observation well as M = H – w. The

resulting depth vector r å [deptht + w/2, depthb + w/2] with length M.

5) For each depth point of r compute the depth-upper and-lower features. This will

generate a 2M x d matrix O for the observation well. The upper features are

stored in rows 1 to M, and the lower features in rows M +1 to 2M.

6) Select desired boundary.

7) For the requested boundary and the observation well, select a search-depth range.

The pattern recognition algorithm will assign the boundary depth within this

range. In our analysis, we used search-depth ranges with size of 200 ft.

8) Define the training wells (T wells). This set in general will consist of the best

characterized wells, where the boundaries depths, bt (t =1, 2, .., T), have been

defined.

9) Extract the boundary-upper and -lower features for each one of the training wells.

The boundary-upper features will be computed for the depth range [bt – w/2, bt],
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and the boundary-lower features will be processed for the depth range [bt , bt +

w/2]. This will result in a 2T x d training-feature matrix Ft. The upper features

are stored in rows 1 to T, and the lower features in rows T +1 to 2T.

10) Select the optimal features by variance analysis on matrix Ft. This will produce

the optimal number of features nfopt. The optimal training-feature matrix F will

be of size 2T x nfopt .

11) Perform dimension reduction on the training wells by applying principal

component analysis (PCA) on the matrix F. This will generate the coefficients of

the principal components (PCs) contained in the square matrix PC of size d x d.

Transform matrix F to Zt (z-score matrix) by Zt = F x PC. By choosing the first

two PCs (PC1 and PC2), the resulting z-score matrix Z will be of size 2T x 2.

12) Using the first two PCs, transform the feature matrix O in the observation wells

to generate the matrix of z-scores Oz = O x PC.

13) Compute the probability that the upper-z-scores at each depth point belongs to

the boundary-upper z-scores. Perform similar probability calculation for the

lower z-scores. The total probability is obtained by multiplying the probability

of the upper z-scores by the probability of the lower z-scores.

14) Assign the boundary on the observation wells at the highest-probability depth.

15) Repeat steps 6 to 14 for other boundaries.

Figure 5.10 shows the shifting process involved in the boundary detection in an

observation well. The window length is the same as the one defined for the training set.

Features at each depth point (usually every foot) are calculated, the window is shifted

one foot and feature extraction is repeated until covering the whole depth range.

Different approaches can be implemented for testing of the pattern recognition

procedure. The first approach is to select a well with high interpretation confidence, for

example A-11 well (cored well and good seismic match) or A-15, and then attempt to

recognize the boundaries in all other wells. A second approach is to use the information

from multiple wells (two or more) and recognize the boundaries for all other wells. For
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single-well training set, steps 10 and 11 are not required, and step 12 is performed on the

feature vectors directly.

Figure 5.10 Feature extraction in observation well. Features are extracted at each depth
point using the window length, w. The window is shifted along the depth range. The
boundary is assigned to the depth of the midpoint of the window with the features closest
to those of the training set.

window
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In practice, the boundary recognition can be performed starting from the

information of very well characterized wells (the training set). This task is accomplished

by comparing the boundary features of the training set with the features at a given depth

in the test well. A probability value is assigned at each depth. After scanning all depths

in the test well a probability curve as a function of depth is obtained. The depth with the

highest probability is chosen as the likeliest location for the boundary.

Increasing the number of wells in the training set gives more insight on the

characteristics of the features representing the upper and lower sides of a geological

boundary. We address the single well training set because this is a common task in

boundary identification. The approaches for single well and multiple-well training sets

vary slightly.

5.3.5.1 Single-well training set

Consider the case of d extracted features. Treating the upper and lower sections of the

boundary as two independent features, the resulting boundary features fk where k = 1, 2,

… 2d, define the boundary for the single-well training set. At each m depth point (where

m = 1, 2, …, M) in the observation well, we have test features tmk where m =1, 2, … M;

and k = 1, 2,… 2d. The error row vector em at each depth point is given by

em = tm - f (5.17)

To illustrate the case of the single-well training set, we selected well A-15, the

GR, and the T2/K1U1 boundary (Example 1). There are four extracted features,

resulting in eight boundary features for the two half windows. The boundary

identification in well A-03 in the interval 10,000 to 10,793 ft results in a matrix error of

size 794 x 8. The boundary features of the training well A-15 are shown in table 5.1.

Figure 5.11 displays the errors for two features. In the vicinity of well A-03 true

boundary (10,135 ft) error values of zero are obtained at 10,127, 10,154, and 10,227 for

the upper mean (Fig. 5.11a). For the lower CV, zero errors are obtained at 10,134,

10,175, and 10,208 ft. Additional zero errors are obtained at depths more than 400 ft

below the true boundary.
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(a) (b)

Figure 5.11 Error distribution for well A-03 for the T2/K1U1 boundary detection, using
the raw GR. The training well is A-15 (Example 1). The features shown are: (a) upper
mean and (b) lower CV.

To detect the boundary we need to model the conditional probability p for all
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feature vector being tested, tm (at depth point m), corresponds to the feature vector of the

training vector f is given by

Õ
=

=
d

k
mktpp

2

1
m )f|()f|t(

(5.18)

Assuming that the errors eik have a normal distribution with zero mean and standard

deviation s, the probability distribution required in Equation 5.18 is given by
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k

km

k

mktp s
e

sp (5.19)

Figure 5.12 shows the normalized probabilities computed for all wells for

Example 1. Two wells (A-07 and A-16) show the highest probability at depth values

more than 400 ft below the true boundary. In practice, it is obvious that the T2/K1U1

boundary cannot be located at such depths. To address this we can impose a search

range within the vicinity of the true boundary similar to those used in field applications.

Performing the analysis on a search range of 200 ft (100 ft above and 100 ft below the

true boundary) we find that using A-15 as the training well (Example 1) will result in

proper detection (error in boundary detection less than 10 ft) on 7 out of 9 wells (78%).

The other two wells A-07 and A-16 give an error of 21 ft both. Adding the Rt to

the analysis reduces the proper detection to 67%. Table 5.6 presents the proper detection

results (error less than 10 ft) using different signals and combinations. For the T2/K1

boundary, the GR is by far the best signal for boundary detection. The combination of

GR and the other signals (5 signals in total) improved the detection from 78 to 89%. For

the K1/K2 boundary the best performance is achieved by combining GR and Rt. Still

the boundary identification at this boundary is not as good as the T2/K1. These results

are consistent with the integrated reservoir study, in which there is a high degree of
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confidence in the determination of the T2/K1 boundary, but less confidence in the

determination of the K1/K2 boundary, as described in section 5.2.

Figure 5.12 Normalized probability distributions for the T2/K1U1 boundary detection,
using the raw GR. The training well is A-15. The true boundary depths are indicated
with a tick on the right hand side.
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Table 5.6 Proportion of boundaries identified within 10 ft of the true position, using
A-15 as the training.

Detection performance(%)

Signal T2/K1U1 K1/K2

GR 78 11

Rt 11 11

Rxo 0 22

Phinl 33 0

Rhob 0 0

GR and Rt 67 33

GR, Rt, Rxo, Phinl, and Rhob 89 11

5.3.5.2 Multiple-well training set

Having a single well in the training set imposes restrictions in the analysis. There is no

way to know if similar patterns are consistently present in other wells. Increasing the

number of wells in the training set can contribute to more confidence in the boundary

determination. However, the training set should include the best characterized wells, to

avoid the risk of diminishing the detection ability of the process.

For the case of a single well, and based on current practices and the results

presented in Table 5.6, the GR features, in general, should be considered first for

boundary identification. Table 5.6 shows that adding more signals could lead to

deterioration of the boundary identification (T2/K1 boundary) or improvement (K1/K2

boundary). For the optimal boundary identification we need to know in advance the type

of well-logs or combinations that would perform most efficiently. First, we will develop

the process for raw signals only and then we will expand to include wavelet

transformation. As an example we will use K1/K2, which is more difficult to detect than

T2/K1.
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Using all the signal availables for Apiay field (GR, Rt, Rxo, Phinl, and Rhob), and

extracting four features from each raw signal (mean, CV, min/max, and trend angle) will

result in 20 feature vectors per upper or lower window (Figure 5.13). The features that

better contribute to the proper boundary identification are the ones showing consistent

class separation between the upper and lower portions of the boundary. By visual

inspection, we can recognize the GR mean and the GR-trend angle as among the best

features.

Figure 5.13 Feature vectors for raw signals in Apiay field at the K1L2/K2 boundary.
Dots represent lower window features and crosses upper window features.
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The dimension reduction is performed using PCA. Figure 5.14 show the first

two PCs for the K1/K2 boundary using different combinations of signals. Using the 5

signals (20 features) results in poor class separation of the upper and lower sections of

the boundary (Fig. 5.14c) as compared with the 4 GR features (Fig. 5.14a). Adding the 4

Rt-features to the GR-features does not improve the class separation (Fig. 5.14b). We

need to develop a method that identifies the maximum class separation between the

upper and lower-window features (fig 5.14d).

The pre-selection of features for maximum class separation can be accomplished

by computing the coefficient of variation of the difference between the upper and lower

window values of each feature, dCV. If this difference is relatively constant for all wells

in the training set, dCV is small. On the other hand, when the difference is not constant

or changes sign frequently, dCV is high.

The process to determine the optimal features to be used proceeds as follows:

1) Create the feature differential vectors by subtracting the lower window value

from the upper window value.

2) Compute dCV for each differential vector.

3) Order the features in ascending values of dCV. The best features are the ones with

the smallest dCVs.

4) Take the best two features and determine the PCs as described in Section 5.3.4

above.

5) Use the upper Z-score transforms (first two PCs) and calculate for each well in

the training set the multidimensional distance from the well to the training set

(Mahalanobis distance, defined below). This creates a vector of upper-

Mahalanobis distances.

6) Create the lower-Mahalanobis-distance vector using the lower Z-score

transforms.
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Figure 5.14 Principal components for different combinations of features for the raw
signals in Apiay field at the K1/K2 boundary. (d) represents the optimal features from
the 5-signal 20 features. In this case, the optimal features are GR-mean and GR-trend
angle.

7) Compute the total variance of multidimensional distances by adding the upper-

and lower- mahalanobis-distance-variances and normalizing by the number of
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8) Take the best three features and compute total Mahalanobis distance variance as

described in step 7.

9) Repeat steps 4 to 7 until using the feature with the largest dCv .

10) Report the optimal number of features at the least total Mahalanobis distance

variance.

For d-dimensional data, the Mahalanobis distance, 2D , from vector x to the d-

dimensional mean vector m is given by (Bishop, 1995)

( ) ( )å- --=D 12 mm xx T

(5.20)

where

[ ]xem =

( )( )[ ]Txx mme --=å

Here, [ ]×e denotes the expectation and 2D is the distance between an observation and a

population mean, and is related to probability density functions. Surfaces of constant

probability density are hyperellipsoids on which 2D is constant. The principal axes of

the hyperellipsoids are given by the eigenvectors of å (Bishop, 1995).

Figure 5.15 shows the dCvs for the 20 features of the 5 signals for all wells in

Apiay field at the K1/K2 boundary. The smallest dCV is obtained with the GR-mean,

followed by the GR-trend angle, Rt-Min/Max, and GR-Min/Max.
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Figure 5.15 Differential-features-coefficient of variation, dCV, of the raw-signal features
in Apiay field at the K1/K2 boundary. For each signal the features from left to right are:
mean, CV, Min/Max, trend angle.

To illustrate how the pre-selection of features affects the boundary identification

we will use a training set of four wells to identify the K1/K2 boundary. For this case

(Example 2) the training wells are A-05, A-11, A-13, and A-15. The dCvs for the

training set are shown in Figure 5.16. The smallest dCvs are the GR-mean, followed by

the Rt-CV, Rt-Min/Max, and GR-Min/Max. These coefficients differ from the ones

obtained using all wells in the field (Fig. 5.15). For the purposes of boundary detection

we must use the dCvs from the training set.
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Figure 5.16 Differential-features-coefficient of variation, dCV, of the raw-signal features
for 4-training wells (A-05, A-11, A-13, A-15) at the K1/K2 boundary. For each signal
the features from left to right are: mean, CV, Min/Max, trend angle.

Figure 5.17 shows the dCV and Mahalanobis distance variance as a function of

the features ordered in ascending value of dCV. The optimal number of features of 12

corresponds to the minimum Mahalanobis distance variance. Also, the dCV values show

a drastic slope increase after 12 features. Figure 5.18 shows the probability distributions

using a) all the 20 features of the 5 signals, and b) using the optimal number of features

(12 features with the smallest dCVs). The pre-selection of optimal type and number of

features generates better boundary identification. Without pre-selection of features, 33%

of the boundaries in the observation wells are properly identified (within 10 ft of true

boundary). The pre-selection of features increases the detection performance to 50%.
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c

Figure 5.17 Differential-features-coefficient of variation, dCV, and Mahalanobis
distance variance for the training set A-05, A-11, A-13, A-15 at the K1/K2 boundary.
The features are ordered in ascending dCV values. The optimal number of features is 12,
although 10 or 11 also give good performance.
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(a)

(b)

Figure 5.18 Normalized probability distributions for the K1/K2 boundary detection,
using 5 well logs. The training well are A-05, A-11, A-13, A-15 A-15. The true
boundary depths are indicated with a tick on the right hand side. (a) shows the
distribution using all 20 features and (b) displays the distribution using the optimal
number of features (12).
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For multiple-well training sets, the probability distribution at each depth m is

given by

( ) ( ) ÷ø
öçè

æ D-= å
2

,2/12/ 2

1
exp

2

1
sm

s
d

s
m

s
m xp

p (5.21)

where the index {s = upp, low} represents the upper and lower sections of the window

boundary.

Equation 5.21 gives the probability that z-transform of the features of the upper or lower

sections at the test depth (vector x) corresponds to the Z-score transforms of feature

vector of the true boundaries in the training set. The training-set Z-scores have the mean

vector m with d-dimensions (equal to the number of PCs chosen for analysis). 2D is the

Mahalanobis distance from vector x to the d-dimensional mean vector m. å s is the

determinant of å s , a d x d covariance matrix of the training set Z-scores.

5.4 Effect of number of signals

In section 5.3.5.1 we introduced the expansion on the number of signals to the analysis

for single-well training. The addition of signals improved the detection performance for

both the T2/K1U1 and the K1L2/K2 boundary. We expand that analysis to the 4-well

training set of example 2 at the K1L2/K2 boundary. The detection results are shown in

Table 5.7. The addition of the Rt signal improves the detection performance from 17%

to 50%. The same occurs when using all 5 signals (GR, Rt, Rxo, Phinl, and Rhob). The

choice of signals to be used for the detection of the K1L2/K2 boundary is all five signals

considering the fact that the mean detection error is smaller than the GR-Rt pair (14.4 vs.

24.1 ft). The pairs GR-Rxo, GR-Phinl, and GR-Rhob, do not change the detection

performance achieved by the GR only. This is because the optimal selection of features

include only the 4 GR features. However, when using all 5 signals the optimal selection

of features amounts to 12. The selected features are: 4 GR-features, 2-Rt features, 3 Rxo-

features, 1 Phinl-feature, and 2 Rhob-features (Fig. 5.16).
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Here, we are picking only the highest probability event in the 200 ft interval.

The performance would be better if we allowed the consideration of events with smaller

probabilities. For instance, if we pick the second highest probability event for the

K1/K2 boundary, we would have proper detection for well A-04 (Fig. 5.18).

Table 5.7 Detection performance and mean detection error at the K1L2/K2 boundary.
Training wells: A-05, A-11, A-13, A-15.

Signal Detection
performance(%)

Mean detection
error (ft)

GR 17 50.3

GR and Rt 50 24.1

GR and Rxo 17 50.3

GR and Phinl 17 50.3

GR and Rhob 17 50.3

GR, Rt, Rxo, Phinl, and Rhob 50 14.4

5.5 Effect of wavelet decomposition

Wavelet transformation of 1-d signals has been used extensively for pattern recognition

(Goswami and Chan, 1999). There are two approaches to wavelet transform: the

continuous wavelet decomposition (cwt) and the discrete wavelet decomposition (dwt).

The most common technique for pattern recognition is the dwt. Here, we perform

pattern recognition using both dwt and cwt. The basic concepts of wavelets and the

procedures for wavelet decomposition are discussed in Chapter III.



79

5.5.1 Discrete wavelet transform (dwt)

The discrete wavelet decomposition is a function of the choice of wavelets and the levels

of decomposition, nd. The Daubechies family of wavelets has been used extensively

because its wavelets coefficients capture the maximum amount of the signal energy

(Goumas et al., 2002). The Daubechies family is referred to as Dn, where n is the size

of the mother wavelet. In our application we found that D4 with four levels of

decomposition (nd = 4) captures the characteristics of the well-logs in Apiay.

Consequently all the analyses presented in this chapter are performed using Daubechies

4 (D4) and 4 levels of decomposition. Figure 5.19 displays the approximation and

details for the GR in well A-15. The approximation represents the low frequency

reconstruction of the signal. The details represent the high frequency components of the

signal. The frequency decreases with the details. From detail 4, the boundaries

T2/K1U1 and K1L2/K2 are evident. Detail 3 captures the K1U1/K1M1 and

K1M3/K1L1 boundaries. Other boundaries are less evident. The approximation

distinguishes the K1U1 unit from the others. One additional use for the approximation is

the representation of the general trend of the signal. The general representation can be

used as a template for what could be expected in neighboring wells while acquiring the

data.
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Figure 5.19 dwt on the GR of well A-15, using D4 and 4 levels of decomposition.
Shown are the signal, the approximation and the 4 details.

The features extraction from the dwt can be performed similarly to the “raw”
signal (un-processed log) described previously. The approximation and details now

represent a new set of input data. For nd levels of decomposition we are increasing the

number of input signals from 1 (raw signal) to nd + 2 signals (4 levels of decomposition

plus the approximation and the raw signal). By extracting the same nf features from the

decomposition, we will have a total of nf x nd +2 features for each well-log. If we take

the GR and 4 levels of decomposition we will end up with 24 features (24-dimensional

input). Figure 5.20 displays the features for the GR at the K1L2/K2 boundary. Figure

5.21 shows the dCV for all features, and Figure 5.22 presents the dCVs ordered for
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selection of optimal features. The optimal number of features at this boundary is 6. The

best feature is the app-mean. The other features selected for pattern recognition in

increasing value of dCV are: GR-mean, GR-trend, app-trend, det1-CV, and GR-

Min/Max.

Figure 5.20 Features for the GR, approximation, and details at the K1L2/K2 boundary
in Apiay.
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Figure 5.21 Differential-features-coefficient of variation, dCV, for the GR,
approximation and 4 levels of detail at the K1/K2 boundary, using all wells in Apiay.
For each signal the features from left to right are: mean, CV, Min/Max, trend angle.
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Figure 5.22 Differential-features-coefficient of variation, dCV, and Mahalanobis
distance variance for all wells at the K1/K2 boundary, using the GR and 4 levels of
decomposition. The features are ordered in ascending dCV values. The optimal number
of features is 6.

Performing the pattern recognition for example 2 at the K1L2/K2 boundary, and

using the discrete wavelet decomposition, generates the detection performance shown in

Table 5.8. By comparing these results with the ones obtained using just the raw signal

(Table 5.7) we can make the following observations:

1) The use of dwt improves the detection for the GR

2) For the six combinations of signals, dwt improves the detection in 4 of the cases

(67%).

3) The best detection for this example is achieved by using the raw signals only,

i.e., not using the dwt.

4) The optimization of features will select the best combination of signal and

determine if wavelet decomposition is required for better detection.
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Table 5.8 Detection performance and mean detection error at the K1L2/K2 boundary,
using dwt on the well-logs. Training wells: A-05, A-11, A-13, A-15.

Signal and dwt Detection
performance(%)

Mean detection
error (ft)

GR 33 37.6

GR and Rt 33 43.0

GR and Rxo 33 34.5

GR and Phinl 17 15.3

GR and Rhob 33 37.6

GR, Rt, Rxo, Phinl, and Rhob 17 32.1

5.5.2 Continuous wavelet transform (cwt)

The continuous wavelet transform was used in Chapter IV for cyclostratigraphy

purposes. In this chapter, we are evaluating the cwt for pattern recognition of geologic

boundaries. We use the Morlet wavelet. Fig 5.23 shows the GR- and Rt-scaleograms for

well A-03. The GR-scaleogram captures the characteristics of the K1U1 unit and the

separation with the overlying and underlying units T2 and K1M1. In addition, the GR-

scaleogram distinguishes the K1L2/K2 boundary. The Rt-scaleogram is less revealing.
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Figure 5.23 Morlet scaleogram for well A-03. The cwt is applied for the GR and Rt.

The cwt features for each one of the well-logs are generated from the

scaleogram coefficients as follows:

1) The mean, Cv, Min/Max and trend angle of the raw signal will constitute the first

4 features

2) Extract six vectors of wavelet coefficients as a function of depth for the

wavelengths: 4, 8, 12, 16, 20, and 24 ft (six different scales).

3) Define the window, w, as described before.

4) Compute the mean and CV for the upper and lower section of the window. This

will generate 12 wavelet-coefficient features, for a total of 16 features (16-

dimensional input for each signal).
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Figure 5.24 shows the cwt-GR features at the K1L2/K2 boundary and Figure

5.25 the dCV for the various features. The optimal features (6) are the 4 features of the

raw signal, the mean of the 4-ft wavelength-coefficients and the CV of the 12-ft

wavelength coefficients.

The detection performance in Example 2, using cwt, is presented in Table 5.9.

The detection performance improves with the cwt compared to the raw signals alone.

The combination of all 5 signals and cwt generates the highest detection performance

(67%) at the K1L2/K2 boundary.

Figure 5.24 cwt features for the GR at the K1L2/K2 boundary. The first row shows the
4 features for the raw signal. The other rows show the mean and CV for the wavelets
coefficients at different wavelengths.
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Figure 5.25 Differential-features-coefficient of variation, dCV, for the GR, and
wavelength coefficients, for various wavelengths, at the K1/K2 boundary, using all wells
in Apiay. For each signal the features from left to right are: mean, CV, Min/Max, trend
angle.

Table 5.9 Detection performance and mean detection error at the K1L2/K2 boundary,
using cwt on the well-logs. Training wells: A-05, A-11, A-13, A-15.

Signal and cwt Detection
performance(%)

Mean detection
error (ft)

GR 33 36.3

GR and Rt 17 38.6

GR and Rxo 50 19.1

GR and Phinl 33 16.6

GR and Rhob 17 19.1

GR, Rt, Rxo, Phinl, and Rhob 67 16.4
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5.6 Choice of signals for boundary detection in Apiay area fields

In the preceding sections we showed that the optimal detection of a given boundary is a

function of 3 variables, namely training wells, combination of signals, and pattern

recognition technique (raw signal versus wavelet decomposition). This leads us to the

need of finding the optimal combination of signals and type of analysis for each

boundary. Assuming a high degree of confidence on the integrated study performed for

Apiay, we can use these results to predict boundary positions in additional wells in

Apiay or in neighboring fields. Thus the training set for this high-confidence data set is

extended to include all 10 wells in our study.

Now, we proceed to evaluate our pattern recognition algorithm for all the main 7

boundaries in Apiay, by implementing the leave-one-well-out technique, as follows:

1) Choose a boundary.

2) Choose 9 out of the 10 wells as the training set, leaving out well # 1.

3) Select a signal or combination of signals.

4) Select the type of analysis (raw, dwt or cwt)

5) Compute the error in detection observed in the well left out.

6) Repeat the steps 2 to 5 until all wells are left out

7) Repeat steps 1 to 6 for other boundaries

The results for the T2/K1U1 are shown in Table 5.10. The dwt applied to all the

5 signals gives the least error in detection (3.6 ft). The best detection performance in

terms of boundaries detected within 10 ft is 90% for the cwt on GR and Rhob.

The detection performance for all boundaries in Apiay are presented in Table

5.11. The boundary at which the best performance is achieved is the T2/K1U1, with

90% detection performance and mean detection error of 3.6 ft. The optimal performance

for this boundary is with wavelet analysis. On the other hand, the optimal detection at

the K1L2/K2 boundary is achieved with raw signal only (GR and Rt) with 60%

detection and mean error of 31.5 ft.
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Table 5.10 Detection performance for the T2/K1U1 boundary in Apiay.

Detection error, ft
well GR GR, Rt GR, Rxo GR, Phinl GR, Rhob All 5 logs
A-03 1 1 1 1 1 12
A-04 -1 0 -1 -3 61 4
A-05 -2 -1 55 -2 -2 -1
A-07 0 -1 -1 0 9 -1
A-09 75 72 7 4 5 5
A-10 0 0 0 -3 56 0
A-11 0 1 1 0 0 1
A-13 0 51 -1 -1 -1 3
A-15 64 64 64 64 64 64
A-16 1 -3 0 39 9 4

mean error, ft 14.4 19.4 13.1 11.7 20.8 9.5

raw

% wells within 10 ft 80 70 80 80 70 80
A-03 1 1 6 6 6 6
A-04 -2 3 -1 -2 65 -1
A-05 4 4 55 -2 4 -1
A-07 -3 -1 -2 -1 -2 -1
A-09 4 8 6 76 76 12
A-10 0 12 -7 7 -7 0
A-11 1 11 1 6 1 11
A-13 0 1 0 1 0 1
A-15 77 9 2 -4 -1 -2
A-16 -7 -4 -7 9 6 1

mean error, ft 9.9 5.4 8.7 11.4 16.8 3.6

dwt

% wells within 10 ft 90 80 90 90 80 80
A-03 8 7 6 1 6 -2
A-04 -1 0 -1 -2 7 -2
A-05 -6 65 -6 -2 -6 -1
A-07 -1 -2 29 -2 -2 -2
A-09 -1 13 12 1 -5 13
A-10 36 -3 -6 33 37 37
A-11 -3 -4 -3 -3 -3 -3
A-13 -1 3 -1 -6 -2 1
A-15 64 5 64 64 7 64
A-16 -3 12 -3 1 -7 5

mean error, ft 12.4 11.4 13.1 11.5 8.2 13

cwt

% wells within 10 ft 80 70 70 80 90 70
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Table 5.11 Optimal boundary detection for Apiay.

optimal type of analysis and statistics

Mean error Detection performance
within 10 ft

Boundary Type of
analysis

Error, ft Type of
analysis

Detection
Performance,

%
T2/K1U1 dwt on 5 logs 3.6 cwt on GR-Rhob 90

K1U1/K1M1 dwt on GR-Rhob 20.9 dwt on GR 40
K1M1/K1M2 GR-Rhob 26.8 GR-Rhob 30
K1M2/K1M3 GR-Phinl 29.7 dwt on GR-Rt 40
K1M3/K1L1 dwt on GR-Rt 21.2 dwt on GR-Rt 50
K1L1/K1L2 dwt on GR-Rt 26.2 dwt on GR-Rhob 30

K1L2/K2 GR-Rt 31.5 GR-Rt 60

5.7 Comparison with other techniques

Our boundary detection method corresponds to a modified version of discriminant

analysis (DA). The purpose of DA is the classification of samples into one of the groups

established in a training set. Let S be the sample matrix of size m x d, where m is the

number of samples and d the number of dimensions. DA classifies each row vector in S

into one of the classes of the training set.

In boundary detection we have two classes C1 and C2. C1 is the section above the

boundary and C2 the section below the boundary. A unique requirement in boundary

detection is that C1 must be located on top of C2. This imposes a spatial constraint. That

is one of the main reasons for the need of defining features for a given window length on

both sides of the boundary. We need to assign the upper section to a unique class C1 and

the lower section to a unique class C2.

This is in contrast to the way discriminant analysis is applied for electrofacies

purposes, in which the classes do not have spatial constraints. Each electrofacies can be

located anywhere in the well one or more times (e.g., Fig. 7 in Lee et al., 2002). One



91

class can be assigned at each depth point. Therefore, there is not need to window the

well-logs, and DA is applied on the well-log readings on a foot by foot basis. The

classification for boundary detection is also performed on a foot by foot basis with each

depth point having features summarizing the log readings in the window. For example

for our window length of 40 ft, the upper section measures 20 ft. At a depth of the

window center of 10,050 ft, the upper window features summarize the logs from 10,030

to 10,050 ft. At 10,051 ft, the upper window features are computed for the range 10,031

to 10,051. Here, the input for feature extraction contains 21 log reading vectors, of

which 20 vectors are common for the window center depths 10,050 and 10,051 ft.

In boundary detection, the discriminant analysis is performed on the extracted

features. Each depth point is composed of features extracted for the window length. At

each depth point, we calculate the probability that the upper-section features belong to

class C1, and that the lower-section features belong to C2. Assuming independent

events, the total probability is given by pi = pupp x plow.

In this chapter, we showed that our boundary-detection method is robust because

of the combination of a) feature extraction, b) principal component analysis, c)

automated feature selection, and d) wavelet decomposition. A more traditional approach

would simply use feature extraction and principal components.

To compare our method with traditional DA, we selected the T2/K1 boundary.

This is an unbiased comparison given the fact that this boundary is the easiest to

recognize and the confidence on the boundary depths from the integrated study is more

than 90%. We used the leave-one-well out technique, in which 9 of the wells are

selected as the training set and we calculated the boundary depth in the well left out. We

repeated the procedure for all 10 wells.

For the traditional approach, we used two features: the mean and the CV. The

comparisons were performed using the 5 well-logs (GR, Rt, Rxo, Phinl, and Rhob). The

results are shown in Table 5.12. The best detection performance is accomplished with

the DWT and our previously described method (the new method). The second best is

our method on raw signals. If we do not perform the automated pre-selection of
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features, the detection error increases considerably for both raw signal and DWT

analysis. If we use our method and only two features, the mean and the CV, the

detection performance lowers appreciably. These results ratify the robustness of our

method due to the use of wavelet transformation and automated optimal selection of

features. The fact that the detection is poor with the mean and CV only reflects the fact

that the trend is a powerful feature in boundary detection.

Table 5.12 Comparison of new method with traditional DA techniques.

Detection error for 5 well-logs at T2/K1 boundary (feet)
New method No feature opt. 2 features, opt. 2 features, no opt.

well raw dwt raw dwt raw dwt raw dwt

A-03 12 6 13 12 0 1 26 21
A-04 4 -1 8 7 54 -2 50 17
A-05 -1 -1 58 8 10 62 10 5
A-07 -1 -1 -3 -6 -2 -3 -2 92
A-09 5 12 13 19 19 18 19 22
A-10 0 0 2 -7 -5 -5 59 -7
A-11 1 11 42 41 17 44 45 44
A-13 3 1 58 7 59 1 60 7
A-15 64 -2 1 -2 10 2 11 -1
A-16 4 1 -7 -17 -19 45 -9 -27

Mean error, ft 9.5 3.6 20.5 12.6 19.5 18.3 29.1 24.3
% wells within 10 ft 80 80 50 60 50 60 40 40

5.8 Conclusions

Based on the results presented in this chapter we can draw the following observations

and conclusions for boundary detection:

1) Boundary determination is a difficult task even when geophysical and core data

are available. Making the prediction using just well-logs is a more complex

process. However well-logs are the only data acquired for most wells in the oil
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industry. Here, we presented a method to predict boundaries starting from the

reservoir characterization performed on a few wells.

2) The combination of wavelet transformation and pattern recognition techniques

generally improves boundary detection.

3) Some boundaries are easier to detect than others, using just well logs.

4) The combination of the GR and other signals in general, will improve the

boundary detection.

5) Wavelet transformation in general improves the detection process. However, for

two of the seven boundaries in Apiay, the optimal type of analysis was achieved

with the raw signals.

6) The best detection was achieved for the T2/K1U1 boundary, with a mean error of

3.6 ft and 90% detection within 10 ft of true boundary. This is an excellent case

of proof of principle for our boundary detection algorithm, considering that the

search range for the boundary was 200 ft. This very good performance was

accomplished with wavelet transformation on 5 well-logs.

7) The pre-selection of best features before performing pattern recognition is a key

step on the boundary detection. This process is automated and is governed by the

data in the wells selected for training. Typical pattern recognition applications

found in the literature do not perform this pre-processing step.

8) We defined features that reflect the geological environment controlling

stratigraphic units. In particular, the trend angle is a feature that represents the

profiles of well logs. This feature proved to be very useful in the successful

identification of the T2/K1 boundary. The upper section (T2) is coarsening

upwards and the lower section (K1) is fining upwards in the neighborhood of

their boundary. This is the only feature capable of detecting this contrast.

9) Using traditional features such as the mean and coefficient of variation results in

50% detection performance at the T2/K1 boundary, which is well below the 90%

achieved in the new method. If automated pre-selection of features is not

performed the detection diminishes even further (40%).
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10) The determination of boundaries in Apiay area fields can be performed using the

type of analysis and combination of signals presented in Table 5.11.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

We have developed a computer program to perform cyclostratigraphic analysis based on

the wavelet transformation. We also created a computer program to detect boundaries,

starting from the reservoir characterization performed on a few wells. The software

incorporates wavelet decomposition (dwt and cwt), feature extraction, dimensionality

reduction using PCA, and boundary detection. The following are the main conclusions

of our research:

1) Wavelet analysis generates useful information from well-log responses. It is a

useful tool for automated cyclostratigraphy. Two other methods commonly used,

Fourier transform and the semivariogram, cannot be used to interpret cyclicity in

the presence of superimposed cycles.

2) Amplitudes of spectral peaks appear to correspond with the relative importance

of controlling influences on the Ormskirk Formation deposystem. Wavelet

coefficients clearly reflect the different orders of cyclicity that occurred during

sedimentary deposition.

3) Wavelets are useful in boundary detection. As it has been the case for

applications in other field of science, performing the analysis in the frequency

domain, allows the decomposition of a signal in high and low frequency

components at multiple levels. This multiresolution analysis, using wavelet

transforms, leads to better pattern recognition of the features in the neighborhood

of a stratigraphic boundary.

4) The combination of the GR and other signals in general, will improve the

boundary detection. Wavelet transformation in general improves the detection

process. However, for two of the seven boundaries in the Apiay Field, the

optimal type of analysis was achieved with the raw signals.

5) The best detection was achieved for the T2/K1U1 boundary, with a mean error of

3.6 ft and 90% detection within 10 ft of the true boundary. This is an excellent
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proof of principle for our boundary detection algorithm, considering that the

search range for the boundary was 200 ft. This very good performance was

accomplished with wavelet transformation on 5 well-logs.

6) The pre-selection of best features before performing pattern recognition is a key

step on the boundary detection. Typical pattern recognition applications found in

the literature do not perform this pre-processing step, resulting in inferior

boundary detection performance.
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CHAPTER VII

FUTURE WORK

At the conclusion of our research we identify the following tasks for reservoir

characterization with wavelets:

1) We found that the optimal window length for feature extraction from well-logs in

Apiay was 40 ft. We fixed this value in our software. Future programs should

incorporate the evaluation of various window lengths. This will increase the

computation time.

2) We used the Morlet wavelet for cwt and Daubechies (D4) with 4 levels of

resolution for dwt. The evaluation using other wavelets can be incorporated.

The computation time will increase, and the analysis could be more time

consuming.

3) Perform 2D wavelet decomposition on image logs to identify important events

such as fractures.

4) Further work can be performed in coupling the cylostratigraphic analysis using

various well logs. In our research, we performed the analysis using the well-logs

independently. The well-logs may be combined using principal component

analysis for example to generate a unique Z-score well-log. The

cyclostratigraphic analysis can be performed on this transform, resulting in a Z-

score scalogram.

5) Wavelets in well-test applications have focused on de-noising and data

conditioning. Further work could be performed to implement wavelets as a

useful tool in well-test interpretation.
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NOMENCLATURE

NE = Northeat

NW = Northwest

SE = Southeast

SW = Southwest

GR = Gamma-ray log

Rt = Deep resistivity log

Rxo = Shallow resistivity log

Phinl = Neutron-porosity log

Rhob = Bulk density log

Dt = Transit time log
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APPENDIX A

GEOLOGIC DESCRIPTION OF THE ORMSKIRK FORMATION

Structure

The East Irish Sea basin is part of a linked array of basins formed as a result of a Permo-

Triassic extensional phase related to early Atlantic opening. The sedimentary fill

comprises Permian, Triassic and Early Jurassic rocks unconformably overlying

Carboniferous sequences. Hydrocarbon prospectivity in the area has centered on the

Early Triassic Sherwood Sandstone Group, which forms the reservoir for the

Morecambe Field. The northern part of the East Irish Sea basin, where the Morecambe

field is located, comprises a series of half-graben bounded by an orthogonal set of NE-

SW- and NNW-SSE-trending extensional faults forming an elongate rhomb-shaped (Fig.

A.1). This interpretation was proposed by Herries and Cowan (1997) who used dipmeter

analysis from the Morecambe fields to infer westerly fluvial paleoflow. This

contradicted the Meadows and Beach model (1993), which predicted major northward-

flowing fluvial systems along the hanging walls of the basin-bounding faults.

Stratigraphy

The Sherwood Sandstone Group is mainly Scythian (Early Triassic) in age. In the East

Irish Sea Basin, the Sherwood Sandstone is overlain by the mudstone- and halite-

dominated Mercia Mudstone Group and underlain by the St Bees Shale. The Sherwood

Sandstone Group is subdivided into upper and lower formations. The lower is the St

Bees Sandstone Formation. The upper formation is the Ormskirk Sandstone which

comprises mainly sandstones of mixed fluvial, eolian and sheetflood origins (Herries and

Cowan, 1997).

Sedimentology

The upper interval of the St Bees Sandstone and the whole Ormskirk Sandstone

comprise a mixed association of facies types, including fluvial channels developed on a
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variety of scales, eolian dunes and sandsheets, sandflats subject to episodic unconfined

sheetflood events and ephemeral playa lakes. All of these facies are consistent with

deposition in a semiarid continental environment.

Fluvial channel systems

The sediments associated with fluvial channel in the Sherwood Sandstone are subdivided

into those relating to major, perennial rivers and those associated with ephemeral

channels. The sequences interpreted as major fluvial channels systems comprise

stacked, erosively-based sets of moderately sorted, medium-and fine-grained sandstone.

The sandstones commonly contain clay to silt grade intraclasts. Individual tabular and

trough cross-stratified sets are typically stacked to form compound channel-fill

sandstone bodies that commonly fine upwards and exhibit un upward decrease in

preserved set thickness, occasionally passing up into abandonment fines. This upward

fining represents deposition under waning flow conditions, while a variety of ripple

forms, typically forming the top to these sequences, represent bar-top modification

during low-or falling-stage discharge (Meadows and Beach, 1993).

These major stacked or multi-story sandstone bodies are the depositional products of

low-to moderate-sinuosity braided channels containing bars. Some of these sequences

also contain intervals of flat-laminated or low-angle, cross-stratified sandstones. The

presence of these deposits agrees with the suggestion of perennial rivers subject to

significant variation in flow regime (Meadows and Beach, 1993).

There are records of deposition within minor channels with similar sedimentological

characteristics to the perennial rivers but with significant differences indicating

ephemerality. These features are the preserved thickness of individual and compound

bar forms, the absence of intrasets and graded foresets, the common abundance of

reworked eolian-type grains, and the interdigitation of these channel sandstones with

sheetflood, playa and eolian facies. The interdigitation of facies and scarcity of thick
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multi-story sandstone bodies in the sequences comprising this facies type indicate that

these channels were short-lived morphological features. The occasional presence of

partially flood-reworked eolian dune sandstones and wind-reworked tops of fluvial bars

support this hypothesis. These fluvial channels were subject to highly variable discharge

regimes, dried out for substantial periods and, when active, may have formed tributaries

to the major perennial channel systems (Meadows and Beach, 1993).

Eolian systems

Eolian sandstones are a significant component of the Ormskirk Sandstone Formation.

These sediments are either true eolian bedforms or reworked material within other

facies, and they are very important due to their consistently high reservoir quality. Eolian

deposits occur primarily as either dunes or sandsheets. Moderate-to-high-angle, planar to

asymptotically-dipping, cross-stratified sandstones exhibiting fine grain-size

differentiated lamination, are interpreted as eolian dunes. Within the Ormskirk

Sandstone, dunes are commonly interbedded with other facies, principally eolian

sandsheet and sheetflood deposits, and rarely exceed one meter in preserved thickness.

Eolian sandsheets are very finely laminated, flat-to low-angle, cross-stratified sandstones

and are interbedded with dune and sheetflood deposits. There is also interdigitation of

sandsheet facies with other facies types on a very fine scale with millimeter to

centimeter alterations of eolian laminae and silty sheetflood laminae. These very fine

facies changes represent subtle variations in the paleo-water table that either allowed or

inhibited surficial eolian reworking. The development of more substantial intervals

dominated by eolian processes, generally comprising interbedded eolian dune and

sandsheet sediments, represents significant episodes of lowered water table conditions,

whereas intervals in which eolian sandsheet intercalations form a minor component

interbedded with fluvial sheetflood and playa deposits represent episodes of raised water

table conditions (Meadows and Beach, 1993).
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Sheetflood systems

Sediments attributed to deposition by unconfined fluvial processes form a major element

of the Ormskirk Sandstone formation. These sediments rarely form thick, continuous,

single facies. Instead they are most commonly interdigitated with eolian, playa and

ephemeral channel deposits. These deposits vary from highly porous, flood-reworked,

eolian sandstones to low-porosity, finely and irregularly laminated silty and argillaceous

fine-grained sandstones. Deposition was from recurrent, rapid, bedload-sedimentation

events that were followed by slack-water fall-out of suspension fines. There are also

thin, dessicated claystone laminae within these sequences, evidencing the occasional

drying out of the sediment surface (Meadows and Beach, 1993).

Playa systems

Claystone-and silstone-dominated sequences representing deposition within, or

associated with, standing bodies of water occur at various horizons within the Ormskirk

Sandstone but are most common in the upper parts of the formation. These sediments are

volumetrically minor but stratigraphically significant since they constitute the only

primary non-reservoir units within the sequence. Intervals interpreted as representing

deposition in ephemeral playa lakes are dominated by claystones and siltstones. These

sediments were deposited in shallow water. The sediments commonly contain

dessication fractures up to 10 cm deep. The majority of playas are assumed to have been

non-evaporitic (Meadows and Beach, 1993).

Sequences interpreted as playa margin environments are transitional between the

deposits of playa lakes and wet, sheetflood-dominated, sandflats. They exhibit the

characteristics of both facies with an interbedding of playa sediments, representing lake

expansion, and sheetflood with occasional eolian sandsheet representing lake contraction

and drying in the marginal areas (Meadows and Beach, 1993).
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Depositional model

Within the eolian-and sabkha-dominated sections of the Ormskirk Sandstone, a repeated

arrangement of facies 2-10 m thick is consistently present (Herries and Cowan, 1997).

Strongly water-table influenced deposits grade up into eolian sabkha sandstones with a

matching increase in both frequency and thickness of interbedded dry eolian deposits.

The abundant, thin eolian interbeds suggest that winds transported the bulk of the

sediment from dried river beds around the basin margins. These vertically ordered facies

patterns form units that can be correlated for at least 20 km in some of the Irish Sea

fields. The widespread nature of these drying-upward units is interpreted as a response

to basin-wide changes in the balance between sand saturation and the water-table level

(Herries and Cowan, 1997).

Herries and Cowan (1997) favor a sand-supply dominated model, which requires distinct

seasonality to account for the water-table fluctuations and longer term, cyclic changes in

water-table level to generate the drying upward patterns. Climatic modeling suggests

that interior lowlands underwent extreme seasonal temperature variations with seasonal

precipitation followed by extreme heat and humidity. This would produce the changes in

water-table. A mechanism for generating the drying upward units may be the 23000

year precession cycle. Herries and Cowan (1997) conclude that each cycle should be

represented by approximately 8 m of preserved sediment, which is within the 2-10 m

range of thickness observed for the drying upward depositional units. Support for

climatic control comes from evidence for changing wind directions preserved in drying

upward units (Herries and Cowan, 1997).

Facies correlations

Thompson and Meadows (1997) evaluated wells representing a northwest to southeast

traverse from basin center to margin in the Morecambe field (Fig. A.2). Eolian facies

are abundant in wells 110/2-6 and 110/8a-5 and are replaced upwards by progressively

wetter sandflat deposits dominated by a range of sheetflood, playa and ephemeral fluvial
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channel deposits. A similar wetting upward pattern is evident in 110/13-5 with greater

abundance of eolian sandstones. In 110/14-3 the upper sandflat interval is thicker and is

dominated by eolian dune and sandsheet deposits. Facies become more eolian towards

the basin margin and form part of thicker sandflat sequence, relative to the top fluvial

channel datum.

Figure A.1 Paleocurrent vectors for cross-stratified fluvial sandstones (from Herries
and Cowan, 1997).

110/8a-5
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APPENDIX B

STRATIGRAPHIC CROSS SECTIONS FOR APIAY FIELD

Figure B.1 Stratigraphic cross section (N-S) across the Apiay field displaying the units
from reservoir integrated studies. Well logs shown are GR and Rt.
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Figure B.2 Stratigraphic cross section A-A’ (NE-SW) across the Apiay field displaying
the units from reservoir integrated studies. Well logs shown are Phinl and rb.
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Figure B.3 Stratigraphic cross section B-B’ (NW-SE) across the Apiay field displaying
the units from reservoir integrated studies. Well logs shown are Phinl and rb.
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Figure B.4 Stratigraphic cross section (N-S) across the Apiay field displaying the units
from reservoir integrated studies. Well logs shown are Phinl and rb.
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