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ABSTRACT

Time Series Exponential Models: Theory and Methods. (May 2004)

Scott Harold Holan, B.S.; M.S., University of Illinois at Chicago

Chair of Advisory Committee: Dr. Emanuel Parzen

The exponential model of Bloomfield (1973) is becoming increasingly important

due to its recent applications to long memory time series. However, this model has

received little consideration in the context of short memory time series. Furthermore,

there has been very little attempt at using the EXP model as a model to analyze

observed time series data.

This dissertation research is largely focused on developing new methods to im-

prove the utility and robustness of the EXP model. Specifically, a new nonparametric

method of parameter estimation is developed using wavelets. The advantage of this

method is that, for many spectra, the resulting parameter estimates are less suscep-

tible to biases associated with methods of parameter estimation based directly on

the raw periodogram. Additionally, several methods are developed for the validation

of spectral models. These methods test the hypothesis that the estimated model

provides a whitening transformation of the spectrum; this is equivalent to the time

domain notion of producing a model whose residuals behave like the residuals of white

noise. The results of simulation and real data analysis are presented to illustrate these

methods.
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CHAPTER I

INTRODUCTION

1.1 The Problem

The exponential model (EXP) of Bloomfield (1973) is becoming increasingly impor-

tant due to its recent applications to modelling long memory time series. However,

this model has received little consideration in the context of short memory time series.

Furthermore, there has been very little attempt at using the EXP model to analyze

observed time series data.

This work is comprised of three main goals; the first is to highlight the work

of Bloomfield (1973) and to provide some remarks and observations not found in

the literature. The second goal is to discuss important contributions that have been

made in this area. The third goal is to extend the scope of the EXP model, increasing

its utility and robustness in short memory time series modelling. In particular, we

develop a strategy for parameter estimation and model fitting of EXP models.

Additionally, in this work EXP models are considered algorithmic models rather

than data models. Algorithmic models are characterized by the lack of any assumption

that the observed time series is generated from a stochastic model of a stationary

time series with a hypothesized spectral density. Conversely, data models make this

assumption. Thus, the overall problem to be solved is to produce a unified framework

for applying EXP models as algorithmic models and to empirically investigate the

properties of the developed methods. This framework will include new methods for

simulation, parameter estimation, order selection, and model validation.

The format and style follow that of Journal of the American Statistical Association.
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1.2 Literature Review

Very few sources exist containing information addressing the problem of modelling

short memory time series using the EXP(m) model. In Bloomfield (1973) the expo-

nential model, for the spectrum of a scalar time series, is introduced. The model

suggested by Bloomfield is a finite parameter model that is explicitly formulated in

terms of the spectral density. The model is motivated by the observation that if the

log of an estimated spectral density is a fairly well behaved function then it can be

well approximated by a truncated Fourier series. The form Bloomfield chose for this

model was

g(λ) =
τ 2

2π
exp

{
2

p∑
r=1

θr cos(rλ)

}
.

Furthermore, Bloomfield presents an iterative procedure for implementing maximum

likelihood estimation of the model parameters.

The work of Pourahmadi (1983) focuses on obtaining recursive formulas for the

AR(∞) and MA(∞) coefficients using cepstral correlations, see Chapter III. Further-

more, Pourhamadi points out that “Bloomfield (1973) proposes a parametric method

for density estimation where the parameters are cepstral correlations.” Thus, in this

work the author provides a means of connecting Bloomfield’s frequency domain model

with existing time domain representations.

Linhart and Volkers (1985) develop a general order selection criterion for para-

metric models of stationary Gaussian time series. The criterion is based on the (one

step ahead) mean squared error of prediction. Additionally, the order selection crite-

rion is explicitly formulated for the case of Bloomfield’s EXP(m) models.

Fitting models to spectra using standard software regression packages is exam-

ined in Cameron and Turner (1987). One aspect discussed in their paper is the use

of regression software in fitting Bloomfield’s EXP model. More specifically, the au-
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thors describe how the frequency domain maximum likelihood estimation algorithm of

Bloomfield(1973) can be restated as an iteratively reweighted least squares regression

and hence calculated using standard regression software.

More recently, Parzen (1993) examines the use of Renyi information divergence

as a means of estimating finite parameter spectral densities, as well as goodness of fit

by components and exponential models. In this context Parzen discusses exponential

models of the form

log fθ,m(λ) = θ0 + θ1J1(λ) + · · ·+ θmJm(λ)

where {1, J1(λ), J2(λ), · · · } form a complete orthonormal set of functions on L2[0, 1].

The case where Jk(λ) ≡ 2 cos(2πkλ), k = 1, 2, . . . and θ0 ≡
∫ 1

0
log f(λ)dλ = log σ2

∞

reduces to Bloomfield’s EXP model.

None of the above papers takes the approach considered in this work. The

approach considered in this work is to both fit EXP models algorithmically and to

validate goodness of fit on the criterion that the estimated model provides a whitening

transformation of the spectrum. This criterion is equivalent to testing the hypoth-

esis that the residual (whitening) correlations, the correlations associated with the

whitening spectral density, behave like the residuals of white noise.



4

CHAPTER II

BLOOMFIELD’S EXPONENTIAL MODEL FOR THE SPECTRUM OF A

SCALAR TIME SERIES

2.1 Bloomfield’s Exponential Model

Let {Xt} be an observed time series and {εt} be an unobserved white noise series.

One class of models frequently used when fitting parametric models to observed time

series is the autoregressive moving average (ARMA) model. In the original notation

of Bloomfield (1973) this model can be written as

Xt =

p∑
r=1

φrXt−r + εt −
q∑

r=1

θrεt−r. (2.1)

The spectral density function of this series is given by

g(ω) =
τ 2

2π

∣∣∣∣
1−∑q

r=1 θre
irω

1−∑p
r=1 φreirω

∣∣∣∣
2

(2.2)

where τ 2 is the variance of εt, the innovation variance.

The exponential model, pioneered by Bloomfield (1973), is motivated by the

observation that often the logarithm of an estimated spectral density is a fairly well

behaved function and therefore can be well approximated by a truncated Fourier

series. The form chosen, by Bloomfield, for the model is

g(ω) =
τ 2

2π
exp

(
2

p∑
r=1

θr cos(rω)

)

=
τ 2

2π
h(ω; θ). (2.3)

Note that the evenness of g restricts the Fourier series to be a cosine series.
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2.2 Bloomfield’s Maximum Likelihood Parameter Estimation

The estimation of a general model of the form

g(ω) =
τ 2

2π
h(ω; θ). (2.4)

is discussed by Walker (1964). In this work, Walker shows that if the time series is

Gaussian, then the log likelihood of the parameters given the observed data x1, · · · , xN

is approximately

−N
2

log(2π)− N

2
log(τ 2)− N

2τ 2

∫ π

−π

I(ω)

h(ω; θ)
dω (2.5)

where

I(ω) =
1

2πN

∣∣∣∣∣
N∑

t=1

xte
itω

∣∣∣∣∣

2

(2.6)

is the sample spectral density (periodogram) of x1, · · · , xN . Therefore, θ may be

estimated by minimizing

∫ π

−π

I(ω)

h(ω; θ)
dω =

∫ π

−π

1

2πN

∣∣∣∣∣
N∑

t=1

xte
itω

∣∣∣∣∣

2

exp

(
−2

p∑
r=1

θr cos(rω)

)
dω (2.7)

and τ 2 may be estimated by the minimized value. Furthermore, Walker shows that θ̂

and τ̂ 2 are consistent for θ and τ 2 respectively and that

√
N

(
θ̂ − θ0

)
d−→ N

(
0,W (θ0)

−1
)

(2.8)

where

W (θ) =
1

4π

∫ π

−π

[
∂

∂θ
log (h(ω; θ))

] [
∂

∂θ
log (h(ω; θ))

]′
dω. (2.9)

Assuming the model is a true EXP(p) and not misspecified, it can be verified that

W (θ) is equal to the identity matrix. This result can be used to implement direct

minimization of expression (2.7), in order to obtain estimates of θ̂ and τ̂ 2.
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Using a Newton-Raphson minimization procedure gives rise to an iterative scheme

in which

θ̂n+1 = θ̂n −
[
V(θ̂n)

]−1

v
(
θ̂n

)
(2.10)

where v(θ̂n) and V(θ̂n) are the vector and matrix of first and second derivatives

of expression (2.7) evaluated at θ̂n. Next, V(θ̂n) can be approximated by V(θ0);

while V(θ0) can be approximated by its expectation since its variance is O(n−1).

Furthermore, E[V(θ0)] can be approximated by −2τ 2W (θ0) = −2τ 2I. Replacing τ 2

by its nth iterated estimate τ̂ 2
n, which is expression (2.7) evaluated at θ̂n, an iterative

solution in which

θ̂n+1 = θ̂n +
1

2τ̂ 2
n

v(θ̂n) (2.11)

where

1

2τ̂ 2
n

v
(
θ̂n

)
=

1

2τ̂ 2
n

∫ π

−π

I(ω)

h(ω; θ)

∂

∂θ
log[h(ω; θ)]|θndω

=
1

2π

∫ π

−π

2πI(ω)

τ̂ 2
nh(ω; θ̂n)

c(ω)dω

=

∫ π

−π

1

τ̂ 2
n

1

2πN

∣∣∣∣∣
N∑

t=1

xte
itω

∣∣∣∣∣

2

exp

(
−2

p∑
r=1

θ̂rn cos(rω)

)
c(ω)dω(2.12)

and c(ω)′ = (cos(ω), ..., cos(pω)) is obtained. Note, in the original work, Bloomfield

updates his parameter estimates using

θ̂n+1 = θ̂n − 1

2τ̂ 2
n

v(θ̂n) (2.13)

where the negative sign is presumably the result of a typo. Additionally, note that

central to this procedure is that under the assumption of normality and the absence

of any model misspecification, W (θ0) =I. This observation makes direct minimization

of expression (2.7) more tractable when implementing the modified Newton-Raphson

iterative solution.
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The starting values Bloomfield suggests for the iterative parameter estimation

scheme are taken to be

θ̂1 =
2

N

m∑
j=1

log[I(ωj)] cos(rωj), r = 1, · · · , p (2.14)

where ωj = 2πj
N

are the Fourier frequencies and m = d(1
2
(N − 1)

)e. Note, dxe is

the ceiling function, the smallest integer greater than or equal to x. Additionally,

the criterion for determining convergence is based on the sum of squares of θ̂n −
θ̂n−1 multiplied by the series length and divided by the number of parameters being

estimated. The iterations are terminated when this quantity first falls below .01,

this is when the root mean square modification first falls below one tenth of the

common asymptotic standard deviation. In practice we choose a slightly stronger

criterion in order to insure convergence of the parameter estimates. The criterion we

choose for determining convergence is when the quantity first falls below .00001. This

will be discussed further in Chapter VI. Note, in Bloomfield’s iterative procedure

all multiparameter models are fit sequentially. Additionally, goodness of fit of the

estimated model is assessed by the residual variance, since this is an estimate of the

one step ahead mean square error of prediction achieved using the fitted model.

2.3 Alternative Definition for the EXP Model

Even though there only exists a small body of literature discussing Bloomfield’s EXP

model, several definitions for this model have been suggested. In this work, the EXP

model also differs from its original definition. In this section we define the EXP model

and set up some of the notation that will be used.

Let f(λ) be the true spectral density function. It is important to note that in this

work the spectral density is defined on the unit interval 0 ≤ λ < 1, and interpreted

on the interval 0 ≤ λ < .5. Additionally, note, f(λ) = f(1−λ). An important way to
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approximate a spectral density f(λ) is by using exponential spectral models of order

m. They can be defined by

log fθ,m(λ) = θ0 + 2
m∑

k=1

θk cos(2πkλ) (2.15)

where

θ0 =

∫ 1

0

log fθ,m(λ)dλ = log σ2
∞. (2.16)

Thus, exp(θ0) is equal to the innovation variance. Defining the EXP model of order

m as in expression (2.15) has immediate benefits in terms of interpretation. Consider

the system C = {1, cos(2πλ), cos(2π2λ), · · · } of cosine functions. For any spectral

density function f(λ), such that log f(λ) is absolutely integrable on (0, 1), define the

Fourier coefficients of log f(λ) by

θk =

∫ 1

0

log f(λ) cos(2πkλ)dλ, k = 0, 1, . . . . (2.17)

The system C is complete for C[0,1], the class of continuous functions on [0,1]. In

other words given any spectral density function, such that log f(λ) ∈ C[0,1],

log fθ,m(λ) = θ0 + 2
m∑

k=1

θk cos(2πkλ), 0 ≤ λ < 1, (2.18)

converges to log f(λ) in mean square as m → ∞, see Hart (1997). This implies that

the integrated squared error ISE[log fθ,m(λ), log f(λ)] converges to 0 as m→∞.

Additionally, the system C forms an orthogonal basis for C[0,1] which implies

that any continuous function on the interval [0,1] can be well approximated by a finite

linear combination of the elements of C. Often, in practice, when fitting the EXP

model to short memory spectra the θk decay to 0 quickly implying that there exists

a small value of m such that

log fθ,m(λ) ≈ log f(λ), ∀λ ∈ [0, 1]. (2.19)
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A more thorough discussion of the parameters θk, also known as cepstral correlations

(coefficients), will be given in Chapter III.

Another benefit of defining the EXP model by (2.15) is its similarity to the

spectral representation of R(ν), where R(ν) is the autocovariance function of lag ν,

for a covariance stationary time series. For example, given that R(ν) is absolutely

summable and that f(λ) is continuous

R(ν) =

∫ 1

0

f(λ) cos(2πνλ)dλ, ν ∈ Z (2.20)

and

f(λ) = R(0) + 2
∞∑

ν=1

R(ν) cos(2πνλ), λ ∈ [0, 1]. (2.21)

Moreover, it is well known that if the spectral density comes from an MA(m), then

R(ν) = 0 for all |ν| > m. This implies

f(λ) = R(0) + 2
m∑

ν=1

R(ν) cos(2πνλ), λ ∈ [0, 1]. (2.22)

Thus, the order m for the moving average model is such that the autocorrelations

of lag greater than m are equal to zero. Similarly, the order m for the autoregres-

sive model and exponential model are such that the inverse autocorrelations of lag

greater than m and the cepstral correlations of order greater than m are equal to zero

respectively. Thus, the spectral density of a short memory process can be modelled

parametrically by f , 1/f and log(f) where f corresponds to a MA model, 1/f to

an AR model and log(f) to an EXP model. The order of the coefficient where the

Fourier expansion of f , 1/f and log(f) vanishes is then the order of the MA, AR and

EXP model respectively.
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CHAPTER III

CEPSTRAL CORRELATIONS, MA(∞), AND POURAHMADI’S FORMULAS

3.1 Cepstral Correlations

Traditionally computation of MA(∞) coefficients proceeds parametrically by inver-

sion of an AR(p∧) model. Another method of computing MA(∞) coefficients is

through the use of recursive formulas developed by Pourahmadi (1983), which link

the MA(∞) coefficients, ψj, to the cepstral correlations.

Definition 1. The cepstral correlations (coefficients) are defined by

c(h) =

∫ 1

0

log f(λ) exp(2πihλ)dλ

=

∫ 1

0

log f(λ) cos(2πhλ)dλ. (3.1)

Note, the name “ceps” was originally given by Tukey as a reverse spelling of

“spec”. Moreover, in speech recognition literature the name “cepstral coefficient” is

given to descriptive statistics similar to c(h). Additionally, note,

c(0) =

∫ 1

0

log f(λ)dλ (3.2)

and that θh of expression (2.17) are equivalent to c(h), for all h.

3.2 Pourahmadi’s Formulas

Let {Y (t)} be a covariance stationary time series with spectral density f(λ), 0 ≤ λ ≤
1. It is well known that {Y (t)} is purely nondeterministic if and only if

∫ 1

0

log f(λ)dλ > −∞, (3.3)
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see Brockwell and Davis (1996). Next, let {Y ν(t)} denote the normalized innovation

process of {Y (t)}. Then {Y ν(t)} is also covariance stationary and has constant spec-

tral density function identically equal to 1 on [0, 1]. By Wold’s decomposition, Doob

(1953) (as cited in Pourahmadi, 1983), Y (t) has a one sided MA(∞) representation

given by

Y (t) =
∞∑

k=0

ψkY
ν(t− k) (3.4)

where ψ0 ≡ 1. Additionally,

σY ν(t) = Y (t)− Ŷt(t− 1) (3.5)

and

σ2 = exp

(∫ 1

0

log f(λ)dλ

)
(3.6)

where Ŷt(t− 1) is the linear least squares predictor of Y (t) based on {Yk : k ≤ t− 1}.
Furthermore, Pourahmadi states it is known that

f = |φ|2 = φφ (3.7)

where

φ(λ) =
∞∑

k=0

ψke
2πikλ, (3.8)

∞∑

k=0

ψ2
k < ∞ (3.9)

and

σ = ψ0 > 0. (3.10)

Additionally, φ (the optimal factor of f) is unique and has an analytic extension to

the open disc D in the complex plane which can be written

φ+(z) = exp

[
c(0)

2
+

∞∑

k=1

c(k)zk

]
(3.11)
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where

c(k) =

∫ 1

0

log f(λ) exp(−2πikλ)dλ. (3.12)

Moreover, Pourahmadi states that (3.7) and (3.12) imply the coefficients ψk and c(k)

satisfy the identity
∞∑

k=0

ψkz
k = exp

[
c(0)

2
+

∞∑

k=1

c(k)zk

]
. (3.13)

Next, define the MA(∞) coefficients ψ(h)

Y (t) = Y ν(t) + ψ1Y
ν(t− 1) + ψ2Y

ν(t− 2) + . . . (3.14)

and the AR(∞) coefficients a(h) by

Y (t) + a(1)Y (t− 1) + a(2)Y (t− 2) + . . . = Y ν(t). (3.15)

Differentiating both sides of expression (3.13) followed by some algebra, Pourahmadi

(1983) obtains the following recursive formula

ψh =
1

h

h∑

k=1

kc(k)ψh−k, h = 1, 2, . . . . (3.16)

Similarly, since φ+ has all its roots outside of D, φ−1
+ is analytic in D and thus has a

power series representation given by

φ−1
+ =

∞∑

k=0

a(k)zk. (3.17)

Comparing this expression with expression (3.13) it follows that

∞∑

k=0

a(k)zk = exp

[
−c(0)

2
−

∞∑

k=1

c(k)zk

]
. (3.18)

Therefore, the recursive formula

−a(h) =
1

h

h∑

k=1

kc(k)a(h− k), h = 1, 2, . . . (3.19)

is also obtained.
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3.3 Empirical Examples

3.3.1 Example 1

Consider the following AR(2) model

Y (t)− .90Y (t− 1) + .70Y (t− 2) = Y ν(t). (3.20)

Assuming the variance of Y ν(t) equals 1, the spectral density of Y (t) is given by

f(λ) =
1

|1− .90 exp(2πiλ) + .70 exp(2π2iλ)|2 , 0 ≤ λ ≤ 1. (3.21)

Thus,

g(λ) = log f(λ) = − log
(|1− .90 exp(2πiλ) + .70 exp(2π2iλ)|2) . (3.22)

Next, the first four cepstral correlations are obtained numerically (only cepstral cor-

relations greater than .14 in absolute value are retained). These are .8994, -.2961,

-.3871, and -.1571. Using Pourahmadi’s formula the first three autoregressive coeffi-

cients are -.90, .70, and 0, precisely the coefficients of the original AR(2) model.

3.3.2 Example 2

Similarly, consider the following MA(3) model

Y (t) = Y ν(t)− .70Y ν(t− 1)− .10Y ν(t− 2) + .60Y ν(t− 3). (3.23)

Again, assuming the variance of Y ν(t) equals 1, the spectral density of Y (t) is given

by

f(λ) = |1− .70 exp(2πiλ)− .1 exp(2πi2λ) + .60 exp(2πi3λ)|2, 0 ≤ λ ≤ 1. (3.24)

Thus,

g(λ) = log f(λ) = log
(|1− .70 exp(2πiλ)− .1 exp(2πi2λ) + .60 exp(2πi3λ)|2) .

(3.25)
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Next, the first five cepstral correlations are obtained numerically (only cepstral cor-

relations greater than .14 in absolute value are retained). These are -.6997, -.3436,

.4170, .3062, and .2783. Using Pourahmadi’s formula the first four MA coefficients

are -.70, -.10, .60 and 0, precisely the coefficients of the original MA(3) model.
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CHAPTER IV

MEMORY TYPE OF A TIME SERIES

4.1 Definitions

In order to successfully model a time series a criterion is needed for determining its

“memory type”. Memory type is usually divided into three broad classes, no memory,

short memory, and long memory. Additionally, time series can be further classified

as stationary or non-stationary. Similar to Newton (1988) memory can be defined as

follows:

1. No memory- This type of series is completely random and shows no trends

over time. That is observations at different time points are uncorrelated. This

type of series is also called white noise in analogy to the physical spectrum

of white light, which is constant over all frequencies. Moreover, a sequence of

uncorrelated random variables is called white noise.

2. Long memory- This type of series is the opposite of no memory. Furthermore,

this type of series can be characterized by the feature that the series is almost

perfectly predictable far into the future. This is because the correlation between

observations at one point in time and observations at previous time points

decays slowly.

3. Short memory- This type of series falls between no memory and long mem-

ory. Furthermore, this type of series has the property that the dependence on

past observations dies out rapidly. Therefore, knowing the past provides some

information but does not allow us to forecast the future with a high degree of

accuracy.
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Lastly, stationarity can be thought of intuitively by the notion that realizations of

the time series over two equal time intervals should possess similar statistical charac-

teristics. The above classifications can be stated using many different precise mathe-

matical definitions. In what follows some of these definitions are stated explicitly in

order to aid in the development of diagnostics for proper memory classification and

model validation.

One characterization of memory is due to long memory modelling. This char-

acterization can be formulated using the recent application of the EXP model in

this area. More specifically, the fractionally differenced exponential model (FEXP),

discussed by Janacek (1982) and Beran (1993) among others. The FEXP model is

defined by

f(λ) =
∣∣1− e−2πiλ

∣∣−2d
f ∗(λ) (4.1)

where f ∗(λ) is the short memory EXP model. Memory type is then classified in terms

of the memory parameter d,

d ∈
(
−1

2
,
1

2

)
, 6= 0 −→ stationary, long memory

d < −1

2
−→ long memory, non-invertible

d >
1

2
−→ long memory, non-stationary

d = 0 −→ stationary, short memory. (4.2)

In this work, unless otherwise stated, it is assumed that d = 0, thus expression (4.1)

reduces to the (stationary) short memory EXP model defined by expression (2.15).

Although, this characterization of memory in terms of the memory parameter is

mathematically precise, knowing d does not give full information about the memory

type of the process. That is, given only the information that d = 0, provides no

indication whether the process is short memory or no memory. Therefore, when
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modelling processes suspected of being stationary and short memory it may be more

illuminating to consider other diagnostics in order to characterize memory type, as

they may also be adapted for the purposes of model validation.

Another method of defining memory type is in terms of the autocorrelation

function. Let Y (t) be a mean zero stationary process with autocovariance func-

tion R(ν) = E[Y(t)Y(t + ν)]. One definition of the autocorrelation function, ρ(ν),

is ρ(ν) = R(ν)/R(0). As was previously eluded to, time series memory type can be

characterized by how rapidly ρ(ν) decays to zero. More specifically, in terms of ρ(ν),

the definition of the three memory types is:

∑∞
ν=1 |ρ(ν)| = 0 −→ no memory

0 <
∑∞

ν=1 |ρ(ν)| <∞ −→ short memory

∑∞
ν=1 |ρ(ν)| = ∞ −→ long memory. (4.3)

Let fn(λ) = f(λ)/R(0), 0 ≤ λ ≤ 1, be the normalized spectral density (i.e.
∫ 1

0
fn(λ)dλ = 1). Then the spectral density can be defined as the Fourier transform

of ρ(ν) by

fn(λ) =
∞∑

ν=−∞
ρ(ν) exp(2πiλν) (4.4)

and memory type can also be classified in terms of the dynamic range. The dynamic

range and its memory types are defined by

dynamic range = log

(
max fn(λ)

min fn(λ)

)

= log [max fn(λ)]− log [min fn(λ)]

= max log [fn(λ)]−min log [fn(λ)] (4.5)
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and

dynamic range = 0 −→ no memory

0 < dynamic range <∞ −→ short memory

dynamic range = ∞ −→ long memory, (4.6)

see Parzen (1981). This definition can be extended to accommodate the case of a

stationary time series whose correlation function ρ(ν) is not summable, see Parzen

(1981).

Another diagnostic considered in this work is the prediction variance horizon,

with horizon equal to one, originally defined by Parzen (1981). In modelling a sta-

tionary time series using the EXP model this turns out to be an especially useful di-

agnostic of memory type. In order to define the prediction variance horizon, PVH(h),

probability concepts are defined using prediction theory. Consider the mean zero

stationary time series Y (t) and let Y µ,m(t) be the finite memory one step ahead

predictor

Y µ,m(t) = E (Y (t)|Y (t− 1), . . . , Y (t−m)) . (4.7)

The infinite memory one step ahead predictor Y µ(t) is defined analogously by

Y µ(t) = E (Y (t)|Y (t− 1), Y (t− 2), . . .) . (4.8)

Similarly, the infinite memory predictor with horizon h is defined by

Y µ(t+ h|t) = E (Y (t+ h)|Y (t), Y (t− 1), . . .) . (4.9)

Their prediction errors are denoted

Y ν,m(t) = Y (t)− Y µ,m(t), (4.10)

Y ν(t) = Y (t)− Y µ(t) (4.11)
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and

Y ν(t+ h|t) = Y (t+ h)− Y µ(t+ h|t) (4.12)

respectively. Y ν(t) are white noise innovations and form an orthogonal basis for the

Hilbert space spanned by Y (t), for all t. Assuming Y (t) is nondeterministic then, by

Wolds decomposition, Y (t) has a one sided MA(∞) representation given by

Y (t) = ψ0 + ψ1Y (t− 1) + ψ2Y (t− 2) + . . . (4.13)

where ψ0 ≡ 1. An equivalent condition for the existence of a one sided MA(∞)

representation of Y (t) is ∫ 1

0

log f(λ)dλ > −∞. (4.14)

Moreover, the variances of Y (t) and Y ν(t) satisfy the following relationship,

E
(|Y (t)|2) = E

(|Y ν(t)|2) (
1 + ψ2

1 + ψ2
2 + . . .

)
. (4.15)

Next, define the normalized prediction error as the innovation variance (one step

ahead mean square error of prediction) divided by the variance of Y (t). Parzen(2002)

defines the prediction variance horizon

PVH(h) =
E(|Y ν(t+ h|t)|2)

E(|Y (t)|2) (4.16)

and

PVH(1) = σ2
∞ =

(
1 + ψ2

1 + ψ2
2 + . . .

)−1
. (4.17)

It should be noted that the prediction variance horizon, originally defined by Parzen

(1981), satisfies the relationship

PVH(h)2002 = 1− PVH(h)1981. (4.18)
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Computational formulas for PVH(h) are given by

PVH(h) = PVH(1)

(
h−1∑
j=0

ψ2
j

)
(4.19)

=

(∑h−1
j=0 ψ

2
j

)
(∑∞

j=0 ψ
2
j

) . (4.20)

Parzen (2002) gives an intuitive diagnostic for memory type in terms of PVH(1):

PVH(1) > .95 −→ no memory

.05 < PVH(1) < .95 −→ short memory

PVH(1) < .05 −→ long memory. (4.21)

A natural way of relating this diagnostic to the EXP model is through the cepstral

correlations (coefficients). Recall, the cepstral coefficients are defined by

c(h) =

∫ 1

0

log f(λ) cos(2πihλ)dλ (4.22)

and c(h) ≡ θh, where θh are the parameters of the EXP model. Assuming f(λ) is a

normalized spectral density, PVH(1) can be alternatively defined using c(0),

PVH(1) =
(
1 + ψ2

1 + ψ2
2 + . . .

)−1

= σ2
∞

= exp

(∫ 1

0

log f(λ)dλ

)

= exp [c(0)] . (4.23)

In practice, memory identification proceeds by using plug in estimators of theo-

retical diagnostics. One empirical diagnostic of memory type is the sample spectral

distribution function F∼(λ). In order to define F∼(λ), let {Y (t), t = 1, . . . , N} be an

observed time series with mean zero. The sample spectral density (periodogram) is
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defined by

f∼(λ) =
1

N

∣∣∣∣∣
N∑

t=1

Y (t) exp(2πiλt)

∣∣∣∣∣

2

, 0 ≤ λ ≤ 1. (4.24)

Similarly the normalized sample spectral density (periodogram) is defined by

f∼n (λ) =

∣∣∣∑N
t=1 Y (t) exp(2πiλt)

∣∣∣
2

∑N
t=1 Y

2(t)
, 0 ≤ λ ≤ 1. (4.25)

The sample correlation function ρ̂(ν), ν = 0, 1, . . . , N − 1 is defined by

ρ̂(ν) =

∑N−|ν|
t=1 Y (t)Y (t+ ν)∑N

t=1 Y
2(t)

(4.26)

=

∫ 1

0

f∼n (λ) exp(2πiλν)dλ. (4.27)

Finally, the sample spectral distribution is defined by

F∼(λ) = 2

∫ λ

0

f∼n (λ′)dλ′, 0 ≤ λ ≤ .5. (4.28)

In practice, we use a definition for the sample spectral distribution function, with a

more convenient computational formula,

F∼ (λk) =

∑k
j=1 f

∼
n (λj)∑M

j=1 f
∼
n (λj)

=

∑k
j=1 f

∼(λj)∑M
j=1 f

∼(λj)
, k = 1, . . . ,M (4.29)

where M = [N/2] + 1 and λj is the jth Fourier frequency.

One method of determining memory type, using the sample distribution function,

is graphically. Parzen (1981) suggests

F∼ uniform −→ no memory

F∼ otherwise −→ short memory

F∼ has sharp jumps −→ long memory. (4.30)
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4.2 Identifying Time Series Memory Type

The approach we take, in subsequent chapters, for modelling an observed time series

begins by identifying the memory type. To identify memory type of a time series will

involve the following steps:

1. Estimate the log spectral density, log f(λ), see Chapter VI.

2. Compute PVH(1), see expression (4.23).

3. Compute and plot the spectral distribution function, F∼(λk), k = 1, . . . ,M , as

defined in expression (4.29).

4. Compute the sample dynamic range. The sample dynamic range is defined

using expression (4.5) and f∼n (λ). Note, in practice, short memory processes

usually have sample dynamic range ¿ 15.

Once memory type is determined, we employ the following model fitting strategy.

First, if Y is short memory we fit an appropriate EXP model (see Chapters VI and

VII). If Y is long memory transform it (parsimoniously) to be barely short memory

Y s (see Parzen 1982), we then fit an appropriate EXP model. In this work the

majority of methods developed apply only to stationary short memory time series.

Thus, unless otherwise stated, it is assumed that Y is a stationary, short memory

time series.
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CHAPTER V

SIMULATING DATA FROM EXPONENTIAL MODELS

5.1 Introduction

Simulating a process from an EXP(m) model requires a method that does not make

explicit use of residuals. In this chapter three applicable methods are described. The

first method is an exact frequency domain method due to Davies and Harte (1987).

The second is a well known exact time domain method, described by Percival (1992),

and the third method is an indirect method we develop, based on Pourahmadi’s

formula. The benefits of our method are that it is easy to implement, extremely

accurate, and requires less computing time.

5.2 Davies-Hart Method

The Davies-Hart method is based on the fast Fourier transform and simulates a sta-

tionary Gaussian time series of length N with autocovariances R(0), R(1), · · · , R(N).

The following is the Davies-Hart algorithm and is adapted from Beran (1994).

1. Define

λk =
(k − 1)

2N − 2
(5.1)

for k = 1, · · · , 2N − 2, and the finite Fourier transform gk of the sequence

R(0), R(1), · · · , R(N − 2), R(N − 1), R(N − 2), · · · , R(1),

gk =
N−1∑
j=1

R(j − 1)e2πi(j−1)λk +
2N−2∑
j=N

R(2N − j − 1)e2πi(j−1)λk (5.2)

for k = 1, · · · , 2N − 2.

2. Check that gk > 0 for all k = 1, · · · , 2N − 2.
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3. Simulate two independent series of zero mean normal random variables, say

U1, U2, · · · , UN and V1, V2, · · · , VN−1 such that

var(U1) = var(UN) = 2 (5.3)

and, for k 6= 1, N,

var(Uk) = var(Vk) = 1. (5.4)

Define V1 = VN = 0 and complex random variables Zk by

Zk = Uk + iVk, k = 1, · · · , N (5.5)

and

Zk = U2N−k + iV2N−k (5.6)

for k = N + 1, · · · , 2N − 2.

4. For t = 1, · · · , N , define

Yt =
1

2
√
N − 1

2N−2∑

k=1

√
gke

2πi(t−1)λkZk. (5.7)

Theoretically, the series Yt has the desired distribution.

In using this method to simulate from the EXP(m) model, the autocovariances need

to be estimated. The most frequently used method of estimating the autocovariances

is via the spectral density using numerical integration. That is

R(ν) =

∫ 1

0

f(λ) exp(2πiνλ)dλ

=

∫ 1

0

exp

(
θ0 + 2

m∑

k=1

θk cos(2πkλ)

)
exp(2πiνλ)dλ. (5.8)

Thus, in practice using this method can be time consuming and error prone. Addi-

tionally, since the process being simulated is short memory, one approach taken in
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practice is to only calculate the first M autocovariances, M ¿ N and set the remain-

ing N −M autocovariances to zero. A second, perhaps more accurate, method of

estimating the autocovariance sequence is described in Hurvich (2002). Even though

the accuracy of the Davies-Hart algorithm can be improved using this method of

estimation, the algorithm is still more computationally intensive than the indirect

method that we propose.

5.3 Exact Time Domain Method

The following method is a well known theoretically exact time domain method and

can be found in Percival (1992). Let {R(ν)} be the autocovariance sequence out to

lag N − 1. Then samples {Yt} can be generated using the following algorithm:

1. Generate Z0, Z1, · · · , ZN−1 where Zi ∼ i.i.d. N(0, 1) random variables.

2. Set Y0 = σ0Z0, where σ2
0 = R(0).

3. Calculate

Yt =
t∑

j=1

φj,tYt−j + Ztσt, t = 1, · · · , N − 1 (5.9)

where

φt,t =
R(t)−∑t−1

j=1 φj,t−1R(t− j)

σ2
t−1

(5.10)

φj,t = φj,t−1 − φt,tφt−j,t−1, 1 ≤ j ≤ t− 1 (5.11)

σ2
t = σ2

t−1(1− φt,t). (5.12)

If t = 1, define the sum on the right hand side of equation (5.9) equal to zero.

As in the exact frequency domain method, in practice this algorithm can be error

prone since the autocovariances, R(ν), need to be estimated using numerical inte-

gration. Even though the accuracy of the estimated autocovariance sequence can be
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improved using the method described in Hurvich (2002), this simulation method uses

the estimated R(ν)’s to calculate φt,t which are then reused to calculate φj,t. Due to

the nature of the iterative scheme in this algorithm, any numerical errors incurred

from estimating the R(ν)’s are compounded. Thus, this method can be inaccurate

and computationally intensive.

5.4 Indirect Method

The method that we propose is based on Pourhamadi’s formula and makes use of the

MA(∞) representation for the EXP(m) process. Let

log fθ,m(λ) = θ0 + 2
m∑

k=1

θk cos(k2πλ) (5.13)

be the log EXP(m) representation associated with the process {Yt} and let

Y (t) = ψ0Y
ν(t) + ψ1Y

ν(t− 1) + ψ2Y
ν(t− 2) + · · · (5.14)

be its associated MA(∞) representation (ψ0 ≡ 1). Recall Y ν(t), for all t, are called the

innovations where Y ν(t) are mean zero Gaussian white noise. Recall, Pourahmadi’s

formula enables direct computation of ψh from θk:

ψ0 ≡ 1

ψh =
1

h

h∑

k=1

kθkψh−k h = 1, 2, . . . . (5.15)

In order to simulate samples {Yt} from the EXP(m) model we use the following

algorithm:

1. Given the EXP(m) model calculate ψ0, ψ1, · · · , ψq for q sufficiently large (i.e.

q ≥ 1000), using Pourahmadi’s formula.

2. For k = 0, 1, · · · , q form

SSsim(k) =
SS(k)

SS(q)
=

∑k
h=0 ψ

2
h∑q

h=0 ψ
2
h

. (5.16)
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3. Find the largest value of k such that SSsim(k) < 1−ε (i.e. SSsim(k) = .9999999).

4. Form

Y (t) = ψ0Y
ν(t) + ψ1Y

ν(t− 1) + · · ·+ ψkY
ν(t− k) (5.17)

then

log fθ,m(λ) = θ0 + 2
m∑

k=1

θk cos(k2πλ)

≈ log


σ2

∣∣∣∣∣
k∑

h=0

ψh exp(2πihλ)

∣∣∣∣∣

2

 (5.18)

where σ2 = exp(θ0) and ψ0 ≡ 1.

5. Simulate the process {Yt} from its kth order truncated MA(∞) representation

using N(0, σ2 = exp(θ0)) innovations.

This simulation procedure can be made virtually exact in the sense that the integrated

squared error between the spectral density of the EXP(m) process and the spectral

density of the process being simulated from can always be made arbitrarily small.

Consider the MA(∞) representation associated with fθ,m(λ), the spectral density of

the EXP(m) process, given by expression (5.14). It follows that

fθ,m(λ) = exp

(
θ0 + 2

m∑

k=1

θk cos(k2πλ)

)

= σ2

∣∣∣∣∣
∞∑

h=0

ψh exp(2πihλ)

∣∣∣∣∣

2

= lim
k→∞

σ2

∣∣∣∣∣
k∑

h=0

ψh exp(2πihλ)

∣∣∣∣∣

2

= fMA(∞)(λ). (5.19)

Moreover, the integrated squared error between fθ,m(λ) and fMA(k)(λ) is

ISE[fθ,m(λ), fMA(k)(λ)] =

∫ 1

0

[
fθ,m(λ)− fMA(k)(λ)

]2
dλ; (5.20)
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thus

lim
k→∞

ISE[fθ,m(λ), fMA(k)(λ)] = 0. (5.21)

Hence, in practice this method is not error prone like the exact time and frequency

domain methods previously described. Additionally, this method is easy to imple-

ment using any software capable of looping and generating normal random variables.

Note, this method can also be extended to allow simulation of long memory processes

through the use of fractional differencing via the FEXP model defined in expression

(4.1). However, when simulating FEXP processes the method of Hurvich (2002) may

be preferable and should be considered.

5.5 Example of Indirect Simulation Method

Consider the EXP(4) model given by

gEXP (λ) = log fEXP (λ)

= −.05 + 2[−.90 cos(2πλ) + .40 cos(2π2λ) + .30 cos(2π3λ)

+.15 cos(2π4λ)]. (5.22)

In order to simulate a time series from this model using the indirect method, the first

step is to compute the coefficients of the MA(q) representation using Pourahmadi’s

formula (q = 1000). For k = 0, . . . , q calculate SSsim(k), where SSsim(k) is defined

in expression (5.16).

The equivalent MA(∞) representation associated with the EXP(4) can be well

approximated by the MA(12) with the coefficients found in Table 1. The log spectral

density for this model is

gMA(λ) = log fMA(λ)

= log
(
σ2|1 + ψ1 exp(2πiλ) + · · ·+ ψ12 exp(2πi12λ)|2) . (5.23)
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Table 1. MA(k), k = 12, representation of the EXP(4) model and the associated
SSsim(k). Note that ψ0 ≡ 1.

k ψk SSsim(k) k ψk SSsim(k)
1 -.900 .7183015 7 -.008 .9998606
2 .805 .9754713 8 .018 .9999835
3 -.182 .9885445 9 .004 .9999893
4 .149 .9973950 10 .005 .9999985
5 -.019 .9975386 11 .001 .9999991
6 .076 .9998332 12 .001 .9999999

One measure of the “closeness” between the two spectral densities fEXP (λ) and

fMA(λ) is the squared error

SE(fEXP , fMA) = [fEXP (λ)− fMA(λ)]2 , (5.24)

see Figure 1. Additionally, this measure can be quantified using the integrated squared

error (ISE), where

ISE[fEXP (λ), fMA(λ)] =

∫ 1

0

[fEXP (λ)− fMA(λ)]2 dλ. (5.25)

In this case ISE[fEXP (λ), fMA(λ)] ≈ 5.73 × 10−7. Moreover, the “validity” of this

simulation is confirmed by a graph of the log EXP spectral density with the corre-

sponding truncated log MA spectral density drawn on the same axis, see Figure 2.

Lastly, a plot of log f(λ) and log f∼(λ) + γ provides another means of visual con-

firmation that the process is being simulated from the correct model, see Figure 3.
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Figure 1. Plot of SE(fEXP , fMA). This plot shows the squared error between the
EXP spectral density and its corresponding truncated MA spectral density. This plot
is approximately equal to zero for all λ ∈ [0, 1]. Note only 0 ≤ λ ≤ .5 is graphed due
to the symmetry of the spectral density on [0,1].
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Figure 2. An example of the log EXP spectral density and its corresponding
truncated log MA spectral density. The log EXP(4) spectral density given by expression
(5.22) and the log spectral density of the truncated MA model given by expression
(5.23) are virtually indistinguishable.
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Figure 3. Plot of log f(λ) and log f∼(λ) + γ. This plot provides a visual confir-
mation that the process is being simulated from the correct model. This conclusion is
based on the fact that the log sample spectral density plus a known constant overlays
the true log spectral density, as expected. Note that γ ≈ .57721 is Euler’s constant.
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CHAPTER VI

METHODS FOR SHORT MEMORY EXP PARAMETER ESTIMATION

6.1 Introduction

Several methods of parameter estimation exist for short memory EXP models. Among

these methods are maximum likelihood, minimization of Renyi information diver-

gence, and log periodogram regression. In addition to these methods, we propose a

new fully nonparametric approach based on wavelets.

The main emphasis of this chapter will be on introducing the new parameter

estimation method based on wavelets. However, for completeness, the methods based

on minimization of Renyi information divergence and log periodogram regression will

also be described. The maximum likelihood method, Bloomfield (1973), was fully

discussed in Chapter II. Note, the algorithm presented in that chapter can either be

implemented directly or equivalently through the use of iteratively reweighted least

squares with the aid of a standard software regression program that incorporates the

Nelder-Wedderburn algorithm for generalized linear models, see Cameron and Turner

(1987).

6.2 Parameter Estimation by Minimum Renyi Information Divergence

Modelling an observed time series Y (t) is equivalent to finding a filter which trans-

forms the time series Y (t) to a no memory (white noise) innovation series Y ν(t). Now,

let the parameters of the model be denoted θ, and gθ(λ) be the square modulus of

the frequency transfer function of the whitening filter. The spectral density is given

by

fθ(λ) =
σ2

gθ(λ)
(6.1)
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where σ2 = var[Y ν(t)], the innovation variance, and log σ2 =
∫ 1

0
log fθ(λ)dλ. Addi-

tionally, assume var[Y (t)] = 1, i.e. f∼(λ) = f∼n (λ). From the observed time series

Y (t), compute the normalized (to integrate to one) sample spectral density f∼(λ).

Parameter estimates can be found by minimizing the formula for Renyi information

divergence

IR−1 [f∼(λ)/fθ(λ)] =

∫ 1

0

(
f∼(λ)

fθ(λ)
− 1− log

(
f∼(λ)

fθ(λ)

))
dλ. (6.2)

See Parzen (1992) and Parzen (1993) for a complete discussion of Renyi information.

Minimization of expression (6.2) is equivalent to minimizing

log σ2 +
1

σ2

∫ 1

0

f∼(λ)gθ(λ)dλ. (6.3)

Thus, estimators θ∧ are obtained by minimizing with respect to θ

σ2
θ =

∫ 1

0

f∼(λ)gθ(λ)dλ. (6.4)

Additionally, σ2 can be estimated from this minimum value by

σ̂2 = σ2
θ∧ =

∫ 1

0

f∼(λ)gθ∧(λ)dλ. (6.5)

Therefore, the true spectral density, f(λ), can be estimated by

fθ∧(λ) =
σ̂2

gθ∧(λ)
. (6.6)

The parameter estimates obtained through minimizing Renyi information divergence

are asymptotically equivalent to maximum likelihood estimators. In the case of the

EXP model, minimizing IR−1 [f∼(λ)/fθ(λ)] from expression (6.2) is equivalent to

estimating θ∧ by minimizing

σ2
θ =

∫ 1

0

f∼(λ)

fθ,m(λ)
dλ (6.7)
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where

fθ,m(λ) = exp

(
θ0 + 2

m∑

k=1

θk cos(2πkλ)

)
. (6.8)

Therefore, the parameters can be estimated using the modified Newton-Raphson

procedure discussed in Chapter II. Note, in Chapter II the algorithm was defined for

spectral densities, f(λ), such that −π ≤ λ ≤ π. Hence, using the algorithm in this

context requires slight modification.

Both maximum likelihood and minimum Renyi information divergence parameter

estimation can suffer from several problems. The first problem is that in both of the

estimation schemes the parameter estimation depends on correct model specification.

The second problem is that the model is being fit in order to minimize an information

theoretic distance between f∼, the sample spectral density, and the estimated model,

fθ∧ . However, in short memory situations where the true spectral density has large

dynamic range or rapid variations, f∼ may suffer from leakage (bias) (see Section

6.4). For example, this can occur when the spectral density is close to being the

spectral density of a long memory time series but is still considered short memory.

Thus, fitting the model to f∼ may not produce a whitening model of the spectrum.

6.3 Parameter Estimation by Log Periodogram Regression

Recall the definition of the EXP(m) model given by expression (2.15)

log fθ,m(λ) = θ0 + 2
m∑

k=1

θk cos(2πkλ). (6.9)

This model can be estimated using an ordinary least squares regression and the sample

spectral density, f∼(λ). First, it is well known that

f∼(λ)
d
= f(λ)

χ2
2

2
, 0 < λ < .5. (6.10)
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Therefore, for 0 < λ < .5, it follows that

log f∼(λ)
d
= log

(
f(λ)

χ2
2

2

)

= log

(
f(λ)

2

)
+ log

(
χ2

2

)
. (6.11)

Thus, using the results of Bartlett and Kendall (1946)

Var [log f∼(λ)] =
π2

6
(6.12)

and

E [log f∼(λ)] = log f(λ)− γ, (6.13)

where γ ≈ .57721 is Eulers constant. Additionally, the random variable

ε(λ) ≡ log

(
f∼(λ)

f(λ)

)
+ γ (6.14)

has mean zero and variance σ2
ε = π2/6, since

ε(λ) ≡ log

(
f∼(λ)

f(λ)

)
+ γ

= log f∼(λ)− log f(λ) + γ

d
= log

(
f(λ)

χ2
2

2

)
− log f(λ) + γ

= log(χ2
2) + γ − log(2). (6.15)

Now, for 0 < λ < .5, let

g(λ) ≡ log f∼(λ) + γ (6.16)

then

g(λ) = log f(λ) + ε(λ) (6.17)

where ε(λ) ∼ (0, σ2
ε ) = (0, π2/6). Thus, g(λ) is equal to the true log spectral density

plus noise. Next, consider f∼(λj) where λj = j/N are the Fourier frequencies, N is

the sample size and j = 1, . . . , b(N−1)/2c. Under the assumption that the ε(λj) ≡ εj
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are independent and identically distributed, the parameters of the EXP(m) model can

be estimated using the following expression

g(λj) = log f∼(λj) + γ

= θ0 + 2
m∑

k=1

θk cos(2πkλj) + εj (6.18)

where θk are estimated using the ordinary least squares estimators, θ̂k, in the mul-

tiple linear regression of {log f∼(λj)}b(N−1)/2c
j=1 + γ on 1 and the cosine functions

{2 cos(2πkλj)}b(N−1)/2c
j=1 . In order to implement this procedure we rewrite expression

(6.18) in matrix notation

Y =




g(λ1)

g(λ2)

...

g
(
λb(N−1)/2c

)




=




1 2 cos(2πλ1) · · · 2 cos(2πmλ1)

1 2 cos(2πλ2) · · · 2 cos(2πmλ2)

...
...

...
...

1 2 cos
(
2πλb(N−1)/2c

) · · · 2 cos
(
2πmλb(N−1)/2c

)







θ0

θ1

...

θm




+




ε1

ε2
...

εb(N−1)/2c




= Xθ + ε. (6.19)

Using any standard regression software, or any program that performs matrix multi-

plication, θ̂ can be computed from the normal equations

θ̂ =
(
XTX

)−1
XTY. (6.20)



38

This method has both advantages and disadvantages. The main disadvantage of

this method is the same as the previous method. The θ̂k are being estimated using

g(λj) = log f∼(λj) + γ which could suffer from (bias) leakage, see Section 6.4. If this

is the case, the estimated model may not provide a whitening transformation of the

spectral density. On the other hand, one advantage of this method is that regression

diagnostics such as Mallow’s Cp can be used to aid in order selection.

6.4 Multitaper Spectral Density Estimation

6.4.1 Bias Reduction Through Tapering

Suppose {Y (t)} is a discrete parameter real valued stationary time series with mean

zero and continuous spectral density f(λ). Let {R(ν) : ν ∈ Z} be the autocovariance

function associated with the time series {Y (t)}. If
∑∞

ν=−∞ |R(ν)| <∞ then

f(λ) =
∞∑

ν=−∞
R(ν) cos(2πλν), λ ∈ [0, 1]. (6.21)

Given an observed time series Y (1), Y (2), · · · , Y (N), usually, estimation of f(λ) be-

gins with the sample spectral density (periodogram) f∼(λ). Let

R̂(ν) =
1

N

N−|ν|∑
t=1

Y (t)Y (t+ |ν|) (6.22)

be the sample autocovariance function then

f∼(λ) =
1

N

∣∣∣∣∣
N∑

t=1

Y (t) exp(−2πiλν)

∣∣∣∣∣

2

=
1

N

N∑
j=1

N∑

k=1

Y (j)Y (k) exp [−2πiλ(k − j)]

=
1

N

N−1∑

ν=−(N−1)

N−|ν|∑
t=1

Y (t)Y (t+ |ν|) exp(−2πiλν)

=

(N−1)∑

ν=−(N−1)

R̂(ν) exp(−2πiλν)
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=

(N−1)∑

ν=−(N−1)

R̂(ν) cos(2πλν). (6.23)

Moreover,

E
[
R̂(ν)

]
= E


 1

N

N−|ν|∑
t=1

Y(t)Y(t + |ν|)

 =

1

N

N−|ν|∑
t=1

R(ν)

=

(
1− |ν|

N

)
R(ν). (6.24)

Therefore, it follows that

E [f∼(λ)] =

(N−1)∑

ν=−(N−1)

E
[
R̂(ν)

]
cos(2πλν)

=

(N−1)∑

ν=−(N−1)

(
1− |ν|

N

)
R(ν) cos(2πλν). (6.25)

Thus, f∼(λ) is asymptotically unbiased. However, this does not mean that for any

particular N that bias[f∼(λ)] is necessarily small. Additionally,

(N−1)∑

ν=−(N−1)

(
1− |ν|

N

)
R(ν) cos(2πλν)

=

(N−1)∑

ν=−(N−1)

(
1− |ν|

N

)(∫ 1

0

f(ω) cos(2πνω)dω

)
cos(2πλν)

=

∫ 1

0

(N−1)∑

ν=−(N−1)

(
1− |ν|

N

)
cos [2πν(λ− ω)] f(ω)dω

=

∫ 1

0

FN(λ− ω)f(ω)dω (6.26)

where

FN(ω) =
N−1∑

ν=−(N−1)

(
1− |ν|

N

)
cos(2πνω)

=
1

N

(
sin(πNω)

sin(πω)

)2

. (6.27)
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FN is known as Fejér’s kernel. Thus, the expected value of f∼(λ) is the convolution

of Fejér’s kernel and the spectral density. Hence, the bias in f∼(λ) can be attributed

to the sidelobes of the Fejér kernel. This type of bias usually occurs in processes

having spectral densities with rapid variations and/or large dynamic range as defined

by expression (4.5). Therefore, for processes with large peaks and troughs in the

spectral density bias can be substantial. This bias is known as leakage and can be

attributed to the transfer of power from one frequency to another via the convolution

of Fejér’s kernel and the true spectral density. One method for decreasing the bias in

the periodogram is called tapering.

Tapering is a method for reducing the sidelobes in the Fejér kernel. If the side-

lobes are reduced, then there will be a substantial decrease in the bias of f∼(λ) due

to leakage. It should be noted, however, that this decrease in bias is at the cost of

increasing the variance of our estimator. Now in order to use the method of tapering,

we first form the product htY (t) for each t, where ht is called the data taper. Next,

let

J(λ) =
N∑

t=1

htY (t)e−2πiλt (6.28)

then by the spectral representation theorem

J(λ) =

∫ 1

0

H(λ− ω)dZ(ω) (6.29)

where {Z(·)} is an orthogonal process and {ht} and H(·) are Fourier transform pairs.

Moreover, if {ht} is an infinite sequence such that for t < 1 and t > N ht = 0 then

H(λ) =
N∑

t=1

hte
−2πiλt. (6.30)

Additionally,

f∼(t)(λ) = |J(λ)|2 =

∣∣∣∣∣
N∑

t=1

htY (t)e−2πiλt

∣∣∣∣∣

2

(6.31)
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which implies

E
[
f∼(t)(λ)

]
=

∫ 1

0

H(λ− ω)f(ω)dω (6.32)

(see Percival and Walden 1993 for proof). Hence, the goal is to select {ht} and hence

H(·) so that the side lobes in the Fejér kernel are reduced. However, this reduction

in the sidelobes causes an increase in the width of the main (central) lobe, and thus

a variance bias tradeoff.

6.4.2 Multitaper

In the previous section it is noted that one method for reducing bias due to leakage

is to apply a data taper to the process prior to computing the estimator for the

spectral density. In this section we describe a slightly modified version of a method

of multitapering used by Walden et al. (1998). Furthermore, in what follows, the

notation used is similar to that found in Percival and Walden (2000), where a more

comprehensive discussion of this method can be found. The idea behind multitaper

spectral estimates is to form a small number, K, of tapered periodograms, each having

a different data taper, and then average them together. If the K data tapers are all

pairwise orthogonal and each of them sufficiently prevents leakage then the resulting

spectral density estimator will have both a reduction in bias and variance compared

to the raw periodogram.

In order to apply this method, let {Y (t)} be a real valued mean zero stationary

process. Additionally, let {hn,t : t = 0, · · · , N − 1} n = 0, · · · , K − 1, denote the K

different data tapers to be used in forming the multitaper spectral density estimator

f∼(mt)(λ). Then

f∼(mt)(λ) ≡ 1

K

K−1∑
n=0

f∼(mt),n(λ) (6.33)
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where

f∼(mt),n(λ) ≡
∣∣∣∣∣
N−1∑
t=0

hn,tY (t)e−2πiλt

∣∣∣∣∣

2

. (6.34)

Note, the K data tapers are chosen to be orthonormal and the functions f∼(mt),n(λ) are

known as direct spectral estimators. The set of tapers used in this work, are the set

of sine tapers originally developed by Riedel and Sidorenko (1995); they are defined

by

hn,t =

(
2

N + 1

) 1
2

sin

(
(n+ 1)π(t+ 1)

N + 1

)
, t = 0, . . . , N − 1. (6.35)

Under suitable conditions and for large N

f∼(mt)(λ)
d
=
f(λ)χ2

2K

2K
, 0 < λ < .5. (6.36)

Using the results of Bartlett and Kendall (1946), corresponding to the properties of

log(χ2
2K), it follows that for 0 < λ < .5

E
[
log f∼(mt)(λ)

]
= log [f(λ)] + ψ(K)− log(K) (6.37)

and

Var
[
log f∼(mt)(λ)

]
= ψ′(K) (6.38)

where ψ(·) and ψ′(·) are the digamma and trigamma functions respectively. Further-

more, by the results of Bartlett and Kendall (1946), for 0 < λj < .5 the random

variables

η(λj) = log

(
f∼(mt)(λj)

f(λj)

)
− ψ(K) + log(K) (6.39)

are correlated and approximately N(0, ψ′(K)). Moreover, Bartlett and Kendall sug-

gest guidelines for when this approximation is appropriate; it can safely be used for

K ≥ 5 and tentatively for K = 4.

Finally, for 0 < λj < .5, let

g∼(mt)(λj) = log
[
f∼(mt)(λj)

]− ψ(K) + log(K) (6.40)
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then

g∼(mt)(λj) = log [f(λj)] + η(λj). (6.41)

Therefore, the log spectral density estimator is equal to the true spectral density plus

noise. Moreover, the noise is correlated and can be well approximated by Gaussian

random variable with mean zero and known variance. Thus, this construction provides

an ideal setting for wavelet smoothing, which can then be interpreted using the log

exponential model and its corresponding MA(∞) representation. A more complete

discussion of the properties of {hn,t} and f∼(mt) can be found in Riedel and Sidorenko

(1995) and in Percival and Walden (2000) respectively.

6.5 EXP(m) via Multitaper Wavelet Spectrum Estimation

In order to estimate the coefficients of the EXP(m) model, the multitaper wavelet

spectral estimation method of Walden et al.(1998) is adapted and extended to permit

parameter estimation. Let Y (0), · · · , Y (N − 1) be a mean zero stationary process

with spectral density f(λ), and 2M = 2J+1 be the smallest power of two greater than

or equal to the sample size N. Again, using notation similar to that found in Percival

and Walden (2000), the parameter estimation method can be formulated as follows:

1. Form K (K ≥ 4) series of length 2M by using the sine tapers and padding the

tapered series with 2M −N zeros.

{hn,0Y (0), · · · , hn,N−1Y (N − 1), 0, · · · , 0} , n = 0, · · · , K − 1. (6.42)

Note, the sequence in expression (6.42) has 2M − N zeros and if Y (t) is not

assumed to have mean zero replace Y (t) by Y (t) − Y . Additionally, in the

original algorithm proposed by Walden et al. (1998) K is assumed to be greater

than or equal to 5 and 2M is any power of two greater than or equal to the

sample size N .
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2. Using the fast Fourier transform compute

f∼(mt),n(λk) ≡
∣∣∣∣∣
2M−1∑
t=0

hn,tY (t)e−2πiλkt

∣∣∣∣∣

2

, k = 0, . . . , 2M − 1 (6.43)

where λk = k
2M

and hn,tY (t) ≡ 0 for t ≥ N .

3. Average theK direct spectral estimators, f∼(mt),n(λk), to form the raw multitaper

estimate f∼(mt)(λk), see expression (6.33).

4. For k = 0, . . . , 2M − 1, form

g∼mt(λk) ≡ log[f∼(mt)(λk)]− ψ(K) + log(K) (6.44)

and place the 2M values in the column vector

g∼mt =




Ymt(λ0)

...

Ymt(λ2M−1)




=




log[f(λ0)]

...

log[f(λ2M−1)]




+




η(λ0)

...

η(λ2M−1)




= D + η. (6.45)

5. Using the Daubechies’ Least Asymmetric (LA(8)) wavelet, apply the discrete

wavelet transform (DWT) out to level J0 (J0 < J) to obtain the partial DWT

coefficients Wmt,1, · · · ,Wmt,J0 and Vmt,J0 . Note that J0 is chosen such that

the three coarsest levels are eliminated. Additionally, Wmt,j are the jth level

DWT coefficients and Vmt,J0 are the level J0 scaling coefficients.

6. Apply a soft threshold, δ, to Wmt,1, · · · ,Wmt,J0 to obtain Wt,1, · · · ,Wt,J0

where

(a) δ is a level independent threshold

δ = δ(u) ≡
√

2σ2
η log(M) (6.46)

and σ2
η = ψ′(K). δ(u) is known as a level independent universal threshold.
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(b) δ is a level dependent threshold

δ = δ
(u)
j ≡

√
2σ2

j log(M) (6.47)

δ
(u)
j is known as a level dependent universal threshold. Note that σj can

either be calculated exactly, see Percival and Walden (2000), or estimated

using the MAD estimate for each level j

σ̂(MAD)j ≡ median (|Wj,k −median(Wj,k)|)
.6745

. (6.48)

Note, the Vmt,J0 remain unchanged; see Vidakovic (1999) for a comprehensive

discussion surrounding wavelet thresholding.

7. Estimate D via D̂ by taking the inverse discrete wavelet transform (IDWT) of

Wt,1, · · · ,Wt,J0 and Vmt,J0 . Let D̂k denote the kth element of D̂ and note D̂k

gives an estimate of g(λk), the true log spectral density evaluated at the Fourier

frequency λk.

8. Let g∼(mthr)(λk) be the multitaper wavelet log spectral estimator. Then

g∼(mthr)(λk) =





D̂0, k=0;

1
2

(
D̂k + D̂(2M−k)

)
, k=1,...,M-1;

D̂M , k=M.

(6.49)

Note, since the thresholded multitaper estimate is not necessarily symmetric

about λ = 1
2
, g∼(mthr)(λk) is taken to be the average of D̂k and D̂(2M−k). Addi-

tionally, in this step Walden et al. (1998) estimate the spectrum rather than the

log spectrum by using exp(D̂k) in place of D̂k.

9. For h = 0, · · · ,M approximate the true cepstral coefficients

c(h) =

∫ 1

0

exp(2πihλ) log [f(λ)] dλ

=

∫ 1

0

cos(2πhλ) log [f(λ)] dλ (6.50)
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by using the fast Fourier transform and g∼(mthr)(λk) to obtain {ĉ(0), ĉ(1), · · · , ĉ(M)}.
The coefficients ĉ(h) are the wavelet cepstral coefficients.

10. Let

log fθ∧m(λj) = θ̂0 + 2
m∑

k=1

θ̂k cos(2πkλj) (6.51)

and

ĥm(λj) =
[
g∼(mthr)(λj)− log fθ∧m(λj)

]2
(6.52)

where λj = j/M, j = 0, 1, . . . , 2M − 1 and θ̂k ≡ ĉ(k). Note that g∼(mthr)(λj) =

g∼(mthr)(λ2M−j) by symmetry. Compute

ISE(d)
m =

1

2M

2M−1∑
j=0

ĥm(λj) = mean
[
ĥm(λj)

]
, j = 0, 1, . . . , 2M − 1. (6.53)

11. Choose different ordersm∗ based on the estimated model parameters and ISE
(d)
m ,

see Chapter VII. Then the model

log f(λ) = θ̂0 + 2
m∗∑

k=1

θ̂k cos(2πkλ) (6.54)

where

θ̂k ≡ ĉ(k) (6.55)

forms a candidate model.

In practice, for large N, this method is fairly robust to the exact number of

tapers used (K = 4, . . . , 8). However, overall K = 4 performed at least as well

as other choices of K for the majority of cases investigated. Additionally, for the

cases we investigated, the choice of threshold did not have a significant impact on the

procedure. Choosing the SURE, cross validation (CV), or generalized cross validation

(GCV) threshold yields similar results. See Donoho and Johnstone (1994), Nason
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(1996) and Jansen et al. (1997) respectively for further details on these types of

wavelet thresholds.

The wavelet method of parameter estimation possesses many advantages. The

first is that the method is fully nonparametric, assuming only that {Y (t)} constitutes

a realization from a stationary time series. Another advantage of the wavelet method

is that the parameter estimates are not obtained from a spectral estimator suffering

from substantial leakage. This is especially important when little is known about the

true spectral density of the process generating the data. Additionally, for processes

with raw spectral estimators suffering from leakage, the wavelet cepstral coefficients

often have smaller mean square error than the cepstral coefficients estimated using

traditional methods. Furthermore, the wavelet method, of parameter estimation, can

be implemented in a fairly automatic manner. This makes this method attractive in

situations where the goal is to model many individual time series.

6.6 Simulation Results

In this section we use simulated data to compare the performance of the maximum

likelihood, ordinary least squares, and wavelet parameter estimates. Using the in-

direct simulation method described in Chapter V, 1000 independent samples from

two Gaussian time series models are generated for several sample sizes (N = 100,

256, 512, and 1000). Both models are stationary short memory time series, however,

the dynamic range of the two models differs significantly. The first model has small

dynamic range, while the dynamic range of second models is much larger. Therefore,

in the second model there is bias, due to leakage, present in the periodogram. The

models considered are

log f(λ) = −3.50 + 2 [.5 cos(2πλ) + .25 cos(2π2λ) + .10 cos(2π3λ)] (6.56)
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and

log f(λ) = −1.0 + 2 [2.5 cos(2πλ)− 1.5 cos(2π2λ)] , (6.57)

see Figure 4.

The starting values for the maximum likelihood parameter estimation are ob-

tained by approximating the cepstral correlations using log f∼(λ) and the fast Fourier

transform. The criterion for convergence is based on the sum of squares of the mod-

ifications to the parameters divided by the number of parameters being estimated

multiplied by the series length. The iterations are stopped the first time this quantity

falls below .00001. Note, this is similar to the criterion used in Bloomfield (1973).

However, Bloomfield (1973) terminates iterations the first time this quantity falls be-

low .01. The criterion used by Bloomfield may not be strong enough to guarantee

the parameter estimates reach convergence, in all cases. Making the modification to

.00001 insures convergence, in most cases, with little effect to the number of iterations.

For the wavelet parameters, both the level independent and level dependent univer-

sal thresholds are used see expressions (6.46) and (6.47). For the level dependent

threshold, σj is estimated using the MAD estimate, see expression (6.48).

In this simulation study the maximum likelihood and ordinary least squares pa-

rameter estimates have small mean square error only for the spectrum with small

dynamic range. That is the spectral density whose periodogram does not suffer from

bias problems due to leakage. For the first model, the model with small dynamic

range, all three methods of parameter estimation exhibit similar mean squared er-

rors. However for model 2, the model suffering from leakage, the wavelet parameter

estimates have substantially smaller mean squared errors than both the maximum

likelihood and the ordinary least squared estimation methods. Thus, in cases where

there is little known about the true spectral density of the process generating the



49

data, the wavelet method may provide superior parameter estimates to those ob-

tained using either the method of maximum likelihood or least squares regression.

The results of this simulation can be found in Tables 2-9.

Table 2. Model 1 with N=1000: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=1000 θ0 = −3.50 θ1 = .50 θ2 = .25 θ3 = .10
Mean

mle (4.056) -3.502 0.499 0.249 0.099
ols -3.501 0.500 0.247 0.101
wave(i) -3.503 0.497 0.249 0.096
wave(d) -3.503 0.497 0.249 0.095

Bias
mle -0.003 -0.001 -0.001 -0.001
ols -0.001 0.000 -0.003 0.001
wave(i) -0.003 -0.003 -0.001 -0.005
wave(d) -0.003 -0.003 -0.001 -0.005

Variance
mle 0.002 0.001 0.001 0.001
ols 0.003 0.002 0.002 0.002
wave(i) 0.002 0.001 0.001 0.001
wave(d) 0.002 0.001 0.001 0.001

MSE
mle 0.002 0.001 0.001 0.001
ols 0.003 0.002 0.002 0.002
wave(i) 0.002 0.001 0.001 0.001
wave(d) 0.002 0.001 0.001 0.001
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Table 3. Model 1 with N=512: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=512 θ0 = −3.50 θ1 = .50 θ2 = .25 θ3 = .10
Mean

mle (4.241) -3.505 0.500 0.251 0.097
ols -3.500 0.501 0.251 0.097
wave(i) -3.507 0.497 0.250 0.093
wave(d) -3.507 0.497 0.250 0.093

Bias
mle -0.005 0.000 0.001 -0.003
ols 0.000 0.001 0.001 -0.003
wave(i) -0.007 -0.003 0.000 -0.006
wave(d) -0.007 -0.003 0.000 -0.007

Variance
mle 0.004 0.002 0.002 0.002
ols 0.007 0.003 0.003 0.003
wave(i) 0.005 0.003 0.002 0.002
wave(d) 0.005 0.003 0.002 0.002

MSE
mle 0.002 0.001 0.001 0.001
ols 0.003 0.002 0.002 0.002
wave(i) 0.002 0.001 0.001 0.001
wave(d) 0.002 0.001 0.001 0.001
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Table 4. Model 1 with N=256: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=256 θ0 = −3.50 θ1 = .50 θ2 = .25 θ3 = .10
Mean

mle (4.457) -3.508 0.497 0.245 0.099
ols -3.499 0.502 0.240 0.101
wave(i) -3.508 0.494 0.246 0.010
wave(d) -3.508 0.494 0.246 0.099

Bias
mle -0.008 -0.003 -0.005 -0.001
ols 0.001 0.002 -0.010 0.001
wave(i) -0.008 -0.006 -0.004 0.000
wave(d) -0.008 -0.006 -0.004 -0.001

Variance
mle 0.008 0.004 0.004 0.004
ols 0.013 0.007 0.007 0.006
wave(i) 0.009 0.005 0.005 0.004
wave(d) 0.009 0.005 0.005 0.004

MSE
mle 0.008 0.004 0.004 0.004
ols 0.013 0.007 0.007 0.006
wave(i) 0.009 0.005 0.005 0.004
wave(d) 0.009 0.005 0.005 0.004
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Table 5. Model 1 with N=100: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=100 θ0 = −3.50 θ1 = .50 θ2 = .25 θ3 = .10
Mean

mle (4.964) -3.530 0.498 0.236 0.096
ols -3.499 0.509 0.227 0.107
wave(i) -3.525 0.491 0.241 0.097
wave(d) -3.524 0.491 0.242 0.096

Bias
mle -0.030 -0.002 -0.014 -0.004
ols 0.001 0.009 -0.023 0.007
wave(i) -0.025 -0.009 -0.009 -0.003
wave(d) -0.024 -0.009 -0.008 -0.004

Variance
mle 0.021 0.011 0.011 0.011
ols 0.033 0.018 0.018 0.017
wave(i) 0.025 0.012 0.012 0.011
wave(d) 0.025 0.012 0.012 0.011

MSE
mle 0.022 0.011 0.011 0.011
ols 0.033 0.018 0.019 0.018
wave(i) 0.025 0.012 0.012 0.011
wave(d) 0.025 0.012 0.012 0.011
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Table 6. Model 2 with N=1000: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=1000 θ0 = −1.0 θ1 = 2.5 θ2 = −1.5
Mean

mle (7.33) -0.497 2.067 -1.179
ols -0.496 2.034 -1.131
wave(i) -1.011 2.501 -1.500
wave(d) -1.011 2.501 -1.500

Bias
mle 0.503 -0.432 0.321
ols 0.504 -0.465 0.369
wave(i) -0.011 0.006 0.000
wave(d) -0.011 0.016 0.000

Variance
mle 0.114 0.077 0.037
ols 0.111 0.089 0.049
wave(i) 0.002 0.001 0.001
wave(d) 0.002 0.001 0.001

MSE
mle 0.366 0.264 0.140
ols 0.365 0.306 0.185
wave(i) 0.003 0.001 0.001
wave(d) 0.003 0.001 0.001
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Table 7. Model 2 with N=512: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=512 θ0 = −1.0 θ1 = 2.5 θ2 = −1.5
Mean

mle (7.85) -0.337 1.934 -1.091
ols -0.329 1.889 -1.032
wave(i) -1.013 2.504 -1.499
wave(d) -1.013 2.504 -1.499

Bias
mle 0.663 -0.566 0.409
ols 0.671 -0.611 0.468
wave(i) -0.013 0.004 0.001
wave(d) -0.013 0.004 0.001

Variance
mle 0.143 0.095 0.043
ols 0.140 0.109 0.055
wave(i) 0.005 0.002 0.002
wave(d) 0.005 0.002 0.003

MSE
mle 0.582 0.416 0.210
ols 0.589 0.483 0.275
wave(i) 0.005 0.002 0.002
wave(d) 0.005 0.002 0.002
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Table 8. Model 2 with N=256: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=256 θ0 = −1.0 θ1 = 2.5 θ2 = −1.5
Mean

mle (7.962) -0.160 1.793 -1.000
ols -0.140 1.734 -0.936
wave(i) -1.009 2.498 -1.492
wave(d) -1.009 2.498 -1.492

Bias
mle 0.840 -0.707 0.497
ols 0.860 -0.766 0.564
wave(i) -0.009 -0.002 0.008
wave(d) -0.009 -0.002 0.008

Variance
mle 0.194 0.124 0.052
ols 0.198 0.144 0.066
wave(i) 0.009 0.005 0.005
wave(d) 0.009 0.005 0.005

MSE
mle 0.898 0.623 0.299
ols 0.938 0.731 0.384
wave(i) 0.009 0.005 0.005
wave(d) 0.009 0.005 0.005
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Table 9. Model 2 with N=100: The number in parenthesis is the mean number of
iterations for the maximum likelihood parameter estimation. Additionally, (i) and
(d) correspond to level independent and level dependent thresholding respectively.

Note that all values have been rounded to three decimal places.

N=100 θ0 = −1.0 θ1 = 2.5 θ2 = −1.5
Mean

mle (7.895) 0.076 1.592 -0.882
ols 0.129 1.510 -0.802
wave(i) -0.863 2.358 -1.406
wave(d) -0.863 2.358 -1.405

Bias
mle 1.076 -0.908 0.618
ols 1.129 -0.990 0.698
wave(i) 0.137 -0.142 0.094
wave(d) 0.137 -0.142 0.094

Variance
mle 0.251 0.153 0.064
ols 0.270 0.179 0.076
wave(i) 0.030 0.016 0.014
wave(d) 0.030 0.016 0.014

MSE
mle 1.409 0.977 0.446
ols 1.546 1.160 0.563
wave(i) 0.049 0.036 0.023
wave(d) 0.049 0.036 0.023
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Figure 4. An example plot of log f(λ) and log f∼(λ)+ .57721. f∼(λ) is generated
using the indirect simulation method with N=512. Both Models 1 and 2 are plotted.
Note, in the plot of model 2 it is apparent that there is leakage in the periodogram.



58

CHAPTER VII

ORDER SELECTION AND MODEL VALIDATION

7.1 Introduction and Philosophy

Let {Y (t), t ∈ Z} be a Gaussian mean zero observed time series. Time domain time

series modelling can be described by the estimation of a whitening filter that trans-

forms the time series to a white noise innovation series {Y ν(t)}. Conversely, the EXP

model is a spectral model (i.e. a frequency domain model). Thus, EXP modelling

can be characterized by the estimation of a whitening model of the spectrum. Let

fw(λ) be the whitening spectral density, where

fw(λ) =
f(λ)

fθ∧(λ)
. (7.1)

Thus, fw(λ) is the ratio of the true spectral density and the estimated model. Simi-

larly, let fw
n (λ) be the normalized (normalized to integrate to one) whitening spectral

density. Then

fw
n (λ) =

fw(λ)

σ2w
(7.2)

where

σ2w =

∫ 1

0

fw(λ)dλ. (7.3)

Furthermore, the Fourier transform of fw
n (λ) is called the residual (whitening) corre-

lations and are denoted ρw(h),

ρw(h) =

∫ 1

0

fw
n (λ) cos(2πhλ)dλ. (7.4)

The goal of model validation (fitting) is to determine if fw(λ) = σ2w (a constant);

the spectral density of white noise. Equivalently, model validation can be formulated
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in terms of ρw(h) for h = 1, 2, . . .. The goal is then to determine if, for h = 1, 2, . . .,

ρw(h) are the correlations of white noise (i.e. ρw(h) = 0 for h = 1, 2, . . .).

Unfortunately, in practice fw(λ) is not observable. Thus, we formulate the sam-

ple whitening spectral density, fw∗(λ) which is defined by

fw∗(λ) =
f∼(λ)

fθ∧(λ)
(7.5)

where f∼(λ) is the sample spectral density given by expression (4.24). Although the

sample whitening spectral density is defined for all λ ∈ [0, 1], in practice this quantity

is only calculated at the Fourier frequencies. For example,

fw∗(λj) =
f∼(λj)

fθ∧(λj)
(7.6)

where f∼(λj) is the sample spectral density and λj = j/N , j = 0, . . . , N − 1, are the

Fourier frequencies. Additionally, we assume that the data has been mean centered

and thus fw∗(0) ≡ 0. Similarly, in practice we define the normalized sample whitening

spectral density, fw∗
n (λj), by

fw∗
n (λj) =

fw∗(λj)

σ̂2w
(7.7)

where

σ̂2w =
1

N

N−1∑
j=0

fw∗(λj)

=
1

N

N−1∑
j=0

f∼(λj)

fθ∧(λj)
. (7.8)

Thus,

1

N

N−1∑
j=0

fw∗
n (λj) = 1 (7.9)

by construction. Moreover, let ρ̂w(h) be the sample whitening correlations then we

define ρ̂w(h) by the discrete Fourier transform of fw∗
n (λj), j = 0, . . . , N − 1,

ρ̂w(h) ≡ 1

N

N−1∑
j=0

fw∗
n (λj) cos(2πhλj). (7.10)
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For model validation, we test the null hypothesis that fw∗(λ) behaves like the sample

spectral density of white noise. This measures if an adequate smoother of fw∗(λ) is

a constant function. Thus, we assume, that under the null hypothesis fw∗(λ) has the

same distribution as the sample spectral density of white noise. Therefore,

fw∗(λ)
d
= σ2w





χ2
2/2 λ 6= .5

χ2
1 λ = .5

(7.11)

by analogy. Moreover, under the null hypothesis and the previous assumption, it

follows that fw∗
n (λj) has the same distribution as the normalized periodogram of

white noise.

Now, in order to effectively model a time series using the EXP(m) model, a

method is needed for choosing the order of candidate models. In this chapter we

present a method for choosing candidate models when using the wavelet estimation

approach. Additionally, we propose general tools for model validation. Note, in

practice, it is desirable to have m be small in order to minimize spurious spectral

peaks.

7.2 Linhart and Volkers Criterion

Linhart and Volkers(1985) formulate a general approach to model fitting of stationary

Gaussian time series, satisfying certain regularity conditions. The foundations of their

approach are based on minimizing an expected discrepancy function. Let ∆(f, fθ) be

the discrepancy function and ∆(θ̂) be the overall discrepancy

∆
(
θ̂
)

= ∆(f, fθ∧). (7.12)

The overall discrepancy takes into account both error due to approximation and error

due to estimation. The expected overall discrepancy is denoted E∆(θ̂); the estimator
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Ê∆(θ̂) of E∆(θ̂) is called the criterion and is used for judging model fit. Models are

chosen which minimize the quantity Ê∆(θ̂). Since Linhart and Volkers (1985) assume

the goal of fitting the model is forecasting, the discrepancy is chosen to be the (one

step ahead) mean square error of prediction. Note, in the case of autoregressive models

this discrepancy coincides with Akaike’s FPE criterion (if a certain approximation is

made), see Linhart and Volkers (1985). Now under f (f unknown), the best linear

predictor of Y (N + 1) given Y (N), Y (N − 1), . . . with spectral density gθ has (one

step ahead) mean square error of prediction defined by

∆(f, gθ) =

∫ 1

0

f(λ)

k(λ, θ)
dλ (7.13)

where

k(λ, θ) =
gθ

σ2
g

(7.14)

and σ2
g is the innovation variance of the approximating model. Recall,

σ2
g = exp

(∫ 1

0

log gθ(λ)dλ

)
. (7.15)

The empirical discrepancy is

∆N(θ) =
1

N

N−1∑
j=0

f∼(λj)

k(λj, θ)
(7.16)

where λj = j/N , j = 0, . . . , N − 1 (the Fourier frequencies). The minimum discrep-

ancy estimator is given by

θ̂ = arg min{∆N(θ) : θ ∈ Θ}. (7.17)

Furthermore, θ̂ obtained in expression (7.17) are asymptotically equivalent to the

maximum likelihood estimates described in Chapter II. Assuming regularity condi-

tions and making appropriate approximations, the authors arrive at a general crite-

rion, see Linhart and Zucchini (1986). They recommend as a rule the simple criterion

∆N

(
θ̂
) (

1 +
2m

N

)
(7.18)
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be used and to choose the order m minimizing the criterion. In terms of the expo-

nential model

k−1(λj, θ) = exp

(
−2

m∑

k=1

θ̂k cos(2πkλj)

)
. (7.19)

Thus, the criterion becomes

[
1

N

N−1∑
j=0

f∼(λj) exp

(
−2

m∑

k=1

θ̂k cos(2πkλj)

)](
1 +

2m

N

)
. (7.20)

Following the philosophy described in Section 7.1, when using maximum likelihood

parameter estimation, this criterion can be used as an aid in finding candidate mod-

els. These models should then be evaluated to determine whether they provide a

whitening transformation of the spectrum; among models which provide a whitening

transformation, select the model with the smallest order. Conversely, in the approach

of Linhart and Volkers (1985), the fitting procedure is judged solely on the basis of

value of the criterion, selecting the model which possesses the minimum estimated

expected discrepancy.

7.2.1 Simulation Study

In this section, we examine the performance of the Linhart-Volkers criterion (LVC),

for EXP models, as a sole means of order selection. Using the indirect method of

simulation described in Chapter V, 1000 independent samples are generated from

two Gaussian time series models for several sample sizes (N=100, 256, 512, 1000).

The models used are the same models used in the simulations in Chapter VI and

are given by expressions (6.56) and (6.57). The model given by expression (6.56),

model 1, has small dynamic range and thus does not present any problems of bias

due to leakage. Conversely, model 2, the model given by expression (6.57) has larger

dynamic range than model 1 and suffers from bias problems due to leakage.

As previously noted, the Linhart-Volkers criterion was originally developed in



63

conjunction with parameter estimates asymptotically equivalent to the maximum

likelihood estimates. However, in this simulation, parameters are estimated using

both the maximum likelihood method and the wavelet method, with level indepen-

dent thresholding as described in Chapter VI. As expected this simulation provides

empirical evidence that an alternative method for selecting candidate models needs

to be considered when using the wavelet method of parameter estimation.

Table 10. Linhart-Volkers criterion: Frequency of order chosen for model 1 using
both maximum likelihood and wavelet parameter estimation.

Model 1: EXP(3) m N = 100 N = 256 N = 500 N = 1000
Maximum Likelihood 1 169 4 0 0

2 75 5 0 0
3 453 678 707 714
4 94 136 104 122
5 67 61 76 65
6 41 34 37 38
7 39 23 27 22
8 19 25 22 13
9 21 15 16 14

10 22 19 11 12
Wavelet Method 1 140 4 0 0

2 535 428 198 48
3 288 444 652 787
4 17 99 127 144
5 8 16 17 18
6 9 3 5 3
7 2 5 1 0
8 1 0 0 0
9 0 0 0 0

10 0 1 0 0

For model 1, the distribution of orders selected differs drastically for the maxi-

mum likelihood and wavelet method. For models of this type having order m, this

occurs because the first m parameter estimates for both the maximum likelihood and

wavelet methods are approximately equal. However, for parameters m+ 1,m+ 2, . . .
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Table 11. Linhart-Volkers criterion: Frequency of order chosen for model 2 using
both maximum likelihood and wavelet parameter estimation. Note that this model

suffers from leakage.

Model 2: EXP(2) m N = 100 N = 256 N = 500 N = 1000
Maximum Likelihood 1 0 0 0 0

2 0 0 0 0
3 528 232 127 118
4 271 456 465 270
5 73 149 220 342
6 54 78 67 125
7 27 44 61 63
8 12 16 29 41
9 18 14 18 23

10 17 11 13 18
Wavelet Method 1 654 576 144 246

2 140 170 252 319
3 156 147 147 184
4 31 85 109 162
5 11 20 47 86
6 6 2 0 2
7 1 0 1 1
8 1 0 0 0
9 0 0 0 0

10 0 0 0 0

the wavelet parameter estimates are significantly smaller than the maximum likeli-

hood parameters.

As illustrated in Tables 10 and 11, when parameter estimation is done using

maximum likelihood, the Linhart-Volkers criterion works well for short memory time

series not suffering from bias due to leakage (i.e. small dynamic range and lack of

rapid fluctuations in the spectrum). However, when the periodogram is a signifi-

cantly biased estimate of the spectrum, as in model 2, this method breaks down.

Furthermore, even when the correct order is selected the model provides a poor fit,

since the parameter estimates are biased. Therefore, other methods for selecting the
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orders of candidate models should be considered in situations where little informa-

tion is known about the spectrum generating the observed time series. For example,

situations where the wavelet parameter estimation method may be advantageous.

7.3 Order Selection

In this section we suggest a method for selecting the orders of candidate EXP models

when using the wavelet method of parameter estimation. The method proposed is

based on the integrated squared error between the nonparametric wavelet estimate

and its interpreted log exponential model. It should be emphasized that the goal, in

selecting candidate models, is only to identify potentially appropriate models which

are then tested to determine goodness of fit.

Recall, that the discrete integrated squared error, ISE
(d)
m , has the form

ISE(d)
m =

1

2M

2M−1∑
j=0

ĥm(λj) = mean
[
ĥm(λj)

]
, j = 0, 1, . . . , 2M − 1 (7.21)

where

ĥm(λj) =
[
g∼(mthr)(λj)− log fθ∧m(λj)

]2
. (7.22)

The quantity defined by ISE
(d)
m is the trapezoid approximation to the continuous

integrated squared error calculated at the Fourier frequencies. This can be seen by

considering ∫ 1

0

h(λ)dλ. (7.23)

Suppose we are given λ = 0, 1/2M, . . . , 1 and h(0), h(1/2M), . . . , h(1), then by the

trapezoid approximation

∫ 1

0

h(λ)dλ ≈
2M∑
j=1

[
1

2

{
h

(
j

2M

)
+ h

(
j − 1

2M

)}]
1

2M

=
1

4M

(
2M∑
j=1

h

(
j

2M

)
+

2M∑
j=1

h

(
j − 1

2M

))



66

=
1

4M

(
h(0) + 2

2M−1∑
j=1

h

(
j

2M

)
+ h(1)

)

=
1

2M

2M−1∑
j=0

h

(
j

2M

)

= mean

[
h

(
j

2M

)]
, j = 0, 1/2M, . . . , 1 (7.24)

since h(0) = h(1) by symmetry.

In order to use ISE
(d)
m as an aid in selecting candidate models we calculate

ISE
(d)
m for m = 1, . . . , T , where T is suitably chosen. Candidate models of order m

are chosen such that both θ̂j+1 and ISE
(d)
j , j = m,m+1 . . ., are sufficiently small and

ISE
(d)
j is not changing significantly. Thus, the goal is to continue adding terms in the

model until the terms being added are not significantly different from zero. Note that

interpreting the nonparametric representation using the log exponential model has the

effect of removing both spurious peaks due to undersmoothing and due to artifacts

of the wavelet estimator. However, the removal of spurious peaks may also lead to

removal of small peaks that are caused by the underlying process generating the data.

Thus, once candidate models are selected, they must be evaluated to determine if they

provide a whitening transformation of the spectrum.

In order to illustrate the use of ISE
(d)
m we simulated a Gaussian time series

(N = 256) using the indirect simulation method described in Chapter V. The model

considered is given by

log f(λ) = 1 + 2 [.65 cos(2πλ)− .38875 cos(2π2λ)− .298458 cos(2π3λ)] . (7.25)

The estimated coefficients θ̂0, . . . θ̂15 and ISE
(d)
m can be found in Table 12.

Lastly Figure 5 shows both a plot of log f∼(λ)+γ (γ = .57721) with the wavelet

nonparametric representation superimposed and a plot of the EXP(3) model with the

nonparametric representation superimposed.
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Figure 5. Plot of log f∼(λ) + γ superimposed with g∼(mthr) and plot of EXP(3)
with g∼(mthr) superimposed.
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Table 12. This table displays the parameter estimates and ISE
(d)
m for the simulated

model given in expression (7.25). The candidate model chosen based on this
information is an EXP(3).

m θ̂m ISE
(d)
m m θ̂m ISE

(d)
m

0 .8751 NA 8 -.0182 .0020
1 .6782 .4107 9 -.0006 .0020
2 -.3763 .1367 10 -.0134 .0016
3 -.2569 .0035 11 .0049 .0016
4 .0071 .0035 12 -.0135 .0011
5 -.0169 .0028 13 .0128 .0009
6 -.0058 .0027 14 .0034 .0009
7 .0008 .0027 15 .0152 .0004

7.4 Distribution of the Sample Whitening Correlations

In Section 7.3 a method is developed for choosing candidate models; the next step

is model validation. Some of the methods that are suggested in subsequent sections

require the distribution of ρ̂w(h) under the null hypothesis. Recall, the null hypothesis

states that fw∗(λ) behaves like the sample spectral density of white noise.

Let {ε(t) : t ∈ Z} be a mean zero covariance stationary time series having

spectral distribution function Fw
n (λ), where Fw

n (λ) is the spectral distribution func-

tion associated with the normalized whitening spectral density fw
n (λ). Then, by the

spectral representation theorem

ρw(h) =

∫ 1

0

e−2πiλhfw
n (λ)dλ

=

∫ 1

0

e2πiλte−2πiλ(t+h)dFw
n (λ)

= E

(∫ 1

0

e2πiλtdZ(λ)

∫ 1

0

e2πiµ(t+h)dZ(µ)

)

= E
(
ε(t)ε(t+ h)

)

= E (ε(t)ε(t+ h)) (7.26)
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where {Z(λ), 0 ≤ λ ≤ 1} is an orthogonal increment process. Expression (7.26)

suggests that many time domain goodness of fit tests based on correlations may

be adapted to the frequency domain. In practice we define the sample whitening

correlations, ρ̂w(h), to be the Fourier coefficients obtained from the discrete Fourier

transform of the normalized sample whitening spectral density, recall,

ρ̂w(h) =
1

N

N−1∑

h=0

fw∗
n (λj) cos(2πhλj). (7.27)

Additionally, assume that the process associated with fw(λ) is a Gaussian white

noise process with variance σ2w. Similar to Priestly (1981), the random variables
√
Nρ̂w(1), . . . ,

√
Nρ̂w(m) (m fixed) are approximately independent and identically

distributed N(0,1) random variables under the null hypothesis of white noise.

One method of verifying the asymptotic distribution of
√
Nρ̂w(1), . . . ,

√
Nρ̂w(m)

under the null hypothesis is through the use of simulation. Recall, from Section 7.1

that under the null hypothesis we assume that fw∗
n (λj) has the same distribution as the

normalized periodogram of white noise. Therefore, the simulation can be conducted

using f∼n (λj) instead of fw∗
n (λj), j = 0, . . . , N − 1. The first step in the simulation

is to generate M (M ≥ 1000) independent and identically distributed samples of

size N from a N(0, σ2) distribution. Next, for each sample, calculate the normalized

sample spectral density f∼n (λj), j = 0, . . . , N − 1, where the λj’s are the Fourier

frequencies. Then, for each sample, calculate ρ̂w(h), h = 1, . . . , bN/2c using f∼n (λj),

j = 0, . . . , N − 1 and the fast Fourier transform. Summary statistics are calculated

and both the Shapiro-Wilk test of normality and the runs test for independence are

performed. Simulations, for several different values of m,N , and σ2, confirm the

claimed asymptotic distribution under the null hypothesis.

The distribution of the whitening correlations, under the null hypothesis, can

also be demonstrated empirically through the direct use of the normalized sample
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whitening sample spectral density, as in the following example. For this illustration,

the model

log f(λ) = .1 + 2 [.65 cos(2πλ)− .4 cos(2π2λ)− .3 cos(2π3λ)] (7.28)

is considered. First, 10,000 independent samples are generated with N = 100 and

fw∗
n (λj), j = 0, . . . , N−1 is formed using the true model in the denominator. Next, the

quantities
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2) are computed using fw∗

n (λj), j = 0, . . . , N − 1,

and the fast Fourier transform. The Shapiro-Wilk test for normality and the runs

test for independence are then performed. The results of this empirical study confirm

the claimed distribution and can be found in Table 13. Furthermore, simulations for

sample sizes N = 512 and N = 1000, yield similar results.

Table 13. Descriptive statistics for
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2), and Shapiro-Wilk

p-value. These values demonstrate that the random variables are N(0,1) and that the
variability of the mean and variance is small. Note that N = 100 with 10,000

repetitions and Q is the quantile for the Shapiro-Wilk p-value.

Descriptive Statistics Value
mean(p-value: Shapiro-Wilk) .50
var(p-value: Shapiro-Wilk) .08

mean(mean(
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2))) 0

var(mean(
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2))) .02

mean(var(
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2))) 1.0

var(var(
√
Nρ̂w(1), . . . ,

√
Nρ̂w(N/2))) .08

mean(p-value: runs test) .40
Q(.75) .75
Q(.50) .49
Q(.25) .25

7.5 Information Diagnostic

Recall, the goal of model validation is to determine if fw(λ) is equal to σ2w (a con-

stant), the spectral density of white noise. One possible test statistic for this hypoth-



71

esis is motivated by

I∞ = −
∫ 1

0

log fw
n (λ)dλ, (7.29)

where I∞ is called the “information diagnostic”. A comprehensive discussion on time

series and information can be found in Parzen (1983a) and Parzen (1992). Addition-

ally, this quantity can be regarded as a measure of the distance from the whitening

spectral density to a constant function. Now, under the null hypothesis I∞ = 0 with

larger values of this quantity being indicative of greater departures from white noise.

In order to use I∞ as motivation for a test statistic, we first consider the following

lemma.

Lemma 1. Let {Y (t)} be a mean centered covariance stationary process with sample

spectral density f∼(λ). Furthermore, suppose the underlying process associated with

fw(λ) is Gaussian white noise with variance σ2w. Then

log(σ̂2w)
p−→ log(σ2w). (7.30)

Proof:

Case 1: (N even)

σ̂2w =
1

N

N−1∑
j=0

fw∗(λj) =
1

N

N−1∑
j=1

fw∗(λj)

=
1

N


2

N/2−1∑
j=1

fw∗(λj) + fw∗(1/2)


 . (7.31)

Therefore,

E
(
σ̂2w

)
=

1

N

[
2(N/2− 1)σ2wE

(
χ2

2/2
)

+ σ2wE
(
χ2

1

)]

=
1

N

[
2(N − 2)σ2w + σ2w

]
=

(
N − 1

N

)
σ2w (7.32)
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and

Var
(
σ̂2w

)
= Var

[
1

N

N−1∑
j=1

fw∗(λj)

]

=
1

N2
Var


2

N/2−1∑
j=1

fw∗(λj) + fw∗(1/2)




=
1

N2
4(N/2− 1)Var [fw∗(λj)] +

1

N2
Var [fw∗(1/2)]

+
1

N2
4(N/2− 1)(N/2− 2)Cov

[
fw∗(λj), f

w∗(λ′j)
]

+
1

N2
2(2)(N/2− 1)Cov [fw∗(λj), f

w∗(1/2)]

=
σ4w

N2
[4(N/2− 1) + 2] =

2(N − 1)σ4w

N2
. (7.33)

This implies that

MSE
(
σ̂2w

)
=

2(N − 1)σ4w

N2
+

(
− 1

N
σ2w

)2

=
2σ4w

N
−→ 0 as N −→∞. (7.34)

Thus,

σ̂2w MSE−→ σ2w (7.35)

which implies

log(σ̂2w)
p−→ log(σ2w). (7.36)

Case 2: (N odd)

σ̂2w =
1

N

N−1∑
j=0

fw∗(λj) =
1

N

N−1∑
j=1

fw∗(λj)

=
1

N


2

(N−1)/2∑
j=1

fw∗(λj)


 . (7.37)
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Therefore,

E
(
σ̂2w

)
=

1

N

{
2

(
N − 1

2

)
E [fw∗(λj)]

}

=

(
N − 1

N

)
σ2w (7.38)

and

Var
(
σ̂2w

)
=

1

N2
Var


2

(N−1)/2∑
j=1

fw∗(λj)




=
4

N2

(
N − 1

2

)
Var [fw∗(λj)]

+
4

N2

(
N − 1

2
− 1

)(
N − 1

2
− 2

)
Cov

[
fw∗(λj), f

w∗(λ′j)
]

=
2

N2

[
(N − 1)σ4wVar

(
χ2

2/2
)]

=
2(N − 1)σ4w

N2
. (7.39)

This implies

MSE
(
σ̂2w

) −→ 0 as N −→∞. (7.40)

Therefore,

log(σ̂2w)
p−→ log(σ2w) (7.41)

and thus the lemma has been proven.

Furthermore, for 0 < λj < 1, let

g(λj) = log f∼(λj) + Cj (7.42)

where Cj = γ ≈ .57721 for λj 6= .5 and Cj = (log 2 + γ)/π for λj = .5. Then

g(λj) = log f(λj) + ε(λj) (7.43)

where ε(λj) = log[f∼(λj)/f(λj)] + Cj = log(Uj) + Cj and

Uj
d
=





χ2
2/2 λj 6= .5

χ2
1 λj = .5

(7.44)
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Therefore,

log f∼(λj) + Cj = log f(λj) + log(Uj) + Cj

= log f(λj) + ε(λj) (7.45)

which implies

log f∼(λj) + Cj − log fθ∧(λj) = log f(λj) + ε(λj)− log fθ∧(λj) (7.46)

or

log fw∗(λj) + Cj = log fw(λj) + ε(λj). (7.47)

Now, since Cj = γ for λj 6= .5 and [(log 2 + γ)/π] for λj = .5, it follows that

− 1

N

N−1∑
j=1

Cj = −
[
(N − 2)

N
γ +

1

N

(
log 2 + γ

π

)]
. (7.48)

This implies

− 1

N

N−1∑
j=1

Cj −→ −γ as N −→∞ (7.49)

or

− 1

N

N−1∑
j=1

Cj
p−→ −γ. (7.50)

Furthermore, E[ε(λj)] = 0 and Var[ε(λj)] <∞ for all λj, see Wahba(1980). Therefore,

1

N

N−1∑
j=1

ε(λj)
MSE−→ 0 (7.51)

and thus we have the following theorem.

Theorem 1. Let I∗∞ be the empirical information diagnostic, where

I∗∞ = − 1

N − 1

N−1∑
j=1

log fw∗
n (λj)− γ. (7.52)

Then

I∗∞
p−→ I∞. (7.53)
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Proof:

By the trapezoid approximation to the integral, it follows that

1

N

N−1∑
j=0

log fw(λj) −→
∫ 1

0

log fw(λ)dλ as N −→∞. (7.54)

Moreover,

1

N

N−1∑
j=0

log fw(λj) =
1

N
fw(0) +

1

N

N−1∑
j=1

log fw(λj) (7.55)

which implies

lim
N→∞

1

N

N−1∑
j=0

log fw(λj) = lim
N→∞

1

N

N−1∑
j=1

log fw(λj)

=

∫ 1

0

log fw(λ)dλ (7.56)

or

1

N

N−1∑
j=1

log fw(λj)
p−→

∫ 1

0

log fw(λ)dλ. (7.57)

Now, for 0 < λj < 1,

log fw∗(λj) + Cj − ε(λj) = log fw(λj). (7.58)

Thus,

1

N

N−1∑
j=1

log fw(λj) +
1

N

N−1∑
j=1

Cj − 1

N

N−1∑
j=1

ε(λj) =
1

N

N−1∑
j=1

log fw(λj)

p−→
∫ 1

0

log fw(λ)dλ. (7.59)

Therefore,

− 1

N

N−1∑
j=1

log fw∗(λj)− γ
p−→

∫ 1

0

log fw(λ)dλ (7.60)
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and so

− 1

N − 1

N−1∑
j=1

log fw∗(λj)− γ = −
(

N

N − 1

)(
1

N

) N−1∑
j=1

log fw∗(λj)− γ

−→ − 1

N

N−1∑
j=1

log fw∗(λj)− γ

p−→
∫ 1

0

log fw(λ)dλ. (7.61)

Hence,

− 1

N − 1

N−1∑
j=1

log fw∗
n (λj)− γ

p−→
∫ 1

0

log fw
n (λ)dλ (7.62)

since

log(σ̂2w)
p−→ log(σ2w). (7.63)

and thus we have proven the theorem.

Therefore, in practice I∞ can be approximated by

I∗∞ = − 1

N − 1

N−1∑
j=1

log fw∗
n (λj)− γ (7.64)

and used as a test statistic. Critical values for this test statistic can be found using

simulation. First, simulate the time series {Y (t)} from N iid N(0, 1) random vari-

ables, where N equals the length of the series. Next, setting fw∗
n (λj) ≡ f∼n (λj), the

quantity in expression (7.7) is calculated. The reason for setting fw∗
n (λj) = f∼n (λj)

is that under the null hypothesis fw∗
n (λj) has the same distribution as the normal-

ized periodogram of white noise. This procedure is repeated M (M = 10, 000) times

and selected quantiles are recorded. Table 14 contains simulation results for sam-

ple sizes N = 100, 256, 512, and 1000. Additionally, p-values can be found for any

sample size by using the same simulation procedure and calculating the proportion

of values greater than or equal to the computed test statistic (empirical information

diagnostic).
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Table 14. Critical values for the test statistic given in expression (7.64). Values
found using simulation with 10,000 repetitions. All values have been rounded to

three decimal places.

N Q(.05) Q(.25) Q(.50) Q(.75) Q(.90) Q(.95) Q(.975)
100 -.184 -.086 -.009 .074 .153 .206 .249
256 -.113 -.049 -.002 .045 .092 .121 .146
512 -.080 -.036 -.003 .031 .064 .083 .101
1000 -.057 -.025 -.001 .024 .045 .059 .071

Several things are important to note regarding this testing procedure. First,

theoretically the value of the test statistic increases as the departure from no memory

increases. Second, any precision lost in estimating I∞ using expression (7.64) is not

problematic, since both the test statistic and the critical values obtained by simulation

are calculated using the same estimate.

Again, assuming the process associated with fw∗(λ) is Gaussian white noise, we

can find the asymptotic distribution of I∗∞ using a calculation method similar to Davis

and Jones (1968). First, from Bartlett and Kendall (1946), it follows that

E
[
log

(
χ2

N/N
)]

= − log(N/2) + ψ(N/2) (7.65)

Var
[
log

(
χ2

N/N
)]

= ψ′(N/2) (7.66)

where ψ(·) and ψ′(·) are the digamma and trigamma functions respectively. Further-

more, let

I∗u,∞ = − 1

N − 1

N−1∑
j=1

log fw∗(λj)− γ (7.67)

be the unnormalized empirical information diagnostic. Under the null hypothesis

that fw∗(λ) behaves like the sample spectral density of white noise, fw∗ is assumed

to have the same distribution as the periodogram of white noise. Thus, under the
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null hypothesis,

log fw∗(λj)
d
=





log (χ2
2) + log (σ2w)− log 2 λj 6= .5

log (χ2
1) + log (σ2w) λj = .5.

(7.68)

Moreover, assuming the process associated with fw(λ) is Gaussian white noise, with

variance σ2w, it follows that fw∗(λj) and fw∗(λ′j) are independent for λj 6= λ′j (for

0 < λj ≤ .5). Therefore, we have the following theorem.

Theorem 2. Assuming the process associated with fw∗ is Gaussian white noise, I∗∞

has the following expectation and variance.

N even:

E(I∗∞) = ψ

(
N − 1

2

)
− log

(
N

2

)
+

log 2 + γ

(N − 1)π
− γ

N − 1
(7.69)

Var(I∗∞) =
(2N − 1)π2

6(N − 1)2
− ψ′

(
N − 1

2

)
(7.70)

N odd:

E(I∗∞) = ψ

(
N − 1

2

)
− log

(
N

2

)
(7.71)

Var(I∗∞) =
2

N − 1

(
π2

6

)
− ψ′

(
N − 1

2

)
(7.72)

Proof: We present here only the proof for the case where N is even, as the case

where N is odd follows by a similar argument. First,

E(I∗u,∞) = E

[
− 1

N − 1

N−1∑
j=1

log fw∗(λj)− γ

]

= − 1

N − 1
E


2

N/2−1∑
j=1

log fw∗(λj) + log fw∗(1/2)




= − 1

N − 1

{
(N − 2)E

[
log

(
χ2

2

)
+ log(σ2w)− log 2

]}

− 1

N − 1

{
E

[
log

(
χ2

1

)
+ log(σ2w)

]}− γ
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= − 1

N − 1

[
−(N − 2)γ + (N − 1) log(σ2w)−

(
log 2 + γ

π

)]
− γ

= − log(σ2w)− γ

N − 1
+

1

N − 1

(
log 2 + γ

π

)
. (7.73)

Let Y ∗(λj) = log fw∗(λj), then

Var(I∗u,∞) = Var

[
− 1

N − 1

N−1∑
j=1

Y ∗(λj)− γ

]

=
1

(N − 1)2
Var

[
N−1∑
j=1

Y ∗(λj)

]

=
1

(N − 1)2
{Var [Y ∗(1/2)] + 4(N/2− 1)Var [Y ∗(λj)]}

+
4(N/2− 1)(N/2− 2)

(N − 1)2
Cov

[
Y ∗(λj), Y

∗(λ′j)
]

+
2(2)(N/2− 1)

(N − 1)2
Cov [Y ∗(λj), Y

∗(1/2)]

=
1

(N − 1)2

{
Var

[
log

(
χ2

1

)]
+ 2(N − 2)Var

[
log

(
χ2

2/2
)]}

=
1

(N − 1)2
[ψ′(1/2) + 2(N − 2)ψ′(1)]

=
1

(N − 1)2

[(
π2

2

)
+ 2(N − 2)

π2

6

]

=
(2N − 1)π2

6(N − 1)2
; (7.74)

since ψ′(1/2) = π2/2 and ψ′(1) = π2/6. Now,

σ̂2w =
1

N

N−1∑
j=0

fw∗(λj)

=
1

N




N/2−1∑
j=1

2fw∗(λj) + fw∗(1/2)




d
=

σ2w

N

[
χ2

2(N/2−1) + χ2
1

]
=
σ2w

N
χ2

N−1

=
σ2w(N − 1)

N

(
χ2

N−1

(N − 1)

)
(7.75)



80

which implies

log
(
σ̂2w

) d
= log

(
σ2w

)
+ log

(
N − 1

N

)
+ log

[
χ2

N−1

(N − 1)

]
. (7.76)

Therefore,

E
[
log

(
σ̂2w

)]
= log

(
σ2w

)
+ log

(
N − 1

N

)
− log

(
N − 1

2

)
+ ψ

(
N − 1

2

)

= log
(
σ2w

)− log

(
N

2

)
+ ψ

(
N − 1

2

)
(7.77)

and

Var
[
log

(
σ̂2w

)]
= ψ′

(
N − 1

2

)
. (7.78)

Thus,

E (I∗∞) = E
[
log

(
σ̂2w

)
+ I∗u,∞

]

= log
(
σ2w

)− log

(
N

2

)
+ ψ

(
N − 1

2

)

− log
(
σ2w

)− γ

N − 1
+

log 2

(N − 1)π
− γ

(N − 1)π

= ψ

(
N − 1

2

)
− log(N/2) +

log 2 + γ

(N − 1)π
− γ

N − 1
(7.79)

and

Var (I∗∞) = Var
[
I∗u,∞ + log

(
σ̂2w

)]

= Var
(
I∗u,∞

)
+ Var

[
log

(
σ̂2w

)]
+ 2Cov

[
I∗u,∞, log

(
σ̂2w

)]
. (7.80)

Furthermore, by theorem B.4.1 Mardia et al. (1979),

fw∗(λj)∑N−1
j=1 fw∗(λj)

and
N−1∑
j=1

fw∗(λj)
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are independent. Therefore,

Var

[
log fw∗(λj)− log

N−1∑
j=1

fw∗(λj)

]
= Var

[
log

(
fw∗(λj)∑N−1

j=1 fw∗(λj)

)]

= Var [log fw∗(λj)] + Var

[
log

N−1∑
j=1

fw∗(λj)

]

−2Cov

[
log fw∗(λj), log

N−1∑
j=1

fw∗(λj)

]
(7.81)

and

Var [log fw∗(λj)] = Var

[
log

(
fw∗(λj)∑N−1

j=1 fw∗(λj)

)
+ log

N−1∑
j=1

fw∗(λj)

]

= Var

[
log

(
fw∗(λj)∑N−1

j=1 fw∗(λj)

)]

+Var

[
log

N−1∑
j=1

fw∗(λj)

]
. (7.82)

This implies

Var

[
log

(
fw∗(λj)∑N−1

j=1 fw∗(λj)

)]
= Var [log fw∗(λj)]− Var

[
log

N−1∑
j=1

fw∗(λj)

]

= Var [log fw∗(λj)] + Var

[
log

N−1∑
j=1

fw∗(λj)

]

−2Cov

[
log fw∗(λj), log

N−1∑
j=1

fw∗(λj)

]
. (7.83)

Hence,

2Cov

[
log fw∗(λj), log

N−1∑
j=1

fw∗(λj)

]
= 2Var

[
log

N−1∑
j=1

fw∗(λj)

]
(7.84)

which implies

Cov

[
log fw∗(λj), log

N−1∑
j=1

fw∗(λj)

]
= Var

[
log

N−1∑
j=1

fw∗(λj)

]

= ψ′
(
N − 1

2

)
. (7.85)
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Thus,

Var(I∗∞) = Var
[
I∗u,∞ + log

(
σ̂2w

)]

= Var
(
I∗u,∞

)
+ Var

[
log

(
σ̂2w

)]
+ 2Cov

[
I∗u,∞, log

(
σ̂2w

)]

= Var
(
I∗u,∞

)
+ Var

[
log

(
σ̂2w

)]
+ 2Cov

[
log fw∗(λj), log

(
σ̂2w

)]

=
(2N − 1)π2

6(N − 1)2
+ ψ′

(
N − 1

2

)
− 2ψ′

(
N − 1

2

)

=
(2N − 1)π2

6(N − 1)2
− ψ′

(
N − 1

2

)
. (7.86)

Note that E(I∗∞) −→∞ as N −→∞. That is, I∗∞ is an asymptotically unbiased

estimate of I∞. Also by an application of the central limit theorem I∗∞ is asymp-

totically normal. Therefore, asymptotic p-values can be found using the quantiles of

the normal distribution with mean and variance given by the previous theorem. It

should be noted that for small sample sizes we recommend calculating the p-values

using simulation.

7.6 Whitening Spectral Distribution

Additional tests for goodness of fit can be formulated using the normalized whitening

spectral distribution function. Tests of this sort were primarily developed by Bartlett.

However, we introduce them in this section as they can be used in conjunction with

the methods we develop for model validation when using EXP models. It should be

noted that these tests have not previously been used in the context of model validation

for EXP models.

The whitening spectral distribution function, Fw(λ), 0 ≤ λ ≤ .5, is defined by

Fw(λ) = 2

∫ λ

0

fw
n (λ′)dλ′ (7.87)

where fw
n (λ) is the whitening spectral density defined in expression (7.2). In practice

the sample whitening spectral distribution function is used when constructing tests



83

involving Fw(λ) and is defined by

Fw∗(λk) =

∑k
j=1 f

w∗
n (λj)∑M

j=1 f
w∗
n (λj)

=

∑k
j=1 f

w∗(λj)∑M
j=1 f

w∗(λj)
, k = 1, . . . ,M (7.88)

where M = [N/2] + 1 and λj is the jth Fourier frequency. Recall, under the null

hypotheses, we assume fw∗(λ) has the same distribution as the sample spectral density

of white noise. Thus, under the null hypothesis Fw∗(λk), k = 1, . . . ,M , has the same

distribution as the sample spectral distribution of white noise.

Moreover, under the null hypothesis that fw(λ) is the spectral density of white

noise, Fw(λ) ≡ 2λ, λ ∈ [0, .5]. Therefore, under H0 the sample whitening spectral

distribution function Fw∗(λk) ≈ k/M where k = 1, . . . ,M . Thus, a quick diagnostic

for determining if fw(λ) is the spectral density of white noise is the graph of Fw∗(λk)

versus λk. In Chapter IV suggestions are made for determining memory type using

the graph of the sample spectral distribution function. Similarly in terms of the graph

of Fw∗(λk)

Fw∗ uniform −→ no memory

Fw∗ otherwise −→ short memory

Fw∗ has sharp jumps −→ long memory. (7.89)

Therefore, if the graph of Fw∗ is the graph of a uniform distribution, then Fw(λ) is

the spectral distribution function of a white noise process.

In addition to being a quick graphical diagnostic, Fw∗(λk) can be used in place

of the sample spectral distribution function in Bartlett’s test, which may be con-

sidered a time series analog of the Kolmogorov-Smirnov test. Under the null hy-

pothesis that fw(λ) is the spectral density of white noise, it can be shown that
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Fw∗(λ1), . . . , F
w∗(λM−1) have the same distribution as the ordered random variables

U1 ≤ . . . ≤ UM−1 of sample size M − 1 from a Uniform (0,1) population. Further-

more, the result

lim
M→∞

Pr

(
max

1≤k≤M

√
M

∣∣∣∣Uk − k

M

∣∣∣∣ ≤ a

)
=

∞∑
j=−∞

(−1)je−2a2j2 ≡ G(a) (7.90)

can be used to determine whether Fw∗(λk) has a maximum deviation from the ex-

pected straight line Fw∗(λk) = k/M that is larger than reasonably expected under

the null hypothesis. Let

B∗ = max
1≤k≤M

√
M

2

∣∣∣∣Fw∗(λk)− k

M

∣∣∣∣ (7.91)

and F (b) be the cdf

F (b) = Pr(B∗ ≤ b). (7.92)

A complete discussion of Bartlett’s test including the values of F (b) for b = .40, .41, . . . , 2.00

can be found in Newton (1988).

Lastly, a compromise between the quick graphical diagnostic and the modified

Bartlett’s test is a graph of Fw∗(λk) along with 95% confidence bands. If Fw∗(λk) is

the spectral distribution function of white noise then Fw∗(λk) will have an approxi-

mate 95% chance of falling within the lines y = 2x±1.36/
√
M where M = [N/2]+1.

Note that 1.36 is the ninety fifth percentile of Bartlett’s statistic and that this plot

is similar to the plot constructed by Newton (1988), differing only in that Fw∗(λk) is

used in place of the sample spectral distribution function F∼(λk).

7.7 EXP Model Validation by AIC

Let Y (1), . . . , Y (N) be an observed, short memory, covariance stationary time series.

Then {Y (t)} can be approximated by a stationary autoregressive scheme of order p

Y (t) =

p∑
j=1

α(j)Y (t− j) + Y ν(t), t ∈ Z (7.93)
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where α(1), . . . , α(p) are constants and the zeros of 1 − α(1)z − · · · − α(p)zp are all

outside the unit circle in the complex plane, and {Y ν(t)} is a white noise innovation

process. Therefore, an autoregressive process is a white noise process if and only if

the process has order zero.

One method for testing for white noise is by using a data driven method of order

selection. The test would reject the null hypothesis of white noise if and only if the

selected order is greater than zero. According to Hart (1997), Parzen appears to have

been the first person in statistics to propose using an order selection criterion as a

form of model validation.

A widely used order determining criterion is Akaike’s information criterion (AIC).

AIC is defined by

AIC(k) = log σ̂2
k +

2k

N
, k ≥ 1 (7.94)

where σ̂2
k is the Yule-Walker estimate of the innovation variance for an approximating

AR(k) scheme. Possible definitions of AIC(0) are AIC(0) = 0 or AIC(0) = −1/N .

Shibata (1976) shows that if AIC(0) is defined to be equal to zero then using AIC as

a test of white noise yields an approximate probability of type I error equal to .29,

for large N . Defining AIC(0) equal to −1/N slightly reduces the probability of type

I error.

In this section we propose a new method for using AIC in conjunction with

exponential models. This method uses ρ̂w(h) to form autoregressive smoothers of

fw∗(λ). Note that this method can be used as a means of model validation as well as

an aid in order selection, where the goal is to choose the smallest order m such that

fw,m(λ) is the spectral density of white noise.

The first step in testing the null hypothesis is to calculate the sample whitening

correlations, ρ̂w,m(h) associated with the approximating EXP(m) scheme. Recall,
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ρw,m(h) is defined as the Fourier transform of fw,m
n (λ). In practice, provided the

sample size is moderate to large, ρw,m(h) can be approximated by ρ̂w,m(h) using

fw,m∗
n (λj) j = 0, . . . , N − 1 and the fast Fourier transform. The second step is to

calculate the whitening residual variances, σ̂2w
m,k k = 1, 2, . . .. Calculation of σ̂2w

m,k,

k = 1, 2, . . . given ρ̂w,m(h) proceeds by a recursive algorithm called the Levinson-

Durbin recursion, see Parzen (1983b).

Let π(1), . . . , π(m) represent the partial correlation coefficients. Note that |π(j)| <
1, j = 1, . . . ,m. Using the Levinson-Durbin recursion partial correlation coefficients,

autoregressive coefficients, and residual variances can be determined from correlation

coefficients as follows:

for k = 1

α1(1) = ρ(1)

σ2
1 = 1− ρ2(1)

while for k = 2, 3, . . . ,m

αk(k) = −π(k) =
1

σ2
k−1

k−1∑
j=0

αk−1(j)ρ(k − j)

σ2
k = σ2

k−1

{
1− π2(k)

}

αk(j) = αk−1(j)− π(k)αk−1(k − j).

To obtain the quantities σ̂2w
m,k the estimates ρ̂w,m(h) are substituted into the above

recursion. In order to implement the AIC test define AICm(0) ≡ −1/N and calculate

AICm(k) = log σ̂2w
m,k +

2k

N
, k = 1, 2, . . . , T. (7.95)

where T is suitably chosen. If the minimum AICm(k) = AICm(0) ≡ −1/N then there

is insufficient evidence to conclude fw,m∗(λ) does not behave like the sample spectral

density of white noise.
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7.8 Frequency Domain Data-Driven Portmanteau Test

Recall, one method of model validation is to test the null hypothesis that the sample

whitening correlations behave like the correlations of white noise. This hypothesis

can be tested using statistics directly constructed from ρ̂w(h), the sample whitening

correlations. In this section the data-driven portmanteau test (data-driven Q test),

Hart (1997), is extended to the frequency domain by way of the sample whitening

correlations. This test provides an additional means for assessing goodness of fit

when using the EXP model. The original Q test is a time domain test of white noise

based on the statistic

Q(m) = (N + 2)
m∑

j=1

ρ̂2(j)

1− j/N
(7.96)

where ρ̂(j) is the autocorrelation at lag j, see expression (4.26). Under the hypothesis

of white noise
√
Nρ̂(1), . . . ,

√
Nρ̂(m) (m fixed) are approximately independent and

identically distributed N(0, 1) random variables, see Priestly (1981). This implies

that Q(m) has a limiting χ2
m distribution under the null hypothesis.

The problem encountered in practice when using this test is the need to choose

m, poor choices of m can reduce the power of the test. One method of addressing

this problem is to choose the value of m based on the data and is implemented in the

data-driven version of the portmanteau test developed by Hart (1997). Define

Q(m̂) = (N + 2)
m̂∑

j=1

ρ̂2(j)

(1− j/N)
(7.97)

where m̂ is the maximizer of R̂(m) and

R̂(m) =





0, m = 0

∑m
j=1Nρ̂

2(j)− 2m, m = 1, . . . , N − 1.

(7.98)

Under appropriate regularity conditions, Q(m̂) converges to the random variable T ,

defined by the following theorem.
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Theorem 3. (Hart 1997) Let Z1, Z2, . . . be independent and identically distributed

N(0, 1) random variables, and define

S(k) =
k∑

j=1

(
Z2

j − 2
)
, k = 1, 2, . . .

In addition, define Ej(x) to be the event

{0 < S(j) ≤ x− 2j; S(k) ≤ S(j), k = 1, . . . , j − 1} j = 1, 2, . . .

and let nx be the largest integer less than x/2. Under the hypothesis of white noise,

Q(m̂) converges in distribution to the following distribution function

P (T ≤ x) =





0, x < 0

.71, 0 ≤ x ≤ 2

.71
{

1 +
∑nx

j=1 P [Ej(x)]
}
, x > 2

(7.99)

Further details regarding this theorem and its’ proof can be found in Hart (1997).

The nature of the distribution of Q(m̂) is that the limiting size of a nonrandom-

ized test is less than or equal to .29. However, in practice, this is not a problem since

the size of a test is rarely chosen to be as large as .29. Note that the percentiles of

the distribution given in Theorem 3 can be found through simulation, with a partial

listing in Table 15.

In order to extend this test for the purpose of validating spectral models, we

formulate the test in terms of ρ̂w(h). Formulating the test statistic in terms of ρ̂w(h)

will produce a statistic that can be used to test the hypothesis that the sample

whitening correlations behave like the correlations of white noise. This is equivalent

to testing the hypothesis that fw∗(λ) behaves like the sample spectral density of

white noise, or that the estimated model provides a whitening transformation of the

spectrum.
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Table 15. Percentiles of the limiting distribution of Qw(m̂). Note that all values are
found using simulation. Since the values are found via simulation, they are

approximate and therefore not strictly monotone increasing.

x P (T ≤ x) x P (T ≤ x) x P (T ≤ x) x P (T ≤ x)
2.5 .740 8.0 .886 14.25 .947 22.5 .978
2.6 .747 8.25 .885 14.5 .957 23.5 .978
2.7 .750 8.5 .894 14.75 .940 24.5 .974
2.8 .756 8.75 .893 15.0 .955 25.5 .990
2.9 .757 9.0 .901 15.25 .954 26.5 .983
3.0 .764 9.25 .902 15.5 .962 27.5 .987

3.25 .771 9.5 .902 15.75 956 28.5 .980
3.5 .778 9.75 .905 16.0 .957 29.5 .991

3.75 .785 10.0 .915 16.25 .958 30.5 .993
4.0 .791 10.25 .913 16.5 .959 31.5 1.00

4.25 .801 10.5 .922 16.75 .965 32.5 .996
4.5 .813 10.75 .925 17.0 .965 33.5 .996

4.75 .815 11.0 .924 17.25 .965 34.5 .997
5.0 .824 11.25 .928 17.5 .963 35.5 .993

5.25 .831 11.5 .928 17.75 .964 36.5 .995
5.5 .835 11.75 .932 18.0 .976 37.5 .989

5.75 .837 12.0 .933 18.25 .973 38.5 .993
6.0 .846 12.25 .937 18.5 .970 39.5 .994

6.25 .851 12.5 .944 18.75 .971 40.5 1.00
6.5 .861 12.75 .938 19.0 .964 41.5 .997

6.75 .863 13.0 .946 19.25 .977 42.5 .998
7.0 .872 13.25 .950 19.5 .971 43.5 .987

7.25 .874 13.5 .950 19.75 .974 44.5 .997
7.5 .875 13.75 .943 20.5 .974 45.5 .995

7.75 .881 14.0 .949 21.5 .968 46.5 .993
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Recall from Section 7.4, that under the assumption that the process associated

with fw(λ) is Gaussian white noise with mean zero and variance σ2w, the random

variables
√
Nρ̂w(1), . . . ,

√
Nρ̂w(m) (m fixed) are approximately independent and iden-

tically distributed N(0,1) random variables. Therefore, we define Qw(m̂) by

Qw(m̂) = (N + 2)
m̂∑

j=1

[ρ̂w(j)]2

(1− j/N)
(7.100)

where m̂ is the maximizer of R̂w(m) and

R̂w(m) =





0, m = 0

∑m
j=1N [ρ̂w(j)]2 − 2m, m = 1, . . . , bN/2c.

(7.101)

Under the appropriate regularity conditions, see Hart (1997), Qw(m̂) also con-

verges to the random variable T given by Theorem 3 and can be used in the same

manner as its time domain counterpart. Thus, the frequency domain portmanteau

test Qw(m̂) provides another method for validating time series exponential models.

7.9 Data Analysis

In this section a data analysis is performed as a means of illustrating the previously

developed methods. The data chosen for this purpose are the annual tree-ring indices

of Widdingtonia cedarbergensis, measured as log(index/100). This data is initially

analyzed by Zucchini and Hiemstra, in order to investigate the relationship between

tree ring indices of Widdingtonia cedarbergensis and the annual rainfall totals at a

neighboring location (as sited in Linhart and Zucchini, 1986). In the work of Zucchini

and Hiemstra the logarithms of the index/100 are identified as an AR(2) process.

Subsequently, Linhart and Volkers(1985) use this data to illustrate their method

of order selection. In their analysis both ARMA models and Bloomfield’s EXP models

are considered and an AR(2) model is chosen using their order selection criterion.
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However, if their analysis is restricted to consider only EXP models then minimizing

their order selection criterion yields an EXP(5) model.

Ultimately, in the analysis performed using our method, the model chosen is an

EXP(3) model. This model captures the important features of our nonparametric

wavelet estimate as well as satisfies the criterion of providing a whitening transfor-

mation to the spectral density. Furthermore, the AR representation associated with

the chosen EXP(3) model is similar to the AR model chosen by Linhart and Volkers

(1985).

The first step in analyzing this data is to construct a time plot of the data, see

Figure 6. This plot suggests that the time series is stationary with constant variance.

Additionally, using the diagnostics described in Chapter IV, it is determined that the

time series is short memory.

The next step in our analysis is to estimate the parameters associated with candi-

date EXP(m) models. Using the wavelet method of parameter estimation described in

Chapter VI, parameters for EXP(m) models, m= 1, 2, . . . ,M are estimated simultane-

ously. To facilitate choosing candidate models we also compute ISE
(d)
m ,m = 1, . . . , 9.

The values of θ̂m and ISE
(d)
m can be found in Table 16.

Table 16. This table displays the parameter estimates and ISE
(d)
m for the estimated

model.

m θ̂m ISE
(d)
m m θ̂m ISE

(d)
m

0 -3.562 NA 5 -.013 .0067
1 .520 .1639 6 -.002 .0067
2 .272 .0159 7 -.000 .0067
3 .062 .0081 8 .013 .0064
4 .022 .0071 9 -.006 .0063

Using the values of θ̂ and ISE
(d)
m we initially choose EXP models of orders three



92

Year

L
o

g
(t

re
e

 r
in

g
 i
n

d
e

x
/1

0
0

)

1600 1700 1800 1900

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0

Figure 6. Time plot of logarithm of tree ring indices/100, for Widdingtonia
cedarbergensis.
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and four as candidate models. The EXP(3) model is given by

log f(λ) = −3.562 + 2 [.520 cos(2πλ) + .272 cos(2π2λ) + .062 cos(2π3λ)] (7.102)

A plot of the log periodogram +.57721 with the chosen EXP(3) model superimposed

can be seen in Figure 7.

Using the previously developed methods of model validation we test the two

equivalent hypotheses that fw∗(λ) behaves like the sample spectral density of white

noise and that ρ̂w behave like the correlations of white noise for h = 1, 2, . . .. The

first method of model validation used for this purpose is the information diagnostic

described in Section 7.5. Recall, the test statistic used for this diagnostic is

I∗∞ = −
(

1

N − 1

) N−1∑
j=1

log fw∗
n (λj)− γ (7.103)

where γ ≈ .57721. Using the EXP(3) model given by expression (7.102), I∗∞ =

−.0192. The p-value associated with this test statistic is found using simulation and

equals .7999. Thus, we have strong evidence to conclude that fw(λ) is consistent with

the spectral density of white noise.

Another diagnostic used, in order to validate the model given by expression

(7.102), is the graph of the sample whitening spectral distribution with 95% confidence

bands, see Figure 8. This graph clearly shows that Fw∗(λk), k = 1, . . . ,M is contained

entirely in the 95% confidence bands y = 2x ± 1.36/
√
M where 0 ≤ x ≤ .5 and

0 ≤ y ≤ 1. Thus, at α = .05 there is insufficient evidence to conclude that fw(λ) is

not the spectral density of white noise.

The last two methods of model validation considered are the EXP model vali-

dation by AIC and the frequency domain data-driven portmanteau test. EXP model

validation by AIC is described in Section 7.7, this method of model validation re-

jects the null hypothesis that fw∗(λ) behaves like a white noise sample spectral den-

sity if and only if min AIC(k) < AIC(0) = −1/N , for k ≥ 1. Fitting the EXP(3)
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model given by expression (7.102) results in a whitening spectral density for which

AIC(0) = −1/N < AIC(k), for all k ≥ 1, see Table 17. Thus, there is insufficient

Table 17. Values of EXP model validation criteria using AIC. Note AIC(0)= −1/N
and minAIC(k) > AIC(0), (k = 1, 2, . . .).

k AIC(k) k AIC(k) k AIC(k) k AIC(k)
0 -.0024 4 .0109 8 .0182 12 .0237
1 .0048 5 .0111 9 .0195 13 .0280
2 .0061 6 .0125 10 .0177 14 .0303
3 .0104 7 .0149 11 .0189 15 .0348

evidence to conclude fw(λ) is not the spectral density of white noise.

The frequency domain data-driven portmanteau test is described in Section 7.8.

The value of the test statistic Qw(m̂) is equal to .00375 and is found using m̂ = 1.

The p-value associated with Qw(m̂) is .71. Therefore, this test again suggests that,

fw(λ) is consistent with the spectral density of white noise.

All of the methods of model validation fail to reject the null hypothesis that

fw∗(λ) behaves like the sample spectral density of white noise. Thus, we conclude

that the model given by expression (7.102) provides an adequate fit. The associated

AR representation is given by

Y (t)− .520Y (t−1)− .137Y (t−2)+ .057Y (t−3)+ .035Y (t−4)+ · · · = Y ν(t) (7.104)

with innovation variance equal to .028. The AR(2) model chosen by Linhart and

Volkers (1985) is given by

Y (t)− .51Y (t− 1)− .18Y (t− 2) = Y ν(t) (7.105)

and has innovation variance equal to .03584. The model we chose is similar to the

model chosen by Linhart and Volkers (1985) differing primarily in the value of the

innovation variance and the spectrum near the zero frequency, with our model being
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slightly smaller in both cases. Note that residual (innovation) variance estimates

the one-step ahead prediction error variance which would be achieved using the fitted

model. Thus our model not only provides a whitening transformation of the spectrum,

but also has slightly smaller innovation variance than the model obtained by Linhart

and Volkers (1985).
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CHAPTER VIII

AREXP MODELS

8.1 Overview and Algorithm

In this chapter we introduce a new iterative model for time series analysis and forecast-

ing. The models considered are called AREXP (Autoregressive Exponential) models

because the model fitted to a long memory time series {Y (t)} is based on time se-

ries analysis of AR schemes obtained using a “best-lag” nonstationary autoregression

followed by short memory EXP modelling. This new model was proposed for inves-

tigation by Parzen (2002) and is based on the ARARMA (ARAR) model originally

developed by Newton and Parzen(1984) and Parzen(1982). Furthermore, the ARAR

algorithm is described in Brockwell and Davis (2002).

The first step in AREXP modelling is to fit an AR model which transforms the

time series {Y (t)} to short memory residuals {Y s(t)} whose unnormalized spectral

density can be computed by

f s∼(λ) = |A(λ)|2 f∼(λ) (8.1)

where

A(λ) =
k∑

j=0

aj,k exp(2πiλ) (8.2)

The second step is to fit a log exponential model to f s∼(λ). One major benefit of fit-

ting the model iteratively is in terms of model validation. More specifically, frequency

domain model validation for long memory processes is rather difficult. However, in

this context, we only need to determine if the log exponential model fit to f s∼(λ) pro-

vides a whitening transformation of the spectrum. Thus, model validation is reduced

to the context of short memory.
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Given a data set {Y (t), t = 1, 2, . . . , N}, the first step is to decide if whether the

underlying process is “long memory”, and if so apply a memory shortening transfor-

mation before attempting to fit an EXP model. The technique used for transforming

the time series to short memory is called “memory shortening” and was pioneered

by Parzen (1982). In order to use this technique we must first consider the following

differencing operations

1. Ỹ (t) = Y (t)− φ̂(τ̂)Y (t− τ̂)

2. Ỹ (t) = Y (t)− φ̂1Y (t− 1)− φ̂2Y (t− 2).

Then with the aid of a five step algorithm, we classify the time series {Y (t)} and take

one of the following courses of action:

• L - Declare {Y (t)} to be long memory and form the transformed time series

{Ỹ (t)} using (1).

• M - Declare {Y (t)} to be moderately long memory and form {Ỹ (t)} using (2).

• S - Declare {Y (t)} to be short memory.

If the alternative L or M is chosen, then the transformed series {Ỹ (t)} is again

checked. If the transformed series is again found to be long-memory or moderately

long-memory, then a further transformation is performed. The process continues

until the transformed series is classified as short-memory. In order to display the

algorithm for deciding L, M, and S, some definitions are needed. Consider the “best-

lag” nonstationary autoregression given by

Ỹ (t) = Y (t)− φ̂(τ̂)Y (t− τ̂). (8.3)

For each τ , φ̂(τ) is chosen to minimize over φ

N∑
t=τ+1

[Y (t)− φ(τ)Y (t− τ)]2 . (8.4)
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Parzen (1981) refers to this quantity as the “squariance”, which is the sum of square

of the residuals after fitting the “best-lag” nonstationary autoregression. The next

step is to then choose the lag τ̂ to minimize over τ

Err(τ) =

∑N
t=τ+1

[
Y (t)− φ̂(τ̂)Y (t− τ̂)

]2

∑T
t=τ+1 Y

2(t)
. (8.5)

This quantity is the normalized mean squared error. The five step algorithm proceeds

as follows:

1. Compute φ̂(τ) and Err(τ) for τ = 1, 2, . . . ,Mτ (where Mτ is suitably chosen)

and choose τ̂ = min
τ

Err(τ).

2. If Err(τ̂) ≤ 8/n go to L.

3. If φ̂(τ̂) ≥ .9 and τ̂ > 2 go to L.

4. If φ̂(τ̂) ≥ .9 and τ̂ = 1 or 2 determine the values of φ̂1 and φ̂2 that minimize

N∑
t=3

[Y (t)− φ1Y (t− 1)− φ2Y (t− 2)]2 ; (8.6)

then go to M.

5. If φ̂(τ̂) < .9 go to S.

Intuitively, these steps determine how well the model given by the “best-lag” nonsta-

tionary autoregression does in predicting the current value of our time series. This

information is then used to determine the transformation needed. Note that the above

values are chosen because they perform well for a wide variety of time series. Thus,

the values displayed here are flexible and can be adjusted. In fact, the algorithm

described in Brockwell and Davis (2002) contains slightly modified cut off values.

Finally, in order to proceed from S we use the following three step algorithm:
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1. Form

log fθ∧,m(λ) = θ̂0 + 2
m∑

k=1

θ̂k cos(2πkλ), m = 1, . . . ,M

where the θ̂k’s are the estimated model parameters.

2. Choose candidate models of order m = m̂ using a suitable order selection

method.

3. Using model validation criteria described previously test the hypothesis H0 :

fw,m̂(λ) = σ2w, where fw,m̂(λ) = f s∼(λ)/fθ∧,m(λ).

8.2 Wolf Sunspot Data

In this section we illustrate the use of the AREXP model by analyzing the Wolf

Sunspot data from 1700-1988. In order to fit the AREXP model we employ the

maximum likelihood parameter estimation method for short memory EXP models.

It should be noted that any of the estimation methods previously described would be

reasonable, since fitting the AR model in the first step of the procedure acts as a pre-

whitening filter. Therefore, in practice, when fitting the EXP portion of the model we

are not usually confronted with the problem of bias due to leakage. Moreover, it was

verified specifically that in this case the EXP model is being fit to a raw estimator

not suffering from leakage. The advantage of using maximum likelihood estimation

in this setting is that the Linhart-Volkers criterion can be used as an aid in selecting

the orders of candidate models. This may be desirable since one of the goals of the

AREXP model is forecasting.

The first step of our process compute φ̂(τ) and Err(τ), this was done for τ =

1, . . . , 15, see Table 18. ¿From this information we determined that τ̂ = 1, Err(τ̂) =

.140, 8/n = .028 and φ̂(τ̂) = .931. Thus, we proceed to step 4 of the algorithm and
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Table 18. The values of φ̂(τ) and Err(τ) for values of τ = 1, 2, . . . , 15.

τ φ̂(τ) Err(τ) τ φ̂(τ) Err(τ) τ φ̂(τ) Err(τ)
1 .931 .140 6 .464 .787 11 .874 .275
2 .786 .387 7 .546 .706 12 .805 .386
3 .626 .612 8 .670 .562 13 .694 .544
4 .505 .747 9 .795 .389 14 .585 .677
5 .446 .803 10 .872 .274 15 .506 .758

find φ1 and φ2 that minimize expression (8.6). We classify our series as moderately

long-memory and perform the appropriate memory shortening transformation. This

series only required one transformation in order to be classified as short memory. The

model fitted to the Sunspot series is given by

f̂(λ) = |A(λ)|−2 fθ∧(λ) (8.7)

where A(λ) = 1− 1.488 exp(2πiλ) + .598 exp(2πi2λ) and fθ∧(λ) is an EXP(12) with

parameter values found in Table 19. Lastly, a plot of the log sample spectral density

Table 19. The values of the EXP(12) model parameters for the AREXP model fit to
the Wolf Sunspot data 1700-1988. Note that θ̂0 = 5.456.

m θ̂m m θ̂m m θ̂m m θ̂m

1 -.249 4 .069 7 -.043 10 .285
2 -.184 5 -.169 8 .014 11 .236
3 -.273 6 -.078 9 .267 12 .126

with the fitted log AREXP model and a plot of the whitening sample spectral distri-

bution function with asymptotic 95% confidence bands can be found in Figures 9 and

10 respectively. Note that the plot of the whitening spectral distribution function

indicates that the fitted model provides a whitening transformation of the spectrum.

Moreover, the estimated AREXP model contains a primary peak at frequency .090,

corresponding to the famous sunspot cycle of 11.1 years and a secondary peak at fre-

quency .193, corresponding to a cycle of 5.18 years. Lastly, in order to use this model
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for the purpose of forecasting we would calculate the AR representation associated

with the EXP portion of the model. However, further research is needed for finding

the order of candidate models when the primary purpose is forecasting. More specif-

ically we need a method of choosing candidate models that provide a more “gentle”

whitening transformation of the spectrum.
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totic 95% confidence bands from fitting the AREXP model.
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CHAPTER IX

CONCLUSION

9.1 Concluding Remarks

The exponential model of Bloomfield(1973) has become increasingly important partly

due to its recent applications to long memory time series. However, practical methods

for using the EXP model in the analysis of observed time series data have been limited.

In this dissertation, we have developed several new statistical procedures that improve

the utility and robustness of the EXP model.

First, we have introduced a new method of simulating data from the EXP(m)

model. This method is based on simulating from a truncated MA(∞) representation

of the EXP(m) scheme, as provided by Pourahmadi’s formula. This method has

the benefit of being less computationally intensive and less error prone than existing

methods, while being extremely easy to implement.

Next, we proposed a new nonparametric approach to parameter estimation based

on wavelets. This method extends the work of Walden et al. (1998), allowing for

parameter estimation. The advantage of this method is that, for many spectra, pa-

rameter estimates are less susceptible to biases associated with methods of parameter

estimation based directly on the raw periodogram.

Additionally, in this dissertation, several new methods were introduced for the

validation of spectral models. These methods test the hypothesis that the estimated

model provides a whitening transformation of the spectrum; this is equivalent to

the time domain notion of producing a model with white noise residuals. The new

methods introduced include EXP model validation by AIC, a frequency domain data

driven portmanteau test, and the information diagnostic.
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9.2 Problems for Further Study

The AREXP models introduced in Chapter VIII provide an excellent algorithmic ap-

proach to spectral modelling of long memory time series. However, in the context of

forecasting the model may fit “too well” and not provide a small mean squared error

of prediction for large forecast horizons. Thus, one open problem is to develop alter-

native order selection criteria for fitting the EXP portion of the iterated model. The

alternative order selection criteria would provide a more “gentle” whitening transfor-

mation of the spectrum.

Another problem for further research is the application of exponential models

in the context of periodically correlated time series. The proposed research would

examine the role of exponential models to spectral estimation for multiple time se-

ries. This research would provide an alternative to using periodic autoregressions for

multiple spectral estimation.

Additionally, in this dissertation, model validation procedures are developed for

spectral estimates not suffering from bias due to leakage. One problem for further

research is the development of a band limited frequency domain goodness of fit test.

Band limited tests can be restricted to consider only frequency bands of the spectral

estimate not suffering from leakage. This testing can be especially useful in sev-

eral different applications; for example, in some physics applications only the low

frequency values of the spectrum are important.

Lastly, an open problem for research is the development of frequency domain

goodness of fit tests based on multitaper spectral estimation. The developed tests

would apply to both short memory and long memory time series. In this context, the

use of multitapers could facilitate superior estimates of the innovation variance and

residual correlations.
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