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ABSTRACT 

 
 
 
 
 

Reconstruction of 3D Rigid Body Motion in a Virtual Environment 

from a 2D Image Sequence. (May 2003) 

Sumantra Dasgupta, B.E., BIT MESRA, Ranchi, India. 

Chair of Advisory Committee: Dr. Aniruddha Datta 

 

This research presents a procedure for interactive segmentation and automatic tracking of 

moving objects in a video sequence. The user outlines the region of interest (ROI) in the 

initial frame; the procedure builds a refined mask of the dominant object within the ROI. 

The refined mask is used to model a spline template of the object to be tracked. The 

tracking algorithm then employs a motion model to track the template through a sequence 

of frames and gathers the 3D affine motion parameters of the object from each frame. 

The extracted template is compared with a previously stored library of 3D shapes to 

determine the closest 3D object. If the extracted template is completely new, it is used to 

model a new 3D object which is added to the library. To recreate the motion, the motion 

parameters are applied to the 3D object  in a virtual environment. The procedure 

described here can be applied to industrial problems such as traffic management and 

material flow congestion analysis. 
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CHAPTER Ι 

INTRODUCTION 

 
Separation of moving objects from a static background in a video sequence is a well 

known segmentation and tracking problem.  In recent years, there has been growing 

interest in this problem due to such diverse applications like object-based video 

compression (e.g. MPEG4/7 specifications), video surveillance and monitoring, analysis 

of medical images and automatic target detection and tracking [1]. 

The previous work on segmentation can be categorized into three broad categories: 1) 

intra-frame segmentation and inter-frame tracking, 2) dense motion clustering or 

segmentation, and 3) frame differencing. In the first approach, frames are segmented 

independently using traditional segmentation techniques (i.e. exploiting the intensity and 

texture of images) and then the segmentations are compared in a frame-by-frame basis 

[2]. This method works well with a small number of regions. Segmentation using 

intensity and texture is difficult and often leads to over-segmentation. To remedy the 

situation, 3D segmentation of images have also been attempted but it is computationally 

intensive [3]. In the second approach, a dense motion field is used for segmentation. 

Pixels with similar motion vectors are grouped together ([4], [5]). This method is suitable 

for situations where motion estimation produces reliable motion fields, which is rare in 

case of real-world image sequences. In the third approach, frame differencing is used to 

mark out moving pixels [6]. The pixel-by-pixel difference between two frames is taken.  

 ______________________                    
 The journal model is IEEE Transactions on Automatic Control. 
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If a particular pixel position has a large frame difference then it is related to a moving 

object. This process has the advantage of being computationally efficient, but does not 

produce whole objects. Moreover, it is very sensitive to noise and is inapplicable for 

cases where global motion exists.  

If object tracking is the ultimate goal of image sequence segmentation, which is true in 

our case, then semi-automated techniques can be both reliable and fast. In semiautomatic 

segmentation, the user provides manual segmentation in the first few frames. The 

segmented portion is tracked automatically by the procedure in the subsequent frames. 

The elegance of the method lies in the way it reduces the semantic overload of object 

recognition on the part of the procedure. The concept becomes clear if we try to 

differentiate between a region and an object. The concept of a region is supposed to 

denote an area in a frame characterized by its homogeneity of one or more quantitative 

features, such as color, texture, gray level, motion, etc. On the other hand, an object is 

defined as in the framework of MPEG4 as “an entity in a scene that a user is allowed to 

access (seek, browse), and manipulate (cut and paste)” [7]. Unlike regions, objects have 

more semantic content, but lack the global coherence in color, texture and movement. 

Computers can be easily programmed to separate out regions, but not objects because of 

this semantic factor. It is here that an user can provide suggestion to the computer 

running the region separation algorithm, (which is relatively easy on his/her part) in the 

form of initial segmentation of whole objects.  Once this is done, the region separation 

procedure can treat the manually segmented object as a set of regions, grouped together 

by the user, and identify the object in the subsequent frames.  In fact, the procedure can 

improve the initial segmentation by various automated techniques and then use the 
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improved segmentation to track similar group of regions in subsequent frames, as is 

shown in this paper. Some of the existing approaches can be found in the literature ([8], 

[9], [10], [11], [12]).  

There are existing methods for 3D object reconstruction from 2D data using stereo vision 

and telemetry-based depth recovery ([13], [14], [15]). These methods help in 

reconstructing static 3D objects from 2D images. The proposed method looks at 

perspective 2D video data from a single fixed camera, identifies the contour representing 

the object, which is used for reconstructing the object in 3D. In addition, the method 

tracks the object to obtain its motion information in time, which is used in a virtual 

environment to play back the sequence of events. The concept of recreating motion in 

virtual reality is not new. It was conceived in [16], where the concept of virtualized 

reality is introduced. Virtualized Reality is said to be superior to virtual reality in that it 

knows the depth information of every real world pixel. Construction of virtual world 

from real scenes is further explored in [17]. Modelling of dynamic scenes is dealt in [18]. 

Recent works in this field include [19] [20] [21]. [19] [21] discuss moving object 

extraction using pre-stored background information and [20] deals with motion extraction 

using non-parametric probabilistic model (for local motion ). 
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  The proposed method consists of two main steps. First, the object and motion 

information is collected from the given video sequence. Appropriate probabilistic 

methods and motion models are described to deal with the whole data acquisition 

process[22]. Then, this information is mapped to produce corresponding 3D objects in a 

virtual environment. These 3D objects are used in the reconstruction of object behavior in 

the virtual environment. The next chapter describes the video sequence segmentation, 

while the third chapter describes the mapping process of the segmentation information to 

3D objects in the virtual environment. 
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CHAPTER ΙΙ 

VIDEO SEGMENTATION AND TRACKING 

 
The video sequence segmentation algorithm is divided into four components. Section 2.1 

describes the initial user level segmentation, while Section 2.2 describes the automated 

refinements of the initial segmentation. Section 2.3 discusses models of objects, suitable 

for implementation in a computer. It also discusses issues related to camera perspective 

and calibration. Finally, Section 2.4 describes the automatic tracking of the object of 

interest in subsequent frames.  

2.1 MANUAL SEGMENTATION 

 
The user can interactively select the region of interest (ROI) in the first frame. Upon 

completion, the procedure stores a cropped portion of the ROI and its binary mask. This 

is shown in Figure 1. These form the basis for all subsequent automated segmentation 

and tracking. If there are multiple moving objects and the user is interested in separating 

out an object moving at a specific rate, then that optional information can be provided 

along with the initial segmentation. Velocity tuned filters (VTF) [23] can be used in such 

circumstances. 

                                    
Figure 1. A video frame and region of interest (ROI) selection. 
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2.2 AUTOMATIC REFINEMENT 

 
There are two modes of refining the initial segmentation depending on the type of mask 

that is needed. 

2.2.1 MODE 1: FOR A COARSE USER DEFINED MASK 

 
The automatic refinement of the initial mask is broken down into a series of steps: (i) 

edge detection within ROI using Sobel/zero-crossing techniques/Canny ([1], [24]), (ii) 

blackening out spurious edges using extended Laplacian filter/color differencing, (iii) 

predicting missing edge points using simple slope predictor, (iv) scanning for object 

edges from outside - left, right, top, bottom, and building a refined mask by blackening 

out everything outside edge points and whitening everything within, (v) apply erosion 

and dilation [1] to angular edges, and (vi) give the user an option to choose the final 

mask that will be used for subsequent automated tracking. This method is suitable for 

objects with straight edges. 

2.2.2 MODE 2:MORPHOLOGICAL WATERSHED ALGORITHM 

 
The algorithm can be broken down into a series of steps: 

1. Mark the region of uncertainty:  Erosion and dilation operators are applied to the user 

mask Binit to obtain Bin and Bout 

Bin  = ε  (Binit )                                                                                                          (1) 

Bout = δ  ( Binit )                                                                                                       (2) 
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where ε and δ are the morphological erosion and dilation operators respectively. The 

following inequality is satisfied. 

Bin  ⊆  Binit  ⊆  Bout                                                                                                                                          (3) 

Also, 

Bin   ⊆  B ⊆  Bout                                                                                                                                         (4) 

where B is the real video object. The region of uncertainty is the region between Bin and 

Bout. The pixels in this region are to be labeled inside or outside the object. Figure 2 

shows the relationship between B, Binit, Bin and Bout. 

 
 

Figure 2. Relationship between B, Bin, Bout and Binit. 
 

2. Create the cluster-centers: The cluster-centers are created along the contours of Bin and 

Bout. Both the RGB components and the pixel positions are considered. So, each cluster-

center is a five dimensional vector with three color components and two position 

components. In this case, there are five consecutive edge points to form the cluster-

centers. Each cluster-center is either  ‘in’ or  ‘out’ cluster-center, as shown in Figure 3. 
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Figure 3. Object boundary, cluster centers and distance. 
 
 

3. Decide initial markers for the uncertain points: The concept of distance can be defined 

as follows. Suppose a cluster-center C is characterized by {r,g,b,x,y}, where the first 

three parameters specify the RGB color components and the last two parameters specify 

the pixel coordinates The distance of a pixel P, characterized by {ri,gi,bi,xi,yi}, from C is 

given by, 

di = | r-ri | + | g-gi | + | b-bi | ,  P ∈Ν( C )                                                               (5) 

where Ν( C ) is a neighborhood of C. In our case, all Ν(C)’s are subsets of Bout-Bin. 

Each cluster-center has a hierarchical queue associated with it. The pixels belonging to 

the Ν(C) of the cluster-center are arranged in the queue in the order of increasing 

distance. Since neighborhoods of cluster-centers overlap, there may be multiple 

occurrences of the same pixel in different queues.  

4. Flooding: The multiple occurrence of pixels is resolved and the uncertain pixels are 

given their final in/out labels. For each cluster-center, the pixels are chosen in the order 

of increasing distance. Once a pixel is grouped to a cluster-center, the cluster-center is 

updated and any other occurrence of the pixel in other queues is erased. 
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Practical considerations: Figure 5 illustrates the effect of watershed as applied to the user 

selection (Figure 4). Shadow beneath the vehicle wheels causes minor distortions in and 

around the wheels. These distortions can be removed by reapplying the watershed 

algorithm with smaller erosion and dilation masks.   

 

 
 

Figure 4. Object selection by user. 
 
 
 

 
 

Figure 5. Cleaning of mask by watershed algorithm. 
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2.3 SHAPE SPACE MODELING 

 

2.3.1 SPLINE CURVES 

 
Visual curves can be represented in terms of parametric spline curves. In a spline curve, 

the coordinates of the curve (x(s) ,y(s)) are traversed as the parameter s increases. The 

functions x(s) and y(s) are known as splines. A spline of order d is a piecewise 

polynomial function, with concatenated segments of order d, joined together at 

breakpoints.  

B-splines consist of curve segments whose polynomial coefficients depend on just a few 

control points. In the B-spline form, the spline function x(s) is made as a weighed sum of 

NB basis functions Bn(s), n=0,1,…., NB-1. A parametric B-spline curve, in the interval 

[0,L] is made of a pair of such spline function and can be represented as, 

 r(s)=(x(s),y(s))                                                                                                             (6) 

Ls0for              (s)B(s)
1N

0n

nn

B

≤≤= ∑
−

=

qr
                                                                          (7) 

where qn is a control point (qn
x,qn

y). In a more compact form, it can be written as, 

Qr (s) (s) U=                                                                                                                 (8) 

where, 

                                                                                                                     (9) 








=

y

x

Q
Q

Q

and 
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=

(s)'0
0(s)'

(s)
B

B
U

                                                                                               (10) 

with Qx and Qy being the vectors of x and y coordinates of the control points and B(s) is 

the vector of B-spline weights. 

We can define a norm ||.|| for a B-spline curve which is induced by the Euclidean distance 

measure in the image plane, 

 ||Q||2=QT UQ                                                                                                          (11) 

where, 

dsUU (s)(s)'1/L
L

0
∫=U

                                                                                             (12) 

The centroid of a curve is defined  

 
∫=
L

0

(s)1/L dsrr
                                                                                                       (13) 

The area of a curve is defined as 

    

∫=
L

0

|(s)'(s),A dsrr|
                                                                                                (14) 

2.3.2 SHAPE SPACE 

 
A shape-space S=L(W,Q0) is a linear mapping of a shape-space vector X to a spline 

vector Q. The dimension NX of the shape space vector is always less than NQ, the 

dimension of the spline vector. 

 Q=WX+Q0                                                                                                                                                                 (15) 
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where W is a NQ x NX shape matrix and Q0 is a template curve in spline space. 

The norm over S is 

||X||2=XT HX                                                                                                          (16) 

where,     

 H=WT UW                                                                                                            (17) 

The norm over S has a geometric interpretation, 

||X||2=||Q-Q0||                                                                                                         (18) 

is the average displacement of the curve parameterized by X from the template curve. 

The inverse mapping from spline space to shape space can be defined as, 

 X=W+ (Q-Q0)                                                                                                        (19) 

where W+ =H-1 WT U is the pseudo-inverse of W. 

2.3.3 CAMERA PERSPECTIVE AND AFFINE SPACE 

 
The modeling of the object is based on the perspective projection model. The imaging 

geometry of a perspective camera is shown in Figure 6. The origin of the 3-D coordinate 

system (X, Y, Z) lies at the optical center (C) of the camera lens. The retinal plane or the 

image plane is normal to the optical axis Z and is offset from C by the focal length f. 

Images of unoccluded 3-D objects in front of the camera are formed on the image plane. 

The 2-D image plane coordinate system is centered at the principal point, which is the 

interSection of the optical axis with the image plane.  
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Figure 6. 3D imaging geometry. 

 

 The orientation of (x, y) is flipped with respect to (X, Y) in the Figure, following the 

principles of transmissive optics. The two coordinate systems are related by the 

perspective equations: 

                                                                                                    (20) 








=

Y(s)
X(s)

f/Z(s)(s)r

where r(s) is the curve on the image plane and (X(s),Y(s),Z(s))T is the 3D object. The 

focal length f of a camera can be calculated using the formula, 

f = fnom (1-fnom/Zc ) -1                                                                                                 (21) 

where fnom is the nominal focal length usually printed on the side of the lens housing and 

Zc is the working distance. 

Let us consider an object whose center is at RC =(XC,YC ,ZC ) and whose span is 

described by the curve R(s). If we assume that the object diameter is much less than the  

working distance (assumption for orthographic projection) we may write the perspective 

equation as,  
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                                                                                      (22) 








+
+

=
Y(s)Y
X(s)X

(s)f/Z(s)
C

C
Cr

   If we suppose that the object contour RC+ R(s) derives from R0(s) using a rotation by R 

and a translation by  RC, we get 









+=

(s)Y
(s)X

(s)f/Z(s)
0

0
2x2C Rur

                                                                                 (23) 

where u is the orthographic projection of the vector RC and R2x2 is the upper-left 2x2 

block of  the rotation matrix R. The previous equation is analogous to a 2D affine space. 

Non-planar objects are better approximated by the 3D affine space model. Consider the 

object to be a 3D curve 

R0(s)=(X0(s),Y0(s),Z0(s))T                                                                                       (24) 

This object when projected orthographically gives the image curve, 
















+=

(s)Z
(s)Y
(s)X

(s)f/Z(s)
0

0

0

2x3C Rur

                                                                                    (25) 

This can be expressed as a 8-parameter affine transformation, 

r(s)=u+M r0(s)+vZ0(s)                                                                                              (26) 

with 

R2x3 =ZC /f (M | v)                                                                                                      (27) 

In shape space, this is interpreted as, 

 









=

0z0x0y

0z0y0x

QQQ
QQQ
00010

00001
W

                                                        (28) 

and  
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X=(u1 ,u2 ,M11 -1,M22 -1,M21 ,M12 ,v1,v2)                                                                   (29) 

2.3.4 KEY-FRAMES 

 
In case of multiple template frames, one can use the concept of key-frames in shape 

space. Suppose there are three template frames r0 ,r1 and r2 ( e.g. the front view, side 

view and back-view of a car). Any intermediate view, composed of rotation, translation 

and zooming of the three templates can be modeled in shape space using the shape space 

matrix, 









=

2x2y1x1y0x0y

2y2x1y1x0y0x

QQQQQQ
Q-QQ-QQ-Q

10
01

W
                                                  (30) 

 

2.4 TRACKING 

 
The tracking process is used to automatically track the user defined template through a 

sequence of frames. The Section begins with the description of curve matching 

algorithms. Subsequently probabilistic models of shape are described. The Section then 

goes on to describe some feasible models for capturing the dynamics of motion. Finally, 

the curve matching algorithm is blended with a proper dynamic model to invoke dynamic 

contour tracking. 

2.4.1 FITTING SPLINE TEMPLATES 

 
Suppose we are given an initial shape estimate rm(s)( or Xm in shape space). The problem 

is to fit it to a image curve feature rf(s). More rigorously, the problem is stated as: 
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Given an initial estimate rm(s)( or Xm in shape space) with normals nm(s) drawn to it and 

a regularization weight matrix Sm, solve, 

MinX (X-Xm )TSm(X-Xm )+Σi=1to N 1/σi
2 ( νi – h(si)T [X-Xm])2                              (31) 

The problem is solved as follows: 

1. Choose samples si, i=1,…,N with s1=0,si+h=si+h, sN=L. 

2. Apply block matching to establish the position of rf(s). For each si, extend the 

normals from the template curve rm(s) to the estimated curve rf(s)+/-δ, to find 

rf(si). 

3. Initialize the “information matrix” , S0=0. The information matrix Si is a measure 

of the strength of each intermediate estimate Xi
f, taking account of the first i data 

points.  

4. Initialize the “information weighed sum”, Z0=0. The Zi matrix accumulates the 

influence of the mean shape and the individual measurements, each with it’s 

proper weight. 

5. Iterate for i=1,…,N: 

   νi = (rf(si)- rm(si)) nm(si); 

   h(si)T= nm(si)TU(si)W; 

   Si= Si-1+1/σi
2 h(si) h(si)T; 

   Zi= Zi-1+1/σi
2 h(si) νi ; 

   σi = √N; 

6. The aggregate observation vector is Z=ZN and the associated statistical 

information vector  is S= SN. 

7. The best fitting curve in shape space is given by, 
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Xf=Xm+(S+ Sm)-1 Z                                                                                (32) 

One practical consideration in the regularization problem is to nullify the effect of the 

initial template Xm on the translation of the object. This can be affected by the use of 

projection. operators. 

Sm=α Ed’H Ed.                                                                                                    (33) 

In general, if the invariant sub-space has a shape matrix Ws with Ws
+ as it’s pseudo-

inverse,  

Ed= I-Es     where Ed= W+ Ws Ws
+W.                                                                 (34) 

2.4.2 PROBABILISTIC MODELS OF SHAPE 

 
The deterministic approach in the previous Section generates a unique estimate Xf of a 

curve shape from data rf(s), moderated using regularization towards a mean shape, the 

template Xm. If we treat Xf as a mean or mode of an entire probability distribution, then 

the fitting problem is a solution which generates a family of curves sharing a common 

distribution.  

The distribution for a curve shape X is expressed in the form of a posterior density 

function   p(X|Qf), which is the distribution of X conditioned on Qf. Using Bayes’ 

formula, this can be expressed as a product of prior density p(X) and observation density 

p(Qf |X), 

p(X|Qf)=K p0(X) p(Qf |X)                                                                                     (35) 

where K is a proportionality constant. The prior density can be expressed as a gaussian 

distribution, 

p0(X)=Kexp-1/2(X-Xm )TSm(X-Xm )                                                                     (36) 
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 where K is some proportionality constant. 

Similarly, the observation density can be defined as another gaussian distribution, 

p(Qf |X)=Kexp-1/2 NX/ ρf
2||Q-Qf||                                                                        (37) 

where K is a proportionality constant. Finally, the solution for the posterior distribution is 

given by the distribution, 

X|Qf  ~N(Xf,P)                                                                                                      (38) 

with mean  Xf =S-1(Sm Xm+NX/ ρf
2H Xf)                                                              (39) 

                   S= Sm +NX/ ρf
2H                                                                                (40) 

                   Sm = NX/ ρ0
2H.                                                                                  (41) 

                   P=(S+Sm)-1.                                                                                       (42) 

                   NX = dimension of the shape-space. 

2.4.3 MODELS OF MOTION 

 
The motion model is used to extrapolate motion between frames. One can model the 

interpolation of motion between frames as a Markov process, 

p(X(tk)| X(t1)…. X(tk-1))=p( X(tk)| X(tk-1)).                                                         (43) 

This is a first order Markov process which cannot negotiate direction changes and 

oscillatory motion. So, one needs to consider higher order processes. A second order 

process is sufficient for most practical purposes. Such a second order equation 

maintaining isotropy and spatial uniformity is given below. 

X(tk)- Xm= A2 (X(tk-2)- Xm)+ A1 (X(tk-1)- Xm) +B0 wk.                                      (44) 

The mean state solution to this equation is given by, 

X(tk)- Xm =A(X(tk-1)- Xm)                                                                                    (45) 
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and P(tk)=A P(tk-1)AT+BBT                                                                                (46) 

where, 









=

12 AA
I0

A
                                                                                                     (47) 









=

0B
0

B
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X(tk)=( Xf(tk-1) Xf(tk))T.                                                                                       (50) 
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P”(tk)=E[(X(tk-1)-Xf(tk-1))( X(tk-1)-Xf(tk-1))T]                                                      (52) 

P’(tk)=E[(X(tk)-Xf(tk))( X(tk-1)-Xf(tk-1))T]                                                           (53) 

P(tk)=E[(X(tk)-Xf(tk))( X(tk)-Xf(tk))T]                                                                 (54) 

wk is white gaussian noise and P(tk) is the “covariance matrix” solved by using the 

“Riccati” equation. A2, A1 and B0 are harmonic motion parameters in shape space. They 

can be expressed as,  

A2= a2IN    with a2=-exp(-2βτ)                                                                        (55) 

A1= a1IN    with a1=2exp(-βτ)cos(2πƒτ)                                                          (56) 

and B0= b0/√N.H-0.5.                                                                                       (57) 

N=Nx  the dimension of the shape space and β, ƒ are the harmonic motion parameters. 
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2.4.4 CONSTRAINED AND UNCONSTRAINED MOTION 

 
Motion can be decomposed into constrained and unconstrained motion using projection 

operators as described at the end of Section 2.4.2. Unconstrained motion is in general the 

translational part of motion (x,y,z) and planar rotation( the so called “Euclidean 

subspace” in shape-space). If the overall shape-space being used is a 3D affine space, 

constrained motion is described by the remaining portion of 3D affine space( i.e there is a 

limit to which the parameters can change from frame to frame). In the present research, 

block matching has been used to implement unconstrained motion and morphological 

watershed algorithm has been used to take care of constrained motion(local motion).  

 

2.4.5 BLOCK MATCHING 

 
This algorithm can be used to implement the unconstrained portion ( the Euclidean 

portion) of motion tracking. Tracking tracks the inter frame motion of the centroid of the 

object. It involves the following steps. 

1) Estimation of velocity: The velocity of the rigid body is calculated using block 

matching. It is an efficient method for estimating local motion. In this paper, the block-

matching algorithm has been modified to do object matching algorithm. The aim of the 

algorithm is to calculate the motion vector d that defines the movement of the rigid body 

between the current frame and the previous frame. The method can be described by the 

following minimization: 

                                            
(58)                                               
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where P is the search area to which d belongs, and is defined as:  

( ){ PnP P,nP:n,n n   2121 }≤≤−≤≤−==P , and B is the object mask defined in frame  

Ik–1. The idea is illustrated in Figure 7, where an object is sought within Ik  which best 

matches the mask of the object from Ik-1. This is actually done by moving the mask in Ik-1 

over the search area P and extracting that portion of the frame Ik which can be viewed 

through the shifted mask. The shifted mask from Ik-1 and the extracted portion of Ik are 

then processed to minimize ε ( d ). 

-7 7

-7

7

B

 
Figure 7. Object mask and the search area. 

 

In the present case, Φ() is the statistical correlation ρxy between two image frames, where 

                           ρxy = COVARIANCE(x,y)/√VARIANCE(x).√VARIANCE(y)      (59) 
 
A thorough search for d Є P giving the minimum error ε is computationally expensive. 

So, a logarithmic three-step search space has been used. Assuming that P=2k-1 and 

Pl=(P+1)/2l, where k and l are integers, the new reduced area of search is defined as 

follows: 

                 Pl={n: n=(±Pl,± Pl) or n=(± Pl,0) or n=(0, ± Pl) or n=(0,0)} 
 
So, the search space Pl is reduced to the vertices, midway between vertices and the 

central point of the half sized original rectangle P, as shown in Figure 8.  
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7

-7

7

-7

 
Figure 8. Reduction in search space from frame Ik-1 to Ik. 

 

The block matching fails when the object rotates substantially bringing into view a new 

perspective of the object. Cases include old faces turning away, new faces turning in, and 

new edges appearing in the frame. In this case, the user is required to redefine the 

contours of the object in the current frame for further automatic tracking. This marks a 

transition from automatic tracking to manual tracking. 

Rotation of objects where no new faces appear has been modeled as a uniformly 

changing d vector (the inter frame differences in d are stored). Moreover, the visible faces 

have to be rotation compensated, which is described in Chapter III. 

The block-matching algorithm also fails in case of occlusion, where stray objects block 

the object of interest from the field of view of the user. This case is taken care of by 

ignoring the frames where the object is occluded and treating the last frame where the 

object appeared as Ik-1 and the frame where it reappears as Ik. The motion information is 

interpolated in between. 

For z-axis motion, a minor modification is done to the block-matching algorithm. Before 

comparison, the mask is expanded or contracted to model zooming out and zooming in. 
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The block-matching algorithm stores the object mask and the motion parameters. The 

object mask defines the region of interest B for further processing (constant for linear 

motion; changes for rotation). The motion parameters are used for motion extrapolation 

and motion reconstruction in 3D. 

2) Motion extrapolation: Assuming uniform linear motion, the vector d from the previous 

pair of frames (i.e. Ik-2 and Ik-1) can be used as an estimate of d for the current pair of 

frames (i.e. Ik-1 and Ik). This saves the overhead of block matching by eliminating the 

search steps. A change in d indicates a break in uniform linear motion, which might be 

due to uniform rotation. This can be extrapolated using the difference (d) parameter 

stored for previous frame pairs. In case of non-uniform motion, the block-matching 

algorithm has to be invoked to recalculate the parameters. 

3) Reconstruction of motion parameters during user intervention: During user 

intervention, there is a transition from the auto mode to the manual mode. The motion 

parameters are recreated by finding the coordinates of the mid point of the cleaned mask 

provided by the user. 

The three steps are illustrated in the flowchart shown in Figure 9. 
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Start Process

Read Frame I1

Manually segment
frame

Refine mask and store motion
parameters and angles

Read next frame

Block Matching between
current and previous frame;

Store motion difference

User Satisfied?

NO

Read next frame

Extrapolate motion and store
motion parameters

User Satisfied?

YES

YES

NO

 
 

Figure 9. Steps in the block matching algorithm. 
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2.4.6 CONTOUR TRACKING 

 
The contour tracking algorithm is implemented using the motion model described in 

Section 2.4.3 along with the curve fitting algorithm of Section 2.4.1. It can be described 

as follows: 

1. Initialization: Assuming that the initial position is known, one can run the curve 

fitting algorithm with constant artificial measurement. This will force the 

covariance values and the positional values to settle to their steady state values. 

2. Prediction: 

             P”(tk)=E[(X(tk-1)-Xf(tk-1))( X(tk-1)-Xf(tk-1))T] 

 PP”(tk)= P(tk-1) 

 PP’(tk)= A2P’T(tk-1)+ A1P(tk-1) 

 

  PP(tk)= A2P”(tk-1) A2
T+ A1P’(tk-1) A2

T + A2P’T(tk-1) A1
T + A1P(tk-1) A1

T + B0B0
T. 

  XP’(tk)= Xf(tk-1) 

  XP(tk)= A2Xf’(tk-1)+ A2 Xf(tk-1)+(I-A2- A1)Xm. 

3. Measurement: Apply the curve fitting algorithm in Section 2.4.1 with XP(tk) as the 

mean estimated contour. Obtain the aggregated observation vector Z(tk) and the 

information vector S(tk). 
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4. Assimilation: 

K’(tk)= PP’(tk)[ S(tk) PP(tk)+I]-1 . 

K(tk)= PP(tk)[ S(tk) PP(tk)+I]-1 . 

            P”(tk)= PP”(tk)-K’(tk) S(tk) PP’(tk) . 

P’(tk)= PP’(tk)-K(tk) S(tk) PP’(tk) . 

P(tk)= PP(tk)-K(tk) S(tk) PP(tk) . 

Xf’(tk)= XP’(tk)+ K’(tk)Z(tk) 

Xf(tk)= XP(tk)+ K(tk)Z(tk) 
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CHAPTER ΙΙΙ 

TEMPLATE MATCHING 

 
Camera maps the 3D world into 2D world co-ordinates. In order to recreate the 3D 

motion from the 2D frame sequence as captured by the camera, the template matching 

algorithm is used for the mapping of parameters from 2D to 3D. The predefined library 

has 2D shapes, which have a direct 1-1 correspondence with existing 3D models in VR. 

The template matching is done in 2D but the final modeling is done using 3D models. 

Prior to discussing the method, we discuss some of the situations that are encountered 

during the video capture process. 

3.1 SITUATIONS ENCOUNTERED DURING VIDEO CAPTURE 

 
The template-matching algorithm has to be made adaptive to the following situations.  

1. Global rotation: The point of view of the camera while capturing the mobile sequence 

also adds to the rotation of the scene (global rotation). As shown in Figure 10, when the 

camera plane is orthogonal to the object plane, there is no global rotation; however, when 

the camera plane is not orthogonal to the object plane, global rotation results. In terms of 

rotational dynamics, it is similar to the roll motion of a ship or airplane. 

 
Figure 10. Global rotation due to point of view of camera. 
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2. Rotation of the object: Other than the roll motion resulting due to the camera 

perspective, the object may undergo pitch and yaw motions. 

Cases 1 and 2 tend to misalign the object and the template (which is typically stored with 

zero roll, zero pitch and zero yaw angles). The object and the templates have to be 

aligned before any template matching can be done. This is done by applying quaternion 

rotation operator to the object [25]. Suppose v is a vector in R3 (the pixel coordinates in a 

frame are vectors with zero z components). If v is to be rotated by an angle θ 

(counterclockwise) about the axis defined by a vector k, it has to be operated upon by a 

quaternion q as follows: 

  v’ = qvq*                                                                                                                                                     (60) 

where, 

q = cosθ/2 + ksinθ/2                                                                                    (61) 

q* = cosθ/2 – ksinθ/2                                                                                   (62) 

and v’ is the rotated vector. (60) can also be written as [24]: 

v’= Lq (v)                                                                                     (63) 

In the present case, the roll, pitch and yaw axes are defined by vectors r, p and y 

respectively. The camera elevation defines the roll angle, α. The pitch angle is calculated 

from the orientation of the segmented object in the frame, β. The yaw angle is difficult to 

calculate. In the present case, the yaw can be compensated for by manually rotating the 

object until the full-view of a single face (side/front/back) can be seen. Figure 11 

demonstrates the concept, where automobile is the object of interest. To compensate for 

the roll and pitch angles, two quaternions are defined: 

r = cosα/2 + rsin2α/2                                                                                  (64) 
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p = cosβ/2 + psinβ/2                                                                                   (65) 

If the object O is treated as an aggregate of vectors (with zero z components) then it can 

be compensated for roll and pitch by using, 

O’ =  Lrp(O)                                                                                   (66) 

where O’ is the roll and pitch compensated object and Lrp is the combined rotation 

operator due to quaternions r, p.  

 
 

Figure 11. Effects of roll, pitch and yaw. 

 

3. Global translation: This occurs due to a moving camera. A static camera has been used 

here, suitable for surveillance of a fixed position or frame. So, there is no global 

translation in the present case. 

4. Positional difference between template and object from frame: The templates are 

always stored with the origin at the bottom left corner. After segmentation, the object is 

translated to the bottom left corner of the frame. 

5. Scaling: In order to have uniform scaling between object and stored templates, a 
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predefined number of maximum row pixel positions are used (320). Column pixels are 

scaled accordingly. Templates are always stored according to this scale. In case of an 

object scaling, it is done as follows: its maximum length, l is compared against the 

maximum length, m allowed. If l < m, scale up the row and column coordinates by a 

factor m/l; and if l > m, scale down the row and column coordinates by the same factor. 

3.2 TEMPLATE MATCHING PROCESS 

 
A segmented object O is chosen to be compared with the given template library. The 

algorithm has three main steps: 

1. Compensate O for global rotation, pitch and yaw effects, as described in Section 3.1, 

which yields O’. In the present case, it is assumed that the pitch angle is zero and the 

roll angle is predefined by the camera tilt. The yaw angle is calculated in the tracking 

algorithm. So, the rotation operator defined above can be applied to extract a single 

face of the object of interest (e.g side, face/front, face/backface). In the template 

library, car shapes are stored with only the left faces visible. So, for template 

matching, the rotation compensation is such that O’ shows its left face. If the right 

face is visible, the object is rotated 180 degrees to obtain the left face, as shown in 

Figure 12. It is assumed here that the sequence of frames contains atleast one 

sideview of the car. If there are none, then template matching compares front faces to 

determine the shape.  
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Figure 12. Rotation of object by 180 degrees to obtain left face. 
 
 

2. Using block matching, compare mask O’ with all the templates in the stored library. 

Scaling and translation is necessary for this step. Store the best-match template. Since 

the mask O’ is compared with all the templates, the library is to be kept small for 

better performance. Any minor customization in template shape is stored as separate 

information along with the template. The criterion used for block matching is 

correlation. If none of the templates meet a predefined correlation threshold, the mask 

O’ can be assumed to be a new shape and can be added to the library. 
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3. Once the template has been found, the corresponding 3D object is retrieved and used 

in the virtual environment. The extracted motion information is then applied to the 

object. 

Figure 13 shows some of the masks that are stored in the library, while Figure 14 shows 

an unknown shape that is being compared with the stored masks. Note how scaling is 

done. The top of the car is brought to the top row. The length of the car is made 320 

pixels and the columns are scaled accordingly.  

 

 
 

(a) car 
 

 
 

(b) minivan. 
 

Figure 13. Two shapes from the template library: (a) car and (b) minivan. 
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Figure 14. An unknown shape, which matches with the car in the template library.  
 

Issues, such as growing (or learning) library, the order of template storage in the library, 

and using first-fit method rather than best-fit method for template search are not 

considered in this research. They are a good candidate for future work. 
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CHAPTER IV 

RESULTS AND CONCLUSION 

 
4.1 EXPERIMENTAL SETUP 

 
The experimental setup consists of viewing a street junction from a vantage point (a 

building). The x and z span of the view are shown in Figure 15. The digital camera 

records at a rate of 29.97 frames per second (fps). In order to increase processing speed 

the number of frames has been down sampled by a factor of 4. Otherwise, unnecessary 

processing time is wasted to find redundant motion parameters. It has been assumed that 

there is no motion of the object in the y direction (smooth road without ditches and 

bumps) and the only rotation possible is about the y-axis. There is a global rotation due to 

the tilt of the camera (approximately 10 degrees), due to which a portion of the roof of 

vehicles is visible. For tracking, this is not a problem but for template matching, it has to 

be roll compensated to show the side face only. 

275 ft

67.5 ft

x

z

275 ft
150.5 ft

40 ft

y

z

camera

x

 
 

Figure 15. Schematic diagram of experimental setup. 
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The results from tracking are stored in a file with field’s time, x-coordinate, y-coordinate, 

z-coordinate and rotation about y-axis. A sample data file and corresponding vehicle 

positions are shown in Figure 16. The results from template matching identify the closest 

existing template that can be used to recreate the motion in the VR world with the motion 

information extracted during tracking. A VRML file is generated with the extracted 

object information from the library and the motion information. The other objects in the 

scene are static objects, which can be modeled offline and inserted in the VRML file to 

populate the scene. Multiple viewpoints cane be created in the VRML file with one that is 

attached to the extracted object. This enables the user to be present in or on the moving 

object allowing the person to see the events within the 3D environment.  

A small demonstration can be seen at the website: http://ie.tamu.edu/tatp99/RightTurn.avi 

and http://ie.tamu.edu/tatp99/Demo.htm. The first link contains a video clip that was used 

for the experiment. The pickup truck that makes a right turn in the video clip is the object 

of interest, for which the user creates a mask similar to the mask shown in Figure 1. The 
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 tracking model determines the speed and direction of motion, which is used to create the 

vrml file that can be seen using the second link. It shows the 3D reconstruction of the 

object from the library and the resultant motion. The embedded vrml file within the html 

file needs a vrml plugin for the browser. It has been tested using WorldView 2.1 and 

Cortona vrml plugins for Internet Explorer 6 and Netscape Navigator 4. The 3D world 

has not been populated with the static objects in the scene. The truck motion has been 

scaled down to every fourth frame, starting with the 81st frame of the video clip for a 

duration of 3 seconds. The scaled down approach improves performance at the cost of 

appearance of slightly jagged motion. This limitation can be easily overcome by using a 

faster processor with more memory. The motion playback has been embedded in a loop 

to enable viewing the model from any viewpoint for as long as the user needs. 
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            Frame   x       y      z       y-rot (radians) 
--------------------------------------------------------------- 
 01  51.5000    6.0000  93.9583    2.0336 
 27  58.0000    6.0000  95.6771    2.0336 
 41  62.5000    6.0000  99.1146    2.0336 
 50  67.0000    6.0000 100.2604    2.0336 
 57  73.5000    6.0000 103.1250    2.0336 
 65  80.0000    6.0000 107.1354    2.0336 
 74  88.0000    6.0000 111.1458    2.0336 
 81  96.5000    6.0000 112.8646    2.0336 
 85 100.5000    6.0000 114.0104    2.0336 
 89 106.5000    6.0000 117.0104    2.0336 
 93 109.5000    6.0000 118.5937    2.0336 
 97 115.5000    6.0000 119.5937    2.0336 
101 121.0000    6.0000 120.8854    2.0336 
105 127.0000    6.0000 123.8854    2.0336 
109 132.5000    6.0000 124.8958    2.0336 
113 138.5000    6.0000 127.8958    2.0336 
117 145.5000    6.0000 129.4792    2.1023 
121 152.5000    6.0000 131.4792    2.1222 
125 160.5000    6.0000 133.4896    2.1512 
129 169.5000    6.0000 135.4896    2.1941 
133 180.0000    6.0000 136.9271    2.2432 
137 189.0000    6.0000 138.9271    2.3011 
141 199.0000    6.0000 140.3646    2.3721 
145 210.0000    6.0000 142.3646    2.4545 
149 222.0000    6.0000 145.5208    2.5433 
153 234.0000    6.0000 147.5208    2.6423 
157 247.5000    6.0000 147.8125    2.7540 
161 258.5000    6.0000 147.9125    2.8700 
165 269.0000    6.0000 151.2500    3.0020 
169 280.0000    6.0000 151.2500    3.1416 
173 293.0000    6.0000 151.2500    3.1416 
177 305.0000    6.0000 151.2500    3.1416 
181 317.0000    6.0000 151.2500    3.1416 

 

  
Figure 16. Motion information and masks from a left turn sequence. 
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4.2 DISCUSSIONS AND FUTURE WORK 

 
This method demonstrates the reconstruction of 3D environment from perspective 2D 

images using a single camera. The location and orientation of camera is fixed, which 

provides information about the region that is being captured. This information is pre-

processed to calibrate the system, and model the static objects in the environment. In the 

case where the user needs to track multiple moving objects, the algorithm needs to be run 

multiple times, with each run masking and tracking a different object. The stored 

information can then be combined in the VRML file to model the motion of the different 

objects. 

The algorithm for semi-automatic object segmentation and tracking was initially 

implemented using MATLAB R12. This version performed well in batch mode, but had 

performance problems while running real-time. This necessitated development of a C++ 

version on a SGI platform. The immersive virtual environment in our laboratory is driven 

by SGI, which made it easier to interface the data. This immersive environment enables 

the creation of a more realistic 3D environment for the user to participate in the events. 

The library of masks was created and stored using VRML.  

Emphasis was given on practical aspects of the problem. A Sony Digital Video camera 

was used using NTSC capture mode at 29.97 frames per second. The frame size was 320 

x 240 pixels. Refining the user defined mask was given more attention as we realized that 

it is not realistic to expect the user to outline the perfect mask. A higher level of user 

interaction was introduced to ensure that the user is satisfied with the masks that are  
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created. It is possible to automate the process with predefined threshold levels for the 

masks. This can be used for automatic control and detection of shape abnormalities. 

The method has a number of applications in industrial engineering. It can be used as a 

real-time feedback method to detect and avoid congestions in a conveyor network caused 

due to odd shaped or bulky items. Another application is the post processing 

(reconstruction) of an incident (e.g. on a shop floor, or a traffic situation) from multiple 

perspectives in 3D, based on the events captured on video leading up to the incident.  

The work in the future will be towards developing faster search algorithms and better 

motion models( both Gaussian and Non-gaussian/ higher order Markov processes), 

making the algorithm suitable for segmentation of non-rigid bodies, bodies with 

appendages, handling multiple cameras and moving cameras, tracking multiple objects in 

one pass, face composition and decomposition, automatic growing (or learning) of the 

library of masks, dealing with uncalibrated setup and distributed operations over a 

network. 

 

 

 

 

 

 

 

 

  



 40                                    

 

 

REFERENCES 

1.   A. Bovik, (Ed.) Handbook of Image and Video Processing. San Diego, CA:      

Academic Press, 2000. 

2.     F. Marques, M. Pardas and P. Salembier, Coding –Oriented Segmentation of Video 

Sequences in Video Coding. San Diego, CA: Academic Pub, 1996. 

3.    J. Shi, J. Malik, T. Leung and S. Belongie, “Image and video segmentation: the 

normalized cut framework,” ICIP’98,  vol.1, pp. 943-947, 1998. 

4.     P.J. Burt, J.R. Bergen, R. Hingorani, R.J. Kolczynski, W.A. Lee, A. Leung, J. Lubin 

and J. Shvaytser, “Object tracking with a moving camera,” MOTION89, vol. 2, pp. 

2-12, 1989. 

5.    M. Schultz and T.E. Ebrahimi, “Matching error based criterion of region merging        

for joint motion estimation and segmentation techniques,” ICIP’96, vol.2, pp. 509-

512, 1996. 

6.      A.M. Tekalp,  Digital Video Processing. Upper Saddle River, NJ:  Prentice-Hall,  

1995. 

7.      MPEG Video and SNHC Groups. (Oct. 1997) Committee draft of MPEG-4, part 2,   

14496-2, Technical Report, ISO/IEC JTC/SC29/WG11/N1902, ISO/IEC, Fribourg, 

Switzerland, October 1997. 

8.      R. Castagno, T.E. Ebrahimi, and M. Kunt, “Video segmentation based on Multiple 

Features for Interactive Multimedia Applications,” IEEE Transactions on Circuits 

and Systems for Video Technology, vol. 8, pp. 562-571, 1998. 

9.      P. Salembier, F. Marques, M. Pardas, J.R. Morros, I. Corset, S. Jeannin, L. 

Bouchard,., F. Meyer and B. Marcotegui, “Segmentation-based video coding 

  



 41                                    

 

system allowing the manipulation of objects,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 7, pp. 60-74, 1997 

10.    P. Correia and F. Pereira, “User interaction in content-based video coding and 

indexing,” EUSIPCO-98, Rhodes, Greece, 1998. 

11.    F. Meyer, “Morphological multiscale and interactive segmentation,” IEEE-

EURASIP Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey, 

1999. 

12.    B. Marcotegui, F. Zanoguera, P. Correia, R. Rosa, F. Marques, R. Mech and M. 

Wollborn, “A Video Object Generation Tool Allowing Friendly User Interaction,” 

ACTS-AC098MoMuSys, 1998. 

13.    Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong, “A robust technique for 

matching two uncalibrated images through the recovery of the unknown epipolar 

geometry,” Technical Report 2273, The French National Institute for Research in 

Computer Science and Control (INRIA), Sophia-Antipolis, France, 1994. 

14.    G. Sparr,  “An algebraic-analytic method for reconstruction from image 

correspondences,” Proceedings of the 7th Scandinavian Conference on Image 

Analysis, 274-281, 1991. 

15.    D. Zetu, P. Banerjee and P. Schneider, “Data input model for virtual reality-aided 

facility layout design,” IIE Transactions, vol. 30, pp. 597-620, 1998. 

16.   T. Kanade, P.J. Narayanan, P.W. Rander, “Virtualized reality: Concepts and early 

results,” IEEE Workshop on Representation of Visual Scenes, Boston. 

citeseer.nj.nec.com/kanade95virtualized.html, 1995. 

 17.   T. Kanade, P. Rander, “Virtualized Reality: Constructing virtual worlds from  real 

scenes,”  IEEE publication, vol. 2, pp.34-47, 1997. 

  



 42                                    

 

                                                                                                                                         

18.    T. Kanade, P.J. Narayanan, P.W. Rander, “Recovery of dynamic scene structure 

from multiple image sequences,” International Conference on Multisensor Fusion 

and Integration of Intelligent Systems, Washington D.C., pp. 305-312, 1996. 

19.    Wang Chih-Ming, Lee Chia-Wen, Chang Yao-Jen, Chen Yung-Chang, “Realtime 

object extraction and tracking with an atctive camera using image mosaics,” ICME, 

www.cs.ccu.edu.tw/~cwlin/pub/icme02object.pdf, 2001. 

20.    R. Fablet, P. Bouthemy, “Extraction of regions of interest based on motion activity 

for video retrieval and partial query,” IPMU 2002 Special Session for “Intelligent 

systems for Video processing”. 

www.cs.brown.edu/people/rfablet/Papers/ipmu2002.pdf, 2002. 

21.    J. Pan, C.W. Lin, C. Gu and M.T. Sun, “A robust video object segmentation scheme 

with pre-stored background information,”  ISCAS. 

www.cs.ccu.edu.tw/~cwlin/pub/iscas02seg.pdf, 2002. 

22.    A. Blake and M. Isard, Active Contours, Cambridge, England: Springer, 1998. 

23.    D.J. Fleet, Measurement of Image Velocity, The Kluwer International Series in 

Engineering and Computer Science, 169, Boston, MA: Kluwer Academic 

Publishers, 1992. 

24.    Image Processing Toolbox, MATLAB User’s Guide, The Math Works Inc., 1997. 

25.    J.B. Kuipers, Quaternions and Rotation Sequences, Princeton, NJ: Princeton 

University  Press, 1999. 

 

 

  

http://www.cs.ccu.edu.tw/~cwlin/pub/icme02object.pdf


 43                                    

 

  

                                                                                                                                     

VITA 

 
 
Sumantra Dasgupta was born on December 31, 1976 in India. He completed his Bachelor 

of Engineering in electrical and electronics engineering from Birla Institute of 

Technology, MESRA, India in August 2000. His research interests are computer vision, 

image processing, stereo vision, video processing, soft computing and imaging/vision 

hardware implementations. His permanent address is 8B, Burnpur Road, 1st Floor, PO-

Chelidanga, Asansol South, Dist: Burdwan, W.B., India 713304, ph: 011913463261551, 

email: rishi123102@yahoo.com. 

 

 


	INTRODUCTION
	VIDEO SEGMENTATION AND TRACKING
	2.1 MANUAL SEGMENTATION
	2.2 AUTOMATIC REFINEMENT
	2.2.1 MODE 1: FOR A COARSE USER DEFINED MASK
	2.2.2 MODE 2:MORPHOLOGICAL WATERSHED ALGORITHM

	2.3 SHAPE SPACE MODELING
	2.3.1 SPLINE CURVES
	2.3.2 SHAPE SPACE
	2.3.3 CAMERA PERSPECTIVE AND AFFINE SPACE
	2.3.4 KEY-FRAMES

	2.4 TRACKING
	2.4.1 FITTING SPLINE TEMPLATES
	2.4.2 PROBABILISTIC MODELS OF SHAPE
	2.4.3 MODELS OF MOTION
	2.4.4 CONSTRAINED AND UNCONSTRAINED MOTION
	2.4.5 BLOCK MATCHING
	2.4.6 CONTOUR TRACKING


	TEMPLATE MATCHING
	3.1 SITUATIONS ENCOUNTERED DURING VIDEO CAPTURE
	3.2 TEMPLATE MATCHING PROCESS

	RESULTS AND CONCLUSION
	4.1 EXPERIMENTAL SETUP
	4.2 DISCUSSIONS AND FUTURE WORK

	REFERENCES
	VITA
	title_next_final.pdf
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES




