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ABSTRACT

On-Line Optical Flow Feedback

for Mobile Robot Localization/Navigation. (May 2003)

David Kristin Sorensen, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Sooyong Lee

Open-loop position estimation methods are commonly used in mobile robot ap-

plications. Their strength lies in the speed and simplicity with which an estimated

position is determined. However, these methods can lead to inaccurate or unreliable

estimates. Two position estimation methods are developed in this thesis, one using

a single optical sensor and a second using two optical sensors. The first method

can accurately estimate position under ideal conditions and when wheel slip perpen-

dicular to the axis of the wheel occurs. A second method can accurately estimate

position even when wheel slip parallel to the axis of the wheel occurs. Location of

the optical sensors is investigated in order to minimize errors caused by inaccurate

sensor readings. Finally, the method is implemented and tested using a potential

field based navigation scheme. Estimates of position were found to be as accurate as

dead-reckoning in ideal conditions and much more accurate in cases where wheel slip

occurs.
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CHAPTER I

INTRODUCTION

A. Motivation

Accurate position estimation is a key component to the successful operation of most

autonomous mobile robots. In general, there are three phases that comprise the move-

ment sequence of a mobile robot: localization, path planning, and path execution.

During localization, the position and orientation in the reference coordinate system

is determined using external sensors. A path is then planned that passes through a

goal point or a series of intermediate via points. The final phase is the execution of

the planned path. The movement sequence is repeated so that the robot will remain

on course towards the goal.

Localization can be further decomposed into two types, absolute and relative

[1]. Absolute localization relies on landmarks, maps, beacons, or satellite signals to

determine the global position and orientation of the robot. Relative localization (or

intermediate estimation) is usually used during movement, because absolute localiza-

tion methods are more time consuming.

Commonly, dead-reckoning (open-loop estimation) is used for intermediate esti-

mation of position during path execution. Dead-reckoning is often used when wheel

encoders are available for drive wheel position measurement. However, due to errors

in kinematic model parameters, wheel slip, or an uneven surface, poor position es-

timates may occur. Poor estimates in position during path execution require more

frequent localization, incurring extra overhead and possibly slowing the movement

of the robot. A worse scenario is one where poor estimates would cause a collision,

The journal model is IEEE Transactions on Automatic Control.
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impeding the operation of the robot. It is therefore important to minimize errors in

estimated position during the path execution phase.

Dead-reckoning usually fails (causes poor estimates) in the presence of wheel slip.

However, using the methods described in this thesis, accurate estimates of position

can be maintained even when wheel slip occurs. Indeed, when either systematic errors

(errors related to robot properties or parameters) or non-systematic errors (random

errors caused by the environment) occur, dead-reckoning usually fails to accurately es-

timate position. Dead-reckoning only produces accurate estimates when all kinematic

constraints are upheld. Two methods are developed, implemented and tested using

inexpensive optical sensors. The placement of the optical sensors affects estimation

errors. An optimal placement scheme (in the sense of minimizing estimation errors)

is proposed. Additionally, path planning is discussed and implemented. Using the

methods described, optical sensors can be used to accurately estimate the position of

the robot.

B. Previous Work

In most movement schemes, dead-reckoning errors are an accepted part of the move-

ment sequence. These errors are usually counteracted by making frequent localization

“stops.” This is unfortunate, because in many cases dead-reckoning proves to be in-

accurate. If a more accurate method were available, fewer intermediate localizations

would be necessary. This would in turn free computational resources that could be

used to accomplish higher level tasks.

Other researchers have implemented similar dead-reckoning correction techniques.

In [1] a towed robot (called a trailer), which has accurate wheel encoders and a ro-

tary encoder on the connection link, is used to determine the relative movement and
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direction of the trailer with respect to the robot. This information allows an accurate

estimated position to be maintained. This method reduced dead-reckoning errors by

an order of magnitude or more. However, the added bulk of the trailer can complicate

the movement of the robot making it difficult to navigate in close quarters, especially

when moving backwards.

Another method of correcting dead-reckoning errors in navigation uses optical

flow. In [2], optical flow was used to aid in navigation of an omnidirectional robot. A

CCD camera was positioned at a 45◦ downward angle to the ground in front of the

robot. The optical flow obtained was combined with the results of dead-reckoning via

maximum likelihood technique. The method used to calculate optical flow is quite

complex, requiring a large number of computations to obtain good results.

GPS has many applications to mobile robot navigation [3]. GPS has been used to

correct position estimations by adjusting kinematic parameters. In [4] GPS was used

to correct for heading and step size in a pedestrian navigation system. When GPS

is available the parameters are adjusted such that when GPS service is unavailable,

a good estimate of position is maintained. This method is easily portable to mobile

robots. However, GPS accuracy is limited, so when fine positional control is necessary

it can prove ineffective. GPS is further limited by the fact that it will only work in

outdoor environments where line-of-sight to at least 3 satellites is possible.

Barshan and Durant-Whyte developed inertial navigation methods for mobile

robots in [5]. A series of solid state gyros, accelerometers and tilt sensors were em-

ployed in conjunction with an extended Kalman filtering method to estimate position

and orientation. Using accelerometers to determine position and orientation, how-

ever, has several drawbacks such as 1-8 cm/s drift rate. Also, the minimum detectable

acceleration can sometimes be too large to detect small motion. Inertial methods can

be quite computationally intensive, expensive and complex.
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CHAPTER II

BACKGROUND INFORMATION

A. The Movement Sequence

Mobile robots typically have three phases that comprise their movement. These

phases are localization, path planning and path execution. In most movement schemes,

the phases are usually repeated for two reasons. The first is that many environments

are complex, requiring paths to include multiple via points. It is often convenient to

stop and localize at the via points in order to maintain a better estimate of position.

The second reason that most movement schemes are repeated is that most environ-

ments are dynamic. That is, there are obstacles in the environment that have the

ability to change positions. For this reason, planned paths must be updated often so

that a new “map” of obstacles can be tracked and collisions avoided. This sequence

is shown in Figure 1.

 

Localize

Execute
   Path

Plan
Path

Fig. 1. Typical Mobile Robot Movement Sequence
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The first phase of movement is localization, the act of finding the location of

the robot. A mobile robot uses onboard sensors (such as a camera, range sensors or

GPS) to determine its position and orientation based on information it has about its

environment. A localization scheme gives a global picture of the location of the robot.

This global position is usually referenced to some known location in the environment.

Most localization schemes use sensors that are relatively slow when compared to dead-

reckoning. This can greatly slow the localization process, making frequent updates

impractical.

The second phase is path planning, where information about the location and

orientation of the robot, as well as information about the goal and obstacles in the

environment is used to determine a desired path. If an obstacle is between the robot

and goal, a path around the obstacle must be planned. This is illustrated in Figure

2.

The final phase of movement is path execution. During the execution phase, the

previously determined path is followed. This step requires detailed information about

the mobile robot system. In actual implementation, the underlying characteristics of

the system should be known a priori for successful path execution. Usually, the cur-

rent position is updated using an open-loop estimation method. The most commonly

used method is dead-reckoning. In dead-reckoning, the forward kinematics of the

vehicle are used to maintain an estimate of the current position. The forward kine-

matics of a differential drive robot will be described in Section C of this chapter. One

major problem with dead-reckoning (and open-loop estimation methods in general)

is the error accumulation as path length increases.
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Start 

Goal 

Obstacles 

Fig. 2. Planning a Path

B. Dead-reckoning

Dead-reckoning is usually used because of the simplicity of the method and accom-

panying speed with which an estimate can be obtained. That is to say that the

estimated position is easy to update and is not computationally intensive to obtain.

Dead-reckoning, however, has some drawbacks that can make it inaccurate.

Dead-reckoning errors can be divided into two types: systematic and non-systematic

errors [1]. Systematic errors are errors related to the parameters or properties of the

robot. Errors caused by incorrect wheel diameter or wheel base are examples of sys-

tematic errors. Systematic errors can cause an accumulation of error in the estimated

position, but these errors can be reduced via precise calibration of parameters in the

robot kinematic model. However, varying load conditions can cause some robot pa-

rameters to change. Errors due to varying parameters are difficult to reduce using

traditional dead-reckoning.
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Non-systematic errors are those errors caused by something outside the robot

system. Surface inconsistencies are the cause of most non-systematic errors. These

types of errors are harder to account for because they are unpredictable and difficult to

detect without using sensors other than drive wheel encoders. In most dead-reckoning

schemes, the forward kinematic relationship is used to update the estimated position

and orientation of the robot. When errors occur, the estimated position can become

very inaccurate. This is illustrated in Figure 3. The ellipses represent a certain

percent probability of the robot’s actual location.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Fig. 3. Accumulation of Dead-reckoning Errors

C. Forward Kinematics

The relationship between the movement of the drive wheels and the movement of

the point of interest on the robot is called forward kinematics. In this section, the
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forward kinematic relationship for a differential drive robot is formulated.

Forward kinematics for a differential drive robot are derived based on the velocity

equations for the left and right wheels. Figure 4 shows the robot model used to find

the forward kinematic relationship.

Vrobot

ωrobot

x

y

θ

VR

VL

Fig. 4. Robot Coordinates for Forward Kinematic Model

Inputs to the forward kinematic relationship are the velocities of the wheels, VL

and VR. The output from the forward kinematic relationship is the velocity of the

center of the robot, Vrobot, and the angular velocity of the robot, ωrobot. For round

wheels,VL,R are defined as the angular velocity of the drive wheels, ωL,R, multiplied

by the wheel radius, rw.

VL,R = ωL,R · rw (2.1)

Assuming the robot is a rigid-body, the velocity of the center of the robot can

be determined using the wheel velocities and the distance between the wheels. Since

the wheel velocities are assumed to be perpendicular to the axis of rotation of the

wheels, the velocity of the robot will be the average of these velocities and is always
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in the robot y direction. Similarly, the angular velocity of the center is the difference

in velocities of the left and right wheels divided by the distance between the wheels,

D. Equations 2.2 and 2.3 below show these relationships.

Vrobot =
VL + VR

2
(2.2)

ωrobot =
VR − VL

D
(2.3)

Using these equations, Vrobot and ωrobot are now transformed to the global coor-

dinate system. This is done using the coordinate transformation shown in equation

2.4.



cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



·




Vrobot,x

Vrobot,y

ωrobot




=




ẋ

ẏ

θ̇




(2.4)

where ẋ, ẏ, and θ̇ are the changes in x position, y position, and orientation, respec-

tively.

Since Vrobot,x = 0, equations 2.2, 2.3 and 2.4 can be simplified to:

ẋ = −Vrobot,y sin θ (2.5)

ẏ = Vrobot,y cos θ (2.6)

θ̇ = ωrobot (2.7)

Using equation 2.5, the global coordinates can now be updated in a stepwise

manner. This method is known as dead-reckoning and is used as a benchmark for

comparisons with the new optical flow rigid-body methods presented.
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D. Inverse Kinematics

Inverse kinematics is the relationship between the movement of the robot and the

corresponding movement of the wheels. The inverse kinematic relationship is the

reverse of the forward kinematic relationship. That is, instead of computing the

movement of the center of the robot based on the movement of the wheels, it is

desired to find the movement of the wheels given a desired Vrobot and ωrobot.

Rewriting equation 2.5 in matrix form:




ẋ

ẏ

θ̇




=




− sin(θ) 0

cos(θ) 0

0 1







Vrobot

ωrobot


 (2.8)

Rewriting equations 2.2 and 2.3 in matrix form:




Vrobot

ωrobot


 =




1
2

1
2

1
D

− 1
D







VR

VL


 (2.9)

Combining 2.8 and 2.9:




ẋ

ẏ

θ̇




=




− sin(θ)
2

− sin(θ)
2

cos(θ)
2

cos(θ)
2

1
D

− 1
D







VR

VL


 (2.10)

The above equation is in the form b = Ax. The desired quantities are the wheel

velocities, VR and VL. In order to solve for the wheel velocities, the equation can be

put in the form x = A#b, where A# is the pseudo-inverse. This method is also known

as the least squares solution. The equation returns the vector x that best satisfies

the equation “A · x is approximately equal to b”, in the least squares sense.
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The solution to this least squares problem can be found as follows:

x = AT
(
AT A

)−1
b (2.11)

For a discrete path with desired changes in position, ẋt = [ẋt, ẏt, θ̇t]
T , the pseudo-

inverse must be recomputed every iteration. This is because θ is not constant and is

present in the A matrix.
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CHAPTER III

SENSOR INTERPRETATION

Optical flow estimation using a small CCD camera is described in Appendix A, how-

ever, commercial optical mouse sensors were used in the methods that follow. These

sensors are inexpensive, reliable, accurate, and very fast. Specifics about the sensors

can be found in Chapter VI.

In Appendix A, computed changes in position were calculated using two succes-

sive 8×8 images. Without a larger image (100×100 or greater), information about

rotation is unreliable. The rotation of the robot must be estimated using other meth-

ods.

Two methods of estimating the location and orientation of the robot are investi-

gated in this chapter. The first uses a single sensor and a constraint on the kinematics

of the robot. The second method uses two sensors and no kinematic constraints.

A. Single Optical Sensor

Unless the optical sensor is placed at the point of interest on the robot, measurements

directly from the optical sensor will not be useful. Additionally, because the optical

sensor only provides displacements in the x and y directions information about the

angular displacement of the robot is lost. As a result, another method must be used

to determine the angular velocity of the robot. Figure 5 shows the coordinates used

for the rigid body method.

The robot can be viewed as a rigid-body where the velocity at the sensor (∆x/∆t

and ∆y/∆t) is known. The kinematic constraints of a differential drive robot allow

the calculation of movement, given this velocity. Specifically, the center of the robot

is assumed to move only in a direction perpendicular to the wheel axis. The following
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Vrobot

ωrobot x

y

xs

ys

[rx,ry]

Fig. 5. Rigid-Body Model for Sensor Interpretation

equation relates the velocity of a point on the axis of rotation of a rigid body (robot

center) with a point not on that axis of rotation (the sensor location):

Vr = Vs + ωr × rs/r (3.1)

Where Vr is the velocity of the center of the robot, Vs is the sensor velocity, ωr

is the angular velocity of the robot, and rs/r is the vector from the location of the

sensor to the robot center (Figure 5). Rewriting in matrix form:




Vr,x

Vr,y


 =




Vs,x

Vs,y


 +



−ωry

ωrx


 (3.2)

It should be noted that the sensor may not be oriented along the x and y robot

coordinates. Denoting the orientation of the sensor as β, the sensor coordinates as x̃

and ỹ, the following transformation is made to robot coordinates:




Vs,x

Vs,y


 =




cos(β) − sin(β)

sin(β) cos(β)







Vs,x̃

Vs,ỹ


 (3.3)
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With the assumption that Vr,x = 0, ωr can be found using the î equation and

similarly, Vr,y using the ĵ equation. From the rigid-body velocity equation and the

kinematic constraints, we obtain the following two equations:

ωr = −Vs,x

ry

(3.4)

Vr,y = Vs,y +
rx

ry

Vs,x (3.5)

The robot’s velocity can now be easily translated to the global coordinate system. A

similar transformation was performed in (2.4).

A similar approach to using the kinematic constraint Vr,x = 0 is to use the

weighted pseudo-inverse. This method gives one possible solution to the underdeter-

mined case, where three variables are determined from only two equations. Rewriting

the rigid body equation in matrix form:




Vs,x

Vs,y


 =




1 0 −ry

0 1 rx







Vr,x

Vr,y

ωr




(3.6)

The underdetermined pseudo-inverse takes the form:




Vr,x

Vr,y

ωr




= W−1AT (AW−1AT )−1




Vs,x

Vs,y


 (3.7)

where W is a weighting matrix. If we heavily weight the velocity in the x direction

to be small, nearly an identical solution to the constrained case emerges. A suitable
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weighting matrix follows:

W =




100 0 0

0 1 0

0 0 1




(3.8)

The figure on page 40 shows how varying the weighting matrix changes the

apparent movement of the robot using experimental data.

The single sensor method will give better results when wheel slip perpendicular to

the wheel axis occurs than dead-reckoning. In fact, as long as the kinematic constraint

(Vr,x = 0) is not violated, the method will give accurate position estimates. If multiple

sensors are used, the constraint can be removed, allowing accurate positional estimates

in all kinematic conditions. This is the topic of the following section.

B. Multiple Optical Sensors

Given a second sensor, there are at least two approaches which could be used to

interpret the data. First, the additional sensor could be viewed as a redundant sensor

which would lead to data fusion methods. Data fusion should give better results than

a single sensor given data errors. However, it would still give inaccurate results if the

kinematic constraint, Vr,x = 0 were violated.

Alternatively, the velocity information from the second sensor can be used to

determine the motion of the rigid-body without the constraint, Vr,x = 0, that was

necessary using only a single sensor.

Looking again at the rigid-body model, two sensors at different locations give

ample information to determine the motion of the rigid-body without any kinematic
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constraints. In this case, the rigid-body model leads to the following four equations.

Vr,x = V1,x + ωr · r1,y (3.9)

Vr,y = V1,y − ωr · r1,x (3.10)

Vr,x = V2,x + ωr · r2,y (3.11)

Vr,y = V2,y − ωr · r2,x (3.12)

where Vr,x and Vr,y are the velocities of the center of the robot, ωr is the angular

velocity of the robot, Vi,x and Vi,y are the sensor velocities and ri,x and ri,y are the x

and y distances from the ith sensor position to the robot center.

To solve this system of equations for the angular and linear velocities of the

robot, the system is written in the form A ·X = b:




1 0 −r1,y

0 1 r1,x

1 0 −r2,y

0 1 r2,x




·




Vr,x

Vr,y

ωr




=




V1,x

V1,y

V2,x

V2,y




(3.13)

This over-determined system can be solved using the pseudo-inverse [6], A#,

which was mentioned earlier in Chapter II.

The least squares overdetermined solution can also be weighted similarly to the

underdetermined case. However, the weighings would be of the sensed velocities

(V1,x, V1,y, V2,x, V2,y). It is not readily apparent which of these velocities should receive

a higher importance than another. This avenue of research was not investigated.

Although multiple sensors do not increase accuracy when compared to a single

sensor, the kinematic constraint can now be removed. This yields a powerful method

to determine intermediate estimates of the robot position and orientation.
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CHAPTER IV

SENSOR PLACEMENT

A. Optimal Sensor Location

Another important issue to consider is minimizing error. Using the method described

in the preceding chapter, several possible sources of error are present. These include

errors in the position and orientation of the sensors and errors in the sensed velocities.

Minimizing these errors will lead to better estimates of robot position.

In order to determine the best position for a single sensor, the error in the

measurement of the velocity must be minimized. The maximum absolute deviation

of a function F(x0,x1,· · ·,xn) is defined as:

dF =

∣∣∣∣∣
∂F

∂x0

∣∣∣∣∣ · dx0 + · · ·+
∣∣∣∣∣
∂F

∂xn

∣∣∣∣∣ · dxn (4.1)

Using this definition and the previously given single sensor rigid-body model, the

maximum absolute deviations are as follow.

dωrobot =

∣∣∣∣∣−
1

ry

∣∣∣∣∣ · dVx +

∣∣∣∣∣−
Vx

r2
y

∣∣∣∣∣ · dry (4.2)

dVrobot =

∣∣∣∣∣
rx

ry

∣∣∣∣∣ · dVx + |1| · dVy +

∣∣∣∣∣
Vx

ry

∣∣∣∣∣ · drx +

∣∣∣∣∣
Vx · rx

r2
y

∣∣∣∣∣ · dry (4.3)

Errors in sensor orientation are ignored because calibration of the sensors can

easily be performed using a straight line path. Sensor orientation can be tuned such

that the sensed path closely matches the actual path. Additionally, the position of

the sensor is known within a few millimeters and is therefore assumed to be exactly

known. (In experiments, the sensors were placed at 20cm from the center of the

robot, and measurement errors are on the order of 0.5cm.) This leads to a further
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simplified equation:

dωrobot = |− 1

ry

| · dVx (4.4)

dVrobot = |rx

ry

| · dVx + |1| · dVy (4.5)

A plot of first order deviations of these equations are shown in Figures 6 and 7.
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Fig. 6. Error of ωrobot versus ry

As one can see, the optical sensor should be located as far away as possible from

the center of the robot along the y-axis, because the global minima is located at rx

= 0. Ideally, the error in the determination of the robot’s position will be zero for

rx=0 and ry = ∞. However, this is both impractical physically and mathematically.

Looking at (3.4) if ry = ∞ then ω always equals zero, which is unacceptable.

To find the optimal position using two sensors, again the maximum absolute
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deviations of the functions are used. Because of the large number of parameters

in each equation, visualizing the deviations is difficult. Assuming again that the

positions of the sensors relative to the robot’s center can be measured exactly, the

only error present is in the sensor velocities.

The first observation is that there are a range of positions where the errors

become minimal. To minimize the error in the measurement of the angular velocity

(ωr) the sensors should be located as far from the center of the robot as possible.

The first order deviation of v2 where v1 is placed at v1,x = 10 and v1,y = 0 is shown

in Figures 8, 9 and 10. Looking at Figure 9, if the error in y-direction velocity (vr,y)

is minimal, if the x-positions of the sensors have the same value with different signs.

The same is observed for the error of the velocity in x-direction (vr,x).

The location of the sensors is important because the sensors provide only the

linear velocities dx and dy, but not the angular velocity, dθ. The change in orientation
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Fig. 8. Error of vr,x versus Sensor 2 Position

is clearly important when updating the position. Therefore, any errors in dx or dy

will greatly affect the accuracy of either rigid-body method.

B. Ground Clearance

Another important aspect regarding the placement of the optical sensors is focal

length. Commercial optical sensors have a narrow band of operation corresponding

to the focal length. Figures 11 and 12 show the definition of the focal length and the

corresponding graph showing the number of counts per inch the sensor reads.
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Fig. 9. Error of vr,y versus Sensor 2 Position

This is because in order to properly determine the movement of the sensor, the

correspondence between the number of pixels in the image and a real measurable

length must be known. Changing the focal length will vary this relationship, caus-

ing errors. If this constant focal length is not maintained, errors in distance will

accumulate quickly.

The sensors used in the experimental section of this thesis have a nominal focal

length of 2.4mm. Accurate data is obtained only if the focal length is properly

maintained. Looking at Figures 11 and 12, if z is increased even a few tenths of

a millimeter, inaccurate dx and dy data results. This was overcome by forcing the

sensors to the ground, which tended to increase friction significantly. However, an
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Fig. 10. Error of ωr versus Sensor 2 Position

increase in friction can cause the wheels to slip, making it difficult to move. It is

desirable to reduce friction and at the same time maintain the 2.4mm focal length

recommended by the chip manufacturer.
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Fig. 11. Definition of z from Agilent Data Sheet

Fig. 12. Chart from Agilent Data Sheet
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CHAPTER V

NAVIGATION

Navigation is defined as the art or science of maneuvering safely and efficiently from

one place to another. For a mobile robot, navigation is the planning and execution

of a path. A mobile robot must avoid obstacles while moving toward a goal.

With this definition in mind, there are hundreds of different methods to plan a

path for a mobile robot. Two are overviewed, both of which are applicable to navi-

gation of a differential drive mobile robot. Experimentally, potential field navigation

has been implemented and is covered in Chapter VI.

A. Potential Field Navigation

In potential field navigation, the idea is that of attractive and repulsive forces being

exerted between particles. The robot is attracted toward the goal point and repulsed

by any obstacles. The important variables in potential field navigation are the position

of the robot, position of the goal point and positions of any obstacles.

The total force exerted on the robot is equal to the vector sum of the attractive

and repulsive forces. The attractive force is proportional to the distance from the

goal point and the repulsive force is inversely proportional to the distance from the

obstacle. Summing the attractive and repulsive forces:

V (q) = Va(q) + Vr(q) (5.1)

where Va(q) is the attractive force, Vr(q) is the repulsive force and q is the configura-

tion of the robot, namely qR = [xR, yR]T . Additionally, the configuration of the goal

point (qG = [xG, yG]T ) and obstacles (qO = [xO, yO]T ) is also known.

Using a parabolic form for the attractive potential and using the distance formula,
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d(a, b) =
√

(xa − xb)2 + (ya − yb)2, (5.2) results.

Va(q) =
γa

2
d2(qR, qG) (5.2)

γa is the attractive constant and can be freely chosen depending upon the desired

attractive force. (5.2) shows that the attractive force is proportional to the distance

between the robot and the goal.

The repulsive force can be derived similarly to the attractive force. As noted

earlier, the repulsive force should be inversely proportional to the distance between

the obstacle and the robot.

Vr(q) =

(
γr

2
· 1

d(qR, qO)

)2

(5.3)

where γr is the repulsive constant.

However, with this definition of the repulsive force many problems can arise. In

some situations, there is no guarantee that the goal point will ever be reached. Each

obstacle is usually given an area of influence or a radius in which the repulsive force

acts. Figure 13 shows an example of a path and corresponding area of influence.

This leads to a second definition of the repulsive force. If the radius of influence

is described as ρo (5.4) results.

Vr(q) =




γr

2

[
1

d(qR,qO)
− 1

ρo

]2
if(d(qR, qO) ≤ ρo)

0 otherwise
(5.4)

Looking again at (5.1), the total force exerted on the robot will be the vector

sum of the corresponding repulsive and attractive forces. When multiple obstacles are

present, the analysis gets somewhat more complex. Using (5.4) if multiple obstacles

exert a repulsive force on the robot, all must be inside their respective areas of influ-
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Fig. 13. Potential Field Path Showing Areas of Influence

ence, ρi. The corresponding vector equation will be the vector sum of the repulsive

forces plus the attractive forces.

V (q) = Va(q) +
∑

Vr,i(q) (5.5)

The potential field approach is a simple way to plan a path in the presence

of obstacles. It does have many problems with potential field traps, places where

the forces sum to zero. Another problem with implementation of a potential field

method is that most robots are not omnidirectional. When looking at the differential

drive robot mentioned, it can move in a direction parallel the the robot y direction.

Therefore, depending upon the orientation of the robot, the desired velocity can be

generated in only one direction. An additional term must be added to traditional

potential field methods when used with a differential drive robot.

To do this, the desired heading must be found. Comparing the goal position and
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the current position of the robot, the desired heading is found.

θdesired = tan−1(
∆y

∆x
) (5.6)

Desired linear and angular velocity commands for the differential drive robot

are generated by using the velocity obtained from the potential field method and

multiplying it by the cosine of the difference between the desired heading, θdesired,

and the current heading, θR. The desired ωrobot was obtained by using the difference

between the heading and desired heading.

Vdesired = Cv · Vpotential cos(θdesired − θR) (5.7)

ωdesired = Cω · (θdesired − θR) (5.8)

where Cv and Cω are proportional constants.

These velocity commands can then be used in the inverse kinematic solution

found in Chapter II, which will generate desired left and right wheel velocity com-

mands.

B. Lyapunov Based Navigation

The Lyapunov method presented is based on [7].

A second, more powerful approach to the mobile robot navigation problem is a

Lyapunov based navigation function. A properly conditioned Lyapunov function has

the benefit of asymptotic stability. This is especially desirable because the distance

between the robot and goal as well as the angle between the robot’s heading and

desired heading should always decrease.

Lyapunov’s Direct Method states that the equilibrium ~x = 0 is stable if there



28

exists a scalar function V (~x), which is continuously differentiable such that:

i) V (~x) is positive definite

ii) d
dt

V (~x) is negative semi-definite

In addition, if:

d
dt

V (~x) is negative definite, then it is asymptotically stable.

This is very useful for guaranteeing that the navigation scheme will always ap-

proach the goal. Referring back to the forward kinematic solution for the differential

drive robot found in Chapter II, we again have the following equation:

ẋ = −Vrobot,y sin θ (5.9)

ẏ = Vrobot,y cos θ (5.10)

θ̇ = ωrobot (5.11)

where Vrobot, ωrobot are the forward and angular velocities respectively and θ is the

orientation of the robot. (Refer again to Figure 4.)
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The configuration vector can be defined as z = [a, α]T , where a is the distance

between the robot and the goal position and α is the difference of the angle between

the horizontal and the vector to the goal point minus the heading of the robot, θR.

This is shown in Figure 14. A non-linear stable controller is designed based on a

Lyapunov function. The function should yield a solution which forces a and α to

zero.

Solving for the update laws, ȧ and α̇, the following equations are developed.

Taking the limit of ∆a
∆t

as ∆t → 0:

ȧ = V ·∆t cos(α) = a− (a + ∆a) cos(∆α) (5.12)

as ∆t → 0, ∆α → 0.

Solving for ȧ:

V ·∆t cos(α) = −∆a (5.13)

so :
∆a

∆t
= −V cos(α) = ȧ (5.14)

Similarly, ∆α can be derived. Taking the limit of ∆α
∆t

as ∆t → 0:

α̇ = V ·∆t sin(α) = (a + ∆a) sin(∆α) (5.15)

If ∆α ' 0, then sin ∆α ' ∆α. Substituting this into the previous equation:

V ·∆t sin(α) = (a + ∆a) ·∆α (5.16)

Using the assumption that two very small quantities multiplied add little to the

solution, ∆α∆a ' 0, this further simplifies the equation to the following:

a ·∆α + ∆a ·∆α = a ·∆α (5.17)
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Finally, solving for α̇:

∆α

∆t
=

V sin(α)

a
= α̇ (5.18)

The dynamics of z can now be written in (5.19). Since the previous equations

only took the linear displacement into account, ω, must be subtracted in order to

incorporate its contribution.

ż =




ȧ

α̇


 =



−V cos(α)

V sin(α)
a

− ω


 (5.19)

A Lyapunov candidate is then given by:

L =
1

2
a2 +

1

2
α2 ≥ 0 (5.20)

Solving for L̇:

L̇ = aȧ + αα̇ (5.21)

For asymptotic stability, L, should be positive definite and its time derivative, L̇,

should be negative definite. Using this knowledge, the following relationships can be

written:

aȧ = −V cos(α)a ≤ 0 (5.22)

αα̇ =
V sin(α)

a
α− ωα ≤ 0 (5.23)

This aids in the discovery of an appropriate control law for V and ω. Using (5.22),

V should have an additional cos(α) term so that when multiplied, cos2(α) emerges,

make it greater than zero. This leads to the following definition of V :

V = k1a cos(α) (5.24)
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Where k1 is a positive proportional constant. Plugging this definition of V into (5.23):

αα̇ =
k1a cos(α) sin(α)

a
α− ωα = k1 cos(α) sin(α)α− ωα (5.25)

It would be convenient to cancel out the sin(α) cos(α) term and it is also necessary

to multiply by α, since α can be less than zero. This yields the following definition

for ω.

ω = k2α + k1 cos(α) sin(α) (5.26)

Where k2 is a second proportional constant. Plugging the definitions of the controllers

into (5.19), the following emerges:

ȧ = −(k1 cos2(α))a (5.27)

α̇ = k1a cos2(α)
sin(α)

a
− k2α + k1 sin(α) cos(α) = −k2α (5.28)

Finally, plugging these controller definitions into (5.21):

L̇ = −(k1 cos2(α))a2 − k2α
2 ≤ 0∀z (5.29)

Using these definitions for coordinates, z = [a, α]T , and control laws for V and

ω, the Lyapunov candidate, L, will always be positive definite, and L̇ will always be

negative definite, satisfying the conditions of the Lyapunov Direct Method.

Investigating Lyapunov based navigation, simulations were performed in Matlab.

Figures 15, 16 and 17 show a simulation for Lyapunov navigation of a differential

drive mobile robot. The robot begins at [0, 0,−225◦]T and the goal point is located

at [0, 0, undefined]T .

In this case, the robot moves backward first, decreasing both a and α and then
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turns to further decrease α and heads toward the goal moving forward.
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CHAPTER VI

EXPERIMENTAL VALIDATION

A. Sensor Specifications

The optical sensors used were both Agilent ADNS-2051 Optical Mouse Sensors. This

CMOS chip allows fast, accurate, optical sensing of microscopic images. The sensor is

capable of 800 counts per inch while moving at up to 14 inches per second. Successive

images are used to calculate the ∆x and ∆y values at up to 2300 frames per second.

A microcontroller is used which communicates directly with the ADNS-2051.

This chip communicates with the ADNS-2051, setting modes and communicating

with the PC or other device using the PS-2 standard.

The optical sensor uses successive images to interpret the movement between

images. Images are taken of a point on the ground directly underneath the sensor.

The images are 16×16 pixels and represent a microscopic area.

B. Robot Specifications

In order to test the algorithms presented in this paper, a robot system was designed

and built. A modular design approach was implemented. Each module is responsible

for one part of the overall operation of the robot. This type of design allows testing

of various configurations as well as allowing easy replacement of any single system.

1. Hardware

The REX 99 from Zagros Robotics was chosen as a research test-bed. The mobile

robot includes a 12 inch, round plastic base, two 1 amp 12 Volt DC geared motors,

two castor wheels, two 6 inch diameter rubber wheels, and two HEDS-5500 encoders
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Fig. 18. Mobile Robot with Optical Sensors

attached to the drive wheel axles.

The differential driven wheels allow turns to be made in place. This symmetric

design offers high maneuverability. The maximum straight line speed is approximately

78 feet per minute (50 revolutions per minute of the drive wheels). No mechanical

modifications were made to the REX 99 kit except those required for mounting the

sensors. The robot with an optical sensor installed is shown in Figure 18.

The robotic base consists of a microcontroller circuit with various communication

and electronic chips, two motors, two 1 amp motor controllers, two HEDS-5500 wheel

encoders and two Agilent HCTL-2020 encoder-decoder chips.

The sensor system consists of a microcontroller kit and two optical sensors. The

microcontroller kit includes a microcontroller, serial communication chip, 5 volt power

supply, and other small electronic parts. The optical sensors were inexpensive optical

mice. The microcontroller interfaces with the two optical sensors and transmits the

data to the PC using serial communication.
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2. Software

The software consists of three independent systems which must operate congruously

in order to function. These systems are the robot system, the sensor system and a

PC based controller. For the robot and sensor systems, C was used exclusively. Both

are based on PIC 16F877 microcontrollers running at 10 MHz. The PC controller

is implemented using Java. The operation of the system is outlined in Figure 19.

Appendix B has a listing of Java source code.

Software design requirements for the robotic base were to control the speed of

two motors to desired velocities and output the position (or velocity) of both the

left and right wheels. A real-time system, one that operates as things happen, was

desired. This required an interrupt scheme to be used. The robotic base receives

wheel commands from the PC and controls the difference in wheel positions between

successive interrupts.

C. Intermediate Localization

Experiments were performed comparing intermediate localization (positional esti-

mates) using dead-reckoning, the single sensor and the multiple sensor rigid-body

method. Experiments were performed where no kinematic violations occurred to

test the accuracy of localization. Experiments were also performed where kinematic

violations were forced.

In experiments where kinematic constraints were upheld (Vrobot,x = 0 and no

wheel slip) as in Figure 20, little performance difference can be seen between the

methods. When the kinematic constraints were intentionally violated with an outside

disturbance as in Figure 21, however, only the multiple sensor method gave good

results.
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The results of the single sensor method are interesting. It would seem that

when kinematic disturbances are encountered, the method gives unreliable results.

However, this should be expected because the kinematic constraint that is required

for a solution to exist in the first place.

Looking at a specific case, if the sensor were located at some distance along

the positive y robot axis, what would happen if a displacement along the x axis

occurred? The answer is that the sideways motion of the sensor would be interpreted

as rotational motion of the center of the robot.

Additionally, if the underdetermined pseudo-inverse solution is used (see Chapter

III), there is little accuracy gained. This solution does not use the constraint, but

simply weights the solution so that velocity in the x direction is reduced. This method

was investigated to determine if an accurate estimate would result if the constraint
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Fig. 20. Localization Methods Compared with Kinematics Upheld

Vr,x = 0 is removed. Figure 22 shows how changing the weighting of Vr,x effects the

estimated path compared to the dual-sensor method.

D. Potential Field Based Navigation

In order to test the effectiveness of the intermediate estimation method described,

navigation tests were performed. The single and multiple sensor rigid-body models

and dead-reckoning were compared under various conditions.

A potential field based approach was used to generate velocity commands for

the mobile robot to follow. An online method was used where the desired Vrobot and

ωrobot were generated depending upon the current robot location/orientation and the

location of the goal point. This was described in Chapter V.

A slight modification to the method was used. This is because of the non-
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Fig. 21. Localization Methods Compared with Kinematic Constraints

holomonic (the robot can not move in all directions) constraints that are present

with a differential drive mobile robot. The method was to make the robot turn

towards the goal point before approaching it. The following relationships were used:

Vdesired = kvVpotential cos(α) (6.1)

Vdesired = kωVpotentialα (6.2)

Where kv and kω are proportional constants and Vpotential is the potential velocity gen-

erated by the potential field method. Using this approach, results were satisfactory.

Also, obstacles were assumed not to be present, but could easily be added.

In tests where no wheel slip or kinematic violations occurred all three methods

were similarly accurate. The largest performance difference of the multiple-sensor

method can be see in the presence of kinematic violations, such as wheel slip. Figure
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23 shows an actual test run where wheel slip was forced. As one can see, the robot

has a sudden change in orientation at the beginning of movement. The multiple-

sensor method is able to detect this movement, which allows the potential field based

navigation method to adjust its course accordingly. Even when kinematic constraints

are blatantly violated, as in Figure 24 where the robot was pushed off course, the

multiple sensor method still detects the proper change in position and orientation so

that the robot successfully reaches the goal.
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CHAPTER VII

CONCLUSION

Using optical flow techniques, a method has been derived which can accurately give

intermediate position estimates. The location of the sensors has been investigated

in order to minimize potential errors introduced by incorrect sensor readings. Ex-

perimentally, the multiple sensor method has proven to be more accurate and more

robust than dead-reckoning and the single-sensor method. Both systematic and non-

systematic errors can be detected and a good estimate of location and orientation can

be maintained.
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APPENDIX A

OPTICAL FLOW

For more information regarding optical flow, see [8], [9], or [10].

Optical flow is the estimation of motion given two or more images. Optical flow

is usually computed by comparing image intensities of two successive images. In order

for any optical flow method to work, the two images must have much of the same

visual material present.

Using a CCD camera, optical flow for a motion sequence was computed. It was

tested on images 8×8 pixels in size. The two images in Figure 25 represent a simple

motion sequence. The right image, I(x, y, t), represents the image intensity at time, t

and spatial coordinates, x and y. The left image, I(x + dx, y + dy, t + dt), represents

the synthetic motion of dx and dy, and dt change in time. Displacing the original

image in the horizontal and vertical direction pixel-wise produced a synthetic motion.

In the figure below, the left image was displaced up one pixel and to the right one

pixel to produce the right image.

Fig. 25. Two Images



47

Using a standard image processing technique, each image was smoothed by convolving

the image with a 2D filter, first in x and then y. A gaussian filter of standard deviation

equal to 3 was used and the image contrast was enhanced via histogram equalization.

The resulting filtered images are seen in Figure 26.

Fig. 26. Images Filtered by Convolution with a Gaussian Mask

Gradients are then estimated in x, y and t for each pixel in the current image. Each

image is convolved in x, y and t with a 2×2 differencing mask to compute the spatial

gradients Ix, Iy, and the temporal gradient, It, for each pixel.

Spatial gradients in x and y can be computed within the current frame. However,

the temporal gradient, It, is computed using the current image, and the previous

image. The gradients are then smoothed. Spatial filtering attenuates noise in the

estimation of the spatial image gradient; while temporal filtering prevents aliasing in

the time domain.

Assuming a small change in x, y and t there is no change in intensity. This

constant image intensity assumption yields a good approximation of the normal com-

ponent of the motion field.

fxu + fyv + ft = 0 (A.1)
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where fx, fy, ft are spatiotemporal derivatives, and u, v are the optical flow compo-

nents.

A concrete example can be observed by looking at two images, F , the second

image, and G, the first image. Considering that a point on the first image G(x, y)

has the same intensity as a point F (x + u, y + v) on a second image, the movement

of the point between the two images, u and v, can be computed. Defining the error:

ε = Σ [F (x + u, y + v)−G(x, y)]2 (A.2)

ε = Σ [F (x, y) + Fx(x, y) · u + Fy(x, y) · v −G(x, y)]2 (A.3)

where:

Fx =
∂F (x, y)

∂x
(A.4)

Fy =
∂F (x, y)

∂y
(A.5)

Ft =
∂F (x, y)

∂t
=

G(x, y)− F (x, y)

1
(A.6)

Rewriting ε:

ε = Σ [F (x, y)−G(x, y) + Fx(x, y) · u + Fy(x, y) · v]2 (A.7)

ε = Σ [−Ft(x, y) + Fx(x, y) · u + Fy(x, y) · v]2 (A.8)

The goal is to find u and v, while minimizing the error, ε. So, the partial

derivative of ε with respect to u and v should be minimized.

∂ε

∂u
= 0 (A.9)

∂ε

∂v
= 0 (A.10)
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This results in (A.11) and (A.12).

∂ε

∂u
= 2Σ[Fx(x, y)u + Fy(x, y)v − Ft] Fx

2 (A.11)

∂ε

∂v
= 2Σ[Fx(x, y)u + Fy(x, y)v − Ft] Fy

2 (A.12)

and

ΣFx(x, y)2u + Fx(x, y)Fy(x, y)v = ΣFt(x, y)Fx(x, y) (A.13)

ΣFx(x, y)Fy(x, y)u + Fy(x, y)2v = ΣFt(x, y)Fy(x, y) (A.14)

Which can be rewritten in matrix form.



ΣF 2
x ΣFxFy

ΣFxFy ΣF 2
y







u

v


 =




FtFx

FtFy


 (A.15)

Solving for u and v:




u

v


 =




ΣF 2
x ΣFxFy

ΣFxFy ΣF 2
y




−1 


FtFx

FtFy


 (A.16)

There are two unknowns, u and v, in this equation. However, instead of using

one equation for one pixel, we consider a small neighborhood around a pixel and get

an over-constrained system, which is solved using a least squares fit. Considering a

2×2 neighborhood, and assuming optical flow to be constant in this neighborhood,

we get 4 optical flow equations

fx1u + fy1v = −ft1

...

fx4u + fy4v = −ft4

(A.17)
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The system, written in matrix form, is shown below




fx1 fy1

fx2 fy2

fx3 fy3

fx4 fy4







u

v


 =




−ft1

−ft2

−ft3

−ft4




(A.18)

or

AU = Ft (A.19)

U =
(
AT A

)−1
AT Ft (A.20)

A linear system is constructed as shown in the above equations, to contain all

the gradient information. The 4×2 matrix containing gradient information for x and

y and 4×2 matrix containing the gradient information for t can be solved to yield the

optical flow components, u and v.

Flow vectors for different motion sequences were computed and the algorithm’s

accuracy is investigated. The computed optical flow was compared to the actual

displacement of pixels between images.

The algorithm accurately computes the optical flow for motion sequences moving at

1 pixel/image. Visually, the flow vectors appear to be accurate. Figure 27 shows the

flow field for a one pixel displacement in the x and y directions.

The algorithm is able to detect the corresponding motion, distinguishing between

flow in x and y. When pixel displacement is greater than 1 pixel, the algorithm fails

to correctly determine the actual displacement in an 8×8 pixel image. It is therefore

important to sample the image frequently so that only small, one-pixel changes occur
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Fig. 27. Estimated Optical Flow

between successive images. Rotation of the image cannot be accurately detected due

to the small number of pixels.

If increasing the image size, the rotation of the image can be computed. Figure

28 shows the vector field for a small rotation.
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Fig. 28. Large Image Showing Rotation

APPENDIX B

JAVA SOURCE

// author: David Sorensen
// Texas A&M Robotics Lab
// PathController.java

import javax.swing.*; import java.util.Date; import
java.awt.event.*;

public class PathController extends JPanel
implements ActionListener {

// Robot and Mouse Controllers
private RobotController rc;
//private MouseController mc;
private DualMouseController mc;
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// date for tracking the current running time
private Date startDate;

// timer for control, etc.
private Timer timer;
private int timerDelay;

// desired location
private double xDes,yDes;

// control constants
private double vConstant,omegaConstant;
private double vDesired,omegaDesired;

public PathController() {
timerDelay = 0;

// millimeters
xDes = 0;
yDes = -2000;

vConstant = .0002;
omegaConstant = 80;
rc = new RobotController("COM1");
rc.setParameters(148/2,249); // mm - measured
rc.goExclamation();

mc = new DualMouseController("COM2");
mc.setParameters1(-78,203,177.25/(180/Math.PI));
mc.setParameters2(72,-199,-3.5/(180/Math.PI));
mc.setAInverse();
mc.goExclamation();

timer = new Timer(100,this);
timer.setInitialDelay(2000);
timer.start();

}

public void actionPerformed(ActionEvent e){
System.out.println("time: "+
(double)timerDelay/(1000/timer.getDelay()) +"s");

timerDelay++;

// navigation goes here...
// calc distance from current location to goal
// generate desired velocity, omega
this.vDesired = this.findDistance()
*this.findDistance()*this.vConstant
*Math.cos(this.findAngle());

this.omegaDesired = this.findAngle()
*this.vDesired; // scale omega according to v
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System.out.println("vDesired = " +vDesired +
" omegaDesired = "+omegaDesired);

// generate desired VelLeft, VelRight wheel commands
this.inverseKinematics();

}

private double findDistance(){
return Math.sqrt((this.xDes-this.mc.getX())*

(this.xDes-this.mc.getX())+
(this.yDes-this.mc.getY())*
(this.yDes-this.mc.getY()));

}
private double findAngle(){

return Math.atan2((this.yDes-this.mc.getY()),
(this.xDes-this.mc.getX()))+Math.PI/2-this.mc.getTheta();

}

// find the relation between (V,omega) -> (Vr, Vl)
// not true inverse kinematics!!!
private void inverseKinematics(){

double vL=-this.vDesired-this.omegaDesired;
double vR=-this.vDesired+this.omegaDesired;
double max = Math.max(Math.abs(vL),Math.abs(vR));
double divisor=1;
if(max > 9){
divisor = max/9;

}
if(vL > 0)
vL = 0;

if(vR > 0)
vR = 0;

if((vL >= -4) \&\& (vR >= -4)){
vL = 0;
vR = 0;

}

System.out.println((int)Math.floor(vL/divisor)+
" "+(int)Math.floor(vR/divisor));

rc.setWheelSpeeds((int)Math.floor(vL/divisor),
(int)Math.floor(vR/divisor));

}

public static void main(String[] args) {
PathController pathController1 = new PathController();

}
}

// author: David Sorensen
// Texas A&M Robotics Lab
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// RobotController.java

import javax.comm.*; import java.io.*;
import java.util.ArrayList;
import java.util.Date;
import java.lang.Math;

/*
This class takes care of the serial communication
with the robot controller.
It also takes care of the Kinematic equations
necessary to determine the position of the robot.

Inputs:
Robot Parameters- wheel diameter, wheel base, ...
Serial Port Name- identifying the serial port
Serial stream- taken care of inside the class

Outputs:
Current Position- x location, y location, orientation
Raw Data- Array of all data from the microcontroller
Path- path of the robot (array of positions and times)
Wheel Speeds- array of wheelspeeds and
when they were passed to the wheels */

public class RobotController implements
Runnable, SerialPortEventListener, Serializable{
//public static int MAX_SPEED = 15;
private static double INTERRUPT_TIME = 0.1;

// for state of robot
protected boolean isRunning;

// track the starting time
protected Date startDate;

// track if there are new speeds
private boolean hasNewSpeeds;

// for saving files
protected File rawDataFile;
protected File pathDataFile;
protected FileWriter rawWriter;
protected FileWriter pathWriter;

// communications port info
static CommPortIdentifier commId;
protected SerialPort sPort;

// comm Port string COM1 for example
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protected String commString;

// streams for communication
protected InputStream inStream;
protected OutputStream outStream;

// track the location of the robot
protected double xLoc;
protected double yLoc;
protected double theta;

// robot parameters
private double wheelBase;
private double wheelRadius;

// left and right wheelSpeeds
private int leftWheelSpeed;
private int rightWheelSpeed;

// a thread
protected Thread readThread;

//old left and right encoder values
private int oldLeft;
private int oldRight;

// Constructor Method
// initialize comm port and other variables
public RobotController(){}// does nothing

public RobotController(String comm) {
try{
commId = CommPortIdentifier.getPortIdentifier(comm);

} catch (NoSuchPortException e){e.printStackTrace();}

try{
sPort = (SerialPort) commId.open("RobotController",1000);

} catch (PortInUseException e){e.printStackTrace();}

// declare default files
rawDataFile = new File("rawEncData.txt");
pathDataFile = new File("pathEncData.txt");

try{
inStream = sPort.getInputStream();
outStream = sPort.getOutputStream();
rawWriter = new FileWriter(rawDataFile);
pathWriter = new FileWriter(pathDataFile);

} catch (IOException e){e.printStackTrace();}
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try{
sPort.setSerialPortParams(9600, SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

} catch (UnsupportedCommOperationException e)
{e.printStackTrace();}

try{
sPort.addEventListener(this);

} catch(Exception e){e.printStackTrace();}

sPort.notifyOnDataAvailable(true);

//
readThread = new Thread(this);
readThread.start();

// set parameters
this.commString = comm;

this.xLoc = 0;
this.yLoc = 0;
this.theta = 0;
this.wheelBase = 10*25.4;//mm
this.wheelRadius = 3*25.4;//mm
this.leftWheelSpeed = 0;
this.rightWheelSpeed = 0;
this.hasNewSpeeds = false;

}

// declare the run() method
public void run(){

try {
Thread.sleep(20000);

} catch (InterruptedException e) {}
}

// declare the serialEvent(...) method
// should read data, translate it to
// encoder tics, and then send wheelspeed
// data back to the microcontroller
public void serialEvent(SerialPortEvent event) {

switch(event.getEventType()) {
case SerialPortEvent.BI:
case SerialPortEvent.OE:
case SerialPortEvent.FE:
case SerialPortEvent.PE:
case SerialPortEvent.CD:
case SerialPortEvent.CTS:
case SerialPortEvent.DSR:
case SerialPortEvent.RI:
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case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
break;

case SerialPortEvent.DATA_AVAILABLE:
// data recieved
byte[] readBuffer = new byte[10];
try { // read data
while (inStream.available() > 0) {
int numBytes = inStream.read(readBuffer);

}

// send forwardKinematics the
// wheelspeeds from readbuffer
forwardKinematics(toEncoder(readBuffer));

} catch (IOException e) {e.printStackTrace();}

// send wheel speed data
if(this.hasNewSpeeds){
this.hasNewSpeeds = false;
try{
outStream.write(this.rightWheelSpeed);
outStream.write(this.leftWheelSpeed);

} catch (IOException e){e.printStackTrace();}
}
break;

}
}

// updates the position and orientation
// of the robot after each interrupt (~10 ms)
// Inputs: wheel positions- change in wheel
// positions from last interrupt
// Outputs: updates xLoc,yLoc,theta
protected void forwardKinematics(int[] deltaLeftRight){

if(Math.abs(deltaLeftRight[0]) < 200 &&
Math.abs(deltaLeftRight[1]) < 200){

double disL = 2*Math.PI*deltaLeftRight[0]
*wheelRadius/2000;

double disR = 2*Math.PI*deltaLeftRight[1]
*wheelRadius/2000;

xLoc += (disR+disL)*Math.sin(theta)/2;
yLoc += (disR+disL)*Math.cos(theta)/2;
theta += (disR-disL)/wheelBase;

try{
pathWriter.write("\t" + xLoc + "\t" + yLoc
+ "\t" + theta + "\n");
pathWriter.flush();
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} catch (IOException e) {e.printStackTrace();}
}

}

// tell the microcontroller to begin (G!)
protected void goExclamation(){

try{
System.out.println("GO!");
outStream.write(71);
outStream.write(33);
outStream.write(13);

} catch (IOException e){e.printStackTrace();}
startDate = new Date();

}

// raw should be a byte array of length 4
// this will convert the data from bytes to encoder ticks
private int[] toEncoder(byte[] raw){

int left,right;

// convert to decimal
if(raw[0] >= 0)
left = 256*raw[0];

else
left = (raw[0]+256)*256;

if(raw[1] >= 0)
left += raw[1];

else
left += raw[1]+256;

if (left > 65536/2)
left -= 65536;

// convert to decimal
if(raw[2] >= 0)
right = 256*raw[2];

else
right = (raw[2]+256)*256;

if(raw[3] >= 0)
right += raw[3];

else
right += raw[3]+256;

if (right > 65536/2)
right -= 65536;

try{
rawWriter.write("\t" + left + "\t" + right + "\n");
rawWriter.flush();

} catch (IOException e) {e.printStackTrace();}



60

int[] out = new int[2];
out[0] = left-oldLeft;
out[1] = right-oldRight;

oldLeft = left;
oldRight = right;
return out;

}

public void setParameters(int whRad, int whBas){
this.wheelBase = whBas;
this.wheelRadius = whRad;

}

public void setWheelSpeeds(int left,int right){
this.leftWheelSpeed = left;
this.rightWheelSpeed = right;
this.hasNewSpeeds = true;

}

public static void main(String args[]){
RobotController rc1 = new RobotController("COM1");
rc1.goExclamation();
rc1.setWheelSpeeds(-10,-10);

}
}

// author: David Sorensen
// Texas A&M Robotics Lab
// DualMouseController.java

import javax.comm.*; import java.io.*; import java.util.ArrayList;
import java.util.Date; import java.lang.Math;

public class DualMouseController extends RobotController {
private static int TICS_PER_MM = 16;

// save the location and orientation of the mouse
private int mouse1X;
private int mouse1Y;
private double mouse1Theta;

private int mouse2X;
private int mouse2Y;
private double mouse2Theta;

private Matrix aInverse;
private Matrix b;
private Matrix X;

// xLoc,yLoc,theta are the estimated position
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// for state
private int ohsRecieved;
private boolean m2Received;
private boolean m1Received;

public DualMouseController(String comm) {
// code left out... much similar to the RobotController class
...
this.isRunning = false;
this.ohsRecieved = 0;
this.m2Received = false;

}

// declare the serialEvent(...) method
// should read data, translate it to encoder tics
// and then send wheelspeed
// data back to the microcontroller
public void serialEvent(SerialPortEvent event) {

switch(event.getEventType()) {
case SerialPortEvent.BI:
case SerialPortEvent.OE:
case SerialPortEvent.FE:
case SerialPortEvent.PE:
case SerialPortEvent.CD:
case SerialPortEvent.CTS:
case SerialPortEvent.DSR:
case SerialPortEvent.RI:
case SerialPortEvent.OUTPUT_BUFFER_EMPTY:
break;

case SerialPortEvent.DATA_AVAILABLE:
try { // read data
int totalBytes = inStream.available();
byte[] readBuffer = new byte[totalBytes];
while (inStream.available() > 0) {
int numBytes = inStream.read(readBuffer);

}
if(this.isRunning)
forwardKinematics(toEncoder(readBuffer));

else {
for(int i=0;i<totalBytes;i++){
System.out.println(readBuffer[i]);
if(readBuffer[i] == 79){ // recieved ’O’
System.out.println("Received one O");
ohsRecieved++;

}
if(ohsRecieved == 2) // received 2 ’O’s
this.isRunning = true;

}
}

} catch (IOException e) {e.printStackTrace();}
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break;
}

}

// raw should be a byte array of length 2
// this will convert the data from bytes to mouse ticks
private byte[] toEncoder(byte[] raw){

int[] out = new int[raw.length];
for (int i=0;i<raw.length-1;i+=2){ // write bytes to file

int x,y;
if(m2Received && m1Received){
try{
rawWriter.write("\n");
rawWriter.flush();

} catch (IOException e){e.printStackTrace();}
m2Received = false;
m1Received = false;

}
try{
if(!m1Received){ // just received m1 data
m1Received = true;

}
else if(!m2Received){ // just received m2 data
m2Received = true;

}
rawWriter.write(raw[i] + "\t" + raw[i+1] + "\t");
rawWriter.flush();
} catch (IOException e) {e.printStackTrace();}

}
return raw;

}

// updates the position and orientation of
// the robot after each new mouse data
// Inputs: mouse delta x and y- change in x
// and y positions according to the mouse
// Outputs: updates xLoc,yLoc,theta
protected void forwardKinematics(byte[] deltaXY){

if(deltaXY[0] < 70){
// check that the robot is not sending back characters
for(int i=0;i<deltaXY.length;i+=4){
// convert to x,y at center used for a single mouse
double vX1,vY1,vX2,vY2,vRx,vRy,omegaR,omega1,omega2;

double norm1 = Math.sqrt(deltaXY[0]*deltaXY[0]
+deltaXY[1]*deltaXY[1]);

double norm2 = Math.sqrt(deltaXY[2]*deltaXY[2]
+deltaXY[3]*deltaXY[3]);

vX1 = (deltaXY[i]*Math.cos(mouse1Theta)-deltaXY[i+1]
*Math.sin(mouse1Theta))/TICS_PER_MM;
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vY1 = (deltaXY[i]*Math.sin(mouse1Theta)+deltaXY[i+1]
*Math.cos(mouse1Theta))/TICS_PER_MM;

vX2 = (deltaXY[i+2]*Math.cos(mouse2Theta)-deltaXY[i+3]
*Math.sin(mouse2Theta))/TICS_PER_MM;

vY2 = (deltaXY[i+2]*Math.sin(mouse2Theta)+deltaXY[i+3]
*Math.cos(mouse2Theta))/TICS_PER_MM;

omega1 = -(vX1/this.mouse1Y);
omega2 = -(vX2/this.mouse2Y);

b.A[0][0] = vX1;
b.A[1][0] = vY1;
b.A[2][0] = vX2;
b.A[3][0] = vY2;

X = null;

if(norm1 > 3/16 && norm2 > 3/16){
// use pseudo inverse
X = aInverse.multiply(b);
vRx = X.A[0][0];
vRy = X.A[1][0];
omegaR = X.A[2][0];
//System.out.println("PINV");

}
else if(norm2 <= 3/16){
// convert to the robot’s coordinate system
omegaR = -(vX1/this.mouse1Y);
vRy = vY1+(vX1*this.mouse1X/this.mouse1Y);
vRx = 0;
//System.out.println("M1");

}
// find omega and velocity of the robot’s
// center (forward kinematics)
else{
omegaR = -(vX2/this.mouse2Y);
vRy = vY2+(vX2*this.mouse2X/this.mouse2Y);
vRx = 0;

}

// if the omegas from individual mice are close,
// disallow sideways motion
if(Math.abs(omega1-omega2) < .003){
vRx = 0;

}

//System.out.println(vRx + " " + vRy + " " + omegaR);
// update the location of the robot in the
// absolute coordinate system
this.xLoc += vRx*Math.cos(theta) - vRy*Math.sin(theta);
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this.yLoc += vRy*Math.cos(theta) + vRx*Math.sin(theta);
this.theta += omegaR;

try{
pathWriter.write(xLoc + "\t" +
yLoc + "\t" + theta + "\n");

pathWriter.flush();
} catch (IOException e) {e.printStackTrace();}

}
}

}

public void setParameters1(int mouseX, int mouseY, double mouseTheta){
this.mouse1X = mouseX;
this.mouse1Y = mouseY;
this.mouse1Theta = mouseTheta;

}

public void setParameters2(int mouseX, int mouseY, double mouseTheta){
this.mouse2X = mouseX;
this.mouse2Y = mouseY;
this.mouse2Theta = mouseTheta;

}
public void setAInverse(){

Matrix A = new Matrix(4,3);
A.A[0][0] = 1; A.A[0][1] = 0; A.A[0][2] = (double)-this.mouse1Y;
A.A[1][0] = 0; A.A[1][1] = 1; A.A[1][2] = (double)this.mouse1X;
A.A[2][0] = 1; A.A[2][1] = 0; A.A[2][2] = (double)-this.mouse2Y;
A.A[3][0] = 0; A.A[3][1] = 1; A.A[3][2] = (double)this.mouse2X;

aInverse = A.pseudoInverse();
}

public double getX(){
return this.xLoc;

}
public double getY(){

return this.yLoc;
}
public double getTheta(){

return this.theta;
}

public void setWheelSpeeds(int left, int right){}// does nothing

public static void main(String[] args) {
DualMouseController mouseController1 = new DualMouseController("COM2");
mouseController1.goExclamation();

}
}
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