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ABSTRACT

On the Dynamics of Rayleigh-Taylor Mixing.

 (December 2003)

Praveen Kumar Ramaprabhu, B.S., Anna University;

M.S., University of Houston

Chair of Advisory Committee: Dr. Malcolm J. Andrews

 The self-similar evolution of a turbulent Rayleigh-Taylor (R-T) mix is investigated

through experiments and numerical simulations. The experiments consisted of velocity

and density measurements using thermocouples and Particle Image Velocimetry

techniques. A novel experimental technique, termed PIV-S, to simultaneously measure

both velocity and density fields was developed. These measurements provided data for

turbulent correlations, power spectra, and energy balance analyses. The self-similarity of

the flow is demonstrated through velocity profiles that collapse when normalized by an

appropriate similarity variable and power spectra that evolve in a shape-preserving form.

In the self-similar regime, vertical r.m.s. velocities dominate over the horizontal r.m.s.

velocities with a ratio of 2:1. This anisotropy, also observed in the velocity spectra,

extends to the Taylor scales. Buoyancy forcing does not alter the structure of the density

spectra, which are seen to have an inertial range with a  –5/3 slope. A scaling analysis

was performed to explain this behavior. Centerline velocity fluctuations drive the growth

of the flow, and can hence be used to deduce the growth constant. The question of

universality of this flow was addressed through 3D numerical simulations with carefully
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designed initial conditions. With long wavelengths present in the initial conditions, the

growth constant was found to depend logarithmically on the initial amplitudes. In the

opposite limit, where long wavelengths are generated purely by the nonlinear interaction

of shorter wavelengths, the growth constant assumed a universal lower bound value of

0.03. Small-scale features of the flow such as molecular mixing and kinetic energy

dissipation were found independent of the initial conditions. Numerical simulations

initialized with experimentally obtained velocity and density data were also performed.

Calculations initialized with velocity data compared better with experimental results

than those initialized with density data. Due to the presence of high-amplitude long

wavelengths in the simulations, and assumptions about the isotropy of the initial velocity

fluctuations, the late time growth differed from the experiments. More experiments that

accurately capture the three-dimensional velocity field at the start are needed.
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1. INTRODUCTION

1.1 Overview

The self-similar evolution of a turbulent Rayleigh-Taylor (R-T) mix has been studied

experimentally and through numerical simulations. The objectives of this study were to

(a) understand the dynamics of the self-similar R-T mix through experiments, (b)

numerically study the role played by initial conditions on the late-time growth of the

flow, and (c) to perform numerical simulations using experimental initial conditions.

This would allow numerical experiments under conditions that cannot be implemented

experimentally. The experiments were conducted at the water channel facility at Texas

A&M University (Snider and Andrews 1994), and involved density measurements,

velocity measurements, and simultaneous measurements of both using a novel

technique. These measurements have provided insight in to the nature of turbulent R-T

mixing at low density differences. The simulations used a 3D, finite-volume code

developed by Andrews (1995) that solved the Euler equations with an artificial

numerical viscosity. The experimental and numerical methods used, and the major

findings of this work are summarized below.

The velocity measurements were performed using the Particle Image Velocimetry (PIV)

technique, while temperature fluctuations were measured using a thermocouple system.

In this experiment, the density difference was achieved through a temperature difference

in the fluid. Cold fluid enters above the hot in a closed channel to form an unstable

________________________
This dissertation follows the style and format of the Journal of Fluid Mechanics.
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interface. This buoyancy driven mixing experiment allows for long data collection times,

short transients, and is statistically steady. First, second, and third order statistics with

spectra of velocity and temperature fields were collected. Analysis of the measurements

has shed light on the structure of mixing as it develops to a self-similar regime in this

flow. The onset of self-similarity is marked by the development of a self-preserving

form of the temperature spectra, and the collapse of velocity profiles expressed in self-

similar units. Vertical velocity fluctuations dominate horizontal velocity fluctuations in

this experiment, with a ratio approaching 2:1 in the self-similar regime. This anisotropy

extends to the Taylor microscales that undergo differential straining in the direction of

gravity. Up to two decades of velocity spectra development, and four decades of

temperature spectra, were captured from the experiment. The velocity spectra consist of

an inertial range comprised of anisotropic vertical and horizontal velocity fluctuations,

and a more isotropic dissipative range. Buoyancy forcing occurs across the spectrum of

velocity and temperature scales, but was not found to affect the structure of the spectra,

resulting in a –5/3 slope, similar to other canonical turbulent flows. A scaling argument

is presented to explain this observation. The net kinetic energy dissipation as the flow

evolves from an initial state to a final self-similar state, was measured to be 49% of the

accompanying loss in potential energy, in close agreement with values obtained from 3D

numerical simulations.

Using 3D numerical simulations, a model for the role of initial conditions in R-T was

verified. A finite-volume, Eulerian solver with Van Leer flux limiters was used with a
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resolution of 128x128x256 grid points in the x-, z- and y-directions respectively, where

y- is the direction of the gravity vector. The initial conditions were chosen to test the

dependence of R-T growth constants on (i) the amplitude, (ii) spectral shapes, and (iii)

coupling of wavelengths. In agreement with the model, the growth constant was found to

depend logarithmically on the initial amplitudes (and the Froude number). In the

opposite limit, where long wavelengths are generated purely by nonlinear interaction

(mode-coupling), no such dependence on initial amplitudes was observed. Small-scale

effects such as molecular mixing and kinetic energy dissipation showed little

dependence on the structure of initial conditions.

Finally, simulations initialized with data obtained from our experiments were also

performed. The box dimensions, density difference, and other parameters were chosen to

match the experimental conditions. The experimental initial conditions recorded as

single-point density and velocity data, were then projected on to a 2D-wavenumber

space. Calculations were initialized with velocity fluctuations, and density fluctuations –

the virtues and drawbacks of each method were explored. Furthermore, the effect of long

wavelengths present in the experiment was also studied. The velocity and density

statistics, spectra, the growth constant α, and the molecular mix fraction θ obtained from

the simulations were compared with corresponding experimental values.
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1.2 Background

Rayleigh-Taylor (R-T) instability is induced when a density gradient is accelerated, in

the presence of infinitesimal perturbations, by a pressure gradient in the opposite

direction such that ρ∇•∇p  < 0 (Chandrasekhar 1961).  If the initial density interface

comprises a spectrum of velocity and/or density disturbances, then the pressure gradient

drives the growth of the perturbation to form a mix region whose width grows in time.

Development of the mix was divided by Youngs (1984) into three successive regimes: 1)

initially an exponential growth of infinitesimal perturbations that correspond to linear

stability analysis; 2) at about amplitudes one-half of the wavelength, the instability

saturates and the perturbation speed grows at a constant rate; and 3) thereafter, longer

wavelengths overtake due to their continuing exponential growth. Emmons, Chang &

Watson (1960) coined the term ‘bubble competition’ to describe this last regime.

Eventually, through mode interaction and successive wavelength saturation, a self-
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similar R-T mix layer is formed (figure 1.1). To illustrate the mixing process, figure 1.2

shows Planar Laser Induced Fluorescence (PLIF) photographs taken from the

experiment described herein. The fluid is water, with the top layer at a temperature of

17oC and the bottom layer at 22oC, and the flow direction is from left to right. The

temperature difference provides a corresponding small density difference due to thermal

expansion. Inspection of the photographs reveals that at early times (figure 1.2(a)), two-

dimensional, single-wavelength perturbations can be seen growing downstream. This is

in contrast with late time complex vortical structures shown in figure 1.2(b), which show

streaks of darker fluid trapped fully inside the lighter fluid. This can only occur if there

is significant three-dimensionality that results in out-of plane fluid being entrained in to

the plane of visualization. At these late times, single-wavelength perturbations have

interacted and developed into larger scales in the process described by Youngs (1984).

Nonlinearity at late time is evident from the presence of a wide range of scales not seen
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Figure 1.1 Stages of evolution of R-T instability.

6
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Figure 1.2. Planar Laser Induced Fluorescence (PLIF) images at (a) early and (b)
late times of evolution of the R-T instability.

(a)

(b)
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in figure 1.2(a). The bubbles seen at late time are traveling downward with a terminal

velocity defined below. The mushroom-shaped structures in figure 1.2(b) are typical of

R-T mixing layers. Figure 1.2(b) also shows many secondary roll-up processes,

especially on the large inverted mushroom, slightly left of the vertical centerline. Often

these secondary roll-ups are driven by shear resulting in a localized Kelvin-Helmholtz

(Waddell, Niederhaus, & Jacobs 2001) instability. We return to this mixing process for a

detailed investigation in section 4.1.

Once at self-similarity, dimensional analysis (Youngs 1984) shows the half mix-width h,

must grow quadratically with time according to:

2
t gtAh α= , (1.2.1)

where At, the Atwood number is the governing parameter of the flow defined by

)()(A 2121t ρρρρ +−= , ρ1 and ρ2 are the cold and hot water densities employed in

the present work, g is the acceleration due to gravity, and α is a constant. For large At �

1 (as ∞→21 ρρ ), the mix is no longer symmetric about the density interface, then h

corresponds to the bubble penetration distance from the position of the initial unstable

interface.

Equation (1.2.1) for h was arrived at by Youngs (1984) through a nonlinear extension of

the linear stability theory (Chandrasekhar 1961). In the linear regime, assuming the

viscous forces are negligible, the growth rate of the most dominant mode is given by

(Chandrasekhar 1961)
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2/1

21

21

m
m l

gn
�
�
�

�
�
�

+
−=

ρρ
ρρπ , (1.2.2)

where lm is the dominant wavelength. In the nonlinear regime, the width of the mix may

be taken as being proportional to the dominant wavelength (Lewis 1950), and ml~h . If

the dominant mode takes N exponential turnover times to evolve, then Ntnm = . Thus,

solving (1.2.2) for lm, the mix width is given by

2

21

21
2m gt

N
2lh

ρρ
ρρπ

+
−=∝ . (1.2.3)

This argument is similar to the “e10” approach for describing the transition of Tolmien-

Schlichting waves in a boundary layer (Jaffe 1970). Indeed, coincidentally Youngs

(1984) suggests taking N = 10 (i. e., 10 exponential turnover times). This gives an

estimate for α as 2π/N2 ~ 0.06. Another approach is to employ the terminal velocity for a

dominant wavelength (bubble), given by ( ) b121 gRcv ρρρ −∝ ∞∞  where Rb is the

bubble radius (Daly 1967; Ratafia 1973). Daly also suggests the use of

( )211mbb l~D ρρρλ +=  to characterize the dependence of spike and bubble diameters

on the wavelength and density ratio 21 ρρ i.e. at high-density ratios (At � 1), the spikes

are very narrow and Db = lm. At low-density ratios, spikes and bubbles have nearly equal

diameters given by Db = lm/2. Substituting for Rb = Db/2 in the above expression for

bubble terminal velocity, we get 2/glAcv mt∞∞ = . For low Atwood numbers

( 1.121 =ρρ ), Daly (1967) found c∞ to be ~ 0.7. This is supported by our single-mode

simulations, performed under experimental conditions (section 5.3). Then, in the
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nonlinear regime, we can take dtdldtdhv m==∞  giving upon integration over time,

2
tm gtAl α=  and α ~ 0.05, using h ~ lm and h = 0 at t = 0.

The buoyancy driven instabilities described above appear in environmental flows such as

effluent discharge into rivers and estuaries, and in industrial applications such as heat

exchangers and sprays in internal combustors (Beale & Reitz 1999). Rayleigh-Taylor

mixing also occurs during the implosion phase of the Inertial Confinement Fusion

process (Lindl 1998), which involves the high-power laser bombardment of a target fuel

capsule. Target surface imperfections and non-uniformities in the beam provide initial

perturbations for the R-T pressure-driven hydrodynamic instability. Here turbulence-

induced mixing sets an upper limit on the peak implosion velocity resulting in the

reduction of yield, and it is of interest to dampen the growth of the instability in such

cases. Perhaps the largest observable R-T mix is the finger-like ejecta of stellar material

believed to be present in the remnants of a young supernova (Gull 1975).

The earliest single-mode R-T experiments were done by Lewis (1950), using fluids of

different densities in a vertical tube accelerated by air pressure. Emmons et al. (1960)

generated a pressure gradient by accelerating a tank containing methanol and air along

guide rails. Read (1984) was the first to perform experiments that investigated

multimode R-T driven mixing. He used solid-fuel rockets to generate accelerations up to

76g, although the experiment allowed only a few milliseconds of data collection time.

Early work on buoyancy-driven flows include the experiments of Jevons (1857) who
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studied the formation of cirrus cloud formation through a thermal inversion of a stable

interface. Dimonte & Schneider (1996) used a setup similar to Read (1984), but with the

acceleration provided by Linear Electric Motors (LEM). Both experiments were capable

of handling large density differences. Other methods of obtaining an unstably stratified

interface include quickly overturning a narrow box filled with the light fluid on top of

the heavy (Andrews 1986; Andrews & Spalding 1990), and withdrawing a plate that

initially separates the two fluids (Linden, Redondo & Youngs 1994; Dalziel, Linden &

Youngs 1999). All these experiments have short data collection times, and the need for a

large number of repeat runs that has limited the extent of statistical data collection.

Recent advances in modeling of buoyancy driven turbulence include the Spectral

Transport Model of Besnard et al. (1990), Besnard et al. (1992), Steinkamp (1995),

Steinkamp, Clark & Harlow (1995), and Wilson, Andrews & Harlow (1999), the two-

fluid models of Youngs (1989), Andrews (1986), and the Reynolds Stress/Bousinesq

models of Snider & Andrews (1996). All of these advanced models for R-T mixing

require detailed measures of turbulent quantities such as 2ρ′ , 2u′ , 2v′ , vu ′′ , and vvu ′′′

to validate closure models. Although these quantities may be computed from Direct

Numerical Simulations (DNS), such calculations are limited to relatively low-Reynolds

numbers; thus, there is a continuing need to obtain these quantities experimentally. A

recent high resolution simulation by Cook & Dimotakis (2001) was performed at Taylor

Reynolds numbers of up to 100, the threshold for mixing transition (Dimotakis 2000).

Such a simulation constitutes one realization of the spatially evolving mixing layer of the
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current experiment and is typical of the current state-of-the-art of DNS of R-T mixing.

Thus, the R-T mix represents a leading grand challenge problem in the DNS of turbulent

flows, placing stringent requirements on resolution in time and space, and desired

ensemble averages. We also note the prevalence of Large Eddy Simulation (LES)

techniques in the study of R-T flows, especially at high Reynolds numbers. The

Monotone Integrated Large Eddy Simulation technique (MILES) has been shown to be

particularly attractive in the study of flows with discontinuities such as R-T (Youngs

2003).

To predict the turbulent mixing that occurs within the self-similar region, it is important

to understand the mechanisms and structure of the turbulent flow-field. In this work, we

do this through studying measurements of turbulent velocity and density fields. Over the

past eight years Andrews and collaborators (Snider & Andrews 1994; Wilson et al.

1999; Wilson & Andrews 2002) have developed a statistically steady, low Atwood

number, Rayleigh-Taylor mixing experiment based on the concurrent flow off the end of

a splitter plate of cold (ρ1) water over hot (ρ2).  The experiment permits extended data

collection times (ten minutes or longer), with collection of statistically convergent data,

and does not have long time transients. In the present work, we employed Particle Image

Velocimetry (PIV) to investigate R-T mixing. We note that Prestridge et al. (2000) used

PIV and flow visualization techniques to observe the instantaneous two-dimensional

(2D) velocity and density fields in their Richtmeyer-Meshkov experiments. Dalziel

(1993) used Particle Tracking Velocimetry to investigate low-Atwood number mixing in
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his tank and barrier experiments. In this study, turbulence quantities and their spectra

were determined from detailed 2D slices of 3D turbulent velocity fields obtained using

PIV (for a review of PIV techniques see Adrian 1991), and from high-resolution single-

point thermocouple measurements. Independently, Lawrence, Browand and Redekopp

(1991) used a related experimental setup in their study of compound mixing due to shear

and a stable density stratification. Another version of the experiment can be seen at the

end of the film by Stewart (1968).

The implication of (1.2.1) is that at self-similarity all memory of the initial conditions

has been lost, and the only relevant length scale is gt2. While this suggests that α is a

universal constant, experiments and numerical simulations have produced differing

values. The value of α has been measured at ~ 0.03 from numerical simulations (Youngs

(1984); Young et al. (2001)), while experimental values are usually higher. Dalziel

(1993), Snider & Andrews (1994), and Read (1984) report a value of 0.07 from their

experiments, while the LEM experiments of Dimonte & Schneider (2000) give a value

of 0.05. Glimm et al. (2001) use a front-tracking algorithm in their 3D simulations that

yield a value of 0.07 comparable to experiments. Linden, Redondo & Youngs (1994)

report a value of 0.044 ±  0.005, after introducing a virtual origin to account for any

transients that may be present due to the initial withdrawal of the dividing plate in their

experiment. The difference in the values of α between experiments and numerical

simulations is believed to be due to the presence of long-wavelengths in experiments,

while most numerical simulations are initialized with short-wavelength content that
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evolve purely through mode-coupling (Cook and Dimotakis 2001; Young et al.2001;

Youngs 2003). When such long wavelengths are present, α is no longer universal, but

depends (logarithmically) on the initial amplitudes. Conversely, in the mode-coupling

limit present in most numerical simulations α takes up a lower bound universal value

(Dimonte 2003). A comparative study involving many state-of-the-art numerical

techniques to resolve the differences between numerical simulations and experiments

has been recently undertaken (Dimonte et al. 2003). We participated in this study, and

our findings are summarized in Appendix C.

3D numerical calculations to test the effect of initial amplitudes on the growth constant

α were conducted as part of the present work. It was suggested by Dimonte (2003), that

the growth constant α would vary logarithmically with the non-dimensional initial

amplitude k<h0k>, where k is the dominant wavenumber of the initial wavepacket, and

<h0k> is the initial root mean square (r.m.s.) amplitude. A total of eight simulations,

each of size 128x128x256 points, and with amplitudes k<h0k> ranging from 3x10-6 to

4x10-2 were conducted to test the above hypothesis. A 3D, finite-volume, Euler equation

code with Van Leer flux limiters developed by Andrews (1995) was used in these

computations. Both 2D and 3D versions of this code have been extensively validated

(Andrews 1995; Dimonte et al. 2003). The above calculations were initialized with

modes ranging from 1-32 in some cases, and 2-32, and 3-32 in others, to investigate the

role played by the minimum imposed mode (longest wavelength). To study the opposite

mode-coupling limit, two calculations with an initial annular shell of energy in modes



15

16-32 but with amplitudes that differed by two orders of magnitude were performed.

Furthermore, the effect on α of different spectral structures (with slopes = 0, -1, -2) was

also studied.

A detailed comparison of experimental results from the turbulent R-T mixing layer with

data from numerical simulations was undertaken. The numerical simulations were

initialized with experimentally obtained density and velocity data at the start of the flow.

The results of the numerical simulations were compared with velocity and density

measurements obtained from the flow at later times. The flow parameters (including the

density difference), dimensions of the experiment, and the initial conditions, were

maintained the same in both the simulations and the experiment. The objective of such a

comparative study was to resolve outstanding differences obtained in the value of the so-

called universal growth constant, α between current numerical simulations and

experiments. It is widely believed that experiments report higher values of α due to the

presence of long wavelength modes that dominate the growth at late times. While there

have been previous numerical studies to attempt an explanation of these differences,

most of them have not used the exact conditions present at the start of the experiment. It

is hoped that this study will provide a better understanding of the role of long

wavelengths on the value of α. If the experiment can exactly be modeled through

numerical simulations, this will allow us to run “numerical experiments” under

conditions that cannot easily be implemented in the experiments. Some examples are
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variable acceleration studies, initial conditions that cannot be implemented in the

experiment, effect of shear etc.
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2. EXPERIMENTAL SETUP AND DIAGNOSTICS

2.1 Preliminaries

A detailed description of the water channel experimental setup, and the diagnostics used

to make density and velocity measurements in the next section. A novel technique

developed to measure both density and velocity simultaneously is described in section

3.1. Figure 2.1 is a schematic of the experimental setup. The channel consisted of upper

and lower entry plenums separated by a splitter plate. The cold water channel was fed

from a 500 gallon tank, and a second lagged 500 gallon tank of warm water fed into the

lower channel. The cold and warm water streams entered the channel at a mean velocity

of ~ 4.4 cm/s. This value of the velocity was chosen so that the parabolic flow (1.2.1)

extended over 60 cm, where data could be collected. The density difference was

achieved through a temperature difference of 5 to 10oC in the water. Temperature data

was converted to density through the following equation of state (Kukulka 1981):
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where T is in o C, and ρ is in kg/m3. The above expression is nearly linear at

temperatures in the range of 15oC to 25oC for the present experiment. Both tanks

contained sump pumps to ensure a uniform temperature was maintained in the tanks

throughout the experiment. Thus, cold (heavier) water entered through the top plenum,

while warm  (lighter) water entered through the lower plenum, and the two streams
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640H x 480V Pixels
1200 Image Capacity on
Board Lasers

Two 120 mJ
15 Hz pulse
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Junction diameter of 0.01–0.02 cm
Response time 0.001 s/oC
Sample rate 100 Hz

Figure 2.1. Schematic of experimental setup.
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formed an unstable Rayleigh-Taylor mix as they left the edge of the splitter plate. The

resulting flow was statistically steady, allowing for long data collection times albeit at

small Atwood numbers At < 10-3. No shear between the two fluid streams was employed

in the present work. Nigrosene dye was injected at the splitter plate, and the flow

velocities were adjusted until the dye was convected downstream without undergoing

any distortion due to shear. From late-time mean velocity profiles across the mix, the

amount of shear was determined to be < 1% of the mean convective velocity. The flow

channel was 241 cm long (including the inlet and exit plenums), 31 cm deep, and 15 cm

wide.  At this width, the front and back walls of the channel did not have any effect on

the development of the mix in the central region (Snider & Andrews 1994). The test

section where the data was collected was 100 cm long. The splitter plate was 0.32 cm

thick, with a 2.5o knife-edge. Calibrated rotameters were used to regulate the mean flow

rate. Screens and flow straighteners in each of the plenums minimized free-stream

turbulence (Snider & Andrews 1994), and suppressed the growth of boundary layers on

the walls. A fine mesh (35 mesh/in.) at the end of the splitter plate absorbed some of the

momentum deficit
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Figure 2.2 Mean velocity profiles at x = 1 cm (a) and x = 2 cm (b).
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introduced by the knife-edge. The leaning of early-time structures seen in figure 1.2 (a)

is due to the development of boundary layers on the splitter plate. From the mean

velocity profiles immediately after the splitter plate at x = 1 cm (figure 2.2 (a)), the

associated velocity deficit was estimated to be ~ 0.4 cm/s (~ 10% of the mean convective

velocity). However, this velocity defect is neutralized rapidly by x ~ 2cm (figure 2.2 (b))

due to the buoyancy-driven vertical transport of momentum and due to diffusion. The

velocities shown in figure 2.2 were measured using the Particle Image Velocimetry

technique described in the next section.

2.2 PIV System

The PIV system consisted of two Nd-YAG lasers that fire alternately each at a rate of 15

Hz, giving a net sampling rate of 30 Hz. The pulse duration of the lasers was 5 ns,

ensuring that the images represented the instantaneous positions of the particles. The

laser beam was passed through an array of cylindrical lenses to produce a laser sheet of

thickness less than 1 mm. Neutrally buoyant, hollow silvered spheres of diameter 10 µm

were used to seed the flow. Seed particle concentrations were varied from 3 ml to 6 ml

per 500 gallons of the cold and hot water, and were well stirred into the water by the

sump pumps. A KODAK Megaplus digital camera, triggered synchronously with the

lasers, was used to record the images with arrays of size 640 x 480 pixels. Typically,

1200 images were collected to obtain convergent statistics (Ramaprabhu & Andrews

2003a). A labview based system was used to control triggering of the lasers and data

collection.
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The displacement of a particle in two successive images gives the velocity vector at that

point. Our requirements for PIV were standard, and so we used the readily available

MATPIV program, a cross-correlation based software (Grue et al. 2000). The cross-

correlation function R(x,y) was computed from the two image fields, I1 and I2 as

� �
−= −=

++=
2/M

2/Mi

2/N

2/Nj
21 )yj,xi(I)j,i(I)y,x(R ,       (2.2.1)

where M = N = 2n–1; n = 3,4,5… The mean intensities were subtracted from I1 and I2

and the resulting value of R(x,y) was normalized by the correlation coefficient. The

location of the correlation peak with respect to the center of the interrogation window

gives the local displacement vector. The vector field is smoothed by a signal-to-noise

ratio filter and a global histogram filter. Vectors with a signal-to-noise ratio less than 1.1

or lying outside two standard deviations of the neighboring vectors were replaced by

interpolated values. The PIV software yields 1199 vector fields from the 1200 grayscale

images. First, second, and third order statistics were computed from the vector fields.

One concern is that local density variations can influence the refractive index, resulting

in an apparent displacement of the particle position along the line of sight. However, for

the low values of density differences used in this experiment, and the short beam

traverse distances along the line of sight, this effect was explored and found negligible

(see Appendix A; Ramaprabhu & Andrews 2003a). Following the method of Adrian

(1997), we determined the error in our velocity measurements to be ~ ± 0.05 cm/s based
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on the uncertainty associated with the location of a particle. The resolution issues of the

PIV technique are explored in detail in section 4.3.

2.3 Thermocouple System

The temperature diagnostics consisted of a vertical rake of thermocouples that were

positioned at the centerline of the mix at different downstream locations in the channel.

The thermocouple probes were E-type (Nickel-Chromium and Constantan) and welded

at the tip to form a bimetallic junction. The thermal response of the E-type thermocouple

was ~ 0.001 s/oC (Wilson & Andrews 2002), while the accuracy was ± 0.1oC (Wilson

2002). A 16-bit data acquisition board collected data from the thermocouples at a

maximum sampling rate of 100,000 Hz. To remove some of the noise, local averages of

over 1000 samples were performed, resulting in a net sample rate of 100 Hz. The welded

thermocouple probe tip was approximately 0.01 cm in diameter. At a downstream

distance of 30 cm from the splitter plate, a local mixing Reynolds number may be

computed by balancing the potential energy released against the turbulent kinetic energy

of the flow to obtain (Snider & Andrews 1994)

ν

2/3)2(
6

Re xta
x

hgA
= , (2.3.1)

where hx is the mix width (taken to be the distance between points where the mean

density is 5% and 95% of the cold or hot fluid) at a downstream distance x and ν is the

kinematic viscosity. At this location, the Kolmogorov turbulent scale (ηk) is given by

4/3Re −= a
xxk hη . (2.3.2)
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The corresponding Batchelor scale (ηB), which is relevant for scalar (thermal/density)

fluctuations is

2/1
kB Pr−= ηη , (2.3.3)

where Pr is the Prandtl number (Pr ~ 7 for water at 20oC). At x = 30 cm, equation (2.3.3)

gives ηB = 0.02 cm, which suggests that the Nyquist spatial resolution criterion is

satisfied at the current sampling rates. However, for x > 30 cm, this criterion is not met,

and the smallest scales of turbulent motion may not be fully resolved. The data

collection time was ~ 160 s, which was chosen to allow more than 80 of the largest scale

structures to be recorded (the turnover time of the large scale structures is given by

sUhx 2~2=T , where U is the mean convective velocity of the flow). The long data

collection times and the high sampling rate resulted in capturing almost four decades of

frequencies. The configuration and details of the thermocouple system are further

described in Wilson & Andrews (2002), with a detailed consideration of the Batchelor

scale.

During the course of the experiment, the following recursive procedure ensured that the

thermocouple was located at the geometric centerline of the mixing layer.  Initially, the

thermocouple was placed close to the mixing layer centerline by visual inspection (the

vertical position of the thermocouple, mounted on a rake, can be adjusted by a vernier

screw arrangement), and the data logged. Dye was added to one of the fluids to

distinguish the two streams. The data acquisition software computes and prints out the

centerline temperature offset factor:
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( ) ( )212 TTTTmean −−=φ (2.3.4)

at the end of the data logging process. If φ ≠ 0.5, the position of the thermocouple is

readjusted using a false positioning method (i.e., linear interpolation), and the data

logging process is repeated.  The process is repeated until φ approaches 0.5 to within an

accuracy of 5%.

In equation (2.3.1), the Reynolds number was defined assuming that all the initial

potential energy in hx associated with the unstable density interface was converted

completely to kinetic energy. In a buoyancy driven mix with no shear, the mean

convective velocity does not contribute to the dynamics of the buoyant mix. As a result,

the definition of a Reynolds number often becomes a matter of preference depending on

the choice of a suitable velocity scale. Some commonly used definitions are reviewed

here. The self-similar nature of this flow may be incorporated into a Reynolds number

definition by using the mix width as the length scale, and its time derivative as the

corresponding velocity scale (Cook & Dimotakis 2001):

ν
xxb

x
hh �

=Re . (2.3.5)

An alternative definition uses the terminal velocity introduced earlier in section 1.2 as

the velocity scale, resulting in a form close to equation (2.3.1):

2/7.022.Re xt
xxc

x ghAhhv
νν

== ∞ . (2.3.6)
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Implicit in (2.3.5) is the use of a r.m.s. velocity scale v′ ~ xh� , whereas (2.3.6) uses the

terminal velocity of the bubbles in this flow. Finally, at the microscales, a Taylor

Reynolds number may be defined based on the Taylor length scale λ and the r.m.s.

velocity scale:

ν
λ

λ
vRe
′

= . (2.3.7)

The Taylor Reynolds number is a universal measure of the state of turbulence since it is

defined independent of the large-scale features of the flow. For instance, it has been

argued that a Taylor Reynolds number of 100 is required to cross the mixing transition

threshold for all turbulent flows (Dimotakis 2000). The Reynolds numbers computed

from the above definitions are listed for our experiment in Table 2.1 for x = 35 cm. All

the definitions based on large-scale features of the flow have similar values of the

Reynolds numbers, indicating that these different velocity and length scale definitions

are equivalent. Equations (2.3.1) seems to give the highest value (~1450), but this may

due to the omission of energy losses due to dissipation. An experimental estimate of

dissipation losses is presented in section 4.5.
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Table 2.1. Reynolds number definitions for R-T flow

Equation (2.3.1)
ν

2/3
xt )h2(

6
gA 1450

Equation (2.3.5)
ν

xxhh � 1000

Equation (2.3.6)
ν

∞vhx 1250

Equation (2.3.7) v′λ/ν 60
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3. SIMULTANEOUS MEASUREMENTS OF VELOCITY AND DENSITY

FIELDS (THE PIV-S METHOD) *

3.1 Preliminaries

A variant of the PIV technique is described to measure velocity and density

simultaneously in a turbulent Rayleigh-Taylor mixing layer. The velocity field is

computed by the usual PIV technique of cross-correlating two consecutive images, and

deducing particle displacements from correlation peaks of intensity fields. Different

concentrations of seed particles were used in the two streams of different temperature

(density) fluids, and a local measure of the density was obtained by spatially averaging

over an interrogation window. Good agreement is reported between the first and second

order statistics for density obtained from this technique and from a thermocouple.

Velocity-density correlations computed by cross-correlating individual timeseries are

presented. The errors in the density measurements are quantified and analyzed, and the

issue of spatial resolution is also discussed. Our purpose here is to introduce the PIV-S

method and validate its accuracy against corresponding thermocouple measurements.

In a buoyancy driven flow, such as an R-T mix, temperature plays the role of a

‘dynamic’ scalar influencing the evolution of the velocity field (and being influenced by

it) through the buoyancy term and Boussinesq approximation. The resulting turbulence

can be characterized, in part, by velocity-density correlations; and, it is of interest to

_____________________
* Parts of this section including figures 2,3,4,5,6,7,8,9,10,11,12,13 have been reprinted
with permission from Expts. Fluids 34, 98–106, 2003 Ramaprabhu, P., & Andrews,
M.J., Simultaneous measurements of velocity and density in buoyancy-driven mixing.
Copyright Springer-Verlag.
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turbulence modelers and for DNS validation to study the variation of such statistics

across the mix. A non-intrusive, whole-field technique that we call PIV-Scalar, or PIV-

S, is used here to simultaneously measure velocity and temperature (density) fields. The

two streams of different temperatures (densities) in an R-T mix are seeded with different

concentrations of particles, and a digital camera takes snapshots of the instantaneous

intensity field I(x,y) of reflected light. The velocity field is obtained by a standard PIV

cross-correlation technique, while the density field is obtained by performing local

spatial averages of the intensity field within interrogation windows roughly the size of

1mm x 1mm (24 x 24 pixels). Thus,
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∝∝
N

kj
kjcc yxIdAyxI

A
yx

1,
),(),(1),(ρ (3.1.1)

where (xc,yc) denotes the geometric center of the interrogation window of size NxN

pixels. It is not necessary to determine the constant of proportionality in the above

equation since we work with non-dimensional quantities. This also removes the need to

calibrate the PIV-S method. Furthermore, this method is simple to implement, and yields

low error values, as we shall describe.

Although variation of seed particle concentrations has been used before to determine

velocity-density fields (Simoens et al. (1996)), they have large errors, particularly in the

measurement of second-order moments. This is due to the measurement of point-wise

intensity values (rather than local averages as suggested by equation (3.1.1)) as an

indicator of density, thus leading to unreliable realizations. Furthermore, these methods



30

require two cameras to capture the velocity and density fields, introducing additional

alignment errors.

Another technique commonly used is Digital Particle Image Velocimetry/Thermometry

or DPIV/T (Dabiri & Gharib 1991; Park et al. 2001), which involves seeding the flow

with liquid crystal particles that change color in response to temperature changes. From

the color of the particle, the local temperature is inferred, while the displacement of the

particles gives the velocity field. The measurement of color is more complicated (color

is a three-dimensional vector with components [R,G,B]) than that of the intensity (a

scalar) and requires sophisticated post-processing techniques. This method also suffers

from uncertainties that stem from manufacturing defects of the particles, causing them to

reflect light at different wavelengths even while at the same temperature (variations of 5-

20% have been observed). In addition, the standard deviation of the wavelength of

reflected light is itself a function of the temperature, making this technique difficult to
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calibrate. Although Park et al. removed some of the errors by local spatial averaging,

significant errors remained, in some cases up to 8%.

Sakakibara and Adrian (1999) used PIV and Planar Laser Induced Fluorescence (PLIF)

in tandem to measure velocity and density fields, respectively. The use of dye gives very

high spatial resolution. This method not only requires two cameras, but also suffers from

sensitivity of fluorescent dye to light intensity, which may vary due to refraction.

Sakakibara and Adrian (1999) overcame this problem by introducing a two-dye

technique, with each dye having a different temperature response so that the ratio of the

fluorescence intensities itself is independent of the temperature. They estimate the

overall accuracy of the method to be around 95% for the mean quantities.

3.2 Density Measurements

The first and second order moments (mean and fluctuation) of density at two

downstream locations, viz. x ~ 2.5 cm and x ~ 35 cm from the splitter plate, are

presented here. A 24 x 24 pixel (1 mm x 1mm) window was used in the averaging
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process, and the reason for choosing this window size is explained in section 3.5. After

trying a variety of averaging procedures, such as the use of intensity thresholds, and
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Figure 3.1. f1 profiles at (a) x = 2.5 cm, and (b) x = 35 cm from PIV-S and
thermocouple experiments (dotted line represents centerline of mix).
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point-wise averages, it was found that simply averaging the intensity within a window

yielded the best results (lowest r.m.s. error of density fluctuations). All experiments were

run at a temperature difference of 5oC between the hot and cold streams (At ~ 5 x 10-4),

and with no shear (pure buoyancy case). The density data are compared with results

from thermocouple measurements at the same locations (the temperature data recorded

by the thermocouple are converted to density data from (2.1.1)).

Figures 3.1 (a) and (b) show the volume fraction f1 of the cold fluid (defined as 
21

2

ρρ
ρρ

−
−

,

where ρ is the time-averaged density) across the mixing layer at x ~ 2.5 cm and x ~ 35

cm downstream (since the mix is much wider at x ~ 35 cm, due to turbulent diffusion,

only half the mixing layer could be captured on the photographs in a single experiment).

These first-order density statistics agree well with the thermocouple measurements

(filled circles). To investigate the agreement between the thermocouple data and the

PIV-S measurements, we define the following quantities commonly used (Steinkamp et

al. 1999, Linden et al. 1994, Wilson and Andrews 2002) to characterize a Rayleigh-

Taylor mix:
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 (3.2.1)

where B0 is the nondimensional turbulent intensity of density variations across the mix,

and includes the effect of molecular diffusion; B2 is the corresponding conditioned

measure that would result if the two fluids were immiscible and does not account for

molecular mixing. Then, θ is a molecular mix parameter and is a measure of the extent

of mixing due to molecular diffusion first introduced by Dankwerts (1952). θ = 1 implies

perfect molecular mixing and θ = 0 implies no molecular mixing, i.e., pure two-fluids. In

this experiment, the molecular mixing is due to heat conduction.

B0 and B2 are plotted for the two downstream locations in figures 3.2 (a) and (b). As

expected, B0 and B2 reach their maximum values at the center of the mix where most of

the mixing takes place. Furthermore, at the center of the mix, f1 = f2 = 0.5, so from

Equation (3.2.1) B2 = 0.25. B0 and B2 obtained from the PIV-S and the thermocouple

data compare well, particularly near the center of the mix. It is noticeable in figure 3.2

that while the thermocouple values approach zero near the edge, the PIV-S
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measurements of B0 seem to have a residual value. However, the measured two-fluid

density fluctuation, B2, agrees well between the thermocouple and PIV-S. This

discrepancy may be due to a diffuse thermal edge, or perhaps due to intermittency at the
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Figure 3.2. B0 and B2 profiles at (a) x = 2.5 cm, and (b) x = 25 cm from PIV-S
and thermocouple experiments.



36

edge associated with an interface not sufficiently resolved with a spatial-averaging

technique such as PIV-S (the much smaller ‘probe-volume’ of the thermocouple is better

suited to resolve such sharp interfaces). The disagreement near the edge is also evident

in the plots of θ (figures 3.3 (a) and 3.3 (b)), which is particularly sensitive to

measurement errors. For a fully developed R-T mix, B0/B2 ~ 0.25, and θ ~ 0.75 across

the mix, which is observed here. Since particles have a lower rate of diffusion than heat

(higher Schmidt number compared with Prandtl number), a lower value of θ might be

expected. However, this effect is diminished or eliminated in a well-mixed region such

as the center of the mixing layer in these experiments. As a result, we see good

agreement in the values of θ in this region between PIV-S and thermocouple data.

Indeed, experiments where salt was used instead of heat to create the density difference

(Dalziel et al. 1999) also give similar values of θ near the center of the mix, in spite of

the much lower value of mass diffusivity associated with salt compared with heat.

However, the Schmidt number does play a role away from the center of the mixing layer

where PIV-S gives a lower value of θ. But, the θ value does not become vanishingly

small in this region. We attribute this to the advection of fragments of well-mixed fluid

from the center of the mix, resulting in a flow history-effect. A contour map of B0 at x =

2.5 cm is given in figure 3.4 and shows
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Figure 3.3. θ across the mixing layer at (a) x = 2.5 cm, and (b) x = 35 cm from
PIV-S and thermocouple experiments.
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Figure 3.4. Contour map of B0 at x = 2.5 cm from the splitter plate.
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Figure 3.5. (a) and (b) Two successive particle images showing mushroom-shaped
structures characteristic of R-T instability. Velocity vector field (c), and vorticity field

(d) obtained by cross-correlating the image files of (a) and (b).
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the divergence of the mixing layer (the area shown has physical dimensions of 3.6 cm x

2.0 cm).

3.3 Velocity Measurements

Figures 3.5 (a) and (b) show a pair of successive PIV-S images (separated by a time

interval of 0.033 s), in which the heavy fluid is seeded with a higher concentration of

particles than the lighter fluid. The difference in particle concentrations delineate the

structures in the flow. The images are 640 x 480 pixels, while the actual window size is

~ 6 cm x 4 cm. The convective velocity of the flow was 4.4 cm/s in all of the

experiments reported here. The images were taken at x = 35 cm and are in the region of

self-similar development of the buoyancy mix. The mushroom-shaped structures are

characteristic of Rayleigh-Taylor instability. These vortices are three-dimensional

structures, with the vorticity field resembling that of a vortex ring. This is a

predominantly irrotational flow, with most of the vorticity concentrated within the

rollup. Observations from the experiment of the axisymmetric nature of these mushroom

structures implies isotropy between the streamwise and spanwise velocity components.

Figure 3.5 (c) shows the velocity vector field (from which the convective velocity has

been subtracted) obtained as a result of correlating the two grayscale images. A 16 x 16

pixel interrogation window was used in computing the vector fields. The corresponding

out-of-plane z-vorticity component (in s-1) is presented in figure 3.5 (d). Apart from a

few bad vectors at the edge, the vector field captures the recirculating regions seen in the
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original images. The same is true for the vorticity field, where the two-dimensional

slices of the recirculating zone show up as alternate regions of positive and negative

vorticity.

The vorticity field seen in figure 3.5 (d) is generated primarily through the baroclinic

interaction of the density gradient and the pressure gradient (acceleration). For early

stages in the instability development, the vorticity equation may be written as (Turner

1980)

��
�

�
��
�

�
∇⊗∇+∇+∇•=

ρ
ζνζζ 1pu

Dt
D 2 . (3.3.1)

The first two terms in the right-hand side of the above vorticity equation indicate

changes in vorticity ζ, produced by vortex line stretching and diffusion. The third term,

unique to buoyancy driven flows, describes vorticity generation through misalignment of

the local density gradient and the pressure gradient. During the initial stages of our

experiment, the pressure gradient is the hydrostatic pressure introduced by gravity, and

vorticity generation can occur when surfaces of constant density are displaced away

from the horizontal. Thus, the sign of vorticity in figure 3.5 (d) is given by the local

direction of ∇p⊗∇(1/ρ) by the right-hand rule. The initially sinusoidal vortex sheets

evolve through localized stretching, before rolling up to form coherent vortices in the

shape of mushrooms. Depending on the vortex sheet thickness, secondary instabilities

(shear-driven or buoyancy-driven) may develop within the region of roll-up (e.g. the

single-mode experiments of Waddell et al. 2001).
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Figures 3.6 (a) and (b) are plots of the horizontal and vertical components of turbulent

velocity fluctuations across the mix at x = 2.5 cm and x = 35 cm respectively, non-

dimensionalized by a saturation velocity,

2/7.0 gHAu t=∞  (3.3.2)

(Andrews & Spalding 1990) where H is the depth of the channel. Thus, u∞ represents the

velocity associated with the largest wavelengths (~ H). Since this is a no-shear

experiment, vrms dominates over urms as the primary transport mechanism. This

dominance is tempered downstream, as the coherent structures become more fully

developed and three-dimensional. The uniform-concentration PIV experiment (symbols)

also shows this trend, with the ratio vrms/urms � 1.5 at x ~ 35cm observed in figure 3.6

(b). Overall, there is a good agreement between the velocity profiles of the PIV and PIV-

S techniques, suggesting that the use of different concentrations of seed particles does

not affect the PIV anvalysis. Figure 3.7 is a contour map of vrms/u∞ at x = 2.5 cm

showing the spread of the mixing layer, in terms of the velocity fluctuations. The

features of the velocity profiles are discussed in detail in section 4.2.
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 3.4 Velocity-Density Correlations

From the time series of ρ, u, and v, it is possible to compute velocity-density correlations

(non-dimensionalized by ∞∆ uρ ) such as shown in figure 3.8 (a). A packet of fluid lighter

than the fluid immediately around it ( 0<−=′ ρρρ ) will rise (v´ > 0), thus giving the

negative peak of < ρ´ v´ > at the centerline. Close to the splitter plate (x ~ 2.5 cm),

density and vertical velocity fluctuations are strongly correlated. As seen in figure 3.8(a),

density fluctuations and horizontal velocity fluctuations < ρ´ u´ > are weakly related

close to the splitter plate. These trends are seen further downstream as well, where the

mix-width is much wider due to diffusion (figure 3.8 (b)).
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Figure 3.7. Contour map of vrms/u∞ at x = 2.5cm.
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3.5 Error Analysis

The primary source of error in measuring reflected light intensity as an indicator of

density stems from the non-uniformity of distribution of particles, even in a region of

constant density; particles seemingly tend to clump together or pass through regions of

varying light-sheet intensity. While computing statistical moments of even order, these

and other uncertainties accumulate, resulting in residual errors as can be seen near the

edge of the mixing layer in figure 3.2. (Note that far away from the mix zone, ρrms

should � 0, as y � ∞, since there is no variation of density – turbulent or otherwise). To

verify that these errors are inherent measurement errors, and not a result of lack of

statistical convergence, a detailed convergence test was performed. Assuming that the

errors in the density measurements are purely random, it can be shown  (Mandel 1964)

that the standard deviation of density (at the edge of the mix) fall on a χ2 distribution,

i.e., if from a series of samples, each of size N, we obtain the variances of density to be

σ1
2, σ2

2, σ3
2 …, then the σi

2 will fall on a χ2 distribution (it can also be shown that the

true variance – obtained from an infinite sample – is the mean of the σi
2). If ‘n’ is the

number of degrees of freedom in each sample,  i.e.,  n = N-1, then,
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2
2

2

nn χ
σ
σ = (3.5.1)

where χn
2 is the χ2 function based on n degrees of freedom. Thus, for a given n, we may

determine the ratio 2

2

σ
σ from the χ2 distribution, and hence the error in determing ρ.

Figure 3.9 shows the % error in determining ρ at the edge of the mix as a function of the

sample size (for a confidence level of 95%). The turnaround at N ~ 1000 is also

confirmed by experimental data, and it can be concluded that the errors observed here

are purely a result of inherent randomness of the measurement process. Note that the
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Figure 3.9. % r.m.s. error as a function of number of samples.
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requirements for convergence may be more severe along the center line, particularly

further downstream, as the coherent structures grow in size increasing their turnover

time, thus necessitating longer time averages.

The size of the interrogation window used also affects the r.m.s. value. The argument

used here in picking the window size of 24x24 pixels is similar to the argument that the

‘continuum hypothesis’ is based on. If the window is too small, the local spatial average

is unreliable since it is based on too few realizations. If the window is too large, then we

may be averaging over real changes of the field variable. Thus, the window size was

chosen in the region of the plateau in figure 3.10, so that the computed averages are not

dependent on the size of the interrogation window. From a spatial convergence test

(Ramaprabhu and Andrews 2003a), the molecular mix values were also found to be

reasonably constant for window sizes between 16 and 32 pixels. For windows smaller

than 16 pixels, the θ values were found to approach two-fluid values due to lack of

sufficient samples for averaging (figure 3.11).

By seeding the hot and cold water streams with different concentrations of particles, a

measure of the local density has been obtained. This technique requires no modifications

to a standard PIV system and does not require additional cameras or optical filters. Since

the measurements are of a density indicator (i.e., concentration of particles), and not the

actual density or temperature at a point, no calibration is necessary. For this same reason,

PIV-S is not limited to a particular range of temperatures or densities. Thus, we have
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tried to show the proof-of-principle of this technique for such measurements. The

primary limitation of PIV-S technique is its poor spatial resolution of density

measurements. A 24x24 pixel averaging window, such as the one used here, limits the

spatial resolution of the technique to 1 mmx1mm. Thus, wave number spectra of density

fluctuations smaller than this cannot be reliably computed, unless much smaller window

sizes are used. The accuracy of this method is of the order of 90% for r.m.s. values of the

density. We point out that this method is limited to flows that are not continously

stratified. In such cases, it is not immediately apparent how to “assign” a particular value

of particle concentration to a local density value. Also, while the effect of refractive

index fluctuations on the PIV results were found to be insignificant here, such effects

may have to be taken into consideration when applying this technique to higher density-

difference applications. It is expected that computing third order moments, v′′2ρ ,

u′′2ρ , vu ′′′ρ  etc. will be a straightforward extension of the methods used here. Also,

these higher-order moments will not introduce additional errors and will have the same

accuracy as the r.m.s. measurements reported here. This is not true for 4th order moments

where, once again, random errors do not vanish. Finally, using holographic techniques,

such as Holographic Particle Velocimetry, which record the positions of seed particles in

3D space, it is conceivable that 3D measurements of the density field and its correlation

with the velocity field may be measured.
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4. EXPERIMENTAL RESULTS

4.1 Preliminaries

The subsequent sections contain a discussion of velocity and density data (spectral and

statistical) obtained using the experimental diagnostic techniques described in sections

2.2, 2.3 and 3.1. High-resolution (∆x = ∆y = 0.03 cm) velocity data were collected at a

sampling rate of 30 Hz at 2 cm and 35 cm downstream from the splitter plate. Thus, the

smallest length scales captured with this technique are ~ 0.06 cm. The accuracy of the

velocity measurements reported here is ~ ± 0.05 cm/s. The data collected just off the

splitter plate, at 2 cm, represent the initial conditions of the flow. The fine-mesh screen

at the edge of the splitter plate creates a “grid-type” turbulence, with a spectrum of

velocity perturbations in its wake. At 35 cm downstream, the hot and cold fluids are well

mixed and the flow has reached an observed self-similar state. The data presented here

describes the more fully developed R-T mix. In addition, lower resolution (∆x = ∆y = 0.2

cm) velocity data were collected at x-locations ranging from 0 to 56 cm from a series of

experiments each with a window size of 8 cm x 6 cm (Table 4.1). The data-sampling rate

used in these lower resolution experiments was 15 Hz, and these velocity fields were

primarily used for computing the statistics at these locations. The small velocity scales

that are not resolved by this set of experiments contribute little to the statistics here

because of their small amount of energy.

Following Dalziel et al. (1999), we define a dimensionless time
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x – location
(cm)

T - location y – location
(cm)

Resolution

Thermocouple

1.0

2.0

10.0

20.0

30.0

40.0

50.0

60.0

0.03

0.07

0.34

0.70

1.00

1.39

1.74

2.08

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

∆t = 0.01 s

PIV (low

resolution)

0.0 – 8.0

8.0 – 16.0

16.0 – 24.0

24.0 – 32.0

32.0 – 40.0

40.0 – 48.0

48.0 – 56.0

0 – 0.305

0.305 – 0.0.610

0.610 – 0.916

0.916 – 1.221

1.221 – 1.527

1.527 – 1.832

1.832 – 2.137

-3.0 – 3.0

-3.0 – 3.0

-6.0 – 6.0

-9.0 – 9.0

-9.0 – 9.0

-9.0 – 9.0

-9.0 – 9.0

∆t = 0.066 s

∆x = ∆y = 0.2

cm

PIV (high

resolution)

PIV-S

2.0

35.0
0.07

1.21

0.0

0.0

∆t = 0.033 s

∆x = ∆y =

0.03 cm

Table 4.1. List of thermocouple and PIV/PIV-S experiments
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Here, the downstream distance x is converted to time t, using the Taylor hypothesis, t =

x/U. The definition of T incorporates the self-similar nature of the flow (here, g is the

acceleration due to gravity, x is the downstream distance, U is the mean convective

velocity, and H the depth of the channel). In self-similar units, the two locations x = 2

cm and x = 35 cm (where the high-resolution data were collected) correspond to T = 0.07

and 1.21, respectively. The early- and late-time PLIF images from figure 2, were taken

at T ~ 0 – 0.305 and T~ 1.22 – 1.52 respectively. The low-resolution PIV experiments

were performed at 0 < T < 2.1. The mix width plots of Dalziel et al. (1999) show a

quadratic growth for T > 1, indicating the onset of self-similarity. Temperature data were

collected by thermocouples along the centerline of the mix at 8 downstream locations

(the location of the centerline was determined by the false positioning method described

in section 2.3). These locations correspond to 0.03 < T < 2.08. In all of the experiments

presented here, care was taken to eliminate shear between the two fluid streams. Table

4.1 is a summary of all the experiments reported in this paper.

The molecular mix θ (defined in section 3.2) affects the overall growth rate of the mix in

the following way. Consider the definitions of B0 and B2 as the non-dimensional

turbulent density fluctuations in the presence and absence of molecular diffusion

respectively. Then,

22
2212

22
00 /ffB,/B ρ∆ρρ∆ρ ′==′= , (4.1.2)
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where the 2
0ρ′  and 2

2ρ′ refer to the turbulent density fluctuations for the miscible and 2-

fluid cases respectively, and 21 ρρρ∆ −= . Equation (1.2.1) for the growth rate of the

mix may be rewritten using the modified driving term 2
02 ρ′

)(gt2h 21
2

0
2 ρρρα +′= . (4.1.3)

This is a more natural choice for molecularly mixed fluids, since the density difference

available to drive the flow 21 ρρρ∆ −=  is reduced in the presence of diffusion. For a 2-

fluid case at the centerline where f1 = f2 = 0.5, then

4/)(ff 2
21

2
21

2
2

2
0 ρρρ∆ρρ −==′=′ , (4.1.4)

so that equation (4.1.3) reduces to equation (1.2.1).

For miscible fluids, we have

θ
ρ
ρ −==

′
′

1
B
B

2

0
2

2

2
0 . (4.1.5)

reducing equation (4.1.3) to (Andrews 2001)

2
t gtA~h α= , (4.1.6)
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where θαα −= 1~  is an effective growth constant. At the centerline of the mix,

measurements of θ have been found to vary from 0.7 to 0.8 (Wilson & Andrews 2002),

and remain reasonably constant across the mix (see below). Assuming an intermediate

value of θ = 0.75, the presence of molecular diffusion serves to reduce the growth rate of

the mix by a factor of 0.5. The front tracking calculations of Glimm et al. (2001) suggest

2-fluid value for α of 0.07, giving a net growth constant 035.05.0~ == αα . This is

consistent with the value reported by most numerical simulations that have molecular

diffusion in them.

The centerline time-evolution of the mix-parameters defined in section 3.2 and

determined from the thermocouple measurements, are shown in figure 4.1. Close to the

T
0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1 B0
B2
θ

Figure 4.1. Time evolution of scalar turbulence intensity and mix
parameters measured at the centerline.
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splitter plate (T ~ 0.034), the mixing layer is diffuse and, as a result, θ values are high in

this region (and corresponding B0 values are low). As the mix develops farther

downstream, the fluctuation levels increase with the onset of the instability, resulting in a

slight drop in the value of θ. This corresponds to the stretching of the initial diffuse

layer, followed by rolling up into mushroom-shaped structures. This is also seen in the

p.d.f.s of density values (figure 4.2), which switch from an initial distribution with a

single peak (T = 0.034) suggesting a diffuse region, to a distinctly bimodal distribution

at later times (T = 0.347), indicating fluctuating density fields. Eventually (T = 1.008),

turbulent diffusion serves to smooth out some of these fluctuations, and the histogram

regains a dominant peak corresponding to )()( 212 ρρρρ +−  = 0.5 at the center of the

mix. As expected, the 2-fluid parameter B2 remains relatively constant at a value of 0.25.

This further confirms that these measurements were indeed at the centerline of the mix,

since at the center f1 = f2 = 0.5 and B2 = 0.25 according to equation (3.2.1). It is

noteworthy that all the parameters change little in the developing self-similar regime of

the mix (T > 1).

In section 3.2, we argued that PIV-S accurately captures θ at the centerline, due to the

preponderance of small-scales at that location. We attempt to quantify this by defining

an appropriate intermittency factor γ. A common definition of intermittency focuses on

the vorticity in the fluid, γω , i.e., rotational fluid is marked as turbulent fluid, and

irrotational fluid is marked as quiescent. An intermittency function, I, based upon

vorticity is defined as (Pope 2000)
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)|),((|),( thresholdtytyI ωω −= H , (4.1.7)

where ω is the out-of-plane component of the local vorticity field, ωthreshold is a small

positive threshold, and H  is the Heaviside function. Thus I is 1 for |ω| > ωthreshold and

zero otherwise. The intermittency factor is then given by

>=< )t,y(I)y(ωγ , (4.1.8)
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where •  indicates time-averaging. For the present experiment, the cross-stream profile

of γω is shown in figure 4.3 (a) for T = 1.21 ( thresholdω  was chosen so that

2

2

ω
ω threshold was ~ 5%). Unlike shear layers and wakes, where γω can reach a maximum

value of 1 at the centerline (LaRue & Libby 1976), the intermittency factor reaches a

peak value of 0.5 in our buoyancy driven mix. This is due to significant cross-stream

transport of rotational and irrotational fluid, thus decreasing the value at the centerline.

However, this picture is incomplete, as we will show in the following. For our purposes,

we are interested in identifying the interface between the heavy and light fluids.

Therefore, a more natural definition for the present buoyant mixing is an intermittency

factor (or a density intermittency factor) based on the volume fraction.

We take fthreshold = 0.5 as the threshold for defining a density intermittency factor. Then,

using the Heaviside function and instantaneous volume fractions 
21

2
1f ρρ

ρρ
−
−=′ ,

12 f1f ′−=′ , we may define

)),((),( 1 thresholdftyftyN −′=+ H

)),((),( 2 tyfftyN threshold ′−=− H .

Hence )t,y(N + and )t,y(N − denote the probability of finding fluid 1 and 2,

respectively, at y; thus, 1f)t,y(N ≅+ , and 2f)t,y(N ≅−  by definition of volume
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fraction. Any definition of density intermittency will have to include the volume fraction

of the fluid, which can be interpreted as a conditional measure of the density of the fluid

and be symmetric about the centerline of the mix. This may be accomplished by defining

a density intermittency factor as

( ) ( ) ( )( )2
21

2
21

2
ffff

2
1)t,y(N)t,y(N1

2
1 −−+=�

�
��

�
� −−= −+

ργ ,

(4.1.9)

using f1 + f2 = 1. In the above the fthreshold term is eliminated when the Heaviside

operation is performed. This definition ensures that γρ reaches a peak value of 0.5 at the

centerline where f1 = f2 = 0.5 and goes to zero at the edges where f1 = 1 - f2 =0 and vice-

versa. After some algebraic manipulation, equation (4.1.9) simplifies to

221 B2ff2 ==ργ . (4.1.10)

Thus, a γρ value of zero implies the presence of a single fluid (not necessarily

irrotational), and a value of 0.5 indicates that both fluids are present with equal

probability (i.e., a large amount of density intermittency). Figure 4.3 (b) plots γρ as a

function of y/H at T = 1.21 and shows a peak value of 0.5 at the centerline. This indicates

the presence of a large amount of density intermittency as well as associated interfacial

area at the centerline with a value approaching the single-fluid limit at the edge of the

mix. Thus, the structures at the centerline are much more contorted, with greater

interfacial area resulting in molecular diffusion across the interface, as shown in figure

1.2 (b).
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These observations are also supported by velocity p.d.f.s at T=1.14 for three locations

across the mix: at points where 1
v
v

max

=
′
′

, 0.5, and 0.2 corresponding to H
y = 0, 0.13, and

0.2 respectively (figures 4.4 (a), (b) and (c), respectively) with maxv′  available from figure

4.8 (b). The resolution in all three figures is the same, i.e., the number of intervals across

the dynamic range of the velocities is constant. At the center of the mix, where 1
v
v

max

=
′
′

,

the vertical velocity distribution is flatter than the horizontal velocity components and

covers a wider range of scales; thus, the likelihood of finding large velocities is roughly

the same as that of finding small velocities. This implies that there is a greater hierarchy

of scales at the center of the mix,  resulting in a greater interfacial area and hence

enhanced mixing. Approaching the edge of the mix with 5.0
v
v

max

=
′
′

and then 0.2, for

both the horizontal and vertical components, small velocities become more likely than

large ones. In addition, the vertical velocity p.d.f.s become more skewed and less

Gaussian near the edge for reasons explained by considering the skewness below.
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The third and fourth moments of the velocity field represent the skewness and flatness

(kurtosis) of the velocity probability density functions. These functions are

conventionally normalized by the velocity r.m.s.:

2/32

3

u
u

u
S

′

′
= , 2/32

3

v
v

v
S

′

′
= , 22

4

u
u

u
K

′

′
= , 22

4

v
v

v
K

′

′
= , (4.1.11)

where 2u′  and 2v′ profiles are given in figures 4.8 (a) and (b) respectively. Cross-

stream profiles of the skewness and kurtosis of the horizontal and vertical velocity

distributions are shown in figures 4.5 (a) and (b), respectively. Su is close to zero across

the mix, since the horizontal velocity field is symmetric about the vertical. However, Sv,

is zero at the centerline and antisymmetric about it. Alternately, the predominant

velocity determines the sign of skewness, because of the third power. It can be noted that

Sv > 0, for y > 0, as fluid is predominantly rising (the upper edge of the mix), whereas Sv

< 0 for y < 0 as fluid is predominantly falling (lower edge of the mix). Neglecting the

horizontal velocities, which cancel out due to symmetry, mass conservation for the mix

considered as a 2-phase fluid gives 0vfvf 2211 =+ , where f1, f2 and v1, v2 are the

volume-fraction and the vertical velocity components of the heavy and light fluids,

respectively. At the centerline, f1 = f2 = 0.5 and v1 = -v2, resulting in a symmetric p.d.f.

and Sv = 0. At the edge, f1 � 1 (and f2 � 0) v1 is a small negative velocity while v2 is a

large positive velocity. Conversely, as f1 � 0, v1 is a large negative velocity and v2 has a

small positive value. Thus, the vertical velocity skewness profile is zero at the centerline,

with positive values for y > 0 and negative values for y < 0. (Beyond the edge of the mix,

the skewness drops to zero due to the presence of random noise).
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The fourth moment of velocity, the Kurtosis, is shown in figure 4.5 (b). For a Gaussian

p.d.f., the skewness is zero and the kurtosis approaches a value of three. In the present

case, the vertical component Kv approaches the Gaussian value (K = 3) at the centerline

and is highly non-Gaussian at the edges. This is in agreement with the skewness data,

which also show Gaussian behavior at the center, and a non-Gaussian trend at the edges.

The symmetric profile of Kv arises from taking the fourth power of the velocity

fluctuations. The u-component has considerable jitter across the mix, which are
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Figure 4.6. Centerline vertical and horizontal velocity r.m.s. as a
function of non-dimensional time.
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amplified when raised to the fourth power and hence is not shown in figure 4.5 (b). We

conclude that the presence of both fluids with equal probability, associated with a high

intermittency factor, and the hierarchy of scales, both contribute to the enhanced mixing

measured at the centerline.

4.2 Statistics

From the low resolution PIV experiments described earlier in this section and listed in

Table 4.1, the centerline r.m.s. values of the vertical, v′, and horizontal, u′, velocity

components at locations 0 < T < 1.8 are shown as a function of time in figure 4.6. The v′

values, after an initial period of exponential growth (T < 0.5), grow linearly with time in

the self-similar region (However, it is not clear if the condition for exponential growth of

initial disturbances, λλ <<h is satisfied in these experiments). The centerline vertical

velocity normalized by gHAt reaches a peak value of 0.28 at T = 1.9. The vertical

velocity at the centerline can be related to the mix width of equation (1.2.1) by

  gtA2
dt
dhv tα==′ . (4.2.1)

Note that (4.2.1) is valid only in the self-similar region of the flow. Thus, from the time

evolution of v′, we can determine the growth constant α by computing the ratio

gtA2v t′ . This ratio is plotted as a function of the non-dimensional time in figure 4.7 (a).

The saturation of α at late time to a constant value of 0.07 suggests that the flow reaches

self-similarity in these experiments. This is an interesting result, as in the past we

obtained the same value for α of 0.07 in this experiment (Snider & Andrews 1994) by
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measuring the half mix width h (based on the 5% and 95% threshold for the volume

fraction) directly and relating it to α through equation (1.2.1). Therefore, by using

equation (4.2.1) and obtaining α = 0.07 from the centerline value of v′, we imply that the

expansion of the mix is driven by velocity fluctuations that occur across the whole mix

and not just the edge. This characterization is supported by observations of the mixing

layer, shown in figure 1.2 (b), where large-scale structures span the mix and dominate

the velocity fluctuations. As a result, many of the statistics presented in this work remain

practically constant across the mix. Spectral analysis of the velocity fluctuations later

provides further support for this interpretation of the mix dynamics.

At early times, one may expect a single wavelength to dominate the dynamics. The

centerline vertical velocity may then be approximated by the terminal velocity (Andrews

& Spalding 1990), a natural extension of Layzer’s terminal velocity formulation for At

=1,

  2/glA7.0~v mt′ , (4.2.2)

where lm is the dominant growing wavelength. We may then determine the value of lm in

this flow by plotting )2/7.0( 22 gAv t′  in figure 4.7 (b). The value of lm thus obtained

from the flat region close to the splitter plate (at 0.07 < T < 0.12) was 1.05 cm (figure 4.7

(b) inset); a peak in the velocity spectral data close to the inlet around this value further

confirms the presence of a dominant wavelength at lm ~ 1.05 cm (Section 4.3). The

appearance of the second plateau between T ~ 0.15 and T ~ 0.2 is believed to be the
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result of pairing of these structures. At late time, the value of lm reaches a maximum of ~

27 cm comparable to the channel depth of 30 cm, although it is no longer accurate to

characterize the dynamics in terms of a single wavelength. Not surprisingly, the single-

mode dynamics in this experiment are restricted to very early stages of the R-T

development.

The cross-stream profiles of horizontal and vertical velocity fluctuations are shown in

figures 4.8 (a) and (b), respectively. The velocity axes are retained in dimensional

coordinates to give a sense of the relative magnitudes of the peak values as they evolve

in time. Vertical velocity fluctuations dominate over the horizontal velocity component

and provide most of the transport of mass, momentum, and energy. The figure indicates

that for T > 0.76, the velocity profiles evolve in a shape-preserving manner and will

collapse onto a single curve when normalized by the appropriate variables.



70

0

T= 0.76

0

T= 0.95

0

T= 1.14

urms (cm/s) 0

T= 1.33

0

T= 1.52

0 1

T= 1.71

y/
H

0
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

T= 0.15

(a)

0

T= 0.76

0

T= 0.95

0

T= 1.14

vrms (cm/s) 0

T= 1.33

0

T= 1.52

0 1

T= 1.71

y/
H

0
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

T= 0.15

(b)

                    Figure 4.8. (a) u′ profiles at different T – locations. (b) v′ profiles at different T-locations.
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We normalize with the saturation velocity defined by 2/ghA7.0u xt=∞ , where hx is

the local mix-width computed from hx = αAtgt2 with α = 0.07. Then, u∞ and hx are

chosen as the self-similar scales and used to normalize the cross-stream velocity profiles

in figure 4.8. The results for the horizontal and vertical velocity fluctuations are shown

in figures 4.9 (a) and (b), respectively, and show a good collapse for all T– locations

except T  = 0.76 where the flow may not be fully self-similar. The vertical velocities

expressed in terms of the saturation velocity have a peak around 1, showing that this

choice of the self-similar variable is appropriate and physically meaningful. Since there

is no shear in this experiment, v′ dominates over u′ everywhere. This dominance

decreases with downstream distance from a ratio ~ 2 close to the splitter plate, to a ratio

of ~ 1.6 as the structures become more three-dimensional. Furthermore, by T=1.21 the

ratio 
u
v

′
′

 is almost constant across the mixing layer (figure 4.10), suggesting an existing

equilibrium between the u′ - and v′ - kinetic energy production terms everywhere.

Ristorcelli (2001) suggested the large-scale anisotropy between u′ 2 and v′ 2 can also be

characterized through the normalized anisotropy tensor, bij. A discussion on the

geometry of the small scales is deferred until the section on velocity spectra. Following

Pope (2000), the anisotropy tensor is defined as

ij
kk

ji
ij 3

1
uu
uu

b δ−= ,  (4.2.3)
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where δij =1 for i = j, 0 otherwise, and �ukuk� is twice the kinetic energy. Thus, this is the

deviatoric part of the Reynolds stress tensor normalized by the kinetic energy term. Pope

(2000) shows that the anisotropic stress tensor is responsible for the transport of

turbulent momentum. In an R-T mix, the cross-correlation term <u′v′> is negligible

since the mushroom-shaped structures have left-right symmetry about the center, so

u′v′⏐right = -u′v′⏐left. Similarly, for u and w components,  <w′v′> and <w′u′> ~ 0. Thus,

�
�
�

�

�

�
�
�

�

�

>′<
>′<

>′<
>=<

2

2

2

ji

w00
0v0
00u

uu . (4.2.4)
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75

In the above equation, <u′ 2> and <v′ 2> are measured, and <u′ 2>=<w′ 2> is taken

from axisymmetry of the coherent structures. For isotropic turbulence,

3/1uuuu kkii =  and so bii = 0. Also, 3/2b3/1 ij ≤≤− , where the upper and

lower limits represent one-dimensional and two-dimensional distributions of turbulent

kinetic energy, respectively. Thus, bij characterizes the geometry of the turbulence,

independent of the amplitude of the fluctuations.

Figures 4.11 (a) and (b) are plots of the anisotropy tensor across the mix at T = 0.07 and

T = 1.21, respectively, where buu corresponds to the horizontal velocity component, and

bvv corresponds to the vertical velocity component. The velocity ratio profiles of figure

4.10, and anisotropy profiles shown in figure 4.11 are based on the high-resolution

velocity data shown in figure 3.6. At both times, near the center of the mix, most of the

transport appears to be in the vertical direction. Once again, we see that the statistics are

reasonably constant across the mix at T = 1.21. It appears that at both locations bii � 0

near the edges of the mix, which is attributed to the decay of turbulent fluctuations in

this region rather than any inherent local isotropy. At T = 0.07, the drop off near the

edges is more gradual, suggesting the presence of a viscous diffusive layer. Thus, it

appears that the mix at the end of the splitter plate consists of a central region where

buoyancy dominates padded by viscous layers at both the top and bottom. The geometry

of the small scales is discussed in the next section.
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4.3. Spectra

To study the structure of small-scales, velocity and density spectral data are presented in

this section in the wavenumber domain. The velocity spectra were computed by

extracting a velocity timeseries at the centerline at certain spatial locations, and then

calculating the power associated with the (mean-subtracted) signal in the Fourier

domain. To compare with the wavenumber spectra obtained directly from spatial

variations in the velocity field, the temporal data have been converted to spatial data first

using the Taylor hypothesis, and the spectra then computed in the wavenumber domain.

Similarly, density fluctuation spectra have been computed from the temperature

timeseries (converted to spatial data) obtained from thermocouple measurements. The

density data obtained from the equation of state, are first non-dimensionalized to give

)()(* 212 ρρρρρ −−= . Then, the scalar energy spectra are computed using the

equation

21N

0i

jkx2
i

ie*x2)k(E �
−

=
′ = π

ρ ρ
Ν
∆ , (4.3.1)

where N is the number of samples, ∆x = U∆t is the sampling interval, and 1j −= .

Thus, the scalar energy spectrum is the wavenumber representation of B0, i.e.,

�
∞

′ =
0

0Bdk)k(Eρ .

The non-dimensional energy spectra of density fluctuations Eρ′ (k)H -1, at T = 0.034 (x ~

1 cm) is shown in figure 4.12 (a). The corresponding compensated energy spectrum
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)(4 kEk ρ′ (normalized as 34 H)k(Ek ρ′ ) is plotted in figure 4.12 (b). The factor k4 is used

to illustrate regions with a slope of – 4, which will appear horizontal in the compensated

spectrum. Inspection of figure 4.12 (b) shows a region of zero slope toward the higher

wavenumbers, an exponential – 4 collapse that corresponds to the presence of a viscous

diffusive layer at the start of the mix formed in the wake of the splitter plate (Corrsin

1951). At this early time, no equilibrium has been achieved between the production and

dissipation terms as evidenced by the absence of an inertial range. From figure 4.12 (a),
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it is evident that most of the energy is instead concentrated evenly in the low

wavenumber region of the spectrum (kH <~ 20 ). The corresponding velocity spectra Eu′

(k) and Ev′ (k) at T ~ 0.07 normalized by H2Atg are shown in figure 4.13 and have a

similar two-region structure: a flat region at the low-end of the wavenumber range

followed immediately by a steep (slope ~ -4) dissipative high-wavenumber region.

Similar to the density spectra, there is a peak around kH ~ 20 corresponding to a

dominant wavepacket. Without this initial wavepacket, the k-4 fall-off would have started

earlier, and the dip seen just before kH ~ 20 is indicative of this collapse. Consistent with

the profiles of >′< 2u  and >′< 2v  seen earlier, vertical fluctuations dominate,

particularly at low wavenumbers, which make up most of the energy. It is believed from
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Figure 4.13. Frequency velocity spectra at T = 0.07 at the centerline. The
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these measurements that for this experimental setup, the velocity spectrum, rather than

the density spectrum, at the end of the splitter plate represents the true initial

perturbation to the flow. This is because velocity perturbations are shed from the splitter

plate, which lead to the formation of density perturbations in the wake. This is in

contrast with Richtmeyer-Meshkov experiments where the initial perturbation is

provided directly to the density interface. The velocity spectra obtained here may be

used to initialize numerical simulations of Rayleigh-Taylor flows that are often

initialized with density perturbations. We note the work of Dalziel et al. (1999), who

used initial velocity spectra from their barrier experiments, and report good quantitative
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agreement in the large-scale measures such as the mix width. The perturbations in our

experiment are primarily two-dimensional due to small-scale wake shedding off the end

of the splitter plate, with short-wavelength modes (ripples) in the third direction. As

mentioned previously, the dashed line indicating lm = 1.05 cm corresponds closely to a

peak in the energy spectra, showing that the early-time dynamics shown here are

dominated by a single wavelength that may also be conveniently represented in a

numerical simulation.
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Figure 4.15. (a) Centerline density fluctuation spectrum E (k) at T = 2.08 and
compensated fluctuation spectra km E(k)  where (b) m = 5/3, (c) m = 3, and (d)

m = 5. Solid line represents the horizontal.
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Figures 4.14 (a) and 4.15 (a) show the density fluctuation spectra in the self-similar

region at times T = 1.008 and T = 2.086, respectively. The compensated energy spectra

)k(Ek m
ρ′  (normalized as 1mm H)k(Ek −

′ρ ) are also plotted in 4.14 and 4.15 (b) m = 5/3,

(c) m = 3, and (d) m = 5. Figures 4.14 and 4.15 are snapshots of the density fluctuation

spectra at early and late stages of the self-similar evolution. At each stage, there appears

to be four distinct regions in the fully developed scalar spectrum (Wilson & Andrews

2002): 1) an energy containing range, 2) an inertial subrange with nearly a –5/3 slope, 3)

a viscous-diffusive subrange with a –3 slope, and 4) a steeper diffusion dominated

region with a –5 slope. Figure 4.15 shows that with time, the viscous-diffusive layer is

relegated primarily to the smaller scales where the energy cascade is due to stretching of

fine-scale structures by the local velocity fields. Finally, at T = 2.08, the –5 region

occupies a very small portion of the spectrum. This process is accompanied by

buoyancy-driven filling in (due to the development of the mushroom-shaped coherent

structures) of the –5/3 portions of the spectra. Since 3thh2Re ∝= ν� in this flow, the

inertial range increases in width rapidly, spanning almost two decades of frequencies by

T = 2.08.

In figure 4.16 (a), the velocity spectrum at T ~ 1.21 also shows an inertial range with

approximately a – 5/3 slope and a dissipative range with a –3 slope. To elucidate the

slopes in the velocity spectra, a moving window-averaging process was used that

preserved the integral of Eu′ (k) and Ev′ (k) to within 1%. Figure 4.16 (b) presents the

results of this smoothing process, with a window size of 20 points. Again, at the large
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scales there is considerable anisotropy between the horizontal and vertical components.

However, at higher wavenumbers, there is a convergence of energy associated with the

horizontal and vertical velocities, indicating a tendency towards isotropy at these scales.

Although we capture up to two decades in the wavenumber domain, we do not

completely resolve the dissipative scales, as evidenced by the saturation (flattening) at

large wavenumbers. From equation (2.3.1), Rex ~ 1450 at T ~ 1.21. The corresponding

Kolmogorov time-scale is (Tennekes & Lumley 1972)

sxk 052.0ReΤ 2/1 == −τ . (4.3.2)

Here, τk is the Kolmogorov time-scale and Τ is the integral time scale (= 2hx/U). Thus, at

a sampling rate of 30 Hz (∆t = 0.03s), the corresponding Nyquist limit (~ 0.026 s) is not

satisfied. Furthermore, there is also some spatial averaging due to the finite size of the

PIV window, which could contribute to a smearing of the noise at higher frequencies.

In the self-similar region of the flow (T > 1), an equilibrium is achieved between the

production and dissipation terms of the kinetic energy equation. This equilibrium

manifests itself as the –5/3 region in the spectrum. The universal inertial range spectrum

is given by (Tennekes & Lumley 1972)

3/53/2 kA)k(E −= ε , (4.3.3)

where ε is the kinetic energy dissipation rate and A is a universal constant. From the u′

and v′ velocity spectra, the net three-dimensional kinetic energy spectrum may be

computed by assuming isotropy between u′ and w′ components of the velocity
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Fig.4.16. Frequency velocity spectra at the centerline at T = 1.21  (a) Raw spectra
and (b) spectra smoothed using a window-averaging process.
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fluctuations. In equation (4.3.3), A was determined through a curve fit of the

experimental data to E(k) to be ~ 5 (A ~ 1.5 for most turbulent flows, Tennekes &

Lumley (1972)). In the above, ε was determined from the integral of D(k) the dissipation

spectrum given by

)k(Ek2)k(D 2ν= , (4.3.4)

where ν is the viscosity and �= dk)k(Dε . Correspondingly, the production spectrum

P(k) can be written as

kH
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Figure 4.17. Spectra of total kinetic energy E(k), Production P(k),
Dissipation D(k), and Transfer T(k) at T = 1.21 at the centerline.
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)k(EkS
A

B2)k(P 3/2
3/1

2

2/1
−=

ε
π , (4.3.5)

where S is the dominant strain rate in the flow (S = u/l, where u and l are the velocity

and length scales given by u = v′ and l = 
ε

3u , respectively, and B is another universal

constant). By fitting the experimentally measured P(k) to the above equation, B was

determined to be 0.6 (B ~ 0.3 for a typical turbulent flow, Tennekes & Lumley (1972)).

The difference between the measured values of A and B from those obtained from other

flows is believed to be due to the moderate values of Re employed in the current work.

Thus, P(k) represents the production of kinetic energy primarily due to straining of

eddies by successively larger eddies. Figure 4.17 is a plot of the above defined spectra

for T = 1.21. Production is dominant at low wavenumbers, and dissipation is dominant at

high wavenumbers. The intermediate region (enclosed by the solid lines), where P(k)

and D(k) intersect, is thus the inertial subrange. In this subrange, the energy transfer

spectrum )k(s)k(kE
A
2)k(T 2/3

π=  has a zero slope indicating constant energy flux.



86

Wavenumber power spectra were also obtained by taking velocity data points along a

vertical slice of the 2D velocity field. The higher wavenumbers were captured by

repeating the experiment, with the PIV camera placed much closer to the channel. This

reduced the physical size of the window from 6 cm x 4 cm to 3 cm x 2 cm, thus doubling

the spatial resolution. A further increase in resolution was obtained by using an iterative

PIV technique (Scarano & Riethmuller 1999), an approach similar to that used in multi-

grid numerical simulations. In the first iteration, the displacement vector is computed to

integer accuracy. The interrogation window size is then halved and the integer

displacement is used to search for a correlation peak, thus giving a velocity vector that is

of sub-grid accuracy. Figure 4.18 shows the vector field of figure 3.5 (c), but processed

using the iterative approach, giving twice the resolution. Thus, with both refinements we

are able to achieve a four-fold improvement in resolution, and we can capture turbulence

length-scales as small as 0.06 cm.

Figure 4.18 Velocity field from fig. 3.5 (c) processed through iterative-PIV
technique
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Figures 4.19 (a) and (b) are plots of the wavenumber spectra at T = 0.07 and 1.21,

obtained from the above process. The structural properties are similar to the spectra

obtained from timeseries data: anisotropy at the large scales and a tendency towards

isotropy at the smaller scales. At T = 0.07, the wavenumber spectrum shows a flat top

and a steep dissipative range at high wavenumbers. The spatial resolution at this

Reynolds number is sufficient to capture the Kolmogorov scales. Also, at T ~ 1.21 there

is a distinct inertial range with the –5/3 slope. For the u′ and the v′ velocities, the spectra

were constructed by overlaying the individual spectra from each wavenumber range. The

tailing off seen at the end of each of these spectra is due to noise saturation at that

resolution. Thus, by coming in closer and applying the iterative PIV technique, both the

resolution and the accuracy of the measured wavenumber spectra have been improved.
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Figure 4.19. Wavenumber velocity spectra at the centerline at (a) T = 0.07 and (b) T =
1.21.
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From the results it is evident that buoyancy forcing at small Atwood numbers does not

affect the formation of a –5/3 inertial range, in accordance with the classical Obukhov-

Corrsin theory for turbulent scalar fluctuations (Obukhov 1949; Corrsin 1951). The

scaling argument proposed by Zhou (2001) for the velocity spectra of a Rayleigh-Taylor

flow is extended here to scalars. Zhou argues that the kinetic energy dissipation is a

function of the timescale of decay of triple velocity correlations, τ (k),

)k(Ek)k(~ 24τε , (4.3.6)

where E(k) is the kinetic energy spectrum, k is the wavenumber, and  the exponents in

the above equation are obtained from dimensional analysis. In the absence of external

forcing on the energy containing eddies (e.g., homogenous, isotropic turbulence), τ may

be chosen as the timescale of nonlinear interactions among the energetic modes.

2/13 )]k(Ek[)k( −=τ . (4.3.7)

Substituting for (4.3.7) in (4.3.6), the classical Kolmogorov form of the energy spectrum

is recovered:

3/53/2 k~)k(E −ε . (4.3.8)

In the presence of external buoyancy forcing, the governing timescale is supplied by

gravity. Thus, 2/1
tRT )gkA( −=τ , giving (Zhou 2001)

4/72/14/1
tRT k)gA(~)k(E −ε . (4.3.9)

The constant of proportionality in the above equation was determined to be ~ 3 from our

experimental velocity data. An extension of the above argument may be proposed for
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buoyancy forcing of the scalar fluctuation spectrum. The dissipation of scalar variance is

given by (Tennekes & Lumley 1972)

2/1
RT

scalar2 )kE(Ek~N . (4.3.10)

Substituting for ERT(k) from equation (4.3.9), we get

8/134/18/1
t

scalar
RT k)gA(N~E −− ε , (4.3.11)

giving a power law close to the –5/3 observed in the present experiments. For T ~ 1.008,

the constant in equation (4.3.11) was determined from our data to be ~ 1. Thus, it
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Figure 4.20. Time evolution of exponential curve-fit index, p for centerline
temperature measurements.



91

appears that the buoyancy forcing does not significantly alter the power law of the

inertial range.

The spectral structure of temperature (density) fluctuations at each time can be

quantified through an exponential curve fit, pe~)k(E − . The best fit to the data is

obtained by performing a Nelder-Mead simplex direct search (Nelder & Mead 1965) in

p-space by minimizing the function pekE −−)( . For Re � ∞, p should � 13/8 for

density fluctuations in R-T flows. Figure 4.20 is a time history of p and shows that this

asymptotic value is never reached due to the finite values of Re in this experiment. At

early times, p ~ 2.5 is highest due to the presence of the viscous-diffusive layer with an

exponential drop-off. However, the onset of self-similarity (T ~ 1.008) is clearly marked

by the attainment of a constant value by p (~0.85). This implies that the structure of the

scalar spectra is preserved in the self-similar regime even as it contains regions where

the slope is not –13/8. These are primarily the energy-containing scales and the diffusive

scales. At high enough Re, it is expected that these scales will occupy a much smaller

percentage of the spectral width giving a value for p approaching 13/8.

4.4 Taylor Microscales

More significant than the Kolmogorov scales are the Taylor microscales associated with

the local strain rate, and can be directly obtained from the turbulent velocity fluctuations.

The Taylor length scales, λu and λv, associated with the horizontal and vertical velocity

fluctuations are given by
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2/1
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v )t,0(g
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1)t(
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��
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� ′′−=λ , (4.4.1)

where f(r,t) and g(r,t) are the non-dimensional autocorrelation functions given by

2u/)t,x(u)t,rx(u)t,r(f +=

2v/)t,x(v)t,rx(v)t,r(g += .

Thus, the Taylor microscale is the r-intercept of the osculating parabola f(r) at r = 0

(Pope 2000).

From the velocity data, a point at the center of the mix was picked, and its

autocorrelation function in space was computed. This process was repeated for other

datapoints in the vicinity, and the mean Taylor length scale was determined. A histogram

of the Taylor scales also showed a peak around the mean value. Like much of the

velocity statistics described in Section 4.2, it was found that the Taylor scales do not

vary significantly across the mix. Thus, we present only the centerline values in the

following.
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The results are presented in table 4.2, along with the Kolmogorov scale for comparison.

The Taylor scales in space show a tendency toward anisotropy with a λy/λx ratio

approaching a value of 2. Cook & Zhou (2002) in their DNS simulations report a ratio of

1.4 at T > 2.5 (for 3~12 ρρ ). Furthermore, the Taylor microscales are approximately

10-20 times the size of the Kolmogorov scales. Taking the velocity scale associated with

the Taylor length scales to be the r.m.s. of vertical velocity fluctuations, a Taylor scale

Reynolds number may be computed  for the present experiment as

60vRe =
′

=
ν
λ

λ . (4.4.2)

Taylor length scale, λx 0.29 cm

Taylor length scale, λy 0.62 cm

Vertical Velocity scale, v′ 0.82 cm/s

Horizontal Velocity scale, u′ 0.45 cm/s

Taylor Reynolds number, Reλy 60

Kolmogorov length scale, η 0.027 cm

Table 4.2. Taylor scales at T = 1.21.



94

 This value is less than the threshold for mixing transition for turbulent flows (Reλ ~ 100)

and is expected to cross this value further downstream. However, we observe self-

similarity has been achieved in these experiments as is evidenced by the p.d.f.s, spectra,

and velocity profiles (for T > 1), even though our Taylor Reynolds number of 60 is less

than the value of 100 suggested (Dimotakis 2000) for mixing transition.Thus, even at

low Atwood numbers, there is surely a differential straining of eddies in the direction of

gravity, resulting in anisotropy of velocity fluctuations at all but the smallest scales.

kH

S/
s(

k)

10-1 100 101 102
10-1

100

101

102

Figure 4.21. Spectra of S/s(k) showing tendency toward isotropy at higher
wavenumbers for the centerline velocity spectra.
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This tendency toward anisotropy may be quantified by the local (in wavenumber space)

strain rate. For any eddy of size 2π/k, with a characteristic velocity scale defined as

[ ] 2/1)k(kE , the characteristic strain rate can be defined as (Tennekes & Lumley 1972)

ππ 2
))k(Ek(

k/2
))k(kE()k(s

2/132/1

== . (4.4.3)

Thus the local strain rate increases with decreasing eddy size, so that the smallest eddies

undergo the severest straining. Following Tennekes & Lumley (1972), taking the time

scale 1/s(k) to represent the time required to return to isotropy once the strain field is

removed, the eddies with large k are quickest in their realignment. So the non-

dimensional paramater S/s(k), where S is the mean strain rate, characterizes the degree of

isotropy (large S/s(k) � anisotropy). S/s(k) is plotted for the velocity spectrum at T ~

1.21 in figure 4.21 and shows anisotropy at all but the smallest scales. This is consistent

with the picture depicted by the velocity spectra and Taylor microscales.

4.5 Energy Budget

Following Youngs (1994), from our simultaneous measurements of  velocity and density

fields, the net kinetic energy dissipation from the initial state of the flow is  computed.

The initial potential energy PEi,  associated with the flow, is calculated assuming a

stepfunction at z = H/2 for the density profile at T = 0. Thus,

� �� +==
2

0 2 210

H H

H

H

stepi dygydygydygyPE ρρρ . (4.5.1)



96

Also, at T = 0, KEi ~ 0, since there is negligible energy associated with velocity

fluctuations. Further downstream, the potential energy at T = 1.21 is computed from the

measured density profile as

yygdyygPE i

n

i
i

H

measuredf ∆≅= ��
=0

0
ρρ . (4.5.2)

The potential energy released to the flow by T = 1.21 is then given by PEreleased = PEf –

PEi. Some of this energy is converted into kinetic energy, which can be directly obtained

from our measured velocity profiles of u′ and v′. As previously mentioned, observations

of the axisymmetric mushroom structures mean we may take the turbulence as

homogeneous with respect to the streamwise direction x and the spanwise direction z,

and set <u′ 2> = <w′ 2>. Then,

� >′<+>′<=
H

generated dyvuKE
0

22
2
1 )2(ρ , (4.5.3)

and the net kinetic energy dissipation is given by

D = PEreleased – KEgenerated. (4.5.4)

The net KE dissipation as a fraction of the potential energy released, D/PEreleased was

determined from our measurements to be 0.49  at T ~ 1.21. Note that the net kinetic

energy dissipation may also be determined from �= dk)k(Dε  where D(k) is given by

equation (4.3.4). Youngs (1994) reported a value of 0.52 obtained from 3D numerical

simulations, and significantly lesser values from 2D simulations (D/PEreleased ~ 0.06)

since dissipation is primarily a 3D mechanism. For a self-similar mix, characterized by

the length scale gt2, it is expected that D/PEreleased and KEgenerated/PEreleased become
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constant in the self-similar regime. Thus, we find good agreement between the present

experiments and related, but higher Atwood number, 3D simulations.

The mixing efficiency ψ, a bulk mixing parameter, can also be computed from the

density data, and represents the fraction of the initial potential energy, PEi, that is used

up in mixing the fluid (Linden & Redondo 1991), and is given by

)
2
1/()

4
1( 00 PPPEreleased −=Ψ , (4.5.5)

where P0 = 4/3 PEi is the initially available potential energy and PE is the potential

energy released by late time. From the current data, ψ was determined to be ~ 0.78,

which is higher than the value reported by Linden & Redondo’s salt experiments (ψ ~

0.35) at low Atwood numbers (For completely mixed fluids, PE = 1/2P0, and ψ = 0.5).

We believe that Linden & Redondo report lower values from measuring ψ at late time,

when there is almost no kinetic energy left in the flow (the maximum value of 0.5 can be

reached only in this limit). In our experiment at T ~ 1.21, there is still a significant

amount of kinetic energy (~ 50% of the potential energy released). By assuming a linear

profile for the density (supported by our experimental measurements in figure 3.1), we

show here analytically that values of ~ 0.8 can be excepted. From Linden & Redondo,

the initially available potential energy in the flow may be written as

ρ∆= 2
0 2

1 gHP , (4.5.6)

where 21 ρρρ −=∆ , and H is the mix-width. The energy released by late time is
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( )� −=
H

released dyyzgPE
0

2)( ρρ . (4.5.7)

We substitute a linear profile for 
H
yy ρρρ ∆+= 2)(  in (4.5.7) giving

3

2HgPEreleased
ρ∆= . (4.5.8)

Using (4.5.6) and (4.5.8) in (4.5.5), the mixing efficiency ψ is ~ 0.83. Thus, this

definition is seemingly not appropriate for such dynamic conditions as the self-similar

regime of the R-T flow. Perhaps a more appropriate mixing measure is the pointwise

molecular mixing fraction θ(y), or the global molecular mix parameter

�=Θ
H

dyy
H 0

)(1 θ (4.5.9)

that we report in this work.
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5. NUMERICAL TECHNIQUE

5.1 Preliminaries

A 3D, single-phase version of the finite-volume code RTI-3D, developed by Andrews

(1995) was used to solve the Euler equations. The code is third-order accurate in space

and second-order accurate in time. The single-phase governing equations are

Continuity: 0)()()()( =
∂

∂+
∂

∂+
∂

∂+
∂

∂
z

wf
y

vf
x

uf
t

f iiiiiiii ρρρρ (5.1.1)
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∂+

∂
∂ ρρρρ (5.1.4)

where the fis are the volume fractions of the ith fluid ( 121 =+ ff ), u, v, and w are the

velocities in the x-, y- and z- directions, and Bi,(x,y,z) is a body force term. A staggered cell

arrangement is used for the pressure and velocities, with the pressure node located at the

cell center, while the velocities are computed on the cell faces. Explicit time stepping

was used in the solution of these equations, with the size of the time step chosen to

satisfy a Courant condition (in practice, the time step was chosen to be a tenth of the

Courant limit). A three-stage, fractional step algorithm is used to advance the solution in

time: At each step, an advection calculation followed by a Langrangian source term

update is performed. In the Lagrangian calculation,
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where E,N, and T are the East, North, and Top cell faces, and gx = gz = 0. The superscript

n+1/2 denotes an intermediate value obtained after an advection update, and the asterisk

represents the results of the Lagrangian update. To satisfy continuity, the net volume

flux across each cell is set to zero:

0=−+−+− BTSNWE VVVVVV δδδδδδ (5.1.8)

where say, )( 11 ++∆∆∆= n
E

n
EE uzytV ρδ . Here, n+1 indicates the updated velocities that

satisfy continuity, after a correction has been added i.e. EE
n
E uuu ∆+=+ *1  for velocities

and EP
n
P ppp ∆+=+ *1  for pressure. Substituting the updated velocities in to equations

(5.1.5), (5.1.6), and (5.1.7) and subtracting these equations evaluated with the velocities

at *, we get for the velocity correction in the East face,

( )EP
i

E pp
x

tu ∆−∆
∆

∆=∆
ρ

, (5.1.9)

with similar expressions for the other components. Using these expressions in (5.1.8)

results in a Poisson equation for the pressure correction ∆p.

Dpapapapapapapa BBTTSSNNWWEEP −=∆+∆+∆+∆+∆+∆+∆− (5.1.10)

where, for instance,
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An iterative conjugate gradient algorithm is used to solve the Poisson equation. The

iterative procedure is repeated until |D| summed over all the cells is less than a specified

threshold (typically ~10-4 for the simulations reported here).

The Van Leer method (Van Leer 1977) was used to calculate convective fluxes. The

method minimizes numerical diffusion, and prevents spurious overshoots and

undershoots that occur due to the use of higher order numerical schemes. A two-phase,

2D version of this code was tested and validated for both R-T and Kelvin-Helmholtz

flows in Andrews (1995). The 3D, single-phase version was used in Dimonte et al.

(2003), and compared well with other benchmark codes commonly used in the study of

R-T. These results are summarized in Appendix C.

Figure 5.1 shows a 2D slice of the 3D computational domain. For the simulations

discussed in sections 6.3, 6.4 and 6.5, the dimensions of the box were chosen to be 1cm

x 1cm x 2cm in the x-, z-, and y- directions respectively (where y- is the direction of the

gravity vector). The interface between the heavy (ρ1) and light (ρ2) fluids is at y = 0. The

densities were chosen to be ρ1 = 3, and ρ2 = 1 g/cc (At=0.5). These densities were chosen

to match the values used by other benchmark codes in the comparative study reported in

Appendix C.  The box is 0.9375 cm in the positive y- direction and 1.0625 cm in

negative y- direction to account for the slightly different growth rates of bubbles and
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spikes at this Atwood number. For the simulations that used experimental initial

conditions (sections 7.2 and 7.3), the box size was chosen to be 15cm x 15cm x 30cm

and the Atwood number was 0.00075, except where stated otherwise. For the low

Atwood number cases, the interface was exactly at the center of the box.

                          

ρ2 = 1

ρ1 = 3

0.
93

75
 c

m
1.

06
25

 c
m

x

y

Figure 5.1 2D slice of computational domain used in numerical
simulations: ρ1 = 1 g/cc, and ρ2 = 3 g/cc.
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Perturbations are imposed on the interface (y=0) as fluctuations of the density surface.

These are then converted to volume fraction using, 
∆

+= ),(1),( 0
1

zxhzxf  for y < 0, and

∆
= ),(),( 0

1
zxhzxf  for y > 0, where ∆ is the grid spacing in cm. The pressure is initialized

to the hydrostatic pressure in this incompressible problem using, )()( 1 ρρ −= gyyp ,

where 2211 ρρρ ff += . Periodic boundary conditions were used in the x- and z-

directions, while zero-flux conditions were used in the y-direction. All the multi-mode

simulations reported here used a resolution of 128x128x256 grid points in the x-, z-, and

y- directions respectively. The single-mode calculations discussed in the next two

sections had lower resolutions (discussed below). The calculations were stopped when

the bubble height reached ~ 0.8 cm i.e. 80% of the computational domain height. The

bubble and spike amplitudes were written out at each timestep, while 3D datafiles

containing the volume fractions and velocities were written for Atgt2 = 1,2,3…

5.2 Estimation of Numerical Viscosity: Single-mode Calculations

While RTI-3D solves the Euler equations with no specified viscosity, numerical

diffusion serves to smear out small scales in much the same way physical viscosity

would. Such numerical techniques, referred to as MILES (Monotone-Integrated Large

Eddy Simulation), have been demonstrated to be particularly attractive for flows with

shocks (Richtmeyer-Meshkov) and discontinuities (R-T) by Youngs (2003). The

effective numerical viscosity of the MILES technique used here was determined through

comparison of single-mode simulations with linear theory results (Chandrasekhar 1961).
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The technique used is described in detail in Dimonte et al.(2003), and some essential

aspects are reviewed herein. These single-mode calculations were initialized with

perturbations in the x- and z- directions with a wavelength λ = 1 cm, and amplitude a0 =

0.001 cm.

( ))cos()cos(),( 00 kzkxazxh += , (5.2.1)

where λ
π2=k  and had an Atwood number of 0.5. The density interface at the

centerline was converted to volume-fraction as described in section 5.1. The calculations

were performed at resolutions of λ/∆ = 4,8,16, and 32.

Figure 5.2 (a) shows the time evolution of bubble amplitudes defined using the 50%

volume fraction thresholds at different resolutions. The initial exponential growth of

these disturbances, appears linear in the log-scales of 5.2 (a). The highest resolution case

(32 zones/λ) grows the fastest, while the case with 4 zones/λ has the slowest growth rate.

In the presence of viscosity, the exponential growth of small-amplitude R-T modes is

modified according to the following dispersion relation (Chandrasekhar 1961):

( )1/144 22422 −Γ++Γ−=Γ ννν kkkAkg (5.2.2)

The viscosity ν, in the above equation is determined by using the observed growth rate Γ

from the numerical simulations (Dimonte et al. 2003). Here, Γ is obtained by fitting the

observed amplitudes to linear theory ( )cosh()( 0 thth kk Γ= ). For all the cases, around t =

7s, the transition to nonlinearity takes place with the bubble velocity reaching its
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terminal value ( 2/glAcv mt∞∞ = ). We describe the procedure to determine c∞ in the

next section.

Figure 5.2 (b) shows the variation of the scaled growth rate Akg/Γ  with ∆k , the non-

dimensional zoning parameter. For 196.0=∆k (32 zones/λ), the growth rate approaches

the inviscid value ( Akg/Γ ~1). At a resolution of 4 zones/λ, Γ is only ~ 65% of the

inviscid value. From the above, we can conclude that to resolve an R-T mode (with ~

20% error) at least 8 nodes are required. As we will see in section 6.2, the implication of

a numerical viscosity for multi-mode simulations is that it sets on upper bound for the

fastest growing modes.

5.3 Determination of c∞: Single-mode Calculations

We now describe the procedure used to determine the constant c∞ required for defining

the terminal velocity for a single bubble in section 4.2. To match the experiments, these

simulations had a box size of 15cm x 15cm x 60cm, and an Atwood number of 0.001.

This would produce R-T bubbles similar to that observed in the experiment. The

perturbations were initialized as before (section 5.2), with an amplitude a0 of 0.1cm

(now, λ = 15cm). The contour map of the initial perturbations is  shown in figure 5.3.

The evolution of the 50% isosurfaces of volume-fraction f1 are shown in figure 5.4 (a),
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Figure 5.2. (a) Bubble amplitude evolution from the single-mode calculations at
different resolutions. (b) The non-dimensional exponential growth-rate as a

function of the resolution.
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(b), and (c) for Atgt2 = 0.1, 0.4, and 0.7 m respectively. Since the initial perturbation had

a peak at the center of the computational box (white region in figure 5.3), a bubble forms

at the center in figure 5.4, with spikes at the four corners, while spikes form at the cell

faces. The amplitudes of the spike and bubble penetration are approximately the same in

0.0010
0.0008
0.0006
0.0004
0.0002
0.0000

-0.0002
-0.0004
-0.0006
-0.0008
-0.0010

Figure 5.3. Contour map of volume fraction f1(x,z) at t = 0 for the single-
mode calculations.
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          (a)       (b)          (c)

Figure 5.4. (a), (b) and (c) showing the evolution of single-mode perturbations at Atgt2 = 0.1,
0.4, and 0.7 m respectively. Shown are the iso-surfaces of f1=0.5.
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Figure 5.5. Evolution of bubble amplitude h (m) plotted as a function of time (s).
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this low-Atwood number simulation. The evolution of the bubble amplitude (defined

based on the 50% of the volume fraction) is shown in figure 5.5 and shows a region of

exponential growth followed by linear growth in time (saturation to constant velocity).

Note that in the presence of other wavelengths, bubbles compete and larger bubbles

would accelerate past the smaller structures. Thus, the larger the bubble the greater its

velocity, modifying the linear growth rate seen here to the quadratic evolution described

in (1.2.1).

The speed of penetration of the bubble is obtained by differentiating the bubble

amplitude with respect to time, dt
dhv b=∞ , and is plotted in figure 5.6 (a). The non-

dimensional constant c∞ is then determined as

2/λgA
vc

t

∞
∞ = . (5.3.1)

Figure 5.6 (b) is a plot of c∞, which approaches the previously reported value of 0.7

(Daly 1967) at low Atwood numbers. At higher At, Daly’s values are lower ranging from

0.49 for a density ratio 
2

1
ρ

ρ of 1.5 to 0.32 for 
2

1
ρ

ρ = 10. According to Daly, the

discrepancy at higher Atwood numbers may have been due to lack of sufficient time

window for averaging.

c ∞
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Figure 5.6. Evolution of the terminal velocity v∞ (a) and the dimensionless

constant c∞ (b) for a 3D R-T bubble at At=0.001.
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6. EFFECT OF INITIAL CONDITIONS ON R-T GROWTH

6.1 Introduction

In section 6.3, a model for the dependence of R-T growth on the initial conditions is

verified through numerical simulations. The model developed by Dimonte (2003) and

described in Appendix D, relates the self-similar constants α and β to the initial

perturbation amplitude. Other effects such as mode-coupling, and spectral slopes were

also investigated. In section 4.2, the self-similarity of R-T flows was demonstrated

through the velocity r.m.s. profiles, p.d.f.s of density, and spectra of velocity and

density. Here, we address the issue of universality of the R-T growth constant α.

It is well known (Chandrasekhar 1961) that for R-T in the linear regime ( khk /1<< ) in

the absence of stabilizing mechanisms such as viscosity or surface tension, the bubble

height remains a function of the initial amplitudes:

)cosh()( 0 thth kk Γ= , (6.1.1)

where the exponential growth rate gkAt=Γ , and k is the wavenumber of a mode.

When the flow transitions to nonlinearity ( khk /1~ ), successively longer wavelengths

come to the fore and grow as (Ratafia 1973)

2/bt gAcv λ∞∞ = , (6.1.2)



112

where c∞ is a Froude-like number, and was determined to have a value of ~ 0.7 from

single-mode studies (section 5.3; Daly 1967), and λb is the bubble wavelength. For R-T,

the Froude number Fr0 is defined as

b
b gD

vFr 2

21

1
0 ρρ

ρ
−

= . (6.1.3)

A more detailed discussion on the definition and significance of Froude number on the

self-similar evolution of R-T is deferred until section 6.2. In the nonlinear regime, R-T

grows according to equation (1.2.1). In this picture, the flow has no memory of the initial

conditions and the only relevant length scale is Atgt2. Two parameters characterize self-

similarity: )( 2gtAd
dh

t

b
b =α = constant, 

b

b
b h

λβ = = constant. However, as described in

section 1.2, a universal value for the growth constant αb has eluded both experimental

and numerical investigations. In sections 6.3, 6.4, and 6.5, we are primarily concerned

with the dependence of the bubbles (rising columns of light fluid) on the initial

conditions, since R-T flows are driven by the growth of the bubbles. The bubbles in turn

displace the heavier fluid that form spikes.

Birkhoff (1955) argued that for self-similarity to be established, the initial spectra should

have amplitudes distributed as k-1. Birkhoff’s model predicts a dependence of αb on three

parameters viz. the initial r.m.s. amplitude h0k, the Froude number Fr0, and the threshold

for the nonlinear transition (σ ~ hkk ). Cherfils and Mikaelian (1996) generalized
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Birkhoff’s model to any initial amplitude, and nonlinear threshold σ, giving for αb (and

setting At ~ 1)

��
�

��
� −

=
−

00

2/1

0

)ln()2(4 Frh

Fr

k

b
σσπ

α (6.1.4)

Birkhoff assumed 23.06/10 == πFr from Layzer (1955), the standard value for

πσ 2/1= , and 001.00 =kh  giving αb = 0.07; The value of Fr0 used here is much lower

than that suggested by experimental measurements (Read 1984) and drag-buoyancy

models (Davies & Taylor 1950; Scorer 1957; Collins 1957; Alon et al. 1995). Using Fr0

~ 1 from these studies, (6.1.4) gives αb ~ 0.14 which is higher than experimentally

observed values even at high At (Dimonte & Schneider 2000). Note that Birkhoff only

considered a 1-D initial spectrum, resulting in a two-dimensional flow.

Haan considered the constructive interference experienced by adjacent modes in a

wavepacket, triggering transition when the sum of modal amplitudes in the wavepacket

is ~ σ/k Thus individual modes in a wavepacket may become nonlinear even when their

amplitudes are below the threshold due to their interaction with adjacent modes of

similar phase. In this formulation, a k-2 initial spectrum is required to produce self-

similarity (as defined above). Dimonte (2003) developed these ideas further by

considering the role of the Froude number and βb, and applying a Fermi transition (see

Appendix D) to a wavepacket (rather a single mode). The resulting model equations,

repeated below, will be verified here using carefully designed numerical simulations.
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( •  is defined as the average over a wavepacket of width δk defined in Appendix D).

Using the same value for Fr0 as above, and setting 001.00 =khk  in the above equation,

we get αb ~ 0.06 which is closer to the experimentally observed value of 0.07. Similar to

Birkhoff’s model, which was extended to Richtmeyer-Meshkov and Kelvin-Helmholtz

flows (Cherfills & Mikaelian 1996), the above formulation may also be generalized to

these other flows. Dimonte’s model is described in detail in the Appendix D to this

work.

The above analysis assumes the presence of long-wavelength perturbations in the initial

spectral content whose initial amplitudes govern their late-time self-similar growth rate.

In the opposite limit, where such low-wavenumber modes have negligible energy

compared with the high-wavenumber content, long-wavelengths are generated purely by

the nonlinear coupling of modes. The resulting evolution of bubble heights is then

independent of initial amplitudes, and αb takes up a lower bound value of ~ 0.03 ± 0.003

(Dimonte et al. 2003). Note that while most numerical simulations are initialized with

such annular spectra, most experiments have long-wavelength content in their initial

conditions. This could explain the discrepancy between the experimental and numerical
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values of αb. Here, we examine both these limits through 3D, numerical simulations.

Other possible influences on the growth rate such as the spectral shapes (referred to as

the Spectral Index (p) herein, and quantified as the exponent of the wavenuumber

i.e. p
k kh −=0 ), are also explored here.

6.2 Multi-mode Calculations

The multimode calculations were designed to test the dependence of the growth constant

αb on the initial amplitudes, Spectral Index, and mode-coupling. The two-dimensional

perturbations are initialized as,

� ++
+

=
yx kk zxkzxk

zxkzxk

zkxkdzkxkc
zkxkbzkxka

zxh
,

0 )sin()sin()cos()sin(
)sin()cos()cos()cos(

),(  (6.2.1)

where 22
zx kkk += .
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Simulation Spectral Index (p) Nmin Nmax khk 0

1 -2 3 32 0.004

2 -2 3 32 4.0 e-05

3 -2 3 32 0.04

4 -2 1 32 0.0011

5 -2 1 32 0.011

6 -2 2 32 0.0044

7 -2 2 32 0.0003

8 -2 2 32 3.0 e-06

9 0 2 32 0.004*

10 -1 2 32 0.0045*

11 - 16 32 0.0016*

12 - 16 32 1.6 e-05 *

Table 6.1: List of simulations.
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Figure 6.1 Initial perturbations for simulation 6 in (a) physical and (b)
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In the above, the amplitudes ak etc. have random phases. Table 6.1 is a list of all the

calculations. Simulations 1 – 8 were initialized with a non-dimensional r.m.s. amplitude

khk 0  ranging from 3 x 10-6 (case 8) to 0.04 (case 3). Here, k is chosen from linear

stability analysis as the most dominant mode in the initial wavepacket. The r.m.s.

amplitude of a wavepacket δk is defined as (Haan 1989; Dimonte 2003):

2/1

2
2

2 �
�

�
�
�

�
′′= �

+

−
′

kk

kk
kk kdkhLh

δ

δπ
. (6.2.2)

Note that for a k-2 spectral structure, khk 0 is a constant value independent of k. All of

these cases had the modal amplitudes ak, bk, ck, and dk varying as k-2 to test equations

(6.1.5) and (6.1.6). These calculations had energy in modes 1-32 (cases 4, and 5), 2-32

(cases 1, 2, and 3), and 3-32 (cases 6, 7, and 8). Here, a mode represents one wave of a

perturbation, and the mode number n = L/λ. Figures 6.1 (a) and (b) are the perturbation

amplitudes for a typical case (# 6) in physical and wavenumber space respectively.

Figure 6.1 (c) is the corresponding azimuthally averaged Fourier amplitudes elucidating

the k-2 (dashed line) structure of the spectra. Cases 6, 9, and 10 all have the same

amplitude ( khk 0 ~ 0.0044) and Nmin (=2), but spectral indices (quantified by the

exponential curve-fit index, p) of –2, 0, and –1 respectively. Together, they constitute a

study on the effect of p on αb and βb.

To test the opposite limit of mode-coupling, the perturbation energy was confined to an

annulus (16 < n < 32) in wavenumber space (figures 6.2 (a) and (b)) for cases 11 and 12.
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The azimuthally averaged Fourier amplitudes for case 11 are shown in figure 6.2 (c).

Most numerical simulations of R-T (Young et al. 2001; Cook and Dimotakis 2001;

Youngs 1991; Youngs 1994; Youngs 2003) are initialized with such an annular

distribution of energy. It is expected that the mode-coupling cases will produce a much

lower growth rate than the simulations initialized with the longer modes. It must also be

noted that most experiments have long-wavelength content in their initial conditions

(Ramaprabhu & Andrews 2003b; Dimonte & Schneider 2000), which could explain the

higher values of αb conventionally reported from such studies.

We now address the issue of the peak wavenumber in the presence of numerical

viscosity in these simulations. Numerical viscosity (like other stabilizing mechanisms)

places an upper bound on the fastest growing wavenumbers. Setting 0/ =∂Γ∂ k in

equation (5.2.2), the peak wavenumber kp is determined as (Daly 1967; Chandrasekhar

1961):

3/1

25.0 �
�

�
�
�

�≈
ν

gAk t
p . (6.2.3)

The fastest growing mode number for the current simulations was determined to be Np ~

24 (Dimonte et al.2003), and within the range of modes (1-32) imposed in the initial

conditions here. This guarantees that the linear growth stage is reproduced accurately by

these calculations.
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Figure 6.3 shows the evolution of the bubble and spike amplitudes (hb and hs) as a

function of the self-similar length scale Atgt2 (cm) for case 6. The bubble and spike

amplitudes are defined as the y-location where the average value (over the x-z plane) of

f1 reaches 1% and 99% respectively. Nonlinearity sets in when the most dominant

wavelength pp k/2πλ = saturates. This transition time may be determined by equating

the linear and nonlinear velocities for kp using the Fermi transition (Appendix D), giving

�
�

�

�

�
�

�

�
= −−

k
ptk hk

FrgkAt
0

012/1 2/cosh)( π . (6.2.4)
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Figure 6.3. Evolution of bubble and spike amplitudes (hb and hs), and
integral width W for case 6.
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For the parameters used here, the transition occurs at Atgtk
2 ~ 0.604 for this case. Table

6.2 is a list of the transition times from all the simulations. We take this time to represent

the onset of self-similarity, and the statistics for each case were determined after the

nonlinear transition had set in. One of the concerns in computing αb and βb was that it

had to be done in a time window after the nonlinear transition, but before the emergence

through mode-coupling of longer wavelengths not originally imposed. The time tmc at

which wavelengths due to mode-coupling appear is determined as follows. From the

width of the wavepacket (Appendix D) pkk
8
3±=δ , where kp is the dominant mode at

any given time, we may determine the lowest mode in the computational domain to be

pp kkk
8
3

min −= . (6.2.5)

When kmin equals the lowest mode imposed in the initial conditions, mode-coupling is

said to have set in. For example, for simulation 1, this would occur when nmin reached 3.

Thus, the cutoff time is chosen as the value of t, when min5
8 kkp = . The dominant mode

kp at any time is determined by an autocorrelation procedure described below. The

values of αb and βb, and other quantities are then obtained by averaging for mck ttt ≤≤ .

Table 6.3 is a list of the mode-coupling transition times from the calculation.

The ratio hs/hb ~ 1.25 observed here at late time is consistent with experimental

observations for A ~ 0.5 (Dimonte & Schneider 2000). We also plot the integral mix

width defined as (Andrews & Spalding 1990)
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Simulation Nonlinear
transition time,

Atgt2
k

1 0.584
2 1.81
3 0.224
4 0.872
5 0.414
6 0.604
7 1.25
8 2.89
9 0.628
10 1.15
11 0.232
12 1.14

Table 6.2. The nonlinear transition time Atgt2
k for the 12 simulations.

Simulation Mode-coupling
onset time, Atgt2

mc
1 8
2 18
3 6
4 14
5 7.7
6 15
7 20
8 33
9 16
10 18
11 -
12 -

Table 6.3. Times at which mode-coupling begins for the 12 simulations.
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�= dzffW 21 . (6.2.6)

For small Atwood numbers hb ~ hs, and assuming a linear profile for the volume

fractions, h ~ 3W consistent with figure 6.3 (h~3.2W if the effects of numerical diffusion

are considered). It is not clear, why a second weak transition in the hb and hs time traces

is observed around Atgt2 ~ 5. Originally, we thought this might be due to the emergence

of products of mode-coupling around that time. However, from our analysis of the

bubble-front images (discussed below), it was determined that mode-coupling does not

occur in these simulations until after the transition observed here. Another reason for this

behavior may be the lack of a sufficient number of bubbles/spikes required for

averaging. hs and hb were also computed from the x-intercept of a linear fit to the volume

fraction profiles. Since the results of this method (which is less affected by statistical

fluctuations) agreed with the plots in figure 6.3, the 1% and 99% threshold has been used

throughout this paper.
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(a) (b) (c)

Figure 6.4 Iso-surfaces of 1% of volume-fraction f1 from simulation 11 at Atgt2 = 1 (a), 10 (b), and 19 (c).
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The 1% iso-surfaces of the volume fraction f1 are shown in figure 6.4 for Atgt2 = 1,10,

and 19 from simulation 11. By the end of the simulation, there are 1 – 2 leading bubbles

dominating the flow. Figure 6.5 shows the evolution of bubble fronts Zb (x,z) (defined as

iso-surfaces of f1 = 0.01) at three stages of the R-T evolution for simulation 6 (Agt2 = 2,

8, and 16). Only the bubble fronts with Zb > 0.75hb are shown in figure 6.5. There are ~

120 bubbles at Agt2=2, which coalesce to ~ 9 large bubbles by the end of the calculation.

It is evident that even at Atgt2=16, the bubbles do not approach L = 1 cm, the box

dimension. Thus, we may assume that the flow is not affected by the boundary

conditions right up to the end of the calculation. The radial autospectra EZb(k) of the

bubble front function Zb(x,z) may be defined as

�
∞

−=
0

22)( bbZb ZZdkkE , (6.2.7)

Agt2 = 8Agt2 = 2 Agt2 = 16

Z > hb

Z < 0.75 hb

Figure 6.5. Bubble fronts Zb (x,z) from simulation 6 at early-, mid-
and late times (Atgt2 =2, 8, and 16).
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where •  denotes averaging over the x-z plane. The radial autospectra was obtained by

averaging the 2D power spectra of Zb(x,z) rotated through 15 angles. The results are

plotted in figure 6.6 for Atgt2 = 2,8, and 16. There is no dissipative range in these spectra

due to the absence of small-scale information in the definition of Zb(x,z). Consistent with

the emergence of large-scale structures at late–time, the spectral peak shows movement

towards lower wavenumbers. However, at Atgt2 ~ 2 for instance, the spectral peak is at N

~ 4 which is higher than the imposed value of Nmin =2 for this case. This is caused by

modulation effects due to the presence of bubbles of different sizes. To determine

Figure 6.6. Azimuthally averaged power spectra of bubble fronts Zb (x,z)
from simulation 6 at early-, mid-, and late times (Atgt2 = 2, 8, and 16).
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Figure 6.7. (a) Test image of radius 20 pixels with a parabolic (b) intensity profile.
(c) Autocorrelation contours of test image from (a) and the azimuthally averaged

radial profile (d) showing a radius of 20 pixels.
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quantities such as the Froude number and the self-similar parameter βb, it is essential to

estimate the average diameters of the R-T bubbles without such modulation effects. We

thus use an autocorrelation-based technique (developed in Dimonte et al. 2003) to

determine the average bubble diameters for different Atgt2.

The 2D non-dimensional, autocorrelation function η (x,z) of Zb (x,z) is defined as

�

�
−′′

−+′+′−′′
=

)),((

)),()(),((
),( 2

bb

bbbb

ZzxZ

ZzzxxZZzxZ
zxη . (6.2.8)

The azimuthal average of θη  is then obtained by averaging η(x,z) rotated through 24

angles. This technique was applied to test images with objects of known diameters, and

it was found that the radial location where θη  dropped to a value of 0.3 approximately

corresponded to the mean radius of the test objects. Figure 6.7 (a) and (b) show the test

object and the radial profile of intensity (along the dashed line) respectively. A parabolic

intensity profile was chosen for the test image to reproduce the observed profiles of the

bubble fronts. The autocorrelation function η(x,z) and its azimuthal average θη  are

shown in figures 6.7 (c) and (d) respectively. The threshold value of 0.3 captures the

radius of the test object (~ 20 pixels). This procedure was repeated with test objects of

different diameters, and with multiple objects in a single frame. The error using this

technique for these cases was determined to be ~ ± 15%. A sample image of the bubble

fronts from case 11 at Atgt2 = 22, is shown in figure 6.8 (a). The results of the

autocorrelation technique applied to this image are plotted in figures 6.8 (b) and (c) as
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Figure 6.8. (a) Bubble front image Zb (x,z) from simulation 11 at Atgt2 = 22. (b)
Autocorrelation contours of the bubble front field from (a) and the azimuthally

averaged radial profile (c).
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the η (x,z) contours and radial profile of θη  respectively. Applying the 0.3 cutoff, we

determine the average bubble diameter for this image to be ~ 0.76 cm.

The Froude number definition from section 6.1 does not take in to account the dilution

of bubble density through entrainment of heavy fluid and subsequent molecular

diffusion. This process increases the effective density of the bubbles, and will have to be

accounted for in the definition of the Froude number (see Dimonte et al. 2003). This is

evident from a vertical slice of density contours from simulation 6 at Atgt2 = 17 (figure

6.9), which shows the leading bubbles as gray rather than black. The effective bubble

density is then obtained by averaging the density within a volume defined as the region

3
2.8
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1

Figure 6.9. Vertical slice of density contours from simulation 6 at Atgt2 =
17. The average bubble density and velocities are computed within the

volume enclosed by the leading bubble tip and the dashed line.
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bounded by max (Zb(x,z)), and a radius of Db/2 (in figure 6.9, this is approximately the

region between the leading bubble tip and the dashed line). The bubble velocity is

similarly obtained by averaging the vertical velocities within this volume, which takes in

to account the velocity of heavier fluid trapped within and co-moving with the bubble.

The Froude number definition from (6.1.3) is then modified as

bb
beff gD

vFr 2

1

1

ρρ
ρ
−

= , (6.2.9)

where 12 ρρρ << b . For the density field shown in figure 6.9, ρb = 2.69, vb = 0.049, Fr0

= 0.29, and Freff = 0.79. A histogram of Froude numbers from all the simulations

obtained through these two methods (figure 6.10) show that the effective Froude number

agrees closely with the experimentally observed values of ~ 1 (Dimonte & Schneider

(1996) report Fr ~ 0.9 from their LEM experiments). Table 6.4 contains the effective

Simulation Effective Fr #
1 0.94 ± 0.18
2 1.47 ± 0.41
3 1.07 ± 0.09
4 1.16 ± 0.14
5 1.04 ± 0.20
6 1.02 ± 0.13
7 1.16 ± 0.17
8 1.05 ± 0.20
9 1.09 ± 0.12
10 1.12 ± 0.09
11 1.13 ± 0.18
12 0.94 ± 0.11

Table 6.4 The effective Froude numbers from the simulations.
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Froude number averaged over the self-similar time window described earlier in this

section for all the simulations reported here. We will use the effective Fr number in the

verification of equations (6.1.5) and (6.1.6) below.
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Figure 6.10. Histogram of Froude numbers from the 12 simulations.
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Figure 6.11. Effect of khk 0 : (a) Evolution of bubble amplitude, hb for cases

6,7, and 8 ( khk 0 = 0.0044, 0.0003, and 3x10-6)  (b) Evolution of αb for cases

6,7, and 8 ( khk 0 = 0.0044, 0.0003, and 3x10-6).
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6.3 Effect of Initial Amplitudes

Cases 1 through 8 constitute the study of the effect of initial amplitudes on self-similar

bubble quantities αb and βb.  All of these cases had an initial spectral slope of k-2, while

the minimum imposed modes ranged from 1 to 3. To isolate the effect of the initial

amplitudes, Figure 6.11 (a) shows the evolution of bubble amplitudes for cases 6,7, and

8 which all had the same values of Nmin = 2. Simulation 6, which had, 0044.00 =khk

grew the fastest, while the bubble amplitude from simulation 8 with 6
0 103 −= xhk k

took up to Atgt2 ~ 35 to reach 0.7cm. The corresponding growth constant αb was

determined as the derivative of hb with respect to Atgt2, and is plotted in figure 6.11 (b).

In the self-similar regime ( mck ttt ≤≤ ), αb is nearly constant for the three cases, but the

different values indicate a dependence on the initial amplitudes. This dependence will be

quantified later in this section. Using the bubble diameters determined from the

autocorrelation technique, the bubble wavelengths λb can be obtained from Daly’s

parametrization (discussed in section 1.2) as,

1

21

ρ
ρρλ +≈ bb D . (6.3.1)

λb for the three cases are shown in figure 6.12 (a) as a function of the non-dimensional

parameter pt gtA λ2 . Here, λp is the peak wavelength from (6.2.3). For instance, by t = tk

for case 6, hb ~ 0.4λp which indicates that this mode is near saturation. It is clear that at

15~22
mctt gtAgtA = , λp ~ 0.32, or λmin ~ 0.5 indicating the onset of mode coupling. The

self-similar parameter bbb hλβ =  is plotted in figure 6.12 (b) and shows a near-constant
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value of ~ 0.4 for t > tk. βb appears far less sensitive to the initial amplitudes than αb.

The linear growth of λb and the constancy of βb shows that these calculations have

reached self-similarity and remain so until late-time. The mean αb and βb for all the

simulations were obtained by averaging for mck ttt ≤≤ and are listed in table 6.5.

Simulation αb βb

1 0.058 ± 0.012 0.64 ± 0.09
2 0.028 ± 0.009 0.40 ± 0.12
3 0.088 ± 0.031 0.54 ± 0.09
4 0.048 ± 0.017 0.51 ± 0.06
5 0.086 ± 0.026 0.73 ± 0.08
6 0.046 ± 0.023 0.53 ± 0.12
7 0.036 ± 0.011 0.45 ± 0.06
8 0.024 ± 0.012 0.53 ± 0.1
9 0.041 ± 0.016 0.43 ± 0.05
10 0.037 ± 0.016 0.45 ± 0.03
11 0.034 ± 0.019 0.47 ± 0.09
12 0.030 ± 0.013  0.44 ± 0.05

Table 6.5. Self-similar parameters αb, and βb from the simulations.
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In addition to the large-scale effects such as αb and βb, small-scale effects such as the

molecular mixing Θ and kinetic energy dissipation were also investigated. Θ may be

computed from the volume fraction profiles as

�
�=Θ

dyff

dyff

21

21 , (6.3.2)

where •  once again denotes averaging over the x-z plane. The evolution of Θ with

Atgt2 is shown in figure 6.13 (a) for cases 6,7, and 8. Θ for all these cases asymptote to ~

0.8 consistent with experiments (Wilson & Andrews 2002; Ramaprabhu & Andrews

2003b), although at slightly different rates. The self-similar evolution of R-T involves the

conversion of the initially available potential energy to kinetic energy as the flow

develops. The ratio of the kinetic energy of the flow to the accompanying loss in

potential energy is nearly constant for such flows. We use the approach outlined in

Ramaprabhu and Andrews (2003)b, and Dimonte et al.(2003) to define this ratio:

Assuming for low At, a linear profile of the volume fractions, and hs ~ hb = h, the loss in

potential energy may be written as

��
−≈−+−=∆

−

h

h

ghgydygydyEP
0

2
21

2

0

2 6
)()()(.. ρρρρρρ (6.3.3)
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In the above, the error in assuming hs ~ hb results in an overall error in ∆P.E. of ± 5% for

these calculations. The corresponding gain in kinetic energy is then,

dxdydzvvEK )(
2
1.. �� •= � ρ , (6.3.4)

where the integral is performed over the entire computational domain. The ratio

.... EPEK ∆  is plotted for cases 6,7, and 8 in figure 6.13 (b). Note that the fraction of

energy dissipated is given by ....1 EPEK ∆− , and approaches a value slightly greater

than 50% for these simulations. This is in good agreement with our experiments (section

4.5; Ramaprabhu & Andrews 2003b), which report a value of D/P.E. = 49% from

simultaneous measurements of density and velocity fields. The values of mixing

parameter Θ and K.E./∆P.E. are summarized in table 6.6 for the numerical simulations.

Simulation 5, which is the most efficient in extracting kinetic energy from the initial

Simulation Θ K.E./∆P.E.
1 0.72 ± 0.12 0.50 ± 0.13
2 0.81 ± 0.05 0.37 ± 0.03
3 0.70 ± 0.09 0.54 ± 0.15
4 0.73 ± 0.09 0.45 ± 0.07
5 0.63 ± 0.07 0.58 ± 0.06
6 0.75 ± 0.09 0.47 ± 0.09
7 0.80 ± 0.06 0.37 ± 0.11
8 0.78 ± 0.05 0.37 ± 0.07
9 0.82 ± 0.07 0.37 ± 0.03
10 0.81 ± 0.01 0.36 ± 0.04
11 0.82 ± 0.03 0.38 ± 0.05
12 0.81 ± 0.06 0.36 ± 0.04

Table 6.6. Molecular mixing parameter Θ and K.E./∆P.E. from the simulations.
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Figure 6.13. Effect of khk 0 : (a) Evolution of molecular mix fraction Θ for
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density distribution (K.E./∆P.E. ~ 0.6), also has the lowest value for the mixing

parameter Θ. This simulation had Nmin = 1, and the highest growth rate (αb ~ 0.07),

which implies the appearance of large scale structures at early times. Thus, the rate of

extraction of potential energy could be much higher for this case. In summary, while αb

appears sensitive to initial conditions, βb the molecular mixing parameter Θ, and

K.E./∆P.E. all seem to have little memory of the initial spectral content. The lack of

dependence of small-scale features to the initial conditions is also supported by the

density fluctuation spectra, discussed in section 6.5.

6.4 Mode Coupling

Simulations 11 and 12 were designed to test the effect of the initial amplitudes on αb and

βb in the mode-coupling limit. Both these calculations had amplitudes in modes 16-32

(figure 6.2). The values of khk 0  were 0.047 and 0.00047 for cases 11 and 12

respectively (note that for these cases, khk 0  is not constant since a k-2 spectrum was

not used; the value reported here was chosen using k=2π/λp). From table 6.5, it is clear

that αb is insensitive to khk 0  when the large-scales are generated purely by mode-

coupling (cases 11 and 12).

These results are summarized in figure 6.14, which is a plot of αb vs. khk 0  for all of

the simulations in the initial amplitude study. The closed circles indicate cases 1 – 8
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where long wavelengths were present in the initial spectrum, while the open circles refer

to the mode-coupling calculations. The lines represent the model predictions. Figures

6.15, 6.16, and 6.17 are similar plots for βb, Θ, and K.E./∆P.E. αb shows a logarithmic

dependence on khk 0  in agreement with equation (6.1.5) which is represented by solid

(Fr = 0.85) and dashed lines (Fr = 0.56). The mode-coupling cases are unaffected by

khk 0 , and one may argue that they set a lower bound for αb (within the error bounds

reported in table 6.5). As expected for molecular processes, Θ, and K.E./∆P.E. are

insensitive to initial amplitudes. These findings are further supported by density spectra,

which are presented later in this section. βb does not show any sensitivity to khk 0  in

figure 6.15. One would expect similar behavior for the two parameters, which are

coupled in the derivation of equations (6.1.5) and (6.1.6) – Appendix D. This

discrepancy may be due to the use of Daly’s formulation (6.3.1) in computing the bubble

wavelength. This formulation defines a bubble wavelength as including a bubble and a

spike (a crest and a trough of a wave). However, the spikes in this flow behave

differently from the bubbles, as they are dependent on the density ratio while the bubbles

are not. This difference has to be accounted for in computing the bubble wavelengths by

excluding the influence of the spikes. Goncharov (2002) and Hecht, Alon & Shvarts

(1994) suggest taking bb D~λ , which applied to the
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Dimonte model would give βb independent of khk 0  and a function of the Atwood

number. Work is in progress to refine the model, and test the modified version of

equations (6.1.5) and (6.1.6). This includes simulations at different Atwood numbers to

study the dependence of βb on density difference.

6.5 Effect of Spectral Index

Figures 6.18 (a) and (b) show the evolution of bubble amplitude hb, and αb for cases 6, 9,

and 10. All three cases had the same khk 0  = 0.0044 and Nmin = 2, but spectral indices

of –2, 0 (white noise), and –1 respectively. For p = -1, and p = 0, khk 0  is not a constant

(from the definition of kh0  from (6.2.2)) and a value based on kp=2π/λp was used. The

p = 0 case grows the fastest initially when the high-wavenumbers of the flat spectrum

have a higher energy compared with the other cases. The growth is slowed down at late

times, when the low-amplitude, low wavenumbers of this spectrum are being sampled by

the flow. The corresponding bubble wavelength λb, and βb are plotted in figures 6.19 (a)

and (b) respectively, and do not seem to vary significantly with p. Figure 6.20 and 6.21

are plots of αb and βb averaged over the self-similar time window as a function of the

spectral index. The self-similar growth parameters appear to be independent of the

spectral slopes of the initial conditions. Note that according to the Dimonte model, the p

= 0 and p  = -1 cases are not truly self-similar, and αb and βb do not stay constant.
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Figure 6.18. Effect of p: (a) Evolution of bubble amplitude, hb for cases 6,9, and 10 (p = -
2, 0, and -1). (b) Evolution of αb for cases 6,9, and 10 (p = -2, 0, and -1).
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The volume fraction spectra, is computed from the x-z distribution of f1 at y=0 using

(Dimonte et al. 2003),

θ
π 2

1 )(2)(
1

nfnnE f = , (6.5.1)

where θ• denotes azimuthal averaging. As before, this definition ensures that

�
∞

−=
0

2
1

2
1)(

1
ffdkkE f . Figure 6.22 (a) is a contour plot of f1(x,z) at y=0 from

simulation 11 at Atgt2=22, where the large-scales are generated purely through mode-

coupling. The corresponding azimuthally averaged spectra for both the mode-coupling

cases are shown in figure 6.22 (b). As described earlier, θ• was obtained by averaging

over 15 angles. The solid line indicates the –5/3 slope, and shows the presence of a short

inertial range with k-5/3. The Reynolds number at Atgt2=22 may be estimated from (2.3.1)

as

925)(
6

Re
2/3

≈+=
ν

sbt hhgA , (6.5.2)

where ν was determined using the procedure described in section 5.2. Higher resolution

simulations at higher Reynolds numbers are expected to give a broader inertial range,

than observed here. The corresponding Kolmogorov length scale is

4/3Re
2

−+
= sb

k
hhη , (6.5.3)

and is ~ 0.005 cm. Thus at this late-time, the Kolmogorov scales are not resolved by the

current simulations. At higher modenumbers, a dissipative region with a slope of –3 is
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also evident. Although these two cases differed in their initial amplitudes by a factor of

100, their late-time spectra have very similar structures, even in the large-scales.

The azimuthally averaged power spectra from the initial amplitude study, and the

spectral index study are shown in figures 6.23 (a) and (b) respectively. Similar to the

mode-coupling cases, these spectra have a short inertial range with 3/5~)( −kkE , and a

steeper dissipative range. The initial amplitude cases have dissimilar structure at the

lowest wavenumbers, which is consistent with the different values of the growth

constant obtained from these simulations. However, we note that these lowest

wavenumbers are likely not well resolved due to the lack of sufficient bubbles/spikes

required for averaging. At the higher wavenumbers, all of these calculations have nearly

identical energies. This similarity is manifested in the small-scale quantities such as the

molecular mixing parameter, the kinetic energy dissipation, which show very little

dependence on the initial conditions.
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Figure 6.22 (a). Contours of volume fraction f1 on a horizontal plane at y=0.(from case
11) at Atgt2=22. (b) Azimuthally averaged power spectra of f1 for the two mode-

coupling cases 11 and 12.
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Figure 6.23 Azimuthally averaged power spectra of f1 from the initial amplitude study (a)

and spectral index study (b).
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7. NUMERICAL SIMULATIONS OF WATER CHANNEL EXPERIMENTS

7.1 Formulation of Initial Conditions

High-resolution simulations (128x128x256) initialized with experimentally obtained

initial conditions (velocity and density) are described in the following sections. The

density data were obtained at x ~ 1 mm, using thermocouples while the velocity data

were obtained at x ~ 2.5 cm from the PIV technique. These measurement techniques and

the data analysis methods were described earlier in this work. Dimonte et al. (2003) have

argued that the higher growth rate observed in experiments may be due to the presence

of long wavelengths not included in most numerical simulations. In section 6.2, we have

demonstrated that when initialized with long wavelengths, numerical simulations can

give higher α values, and exhibit sensitivity to initial conditions. It was also shown that

conversely, when such long wavelengths are absent α approaches a universal lower

bound value of ~ 0.03. Here, we extend this argument to use longer wavelengths

measured in experiments to initialize numerical simulations, with the objective of

reproducing the experimental growth.

The computational box sizes were chosen to be 15cm x 15cm x 30cm for some

simulations and 30cm x 30cm x 60cm for others. The smaller box size has the same

depth as the water channel (30 cm), while the larger box size was used to include longer

wavelengths that are present in the experiment. The light and heavy fluid densities were
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set as ρ2 = 1000 kg/m3, and ρ1 = 1001.5 kg/m3 respectively to give the same Atwood

numbers employed in the experiment (At ~ 0.00075). The gravitational acceleration was

set to 9.81 m/s2. In the following sections, the results are presented entirely in

dimensional units to provide a direct comparison with the experimental data – Once

again, we employ the Taylor hypothesis to transform the downstream spatial distance in

the experiment to time in the simulations using the mean convective velocity (4.4 cm/s).

We note that the experiments are thus effectively two-dimensional since time and the

downstream distance can be related through the Taylor hypothesis. Thus, the

experiments evolve in two spatial dimensions and one temporal dimension, while the

computations are three-dimensional in space.

Simulation Description

Case 1
Density perturbations,

with modes 1 – 16, and box size of
15cmx15cmx30cm.

Case 2
Density perturbations,

with modes 1 – 16, and box size of
30cmx30cmx60cm.

Case 3
Density perturbations,

with modes 1 – 32, and box size of
30cmx30cmx60cm.

Case 4
Velocity perturbations,

with modes 1 – 32, and box size of
30cmx30cmx60cm.

Table 7.1 List of simulations initialized with experimental conditions.
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Table 7.1 is a list of the simulations described here. Cases 1 to 3 were initialized with

density perturbations, while case 4 was initialized with velocity data obtained from the

PIV technique. Case 1 had a box size of 15cm x 15cm x 30cm, while the other cases had

a box size of 30cm x 30cm x 60cm to capture wavelengths up to 30cm that are likely

present in the experiment. The density perturbation cases 1 and 2 had energy in modes 1

– 16, while case 3 was initialized with energy in modes 1 – 32 to study the effect of the

higher wavenumbers (From section 6.2, the highest resolvable mode was identified as np

~ 24). We describe below the method used to transform the single-point data (velocity

and density) obtained from experiments to planar data required for the simulations. From

the power spectra of density fluctuations at x = 1mm, the amplitudes of the 32 (16 for

case 1) longest modes were used as the approximate values for ak, bk, ck, and dk in

(6.2.1). As h0(x,z) is calculated by sweeping through the azimuth in wavenumber space,

the amplitudes are randomized by multiplying with a randomly generated factor with a

mean value of 1, and a standard deviation of 0.3. This value was chosen to ensure that

the azimuthally averaged power spectra used in the calculations has the same energy as

the single-point power spectra from the experiments:

�� = dkkhdkkh erimentexp0 |)()(
θ

. (7.1.1)

In the above, θ• denotes azimuthal averaging. The azimuthally averaged density

spectra used in the NS, and the experimental single-point spectra are compared in figure

7.1.
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As reported in section 4.3, we believe that the perturbations shed by the splitter plate are

primarily velocity fluctuations, which in turn induce density perturbations. Furthermore,

most R-T experiments have velocities for their initial perturbations (in contrast to

Richtmeyer-Meshkov experiments). In our calculations, the velocity perturbations were

initialized as derivatives of the velocity potential function defined as

� �
=

=

=

=

−=
max

min

max

min
0 )exp()sin()sin(

nj

nj

ni

ni
ijji

ij

ij ykzkxk
k
a

aφ . (7.1.2)

Figure 7.1 Spectra of density initial conditions from the simulations (case 3) and
the experiment (thermocouple measurements).
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In (7.2.1), 
x

i L
ik π2= , 

z
j L

jk π2= , )( 22
jiij kkk += , aij are the modal amplitudes and

the velocities were computed as ),,( zyxv φ∇=′� . For case 4, nmin = 1 and nmax = 16.

Since velocity data were collected from the experiment at x ~ 2.5 cm, and not at the edge

of the splitter plate (x = 0), the values of aij were chosen so that the integral of velocity

spectra from simulations and experiments agreed at x ~ 2.5cm. Figure 7.2 is a

comparison of the velocity spectra at x = 2.5 cm from simulation 4 and the PIV

measurements.
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Figure 7.2 Spectra of velocity initial conditions from simulation 4 and the
experiment (PIV measurements).



158

(a)

(b)

Figure 7.3 Contours of volume fraction f1 from case 2 at Atgt2 = 0 (a) and Atgt2=3
(b) at the interface (y = 0).
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In both the velocity and density initial spectra, only 16 (cases 1,2, and 4) – 32 (case 3)

modes could be resolved. This is the reason for the difference between the spectral

structures of the experimental data and the numerical simulations in figures 7.1 and 7.2.

Because of the limited resolution of the numerical simulations, the modes in the

numerical simulations were initialized as long wavelengths, which dominate the late-

time growth.

Agt2 (m)

h
(m

)
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Figure 7.4 Evolution of amplitudes (of bubble) from
cases 1,2, and 3.
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7.2 Density Perturbations

Figure 7.3 shows the volume fraction contours from simulation 2 at early and late times

(Atgt2 = 0 and 3 m respectively). The contour levels shown are the same as that used in

figure 6.21 (a). Similar to simulations reported in section 6.2, R-T evolves through

coalescence of bubbles leaving only a few bubbles at late time. The evolution of

amplitudes of bubbles from cases 1 –3, which were initialized with density

perturbations, are shown in figure 7.4. All three cases show a region of linear growth

indicating self-similarity. At these low Atwood numbers (~ 0.00075), the bubble and

spike amplitudes are roughly equal, and only the bubble amplitudes are shown here.

Case 1, which had a box depth of 30 cm was stopped at Atgt2 ~ 1.5 m, to minimize the

effects of the top and bottom walls on the mix width evolution. Cases 2 and 3 were

stopped when the mix width reached ~ 16 cm. Case 3 saturates the fastest, due to the

presence of higher wavenumber modes that grow faster according to kgAt~Γ . Due to

the presence of longer wavelengths (~ 30 cm), simulations 2 and 3 have higher growth

rates than simulation 1 which had a longest wavelength of 15 cm.
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Figure 7.5 Comparison of r.m.s. of vertical velocity fluctuations (a) and the
growth constant α (b) from simulations initialized with density and the

experiment.
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Figure 7.5 is a comparison of the r.m.s. of vertical velocity fluctuations from the

simulations 1 – 3 with experimental results from PIV (section 4.2). The simulations

report a slower growth rate, and a smaller growth constant α than the experiments. Here,

α has been calculated according to equation (4.2.1) from the vertical velocity

fluctuations at the centerline. The simulations lag behind the experiments in their

development, as seen in figure 7.5. However, the experiments have velocity

perturbations that accelerate the initial density interface through an inertial motion in the

vertical direction. In the absence of such an inertial push, density perturbations lag

behind the velocity perturbations resulting in the slower growth rate seen in figure 7.5.

Note that while the theoretical formulation of an R-T instability involves density

perturbations (Chandrasekhar 1961), most experiments have velocity perturbations or a

combination of velocity and density modes.

7.3 Velocity Perturbations

Simulation 4 was initialized with velocity perturbations given by the gradient of (7.1.2)

in modes 1 - 32. The amplitudes were chosen by a trial and error method so that the

integral of the velocity spectra at x ~ 2.5 cm agreed with the experimental data reported

in section 4.3. The results are compared in figure 7.6 (a) and (b), and show better

agreement with the experiments than the density cases. The growth rate α is not constant

due to the structure of the initial spectrum (~ k0) and approaches 0.06 at late time. At

early time, the vrms amplitudes exceed the experimental value. We attribute this to the
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presence of high-amplitude short wavelengths in the simulations that saturate early.

Conversely at late time, when the long-wavelengths dominate, the experimental values

for vrms and α exceed the simulations. This is due to the higher amplitudes of long-

wavelengths in the experiment (figure 7.2). We expect that a k-2 initial spectrum will

resolve both these issues. Such simulations are currently underway. In addition,

experimental data at the edge of the splitter plate is required to better match the initial

conditions. In these simulations, the initial perturbations are two-dimensional (circular in

wavenumber space), while we believe the experiments do not have a perturbation field

that is statistically isotropic in the horizontal plane (section 4.3). Thus, additional PIV

experiments that measure velocity components in the vertical and horizontal planes near

the splitter plate are required to accurately model the initial conditions. Finally, another

reason for the disagreement between experimental and numerical centerline vrms values

may be the higher uncertainty associated with the numerical simulations. The

simulations have only 8 – 10 large-scale structures at late-time, which could result in

greater uncertainties of ensemble averages. To quantify this, the standard deviation of

vrms was computed as 
2

2
24

4
])([

v
vv −  (Benedict & Gould 1996), and plotted in figure

7.6 (a). The interfacial horizontal plane was divided in to smaller zones and the

uncertainty computed over each of the smaller zones. Then, the true uncertainty is given

by the mean of all the sample uncertainties. Zone sizes of 8 x 8 and 16 x 16 were used to

test the effect of sample sizes which were found to be negligible. From figure 7.6 (a), it
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appears that the discrepancy between the experiments and simulations is within the

numerical uncertainty at late-times.

Figure 7.7 is a comparison of the molecular mix fraction parameter θ from the

thermocouple measurements (section 4.1) and simulation 4. Consistent with the results

of section 6.3, the molecular mix fractions are in good agreement, although the large-

scale evolutions are different. However at intermediate times, θ from the simulation

approaches much lower values than the experiments. This difference may be two

complementary reasons. The presence of the remnants of the diffuse layer shed from the

splitter plate in the experiment contributes to the higher values of θ seen here at the early

Figure 7.7 Comparison of molecular mix fraction θ from
simulation 4 and thermocouple measurements.
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stages of the downstream evolution. The simulations on the other hand, lack small-scales

in their initial conditions due to resolution limitations – the highest mode number

imposed was n = 32. At late-time however, both simulation and experiments approach

the same value showing that the MILES technique accurately reproduces the molecular

mixing measured in experiments.
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8. CONCLUSIONS

The evolution of Rayleigh-Taylor (R-T) mixing into self-similar turbulence has been

studied using experiments and numerical simulations. The experiments involved high-

resolution temperature and velocity measurements of the fully-devloped self-simillar

mix. The velocity measurements were obtained from the Particle Image Velocimetry

technique, while temperature measurements were made using a rake of E-type

thermocouples placed across the mix. In addition, using the novel PIV-S technique,

simultaneous measurements of velocity and density fields have been obtained. The

velocity and simultaneous velocity-density measurements reported in this work

constitute a first for R-T flows. The spectra and statistical correlations obtained  from

these measurements should do much to calibrate and refine existing R-T models. In

addition, this data may also be used to validate high-resolution Direct Numerical

Simulations of such flows. The significant conclusions of this work are summarized

below.

• In this experiment, the R-T mix is initialized with a spectrum of velocity

perturbations that, after a stage of linear growth, evolve through mode-interactions

and successive wavelength saturation. The fully-developed mix grows quadratically

in time, with a self-similar structure.
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• The self-similarity is evident here through velocity and density frequency spectra

that evolve in a shape-preserving manner. The velocity profiles also collapse onto a

single curve when normalized by suitable similarity variables.

• Characterization of the mix width development was done using centerline vertical

velocity fluctuations, rather than the mix width itself. The quadratic growth rate

constant α was measured at 0.07, which is in good agreement with previous

measurements from the experiment using the mix width based on the 5% and 95%

threshold for the volume fractions. This verifies observations, and results from

velocity and density spectra, that large-scale structures dominate the mixing and

contain most of the kinetic energy of the mix. It also implies that relatively simple

models, based on driven centerline velocity fluctuations and density fluctuations,

would suffice to capture the overall development of the mix.

• The internal structure of the self-similar mix is anisotropic with vertical velocity

fluctuations dominating the horizontal (streamwise and transverse) components. The

ratio of u
v

′
′  is ~ 2, and appears to be constant across the mix, as the mushroom-

shaped structures are convected up and down the mix without much change in shape.

• This significant cross-stream (vertical) flux limits the intermittency factor (based on

a vorticity threshold) to a maximum of 0.5 at the center of the mix, as opposed to a

value of 1 for shear layers. A more natural definition for intermittency for buoyancy-

driven turbulence is suggested here based on the two-fluid density fluctuation B2 and

takes a value of 0.5 at the centerline.
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• The anisotropy of fluctuating velocity components extends to the Taylor scales,

which also exhibit a preferential straining in the direction of gravity. It might be

expected that at scales smaller than this, as we approach the Kolmogorov

dimensions, the turbulence would be far more isotropic. However, this cannot be

directly verified here due to the limitation on spatial resolution of our PIV system.

The velocity spectra show a tendency toward convergence at high wavenumbers.

This trend is also seen in the strain rate spectrum, which shows that under the

influence of an imposed strain field the highest wavenumbers take the least time to

return to an isotropic configuration.

• The R-T flow may be viewed as a mixing process for miscible/immiscible fluids of

different densities. From an energy budget analysis, it was shown that there is

considerable kinetic energy dissipation (~50% of the potential energy loss), which

indicates the presence of highly three-dimensional structures necessary for mixing to

occur.

• The molecular mix fraction, a local mix parameter, was determined to be ~ 0.75 in

the self-similar region. The global mixing efficiency parameter was computed and

determined to be ~ 0.8, a value much higher than that reported from previous

experimental work. From assuming a linear density profile, we have shown that for

R-T flows, in the self-similar regime, the value of 0.8 indeed can be obtained

theoretically.
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• The spectral and statistical data presented here may be used to validate direct

numerical simulations and turbulence models such as the Reynolds stress models,

spectral transport model, and two-fluid models of R-T mixing.

Numerical simulations to investigate the effect of initial conditions on the self-similar

evolution of R-T, and the growth constant αb in particular were performed. The

simulations were designed to verify a model that predicts a logarithimic dependence of

αb and the self-similar parameter βb on the non-dimensional initial amplitude khk 0 .

The results from this study are reviewed below.

• αb was found to vary logarithimically with khk 0  in agreement with the model for

the Froude numbers reported here. In contrast, βb was found insensitive to khk 0

contradicting the model predictions. An explanation for this behavior of βb was

provided.

• In the opposite mode-coupling limit where long wavelengths are purely generated by

the nonlinear interaction of shorter wavelengths, αb and βb were found independent

of khk 0 . In this limit, αb took up a lower bound value of 0.03.

• Numerical simulations to test other effects such as the spectral slopes were also

conducted. Three different slopes (k0, k-1, and k-2) were used and the self-similar

parameters were found insensitive to changes in the specctral slopes.
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• Small-scale effects such as the molecular mix fraction θ, and the net kinetic energy

dissipation were found to be independent of the initial amplitudes and spectral

slopes. This is also reflected in the late-time density spectra from the simulations

which show good agreement for all the cases.

Finally, numerical simulations initialized with experimentally obtained initial conditions

were performed, and the results were compared with the PIV and thermocouple data.

Three simulations were initialized with density perturbations whose amplitudes matched

values obtained using a thermocouple at a distance of 1mm from the splitter plate in the

experiment. A fourth simulation was initialized with velocity perturbations that had

approximately the same amplitudes as those obtained from PIV data at x ~ 2.5 cm. The

conclusions from this comparative study are listed below.

• The case with velocity perturbation was found to be in better agreement with the

experiments than the density cases. This improvement is believed to be due to the

presence of velocity modes that are present in this R-T experiment, that inertially

push the density interface at early time, accelerating their growth.

• The late-time growth constant α approaches 0.06 for this case, a value close to that

obtained from the experiments. However, to exactly reproduce the experimental

evolution, velocity data in the two vertical planes parallel and perpendicular to the

direction of the flow is needed. Such experiments are currently being planned for this

experimental facility.
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APPENDIX A

EFFECT OF TURBULENT FLUCTUATIONS OF REFRACTIVE INDEX ON

PIV*

In the following, we discuss and quantify the effect of local refractive index changes on

our PIV/PIV-S results. In buoyancy-driven flows, the refractive index changes as a

function of the density difference between the two fluids and the distance traveled by the

laser beam in the fluid along the line of sight. Optical diagnostic techniques such as PIV,

or LDV are susceptible to local changes in refractive index that arise due to changes in

the turbulent density field. However, changes in the refractive index were found

insignificant in the experiments reported in this work. We substantiate this claim with

the following:

1. The density difference in these experiments was very small. While most papers that

address the issue of refractive index effects deal with density differences of the order

of 3-5% of the mean density (Alahyari & Longmire 1994), in our experiments this

value was maintained around 0.1%.

2. The beam travel length of the laser beam was also small in comparison with Alahyari

& Longmire (1994), due to the design of the channel, and was 8 cm.

3. Local changes in refractive index would result directly in the blurring of seed

particles due to localized bending of light along the line of sight (figure 4 (a),

Alahyari & Longmire 1994). Figure A.1 is a comparison of the PIV images with and

_____________________
* Parts of this section including figures A.1 (a), A.1 (b), A.2 (a) and A.2 (b) have been
reprinted with permission from Expts. Fluids 34, 98–106, Ramaprabhu, P., &
Andrews, M.J., 2003 Simultaneous measurements of velocity and density in buoyancy-
driven mixing. Copyright Springer-Verlag.



183

without the 5o temperature difference in a stably stratified mixing layer. There is no

discernible difference in the quality of these images, as opposed to the sharp contrast

seen in the figures of Alahyari & Longmire.

4. Furthermore, a quantitative test similar to the one suggested by R.J. Adrian et al.

(1986) was performed. In this test, a known velocity (= 0 cm/s) was introduced in to

the unstably stratified mix, in the form of a stationary target (a cylindrical object in

this case, figure A.2 (a)).
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In the region occupied by the object, and on its boundaries, we expect to find non-zero

r.m.s. velocities if the intensity field is indeed distorted by fluctuations of the refractive

index. Figure A.2 (b) is a plot of the u′ velocity profile (along the dotted line in figure

A.2 (a), and plotted from the top) computed from the above experiment with and without

a 5o temperature difference. As can be seen from figure A.2 (b), there is good agreement

between the two cases suggesting that the effects of refractive index changes are

minimal.

      

(a) (b)

Figure A.1 (a) PIV image with no temperature difference and (b) PIV image with a 5o

temperature difference.
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Figure A.2 (a) Stationary objected illuminated by laser sheet in an unstably stratified mixing layer.
(b) Profiles of u′ along the dotted line in (a).
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APPENDIX B

k - ε MODEL VALIDATION

B.1 Preliminaries

The velocity-density data described in section 3.4 was used to evaluate the buoyancy

constant Cε3, of the generic k - ε turbulence model. The model uses an eddy-viscosity

equation to compute the turbulent transport, while closure is achieved through the k - ε

equations,

��
�

�
��
�

�

∂
∂

∂
∂=

∂
∂

yyt t

t ρ
σ
νρ

ε
σ
ν ++��

�

�
��
�

�

∂
∂

∂
∂=

∂
∂

b
k

t G
y
k

yt
k        (B.1.1)

k
CG

k
C

yyt

2

2b3
t εεε

σ
νε

εε
ε

−+��
�

�
��
�

�

∂
∂

∂
∂=

∂
∂

where k is the turbulent kinetic energy, ε is the dissipation, Gb is the byouyancy

production term (the shear production term, Gs has been set to zero), νt is the turbulent

kinematic viscosity, and σt, σε, and σk are the Prandtl numbers. Cε3, the byouyancy

coefficient can be determined by transforming the variables in to similarity functions,

and solving the transformed equations (Snider & Andrews 1996). The solution of these

equations is detailed in the next section.

Using the experimentally obtained kinetic energy and density profiles to fit those

obtained from the similarity solution of the above equations, Cε3 was found to be ~ 0.83.
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Snider & Andrews (1996) report a value of 0.88 from their similarity solution, and a

value of 0.91 from 2D numerical simulations based on the k-ε model. Published values

of Cε3 range from 0.8 to 1.4 depending on the growth rate of the mixing layer α, with Cε3

decreasing with increasing α - the theoretical value of 0.88 corresponds to α ~ 0.07. The

mix region in the current experiments had a growth rate of ~ 0.07.

B.2 Evaluation of Cε3

The value of Cε3 may be determined by transforming the set of equations (B.1.1) in to

similarity coordinates, and integrating the resulting equations using approximate profiles

of k, ε, and ρ (Snider & Andrews 1996). First, the appropriate initial and boundary

conditions are imposed.

Initial Conditions:

at t = 0 for y ≥ 0 : ρ = ρ1, k = 0, ε = 0

at t=0 for y < 0 : ρ = ρ2, k = 0, ε = 0

Boundary Conditions: (B.2.1)

for y > h : ρ = ρ1, k = 0, ε = 0

for y < -h : ρ = ρ2, k = 0, ε = 0.

The above equations along with (B.1.1) admit a self-similar solution with similarity

variables of the form, 2t
y=η , )(k~t)y,t(k 2 η= , )(~t)y,t( ηεε = , and )(~)y,t( ηρρ = .

Introducing these variables in to (B.1.1), we get
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The self-similar kinetic energy and dissipation profiles are assumed parabolic, while the

density profile is assumed to be a linear function of η.

)~1(Ck~ 2
k η−=    )~1(C~ 2ηε ε −=    2

~~~ ρηρ ρ += C (B.2.3)

where Ck and Cε are constants, and η has been normalized by a self-similar length scale

Cw = h/t2,

h
y~ =η (B.2.4)

For a linear density profile, ( ) 2/21 ρρρ −=C . Substituting for k~ , ε~ , and ρ~  in to

(B.2.2) and integrating the resulting equations for 1~1 <<− η , the following expressions

for the constants can be obtained:
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Solving the above equations with the standard values for the k-ε constants (Cµ = 0.09,

Cε2 = 1.92, σt = 0.6), Cε3 was determined to be 0.88 (Snider & Andrews 1996).
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An empirical value for Cε3 can be determined by fitting the experimentally obtained

kinetic energy and density profiles to match the variables in (B.2.3) and then evaluating

the coefficients Ck and Cρ (figures B.1 and B.2). The resulting values are then substituted

in to the equation for Cw (B.2.5), which is then solved for Cε3. This approach yielded a

value of 0.83 for Cε3.
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Figure B.1. Comparison of k - profiles from experiment and similarity analysis.
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APPENDIX C

THE ALPHA-GROUP STUDY

C.1 Comparison of RTI-3D with Benchmark Codes

In this section, we summarize the results from a comparative study (Dimonte et al. 2003)

of several benchmark codes commonly used in numerical simulations of R-T including

RTI-3D. All of the codes were initialized with the same initial conditions, and the results

RT code Description

TURMOIL 3D
Compressible Eulerian code, 3rd order Van Leer
method, staggered Cartesian grid, and 2nd order

time integration..

FLASH
Adaptive mesh, compressible Eulerian code, uses

a Piecewise Parabolic Method which uses
parabolas to interpolate between nodes.

WP/PPM
Also uses PPM, but with a higher-order scheme.

Solves the Euler equations, and can handle
shocks and discontinuities.

NAV/STK
Solves the Navier-Stokes equation where the

viscosity is specified explicitly.

HYDRA
Eulerian code with capability to handle radiation,
and with an artificial viscosity to handle shocks

and mix the fluids, but an Interface
Reconstruction approach can be invoked to keep

the fluids separate. Also uses the Van Leer
method.

ALEGRA
Can perform in both Eulerian and Lagrangian
modes. Capable of Interface Reconstruction.

RTI-3D
A 3rd order Eulerian code, with Van Leer flux
limiters. Uses artificial numerical viscosity.
Detailed description provided in section 5.1.

Table C.1 List of RTI codes.
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were compared. The initial conditions were the same as used for simulation 11 in section

6.4 (one of the mode-coupling cases), with energies in modes 16-32. Table C.1 provides

a short description of the codes used in this study. With the exception of ALEGRA and

HYDRA, all of these of codes use an artificial (Euler) or a physical (Navier-Stokes)

viscosity to mix the fluids. ALEGRA and HYDRA have Interface Reconstruction (IR)

which keeps the fluids separate without mixing, thus simulating the two-fluid problem.

The numerical viscosities from the seven codes are given in table C.2. The viscosity

from the RTI-3D code is the lowest of all the simulations, thus giving a growth rate

closest to the analytical solution for the single mode calculations presented in section

5.2. Figure C.1 is a plot of the integral mix width (6.2.6) from the simulations as a

function of the self-similar length scale Atgt2 (a), and Atgt2/λp (b). The solid lines indicate

high-resolution 256x256x512 simulations, while the dashed lines represent the lower

resolution 128x128x256 cases. The simulations with RTI-3D were at a resolution of

128x128x256. The filled circles are the results from the LEM experiments (Dimonte &

Schneider 2000), and show a higher growth rate possibly due to the presence of long

wavelengths in the experiments. In C.1 (b), when normalized by λp, the growth from the

experiments is much higher since the LEM experiments probably had a much smaller

dominant wavelength not resolved by the simulations. The transition to quadratic growth

for the simulations occurs around Atgt2/λp ~ 50. The highest growth rates among the
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numerical simulations were for the cases with IR (ALEGRA and HYDRA), since they

had no specified viscosity. The corresponding bubble amplitudes are shown in figures

C.2 (a) and (b) plotted against Atgt2 and Atgt2/λp respectively. The growth constant αb is

determined by differentiating hb with respect to Atgt2, and is shown in figures C.3 (a) and

(b) and show a region of nearly constant αb for all the simulations indicating self-

similarity. The bubble growth constants from the simulations are given in table C.3 and

show good agreement between all the simulations.

R-T Code Numerical viscosity

TURMOIL 3D 0.23

FLASH

WP/PPM 0.28

NAV/STK 0.53

RTI-3D 0.22

ALEGRA
(without IR)

0.50

HYDRA
(without IR)

0.31

Table C.2 Viscosities of the RT codes.
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R-T Code Growth constant αb

TURMOIL 3D (256x256x512) 0.028

FLASH(256x256x512) 0.022

WP/PPM(256x256x512) 0.024

HYDRA(256x256x512)
(without IR)

0.029

NAV/STK(256x256x512) 0.022

RTI-3D(128x128x256) 0.03

ALEGRA(128x128x256)
(without IR)

0.024

HYDRA(128x128x256)
(without IR)

0.024

ALEGRA(128x128x256)
(with IR)

0.030

HYDRA(128x128x256)
(with IR)

0.024

Table C.3. Bubble growth constant αb from the simulations.
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The azimuthally averaged density spectra were computed according to (6.5.1) for all the

numerical simulations and are shown in figure C.4 (a) and (b) for Atgt2/L = 5 and 22

respectively. The solid gray line indicates the k-5/3 slope associated with an inertial range.

Interestingly, the calculations with IR do not exhibit a significant inertial range. This

could be due to the lack of dissipation in these calculations that would otherwise act as a

sink for the kinetic energy produced by buoyancy. Therefore, as the flow evolves from

(a) to (b), there is a visible filling in of energy at all scale due to the production term.

The calculations without IR show a dissipative region seen here as the drop-off at high

wavenumbers. The peak of the spectra shift from n = 4 – 10 to n = 2 – 3 at late time,

consistent with the emergence of the large-scale structures.
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APPENDIX D

DIMONTE’S MODEL FOR THE EFFECT OF INITIAL AMPLITUDES ON αb

D.1 Model Formulation

A synopsis of the model describing the role of initial conditions on αb, and βb is

provided here. A detailed description is provided in Dimonte (2003). In the linear

regime, the R-T growth rate is given by kgAt=Γ . In the presence of viscosity, this is

modified to give (5.2.2). Thus, the exponential growth of bubble amplitude of a

wavenumber k is (Chandrasekhar 1961)

)cosh(0 tkgAhh tkk = , (D.1.1)

where h0k is the initial amplitude of wavenumber k. The transition to nonlinearity occurs

when

khk ~ 1, (D.1.2)

with the linear velocity ~ khΓ  approaching the nonlinear velocity ~ kgAt /  - this is

referred to as the Fermi transition (Layzer 1955). Haan (1989) considered the interaction

of neighboring modes of similar phases that can interfere constructively, triggering

transition much earlier. In this scenario, the modes in a wavepacket of width δk

transition when their r.m.s. amplitude
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exceeds the nonlinear threshold. Dimonte (2003) defines the width of the wavepacket

kk
8
3~δ , where k is the central wavenumber of a wavepacket. In this picture, the central

wavenumber is the bubble wavenumber kb, and the width of the wavepacket is

2
sb kkk −=δ , where ks is the wavenumber of the mode that has just reached its saturation

amplitude. An e-2 distribution is assumed for the energy distribution of the wavepacket

with the peak at kb. Thus for 2D perturbations, transition occurs before the individual

modal amplitudes are large enough to satisfy (D.1.2) (Haan 1989). We can represent a

wavepacket by its central wavenumber, since for k >> δk, all the modes in a wavepacket

have similar k. If we take hb to be the leading bubble amplitude (i.e. the central mode),

then the variance of amplitudes range from 0 to 2
bh , and the mean of these fluctuations is

2/~ 22
bk hh  (Haan 1989). Then, applying the Fermi transition ( btb kgAFrh /π=Γ ) to

the bubble in a wavepacket, we get

2/~ πFrhk k . (D.1.4)

The evolution of kh in the nonlinear regime can be written as

)(
22 k
t

k tt
k
gAFr

k
Frh −+= ππ , (D.1.5)

where tk is the time at which transition occurs. Here, tk is obtained by inverting (D.1.1)

and using (D.1.4):
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Thus, the self-similar bubble amplitude has been expressed as a function of the initial

r.m.s. amplitude kh0  and the Froude number Fr. Combining (D.1.6) with (1.2.1), and

the definition for βb, we get two equations describing the dependence of αb and βb on

khk 0 :
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Note that in the derivation of the above equations, αb and βb are coupled through

bb
Fr βα
8

2

= . (D.1.9)

Thus according to this model, both αb and βb depend logarithmically on khk 0

(qualitatively similar to Birkhoff’s model (1955)). For self-similarity (constant αb and

βb), (D.1.3), (D.1.7), and (D.1.8) require that 2~ −khk .
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APPENDIX E

A TWO-FLUID FORMULATION FOR THE TRANSPORT OF ENSTROPHY

E.1 Formulation of Two-fluid Vorticity Measure

In this section, a molecular mix fraction for enstrophy is defined in a manner analogous

to (and consistent with) the definition for thermal fluctuations in a 2-phase fluid (section

3.2). Let ω(y,t) represent the vorticity at a location y across the mix, and at time t. We

define the enstrophy volume fractions as

MN
Nf
+

=ω,1 , 
MN

Mf
+

=ω,2 , (E.1.1)

where N and M are the number of counts of rotational and irrotational fluid respectively

(thus 1 � rotational fluid, 2 � irrotational fluid).  The 2-fluid measure for enstrophy

defined similar to B2 for thermal fluctuations, is

)NM/()|||(|)|||(| 2
M

1
2

2
N

1
12 +�

�

�
�
�

� −+−= �� ωωωωΩ .(E.1.2)

0|| 2 =ω , giving )NM/()||()|||(| 2
M

1

2
N

1
12 +�

�

�
�
�

� +−= �� ωωωΩ . Simplifying (E.1.2)

using (E.1.1), and f1,ω + f2, ω = 1, we get

( )|||||| 12 ωωωΩ −= . (E.1.3)

In the above, || 1ω  and || 2ω  are the maximum and minimum enstrophies in the flow.

|| 1ω , the maximum value can be expected to occur along the centerline of the mix, and

can be determined from the measured values here. However, experimental measures of
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the intermittency factor based on a vorticity threshold reveal a value of 0.5 at the

centerline that implies that both rotational and irrotational fluid occur in equal

probability there (see figure 4.3 (a)).

Thus, the volume fractions defined above will have to take values of 0.5 at the

centerline. Then, the average enstrophy at the centerline is

|||||| 2,21,1 ωωω ωω ff += . (E.1.4)

Since || 2ω  = 0, and f1,ω = f2, ω = 0.5 at the centerline,

      ||2|| centerline1 ωω = . (E.1.5)

The advantage of using ||2 ω  over || 1ω  in (E.1.3) is that there is lesser uncertainty in

measuring the average enstrophy value than the maximum value at a point. Now to

compare with molecular mix of thermal fluctuations, 2
2

ω∆
Ω will have to take a value

of 0.25 at the centerline. This is demonstrated below.

The non-dimensional two-fluid enstrophy fluctuation is given by

2

ececnterlin

centerline
2

2

||4

||||2||
ω

ωωω
ω∆

Ω −= , (E.1.6)

where we take ||2|| centerline1 ωωω∆ == . Using 
||2

||
,1

centerline

f
ω

ω
ω = , (E.1.6) then

reduces to

          ωωω ,2,12
2 ff=

∆
Ω . (E.1.7)
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Unlike volume fractions of fluids of different densities, f1 never reaches a value of one

anywhere in the flow, since even at the centerline both irrotational and rotational fluids

are present. This is in contrast to shear flows such as jets, where after an initial region

where a potential core may be present, there is always vorticity along the centerline.

The turbulent enstrophy fluctuations 2'
0Ω can be defined, in a manner similar to 2'

0ρ .

Thus,

( ) )MN/(||||
MN

1

22'
0 +−= �

+

ωωΩ , (E.1.8)

and the molecular mix of enstrophy will be given by

         
2'

2

2'
01

Ω

Ω
θω −= . (E.1.9)

θω computed from experimental vorticity data approaches 0.3, much lesser than the

molecular mix values for density fluctuations reported earlier in this work. Given the

higher diffusivity of velocity/vorticity fluctuations, one would expect a greater value for

θω. The lower values for θω could be due to our choice of the threshold for || 1ω  =

||2 ω . For instance, using a threshold value of || 1ω  = ||3 ω  gave higher values of θω ~

0.6 – 0.7. Thus, the above model may have to be modified to accommodate this refined

threshold value.
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