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ABSTRACT 

The Ultra-High Lime with Aluminum Process for Removing Chloride from 

Recirculating Cooling Water. 

(May 2003) 

Ahmed Ibraheem Ali Abdel-Wahab, B.S., Al-Minia University;  

M.S., Al-Minia University, Egypt 

Chair of Advisory Committee: Dr. Bill Batchelor 

Chloride is a deleterious ionic species in cooling water systems because it is 

important in promoting corrosion. Chloride can be removed from cooling water by 

precipitation as calcium chloroaluminate using the ultra-high lime with aluminum 

process (UHLA).  This research program was conducted to study equilibrium 

characteristics and kinetics of chloride removal by UHLA process, to study interactions 

between chloride and sulfate or silica, and to develop a model for multicomponent 

removal by UHLA.  

Kinetics of chloride removal with UHLA was investigated. Chloride removal 

was found to be fast and therefore, removal kinetics should not be a limitation to 

applying the UHLA process.  Equilibrium characteristics of chloride removal with 

UHLA were characterized. Good chloride removal was obtained at reasonable ranges of 

lime and aluminum doses. However, the stoichiometry of chloride removal with UHLA 

deviated from the theoretical stoichiometry of calcium chloroaluminate precipitation. 

Equilibrium modeling of experimental data and XRD analysis of precipitated solids 
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indicated that this deviation was due to the formation of other solid phases such as 

tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. The effect of pH on 

chloride removal was characterized. The optimum pH for maximum chloride removal 

was pH 12 ± 0.2.  Results of equilibrium experiments at different temperatures indicated 

that final chloride concentrations slightly increased when water temperature increased at 

temperatures below 40oC. However, at temperatures above 40oC, chloride concentration 

substantially increased with increasing water temperature. 

An equilibrium model was developed to describe the chemical behavior of 

chloride removal from recycled cooling water using UHLA.  Formation of a solid 

solution of calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium 

hydroxyaluminate was found to be the best mechanism to describe the chemical 

behavior of chloride removal with UHLA. 

Results of experiments that studied interactions between chloride and sulfate 

indicated that sulfate is preferentially removed over chloride. Final chloride 

concentration increased with increasing initial sulfate concentration.  Silica was found to 

have only a small effect on chloride removal.  The equilibrium model was modified in 

order to include sulfate and silica reactions along with chloride in the UHLA process and 

it was able to accurately predict the chemical behavior of simultaneous removal of 

chloride, sulfate, and silica with UHLA.  
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CHAPTER I 

INTRODUCTION 

 The current trend in industrial wastewater management focuses on pollution 

prevention both by source reduction/clean technologies and by closed water systems, in 

which water recycling plays a major role. Cooling water discharges are major 

environmental problems, constituting from 60 to 90% by volume of industrial discharges 

(Matson and Harris, 1979). Heat, toxic chemicals, and organic and inorganic materials 

are contained in these discharges. Furthermore, cooling water contributes the highest 

single water demand in industry, which accounted for 49% of all water withdrawals in 

1990 (U.S. Dept. of the Interior, 1996).  

 The need for pollution control, water conservation, and reduced costs are 

sufficient incentives to overcome the limitations to increased recycle of cooling water. 

The major limitations to increased cooling water recycle are associated with water 

quality problems. The underlying cause of these problems is the continuous evaporation 

of water in the cooling tower that concentrates nonvolatile compounds that enter the 

system in the makeup water. These higher concentrations cause increased corrosion, 

biological growth, and scale formation on heat transfer surfaces. Such fouling can 

substantially decrease the heat transfer efficiency of the system and shorten the 

equipment life. To prevent scaling and corrosion on the metal heat transfer surfaces, 

various chemicals are added to the cooling water. After eliminating chromate as an anti- 
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corrosion agent for environmental safety, zinc (Sekine et al., 1992) and other compounds 

such as nitrites (Moccari, 1999) and molybdate (Boffardi, 1984, and Mustafa and 

Shahinoor, 1996) are now used to inhibit corrosion. Polyphosphates and phosphonates 

inhibit both corrosion and scale formation (Bohnsack et al., 1986, and Patel and Nicol, 

1996). These chemical additives are discharged in the blowdown, although they can be 

toxic to aquatic life. Zinc ions are hazardous to the environment and can precipitate in 

the form of insoluble zinc salts (Boffardi, 1984, and Gunasekaran et al., 1997). Use of 

heavy metals for corrosion control came under criticism and eventually was restricted by 

law (Bohnsack et al., 1986). Phosphates and phosphonates also have limitations. 

Phosphonates are susceptible both to degradation by oxidizing biocides and to 

precipitation with calcium (Geiger, 1996). Due to their environmental effects, 

restrictions on phosphorus discharges are under continued review by state environmental 

agencies and limits have been imposed to prevent overloading receiving water. Nontoxic 

chemicals have been found generally to be ineffective in corrosion control (Breske, 

1976, and Kumar and Fairfax, 1976).  

 An attractive alternative for promoting pollution prevention through extensive 

recycling, while avoiding the problems of corrosion and scale inhibitors, is to remove 

chemicals that promote corrosion and scale formation from the cooling water. These 

chemicals are calcium, magnesium, phosphate, silica, sulfate, and chloride. The 

technologies that are under most active consideration for removing these materials are: 

high lime softening, reverse osmosis, ion exchange, and electrodialysis (Matson and 

Harris 1979). With the exception of the high lime softening process, these technologies 
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are very expensive and have many operating problems. The unit price of water treatment 

with reverse osmosis is about three times the price of lime softening (You et al. 1999).  

 The conventional lime soda process is used in cooling water systems to minimize 

or eliminate scale formation by removing calcium and magnesium hardness and by 

reducing alkalinity. A portion of the silica present can also be removed by sorption onto 

magnesium hydroxide solids or precipitation as magnesium silicate (Matson and Harris, 

1979, and Nurdogan et al, 1998). The amount of silica removed depends on the 

concentration of magnesium in the feed water. More efficient and consistent silica 

removal can be obtained with conventional high lime softening if supplemental 

magnesium compounds are added, but this can significantly increase treatment costs. 

Lime softening is also ineffective in removing sulfate and chloride. 

 Ultra-High Lime (UHL) treatment is an attractive modification of lime softening 

that can remove all of the major scalants (Ca2+, Mg2+, CO3
2-, PO4

3-, and SiO2), regardless 

of feed water quality (Batchelor et al., 1991, and Batchelor and McDevitt, 1984). The 

essential element of the ultra-high lime process is the addition of higher doses of lime to 

maintain an area of high pH and high calcium concentration. This results in removal of 

silica as a calcium silicate precipitate (Batchelor and McDevitt, 1984). A number of 

significant advantages can be claimed for the ultra-high lime process. Its most important 

advantage is that it is capable of removing all major scale-forming chemicals regardless 

of the chemical composition of the water to be treated (Batchelor and McDevitt, 1984). 

Furthermore, heavy metals are removed by precipitation as hydroxide solids under 

conditions of high pH found in the UHL process (Charentanyarak, 1999). The ultra-high 
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lime process is attractive economically because its primary treatment chemical is lime, 

which is less expensive than many other treatment chemicals. If the lime is recycled, the 

advantage is even greater. 

 The Ultra-High Lime with Aluminum process (UHLA) is an innovative 

modification of UHL in which aluminum is added to promote removal of sulfate as 

calcium sulfoaluminate (Ca6Al2(SO4)3(OH)12). The UHLA process has demonstrated the 

ability to achieve high sulfate removal efficiency (Batchelor et al., 1985, Schaezler, 

1978, and Nebgen et al., 1973). By expanding the process to also remove chloride, the 

UHLA process will be able to fill the need for a low cost tool for improved industrial 

water management. The conditions found in the UHLA are suitable for removing 

chloride by precipitation as calcium chloroaluminate (Ca4Al2Cl2(OH)12) in order to 

reduce corrosion and to prolong equipment life. 

Despite the attractiveness of UHLA technology, there is limited data to support 

its use for chloride removal. Research on formation of chloroaluminates in Portland 

cement demonstrates the feasibility of the fundamental approach for chloride removal by 

the UHLA process. However, insufficient data is available to characterize the 

equilibrium and kinetics of the formation of calcium chloroaluminate under conditions 

found in recycled industrial water systems. Therefore, the goal of this research is to 

characterize the equilibrium conditions and kinetics of calcium chloroaluminate 

precipitation and to evaluate chloride removal from recycled cooling water using UHLA 

process affected by chemical doses, water quality, pH, initial chloride concentration, and 
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temperature; and to develop an equilibrium model for chloride removal by UHLA. This 

goal was achieved by accomplishing the following objectives: 

1. Study the kinetics of calcium chloroaluminate precipitation. 

2. Develop basic information on chloride precipitation. 

3. Study the interactions among components in UHLA process. 

4. Develop a model for UHLA process. 

Four tasks were conducted to achieve the four research objectives. The first task 

studied the kinetics of calcium chloroaluminate precipitation and obtained the reaction 

time for equilibrium experiments. The second task focused on developing basic 

information on chloride precipitation through the determination of the stoichiometric 

coefficients and the solubility products of precipitated solids as affected by lime dose, 

aluminum dose, initial chloride concentration, pH, and temperature. The third task 

studied the interactions between chloride and sulfate or silica. The effect of the presence 

of sulfate or silica on chloride precipitation was investigated. Similarly, the effect of the 

presence of chloride on sulfate or silica precipitation was investigated. The forth task 

focused on developing an equilibrium model for chloride removal using ultra-high lime 

with aluminum process in order to predict chemical behavior in treated cooling water 

using information on chemical doses and feed water quality. 

 This dissertation is organized into five chapters. Chapter II describes cooling 

water process and problems of recycled cooling water as well as the technologies that 

are used for recycled cooling water treatment. It also reviews the feasibility of ultra-high 

lime as an innovative technology for cooling water treatment. Additionally, it includes 
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information about calcium chloroaluminate formation and characteristics that have been 

reported by previous researchers. Chapter III explains in detail the experimental and 

analytical procedures developed and used in this research as well as the procedures used 

to develop the equilibrium model. Chapter IV presents the results of experiments and the 

analysis of these results. It also contains results of the equilibrium modeling and model 

evaluations. Finally, Chapter V summarizes results obtained in this research and their 

relevance to recycled industrial water treatment and future research needs in this area. 
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CHAPTER II 

BACKGROUND 

2.1 Open Recirculating Cooling Water 

Cooling systems are used in many locations in industry for dissipating residual 

heat from processes. Most cooling water systems use water as the coolant because this 

medium permits relatively compact cooling systems, it is available almost everywhere, 

and its cost is low compared to other fluids that could be used. The most common 

cooling water system consists of a cooling tower, conveyance system, and heat 

exchangers as shown in Figure 2.1 (Aronson et al., 1982). The cooling tower in the 

cooling water system dissipates waste process heat into the atmosphere through the 

evaporation of water to the atmosphere. As water is evaporated, fresh water, called 

makeup water, is used to replace water that is evaporated in the cooling tower. While 

evaporation is occurring within the cooling tower, ions normally dissolved in the 

makeup water are being concentrated within the cooling water. Concentration of 

nonvolatile compounds causes increased corrosion, biological growth, and scale 

formation within the cooling water system if allowed to increase. To prevent scaling and 

corrosion and to maintain the ion concentrations at an acceptable level, a purge stream 

from the cooling tower, called blowdown, must be removed. However, discharge of 

cooling water blowdown is a major environmental problem. The environmental impact 

related to the discharge of cooling water consists of (Kolk, 1996, and Matson and Harris, 

1979):  
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Figure 2.1 Schematic diagram of open recirculating cooling water system (Aronson et 

al., 1982). 
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1. Emission of heat: both temperature level and soluble oxygen levels are affected, 

resulting in disturbance of the natural surface water ecology. 

2. The discharge of conditioning chemicals used to prevent biological and physical 

fouling of the cooling system (e.g. biocides, dispersing agents, and anti corrosives, or 

their degradation products). 

3. The contamination of surface water by process chemicals leaking into the cooling 

water. Data available from water quality authorities reveal that leakage of chemicals 

from shell and tube heat exchangers into cooling water systems could add up to 

several hundreds of tons per year (oil, aromatics, organochlorine). 

The need for pollution control, water conservation, and reduced costs are 

sufficient incentives to eliminate or minimize cooling tower blowdown from open 

recirculating cooling water systems. The elimination or minimization of cooling tower 

blowdown requires an increase in the cooling water�s cycles of concentration. The 

cooling water cycles of concentration is a measure of the cooling water�s salt content 

produced by the evaporation of water in the cooling tower. The salt content is 

maintained at a constant concentration by the �blowing down� of a portion of the 

cooling water to wastewater treatment. The cycles of concentration (COC) can be 

obtained by conducting a material balance on such a conservative component, which 

results in (Batchelor et al., 1991), 

)Q(Q
QCOC

DB

M

+
=  (2-1) 

where: QM = cooling tower makeup water flow rate (L3T-1) 
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QB = cooling tower blowdown water flow rate (L3T-1) 

QD = cooling tower drift water flow rate (L3T-1) 

An increase in the cooling water�s cycle of concentration increases the probability of 

scaling and corrosion caused by increasing total dissolved solids (TDS), pH, and 

conductivity (Jones, 1991, and Matson and Harris, 1979).  

2.2 Limitations to Cooling Water Recycle 

The major limitations to increased cooling water recycle are associated with 

water quality problems. The underlying cause of these problems is the continuous 

evaporation in the cooling tower. This results in the concentration of nonvolatile 

constituents that enter the cooling water system in the makeup water. The problem 

manifests itself as scaling, corrosion, or biofouling in the cooling system. 

2.2.1 Scale Formation 

Scale formation can result from two phenomena (Aronson et al., 1982). The first 

is a precipitation and sedimentation phenomenon in which a sparingly soluble salt, such 

as calcium carbonate, precipitates from water. This precipitate then settles in pipelines or 

on heat exchange surfaces where it frequently solidifies into a relatively soft, amorphous 

scale. The second and more significant mechanism for scale formation is the �in situ� 

crystallization of sparingly soluble salts as the result of elevated temperatures and/or low 

flow velocity. This scale is a dense crystalline nature, which is difficult to remove. These 

precipitates form directly on heat transfer surfaces and produce a higher resistance to 

heat transfer. Furthermore, deposits of these solids on heat transfer surfaces shorten the 
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useful service life of process equipment (Aronson et al., 1982). The most common solids 

that form direct deposits on heat transfer surfaces are calcium carbonate, calcium sulfate, 

and calcium phosphate (Mathie, 1998). Most scale results from the breakdown of 

calcium bicarbonate as water is heated. Several factors determine the rate that calcium 

combines to form deposits. The rate of calcium bicarbonate breakdown to form calcium 

carbonate increases with increasing pH and temperature. However, calcium sulfate 

becomes less soluble with decreasing pH and increasing temperature. Calcium 

phosphate, like calcium carbonate, becomes less soluble at higher pH and temperature. 

Typical scales that occur in cooling water system include, 

1. Calcium carbonate scaling results primarily from localized heating of water 

containing calcium bicarbonate. Limits to prevent calcium carbonate scaling are: 

a) pH and alkalinity adjustment and frequently coupled with the judicious use of 

scale inhibiting chemicals (Aronson et al., 1982). 

b) Calcium hardness should be less than 300 mg/L CaCO3 to ensure that calcium 

precipitation does not occur, using normal concentration of treatment chemicals 

(Balaban, 1991). 

2. Calcium sulfate scaling usually forms as gypsum, which includes two waters of 

hydration at temperatures below 42oC, whereas above 42oC, the predominant 

precipitant is anhydrite. To prevent CaSO4 scale, calcium concentration should be 

less than 300 mg/l (Kunz et al., 1977). 

3. Silica scaling results from many possible complex silica compounds such as pure 

quartz scales, calcium silicate, magnesium silicate, and aluminum silicate. This scale 
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formation can be avoided by: 

a) Silica concentration should be less than 150 mg/l SiO2 (Kunz et al., 1977, and 

Aronson et al., 1982). 

b) Maintain (Mg * SiO2) product to below 8540 mg/l (Jones, 1991). 

4. Phosphate scaling results from a reaction between calcium salts and orthophosphate, 

which may result from polyphosphate inhibitors, present in recycled water. 

Phosphate scaling can be prevented by maintaining orthophosphate at < 5.0 mg/l (as 

PO4) (Aronson et al., 1982). 

2.2.2 Corrosion 

The potential causes of condenser tube corrosion that can influence system 

design and operation are (Aronson et al., 1982), 

1. Low alkalinity waters have little pH buffering capacity. Consequently, this type of 

water can become quite aggressive when pH in the cooling water drops due to 

absorption of acidic gases as it cascades through the cooling tower. Acidic gasses, 

such as sulfur dioxide, are most frequently encountered in highly industrialized 

areas. 

2. Some contaminants, such as hydrogen sulfide and ammonia, can produce corrosive 

waters even when the total hardness and alkalinity is relatively high. 

3. Water that contains a high concentration of total dissolved solids has a high 

conductivity, which provides a considerable potential for galvanic attack. Chloride 

and sulfate are the most aggressive ions that promote corrosion and limit the function 
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of inhibitors as will be discussed in detail later. 

Guidelines to control corrosion are: 

a) The pH should be kept within the control range for the corrosion inhibitor 

program in use. Generally, the pH value should be kept above 6 (Kunz et al., 

1977). 

b) Calcium hardness should be at least 20 to 50 mg/l CaCO3 to enable formation 

of protective film (Kunz et al., 1977). 

c) Chloride concentration should be kept below 200 mg/l (Jones, 1991). 

d) Total dissolved solids (TDS) concentration should be kept below 2,000 mg/l 

(Sussman, 1975). 

e) Conductivity should be kept below 4,000 micromhos/cm (Kunz, 1977). 

2.2.3 Microbiological Fouling 

Growths of algae, fungi, and bacteria can result in significant fouling in recycled 

cooling water systems. Since the various organisms flourish under a variety of 

conditions (e.g., presence or absence of sunlight, presence or absence of food supply, 

etc.), it is virtually impossible to control biological fouling without an adequate chemical 

treatment program (Aronson et al., 1982). Chlorination systems are normally quite 

effective, but must be carefully controlled and monitored due to effluent quality control 

guidelines. Other proprietary biocide additives are available, which can often be adapted 

to discharge limitations. 

Due to the fact that bromine breaks down rapidly to environmentally benign 
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byproducts, bromine can be used instead of chlorine as a biocide (Jones, 1991). An 

alternative strategy to biofouling control uses the simultaneous addition of sodium 

bromide and chlorine to the water used for power plant condenser cooling. The function 

of sodium bromide is to convert hypochlorous acid into hypobromous acid (Fisher et al., 

1999). Ozone also is one of the most powerful compounds that can be used for 

biofouling control (Ruisinger, 1996). 

2.2.4 Effect of Chloride on Cooling Water Systems 

 Metal-chlorides are generally very soluble in water, so they almost always 

accumulate in solution (Mathie, 1998). Chloride is important in promoting corrosion 

because of the ability of chloride to promote pitting by penetration or local destruction of 

otherwise protective iron oxide films (Schroeder, 1986, and Foley, 1970). It has been 

reported that chloride is the most deleterious individual ionic species normally occurring 

in natural waters (Schroeder, 1986). Furthermore, increased chloride and sulfate 

concentrations enhance the corrosive effect of oxygen and carbon dioxide (NACE, 

1976). Recycling of lime-treated blowdown returns soluble salts such as sulfate and 

chloride not removed in the softener to the cooling tower system. Since continued 

recycling necessarily raises their concentration, higher corrosion and scaling tendency 

are a possible consequence (Mathie, 1998). It is difficult, however, to quantify the 

relation of corrosivity to chloride concentration in water. The threshold concentration of 

chloride above which pitting of iron is possible is reported to be about 10 mg/L (Foley, 

1970). Chloride is about 3 times as active as sulfate in pitting metals. It reacts with the 

metals in solution and causes them to stay soluble, thus preventing the formation of 
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protective metallic oxide films (Singley et al., 1985).  The Larson Index of corrosion 

(LIC) is a corrosion indicator that is used to measure the aggressive nature of specific 

ions and is defined as (Larson and Sullo, 1967), 

ALK
SOClLIC 4+

=  (2-2) 

Where: LIC = Larson Index, Cl = chloride concentration, SO4 = sulfate concentration, 

and ALK = total alkalinity. All three are expressed in mg/L of equivalent CaCO3.  

When this ratio of reactive anions to alkalinity is greater than 0.5, the possibility of 

corrosive action exists (Singley et al., 1985). 

 High chloride concentration limits the cycles of concentration and requires 

increasing the amount of corrosion inhibitor or changing to more effective inhibitors 

(Schroeder, 1986). Therefore, extent of cooling water recycle in many cases is controlled 

by chloride concentration in the recycled water. 

2.2.5 Corrosion Inhibitors and Effect of Chloride on their Function in Cooling Water 

The approach to corrosion inhibitors in the cooling water system has been based 

on chromate. This approach has generally been considered the most effective, but for 

environmental safety it was dropped from use. The use of other inorganic inhibitors such 

as zinc, molybdate, nitrites, and inorganic phosphates in cooling water systems has been 

investigated (Sekine et al., 1992). Zinc ions are hazardous to the environment and can 

precipitate in the form of insoluble zinc salts (Boffardi, 1984, and Gunasekaran et al., 

1997). Particularly heavy metals for corrosion control came under criticism and 
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eventually were restricted by law (Bohnsack et al., 1986). 

Moccari (1999) reported that nitrites are extensively used as corrosion inhibitors 

in closed recirculating water systems. He stated that the level of inhibition depends on 

the chloride (Cl-) and sulfate (SO4
2-) species in the solution. To effectively inhibit 

corrosion, the concentration of nitrite should equal the chloride concentration and exceed 

the sulfate concentration by 250 to 500 mg/l (Boffardi, 1984). 

 Sodium molybdate (Na2MoO4) was tested as a corrosion inhibitor. It was found 

that the presence of aggressive ions such as chloride and sulfate reduce the efficiency of 

Na2MoO4 and higher concentrations are necessary for corrosion inhibition (Boffardi, 

1984, and Mustafa and Shahinoor, 1996). 

 Gluconates and Gluconic acids are known to be effective inhibitors for iron and 

mild steel in cooling water. It has been reported that the inhibition power of Gluconates 

and Gluconic acids increases with the addition of borate ions, because of their combined 

synergistic effect. Moreover, boro-gluconate is harmless to the environment (Singh et 

al., 1994).  However, gluconate-borate is effective only in chloride-free solutions. 

Gluconate-borate mixtures can be extended to water containing up to 100 mg/l chloride 

by the addition of nitrite (Singh et al., 1994). Singh et al. (1994) reported that formation 

of soluble metal complexes with iron is one of the major problems with compounds 

containing gluconate and hence their effectiveness decays within a few hours after 

immersion.  

The generic types of inhibitors that are currently used for both scale and 
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corrosion control are polyphosphates and organic phosphonates (Bohnsack et al., 1986, 

and Patel and Nicol, 1996). Polyphosphates have generally been replaced by 

phosphonates due to their poor thermal and hydrolytic stability. They are also 

incompatible with oxidizing biocides (Patel and Nicol, 1996). The most common 

phosphonates used today as corrosion inhibitors are hydroxy-ethylene-diphosphonic acid 

(HEPT) and phosphono-butane-tricarboxylic acid (PBTC). Other phosphonates include 

hydroxy-phospho-acetic acid (HPA), amino-trimethylene-phosphonate (AMP), 

phosphono-carboxylic acid (POCA), and complex amino-phosphonates (CAP) are also 

used. Phosphonates work under alkaline conditions in cooling water. Although 

phosphonates are the cornerstone of alkaline technology and have served industry well, 

they have limitations. Phosphonates are susceptible to both degradation by oxidizing 

biocides and precipitation with calcium (Geiger, 1996). Restrictions on phosphorus 

discharge are under continued review by state environmental agencies and limits have 

been imposed to prevent overloading receiving water. For example, phosphorus effluent 

discharge is restricted to less than 3 mg/l PO4 in the Lake Michigan Basin (Geiger, 

1996). Furthermore, both AMP and HEDP, the most common phosphonate corrosion 

inhibitors, are sensitive to overall water quality (Boffardi, 1984). The protection afforded 

to alloys decreases with increasing chloride and sulfate concentrations. They also show 

some sensitivity to temperature. Although the more alkaline solutions reduced corrosion, 

they increased the driving force for inorganic scale formation (Boffardi, 1984). 

Additionally, Gunasekaran et al. (1997) reported that, with very few exceptions, most of 

the phosphonic acids as such are not good corrosion inhibitors and their corrosion 
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inhibition properties are increased by the addition of metallic ions. Predominantly zinc 

ions are used for elevating the corrosion inhibiting properties of phosphonic acids. 

However, Geiger (1996) indicated that when zinc is included, the inhibitor must also be 

capable of preventing zinc phosphate precipitation.  

2.3 Lime Softening of Cooling Water 

 Lime softening is a process in which lime and soda ash are added to precipitate 

scale-forming materials such as calcium and magnesium and reduce the water alkalinity. 

A portion of silica can be removed. The amount of silica removed depends on the 

magnesium concentration in the water (Nurdogan et al., 1998; Matson and Harris, 1979; 

Wohlberg and Buchloz, 1974; and Mujeriego, 1976). The softening process will not 

affect species such as sodium, potassium, chloride, and sulfate. In recirculating cooling 

water systems the concentrations of these ions will be controlled by drift losses and 

blowdown (Micheletti and Owen, 1979). Lime softening can be applied in various 

configurations. It can be applied to treat makeup water, blowdown water, or the mixture 

of both. However, the most common application of lime softening in cooling water 

treatment is called sidestream softening and it is applied to cooling tower blowdown. 

This allows the cooling water to be concentrated in the cooling tower and thereby reduce 

cooling tower blowdown (Lancaster and Sanderson, 1993, and Matson and Harris, 

1979). There are two types of sidestream softening processes that are used to treat 

cooling water. They are lime softening process and caustic softening process. In both 

softening processes, calcium carbonate (CaCO3) and magnesium hydroxide (Mg(OH)2) 

are precipitated at a pH value of approximately 11. Silica (SiO2) is also removed by 
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adsorption onto magnesium hydroxide (Matson and Harris, 1979 , and Nurdogan et al., 

1998). It was reported that the adsorption isotherm of silica onto magnesium hydroxide 

follows a Freundlich isotherm and can be expressed as (Matson and Harris, 1979), 

q = 0.018 C0.309 (T = 50 oC) (2-3) 

Where: q = silica removed (mg/l) per mg magnesium in the precipitated or solid form, 

C = residual concentration of the adsorbed species 

If the magnesium concentration is not high enough to remove the desired amount of 

silica, magnesium addition may be required. 

 The theory of operation for the lime softening process can be described as 

follows (Jones, 1991): 

1. Lime (Ca(OH)2) is added to the cooling water being treated to provide the softener�s 

hydroxide ion (OH-) demand. The hydroxide ion is required to increase pH of the 

cooling water to about 11, convert carbon dioxide (H2CO3) and bicarbonate (HCO3
-) 

to carbonate ions (CO3
2-) convert magnesium ions (Mg2+) and ion pairs to 

magnesium hydroxide (Mg(OH)2) and convert orthosilicic acid (Si(OH)4) to 

trihydrogen silicate ion (H3SiO4
-). 

2. Soda ash (Na2CO3) is added to supply the softener�s demand of carbonate ion that is 

required to precipitate excess calcium as calcium carbonate (CaCO3). Because 

calcium in the form of lime is added to the system to satisfy the softener�s hydroxide 

demand, soda ash is often necessary to precipitate some or all of this calcium. 
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3. Acid is added to supply the softener�s hydrogen ion demand, which is required to 

decrease the pH of the cooling water to its original value after removing the scalants, 

convert carbonate ions and carbonate ion pairs to carbon dioxide, convert 

magnesium hydroxide to magnesium ions and ion pairs, and convert trihydrogen 

silicate ion to orthosilicic acid, Si(OH)4. Sulfuric acid (H2SO4) was usually used to 

supply hydrogen ion demand. The trend now is to eliminate using sulfuric acid in 

order to avoid an increase in sulfate ions in the system due to the problems 

associated with sulfate such as scale and corrosion. Carbon dioxide (CO2) can be 

used instead. 

The basic theory of the caustic softening process is as follow (Jones et al., 1991): 

1. Caustic soda (NaOH) is added to the cooling water being treated to provide the 

softener�s hydroxide ion demand. 

2. Lime is added to supply the softener with calcium ion that is required to precipitate 

excess carbonate as CaCO3 if needed. 

3. Soda ash is added to supply the softener with carbonate ion that is required to 

precipitate excess calcium as CaCO3. 

Because calcium in the form of lime is not added to the system to satisfy the 

softener�s hydroxide demand, soda ash is not often necessary, but it may be needed 

sometimes. If lime is required because of calcium ion demand, then soda ash addition is 

not necessary. Similarly, if soda ash is required because of a carbonate ion demand, then 

lime addition is not necessary. 
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Recirculating cooling waters usually contain corrosion or scale inhibitors, which 

interfere with the normal lime softening reactions. For example, scale and corrosion 

inhibitors such as dispersants, zinc, and trivalent chromium are removed by the softening 

process (Micheletti and Owen, 1979). In systems that use zinc-based corrosion 

inhibitors, this metal is precipitated along with the hardness and must be replaced 

(Goldstein and Griffin, 1975). It was reported that the softening process removes scale 

inhibitors such as polyphosphates to varying degrees depending on the type of 

compound and mode of system operation (Reed, 1977). On the other hand, scale 

inhibitor chemicals that act as crystal growth inhibitors such as polyphosphates can be 

expected to decrease the performance of a sidestream softener (Micheletti and Owen, 

1979). The cost of replacing the inhibitor that is removed by softening must be compared 

to other costs such as the cost of replacing chemicals lost with blowdown and the cost of 

makeup water, both of which will increase without sidestream treatment (Frazer, 1975). 

2.4  Ultra-High Lime Softening (UHL) 

Lime softening is an attractive method to remove the scale-forming materials 

such as calcium, magnesium, and phosphate (Fair et al., 1968, and Clark et al., 1977). 

However, it is not effective in removing silica and it is limited to waters that are not high 

in chlorides or dissolved solids concentrations (Matson and Harris, 1979). The 

conventional lime softening process can be modified to the ultra-high lime process with 

good results (Batchelor et al., 1991, and Batchelor and McDevitt, 1984). A two-stage 

configuration for the ultra-high lime process is shown in Figure 2.2 (Batchelor et al., 

1991). High pH and calcium concentration are maintained in the first stage, which result 
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in removal of silica by precipitation as a calcium silicate solid with solubility product of 

10-7.9 (Batchelor and McDevitt 1984). Excess lime is added to the first stage to achieve 

high calcium concentration and high pH (pH11-pH12). Silica, magnesium, and 

phosphate are removed in this stage as solid precipitates. In the second stage, inorganic 

carbon is added as carbon dioxide or soda ash to remove calcium by precipitation as 

calcium carbonate. The pH of the effluent from the second stage is adjusted to the value 

desired for the cooling water system. This process could be applied to remove scale-

forming chemicals from the makeup to a cooling water system, to a sidestream of the 

recycled cooling water, or to both. Depending on the composition of the water to be  

treated, this configuration might be modified to operate more economically by having a 

fraction of the flow bypass the first stage. 

A configuration of the ultra-high lime process that is particularly attractive for 

application to recycled cooling water systems is shown in Figure 2.3 (Batchelor et al., 

1991). In this configuration, a sidestream of the recycled cooling water is treated by the 

ultra-high lime process and the make-up stream is treated by lime softening. 
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Figure 2.2 Two-stage configuration of ultra-high lime process (Batchelor et al., 1991). 
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Figure 2.3  Combined configuration for ultra-high lime process (Batchelor et al., 1991). 
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2.5 Ultra-High Lime with Aluminum Process (UHLA) 

Lime softening is an attractive method to remove the scale-forming materials. 

However it is not effective in removing silica, chloride, or sulfate. Ultra-high lime 

softening process (UHL) is an alternative to the lime softening process that can remove 

silica, but it is not effective in removing sulfate and chloride. Reverse osmosis, ion 

exchange, and electrodialysis can be used to remove chloride and sulfate (Masson and 

Deans, 1996; Rapp and Pfromm, 1998; and Ericsson and Hallmans, 1996). However, 

lime softening is the cheapest of all treatment alternatives for recycled cooling water 

(You et al, 1999).  Furthermore, the use of other technologies is limited in many cases by 

operating problems such as fouling of membranes that lead to the need for frequent 

cleaning. They produce brine, which is also a problem to dispose (Westbrook, 1977). 

Furthermore, they are sensitive to water quality and water temperature (Balaban, 1991). 

Additionally, pretreatment is needed in most cases (Hoek et al., 2000). 

The UHLA process is an innovative technology with excellent potential for 

improving industrial water use efficiency and achieving zero discharge. The high pH and 

calcium concentration found in the first stage in the two-stage configuration shown in 

Figure 2.2 allows for removal of sulfate by precipitation as calcium sulfoaluminate 

(Ca6Al2(SO4)3(OH)12). Furthermore, the conditions found in the first stage of UHLA are 

suitable for removing chloride by precipitation as calcium chloroaluminate 

(Ca4Al2Cl2(OH)12). Capital costs for UHLA should be the same as for conventional lime 

softening, because the same equipment and techniques would be used. Operating costs 

of UHLA are expected to be slightly higher than those of conventional lime softening 
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due to the need to add aluminum. One way in which the UHLA process can be made 

more economically attractive is by reducing the cost of reagents. This could be 

accomplished by using waste alum sludge from water treatment plants as the source of 

some or all of the aluminum needed. This sludge contains approximately 39% aluminum 

by weight (Chu 1999). Every day about 10,000 tons of alum sludge are generated from 

water treatment plants and disposed (Dharmappa et al. 1997). Development of the 

UHLA process does not require development of new equipment. In fact, existing lime 

softening plants that have been used for many years may be able to convert to UHLA 

with minor modifications. 

2.6 Sulfate Removal in the UHLA Process 

Sulfate removal is required to facilitate recycle of cooling water. An important 

source of information about the behavior of sulfate at high pH is the chemistry of 

hydrated Portland cement and concrete. Sulfate is known to precipitate in cement 

porewaters in the form of a calcium sulfoaluminate called ettringite 

(Ca6(SO4)3Al2(OH)12) (Clark and Brown, 2000; Perkins and Palmer, 1999; Myneni et al., 

1998; and Lea, 1956). Ettringite is produced when gypsum (or gypsum saturated 

solutions) react with a phase such as tricalcium aluminate, calcium aluminate sulfate, or 

another source of calcium and aluminate ions. Ettringite was found to be stable in low 

silica and low carbon dioxide activity environments (Grutzeck and Roy 1985). Ettringite 

is stable above a pH of 10.7 and dissolved congruently with a log Ksp of �111.6 (± 0.8) 

(Myneni et al. 1998). Jones (1944) studied the stable and metastable mineral phases of 
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the Ca(OH)2 � Al2(SO4)3 � H2O system and the effects of alkali on the stability of these 

mineral phases in the alkaline pH range. He concluded that solid solutions of ettringite 

and monosulfoaluminate (Ca4Al2(SO4)(OH)12.6H2O) formed in these systems and that 

they coexisted with portlandite, gypsum, and gibbsite. However, ettringite was found to 

be the most stable phase in the presence of highly alkaline and sulfate-rich solutions 

(Jones, 1944, and Damidot and Glasser, 1993). 

UHLA treatment is capable of removing sulfate by precipitation of calcium 

sulfoaluminate (Ca6(SO4)3Al2(OH)12) or calcium sulfoferrate (Ca6(SO4)3Fe2(OH)12) 

(Batchelor et al., 1985; Nebgen et al., 1973; and Schaezler, 1978).  The high pH and 

calcium concentration found in the first stage of the two-stage configuration shown in 

Figure 2.2 allows for removal of sulfate by precipitation as calcium sulfoaluminate. It 

was reported that when sufficient calcium was available, the molar ratio of sulfate 

removed to aluminum removed was 1.5, in agreement with theoretical stoichiometry 

(Batchelor et al. 1985). The kinetics of sulfate removal by precipitation of calcium 

sulfoaluminate was found to be rapid enough for practical application. Furthermore, 

aluminum and iron have been found to promote silica removal by precipitation and 

adsorption mechanisms (Lidsay and Ryznar 1939, and Bell et al. 1968). 

2.7 Chloride Removal in the UHLA Process 

The UHLA process has demonstrated the ability to achieve high sulfate removal 

efficiency. By expanding the process to also remove chloride, the UHLA process will be 

able to fill the need for a low-cost tool for improved industrial water management. The 
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conditions found in the first stage of ultra-high lime process allow for removal of 

chloride by precipitation as calcium chloroaluminate (Ca4Cl2Al2(OH)12). Limited 

knowledge exists on the formation of calcium chloroaluminate in aqueous solution. Most 

of the previous research has focused on its chemistry in concrete and hydrated Portland 

cement due to the effect of chloride on the corrosion of reinforcing steel in concrete 

(Worthington et al., 1988; Fu et al., 1996; Mehta, 1991; Janotka et al., 1992; Page et al., 

1986; Hussain et al. 1995; and Rasheeduzzafar et al. 1992). 

2.7.1 Calcium Chloroaluminate in Cement Chemistry 

Calcium chloroaluminate is a layered double hydroxide (LDH) with chemical 

formula Ca4Al2Cl2(OH)12 that is also known as Friedel�s salt (Rapin et al., 2002). This 

compound was mentioned for the first time in 1897 by Friedel, who studied the 

reactivity of lime with aluminum chloride (Friedel, 1897). Calcium chloroaluminate 

belongs to a family of solids known in cement chemistry as aluminoferrite mono (AFm) 

phases. Therefore calcium chloroaluminate is sometimes called chloro-AFm. 

 Aluminoferrite mono (AFm) family of solids belongs to a big family of layered 

materials called layered double hydroxides (LDHs). This class of compounds contains 

two kinds of metallic cations in the main layers and interlayer domains containing 

anionic species and water molecules (Renaudin et al., 1999b, and De Roy et al., 1992). 

This wide family of LDHs compounds is also referred to as anionic clays, by comparison 

with the more usual cationic clays whose interlamellar domains contain cationic species 

(Rives, 2001). LDHs contain divalent cation (M2+) hydroxide sheets in which a fraction 
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of the M2+ sites have been substituted with trivalent cations (M3+). The isomorphous 

substitution of the divalent cations with the trivalent cations develops permanent positive 

charge on the hydroxide layers that is counterbalanced by the interlayer anions (Crepaldi 

et al., 2000, and Goswamee et al., 1998). Figure 2.4 show a schematic diagram of an 

LDH�s structure (You et al., 2002). The general chemical composition of LDHs can be 

represented as (Olanrewaju et al., 2000, Rives, 2001, and Ulibarri and Hermosin, 2001): 

 M2+
x M3+

y (OH)2x+3y-nz (An-)z .mH2O (2-4) 

Where M2+ = divalent cations (Ca2+, Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Mn2+, but also the 

monovalent cation Li+), 

M3+ = trivalent cations (Al3+, Cr3+, Fe3+, Co3+, Mn3+), 

An- = interlayer anions with charge (n-) (almost freely selected, organic and 

inorganic anions), and 

x, y, and z = The stoichiometric ratios of M2+, M3+, and An-  

 LDHs are of great academic, industrial, and environmental interest owing to their 

various potential applications. One of the remarkable features of LDHs is that the 

interlayer anions are exchangeable, and in addition, can be exchanged with various 

organic and inorganic charged compounds (Drits and Bookin, 2001). Because of the 

high anion-exchange capacity, LDHs can be used as adsorbents for anionic pollutants in 

aqueous media (Ulibarri and Hermosin, 2001). In addition, LDHs are resistant to high 

temperature treatments. Therefore, they are used as ion exchangers in some high 

temperature applications. It was reported that LDHs were used in the treatment of 
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Figure 2.4 Schematic diagram of LDHs structure (You et al., 2002). 
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cooling water of nuclear reactors (Ulibarri and Hermosin, 2001). 

 AFm and Aluminoferrite tri (AFt) phases are calcium derivatives of LDHs in 

which octahedral sheets of Ca(OH)2 are substituted with Al3+ or Fe3+ and the charge is 

neutralized by interlayer anions such as CO3
2-, SO4

2-, OH-, NO3
-, Cl-, Br-, I-, etc (Rapin 

et al., 2002, Glasser et al, 1999, Birnin-Youri and Glasser, 1998; Rapin et al., 1999a; 

Rapin et al., 1999b; Francois et al., 1998; Renaudin et al., 1999a; Renaudin et al., 1999c; 

and Renaudin et al., 2000). Examples of the AFm phase are: calcium 

monosulfoaluminate (Ca4Al2SO4(OH)12) (Glasser et al., 1999), calcium chloroaluminate 

(Ca4Al2Cl2(OH)12) (Birnin-Youri, 1993), nitrated AFm phase (Ca4Al2(NO3)2(OH)12) 

(Renaudin et al.,2000) while ettringite (Ca6Al2(SO4)3(OH)12) is a well known example of 

AFt phases (Clark and Brown, 2000; Perkins and Palmer, 1999; and Myneni et al., 

1998). 

Calcium chloroaluminate is composed of positively charged main layers of 

composition [Ca2Al (OH)6]+ and negatively charged interlayers of composition [Cl−, 

2H2O]. The chloride anions are surrounded by 10 hydrogen atoms, of which six belong 

to hydroxyl groups and four of water molecules (Rapin et al., 2002; Renauldin et al., 

1999b; Glasser et al., 1999; and Birnin-Yauri and Glasser, 1998). 

 Inter-ionic exchange between two or more solids of AFm phases via the aqueous 

phase with which they are in contact is possible, because the interlayer anions in an AFm 

phase are loosely held by electrostatic forces. This exchange attains an equilibrium, 

thereby producing solid solutions of varying compositions (Birnin-Yauri, 1993; Glasser 
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et al., 1999; Birnin-Yauri and Glasser, 1998; Stronach, 1996; and Pöllmann, 1986). For 

example, in solutions containing OH- and Cl-, the interlayer Cl− of calcium 

chloroaluminate can be replaced by OH− from the aqueous phase to form 

hydroxyaluminate (Ca4Al2(OH)14). When there is only partial replacement of the 

chloride, a solid solution is formed containing a mixture of chloroaluminate 

(Ca4Al2Cl2(OH)12) and hydroxyaluminate (Ca4Al2(OH)14), which has been reported by 

several researchers (Birnin-Yauri and Glasser, 1998; Stronach, 1996; Pöllmann, 1986; 

and Turriziani, 1960). However, there is uncertainty about the composition of the solid 

solution. Glasser et al. (1999) reported that during preparation of calcium 

chloroaluminate, tetracalcium hydroxyaluminate (Ca4Al2(OH)14) solid solutions 

occurred in several discrete hydration states as well as a partial breakdown to the more 

stable solids such as tricalcium hydroxyaluminate (Ca3Al2(OH)12) and gibbsite 

(Al(OH)3). Such behavior results in complicated X-ray diffraction (XRD) patterns with 

poor quality and leaves investigators the difficult task of assessing Cl− substitution with 

OH− in the solid phase (Glasser et al., 1999). Birnin-Yauri (1993) concluded from his 

results that solid solution between calcium hydroxyaluminate and calcium 

chloroaluminate was essentially complete and the XRD powder patterns changed with 

changes in the Cl/OH ratio of the solid. 

Calcium chloroaluminate precipitation was reported to be fast. It has been 

reported that a crystalline precipitate of calcium chloroaluminate was formed 

immediately upon the addition of calcium chloride to a solution of Al2O3 and CaO 

(Wells, 1928). Different conclusions about the mechanism of calcium chloroaluminate 
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formation in porewaters of hydrated cement were drawn. According to Ben-Yair (1974), 

the formation of calcium chloroaluminate is due to a direct chemical reaction between 

tricalcium aluminate (CaO)3.Al2O3, (C3A), and CaCl2 salt. According to Yonezawa et al. 

(1988), the formation of calcium chloroaluminate salt involves an ion exchange between 

the OH- ions present in the interlayers of the C3A hydrates and the free chloride ions. 

According to Lambert et al (1985), the removal of free chloride ions from the aqueous 

phase to form calcium chloroaluminate salt would necessitate either the removal of an 

equivalent quantity of cations from the aqueous phase or the entry of other anions to 

aqueous phase to maintain the ionic charge neutrality in the pore solution. The OH- ions 

from the Ca(OH)2 crystals are the main source of anions to balance the charge. In 

another study, it was reported that in the presence of NaCl, calcium chloroaluminate salt 

forms by two mechanisms: an adsorption mechanism and an anion exchange mechanism 

(Suryavanshi et al., 1996).  

The solubility product of calcium chloroaluminate in porewaters of hydrated 

Portland cement was found to be low (Birnin-Yauri and Glasser, 1998, and Abate and 

Scheetz, 1993). Birnin-Yauri and Glasser (1998) studied the system at 20 ± 2oC by 

mixing Friedel�s salt with water at solid/liquid ratio of 1:10 and agitated the mixture for 

28 days. The average value of log (Ksp) obtained by Birnin-Yauri and Glasser was -

27.10. This value agreed with the value of -27.09 that was reported by Naken and 

Mosebach (1936) who studied the system CaO-Al2O3-CaCl2-H2O at 30oC. However, the 

later observed the presence of tri-calcium aluminate as an impurity along with the 

Friedel�s salt and their results were based on the crystallization rather than dissolution. 
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2.8 Flow Streams and Parameters of Ultra-High Lime with Aluminum Process in A 

Cooling Water System 

A schematic diagram of flow streams and parameters of UHLA in a cooling 

water system is shown in Figure 2.5. The dissolved ion concentrations in the makeup 

water, blowdown, and drift are CM, CB, and CD, respectively. Because the sources of 

blowdown and drift are from the recirculating cooling water, it is assumed that the 

dissolved ion concentrations in the blowdown and drift (CB and CD) are identical to that 

in the cooling tower basin (CT). Dissolved ions remain with the cooling water during 

evaporation. Therefore, the ion concentration, CE, in the water vapor plume is zero. 

 A water balance of the cooling water around the whole system in Fig 2.5 

assuming the water density are the same for all the flow streams in the system gives, 

QM = QE + QD + QB (2-5) 

Where: QM = cooling tower makeup water flow rate (L3T-1) 

QE = cooling tower evaporation water flow rate (L3T-1) 

QB = cooling tower blowdown water flow rate (L3T-1) 

QD = cooling tower drift water flow rate (L3T-1) 

A material balance of a non-volatile compound around the cooling tower can be 

made assuming that the concentration of the ion in the blowdown, CB, and the drift, CD, 

are the same as that in the cooling tower basin (CT).  The system boundary for this 

balance is shown by dotted line in Fig. 2.5. 
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Figure 2.5  Schematic of flow streams and parameters in UHLA process. 
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(QM + QS) CI = QD CT + QB CT + QS CT = CT (QD + QB + QS) (2-6) 

where   CI = ion concentration from the treatment system to the cooling tower (ML-) 

CT = ion concentration exiting the cooling tower (ML-3) 

QS = sidestream softener flow rate (L3T-1)  

Dividing both sides of Equation 2-6 by (QM * CI) gives, 

S SD B T

M M M

Q QQ Q C1
Q Q Q

   +
+ = +   

    IC




 (2-7) 

Substituting Equation 2-1 into 2-7 and rearranging, gives, 

( )
S I T

M T I

Q C *COC C
Q C C *CO

 −
=   − C

 (2-8) 

 Knowing the desired ion concentration in the cooling water (CT) and the 

expected ion concentration in the treatment system effluent (CI), the sidestream softener 

to makeup water flow rate ratio, (QM / QS) can be calculated for each cycle of 

concentration. 

 QE can be estimated using the following relationship, which is based on the 

assumption that all of the heat lost from the water in the cooling tower is due to 

evaporation (Jones, 1991). 

∆T*
∆H
C

*QQ p
CE =   =  QC * 0.001 * ∆T (2-9) 

Where: QC = cooling tower circulating water flow rate (gpm) 

Cp = heat capacity of water ≅ 1 (BTU/lb)/oF, 
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∆H = latent heat of evaporation of water ≅ 1000 BTU/lb, and 

∆T = temperature difference across the heat source (e.g., condenser) (oF). 

The drift flow rate can be calculated as: 

CD Q*
100

FactorDrift Q =  (2-10) 

Where: Drift Factor (DF) = design cooling tower drift flow rate as a percent of the 

cooling tower circulation flow rate (%). Its value depends on the operating 

conditions and design of cooling tower. 

Drift flow rate is normally very low, minimized by drift eliminators installed in the air 

outlet at top of the cooling tower. Obtainable cooling tower drift factor of 0.003 % of the 

cooling tower circulation flow rate is normal (Jones, 1991).  

2.9 Chemical Equilibrium Modeling 

 Chemical behavior in UHLA process is complicated and cannot be fully 

understood from only inspecting experimental data such as concentrations. This is due to 

the possibility of occurrence of mechanisms that are difficult to describe using only 

experimental results, such as solid-solutions formation and interactions among 

components in the system. Equilibrium models provide a powerful tool for predicting 

chemical behavior in such engineered systems, if the reactions are fast enough so that the 

assumption of equilibrium or metastable equilibrium is valid. They also help in 

developing understanding of the chemical behavior of a system and in interpreting 

experimental results. Furthermore, they can be used to predict effluent concentrations or 
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doses of chemicals by combining material balance equations with chemical equilibrium 

equations.  

2.9.1 Solubility of the Solids 

 The solubilities of solid phases are determined experimentally by measuring the 

concentrations of relevant ions in a saturated solution of the solid phase. In most cases 

the concentrations of important species cannot be measured directly, but may be 

calculated from the total component concentration using well-known equilibrium 

constants and equilibrium models. For example, in calculating the solubility product of 

aluminum hydroxide solid using Al3+ and OH- species, it is difficult to quantify the 

concentration of Al3+ experimentally but the total aluminum concentration can be 

measured easily in the laboratory. Then an equilibrium model can be used to predict the 

speciation among known soluble aluminum species. From the data obtained on the 

concentration of specific ionic species, a solubility product (Ksp) can be calculated. In 

general for the reaction, 

Am Bn (s) = mA+n(aq) + nB-m(aq) (2-11) 

The solubility product (Ksp) is, 

Ksp = {A+n(aq)}m  {B-m(aq)}n (2-12) 

Where {} indicate the activity of the species within the braces 

This results if the activity of the pure solid phase is set equal to unity (Stumm and 

Morgan, 1996).  
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2.9.2 Activity and Ionic Strength 

The ions in the solution have powerful interactions with each other due to their 

electrostatic charges. This results in deviations from ideality even in dilute solutions. 

Non-ideality can be accounted for by considering the activity of species as opposed to 

concentration. Activity and concentration are related by the equation (Stumm and 

Morgan, 1996): 

{C} = γ [C] (2-13) 

where: [C] is the aqueous concentration of the ion in the solution, γ is the activity 

coefficient. 

The activity coefficient can be estimated from the ionic strength. The ionic 

strength of a solution describes the intensity of the electric field created by ions in the 

solution and is defined as follows. (Stumm and Morgan, 1996) 

n
2

i i
1

I 0.5 [C ] Z= ∑  (2-14) 

Where:  I = ionic strength (mole/L) 

[Ci] = Concentration of the ith ion (mole/L) 

Zi = charge (valence) of the ith ion (dimensionless), and 

n = total number of types of ions in the solution (dimensionless) 

Various empirical expressions have been derived to calculate activity coefficients 

for each ion in solution as a function of the ionic strength and the charge of the ion 

(Morel and Hering, 1993, and Stumm and Morgan, 1996). The theoretical expressions 
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based on the Debye-Hückel limiting law together with more empirical expressions are 

given in Table 2.1. 

 

 

Table 2.1  Individual ion activity coefficients (Stumm and Morgan, 1996). 

Method Equation Applicability (ionic 

strength (M) 

Debye- Hückel IAzlogγ 2−=  < 10-2.3 

Extended Debye- 

Hückel IBa1
IAzlogγ 2

+
−=  < 10-1 

Güntelberg 
I1

IAzlogγ 2

+
−=  

< 10-1 useful in solutions 

of several electrolytes 

Davies 







−

+
−= bI

I1
IAzlogγ 2  < 0.5 

Where: I= ionic strength, γi = activity coefficient for the ith ion, A = 1.82*106 (εT)-3/2 

(where ε = electric constant), A = 0.5 for water at 25 oC, Z = charge of ion, 

B=50.3(εT)-1/2 , B ≈ 0.33 in water at 25 oC , a = adjustable parameter (angstroms) 

corresponding to the size of the ion, b = constant, b ≈ 0.2-0.3.  

 

 

When the objective is to study the chemistry of concentrated solutions above the values 

of ionic strength indicated in Table 2.1, an approach more sophisticated than the semi-

empirical formula becomes necessary. The activity coefficients must account for specific 
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as well as nonspecific ion interactions and exhibit a large increase at high ionic 

strengths. The most commonly used solution to this problem is the Bronsted specific ion 

interaction model and its extensions (Pitzer, 1991). The general formula for this model 

consists of a virial expansion of the form, 

∑∑∑ +++=
j k

kjk j i
i

jj iDHi  ]][S[SC  ][SB  )(γLn   )(γLn   .   .   .  .  . (2-15) 

 The first term is simply the Debye-Hückel activity coefficient. The second virial 

coefficients (Bij) account for specific interactions among pairs of ions, the third virial 

coefficients (Cijk) for specific interactions among three ions, and so on. [Sj] represent the 

molar concentration of a particular ion Sj (Pitzer, 1991). Up to ionic strength of about 4 

M, good agreement with experimental data can be obtained using an expansion that 

stops with the second virial coefficients. The higher-order terms become important only 

in the most concentrated systems (Morel and Hering, 1993). 

2.9.3 Modeling Programs 

A wide range of computer-based techniques has been employed to predict 

chemical behavior in both natural and engineered systems. Most of the equilibrium 

modeling programs were developed from the ion-association model for seawater of 

Garrels and Thompson (1962) (Stronach, 1996). 

EQUIL was the first of these programs that introduced Newton�s method to 

titration calculations in analytical chemistry (Bos and Meershoek, 1972). The second 

family of equilibrium models used successive approximation programs for natural water 

equilibria. The Garrels-Thompson method was the first of this type, with the calculations 
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being done by hand rather than by computer (Garrels and Thompson, 1962). Other first 

generation programs of this type are WATEQ (Truesdell and Jones, 1974), SOLMNEQ 

(Kharaka and Barnes, 1973), and EQ3 (Wolery, 1992). WATEQ was revised and 

translated into the programming language FORTRAN by Plummer et al (1976) and 

renamed WATEQF. Newton-Raphson programs for experimental and natural waters 

were the third group of programs. MINEQL (Westall et al., 1976) and MINTEQA2 

(Allison et al., 1991) were among these programs that make use of Gaussian elimination 

to solve the simultaneous matrix of equations. The final type of programs were those that 

simulated the reaction pathway. PATHI is an example of this type of program which 

takes the general approach of describing a partial equilibrium reaction path in terms of 

ordinary differential equations that are linear and can be solved by matrix algebra 

(Helgeson et al., 1970). 

Parkhurst et al., (1980) wrote the program PHREEQE, which was coded in  the 

FORTRAN language. PHREEQE could calculate pH, redox potential, and mass transfer 

as a function of reaction progress and it can determine the composition of solutions in 

equilibrium with multiple phases. PHREEQC version 1 (Parkhurst, 1995) was a 

completely new program written in the C programming language that implemented all 

the capabilities of PHREEQE and added many capabilities including ion exchange 

equilibria, surface-complexation equilibria, fixed-pressure gas phase equilibria, and 

advective transport.  

PHREEQC version 2 (Parkhurst, 1999) is a modification of PHREEQC version 1 

that retains all the capabilities of version 1 and adds several new features, including 
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kinetically controlled reactions, solid solution equilibria, fixed-volume gas-phase 

equilibria, and isotope mole balance in inverse modeling. A powerful inverse modeling 

capability allows identification of reactions that account for observed water 

compositions along a flow-line or in the time course of an experiment. An extensible 

chemical database allows application of the reaction, transport, and inverse-modeling 

capabilities to almost any chemical reaction that is recognized to influence rain-, soil-, 

ground-, and surface water quality. 

The input to PHREEQC is free format and is based on chemical symbolism. 

Balanced equations, written in chemical symbols, are used to define aqueous species, 

exchange species, surface-complexation species, solid solutions, and pure phases, which 

eliminates all use of index numbers to identify elements or species. A graphical user 

interface with charting options is available for version 2. The free-format structure of the 

data, the use of order-independent keyword data blocks, and the relatively simple syntax 

facilitate the generation of input data sets with a standard editor. The C programming 

language allows dynamic allocation of computer memory, so there are very few 

limitations on array sizes, string lengths, or numbers of entities, such as solutions, 

phases, sets of phases, exchangers, solid solutions, or surfaces that can be defined to the 

program. PHREEQC uses the extended Debye- Hückel equation or Davies equation to 

account for the non-ideality of aqueous solutions.  
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2.9.4 INVRS K 

In order to develop a model that is capable of predicting chemical behavior 

accurately in the UHLA process, the values of unknown equilibrium coefficients have to 

be determined. Information about formation of solid phases that are possibly formed in 

UHLA process is available only in research that is related to cement chemistry. 

Solubility products of such compounds have not been investigated in systems similar to 

those found in water and wastewater treatment systems. The usual means of estimating 

equilibrium constants is to calculate them directly from the measured experimental data. 

The solubility products of many solids are easily measured experimentally. In systems 

such as UHLA process in which the precipitated solids have to be identified and their 

solubility products have to be determined, it is not possible to determine the solubility 

products directly from the experimental data. Furthermore, because the solid-solution 

formations in such systems occurred in several discrete hydration states, this behavior 

results in complicated X-ray diffraction (XRD) patterns with poor quality and it becomes 

difficult to identify precipitated solids in such systems based on XRD diffraction 

(Glasser et al., 1999).  

The total concentration of a component in the solution is non-linearly related to 

each of its species or to solid phases containing this element.  Nonlinear regression, like 

linear least squares regression, determines the values of the parameters that minimize the 

sum of the squares of the errors. However, an equation having nonlinear dependence on 

its parameters requires that the answer be converged upon in an iterative fashion. 
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INVRS K (Schwantes, 2002) integrates a Gauss-Newton nonlinear regression 

routine (Chapra and Canale, 1998) with the chemical equilibrium modeling power of 

PHREEQC (Parkhurst, 1999) to enable inverse calculations of unknown or poorly 

defined equilibrium constants. Given at least the number of sets of experimental data for 

solutions of differing chemical character that have sufficiently approached chemical 

equilibrium with respect to the particular master species of interest, INVRS K will 

usually converge on the actual values of unknown equilibrium constants. The iterative 

process by which INVRS K converges is based on a Gauss-Newton non-linear 

regression routine. Initial information is input by the user and usually includes the 

chemical and physical description of each data set and initial guesses for unknown 

constants. INVRS K then writes an input file that can be read by PHREEQC and that 

defines the number of simulations to be conducted as the number of unknown constants 

to be calculated plus one.  It also transfers information to be used by PHREEQC to 

generate a series of selected output files during each run. The first in the series of 

simulations and selected output files produced corresponds to hypothetical equilibrium 

state reached by PHREEQC for the initial guesses of the unknown constants. Each 

subsequent simulation makes a small change in the equilibrium constant of a single 

unknown and recalculates equilibrium. The results of these simulations provide the 

necessary information for calculating the partial derivative of the master species in each 

of the batch systems with respect to each of the unknown constants. 

 Once PHREEQC finishes running, INVRS K proceeds by reading the data (total 

master species concentrations in solution) from each of the selected output files. Error 



 46 

analysis determines whether the initial guesses for the equilibrium constants predict 

chemical behavior within acceptable limits. The sum of the squares of the residuals of 

calculated batch systems is used to quantify goodness of fit and if it is not acceptable, the 

change in each equilibrium constant is calculated based on Gauss-Newton non-linear 

regression.  These changes are included in a new input file that is used to initiate the next 

iterative cycle. A flow diagram is provided in Figure 2.6 to better illustrate the flow of 

INVRS K. 
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Figure 2.6  Flow diagram of the INVRS K (Schwantes, 2002). 
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CHAPTER III 

MATERIALS AND METHODS 

3.1 Experimental Plan 

 A four-part experimental plan was conducted to meet the four objectives for this 

research. First, experiments were conducted to study the kinetics of calcium 

chloroaluminate precipitation and to obtain the reaction time for equilibrium 

experiments. Additionally, a set of preliminary equilibrium experiments to develop the 

best experimental and analytical procedures was conducted. Second, equilibrium 

experiments were conducted to evaluate the characteristics of chloride precipitation as 

affected by lime dose, aluminum dose, initial chloride concentration, pH, and 

temperature. Third, the effect of the presence of sulfate or silica on chloride precipitation 

was investigated by conducting similar equilibrium experiments at three different 

concentrations of chloride in the presence of various concentrations of sulfate or silica. 

Finally, equilibrium model development was performed using two computer programs, 

PHREEQC and INVRS K. The model was developed concurrently with the completion 

of the first three tasks. 

3.2 Chemicals and Reagents 

 The chemicals used in this research were: calcium hydroxide (USP, Fisher), 

sodium aluminate (VWR), sodium chloride (ACS 99.7%, Fisher), calcium chloride 

dihydrate (USP, Fisher), sodium sulfate (USP, Fisher), sodium silicate nanohydrate 

(ACS, Fisher), sodium carbonate (ACS 100%, Fisher), sodium bicarbonate (ACS, 100%, 
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Fisher), potassium chloride (USP, Fisher), strontium chloride (ACS, Fisher), nitric acid 

(trace metal grade, 70%, Fisher), acetic acid (trace metal grade, 99.7%, Fisher), sulfuric 

acid (trace metal grade 95%, Fisher), sodium hydroxide (1.0 M, 0.2 M, Fisher), 

ethylenediamine-tetraacetic acid (EDTA) (0.25 M, Fisher), ascorbic acid (99.7%, 

Fisher), eriochrome cyanine R (Sigma), methyl orange (ACS, Fisher), sodium acetate 

(99.5%, Fisher), Ionic Strength Adjustment Buffer (sodium nitrate, 5M, Fisher), 

ammonium molybdate (ACS, Fisher), oxalic acid (99%, EM), ascarite II (Thomas 

Scientific).  

 All solutions were prepared with decarbonated deionized water (DI water, 

hereafter) purified with a Barnstead Nanopure system to greater than 18 MΩ and 

degassed by purging with nitrogen gas. All lab ware was cleaned according to the 

following protocol: (1) soak 24 hours in 2 % laboratory detergent (VWR), (2) soak 24 

hours in 10% nitric acid, (3) wash and rinse at least five times with deionized water; and 

dry before use. The stock solutions of sodium chloride, sodium sulfate, and sodium 

silicate were prepared daily by dissolving appropriate amounts of the chemical reagents 

in the DI water. All primary standard solutions (aluminum, calcium, chloride, sulfate, 

and silicon) were reagent grade chemicals (Fisher). Secondary standard solutions used in 

samples calibration curves were freshly prepared daily from the primary stock solutions 

by dilution with DI water. 
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3.3 Experimental Procedures 

 High-density polyethylene (HDPE) sealed plastic bottles (250 mL) were used as 

completely mixed batch reactors for kinetic and equilibrium experiments. To avoid CO2 

transfer from atmosphere into solution, the reactors were put in a closed container with a 

CO2 absorbent (Ascrite II, Fisher) during the reaction time. After the addition of 

chemical reagents, the reactors were rapidly closed, tightly sealed, and mixed by shaking 

at room temperature (23 � 25oC). However, experiments that were conducted to study 

effect of temperature were mixed at the desired temperatures using a controlled 

temperature shaker. Reaction time for all equilibrium experiments was set at two days 

based on the results of kinetic experiments that showed that chloride removal is fast, 

being essentially complete at the first sampling time of one hour. At the end of the 

reaction time, the reactors were removed from the shaker and pH of the solutions was 

measured before filtration. Then samples were taken from the reactors with a plastic 

syringe and filtered with 0.45 µm Whatman membrane filters (VWR). After filtration, 

samples were acidified to below pH 2 and stored in the refrigerator until analysis.  

 Experiments that studied the effect of lime dose, effect of aluminum dose, effect 

of initial chloride concentration, effect of sulfate, and effect of silica were similar in their 

experimental procedures. However, experiments that studied effect of pH and effect of 

temperature were slightly different.  
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3.3.1 Kinetics of Chloride Removal  

 An experiment was conducted in order to study the kinetics of chloride removal 

and to obtain the time required to reach equilibrium or at least metastable equilibrium. 

This experiment was conducted by adding 40 mM lime and 20 mM sodium aluminate to 

a 30 mM solution of sodium chloride in sealed plastic bottles. The reactors were shaken 

at 250 rpm at room temperature. Samples were taken, filtered, and analyzed for chloride 

after reaction times of 1, 2, 4, 8, 12 hours, 1, 2, 5, and 10 days. 

3.3.2 Effect of Lime Dose, Sodium Aluminate Dose, and Initial Chloride Concentration 

on Chloride Precipitation  

 A set of equilibrium experiments (48) was conducted at room temperature 23 - 

25 °C to evaluate the effects of lime dose (0, 10, 30, 60, 90, 120, 150, and 200 mM) and 

sodium aluminate dose (0, 10, 20, 30, 40, 50, 60, 80, 100 mM) on chloride removal and 

to study the characteristics of calcium chloroaluminate precipitation. All combinations of 

these doses were investigated except at the aluminum dose of 60 mM the only lime 

doses investigated were 90, 120, 150, and 200 mM and at the aluminum doses of 80 mM 

and 100 mM the only lime dose investigated was 200 mM. Chloride concentration was 

fixed at 30 mM, which is an average concentration found in recycled cooling water 

systems (Matson and Harris 1979). The experiments were initiated by adding dry lime 

and dry sodium aluminate chemicals to a 200 mL of 30 mM NaCl solution in the reactor. 

NaCl solutions were prepared daily by dissolving the dry solid in DI water. After 

chemical additions, the reactors were capped rapidly and sealed in order to avoid CO2 
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transfer from the atmosphere. Then the reactors were placed in closed plastic container 

with CO2 absorbent (Ascrite II) and the container was sealed and placed on the shaker 

and mixed for two days at 250 rpm. At the end of the experiments, the reactors were 

released from the shaker and pH values of the solutions were measured in the reactors 

before filtration. An appropriate aliquot (10-20 mL) was taken from the reactor with a 

plastic syringe and filtered immediately into a plastic tube using 0.45 µm membrane 

filters. Then an aliquot of the sample was taken with an auto-pipette and was 

immediately diluted, acidified, and stored in the refrigerator until analysis. Samples were 

analyzed for total calcium (TOT(Ca)), total aluminum (TOT(Al)), and total chloride 

(TOT(Cl)).  

 Similar experiments were conducted to study the effect of initial chloride 

concentration (10, 50, and 100 mM) on chloride removal. Ratios of lime doses and 

aluminum doses to initial chloride concentration were kept constant at 400% and 160%, 

respectively. Those ratios were chosen based on results of previous experiments that 

studied the effect of lime dose and aluminum dose on chloride removal, which indicated 

that those are the optimum ratios for maximum chloride removal efficiency. 

3.3.3 Effect of pH on Chloride Precipitation 

 A set of equilibrium experiments (27) was conducted in order to evaluate the 

effect of pH on chloride precipitation. A range of pH values (10.80 � 13.05) was 

investigated. Each pH was investigated at each one of three initial chloride 

concentrations (10, 50, and 100 mM). Calcium chloride (CaCl2) was used as both a 
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source of chloride and a partial source of calcium in order to minimize the additions of 

lime required to supply the desired calcium doses. Lime and aluminum doses were set at 

200% and 100% of the initial chloride concentration, respectively. Three solutions of 

acetic acid with concentrations of 0.1 M, 1.0 M, and 10.0 M were prepared and used to 

lower pH to the desired values.  Similarly, three solutions of NaOH with concentrations 

of 0.1M, 1.0 M, and 10.0 M were used to raise pH to the desired values. 

 First, a set of experiments was conducted to obtain the amount of acetic acid 

required to lower the pH to the minimum desired value.  These experiments were 

conducted by titrating solutions containing the desired concentrations of CaCl2, 

Ca(OH)2, and NaAlO2 with acetic acid until the desired pH was obtained.  During the 

titration, the solutions were mixed and nitrogen gas was passed over their surfaces.  The 

concentration of acetic acid and pH obtained at each experimental condition are listed in 

Table 3.1. 

 

Table 3.1 Experimental conditions for effect of pH experiments. 

Initial CaCl2 

(mM) 

Ca(OH)2 dose 

(mM) 

NaAlO2 dose 

(mM) 

Acetic acid 

(mM) 

pH 

5 15 10 43 10.80 

25 75 50 183 10.82 

50 150 100 330 10.87 
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 Second, effect of pH experiments were conducted by adding the desired doses of 

lime and sodium aluminate chemicals to a 180 mL volume of a solution contains the 

desired concentrations of CaCl2 and acetic acid (final volume, 200 mL, based). Then the 

reactors were closed tightly, sealed and mixed on the shaker for about one hour to 

equilibrate the solution with the acetic acid and to allow dissolution of the added solids 

(lime and sodium aluminate). Then the reactors were removed from the shaker and pH 

was adjusted to the desired pH value using NaOH while mixing using magnetic stirrer 

and flowing nitrogen gas on top of the solution. Then the volume of added NaOH was 

calculated and a certain volume of DI water equal [200 � (180 + volume of added NaOH 

solution) mL] was added to make up 200 mL final solution volume. Then the reactors 

were closed tightly, sealed, placed on a closed container with CO2 absorbent, and mixed 

for two days. After that the reactors were released from the shaker and final pH values 

were measured before filtration then samples were taken, filtered, acidified, stored in the 

refrigerator, and analyzed for TOT(Ca), TOT(Al), and TOT(Cl). 

3.3.4 Effect of Sulfate and Silica on Chloride Removal 

 A series of experiments (72) was conducted to evaluate interactions among the 

processes removing chloride, sulfate, and silica. Initial concentrations of each 

component were chosen to cover a range of possible applications of the UHLA process, 

such as cooling water treatment, membrane pretreatment, and brine treatment. Table 3.2 

describes the experimental conditions for these experiments. 
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 These experiments were conducted by first preparing stock solutions of NaCl and 

Na2SO4 (or Na2SiO3).  A volume of the stock solution was added to the reactor along 

with sufficient DI water to make a total volume of 200 mL. Then, doses of lime and 

sodium aluminate were added to the solution as dry solids. The rest of experimental 

procedures were similar to previous experiments that studied the effect of lime dose and 

sodium aluminate dose on chloride precipitation. Samples were analyzed for pH, 

TOT(Cl), TOT(Ca), TOT(Al), and total sulfate (TOT(SO4)) or total silica (TOT(Si)). 

 

Table 3.2 Experimental conditions for experiments evaluating the effects of sulfate and 

silica. 

Effect of sulfate 

NaCl 

mM 

Na2SO4 

mM 

Ca(OH)2 

(% of (initial [Cl] + 

initial [SO4])) 

NaAlO2 

mM 

No. of 

expts. 

0.0, 10, 50, 100 10 , 50, 100 100%, 200%, 300% 0.5 lime dose 36 

Effect of silica 

NaCl 

mM 

Na2SiO3 

mM 

Ca(OH)2 

(% of (initial [Cl] + 

initial [SiO3])) 

NaAlO2 

mM 

No. of 

expts. 

0.0, 10, 50, 100 0, 1.5, 3.0 100%, 200%, 300% 0.5 lime dose 36 
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3.3.5 Aluminum � Chloride � Hydroxide Complexation 

 In order to test the hypothesis that Al-Cl-OH complexes are formed in 

equilibrium experiments at high aluminum concentration and high pH values, a set of 

experiments was conducted to evaluate the effect of aluminum concentration on the 

activity of free chloride ({Cl-}) at high pH. Three experiments were conducted at three 

initial concentrations of NaAlO2 (10, 20, 30 mM), while the initial chloride 

concentration was fixed at 10 mM. The pH was adjusted with NaOH to maintain a value 

of 12.70, which is the value at which high chloride concentration was observed at high 

aluminum doses in other experiments.  Another reason of adjusting pH for this set of 

experiments was to minimize the variation in pH values among these experiments in 

order to minimize any effect that might result from pH change. Table 3.3 shows the 

experimental conditions for these experiments. The experiments were conducted by 

adding dry sodium aluminate solids to a solution that contained sufficient NaCl to 

achieve a concentration of 10 mM NaCl when the final volume of 200 mL was achieved.  

Then, volumes of 1.0 M NaOH were added so that that the total �free� hydroxide ion 

calculated from additions of NaAlO2 + NaOH would be the same for all experiments. 

The same reactors and total sample volumes that were used in other experiments were 

used here. The reactors were closed, tightly sealed, and mixed for two days on the 

shaker. Then, the reactors were released from the shaker and pH was measured. After 

that, 2 mL of 5.0 M sodium nitrate (Ionic Strength Adjustment Buffer, Fisher) was added 

per 100 mL of solution (Orion, 2001). Then the activity of free chloride was measured in 

the reactor. 
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Table 3.3 Experimental conditions for Al-Cl-OH complexation experiments. 

Initial NaCl (mM) NaAlO2 dose (mM) NaOH (mM) Final measured pH 

10 10 50 12.77 

10 20 40 12.73 

10 30 30 12.67 

 

 

3.3.6 Solubility of Aluminum Hydroxide Solid 

 A set of experiments (9) was conducted to evaluate the ion activity product (IAP) 

of the aluminum hydroxide solid that was formed. The experiments were conducted with 

a 50 mM initial concentration of NaAlO2 and with a range of pH values (6.79 - 12.5) 

using the same reactors that were used in experiments that were previously described. 

The experiments were conducted by adding a sufficient amount of  dry NaAlO2 solid to 

achieve a concentration of 50 mM in the final solution volume of 200 mL.  The pH of 

the solution was adjusted to values using HCl or NaOH, while mixing. Then the reactors 

were closed, sealed, and mixed for two days. After that, the pH of the solution was 

measured and samples were taken, filtered, and analyzed for TOT(Al). Then activities of 

Al3+ and OH- were calculated with PHREEQC using the measured pH and measured 

total aluminum concentrations. Then the ion activity product (IAP) was calculated for 

each experimental condition. 
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3.4 Analytical Procedures 

 All analytical procedures were made following the Standard Methods for The 

Examination of Water and Wastewater (APHA, AWWA, WEF, 1995) and according to 

the instrumental instructions.  

3.4.1 Chloride, Sulfate, and Nitrate 

 Cl-, SO4
2-, and NO3

- were analyzed by a computerized Dionex DX-500 IC/HPLC 

equipped with a self-regenerating suppressor, a CD-20 conductivity detector, IonPac® 

AS9A-HC column (250 mm x 4 mm I.D., Dionex), and autosampler. The eluent was 

10.0 mM Na2CO3 and the flow rate was 1.0 mL/min. Samples were automatically 

injected into the column through a 10 µL sample loop. Analyte concentration was 

quantified by comparing peak area to a standard calibration curve using an external 

standard method. Standards for calibration of 2, 5, 10, 20, 50, and 100 mg/L were 

prepared by dilution from 1000 ppm Fisher analyte standard solution. Samples were 

analyzed after dilution in duplicates and the results agreed well within 5%. 

3.4.2 Calcium 

 Calcium was analyzed by flame atomic absorption spectroscopy (AAS), which 

utilizes a flame to provide a means of atomizing elements in an environment free of any 

surrounding chemicals. The AAS used was Perkin Elmer 460 and was employed in the 

analysis of calcium using air/acetylene flame with air flow rate of 21.5 L/min and 

acetylene flow rate of 3.5 L/min at wavelength of 422.7 nm and slit width of 0.7 nm. 

Calcium standards of 0.5, 1.0, 2.0, 3.0, and 5.0 mg/L were prepared for calibration 
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purpose by dilution from a 1000 ppm Fisher atomic absorption calcium standard. 

Ionization interference was minimized by the addition of 0.1% potassium (as potassium 

chloride) while aluminum interference was minimized by the addition of 0.5 % 

strontium (as strontium chloride). Method detection limit was 0.1 mg/L and the linear 

range was 0.0 � 5.0 mg/L. Samples were analyzed after dilution in duplicate and the 

results agreed well within 5%. 

3.4.3 Aluminum 

 Total aluminum was determined by spectroscopic analysis using a computerized 

Agilent 8452 Diode-Array Spectrophotometer. Aluminum was measured using 

Eriochrome Cyanine R Method at wavelength of 535 nm (APHA, AWWA, WEF, 1995). 

The method detection limit was 10 µg/L and the linear range was from 0.0 to 200 µg/L. 

The concentration of aluminum was quantified by comparing absorbance to a standard 

calibration curve. Standards for calibration of 10, 50, 100, 150, 200, and 250 µg/L were 

prepared from 1000 ppm Fisher aluminum standard solution. Standards and samples 

preparation were prepared after dilution and analyzed following the procedures 

described for the method (APHA, AWWA, WEF, 1995). Samples were analyzed in 

duplicate and the results agreed well within 5%.  

3.4.4 Silica 

 Silica was determined by spectroscopic analysis using the same 

spectrophotometer used in aluminum analysis. Molybdosilicate Method was used for 

quantification of silica at wavelength of 410 nm (APHA, AWWA, WEF, 1995). The 
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method detection limit was 0.1 mg/l (as Si) and the linear range was from 0.0 to 20 

mg/L. The concentration of silicon was quantified by comparing absorbance to a 

standard calibration curve. Standards for calibration of 1, 5, 10, and 20 mg/L were 

prepared from 1000 ppm Fisher silicon standard solution. Samples were analyzed in 

duplicate and the results agreed well within 5%. 

3.4.5 pH 

 pH was measured using a pH meter (Orion 420A) with an Orion Ross Sure-Flow 

combination electrode standardized with pH 10 (VWR) and pH 13.0 buffers. pH 13 

buffer was prepared in our lab by mixing 25% of 0.2 M KCl with 66% of 0.2 M NaOH 

and 9% of DI water (Lide, 1991, and Dean, 1985).  

 In experiments that studied the effect of temperature on chloride removal, the pH 

of a sample was measured at the desired temperature by transferring the reactor from the 

temperature-controlled shaker quickly to a water bath that had the same temperature. 

The pH electrode was calibrated at the same temperature of the experiment by placing 

the calibration buffers in the same water bath for enough time to make sure that the 

buffers have the same temperature as the target samples before they were used in the 

calibration purpose. Then the electrode was calibrated and the pH of a sample was 

measured while the reactor and the buffer solutions are placed in the water bath. The pH 

values of the buffers that were used for the electrode calibration at the corresponding 

reaction temperature for pH 10 buffer (VWR) and for pH 13 buffer (Dean, 1985) are 

shown in Table 3.4. 
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Table 3.4 pH values of buffer solutions at the reaction temperatures. 

Temperature (oC) 
Type of buffer 

20 25 30 40 50 

pH 10 buffer 10.05 10.00 9.95 9.87 9.81 

pH 13 buffer 13.16 13.00 12.84 12.51 12.18 

 

 

3.4.6 Activity of Free Chloride 

 The activity of free chloride {Cl-} was measured by an Orion Chloride 

Combination Electrode Model 96-17B connected with Orion pH meter Model 420A. 

Chloride activity of a sample was quantified without dilution by comparing electrode 

potential to a standard calibration curve. A three-point calibration of the electrode was 

conducted using standard chloride solutions (10, 100, 1000 ppm) at room temperature. A 

10-ppm and a 100-ppm standard were prepared by dilution from the 1000-ppm chloride 

standard (Orion). In order to avoid the effect of ionic strength on the measurements, an 

amount of Ionic Strength Adjustment Buffer was added to the standard solutions and to 

the samples so that the resulting concentration of the buffer was 100 mM.  

3.4.7 Identification of the Precipitated Solids 

 XRD spectroscopy was used to identify the solid phases formed in precipitation 

experiments. The solids were allowed to precipitate using the same procedures used in 
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equilibrium experiments. Eight solid samples were prepared, each one at different 

combinations or initial concentrations of chemical compounds used to form the solids 

(Cl, Ca, Al, SO4, and SiO2). The experimental conditions that were used in the 

equilibrium experiments to form the solids are listed in Table 3.5. The precipitated solids 

were collected by centrifugation. Then the separated solids were dried at room 

temperature in a CO2-free atmosphere. The solids were scanned between 0o and 80o 2θ 

with a scan speed of 2o /min by a Rigaku automated diffractometer using Cu Kα 

radiation.  

 

Table 3.5  Experimental conditions used in preparing solids for XRD analysis. 

Experimental conditions Experiment No. 

 
NaCl 

(mM) 

Na2SO4 

(mM) 

Na2SiO3 

(mM) 

Ca(OH)2 

(mM) 

NaAlO2 

(mM) 

XRD10 10 0.0 0.0 20 10 

XRD30 30 0.0 0.0 60 30 

XRD50 50 0.0 0.0 100 50 

XRD100 100 0.0 0.0 200 100 

XRDCa 30 0.0 0.0 120 30 

XRDAl 30 0.0 0.0 60 60 

XRDSO4 30 30 0.0 200 100 

XRDSi 30 0.0 3.0 60 30 
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3.5 Equilibrium Model Development 

A fundamental model of the chemical processes in UHLA was developed in 

order to predict final chloride concentration and chemical behavior in treated cooling 

water using information on the chemical doses and initial chloride concentration in the 

feed water. Precipitation was assumed to be the mechanism that controls the solubility of 

the species in the system. The model was based on the geochemical modeling software, 

PHREEQC (Parkhurst, 1999), and INVRS K (Schwantes, 2002). INVRS K integrates 

the modeling power of PHREEQC with a Gauss-Newton nonlinear regression routine to 

calculate values of unknown or poorly defined chemical equilibrium and kinetic 

constants. Initial conditions of 36 experimental data sets (solutions) representing various 

lime doses and aluminum doses were used in the simulations. Four parameters from each 

dataset, or a total of 144 measured values, were used as dependent variables during the 

regression. These parameters include the final soluble concentrations of chloride, 

aluminum, calcium, and corresponding solution final pH. Total initial concentrations for 

each data set and solids for which equilibrium constants were to be calculated, were 

defined in the PHREEQC input file. The remaining aqueous species and solids used by 

the model are defined in the database file. The initial input file, as well as a file 

containing dependent variable information, is introduced into INVRS K by the user. 

INVRS K then rewrites the user-defined input file to include additional simulations and 

the production of output files required by the regression routine. Subsequently, INVRS 

K calls PHREEQC to run the re-defined input file. PHREEQC used known 

thermodynamic data and initial guesses of unknown equilibrium constants specified in 
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the model to generate solution parameters within each of the simulations specified in the 

input file. Output generated by PHREEQC is then read and used by INVRS K to 

calculate the residuals of these parameters with respect to the experimental results. If the 

values of these residuals are within the specified tolerances, the acceptable values for 

each of the unknown constants are displayed. Otherwise, a Gauss-Newton non-linear 

regression routine is used to estimate the change in the unknown constants that will more 

accurately predict the experimental results. New values for each of the unknowns are 

then calculated. Another iteration of the regression process starts when INVRS K writes 

a new input file that incorporates the updated values of the unknown constants and once 

again calls PHREEQC. The original database that is used by PHREEQC was modified. 

Solids that are not expected to form in the system were excluded from the database 

Thermodynamic data for new solid phases were included in the input file. Input files for 

PHREEQC are shown in Appendix B. 

Different hypotheses describing the chemical behavior of chloride removal by 

UHLA process were generated and tested. The process of hypotheses generation was 

based on available information in the literature and preliminary analysis of experimental 

results. A list of possible solid phases that are believed able to precipitate in the system 

and their solubility products is listed in Table 3.6. The solubility product of 

Ca4Al2Cl2(OH)12 was reported by two different researchers to have the value of 10 �27.10 

(Birnin-Yauri and Glasser, 1998, and Nacken and Mosebach, 1936) and it has been fixed 

in this study at that value throughout the model development. However, the solubility 
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products for Ca3Al2(OH)12 and Ca4Al2(OH)14 have not been studied previously in 

systems similar to recycled cooling water.  

Different combinations of the solid phases Ca4Al2Cl2(OH)12, Ca3Al2(OH)12, and 

Ca4Al2(OH)14 were allowed to form with Ca(OH)2 and Al(OH)3 throughout the model 

development. The assumption that pure solids precipitated independently and the 

assumption that solid solutions were formed were tested with each of the combinations 

of different solid phases. Unknown solubility products were calculated each time with 

INVRS K. The model was tested and modified concurrently with the completion of the 

research objectives as will be described in more detail in Chapter IV. 

 

Table 3.6 Solid phases that could be formed in Cl � OH system. 

Solid phase Log Ksp Reference 

Ca4Al2Cl2(OH)12 -27.10 (Birnin-Yauri and Glasser, 1998; Nacken and 

Mosebach, 1936) 

Ca3Al2(OH)12 unknown - 

Ca4Al2(OH)14 unknown - 

Ca(OH)2 -22.81 

Al(OH)3 (Gibbsite) -33.50 
(Stumm & Morgan, 1996) 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

4.1 Kinetics of Chloride Removal with UHLA 

An experiment to study the kinetics of chloride removal with UHLA was 

conducted by adding 40 mM lime and 20 mM sodium aluminate to a 30 mM solution of 

sodium chloride. Samples were taken at various times and analyzed for chloride. Results 

are shown in Figure 4.1 and demonstrate that chloride removal is fast, being essentially 

complete at the first sampling time of one hour. This indicates that kinetics should not be 

a limitation to applying the UHLA process. 

4.2 Evaluate Equilibrium Characteristics of Chloride Removal with UHLA 

 Forty-eight batch equilibrium experiments were conducted in order to evaluate 

chloride removal with UHLA.  Solutions with 30 mM NaCl were used with a range of 

doses of lime (0 � 200 mM) and sodium aluminate (0 � 100 mM). Figure 4.2 shows the 

effect of lime dose and sodium aluminate dose on final chloride concentration. Good 

chloride removal was observed at reasonable ranges of aluminum dose and lime dose. 

Chloride concentration decreased with increasing doses of both lime and sodium 

aluminate. This indicates that precipitation of chloride with calcium and aluminum to 

form Ca-Al-Cl-OH precipitate is the proper mechanism that can describe chloride  

 
Part of the data reported in this chapter is reprinted with permission from Abdel-Wahab, 
A.; Batchelor, B. (2002) Chloride Removal from Recycled Cooling Water Using Ultra-
High Lime with Aluminum Process.  Water Environ. Res., 74, 256. 
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Figure 4.1 Kinetics of chloride removal with UHLA. Lime dose = 40 mM, sodium 

aluminate dose = 20 mM. 
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Figure 4.2  Effect of lime dose and aluminum dose on chloride removal.  
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removal with UHLA. The hypothesis was made that chloride removal was primarily 

controlled by calcium chloroaluminate (Ca4Al2Cl2(OH)12) precipitation assuming the 

following reaction, 

 4Ca2+ + 2Al(OH)4
- + 2Cl- + 4(OH)- = Ca4Al2Cl2(OH)12(s) (4-1) 

However, deviations from the stoichiometry shown in Equation 4-1 occurred in the 

equilibrium experiments. If Ca4Al2Cl2(OH)12 is the only important solid that precipitates, 

then the ratio of aluminum removed to chloride removed (∆Al/∆Cl) should equal 1.0 and 

the ratio of calcium removed to chloride removed (∆Ca/∆Cl) should equal 2.0. Figures 

4.3 and 4.4 show the effect of sodium aluminate dose on ∆Al/∆Cl and ∆Ca/∆Cl, 

respectively. The observed stoichiometry shows that those ratios are usually higher than 

the theoretical stoichiometry. This deviation of the observed stoichiometry from that 

expected can be explained by the hypothesis that another solid phase was formed. 

Calcium hydroxyaluminate (Ca4Al2(OH)14) could be formed by replacing two Cl- ions in 

Ca4Al2Cl2(OH)12 with two OH- ions to form Ca4Al2(OH)14 and its formation could 

explain the observed stoichiometry. This hypothesis agrees with the results of other 

researchers that have been obtained in systems with Portland cement, but with a similar 

environment of high pH and presence of calcium and aluminum (Birnin-Yauri and 

Glasser, 1998, Glasser et al., 1999). Based on this hypothesis, the ratio of calcium 

removed to aluminum removed (∆Ca/∆Al) should equal 2. This occurs when there is a 

sufficient dose of aluminum to react with all the calcium in solution (Figure 4.5). When 

the ratio of aluminum dose to lime dose is ≥ 0.5 all the data fall around the theoretical  
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Figure 4.3  Effect of aluminum dose and lime dose on the molar ratio of calcium 

removed to chloride removed. 
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Figure 4.4  Effect of aluminum dose and lime dose on the molar ratio of aluminum 

removed to chloride removed. 
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Figure 4.5  Effect of ratio of aluminum dose to lime dose on the molar ratio of calcium 

removed to aluminum removed. 
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stoichiometric ratio. However, when the aluminum dose is lower than the stoichiometric 

amount, the ratio of calcium removed to aluminum removed was higher than the 

theoretical stoichiometry. This was presumed to be due to the failure of some of the lime 

to dissolve. 

Higher aluminum doses resulted in higher concentrations of aluminum. This 

occurs when there is not enough calcium to react with all the aluminum in solution to 

form Ca-Al-containing solid(s). Figure 4.6 shows the relationship of calcium 

concentration to aluminum concentration and demonstrates that high aluminum 

concentrations are possible when the concentration of calcium is low.  

The optimal ratio of lime dose to aluminum dose to achieve maximum chloride 

removal was found to be about 2.5 (Figure 4.7).  Higher aluminum doses also resulted in 

some increase in chloride concentration (Figure 4.2). The increase in chloride 

concentration at higher aluminum doses was initially hypothesized to be the result of the 

formation of soluble aluminum-chloride-hydroxide complexes. Higher concentrations of 

aluminum could form complexes with the chloride ion resulting in higher total chloride 

concentrations (Cl- and complexes) in solution. A set of equilibrium experiments was 

conducted to test this hypothesis. The activity of free chloride {Cl−} was measured in 

solutions containing aluminum and chloride and high pH. Results of these experiments 

showed evidence that there were no chloride complexes being formed in the system. No 

change in chloride activity was observed over a range of aluminum concentrations 

(Table 4.1). 
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Figure 4.6 Relationship between soluble calcium concentrations and soluble aluminum 

concentrations. 
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Figure 4.7 Effect of ratio of lime dose to aluminum dose on chloride removal. 
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Table 4.1 Effect of aluminum concentration on chloride activity. 

Aluminum concentration (mM) 10 20 30 

Measured chloride activity (mM) 9.98 ± 0.03 10.07 ± 0.11 10.21 ± 0.16 

Solution pH 12.77 12.73 12.67 

 

 

4.3 An Equilibrium Model for Chloride Removal with UHLA 

4.3.1 Chemical Behavior of Chloride Removal with UHLA 

In an effort to further understand the behavior of chloride in the UHLA process 

and the mechanisms of chloride removal, a fundamental chemical equilibrium model of 

the chemical processes was developed. Experimental data obtained from studying the 

effects of lime dose and aluminum dose on chloride removal were used in the model 

development as described in detail in Chapter III. 

Different hypothesis were developed and tested. The standard error in the model-

predicted concentrations for the dependent variables was compared for each hypothesis. 

Error analysis indicated that the experimental results of chloride removal with UHLA 

could be best described by assuming the formation of an ideal solid solution of calcium 

chloroaluminate (Ca4Al2Cl2(OH)12), tricalcium hydroxyaluminate (Ca3Al2(OH)12), and 

tetracalcium hydroxyaluminate (Ca4Al2(OH)14). When calcium or aluminum 

concentrations are above the stoichiometric amount needed to form the solid solution, 
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the model allows formation of solids such as Ca(OH)2 or gibbsite (Al(OH)3). The 

solubility products of tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate 

were determined with INVRS K to be 10-19.72 and 10-25.02 respectively, assuming the 

following reactions, 

Ca3Al2(OH)12 = 3Ca+2 + 2Al(OH)4
− + 4OH− Log Ksp  =  −19.72 (4-2) 

Ca4Al2(OH)14 = 4Ca+2 + 2Al(OH)4
− + 6OH− Log Ksp  =  −25.02 (4-3) 

The results of INVRS K simulations for calculating Log K values are shown in 

Appendix C-1.  

Table 4.2 shows the error analysis for predicted concentrations of chloride, 

aluminum, and calcium as well as pH values. The average values of absolute error are 

low for all the constituents. Also, the results of linear regression of the residuals with 

ratio of lime dose to aluminum dose show that the values of all the coefficients of 

determination (r2) and slopes are low. This shows that there is not a consistent bias in the 

predictions of the model.  These results indicate that the model can adequately predict 

chemical behavior that results in chloride removal with UHLA. The values of predicted 

concentrations of chloride, calcium, and aluminum as well as pH values compared to 

measured values are shown in Appendix C-2. 

Figure 4.8 shows comparison between measured and model-predicted 

concentrations of chloride and indicates that the model adequately predicted the 

measured concentrations of chloride. The predicted and measured concentrations of 

chloride followed the same trend of decreasing to a minimum and then increasing as the  
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Figure 4.8  Comparison between model-predicted and measured chloride concentration. 

�Meas� refers to measured concentrations and �pred� refers to predicted 

concentrations. 
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Figure 4.9  Error distribution of predicted chloride concentrations. 
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aluminum dose increased. The residuals are distributed randomly around 0.0 over a 

range of calcium doses and aluminum doses (Figure 4.9).  

 

Table 4.2 Error analysis for model predicted concentrations in Cl � OH system. 

Constituent Concentration 
range 

(mM) 

Average 
absolute 

error 
(mM) 

Standard 
deviation 
of error 
(mM) 

r2 Slope Number 
of points 

Chloride 5.05 � 20.90 1.38 0.89 0.25 0.24 36 

Aluminum 0.0 � 32.52 1.02 1.83 0.14 -0.17 36 

Calcium 0.34 � 18.70 1.37 0.71 0.25 0.15 36 

pH 12.35 � 12.84 0.062 0.044 0.001 -0.0004 36 

 

Comparison between model-predicted concentrations and measured 

concentrations for aluminum are shown in Figure 4.10 and are listed in Appendix C-2. 

The predicted concentrations followed the same trend of measured concentrations. 

Model predictions showed that soluble aluminum concentrations were controlled by 

gibbsite (Al(OH)3) when Ca(OH)2 doses were less than the stoichiometric amount 

required to precipitate all the aluminum as chloroaluminate and hydroxyaluminate solids 

(molar ratio of calcium to aluminum = 1.5). Error analysis showed, however, that the 

model underestimated measured aluminum concentrations under these conditions 

(Figure 4.11). This indicates that gibbsite is probably not one of the solid phases present 

in the system, which was assumed by the model. A hypothesis was made that the  
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Figure 4.10  Comparison between predicted and measured aluminum concentration with 

preliminary model. 
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Figure 4.11  Error distribution of predicted aluminum concentrations with preliminary 

model. 

 

 

 

 

 



 83 

precipitated solid could be a poorly crystallized aluminum hydroxide solid phase that has 

a solubility product that falls in the range between amorphous Al(OH)3 and gibbsite (10-

31.2 � 1033.5) (Stumm and Morgan, 1996). Figure 4.12 shows a comparison between 

measured aluminum concentrations and concentrations calculated from equilibrium 

models that assumed the presence of either amorphous Al(OH)3 or gibbsite.  PHREEQC 

was used to do the calculations over a range of pH values.  The results indicate that 

aluminum concentrations are controlled by a solid phase with solubility that is 

intermediate between that for amorphous Al(OH)3 and gibbsite. In order to test this 

hypothesis, aluminum solubility was studied independently by conducting a set of 

completely mixed batch experiments over a range of pH and at the same conditions and 

reaction time that were used in equilibrium experiments for chloride precipitation. The 

values of the ion activity product (IAP) for the precipitated Al(OH)3 solid were 

calculated from measured pH and aluminum concentrations with PHREEQC. An 

average value of the IAP of 10�33.33 ± 0.09 was obtained. The solubility product of gibbsite 

was replaced with the calculated average value of the IAP. After that, the model 

predicted measured aluminum concentrations accurately as shown in Figure 4.13. The 

new model predicted aluminum concentrations with lower values for the average 

absolute error, slope, and the r2 (0.77, 0.10, and � 0.11 respectively) than the 

corresponding values (1.02, 0.14, - 0.17) for the old model.  This indicates that the new 

model predicted final aluminum concentration more accurately than the preliminary 

model. Comparison between model-predicted and measured calcium concentrations 

showed that the model predicted calcium concentrations accurately (Figure 4.14). Both  
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Figure 4.12  Comparison among measured aluminum concentrations and calculated from 

the precipitation of aluminum hydroxide solids. 
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Figure 4.13  Predicted aluminum concentrations after corrections of Al(OH)3 solubility 

product. 
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Figure 4.14  Comparison between predicted and measured calcium concentration. 
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experimental results and model predictions showed that calcium concentration was 

controlled by lime solubility when the ratio of lime dose to aluminum dose was greater 

than the stoichiometric ratio (2.0) for the solid solution formation. However, when 

calcium concentrations were controlled by lime solubility, the model slightly 

underestimated the experimental data. This could be due to some uncertainty in the 

solubility product of Ca(OH)2 (10-5.19) that was reported by Stumm and Morgan (1996) 

and was used in this study. pH values were also predicted accurately as shown in Figure 

4.15.  

4.3.2 Interactions Among Solids in the Solid Solution  

Model predictions showed that chloride precipitation was controlled by a solid 

solution formed from a mixture of Ca4Al2Cl2(OH)12, Ca4Al2(OH)14, and Ca3Al2(OH)12. 

Understanding relationships and interactions among these solids is critical in selecting 

sources of reagents and their optimal doses for effective chloride removal. In order to 

further understand the relationships among solids in the solid solution, fractions of 

chloroaluminate and hydroxyaluminate solids in the solid solution were calculated for 

each data point using PHREEQC.  Total initial concentrations of chloride, aluminum, 

calcium, and pH values were used as input data to PHREEQC and the model was 

allowed to predict the final total concentrations of the solid solution and fractions of 

solids in the solid solution (Appendix C-3).  Figures 4.16 shows the effect of NaAlO2 

dose on the fractions of chloroaluminate and hydroxyaluminate solids in the solid 

solution. Fractions of hydroxyaluminate solids (tricalcium hydroxyaluminate + 

tetracalcium hydroxyaluminate) increased with increasing NaAlO2 dose while the  
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Figure 4.15  Comparison between predicted and measured pH. 
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Figure 4.16  Effect of sodium aluminate dose on the fraction of precipitated solids in the 

solid solution. 

 

 



 90 

fraction of calcium chloroaluminate solid decreased. Additions of NaAlO2 results in 

increasing Al(OH)4
− and OH− ions in the solution. This favors precipitation of 

Ca3Al2(OH)12 and Ca4Al2(OH)14 over Ca4Al2Cl2(OH)12. Increasing hydroxide ion 

concentration results in substitution of Cl− by OH− in the solid solution, which increases 

the fraction of tetracalcium hydroxyaluminate solid and decreases the fraction of 

chloroaluminate solid.  Similarly, increasing the concentration of Al(OH)4
− will favor 

formation of Ca3Al2(OH)12 over Ca4Al2Cl2(OH)12 and will increase the total fraction of 

hydroxyaluminate solids.  Model predictions indicated that the increase in chloride 

concentration that was observed when the ratio of NaAlO2 dose to lime dose was greater 

than the stoichiometric value of 0.5 (Figure 4.7) was associated with changes in the 

composition of the solid solution. Figure 4.17 shows that the ratio of Ca3Al2(OH)12 to 

Ca4Al2(OH)14 in the solid solution begins to increase at a ratio of NaAlO2 dose to lime 

dose equal to 0.5, which is the same value that resulted in an increase in chloride 

concentration (Figure 4.7). 

Additions of lime had a negligible effect on the distribution of solids in the solid 

solution (Figure 4.18). Although addition of lime could result in increased concentration 

of hydroxide ion, which could exchange with chloride ion, this apparently did not occur.  

This could be due to the failure of the lime to dissolve, particularly at doses beyond the 

amount required to form chloroaluminate or hydroxyaluminate solid phases. 

The following stoichiometric reactions were derived from Equations 4-1, 4-2, 

and 4-3.  They are based on the model predictions for the composition of the solid phase 

and the composition changes when different reagent doses were applied.  These 
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solid solution. 
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reactions can describe the interactions among the solids during formation of the solid 

solution. 

Ca4Al2Cl2(OH)12 + 2 OH− = Ca4Al2(OH)14 + 2 Cl− (4-4) 

3 Ca4Al2Cl2(OH)12 + 2 Al(OH)4
− + 4 OH− = 4 Ca3Al2(OH)12 + 6 Cl− (4-5) 

3 Ca4Al2(OH)14 + 2 Al(OH)4
− = 4 Ca3Al2(OH)12 + 2 OH− (4-6) 

By assuming that the solid solution is ideal, i.e., the activity of each solid is equal to its 

mole fraction in the solid solution, the following equations can be derived from the 

definitions of the solubility products. 

tetsp,

chlsp,

chl
2

tet
2

K
K

X}{OH
X}{Cl

=−

−

 (4-7) 

4
trisp,

3
chlsp,

3
chl

2
4

4

4
tri

6

)(K
)(K

)(X}{Al(OH)}{OH

)(X}{Cl
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−

−

 (4-8) 

4
trisp,

3
tetsp,

3
tet

2
4

4
tri

2

)(K
)(K

)(X}{Al(OH)

)(X}{OH
_ =

−

 (4-9) 

where,  

{Cl-}, {OH-}, {Al(OH)4
-} = the activities of Cl−, OH−, and Al(OH)4

− respectively in the 

solution, 

Xtet = the molar fraction of Ca4Al2(OH)14 in the solid solution , i.e. the number of moles 

of Ca4Al2(OH)14 divided by the total number of moles in the solid solution, 
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Xchl = the molar fraction of Ca4Al2Cl2(OH)12 in the solid solution, i.e. the number of 

moles of Ca4Al2Cl2(OH)12 divided by the total number of moles in the solid 

solution, 

Xtri = the molar fraction of Ca3Al2OH12 in the solid solution, i.e. the number of moles of 

Ca3Al2OH12 divided by the total number of moles in the solid solution, (note that  

Xtet + Xchl + Xtri = 1.0) 

Ksp,tet, Ksp,chl, and Ksp,tri are the solubility products of Ca4Al2(OH)14, Ca4Al2Cl2(OH)12, 

and Ca3Al2(OH)12 (10-25.02, 10-27.10, and 10-19.72 respectively) 

The following equation can be derived by algebraically manipulating Equations 4-7, 4-8 

and 4-9, and substituting with values for the solubility products. 

2log{Cl−} - log{OH−} - log{Al(OH)4
−} = - 0.17 + log(Xchl) + 0.5log(Xtet) - 2log(Xtri) (4-10) 

The activities of Cl−, OH−, and Al(OH)4
− were calculated from the measured 

concentrations using activity coefficients calculated by PHREEQC, which used the 

Davies Equation (Stumm and Morgan, 1996). The observed values of [2 log {Cl−} - log 

{OH−} - log {Al(OH)4
−}] are shown in Figure 4.19 versus the predicted values, which 

were calculated using the right-hand side of Equation 4-10 and model predictions for the 

composition of the solid solution.  The data are scattered about a 45-degree line 

indicating that the chemical equilibrium model that assumes a solid solution is 

reasonable.  The predicted values at lime dose above 100 mM are a small amount below 

the 45-degree line. This could be due to some error in {Al(OH)4
−} calculated at these 

points, because aluminum concentrations at these points were very low. At these points  
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the model overestimated {Al(OH)4
−} values and this resulted in lower calculated values 

of (2log{Cl−} - log{OH−} - log{Al(OH)4
−}) when the right-hand side of Equation 4-10 

was used than the calculated values when experimental data were used. 

In order to achieve high chloride removal efficiency, the fraction of calcium 

chloroaluminate in the solid solution must be maximized and the fractions of 

hydroxyaluminate solids must be minimized. This can be achieved by minimizing ratios 

of soluble concentrations of Al(OH)4
- and OH- relative to Cl- concentration. Soluble 

Al(OH)4
− concentrations can be reduced and the fraction of Ca3Al2(OH)12 can be 

minimized by adding lime at doses above the stoichiometric ratio to aluminum (2.0). The 

fraction of Ca4Al2(OH)14 can be minimized by using aluminum sources that do not cause 

an increase in the concentration of OH−. One such aluminum source would be 

amorphous Al(OH)3(s). An attractive alternative source of aluminum could be waste 

alum sludge produced from water treatment plants. This sludge was reported to contain 

approximately 39% aluminum by weight (Chu, 1999).  

Equations 4-4, 4-5, and 4-6 show that the fraction of calcium hydroxyaluminate 

solids in the solid solution can be limited by lowering pH.  This will increase the fraction 

of calcium chloroaluminate and result in high chloride removal efficiency. However, 

high pH is required in order to form calcium chloroaluminate. Therefore, the fractions of 

calcium hydroxyaluminate solids cannot be eliminated, but they can be minimized by 

adjusting pH to the value that gives maximum chloride removal. The effect of pH on 

chloride removal will be discussed in a subsequent section. 
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4.4 Effect of Initial Chloride Concentration on Chloride Removal with UHLA 

4.4.1 Experimental Results 

 Three different initial concentrations of chloride (10, 50, 100 mM) were 

investigated. The ratios of the doses of lime and aluminum to the initial chloride 

concentration were kept constant at 400% and 160%, respectively. Experimental results 

showed that chloride removal efficiency at initial chloride concentration of 10 mM is 

significantly lower than that at initial concentrations of 50 and 100 mM (Table 4.3). This 

could be because when the concentration of chloride is low with respect to the 

concentration of hydroxide ion, the precipitation of calcium hydroxyaluminate becomes 

favorable relative to precipitation of calcium chloroaluminate. Although the ratio of 

chemical doses to initial chloride concentrations was constant for all of these 

experiments, the final solution pH increased with increasing initial chloride 

concentration due to the higher lime and sodium aluminate doses. However, the 

composition of the solid solution depends on the activity ratio of aqueous chloride to 

hydroxide, which was constant for all initial chloride concentrations (Table 4.3). 

Table 4.3 Effect of initial chloride concentration on the removal efficiency of chloride. 

Initial [Cl] (mM) 10 50 100 

Removal efficiency (%) 50.3 ± 0.2 68.7 ± 0.9 69.6 ± 0.4 

Final solution pH  12.63 ± 0.01 13.13 ± 0.03 13.36 ± 0.01 

Ratio of ({Cl-}/{OH-}) 0.10 0.11 0.10 
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4.4.2 Equilibrium Modeling 

The equilibrium model was tested for this set of experiments. Figure 4.20 shows 

comparison among experimental results and model predictions for final concentrations 

of chloride, calcium, and aluminum. The pH was fixed at the measured values shown in 

Table 4.2 during calculations of the predicted concentrations of Cl, Al, and Ca using the 

equilibrium model solved by PHREEQC. Very good agreement between measured and 

predicted chloride concentrations was observed. Predicted calcium concentrations at 

initial chloride concentrations of 50 and 100 mM are lower than the measured calcium 

concentrations. This could be due to the uncertainty in the solubility product of calcium 

hydroxide solid. The model predicted that calcium hydroxide would precipitate at the pH 

observed for initial chloride concentrations of 50 and 100 mM, but that it would not 

precipitate at conditions observed for the experiments with 10 mM initial chloride. Good 

agreement between measured and predicted aluminum concentrations was observed. 

Results of the model indicate that the model succeeded in predicting chemical behavior 

accurately at different initial chloride concentrations. 

4.5 Effect of pH on Chloride Removal with UHLA 

4.5.1 Experimental Results  

A range of pH values (10.80 � 13.05) was investigated with three different initial 

concentrations of chloride (10, 50, 100 mM) in order to study the effect of pH on 

chloride removal with UHLA. Stoichiometric ratios of doses of lime and aluminum to 

initial chloride concentration were kept constant at 200% and 100%, respectively. Lime 
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Figure 4.20 Comparison between predicted and measured concentrations for chloride, 

calcium, and aluminum at various initial chloride concentrations. 
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and sodium aluminate were used as sources of calcium and aluminum, respectively.  

In the preliminary experiments Ca(NO3)2 and Al(NO3)3 were used as calcium and 

aluminum sources, respectively, and pH was adjusted to the desired values using NaOH. 

However, when these chemicals were used, negligible chloride removal was observed at 

lime dose of 40 mM, aluminum dose of 16 mM, initial nitrate concentration of 128 mM, 

and initial chloride concentration of 10 mM (Figure 4.21). Concentrations of nitrate were 

measured and indicated that the reason for negligible chloride removal was that a Ca-Al-

NO3 precipitate formed and consumed all of the calcium and aluminum in the solution, 

thereby precluding formation of a Ca-Al-Cl precipitate. Figure 4.21 shows a comparison 

between chloride removed and nitrate removed and indicates that chloride removal was 

negligible compared to nitrate removal.  

 Nitrate removal increased with increasing pH until it reached a maximum at pH 

12.60 and then it decreased as the pH increased. The initial increase of nitrate removal 

with pH was probably caused by the formation of a nitrated AFm phase (Ca4 Al2 (OH)12 

(NO3)2) (Renaudin et al., 2000, and Renaudin and Francois, 1999). However, at higher 

pH values, precipitation of calcium hydroxyaluminate becomes more favorable than 

precipitation of the nitrated AFm phase due to the higher concentrations of OH- relative 

to NO3
-.  

 Using any other salts of calcium or aluminum could cause the same problem. 

Furthermore, using CaCl2 and AlCl3 would result in very high initial chloride 

concentrations with respect to calcium and aluminum doses. The final choice was to use  
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the same calcium and aluminum sources that were used in other experiments, which 

were lime and sodium aluminate, respectively. This required addition of acid to lower 

pH for some experiments. Using nitric acid or sulfuric acid would cause the same 

problem associated with nitrate and sulfate. The final decision was to use acetic acid, 

because acetate anions are much larger than chloride and might not compete with 

chloride. Additionally, the amount of acid required to lower pH to the desired minimum 

value (pH 10.80) was determined and that amount of acetic acid was added to all the 

experiments along with an amount of NaOH necessary to obtain the desired pH. For 

each set of experiments, one experiment was conducted without additions of acid or base 

in order to study if acetate had an effect on chemical behavior in the system. 

Figure 4.22 shows the effect of pH on final chloride concentrations. For all initial 

chloride concentrations, chloride concentration decreased with increasing pH until it 

reached a minimum and then it increased as the pH was increased further. This behavior 

can be explained by how pH affects formation of different solids phases.  At low pH 

values, formation of AFm-type LDHs (e.g. calcium chloroaluminate, calcium 

hydroxyaluminate) is not favored, so chloride concentration is high.  As pH is increased, 

the formation of AFm phases becomes favorable and both calcium chloroaluminate and 

calcium hydroxyaluminate are formed and chloride removal increases.  This trend 

continues until pH reaches the optimum value for calcium chloroaluminate precipitation 

(pH12 ± 0.2)).  At pH values above this optimum, precipitation of calcium 

hydroxyaluminate becomes more favorable than precipitation of calcium 

chloroaluminate, so that chloride concentration increases. 
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Figure 4.22  Effect of pH on final chloride concentration. 
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Removal efficiency of chloride increased with increasing initial chloride 

concentration at the same pH value (Figure 4.23). This occurs because increasing the 

initial chloride concentration at constant pH increases the ratio of chloride to hydroxide 

in the solution. This thermodynamically favors the precipitation of calcium 

chloroaluminate over calcium hydroxyaluminate and results greater chloride removal. 

Experimental results indicated that the optimum pH for maximum chloride removal with 

UHLA is pH 12 ± 0.2. 

Figure 4.24 shows the effect of pH on final calcium concentrations and indicates 

that final calcium concentrations follow the same trend that was observed for final 

chloride concentrations at low pH values. However, at high pH values, calcium 

concentrations continue to decrease with increasing pH values, which is unlike the 

behavior of chloride. The behavior of calcium can be explained by the fact that the 

increase in hydroxyaluminate relative to chloroaluminate at higher pH does not affect 

calcium concentrations in solution, because both of these solid phases contain about the 

same amount of calcium. 

The effect of pH on soluble aluminum concentrations is shown in Figure 4.25. 

Aluminum concentrations increased with increasing pH values until a maximum and 

then decreased with increasing pH. This was because at low pH values, aluminum 

concentrations are controlled by aluminum hydroxide precipitation and the solubility of 

aluminum hydroxide solid increases with increasing pH (see Figure 4-12). At a pH value 

that depends on the composition of the solution, control of the aluminum concentration 

shifts from aluminum hydroxide to the solid solution and this results in decreasing 
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Figure 4.23  Effect of pH on chloride removal efficiency.  
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Figure 4.24  Effect of pH on final calcium concentration. 
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Figure 4.25  Effect of pH on final aluminum concentration. 
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aluminum concentrations with increasing pH. 

4.5.2 Model Predictions  

 In order to test the validity of the equilibrium model and its ability to predict 

chemical behavior in the UHLA process over a range of pH values, the equilibrium 

model was used to predict experimental results.  The model was modified to include 

reactions of acetate and other compounds present in the solutions by modifying the 

database file of PHREEQC using data associated with the MINTEQ equilibrium model 

(Allison et al., 1991). These reactions and their equilibrium constants are listed in Table 

4.4. Total initial concentrations of chloride, calcium, and aluminum were used as input 

data to PHREEQC, while pH was fixed at the measured value for each data point 

(Appendix B-3). Then the final total concentrations of chloride, calcium, and aluminum 

were calculated from the model using PHREEQC.  

 Figure 4.26 show comparison between measured and model-predicted 

concentrations of chloride over the investigated range of pH.  This figure shows that the 

model succeeded in predicting measured chloride concentrations reasonably well. 

However, at high pH values the model underestimated measured chloride 

concentrations. This could be due to the effect of the high ionic strength that was caused 

by the need to add high concentrations of NaOH in order to achieve high values of pH. 

Chloride concentrations that were measured in experiments that did not require addition 

of acid or base to achieve the desired pH agreed well with the model-predicted 

concentrations. 
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Table 4.4 Acetate reactions added to the database of the equilibrium model (Allison et 

al., 1991). 

Acetate- = Acetate- Log K = 0.0 

Acetate- + H+ = HAcetate Log K = 4.76 

Na+ + Acetate- = NaAcetate Log K = -0.18 

Ca2+ + Acetate- = CaAcetate+ Log K = 1.18 

2.0 HAcetate + 1.0 Ca2+  =  Ca(Acetate)2 + 2.0 H+ Log K = -7.38 

1.0 Ca2+ + 1.0 HAcetate  =  CaAcetate+ + 1.0 H+ Log K = -3.83 

2.0 HAcetate + 1.0 Al3+  =  Al(Acetate)2
+ + 2.0 H+ Log K = -5.60 

1.0 Al3+ + 1.0 HAcetate  =  AlAcetate2+ + 1.0 H+ Log K = -2.69 

 

 

A comparison between measured and model-predicted calcium concentrations is 

shown in Figure 4-27 and indicates that the model accurately predicted measured 

calcium concentrations over a range of pH values. Similarly, Figure 4-28 shows that the 

model succeeded in reasonably predicting the final aluminum concentrations at different 

pH values.  

4.6 Effect of Temperature on Chloride Removal with UHLA 

Figure 4.29 shows the effect of temperature on final chloride concentrations. 

Final chloride concentrations slightly increased when water temperature increased at  
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Figure 4.26  Effect of pH on model-predicted concentrations of chloride. 
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Figure 4.27  Effect of pH on model-predicted concentrations of calcium. 
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Figure 4.28  Effect of pH on model-predicted concentrations of aluminum. 
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Figure 4.29  Effect of temperature on final chloride concentration. 
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temperatures below 40oC. However, at temperatures above 40oC, chloride concentration 

substantially increased with increasing water temperature. This could be because 

calcium chloroaluminate is unstable with respect to calcium hydroxyaluminate at 

temperatures above 40oC. This agrees with the findings of Glasser et al. (1999) who 

reported that anion substitution may partially stabilize calcium aluminate (CAHx) phases 

over AFm phases at temperatures above 40oC. 

4.7 X Ray Diffraction Results for Solids Formed in Cl – OH System 

XRD analysis was conducted to identify the precipitated solids formed in UHLA 

process. Figure 4.30 shows diffractograms of solids that precipitated under different 

experimental conditions as described in Chapter III. The solids were identified at each 

experimental condition by comparing the peaks and the corresponding interplanar 

spacings (d values, in Å) with standard data in the Joint Committee on Powder 

Diffraction Standards (JCPDS) cards (JCPDS, 1990). The XRD patterns at all 

investigated experimental conditions show the presence of Friedel salt (calcium 

chloroaluminate) (at d = 7.85, 3.93, 3.81, 2.87, 2.32, 2.29, and 1.66 Å), tricalcium 

hydroxyaluminate (at d = 2.80, 2.70, and 2.43 Å), and tetracalcium hydroxyaluminate (at 

d = 7.85, 2.87, 2.70, 2.51, 2.43, and 2.32 Å). XRD patterns at initial chloride 

concentrations 30, 50, and 100 mM (XRD30, XRD50, and XRD100 respectively) have 

similar peaks. However, at the initial chloride concentration of 10 mM (XRD10), small 

peaks associated with gibbsite were observed (at d = 5.10, 4.42, and 2.04 Å). The pH 

value of this experiment was low (pH = 12.32) compared to experiments at higher initial  
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Figure 4.30  Diffraction patterns for detected solids in Cl � OH system. A = aluminum 

hydroxide (gibbsite), C = calcium hydroxide (portlandite), C3 = tricalcium 
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chloride concentrations (pH = 12.85 at 50 mM initial [Cl] and pH = 13.04 at 100 mM 

initial [Cl]) and it was suitable for precipitation of aluminum hydroxide solids such as 

gibbsite. XRD patterns show the presence of calcium hydroxide solid (portlandite; d = 

4.87, 2.61, 1.92, and 1.79 Å) when excess lime dose was added with respect to 

aluminum dose (XRDCa) (stoichiometric ratio of calcium dose to aluminum dose = 4.0). 

Similarly, when excess sodium aluminate was added relative to calcium (XRDAl; 

stoichiometric ratio of aluminum dose to lime dose = 1.0), XRD patterns show the 

presence of aluminum hydroxide (gibbsite) at the same d values that were observed in 

XRD10. These results agree with the results of the equilibrium model, which predicted 

the formation of calcium hydroxide or aluminum hydroxide solids when calcium or 

aluminum concentrations are above the stoichiometric amount needed to form the solid 

solution. Table 4.5 shows the XRD peaks of the identified solids. The raw data for XRD 

results are shown in Appendix E.  

XRD analysis showed the presence of the same solid phases that were assumed 

present by the equilibrium model, which supports the validity of that model in describing 

mechanisms of chloride removal by the UHLA process. 

4.8 Interactions between Chloride and Sulfate in UHLA 

4.8.1 Effect of Chemical Doses on Sulfate Removal with UHLA 

 Three initial concentrations of sulfate (10, 50, and 100 mM) were investigated at 

each of three ratios of chemical doses to initial sulfate concentrations. Ratios of lime 

dose to initial sulfate concentrations were 100%, 200%, and 300%, while the aluminum  
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Table 4.5 XRD data for identified solids in UHLA process. 

d values (Å) Solid phase 2θ 
This work JCPDS cards 

Relative 
intensity 

Calcium chloroaluminate    
  JCPDS Card No. 35-105 

11.26 7.85 7.87 100 
22.6 3.93 3.94 90 
23.34 3.81 3.81 5 
31.12 2.87 2.87 60 
38.78 2.32 2.32 70 
39.38 2.29 2.28 40 

 

55.28 1.66 1.66 50 
Tricalcium hydroxyaluminate    

  JCPDS Card No.38-1429 
31.92 2.80 2.79 8 
33.18 2.70 2.699 100 

 

36.90 2.43 2.41 5 
Tetracalcium hydroxyaluminate    

  JCPDS Card No.33-255 
11.26 7.85 7.85 100 
31.12 2.87 2.87 100 
33.18 2.70 2.70 50 
35.66 2.51 2.48 50 
36.90 2.43 2.43 50 

 

38.78 2.32 2.31 50 
Calcium hydroxide (portlandite)    

  JCPDS Card No.4-733 
18.20 4.87 4.90 74 
34.28 2.614 2.628 100 
47.32 1.92 1.927 42 
50.98 1.79 1.796 36 

 

54.54 1.681 1.687 21 
Aluminum hydroxide (gibbsite)    

  JCPDS Card No.33-18 
17.36 5.10 4.85 100 
20.08 4.42 4.37 70 

 

44.48 2.04 2.05 40 
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dose were chosen to be equal to 50% of the lime dose for all experiments. Figure 4.30 

shows the effect of chemical doses on final sulfate concentrations and shows that sulfate 

concentrations decreased with increasing lime and aluminum doses. The hypothesis was 

made that sulfate removal is controlled by the precipitation of a calcium sulfoaluminate 

called ettringite (Ca Al (SO ) (OH) ) according to the following reaction. 6 2 4 3 12

6 Ca  + 2 Al(OH)  + 3 SO  + 4 OH  = Ca Al (SO ) (OH)2+
4

-
4

2- -
6 2 4 3 12 (s) (4-10) 

If calcium sulfoaluminate is the only important solid that is precipitated, the ratio 

of calcium removed to sulfate removed should equal 2.0, i.e., at lime dose equal to 200% 

of initial sulfate concentration, the theoretical final sulfate concentration should be zero, 

as shown by the doted line in Figure 4.31. The ratios of calcium removed to sulfate 

removed and the ratios of aluminum removed to sulfate removed are shown in Figures 

4.32 and 4.33, respectively.  This figure indicates that these ratios agreed with the 

stoichiometric ratios of ettringite precipitation at low chemical doses of lime and sodium 

aluminate. However, at higher lime and aluminum doses, the ratios deviated from 

theoretical stoichiometry (Figures 4.31, 4.32, and 4.33). Figures 4.32 and 4.33 show that 

ratios of calcium removed to sulfate removed and ratios of aluminum removed to sulfate 

removed increased with increasing lime dose and aluminum dose. This indicates that 

other solids that are rich in calcium and aluminum with respect to sulfate were formed. 

One such solid is calcium monosulfoaluminate, which is called monosulfate 

(Ca4Al2(SO4)(OH)12) and has the following formation reaction. 

4 Ca2+ + 2 Al(OH)4
- + SO4

2- + 4 OH- = Ca4Al2(SO4)(OH)12 (s) (4-11) 
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Figure 4.31  Effect of chemical doses on sulfate removal with UHLA.  

Note: Aluminum dose = 50% of lime dose for all data points. 
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Figure 4.32  Effect of lime dose on the ratio of calcium removed to sulfate removed with 

UHLA. 

Note: Aluminum dose = 50% of lime dose for all data points. 
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Figure 4.33  Effect of lime dose on the ratio of aluminum removed to sulfate removed 

with UHLA. 

Note: Aluminum dose = 50% of lime dose for all data points. 
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The changes in stoichiometric ratios could also be explained by formation of 

other solids such as tricalcium hydroxyaluminate, tetracalcium hydroxyaluminate, 

calcium hydroxide, aluminum hydroxide, and calcium sulfate. 

4.8.2 Equilibrium Modeling for SO4 � OH System 

 An equilibrium model was developed and tested in order to develop a tool to 

describe the chemical behavior of sulfate removal with UHLA. The hypothesis was 

made that sulfate removal was controlled by the formation of a solid solution containing 

ettringite, monosulfate, tricalcium hydroxyaluminate, and tetracalcium 

hydroxyaluminate. The database of PHREEQC was modified to include new solids 

(ettringite, monosulfate) and their solubility products. The solubility products of 

ettringite and monosulfate were chosen to be 10-44.55 and 10-29.43 respectively (Damidot 

and Glasser 1993). The solubility products for tricalcium hydroxyaluminate, 

tetracalcium hydroxyaluminate, and aluminum hydroxide that were obtained by 

regression from Cl � OH data were also used. Table 4.6 shows a summary of the 

solubility products of possible solids that were allowed to precipitate by PHREEQC in 

SO4 � OH system. In order to evaluate the equilibrium model, the model was used to 

predict final concentrations with PHREEQC using initial solution compositions and 

equilibrium constants listed in Table 4.6. Total initial concentrations of sulfate, calcium, 

aluminum, and hydroxide were used as input data to PHREEQC and the model was used 

to predict final concentrations of all species. Assumptions that pure solids were formed 

and that solid solutions were formed were tested. Error analysis indicated that the results 

can be best described by assuming a solid solution of ettringite, monosulfate, tricalcium 
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hydroxyaluminate, and tetracalcium hydroxyaluminate. The solution was found to be 

undersaturated with respect to calcium sulfate for all data points. A comparison between 

measured and model-predicted sulfate concentrations is shown in Figure 4.34 and 

indicates that the model succeeded in adequately predicting final sulfate concentrations. 

Table 4.6 Solid phases used in SO4 � OH data modeling. 

Solid name Log (Ksp) Source 

Ettringite  

Monosulfate  

Tricalcium hydroxyaluminate  

Tetracalcium hydroxyaluminate 

Calcium sulfate 

Calcium hydroxide 

Aluminum hydroxide 

-44.55 

-29.43 

-19.72 

-25.02 

-4.58 

-5.19 

-33.33 

Damidot and Glasser (1993)  

Damidot and Glasser (1993) 

This work (Cl-OH data) 

This work (Cl-OH data) 

Stumm and Morgan (1996) 

Stumm and Morgan (1996) 

This work (Cl-OH data) 

 

 

4.8.3 Interactions Among Solids in the Solid Solution Formed in The SO4 � OH System 

 Fractions of each solid in the solid solution were calculated for each data point 

using PHREEQC and are shown in Figure 4.35 as functions of lime and sodium 

aluminate doses.  The fraction of monosulfate in the solid solution increased with 

increasing lime and sodium aluminate doses while the fraction of ettringite decreased.  

Additions of lime and sodium aluminate resulted in increasing Ca, Al, and OH  
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Figure 4.34  Comparison between measured and model-predicted concentrations in SO4 

� OH system. Symbols represent measured concentrations and lines 

represent predicted concentrations. 
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Figure 4.35  Fractions of solids in the solid solution in SO4 � OH system. 
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concentrations in the solution with respect to sulfate. This makes favors precipitation of 

Ca4Al2(SO4)(OH)12 over Ca6Al2(SO4)3(OH)12.  Figure 4.35 shows that the fractions of 

tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate are negligible for all 

data points. This indicates that precipitation of solids containing sulfate in the UHLA 

process is more favorable than that of solids containing hydroxide. These results agree 

with previous research on layered double hydroxides (LDHs), which indicated that 

divalent anions in general have greater affinities to bind in the interlayer space of the 

LDHs than monovalent anions (Rives, 2001, and De Roy et al., 2001). 

 The ratio of lime dose to aluminum dose is also important in controlling the 

fractions of solids in the solid solution and in the removal efficiency of sulfate. Ettringite 

contains high ratio of calcium to aluminum. Therefore, if the ratio of lime dose to 

aluminum dose increased above the stoichiometric ratio of 2, this would 

thermodynamically favor the precipitation of ettringite over monosulfate and would 

result in increasing the fraction of ettringite in the solid solution and thus increasing 

sulfate removal efficiency. The equilibrium model was used to simulate the effect of the 

ratio of lime dose to aluminum dose on sulfate removal.  PHREEQC was used with 

aluminum doses that varied and with lime doses that were maintained at a fixed ratio to 

the initial sulfate concentration.  This ratio was set at the stoichiometric value for 

ettringite precipitation (2). Figure 4.36 shows effect of the ratio of lime dose to 

aluminum dose on the fractions of solids in the solid solution. The fraction of ettringite 

increased and the fraction of monosulfate decreased with increasing ratio of lime dose to 

aluminum dose.  The fraction of monosulfate becomes negligible with respect to the  
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Figure 4.36 Effect of ratio of lime dose to aluminum dose on the fraction of solids in 

SO4 � OH system. 
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fraction of ettringite, when the stoichiometric ratio of lime dose to aluminum dose 

approached the stoichiometric ratio of ettringite precipitation (3.0). Therefore, in order to 

maximize the fraction of ettringite and maximize sulfate removal efficiency, the ratio of 

lime dose to aluminum dose should be at least 3.0. 

4.8.4 Effect of Chloride Concentration on Sulfate Removal with UHLA 

 Three initial concentrations of sulfate (10, 50, and 100 mM) were investigated at 

three initial concentrations of chloride (10, 50, and 100 mM). Each Cl-SO4 combination 

was investigated at three molar ratios  (100%, 200%, and 300%) of lime dose to the sum 

of the initial concentrations of chloride and sulfate (Cl + SO4). Aluminum doses were 

chosen to be 50% of lime dose for all experiments. Final sulfate concentrations versus 

lime dose at different initial chloride and sulfate concentrations are shown in Figure 

4.37. Chloride was found to have negligible effect on final sulfate concentrations. The 

differences among final sulfate concentrations are negligible over a range of 0 to 100 

mM initial chloride concentrations at the same lime dose.  This indicates that removal of 

sulfate does not depend on chloride concentration. 

4.8.5 Effect of Sulfate Concentration on Chloride Removal with UHLA 

Figure 4.38 shows a comparison between the removal efficiency of chloride and 

the removal efficiency of sulfate. Removal efficiencies for both chloride and sulfate 

increase with increasing lime and aluminum doses. However, sulfate removal efficiency 

is much higher than chloride removal efficiency at the same chemical doses and at the 

same initial concentrations of sulfate and chloride. This indicates that sulfate  
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Figure 4.37  Effect of chloride concentration on sulfate removal with UHLA. 
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Figure 4.38  Comparison between sulfate and chloride removal efficiencies. [C] refers to 

the initial concentrations of both sulfate and chloride. 
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precipitation with Ca, Al, and OH is more favorable than chloride precipitation. These 

results agree with the results of Ulibarri and Hermosin (2001), Rives (2001), and De Roy 

et al. (2001), who all concluded that sulfate anions have a higher affinity for the 

interlayer space of the LDHs than chloride anions. 

 Figure 4.39 shows final chloride concentrations affected by initial sulfate 

concentrations at initial chloride concentrations 10, 50, and 100 mM. Final chloride 

concentrations increased with increasing initial sulfate concentrations at all investigated 

ratios of chemical doses to initial ([SO4] + [Cl]). If the chemical doses required to 

precipitate both sulfate and chloride are additives (i.e. the chemical doses required to 

precipitate (sulfate + chloride) = chemical doses required to precipitate sulfate + 

chemical doses required to precipitate chloride) and if the increase of chloride 

concentrations with increasing sulfate concentrations is due to the consumption of 

chemical doses to precipitate sulfate before chloride, then sulfate should not have had an 

effect on chloride concentrations when there is enough stoichiometric chemical doses to 

precipitate both sulfate and chloride (e.g., at ratio of lime dose to initial ([SO4] + [Cl]) 

equal 3 (R = 3 in Figure 4.39)). However, chloride concentrations increased with 

increasing sulfate concentrations at all chemical doses. This indicates that presence of 

sulfate resulted in increasing calcium chloroaluminate solubility and thus lowering 

chloride removal efficiency. This could be due to an increase in the activity of calcium 

chloroaluminate solid in the presence of sulfate and resulted in increasing the observed 

solubility product of the solid. Stumm and Morgan (1996) reported that the solubility of 

a constituent in the solid solution formation is greatly reduced and its activity increased  
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Figure 4.39  Effect of sulfate on final chloride concentrations. �R� represents the ratio of 

lime dose to initial ([SO4] + [Cl]). 
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when it becomes a minor constituent of a solid solution phase. Therefore, and due to the 

higher affinity of sulfate to form solids with calcium and aluminum in UHLA with 

respect to chloride and due to the low solubility of these solids with respect to calcium 

chloroaluminate solid, the fraction of calcium chloroaluminate solid is small comparing 

to fraction of sulfoaluminate solids especially at high initial sulfate concentrations with 

respect to chloride concentrations. This can describe the increase of final chloride 

concentrations in the presence of sulfate. It could be also due to an effect of sulfate on 

the solid solution structure that weakens the ability of chloride to be held in the 

interlayer space of the solid solution formation. 

4.8.6 Equilibrium Modeling of Cl � SO4 � OH System 

 The same database file that was used to model the Cl � OH system and was 

modified to model the SO4 � OH system was used to model the Cl � SO4 � OH system. 

Total initial constituent concentrations were used as input data to PHREEQC (Appendix 

B-4). The assumptions that pure solids precipitated and that solid solutions precipitated 

were tested. Error analysis indicated that the results could be best described by assuming 

the formation of a solid solution containing calcium chloroaluminate, ettringite, 

monosulfate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate. 

Measured concentrations and model-predicted concentrations of sulfate, chloride, 

calcium, and aluminum as well as final pH are shown in Figures 4.40, 4.41, 4.42, 4.43, 

and 4.44 respectively. Figures 4.40 to 4.44 indicated that the model succeeded in  
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Figure 4.40  Comparison between measured and predicted sulfate concentrations in SO4 

� Cl � OH system. (Meas) refers to measured concentrations and (pred) 

refers to predicted concentrations. 
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Figure 4.41  Comparison between measured and predicted chloride concentrations in 

SO4 � Cl � OH system. (Meas) refers to measured concentrations and 

(pred) refers to predicted concentrations. 
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Figure 4.42  Comparison between measured and predicted calcium concentrations in 

SO4 � Cl � OH system. (Meas) refers to measured concentrations and 

(pred) refers to predicted concentrations. 
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Figure 4.43  Comparison between measured and predicted aluminum concentrations in 

SO4 � Cl � OH system. (Meas) refers to measured concentrations and 

(pred) refers to predicted concentrations. 
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Figure 4.44  Comparison between measured and predicted pH values in SO4 � Cl � OH 

system. (Meas) refers to measured concentrations and (pred) refers to 

predicted concentrations. 
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adequately predicting chemical behavior during the simultaneous removal of chloride 

and sulfate in UHLA. However, the model moderately underestimated final chloride 

concentrations. The hypothesis was made that the increase of final chloride 

concentrations is due to the increase of the activity of calcium chloroaluminate solid in 

the solid solution formation in the presence of sulfate-containing solids. The observed 

solubility product of calcium chloroaluminate solid was calculated by non-linear 

regression routine using INVRSK and PHREEQC. Measured final chloride 

concentrations in Cl - SO4 - OH system were used as dependent variables. The observed 

solubility product of calcium chloroaluminate was obtained to be 10-26.42 compared to 

the value of 10-27.10 that was reported by Bin-Yauri and Glasser (1998) and was used in 

the original model. The new value of the solubility product of calcium chloroaluminate 

was used in the model to more accurately predict final chloride concentrations (Figure 

4.45). 

4.8.7 X Ray Diffraction Results for Solids Formed in Cl - SO4 - OH system 

 Figure 4.46 shows diffractograms of solids precipitated in Cl - SO4 � OH system 

(XRDSO4). XRD patterns show the presence of ettringite (at d = 9.84, 4.95, 3.90, and 

3.018 Å), monosulfate (at d = 8.77, 4.43, 3.97, 2.86, 2.44, and 2.4 Å), and another solid 

called Kuzel salt (Ca4Al2Cl(SO4)0.5(OH)12) (Glasser et al., 1999) (at d = 8.39, 4.22, 2.86, 

2.72, and 2.23 Å).  These are in addition to the same solids that were found in Cl- OH 

system, i.e. Friedel salt, tricalcium hydroxyaluminate, and tetracalcium 

hydroxyaluminate. The XRD data for new solids obtained in Cl - SO4 - OH system are  
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Figure 4.45  Comparison between measured and model-predicted concentrations of 

chloride using the new model. (Meas) refers to measured concentrations 

and (pred) refers to predicted concentrations. 
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Figure 4.46  Diffraction patterns for precipitated solids in Cl - SO4 - OH system. C3 = 

tricalcium hydroxyaluminate, C4 = tetracalcium hydroxyaluminate, Et = 

ettringite (calcium sulfoaluminate), F = Friedel salt (calcium 

chloroaluminate), K = Kuzel salt, and M = monosulfate (calcium 

monosulfoaluminate). 
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compared to JCPDS cards data are in Table 4.7. Results of XRD analysis for precipitated 

solids in systems containing both Cl and SO4 agree with the hypothesis that ettringite 

and monosulfate are formed. However, the XRD patterns also showed the presence of 

Kuzel salt, which was not included in the equilibrium model.  

 

Table 4.7 XRD data for new solids found in Cl � SO4 � OH system. 

d values (Å) Solid phase 2θ 
This work JCPDS cards 

Relative 
intensity 

Calcium sulfoaluminate (ettringite)    
  JCPDS Card No. 37-1476 

8.98 9.84 9.72 92 
17.90 4.95 4.98 30 
22.78 3.90 3.88 100 

 

29.58 3.018 3.018 15 
Calcium monosulfoaluminate (monosulfate)   

  JCPDS Card No.11-179 
10.08 8.77 8.92 100 
20.04 4.43 4.46 60 
22.4 3.97 3.99 60 
31.2 2.86 2.87 70 
36.84 2.44 2.45 60 

 

37.38 2.40 2.41 50 
Kuzel salt    

  JCPDS Card No.19-203 
10.54 8.39 8.32 100 
21.06 4.22 4.18 100 
31.2 2.86 2.87 50 
32.92 2.72 2.72 10 

 

40.44 2.23 2.24 20 
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The solubility product of Kuzel salt was calculated to be 10-27.20 using data from 

Glasser et al. (1999) and the following reaction. 

 Ca4Al2Cl(SO4)0.5(OH)12 = 4Ca2+ + 2Al(OH)4
- + Cl- + 0.5 SO4

2- + 4 OH- (4-12) 

Kuzel salt was included in the equilibrium model but no significant changes were 

observed in the predicted final concentrations, even though the modified model 

predictions showed that Kuzel salt was formed as part of the solid solution. This was 

because the formula for Kuzel salt is just another expression of a solid solution formed 

by the combination of calcium chloroaluminate and monosulfate.  

 Ca4Al2Cl2(OH)12 + Ca4Al2(SO4)(OH)12    =    2 Ca4Al2Cl(SO4)0.5(OH)12
 (4-13) 

The negligible changes in final predicted concentrations were the result of using a value 

for the solubility product of Kuzel salt (10-27.20) that was similar to the value that can be 

derived from the solubility products of calcium chloroaluminate and calcium 

monosulfate.  The following Equations can be derived using Equations 4-1, 4-11, and 4-

12 and the definition of the solubility products, 

 Ksp, chl = {Ca2+}4 {Al(OH)4
-}2 {Cl-}2 {OH-}4 (4-14) 

 Ksp, mos = {Ca2+}4 {Al(OH)4
-}2 {SO4

2-} {OH-}4  (4-15) 

 Ksp, kuzel = {Ca2+}4 {Al(OH)4
-}2 {Cl-} {SO4

2-}0.5 {OH-}4 (4-16) 

Where Ksp, mos, Ksp, kuzel are the solubility products of calcium monosulfate and Kuzel salt 

respectively.  The following two equations can be derived by algebraically manipulating 

Equation 4-16 with Equations 4-14 and 4-15. 
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 Ksp, kuzel = Ksp, chl * {Cl-}/{SO4
2-}0.5 (4-17) 

 Ksp, kuzel = Ksp, mos * {SO4
2-}0.5/{Cl-} (4-18) 

By algebraically manipulating Equations 4-17 and 4-18, the solubility product of Kuzel 

salt can be calculated from the solubility products of calcium chloroaluminate and 

calcium monosulfate as follows, 

 Ksp, kuzel = (Ksp,chl * Ksp,mos)0.5 = (10-26.42 * 10-29.43)0.5 = 10-27.93 (4-19) 

The difference between the two values of the solubility product of kuzel salt could be 

due to the effect of the solid solution mechanism on the solubility of the solid. However, 

Kuzel salt was not included in the final model because its addition would not improve 

the accuracy of predictions but would increase complexity.  

4.8 Interactions between Chloride and Silica in UHLA Process 

4.8.1 Effect of Chemical Doses on Silica Removal with UHLA Process 

 Three initial concentrations of silica (1.5 and 3.0 mM) were investigated at each 

of three ratios of chemical doses to initial silica concentrations. Ratios of lime dose to 

initial silica concentrations were 100%, 200%, and 300%, while ratios of aluminum 

doses were chosen at 50% of lime doses for all experiments. Figure 4.47 shows the 

effect of chemical doses on final silica concentrations and indicates that silica 

concentrations decreased with increasing lime and sodium aluminate doses. However, 

removal efficiency of silica is higher at initial silica concentration of 3.0 mM than at 1.5 

mM (Figure 4.48). This is because pH values were lower in experiments with initial  
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Figure 4.47  Effect of lime dose on silica removal with UHLA. 

Note:  Aluminum dose = 50% of lime dose for all data points 
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Figure 4.48  Comparison of removal efficiencies and final pH for silica removal with 

UHLA. 
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silica concentration of 1.5 mM compared to experiments with initial silica concentration 

of 3.0 mM (Figure 4.48). The hypothesis was made that silica removal could be 

described as the precipitation of calcium silicate (CaH2SiO4) (Batchelor et al., 1991, 

Batchelor and McDevitt, 1984) and/or calcium aluminosilicate (Ca2Al2Si(OH)14) 

(Glasser et al., 1999). If calcium silicate is the only important precipitated solid, the ratio 

of calcium removed to silica removed should equal 1.0. Similarly, if calcium 

aluminosilicate is the only important precipitated solid, the ratio of calcium removed to 

silica removed should equal 2. Figure 4.49 shows that when the ratio of lime dose to 

initial silica concentration is less than 1.0, the ratio of calcium removed to silica 

removed is approximately equal to the theoretical ratio of 1.0. However, this ratio 

increased as the lime dose increased and approached the theoretical stoichiometric ratio 

of calcium aluminosilicate precipitation (2.0).  This behavior indicates that both calcium 

silicate and calcium aluminosilicate precipitated. Note that the pH values in these 

experiments were in the range of pH 11.59 to 12.16, which are below the pH at which 

calcium hydroxide would precipitate. Therefore, the only important calcium-containing 

solids in the system are believed to be calcium silicate and calcium aluminosilicate. 

4.8.2 Equilibrium Modeling of Silica Removal with UHLA 

  The ion activity product of calcium silicate and calcium aluminosilicate were 

calculated from the following reactions, which are based on the assumption that 

CaH2SiO4 and Ca2Al2Si(OH)14 are the proper formulas for calcium silicate and calcium 

aluminosilicate solids, respectively. 
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Figure 4.49  Effect of chemical doses on the ratio of calcium removed to silica removed. 
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 CaH2SiO4  =  Ca2+ + H2SiO4
2-  (4-20) 

 Ca2Al2Si(OH)14  =  2Ca2+ + 2Al(OH)4
- + H4SiO4 +2OH- (4-21) 

The activities of species were calculated from the measured total concentrations 

of Ca, Al, Si, and pH by PHREEQC using the Davies Equation. The measured 

concentrations were used as input values to PHREEQC and no precipitates were allowed 

to form. An average value of the IAP of 10-8.02 ± 0.5 for calcium silicate and 10-23.09 ± 0.8 for 

calcium aluminosilicate were obtained. The average value of IAP of calcium silicate is 

consistent with the value of 10-7.8 obtained by Batchelor at al. (1984). In order to test the 

hypothesis that silica removal can be described as the precipitation of both calcium 

silicate and calcium aluminosilicate and in order to model silica removal with UHLA, a 

new chemical equilibrium model was developed.  This model used a modified 

PHREEQC database that contained the average values of the IAPs of calcium silicate 

and calcium aluminosilicate as their solubility products. The model was used to predict 

final total silica concentrations using the total initial concentrations of Ca, Al, Si, Cl, 

OH, and Na as input. Figure 4.50 compares the measured and model-predicted final 

silica concentrations over a range of chemical doses and initial chloride concentrations.  

These results indicate that the model succeeded in adequately predicting measured silica 

concentrations, which supports the hypothesis that silica removal with UHLA can be 

described as precipitation of calcium silicate and calcium aluminosilicate. 
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Figure 4.50 Comparison between measured and predicted silica concentrations. (Meas) 

refers to measured concentrations and (pred) refers to predicted 

concentrations. 
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4.8.3 Effect of Chloride on Silica Removal with UHLA 

 Figure 4.51 shows final silica concentrations at different initial chloride 

concentrations and indicates that chloride has a negligible effect on silica removal. Final 

silica concentrations approached zero at high lime and aluminum doses and increased 

chloride concentrations did not affect silica removal. 

4.8.4 Effect of Silica on Chloride Removal with UHLA 

 Figure 4.52 shows effect of silica on chloride removal with UHLA at different 

initial chloride concentrations and different chemical doses. Silica has a negligible effect 

on chloride removal with UHLA. This could be because the investigated initial silica 

concentrations (1.5 and 3.0 mM) are low compared to chloride concentrations, although 

they are typical of concentrations usually found in recycled cooling water. Therefore, the 

chemical doses that were consumed in precipitating silica were negligible compared to 

total chemical doses in the system and resulted in small effect on final chloride 

concentrations. 

4.8.5 X Ray Diffraction Results for Solids Formed in Cl - Si - OH system 

 Figure 4.53 shows diffractograms of solids precipitated in Cl - Si - OH system 

(XRDSi). XRD patterns show at least two peaks of calcium aluminosilicate (at d = 12.34 

and 4.16 Å) in addition to solids that were identified previously in the Cl-OH system. 

The XRD data for calcium aluminosilicate compared to JCPDS cards data are shown in 

Table 4.8. Detection of aluminosilicate solid agrees with the hypothesis that calcium 

aluminosilicate is formed during UHLA.  However, the presence of calcium silicate  
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Figure 4.51  Effect of initial chloride concentration on silica removal with UHLA. (a) at 

initial [Cl] = 0.0 mM, (b) at initial [Cl] = 10 mM, (c) at initial [Cl] = 50 

mM, (d) at initial [Cl] = 100 mM. 
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Figure 4.52 Effect of initial silica concentration on chloride removal with UHLA. 
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Figure 4.53  Diffraction patterns for precipitated solids in Cl - Si - OH system. C3 = 

tricalcium hydroxyaluminate, C4 = tetracalcium hydroxyaluminate, CAS = 

calcium aluminosilicate, F = Friedel salt (calcium chloroaluminate). 
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could not be confirmed. There were no peaks that matched the JCPDS cards for calcium 

silicate solids. This could be because at such high chemical doses (60 mM lime and 30 

mM sodium aluminate), the concentration of calcium silicate is negligible and the 

dominant silica-containing solid phase is calcium aluminosilicate. 

 

Table 4.8 XRD data for new solids found in Cl � Si � OH system. 

d values (Å) Solid phase 2θ 
This work JCPDS cards 

Relative 
intensity 

Calcium aluminosilicate    
  JCPDS Card No. 29-285 

7.16 12.34 12.50 100 
 

21.32 4.16 4.18 70 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Environmental impacts resulting from discharge of industrial wastewaters make 

zero discharge and closed water systems a real need and potentially a legal requirement. 

Chloride and sulfate are compounds that make zero discharge difficult to obtain in many 

cases. The ultra-high lime with aluminum (UHLA) process has demonstrated the ability 

to achieve high sulfate removal at low cost. Expanding the capabilities of the process to 

include removal of chloride and developing a model for removal of multiple components 

will facilitate practical applications of the UHLA process so that it will meet its potential 

as a low-cost tool for improved industrial water management. Despite the attractiveness 

of UHLA technology, there was limited data to support its use for chloride removal. 

Furthermore, there is limited data to evaluate and model multicomponent removal. 

Therefore, experimental studies were conducted to characterize the equilibrium 

conditions and kinetics of chloride removal with UHLA and to develop a model for 

multicomponent removal by UHLA. Effects of chemical doses, initial chloride 

concentration, pH, and temperature on chloride removal with UHLA were evaluated. 

Also interactions between chloride and either sulfate or silica were investigated and an 

equilibrium model was developed that can be used to predict chemical behavior in 

UHLA process.  

Kinetic and equilibrium characteristics of chloride precipitation using UHLA 

process have been evaluated. First, a kinetic experiment to study the kinetics of calcium 
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chloroaluminate precipitation and to obtain the reaction time for equilibrium 

experiments was conducted. Results of the kinetic experiment showed that chloride 

removal is fast, being essentially complete at the first sampling time of one hour. This 

indicates that kinetics should not be a limitation to applying the UHLA process.  

Forty-eight batch equilibrium experiments were conducted to study the effects of 

lime dose and aluminum dose on chloride removal. These experiments used an initial 

solution of 30 mM NaCl and applied doses of lime (0 � 200 mM) and sodium aluminate 

(0 � 100 mM).  Good chloride removal was observed at reasonable ranges of lime dose 

and aluminum dose. The hypothesis was made that chloride removal was primarily 

controlled by calcium chloroaluminate (Ca4Al2Cl2(OH)12) precipitation. However, 

deviations from the stoichiometry of calcium chloroaluminate precipitation occurred in 

the equilibrium experiments. The observed stoichiometry showed that the ratio of 

aluminum removed to chloride removed and the ratio of calcium removed to chloride 

removed were usually higher than the theoretical stoichiometry.  This indicated that 

other solid phases were being formed in addition to calcium chloroaluminate. Results of 

these experiments also showed that a ratio of aluminum dose to lime dose greater than 

the stoichiometric value of 0.5 adversely affected chloride removal.  This behavior was 

first hypothesized to be the result of the formation of soluble aluminum-chloride-

hydroxide complexes. However, equilibrium experiments that were conducted to test 

this hypothesis showed that there were no chloride complexes being formed in the 

system. 
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In an effort to further understand the behavior of chloride in the UHLA process 

and the mechanisms of chloride removal, a fundamental chemical equilibrium model 

was developed. Experimental data obtained from studying the effects of lime dose and 

aluminum dose on chloride removal were used in the model development. The model 

was based on the geochemical modeling software, PHREEQC, and its development used 

a new program called INVRS K. This new program was integrated with PHREEQC to 

calculate values of unknown or poorly defined chemical equilibrium constants using a 

Gauss-Newton nonlinear regression routine. Error analysis indicated that formation of a 

solid solution of calcium chloroaluminate (Ca4Al2Cl2(OH)12), tricalcium 

hydroxyaluminate (Ca3Al2(OH)12), and tetracalcium hydroxyaluminate (Ca4Al2(OH)14) 

was found to be the best mechanism to describe the chemical behavior of chloride 

removal with UHLA. The solubility products of tricalcium hydroxyaluminate and 

tetracalcium hydroxyaluminate were determined with INVRS K and were found to be 

10-19.72 and 10-25.02 respectively,  while the solubility product of calcium chloroaluminate 

(Ca4Al2Cl2(OH)12) was fixed at the value that was reported in the literature (10 �27.10).  

When calcium or aluminum concentrations are above the stoichiometric amount 

needed to form the solid solution, the model allows formation of calcium hydroxide or 

aluminum hydroxide solids. Comparison between experimental data and model 

predictions at different lime and aluminum doses indicated that the model adequately 

predicted the measured concentrations of chloride, calcium, aluminum, and measured pH 

values. Both experimental results and model predictions showed that the aluminum 

hydroxide solid produced during experiments at low lime doses had a higher solubility 
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product than gibbsite (Ksp = 10-33.33). The predicted and measured concentrations of 

chloride followed the same trend of decreasing to a minimum and then increasing as the 

aluminum dose increased. The increase of chloride concentration at higher sodium 

aluminate doses was explained by the effect of higher aluminum concentrations favoring 

the formation of tricalcium hydroxyaluminate over both calcium chloroaluminate and 

tetracalcium hydroxyaluminate.  

Fractions of the solids in the solid solution were found to be controlled by the 

ratios of Cl−, OH−, and Al(OH)4
− in the solution as well as the stoichiometric coefficients 

and the equilibrium constants of the solids.  Fractions of calcium hydroxyaluminate 

solids increased and fractions of calcium chloroaluminate solid decreased with 

increasing sodium aluminate dose.  However, lime dose had a negligible effect on the 

composition of the solid solution. The fraction of tricalcium hydroxyaluminate in the 

solid solution can be minimized by adding lime at doses above the stoichiometric ratio to 

aluminum (> 2.0). The ratio of the fraction of calcium chloroaluminate to the fraction of 

tetracalcium hydroxyaluminate was controlled by the ratio of chloride to hydroxide ions 

in the solution. Therefore, the fraction of tetracalcium hydroxyaluminate can be 

minimized by using aluminum sources that do not cause an increase in the concentration 

of OH−. One such aluminum source would be freshly precipitated amorphous 

Al(OH)3(s). Also, waste alum sludge produced from water treatment plants could be an 

attractive alternative source of aluminum. A set of chemical equilibrium reactions was 

developed and can be used to describe interactions among the solids in the solid solution. 



 160 

Equilibrium experiments to study the effect of initial chloride concentration on 

chloride removal were conducted. Experimental results showed that chloride removal 

efficiency at initial chloride concentration of 10 mM is significantly lower than that at 

initial concentrations of 50 and 100 mM. This was because when the concentration of 

chloride is low with respect to the concentration hydroxide, precipitation of calcium 

hydroxyaluminate becomes favorable relative to precipitation of calcium 

chloroaluminate. The equilibrium model was tested for this set of experiments and it 

succeeded in predicting chemical behavior accurately at different chloride 

concentrations. 

The effect of pH on chloride precipitation was studied for a range of pH values 

(10.80 � 13.05). Lime and sodium aluminate were used as calcium and aluminum 

sources, respectively.  The pH was adjusted to the desired values using acetic acid and 

NaOH. Results of these experiments indicated that the optimum pH for maximum 

chloride removal was pH 12 ± 0.2. Removal efficiency of chloride increased with 

increasing initial chloride concentration at the same pH value, because the fraction of 

chloroaluminate solid in the solid solution increased by increasing the ratio of chloride to 

hydroxide in the solution. The model was tested for this set of experiments and 

succeeded in accurately predicting experimental data at different pH values. 

A set of experiments was conducted to evaluate the effect of temperature on 

chloride precipitation. Final chloride concentrations slightly increased when water 

temperature increased at temperatures below 40oC. However, at temperatures above 

40oC, chloride concentrations substantially increased with increasing water temperature. 
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This was explained as being caused by lower stability of calcium chloroaluminate solid 

with respect to calcium hydroxyaluminate solids at temperatures above 40oC.  

Interactions between chloride and sulfate have been investigated. Results of these 

experiments indicated that formation of calcium sulfoaluminate and calcium 

monosulfate is more favorable than formation of calcium chloroaluminate. Therefore, 

chloride concentration was found to have negligible effect on sulfate removal with 

UHLA. On the other hand, increased sulfate concentrations resulted in decreasing the 

removal efficiency of chloride, even at high stoichiometric doses with respect to (initial 

[Cl] + initial [SO4]) in the solution. This was explained by an increase of the activity of 

calcium chloroaluminate solid in the solid solution in the presence of sulfate. 

Equilibrium modeling indicated that the chemical behavior of simultaneous removal of 

both chloride and sulfate with UHLA can be best described as the formation of a solid 

solution containing calcium chloroaluminate, calcium sulfoaluminate, calcium 

monosulfate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate in 

addition to calcium hydroxide or aluminum hydroxide when calcium or aluminum doses 

are above the stoichiometry of the solid solution formation.  

Silica was found to have a small effect on chloride removal with UHLA. 

Similarly, chloride was found to have a negligible effect on silica removal with UHLA. 

The equilibrium model was modified to include silica removal with UHLA and it 

succeeded in predicting the simultaneous removal of chloride, sulfate, and silica with 

UHLA.  
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XRD analysis for precipitated solids in UHLA process have been conducted and 

showed that the presence of the same solids that were assumed by the equilibrium 

model. 

One of the initial focuses of future research should be to study the effectiveness 

and cost of alternative aluminum sources in the UHLA process. The potential for using 

aluminum in waste alum sludge from water treatment plants as an inexpensive source of 

aluminum should be investigated. This will make UHLA technology capable not only of 

improving industrial water use management, but also of contributing to maintaining a 

sustainable environment through resource conservation by waste reuse. A large amount 

(10,000 ton/day) of this sludge is being produced and most of it is being disposed as 

waste material (Dharmappa et al, 1997). Unlike sodium aluminate, use of alum sludge as 

an aluminum source will not produce hydroxide ion that can compete with chloride in 

the forming the solid solution. Therefore, the removal efficiency of chloride is expected 

to be higher when using alum sludge than when using sodium aluminate, if the same 

equivalent concentration of aluminum is used. 

The potential of using UHLA in other applications, such as treatment of brines 

prior to evaporation/crystallization, and pretreatment before desalination in order to 

improve water recoveries and membrane life should be evaluated. Silica and sulfate have 

been described as the major cause of membrane fouling and the major unresolved 

problem in desalination. Despite the attractiveness of UHLA as a powerful method for 

removing all the scale forming materials, there is limited data to support its use to 

remove silica and sulfate from brine concentrates. The high ionic strength in these 
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concentrates is a much different chemical environment than that found in conventional 

water or wastewaters. Therefore, research is needed to evaluate the feasibility of 

applying the UHLA process to concentrates rejected from desalination plants. 

Other primary focus of future research should be to evaluate the feasibility and 

costs of recycling and/or reusing the solids formed in the UHLA process in order to 

minimize the sludge that needs to be disposed. The solids that are formed are layer 

double hydroxides (LDHs) and have many physical and chemical properties that make 

them useful in many industrial and environmental applications (Rives, 2001). LDHs are 

receiving considerable attention, because they are used as anion-exchange and 

adsorption materials, carriers for drugs, antacids in medicine, electrode modifiers, 

catalysts, precursors and supports of catalysts, decolorizing agents, polymer stabilizers, 

optical hosts and ceramic precursors. Many of their most important applications are due 

to their permanent anion-exchange and adsorption capacity, the mobility of their 

interlayer anions and water molecules, their large surface areas and their stability (Yong 

and Rodrigues, 2002). Such properties make them very good adsorbents for variety of 

contaminants. Furthermore, LDHs were proven to remove contaminants similar to the 

corrosion and scale inhibitors that are added in cooling water systems (e.g. 

phosphonates) (Ulibarri and Hermosin, 2001). Therefore, research is needed to evaluate 

the use of these solids in the treatment of effluent blowdown from cooling water systems 

before discharge. Also, research is needed to evaluate the cost and effectiveness of 

different configurations of the UHLA process in cooling water treatment systems such as 

sidestream treatment, makeup treatment, or a combination of both.  Research is also 
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needed to evaluate the performance of UHLA in saving and/or loss of inhibitors, water 

conservation, pollution prevention, and to determine process costs for each of the 

configurations.  

The substantial increase of chloride concentration at temperatures above 40oC 

indicates that chloride is expected to be totally released from the solid at moderate 

temperatures and mixed hydroxides of divalent and trivalent cations would be formed. 

The effect of temperature on sulfate removal has not been evaluated, but it is expected to 

be similar to that for chloride. This indicates that the produced solids in UHLA process 

can be recycled easily at low temperatures.  
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APPENDIX A 

NOMENCLATURE 

 

[] Concentration 

[Ci] Concentration of the ith ion 

{} Activity 

AAS Atomic absorption spectroscopy 

AFm Aluminoferrite mono 

AFt Aluminoferrite tri 

ALK Alkalinity 

AMP Amino-trimethylene-phosphonate 

An- Interlayer anion with charge (n-) 

Bij The second virial coefficient 

C3 Tri-calcium hydroxyaluminate 

C3A Tricalcium aluminate 

C4 Tetra-calcium hydroxyaluminate 

Ca3Al2(OH)12 Tri-calcium hydroxyaluminate 

Ca4Al2(NO3)2(OH)12 Nitrated AFm phase 

Ca4Al2(OH)14 Tetra-calcium hydroxyaluminate 

Ca4Al2(SO4)(OH)12 Calcium monosulfoaluminate 

Ca4Al2Cl2(OH)12 Calcium chloroaluminate (Friedel salt) 

Ca6(SO4)3Fe2(OH)12 Calcium sulfoferrate 

Ca6Al2(SO4)3(OH)12 Calcium sulfoaluminate (ettringite) 

CAP Complex amino-phosphonates 
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CAS Calcium aluminosilicate 

CB Dissolved ion concentration in blowdown 

CD Dissolved ion concentration in drift 

CE Dissolved ion concentration in water vapor plume 

CI Dissolved ion concentration from the treatment system to the 
cooling tower 

Cijk The third virial coefficients 

CM Dissolved ion concentration in makeup 

COC Cycles of concentration 

CP Heat capacity of water 

CS Ion concentration from the first stage of the UHLA process 

CSi Residual concentration of the adsorbed species of silica 

CT Dissolved ion concentration in the cooling tower 

∆Al Concentration of aluminum removed from the solution 

∆Ca Concentration of calcium removed from the solution 

∆Cl Concentration of chloride removed from the solution 

DF Drift factor 

∆Η Latent heat of evaporation of water 

∆Τ Temperature differential between the hot cooling water 
return and the cold cooling water supply 

EDTA Ethylenediamine-tetraacetic acid 

Et Ettringite 

F Friedel salt 

γ Activity coefficient 

γΗ Debye-Hückel activity coefficient 
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HEPT Hydroxy-ethylene-diphosphonic acid 

HPA Hydroxy-phospho-acetic acid 

I Ionic strength 

IAP Ion activity product 

IC Ion chromatography 

K Kuzel salt 

Ksp Solubility product 

LDH(s) Layered double hydroxide(s) 

LIC Larson index of corrosion 

M Monosulfate (calcium monosulfoaluminate) 

M2+ (M(II)) Divalent cation 

M3+ (M(III)) Trivalent cation 

PBTC Phosphono-butane-tricarboxylic acid 

POCA Phosphono-carboxylic acid 

q Silica removed (mg/l) per mg magnesium in the precipitated 
or solid form 

QB Cooling tower blowdown water flow rate 

QD Cooling tower drift water flow rate 

QE Cooling tower evaporation water flow rate 

QM Cooling tower makeup water flow rate 

QS Sidestream softener flow rate 

SSE Sum of square error 

TDS Total dissolved solids 

TOT(Al) Total aluminum concentration 

TOT(Ca) Total calcium concentration 
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TOT(Cl) Total chloride concentration 

TOT(Si) Total silicon concentration 

TOT(SO4) Total sulfate concentration 

UHL Ultra-high lime softening 

UHLA Ultra-high lime with aluminum process 

Xchl Fraction of calcium chloroaluminate in the solid solution 

XRD X-ray diffraction 

Xtet Fraction of tetra-calcium hydroxyaluminte in the solid 
solution 

Xtri Fraction of tri-calcium hydroxyaluminate in the solid 
solution 

Zi charge (valence) of the ith ion 
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APPENDIX B 

INPUT FILES FOR PHREEQC/INVRS K 

 
Table B-1 PHREEQC/INVRS K input file for calculating unknown equilibrium 

constants in Cl-OH system. 
 
TITLE Evaluation of chloride removal with Ultra-high lime with aluminum process.  
 
SOLUTION_S   
 

Number pH Ca Al Cl Na Description 
 charge      

1 12.60 30 10 30 40 lime dose = 30mM, Al dose = 10mM 
2 12.60 30 20 30 50 lime dose = 30mM, Al dose = 20mM 
3 12.60 30 30 30 60 lime dose = 30mM, Al dose = 30mM 
4 12.60 30 40 30 70 lime dose = 30mM, Al dose = 40mM 
5 12.59 30 50 30 80 lime dose = 30mM, Al dose = 50mM 
6 12.86 60 10 30 40 lime dose = 60mM, Al dose = 10mM 
7 12.85 60 20 30 50 lime dose = 60mM, Al dose = 20mM 
8 12.85 60 30 30 60 lime dose = 60mM, Al dose = 30mM 
9 12.85 60 40 30 70 lime dose = 60mM, Al dose = 40mM 

10 12.85 60 50 30 80 lime dose = 60mM, Al dose = 50mM 
11 13.01 90 10 30 40 lime dose = 90mM, Al dose = 10mM 
12 13.00 90 20 30 50 lime dose = 90mM, Al dose = 20mM 
13 13.00 90 30 30 60 lime dose = 90mM, Al dose = 30mM 
14 13.00 90 40 30 70 lime dose = 90mM, Al dose = 40mM 
15 13.00 90 50 30 80 lime dose = 90mM, Al dose = 50mM 
16 13.00 90 60 30 90 lime dose = 90mM, Al dose = 60mM 
17 13.11 120 10 30 40 lime dose = 120mM, Al dose = 10mM 
18 13.11 120 20 30 50 lime dose = 120mM, Al dose = 20mM 
19 13.11 120 30 30 60 lime dose = 120mM, Al dose = 30mM 
20 13.11 120 40 30 70 lime dose = 120mM, Al dose = 40mM 
21 13.11 120 50 30 80 lime dose = 120mM, Al dose = 50mM 
22 13.11 120 60 30 90 lime dose = 120mM, Al dose = 60mM 
23 13.19 150 10 30 40 lime dose = 150mM, Al dose = 10mM 
24 13.19 150 20 30 50 lime dose = 150mM, Al dose = 20mM 
25 13.19 150 30 30 60 lime dose = 150mM, Al dose = 30mM 
26 13.19 150 40 30 70 lime dose = 150mM, Al dose = 40mM 
27 13.19 150 50 30 80 lime dose = 150mM, Al dose = 50mM 
28 13.19 150 60 30 90 lime dose = 150mM, Al dose = 60mM 
29 13.30 200 10 30 40 lime dose = 200mM, Al dose = 10mM 
30 13.30 200 20 30 50 lime dose = 200mM, Al dose = 20mM 
31 13.30 200 30 30 60 lime dose = 200mM, Al dose = 30mM 
32 13.30 200 40 30 70 lime dose = 200mM, Al dose = 40mM 
33 13.30 200 50 30 80 lime dose = 200mM, Al dose = 50mM 
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34 13.30 200 60 30 90 lime dose = 200mM, Al dose = 60mM 
35 13.30 200 80 30 110 lime dose = 200mM, Al dose = 80mM 
36 13.30 200 100 30 130 lime dose = 200mM, Al dose = 100mM 

  
SAVE SOLUTION 1-36 
 
#Regress On 
 
PHASES 
 calcium-chloroaluminate 
  Ca4Al2Cl2(OH)12 = 4Ca+2 + 2Al(OH)4- + 2Cl- + 4OH-  

 log_k  -27.10 
 
#Unknown 
 tricalcium-hydroxyaluminate  
  Ca3Al2(OH)12  = 3Ca+2 + 2Al(OH)4- + 4OH- 
  log_K  -21.22 
 
#Unknown 
 tetracalcium-hydroxyaluminate          

 Ca4Al2(OH)14 = 4Ca+2 + 2Al(OH)4- + 6OH- 
 Log_K  -23.82 

 
SOLID_SOLUTIONS 1 
 chlorohydroxy 
-comp calcium-chloroaluminate  0.0 
-comp tricalcium-hydroxyaluminate 0.0 
-comp tetracalcium-hydroxyaluminate 0.0 
 
#Regress Off 
 
EQUILIBRIUM_PHASES 1 

calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 

 tetracalcium-hydroxyaluminate 0.0 0.0 
 Ca(OH)2   0.0 0.0 
 Gibbsite    0.0 0.0 
 
SAVE EQUILIBRIUM_PHASES 1 
USE SOLUTION none 
END 
 
TITLE  Start Dataset 1 
USE SOLUTION 1 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 2 
USE SOLUTION 2 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 3 
USE SOLUTION 3 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 

TITLE  Start Dataset 4 
USE SOLUTION 4 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
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TITLE  Start Dataset 5 
USE SOLUTION 5 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 6 
USE SOLUTION 6 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 7 
USE SOLUTION 7 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 8 
USE SOLUTION 8 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 9 
USE SOLUTION 9 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 10 
USE SOLUTION 10 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 11 
USE SOLUTION 11 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 12 
USE SOLUTION 12 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 13 
USE SOLUTION 13 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 14 
USE SOLUTION 14 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 15 
USE SOLUTION 15 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 16 
USE SOLUTION 16 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 17 
USE SOLUTION 17 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 18 
USE SOLUTION 18 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 19 
USE SOLUTION 19 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 20 
USE SOLUTION 20 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 21 
USE SOLUTION 21 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 

TITLE  Start Dataset 22 
USE SOLUTION 22 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
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END #End Dataset 
 

END #End Dataset 
 

TITLE  Start Dataset 23 
USE SOLUTION 23 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 24 
USE SOLUTION 24 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 25 
USE SOLUTION 25 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 26 
USE SOLUTION 26 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 27 
USE SOLUTION 27 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 28 
USE SOLUTION 28 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 29 
USE SOLUTION 29 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 30 
USE SOLUTION 30 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 31 
USE SOLUTION 31 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 32 
USE SOLUTION 32 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 33 
USE SOLUTION 33 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 34 
USE SOLUTION 34 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 35 
USE SOLUTION 35 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
 

TITLE  Start Dataset 36 
USE SOLUTION 36 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
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Table B-2 PHREEQC input data for modeling effect of initial chloride concentration on 

chloride removal. 

TITLE Effect of Initial Chloride Concentration  
 
SOLUTION_S 
 
Number pH Ca Al Cl Na 

 charge     
1 12.63 40 16 10 26 
2 13.13 200 80 50 130 
3 13.36 400 160 100 260 

  
SAVE SOLUTION 1-3 
 
EQUILIBRIUM_PHASES 1 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.63 NaOH 10.0 
 

EQUILIBRIUM_PHASES 2 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.63 NaOH 10.0 
 

EQUILIBRIUM_PHASES 3 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -13.13 NaOH 10.0 
 

 

 
SAVE EQUILIBRIUM_PHASES 1-3 
USE SOLUTION none 
END 
 
SOLID_SOLUTIONS 1 
 chlorohydroxy 
-comp calcium-chloroaluminate  0.0 
-comp tricalcium-hydroxyaluminate 0.0 
-comp tetracalcium-hydroxyaluminate 0.0 
 
TITLE  Start Dataset x* 
USE SOLUTION x* 
USE EQUILIBRIUM_PHASES 1 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
* x is the solution number (1, 2, and 3) 
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Table B-3 PHREEQC input data for modeling effect of pH on chloride removal. 

TITLE Effect of pH on chloride removal 
 
SOLUTION_S 

 
Number pH Ca Al Cl Na Acetate 

 charge      
1 10.80 20 10 10 10 43 
2 11.15 20 10 10 10 43 
3 11.35 20 10 10 10 43 
4 11.34 20 10 10 10 43 
5 11.75 20 10 10 10 43 
6 12.38 20 10 10 10 43 
7 11.83 20 10 10 10 43 
8 12.14 20 10 10 10 43 
9 12.17 20 10 10 10 0 
10 10.82 100 50 50 50 183 
11 11.00 100 50 50 50 183 
12 10.97 100 50 50 50 183 
13 11.15 100 50 50 50 183 
14 12.18 100 50 50 50 183 
15 11.44 100 50 50 50 183 
16 12.67 100 50 50 50 183 
17 13.05 100 50 50 50 183 
18 12.59 100 50 50 50 0 
19 10.88 200 100 100 100 330 
20 10.87 200 100 100 100 333 
21 11.09 200 100 100 100 330 
22 11.29 200 100 100 100 330 
23 11.49 200 100 100 100 330 
24 12.32 200 100 100 100 330 
25 11.89 200 100 100 100 330 
26 12.79 200 100 100 100 330 
27 12.76 200 100 100 100 330 

 
SAVE SOLUTION 1-27 
 
EQUILIBRIUM_PHASES 1 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -10.80 NaOH 10 
 

EQUILIBRIUM_PHASES 2 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.15 NaOH 10 

EQUILIBRIUM_PHASES 3 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 

EQUILIBRIUM_PHASES 4 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
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tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
 
pH_Fix -11.34 NaOH 10.0 

tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
 
pH_Fix -11.35 NaOH 10.0 

EQUILIBRIUM_PHASES 5 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.75 NaOH 10 
 

EQUILIBRIUM_PHASES 6 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.14 NaOH 10 

EQUILIBRIUM_PHASES 7 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.38 NaOH 10 
 

EQUILIBRIUM_PHASES 8 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.83 NaOH 10 
 

EQUILIBRIUM_PHASES 9 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.17 NaOH 10 
 

EQUILIBRIUM_PHASES 10 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -10.82 NaOH 10 
 

EQUILIBRIUM_PHASES 11 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -10.97 NaOH 10 
 

EQUILIBRIUM_PHASES 12 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.00 NaOH 10 
 

EQUILIBRIUM_PHASES 13 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.15 NaOH 10 
 

EQUILIBRIUM_PHASES 14 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.44 NaOH 10 
 

EQUILIBRIUM_PHASES 15 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.18 NaOH 10 
 

EQUILIBRIUM_PHASES 16 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.67 NaOH 10 
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EQUILIBRIUM_PHASES 17 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -13.05 NaOH 10 
 

EQUILIBRIUM_PHASES 18 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.59 NaOH 10 
 

EQUILIBRIUM_PHASES 19 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -10.87 NaOH 10 
 

EQUILIBRIUM_PHASES 20 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -10.88 NaOH 10 
 

EQUILIBRIUM_PHASES 21 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.09 NaOH 10 
 

EQUILIBRIUM_PHASES 22 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.29 NaOH 10 
 

EQUILIBRIUM_PHASES 23 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.49 NaOH 10 
 

EQUILIBRIUM_PHASES 24 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -11.89 NaOH 10 
 

EQUILIBRIUM_PHASES 25 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.32 NaOH 10 
 

EQUILIBRIUM_PHASES 26 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.79 NaOH 10 
 

EQUILIBRIUM_PHASES 27 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
pH_Fix -12.76 NaOH 10 
 

 

SAVE EQUILIBRIUM_PHASES 1-27 
USE SOLUTION none 
END 
 
SOLID_SOLUTIONS 1 
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 chlorohydroxy 
-comp calcium-chloroaluminate  0.0 
-comp tricalcium-hydroxyaluminate 0.0 
-comp tetracalcium-hydroxyaluminate 0.0 
 
 
TITLE  Start Dataset x* 
USE SOLUTION x* 
USE EQUILIBRIUM_PHASES x* 
USE SOLID_SOLUTIONS 1 
END #End Dataset 
* x is the solution number (1, 2, 3, 4,  .   .    .    .    .   .   .  and 27) 
 
 
 
 
 

 



 194 

Table B-4 PHREEQC input data for modeling Cl-OH-SO  system. 4

TITLE Interaction between chloride and sulfate 
 
SOLUTION_S 
 

Number pH Ca Al Cl SO4 Na 
 charge      
1 12.07 10 5 0 10 25 
2 12.35 20 10 0 10 30 
3 12.48 30 15 0 10 35 
4 12.64 50 25 0 50 125 
5 12.89 100 50 0 50 150 
6 12.97 150 75 0 50 175 
7 12.89 100 50 0 100 250 
8 13.07 200 100 0 100 300 
9 13.15 300 150 0 100 350 
10 12.33 20 10 10 10 40 
11 12.51 40 20 10 10 50 
12 12.64 60 30 10 10 60 
13 12.68 60 30 10 50 140 
14 12.91 120 60 10 50 170 
15 12.99 180 90 10 50 200 
16 12.85 110 55 10 100 265 
17 13.08 220 110 10 100 320 
18 13.14 330 165 10 100 375 
19 12.58 60 30 50 10 100 
20 12.79 120 60 50 10 130 
21 12.91 180 90 50 10 160 
22 12.84 100 50 50 50 200 
23 12.98 200 100 50 50 250 
24 13.05 300 150 50 50 300 
25 12.94 150 75 50 100 325 
26 13.10 300 150 50 100 400 
27 13.17 450 225 50 100 475 
28 12.75 110 55 100 10 175 
29 12.94 220 110 100 10 230 
30 13.05 330 165 100 10 285 
31 12.90 150 75 100 50 275 
32 13.03 300 150 100 50 350 
33 13.13 450 225 100 50 425 
34 13.01 200 100 100 100 400 
35 13.14 400 200 100 100 500 
36 13.21 600 300 100 100 600 

 
SAVE SOLUTION 1-36 
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EQUILIBRIUM_PHASES 1 
calcium sulfoaluminate  0.0 0.0 
calcium monosulfate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
 
EQUILIBRIUM_PHASES 2 
calcium-chloroaluminate  0.0 0.0 
tricalcium-hydroxyaluminate 0.0 0.0 
tetracalcium-hydroxyaluminate 0.0 0.0 
calcium monosulfate  0.0 0.0 
calcium sulfoaluminate  0.0 0.0 
kuzel salt   0.0 0.0 
Ca(OH)2   0.0 0.0 
Al(OH)3   0.0 0.0 
 
SAVE EQUILIBRIUM_PHASES 1-2 
USE SOLUTION none 
END 
 
SOLID_SOLUTIONS 2 
 sulfohydroxy 
-comp calcium-sulfoaluminate  0.0 
-comp calcium-monosulfate  0.0 
-comp tricalcium-hydroxyaluminate 0.0 
-comp tetracalcium-hydroxyaluminate 0.0 
 
SOLID_SOLUTIONS 3 
 chlorosulfohydroxy 
-comp calcium-chloroaluminate  0.0 
-comp calcium-sulfoaluminate  0.0 
-comp calcium-monosulfate  0.0 
-comp tricalcium-hydroxyaluminate 0.0 
-comp tetracalcium-hydroxyaluminate 0.0 
 
 
TITLE  Start Dataset x 
USE SOLUTION x 
USE EQUILIBRIUM_PHASES 1* 
USE SOLID_SOLUTIONS 2 
END #End Dataset 
* x is the solution number (1, 2, 3, 4,  .   .    .    .    .   .   .  and 9) 
 
TITLE  Start Dataset y** 
USE SOLUTION y** 
USE EQUILIBRIUM_PHASES 2 
USE SOLID_SOLUTIONS 3 
END #End Dataset 
** y is the solution number (10, 11, 12, 13, 14,  .   .    .    .    .   .   .  and 36) 
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APPENDIX C 

RESULTS OF NON-LINEAR REGRESSION USING INVRS K 

 
Table C-1 Calculated values of solubility products of tricalcium hydroxyaluminate 

(Ksp,tri) and tetracalcium hydroxyaluminate (Ksp,tet). 
 

Iteration Ksp,tri Ksp,tet Standard error 

    
1 -21.22 -23.82 0.336904 
2 -21.12 -23.92 0.316058 
3 -21.02 -24.02 0.294384 
4 -20.92 -24.12 0.272037 
5 -20.82 -24.22 0.249226 
6 -20.72 -24.32 0.226296 
7 -20.62 -24.42 0.203648 
8 -20.52 -24.52 0.181752 
9 -20.42 -24.62 0.161302 
10 -20.32 -24.72 0.143129 
11 -20.22 -24.82 0.128073 
12 -20.12 -24.92 0.116755 
13 -20.02 -25.02 0.109372 
14 -19.92 -25.12 0.105781 
15 -19.82 -25.07 0.096832 
16 -19.72 -25.04 0.094022 
17 -19.72 -25.02 0.093961 
18 -19.72 -25.02 0.093959 
19 -19.72 -25.02 0.093958 
20 -19.72 -25.02 0.093958 
21 -19.72 -25.02 0.093958 
22 -19.72 -25.02 0.093958 
23 -19.72 -25.02 0.093958 
24 -19.72 -25.02 0.093958 
25 -19.72 -25.02 0.093958 
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Table C-2  Comparison between measured and model predicted final concentrations in 

Cl-OH system. 

 
Chemical doses TOT(Cl) TOT(Al) TOT(Ca) pH Solution 

No. 
Ca(OH)2 NaAlO2 Measured Predicted Measured Predicted Measured Predicted Measured Predicted 

1 30 10 20.90 20.79 0.12 0.17 10.08 10.52 12.35 12.47 
2 30 20 17.84 18.33 8.13 5.39 0.87 2.13 12.36 12.38 
3 30 30 17.62 18.87 19.37 14.69 0.43 1.36 12.36 12.35 
4 30 40 18.47 19.39 23.97 20.73 0.43 1.08 12.38 12.39 
5 30 50 20.50 19.96 32.52 24.22 0.43 0.89 12.42 12.45 
6 60 10 21.77 20.73 0.43 0.06 18.70 15.28 12.5 12.55 
7 60 20 15.25 13.83 0.41 0.13 12.97 11.13 12.62 12.63 
8 60 30 12.37 11.14 2.24 0.72 2.30 4.74 12.57 12.64 
9 60 40 12.30 13.22 12.37 7.20 0.66 1.40 12.54 12.60 

10 60 50 13.71 14.54 19.48 16.26 0.34 0.92 12.54 12.58 
11 90 10 20.63 20.73 0.21 0.06 17.66 15.28 12.53 12.55 
12 90 20 15.14 13.83 0.24 0.13 13.37 11.13 12.63 12.63 
13 90 30 10.56 10.51 0.30 0.20 10.47 8.78 12.72 12.69 
14 90 40 8.64 9.10 0.33 0.27 7.57 7.30 12.78 12.74 
15 90 50 10.46 9.67 1.22 1.61 3.56 2.71 12.79 12.74 
16 90 60 14.06 11.94 10.32 8.40 0.45 1.07 12.79 12.73 
17 120 10 21.17 20.73 0.01 0.06 16.85 15.28 12.42 12.55 
18 120 20 16.49 13.83 0.02 0.13 12.69 11.13 12.49 12.63 
19 120 30 12.21 10.51 0.06 0.20 10.16 8.78 12.56 12.69 
20 120 40 9.63 9.10 0.09 0.27 8.14 7.30 12.63 12.74 
21 120 50 7.45 8.43 0.15 0.32 6.58 6.24 12.66 12.79 
22 120 60 10.07 8.10 0.17 0.38 6.20 5.44 12.7 12.83 
23 150 10 22.83 20.73 0.01 0.06 17.74 15.28 12.49 12.55 
24 150 20 16.67 13.83 0.02 0.13 13.57 11.13 12.56 12.63 
25 150 30 12.55 10.51 0.02 0.20 10.90 8.78 12.64 12.69 
26 150 40 9.67 9.10 0.02 0.27 9.15 7.30 12.72 12.74 
27 150 50 7.93 8.43 0.03 0.32 8.23 6.24 12.68 12.79 
28 150 60 6.83 8.10 0.04 0.38 7.59 5.44 12.72 12.83 
29 200 10 24.25 20.73 0.00 0.06 17.14 15.28 12.55 12.55 
30 200 20 17.96 13.83 0.00 0.13 13.30 11.13 12.62 12.63 
31 200 30 13.32 10.51 0.09 0.20 10.21 8.78 12.66 12.69 
32 200 40 10.46 9.10 0.09 0.27 8.58 7.30 12.7 12.74 
33 200 50 7.92 8.43 0.13 0.32 7.66 6.24 12.73 12.79 
34 200 60 6.47 8.10 0.13 0.38 7.00 5.44 12.77 12.83 
35 200 80 5.05 7.86 0.19 0.48 6.74 4.29 12.79 12.90 
36 200 100 6.10 7.88 0.28 0.58 5.08 3.52 12.84 12.96 
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Table C-3 Predicted final concentrations of precipitated solids in Cl-OH system. 
 

Chemical doses Concentrations of precipitated solids Solution 
No. 

Solid Solution 

 
Ca(OH)2 

 
NaAlO2 

 Total (mM) Fraction of 
chloro* 

Fraction of 
tri** 

Fraction 
of tetra*** 

Ca(OH)2 
(mM) 

 

Al(OH)3 
(mM) 

 

1 30 10 4.91 0.94 0.04 0.03 0.00 0.00 
2 30 20 7.31 0.80 0.18 0.02 0.00 0.00 
3 30 30 9.75 0.73 0.26 0.01 0.00 0.00 
4 30 40 7.82 0.69 0.30 0.01 0.00 3.60 
5 30 50 7.95 0.64 0.34 0.01 0.00 9.81 
6 60 10 4.96 0.93 0.03 0.04 24.99 0.00 
7 60 20 9.94 0.81 0.08 0.11 9.94 0.00 
8 60 30 14.64 0.64 0.23 0.13 0.00 0.00 
9 60 40 16.40 0.51 0.43 0.06 0.00 0.00 

10 60 50 16.87 0.46 0.50 0.04 0.00 0.00 
11 90 10 4.96 0.93 0.03 0.04 54.99 0.00 
12 90 20 9.94 0.81 0.08 0.11 39.94 0.00 
13 90 30 14.90 0.65 0.15 0.20 23.87 0.00 
14 90 40 19.91 0.53 0.21 0.27 7.35 0.00 
15 90 50 24.23 0.42 0.39 0.19 0.00 0.00 
16 90 60 25.83 0.35 0.55 0.10 0.00 0.00 
17 120 10 4.96 0.93 0.03 0.04 84.99 0.00 
18 120 20 9.94 0.81 0.08 0.11 69.94 0.00 
19 120 30 14.90 0.65 0.15 0.20 53.87 0.00 
20 120 40 19.91 0.53 0.21 0.27 37.35 0.00 
21 120 50 24.85 0.43 0.25 0.32 20.55 0.00 
22 120 60 29.84 0.37 0.28 0.36 3.56 0.00 
23 150 10 4.96 0.93 0.03 0.04 115.00 0.00 
24 150 20 9.94 0.81 0.08 0.11 99.94 0.00 
25 150 30 14.90 0.65 0.15 0.20 83.87 0.00 
26 150 40 19.91 0.53 0.21 0.27 67.35 0.00 
27 150 50 24.85 0.43 0.25 0.32 50.55 0.00 
28 150 60 29.84 0.37 0.28 0.36 33.56 0.00 
29 200 10 4.96 0.93 0.03 0.04 165.00 0.00 
30 200 20 9.94 0.81 0.08 0.11 149.90 0.00 
31 200 30 14.90 0.65 0.15 0.20 133.90 0.00 
32 200 40 19.91 0.53 0.21 0.27 117.30 0.00 
33 200 50 24.85 0.43 0.25 0.32 100.50 0.00 
34 200 60 29.84 0.37 0.28 0.36 83.56 0.00 
35 200 80 39.80 0.28 0.32 0.41 49.21 0.00 
36 200 100 49.80 0.22 0.34 0.44 14.52 0.00 

 
(*) �chloro� refers to calcium chloroaluminate 
(**) �tri� refers to tricalcium hydroxyaluminate 
(***) �tetra� refers to tetracalcium hydroxyaluminate 
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APPENDIX D 

TABULATED DATA 

Table D-1 Measured final concentrations in Cl-OH system. 

 
Initial conditions Final concentrations 

Ca(OH)2  
(mM) 

NaAlO2  
(mM) 

NaCl     
(mM) 

Final [Cl] 
(mM) 

Final [Al] 
(mM) 

Final [Ca] 
(mM) 

Final pH 

       
10 0 30 28.82 0.00 9.68 11.99 
10 10 30 25.35 6.76 1.29 11.87 
10 20 30 25.66 14.63 0.36 11.87 
10 30 30 26.09 21.30 0.29 11.90 
10 40 30 26.08 33.48 0.18 11.94 
10 50 30 26.48 38.79 0.12 11.96 
30 0 30 29.31 0.00 23.02 12.36 
30 10 30 20.90 0.11 10.08 12.35 
30 20 30 17.84 8.13 0.87 12.36 
30 30 30 17.62 19.37 0.43 12.36 
30 40 30 18.47 23.97 0.43 12.38 
30 50 30 20.50 32.52 0.43 12.42 
60 0 30 26.02 0.00 23.40 12.47 
60 10 30 21.77 0.43 18.70 12.5 
60 20 30 15.25 0.41 12.97 12.62 
60 30 30 12.37 2.24 2.30 12.57 
60 40 30 12.30 12.37 0.66 12.54 
60 50 30 13.71 19.48 0.34 12.54 
90 0 30 27.93 0.00 22.21 12.49 
90 10 30 20.63 0.21 17.66 12.53 
90 20 30 15.14 0.24 13.37 12.63 
90 30 30 10.56 1.16 10.47 12.72 
90 40 30 8.64 0.33 7.57 12.78 
90 50 30 10.46 1.22 3.56 12.79 
90 60 30 14.06 10.32 0.45 12.79 
120 0 30 27.34 0.00 22.75 12.32 
120 10 30 21.17 0.01 16.85 12.42 
120 20 30 16.49 0.02 12.69 12.49 
120 30 30 12.21 0.06 10.16 12.56 
120 40 30 9.63 0.09 8.14 12.63 



 200 

120 50 30 7.45 0.15 6.58 12.66 
120 60 30 10.07 0.17 6.20 12.70 
150 0 30 27.26 0.00 23.86 12.45 
150 10 30 22.83 0.01 17.74 12.49 
150 20 30 16.67 0.02 13.57 12.56 
150 30 30 12.55 0.02 10.90 12.64 
150 40 0.02 30 9.67 9.15 12.72 
150 50 30 7.93 0.03 8.23 12.68 
150 60 30 6.83 0.04 7.59 12.72 
200 0 30 26.89 0.00 22.46 12.42 
200 10 30 24.25 0.00 17.14 12.55 
200 20 30 17.96 0.00 13.30 12.62 
200 30 30 13.31 0.09 10.21 12.66 
200 40 30 10.45 0.09 8.58 12.7 
200 50 30 7.92 0.13 7.66 12.73 
200 60 30 6.47 0.13 7.00 12.77 
200 80 30 5.05 0.19 6.74 12.79 
200 100 30 6.10 0.28 5.08 12.84 

 
 

Table D-2 Effect of initial chloride concentrations on chloride removal with UHLA 

 
Initial conditions Final concentrations 

Ca(OH)2 

(mM) 

NaAlO2 

(mM) 

NaCl 

(mM) 

Final [Cl] 

(mM) 

Final [Al] 

(mM) 

Final [Ca] 

(mM) 

Final pH 

   Measured concentrations 
40 16 10 4.97 0.06 10.49 12.63 

200 80 50 15.67 0.07 5.14 13.13 
400 160 100 30.42 0.20 2.63 13.36 

   Predicted concentrations 
40 16 10 4.29 0.31 11.15 N/A* 

200 80 50 16.98 0.66 2.69 N/A 
400 160 100 31.52 1.11 1.30 N/A 

 
* N/A means not applicable because pH was fixed at the measured values 
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Table D-3 Effect of pH on chloride removal with UHLA 
 

Initial conditions Final concentrations 

Ca(OH)2 

(mM) 

NaAlO2 

(mM) 

CaCl2  

(mM) 

Final [Cl] 

(mM) 

Final [Al] 

(mM) 

Final [Ca] 

(mM) 

Final pH 

   Measured concentrations 
15 10 5 10.00 0.22 18.56 10.8 
15 10 5 10.08 0.69 18.91 11.15 
15 10 5 9.96 1.62 18.08 11.34 
15 10 5 10.03 2.67 17.84 11.35 
15 10 5 8.58 2.97 11.13 11.75 
15 10 5 7.37 1.85 4.13 12.14 
15 10 5 7.39 0.59 5.39 12.38 
15 10 5 8.80 2.33 1.95 12.83 
15 10 5 6.63 2.02 7.78 12.17* 
75 50 25 50.00 0.47 91.46 10.82 
75 50 25 49.98 0.67 87.15 10.97 
75 50 25 49.36 0.81 91.94 11 
75 50 25 46.99 0.79 76.14 11.15 
75 50 25 34.05 1.66 48.84 11.44 
75 50 25 19.07 1.04 13.17 12.18 
75 50 25 23.86 0.15 8.98 12.67 
75 50 25 32.46 0.56 2.39 13.05 
75 50 25 17.41 0.07 9.70 12.59* 

150 100 50 95.65 0.59 150.84 10.87 
150 100 50 94.56 0.59 158.50 10.88 
150 100 50 78.18 0.82 117.32 11.09 
150 100 50 60.08 1.67 78.05 11.29 
150 100 50 46.30 1.49 50.28 11.49 
150 100 50 36.55 0.95 29.45 11.89 
150 100 50 45.59 0.13 40.22 12.32 
150 100 50 45.84 0.14 9.10 12.79 
150 100 50 33.58 0.04 8.02 12.76* 

       
   Predicted concentrations 

15 10 5 10.00 0.5 20 N/A 
15 10 5 10.00 1.12 20 N/A 
15 10 5 10.00 1.73 20 N/A 
15 10 5 10.00 1.77 20 N/A 
15 10 5 8.67 4.47 17 N/A 
15 10 5 6.30 3.74 8.63 N/A 



 202 

15 10 5 6.40 2.39 6.42 N/A 
15 10 5 7.65 1.03 3.91 N/A 
15 10 5 5.65 2.60 6.54 N/A* 
75 50 25 50 0.56 100 N/A 
75 50 25 50 0.8 100 N/A 
75 50 25 50 0.85 100 N/A 
75 50 25 50 1.21 100 N/A 
75 50 25 29.73 2.34 59.16 N/A 
75 50 25 13.85 4.42 13.18 N/A 
75 50 25 16.71 1.28 7.93 N/A 
75 50 25 22.56 0.47 5.46 N/A 
75 50 25 13.64 0.69 5.63 N/A 

150 100 50 100 0.64 200 N/A* 
150 100 50 100 0.65 200 N/A 
150 100 50 81.54 1.06 163.1 N/A 
150 100 50 56.05 1.68 111.9 N/A 
150 100 50 38.55 2.65 76.34 N/A 
150 100 50 20.84 6.67 31.28 N/A 
150 100 50 20.68 4.17 15.83 N/A 
150 100 50 25.65 0.4 10.18 N/A 
150 100 50 24.83 1.08 5.57 N/A* 

* without pH adjustments (i.e., without additions of acid or base) 
 
 

Table D-4 Effect of temperature on chloride removal with UHLA 

Initial conditions Final concentrations 
Ca(OH)2 

(mM) 
NaAlO2 
(mM) 

Final [Al] NaCl 
(mM) 

Temperature 
(oC) 

Final 
[Cl] (mM) (mM) 

Final [Ca] 
(mM) 

Final 
pH 

20 10 10 20 5.84 1.94 4.73 12.36 
20 10 10 30 8.28 0.99 6.08 12.05 
20 10 10 40 8.95 0.68 6.08 11.80 
20 10 10 53 8.92 0.53 5.79 11.52 

100 50 50 20 22.49 0.11 6.03 12.97 
100 50 50 30 24.33 0.04 5.85 12.63 
100 50 50 40 25.33 0.04 5.91 12.34 
100 50 50 53 36.65 0.04 4.14 11.81 
200 100 100 20 46.06 0.09 3.49 13.22 
200 100 100 30 48.22 0.07 3.37 12.85 
200 100 100 40 50.32 0.09 2.60 12.56 
200 100 100 53 74.67 0.20 1.95 12.01 
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Table D-5 Interaction between chloride and sulfate in UHLA process 
 

Initial conditions Final concentrations 
Ca(OH)2 Final 

[Al] 
(mM) 

Final 
[Ca] 

(mM) 
 

(mM) 

NaAlO2 
 

(mM) 

NaCl 
 

(mM) 

Na2SO4 
 

(mM) 

Final 
[Cl] 

(mM) 

Final 
[SO4] 
(mM) 

Final pH 

    Measured concentrations 
10 5 0 10 0.00 4.88 1.42 0.21 12.07 
20 10 0 10 0.00 1.26 2.64 0.16 12.35 
30 15 0 10 0.00 0.80 1.23 1.06 12.48 
50 25 0 50 0.00 24.38 4.32 0.06 12.64 

100 50 0 50 0.00 4.21 1.16 0.06 12.89 
150 75 0 50 0.00 2.80 5.36 0.07 12.97 
100 50 0 100 0.00 50.53 12.37 0.04 12.89 
200 100 0 100 0.00 17.56 15.91 0.04 13.07 
300 150 0 100 0.00 9.74 6.35 0.11 13.15 
20 10 10 10 9.16 1.11 3.48 0.06 12.33 
40 20 10 10 9.13 0.40 2.46 1.02 12.51 
60 30 10 10 7.88 0.40 2.21 6.02 12.64 
60 30 10 50 9.01 19.52 7.24 0.04 12.68 

120 60 10 50 9.29 3.73 6.52 0.08 12.91 
180 90 10 50 8.57 1.35 2.00 1.84 12.99 
110 55 10 100 9.23 51.82 15.81 0.05 12.85 
220 110 10 100 9.53 16.19 14.76 0.05 13.08 
330 165 10 100 9.29 5.40 2.47 0.10 13.14 
60 30 50 10 45.53 0.40 2.07 3.88 12.58 

120 60 50 10 29.03 0.40 0.19 4.41 12.79 
180 90 50 10 20.39 0.40 0.29 3.88 12.91 
100 50 50 50 48.51 5.61 10.52 0.04 12.84 
200 100 50 50 45.55 0.40 0.20 1.95 12.98 
300 150 50 50 37.84 0.40 0.29 1.88 13.05 
150 75 50 100 49.08 30.35 9.21 0.11 12.94 
300 150 50 100 45.60 9.77 3.54 0.13 13.10 
450 225 50 100 40.96 5.70 1.16 0.91 13.17 
110 55 100 10 81.57 0.40 0.22 2.76 12.75 
220 110 100 10 54.45 0.40 0.27 3.05 12.94 
330 165 100 10 39.03 0.40 0.38 2.24 13.05 
150 75 100 50 93.96 3.35 3.23 0.02 12.90 
300 150 100 50 87.77 0.40 0.25 1.95 13.03 
450 225 100 50 56.07 0.40 0.59 0.98 13.13 
200 100 100 100 93.05 18.18 20.81 0.02 13.01 
400 200 100 100 92.66 5.40 0.38 0.81 13.14 
600 300 100 100 73.94 3.87 0.42 0.99 13.21 
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    Predicted Concentrations 
10 5 0 10 0 5.20 1.80 0.40 11.87 
20 10 0 10 0 0.63 3.24 0.50 12.18 
30 15 0 10 0 0.05 2.61 1.46 12.22 
50 25 0 50 0 25.20 8.27 0.12 12.44 

100 50 0 50 0 4.80 13.60 0.11 12.7 
150 75 0 50 0 0.36 8.33 0.33 12.6 
100 50 0 100 0 50.73 16.23 0.07 12.7 
200 100 0 100 0 10.90 26.10 0.07 12.83 
300 150 0 100 0 0.70 16.30 0.20 12.7 
20 10 10 10 10.00 0.78 3.12 0.46 12.33 
40 20 10 10 9.90 0.03 1.36 1.83 12.52 
60 30 10 10 8.57 0.00 0.80 3.60 12.7 
60 30 10 50 10.00 20.77 9.54 0.09 12.74 

120 60 10 50 10.00 3.92 10.80 0.12 13.10 
180 90 10 50 9.97 0.60 3.40 0.35 13.10 
110 55 10 100 10.00 47.09 17.00 0.05 12.96 
220 110 10 100 10.00 14.90 20.10 0.06 13.21 
330 165 10 100 10.00 3.72 9.38 0.12 13.33 
60 30 50 10 43.05 0.03 1.05 1.90 12.66 

120 60 50 10 29.52 0.00 0.36 3.50 12.91 
180 90 50 10 26.25 0.00 0.50 3.00 13.01 
100 50 50 50 50.00 7.06 12.10 0.10 12.92 
200 100 50 50 48.03 0.34 2.09 0.50 13.12 
300 150 50 50 37.92 0.04 0.60 1.50 13.24 
150 75 50 100 50.00 31.70 20.60 0.05 13.07 
300 150 50 100 49.90 6.03 12.90 0.09 13.29 
450 225 50 100 45.28 0.23 0.60 0.90 13.41 
110 55 100 10 71.54 0.03 0.64 1.80 12.88 
220 110 100 10 51.32 0.00 0.50 2.20 13.11 
330 165 100 10 46.79 0.00 0.80 1.60 13.22 
150 75 100 50 99.45 2.12 7.83 0.19 13.02 
300 150 100 50 73.50 0.09 0.38 1.42 13.26 
450 225 100 50 61.03 0.03 0.92 1.01 13.36 
200 100 100 100 99.00 18.73 21.00 0.06 13.16 
400 200 100 100 95.30 1.30 3.64 0.24 13.37 
600 300 100 100 74.30 0.14 0.96 0.70 13.49 
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Table D-6 Interaction between chloride and silica in UHLA process 
 

Initial conditions Final concentrations 
Ca(OH)2 

 
(mM) 

NaAlO2 
 

(mM) 

NaCl 
 

(mM) 

Na2SiO3 
 

(mM) 

Final 
[Cl] 

(mM) 

Final 
[Si] 

(mM) 

Final 
[Al] 

(mM) 

Final 
[Ca] 

(mM) 

Final pH 

1.5 0.75 0 0 0.00 0.00 0.62 1.19 11.35 
3 1.5 0 0 0.00 0.00 1.25 2.15 11.67 
6 3 0 0 0.00 0.00 1.70 4.13 11.99 

1.5 0.75 0 1.5 0.00 0.92 0.18 0.98 11.65 
3 1.5 0 1.5 0.00 0.34 0.45 1.65 11.84 
6 3 0 1.5 0.00 0.05 1.68 3.58 12.05 

1.5 0.75 0 3 0.00 1.96 0.10 0.53 11.77 
3 1.5 0 3 0.00 1.00 0.14 1.05 11.93 
6 3 0 3 0.00 0.12 1.10 1.99 12.09 

10 5 10 0 8.97 0.00 1.86 4.93 12.15 
20 10 10 0 6.60 0.00 1.52 4.69 12.32 
30 15 10 0 6.99 0.00 0.56 5.56 12.43 
10 5 10 1.5 8.94 0.02 0.69 3.58 12.20 
20 10 10 1.5 8.02 0.00 0.54 5.48 12.40 
30 15 10 1.5 9.17 0.01 0.01 7.07 12.49 
10 5 10 3 9.78 0.03 0.81 2.70 12.22 
20 10 10 3 8.65 0.01 0.29 5.33 12.44 
30 15 10 3 7.19 0.01 0.04 6.76 12.55 
50 25 50 0 33.18 0.00 0.14 4.37 12.65 

100 50 50 0 23.38 0.00 0.05 5.09 12.85 
150 75 50 0 17.68 0.00 0.06 4.05 12.96 
50 25 50 1.5 35.87 0.00 0.12 4.05 12.67 

100 50 50 1.5 25.68 0.00 0.02 4.53 12.87 
150 75 50 1.5 19.28 0.00 0.01 3.10 12.97 
50 25 50 3 39.14 0.00 0.12 3.89 12.67 

100 50 50 3 26.80 0.00 0.20 4.21 12.87 
150 75 50 3 20.05 0.00 0.30 3.02 12.97 
100 50 100 0 75.72 0.00 0.08 4.93 12.84 
200 100 100 0 53.49 0.00 0.07 2.31 13.04 
300 150 100 0 38.73 0.00 0.16 2.05 13.15 
100 50 100 1.5 78.36 0.00 0.10 4.45 12.85 
200 100 100 1.5 55.46 0.00 0.07 2.27 13.04 
300 150 100 1.5 41.50 0.00 0.31 1.86 13.14 
100 50 100 3 80.72 0.00 0.11 3.89 12.85 
200 100 100 3 58.64 0.00 0.06 1.59 13.01 
300 150 100 3 49.82 0.00 0.33 1.57 13.15 
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APPENDIX E 

XRD DATA FOR PRECIPITATED SOLIDS 

Table E-1  XRD10 
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Table E-2  XRD30 
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Table E-3  XRD 50 
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Table E-4  XRD100 
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Table E-5  XRDCa 
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Table E-6  XRDAl 
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Table E-7  XRDSO4 
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Table E-8  XRDSi 
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