
MULTI-CAMERA: INTERACTIVE RENDERING OF

ABSTRACT DIGITAL IMAGES

A Thesis

by

JEFFREY STATLER SMITH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Visualization Sciences

MULTI-CAMERA: INTERACTIVE RENDERING OF

ABSTRACT DIGITAL IMAGES

A Thesis

by

JEFFREY STATLER SMITH

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Ergun Akleman
(Chair of Committee)

Richard Davison
(Member)

John Keyser
(Member)

Phillip Tabb
(Head of Department)

December 2003

Major Subject: Visualization Sciences

iii

ABSTRACT

Multi-Camera: Interactive Rendering of

Abstract Digital Images. (December 2003)

Jeffrey Statler Smith, B.E.D., Texas A&M University

Chair of Advisory Committee: Dr. Ergun Akleman

The purpose of this thesis is the development of an interactive computer-generated

rendering system that provides artists with the ability to create abstract paintings

simply and intuitively. This system allows the user to distort a computer-generated

environment using image manipulation techniques that are derived from fundamen-

tals of expressionistic art. The primary method by which these images will be ab-

stracted stems from the idea of several small images assembled into a collage that

represents multiple viewing points rendered simultaneously. This idea has its roots

in the multiple-perspective and collage techniques used by many cubist and futurist

artists of the early twentieth century.

iv

To my family and friends

v

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my thesis committee chair, Dr. Ergun

Akleman, for sharing his expertise and for encouraging me to explore new creative

ideas. I would also like to thank my committee members, Prof. Dick Davison and Dr.

John Keyser, for providing their help and encouragement throughout this process. I

would also like to thank Dr. Donald House, Prof. Robert Schiffhauer, and Michael

Ringham for their valuable support and instruction.

My thanks go to Manfred Mohr, Scott Snibbe, Stephen Parker, Robert Schiffhauer,

and Dick Davison for allowing me to display their artwork in this thesis, and to Vinod

Srinivasan, Michael Mistrot, and Michael Stanley for allowing me to adapt portions

of their code for use in my thesis program.

My gratitude goes also to all of the faculty and staff of the Viz Lab, who have

provided answers to my questions and have enhanced my learning experience. Thanks

also go to all the friends that I have made during my time in the Viz Lab, for sharing

their ideas about art and for their all of their help and enthusiasm. Thanks especially

to Lori Green, for her inspiration and for providing a great deal of encouragement

and support. Finally, I would like to thank my parents, sister, and extended family

for their love and guidance through the years.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I.1. Motivation . 1

I.2. Introduction . 2

II RELATED WORK . 5

II.1. Traditional Artwork . 5

II.1.1. Cezanne . 5

II.1.2. Cubism . 6

II.1.3. Other Movements 7

II.1.4. Hockney . 9

II.2. Computer Graphics Work 10

II.2.1. Abstract Rendering Applications 12

II.2.2. Multiple-View Applications 13

II.2.3. Cubism-Related Techniques 15

III METHODOLOGY . 18

III.1. Scene Methods . 18

III.2. Camera Methods . 19

III.3. Image Placement Methods 22

III.4. Lighting and Rendering Methods 25

IV IMPLEMENTATION . 28

IV.1. Viewport Options . 28

IV.1.1. Viewport Placement 29

IV.1.2. Viewport Control 30

IV.2. Camera Options . 31

IV.2.1. Camera Placement 31

IV.2.2. Camera Control 33

IV.3. Drawing Options . 36

IV.4. Rendering Options . 39

V RESULTS . 40

V.1. Digital Paintings . 40

V.2. Traditional Media . 44

V.3. Animation . 47

vii

CHAPTER Page

VI CONCLUSION AND FUTURE WORK 53

REFERENCES . 55

VITA . 58

viii

LIST OF FIGURES

FIGURE Page

1 Bathers I by Robert Schiffhauer. Image used with permission of

Robert Schiffhauer. 6

2 Cubist Self-Portrait by Robert Schiffhauer. Image used with per-

mission of Robert Schiffhauer. 8

3 P-197-K, acrylic on canvas, 136 cm x 136 cm, 1977, Collection

Daimler-Chrysler, Germany. Copyright 1977 Manfred Mohr. Im-

age used with permission of Manfred Mohr [15]. 11

4 Bubble Harp and Motion Phone renderings. Copyright 1991-98

Scott Snibbe. Images used with permission of Scott Snibbe [22]. . . . 13

5 Camera Painting by Akleman and Meadows [2]. 17

6 Multi-Camera scene description. 18

7 Examples of multiple-camera ”eye” surface shapes: (A) planar,

(B) cylindrical, and (C) spherical. 20

8 Examples of multiple-camera ”eye” and ”aim” surface shapes: (A)

planar, (B) cylindrical, and (C) spherical. 21

9 Control point-camera surface relationship. 22

10 Control point-camera surface relationship after addition of ran-

dom value to camera positions. 23

11 Multiple-view images of a cube composed from (A) a grid of in-

dividual views, (B) individual views with random values added,

and (C) individual views with random and overlap values added. . . 24

12 Two-dimensional view surface in image space showing control

points and interpolated surface of individual views of a cube. 25

ix

FIGURE Page

13 (A) Diagram showing warm and cool light colors. (B) An example

of diffuse and specular material colors with a shininess value of

5.0. (C) An example of a texture-mapped object. 27

14 MultiCam interface with drawing area and side option panel. 30

15 MultiCam interface with jittered placement of overlapping viewports. 31

16 MultiCam interface showing viewport-control functionality. 32

17 MultiCam interface with planar camera eye shape. 33

18 MultiCam interface with cylindrical camera eye shape. 34

19 MultiCam interface with spherical camera eye shape. 35

20 U and V coordinates of a camera surface. 36

21 MultiCam interface with camera control point manipulation. 37

22 MultiCam interface showing warm-cool color modulation. 38

23 MultiCam interface showing silhouette-edge rendering. 39

24 Digital painting created in MultiCam showing five sides of a cube. . . 42

25 Digital painting using an abstract model created in MultiCam. 43

26 Cubist-style digital painting created in MultiCam. 45

27 Abstract digital painting created in MultiCam. 46

28 Reprint of original MultiCam rendering. 47

29 MultiCam rendering worked over with acrylic paint and pastel

chalk by Richard Davison. Image used with permission of Richard

Davison. 48

30 MultiCam rendering worked over with charcoal and pastels by

Richard Davison. Image used with permission of Richard Davison. . 49

31 Frames from an abstract animation created with 48 cameras in

MultiCam. 51

x

FIGURE Page

32 Frames from an abstract animation created with approximately

250 cameras in MultiCam. 52

1

CHAPTER I

INTRODUCTION

I.1. Motivation

As an artistic tool, the use of the computer is unparalleled in its versatility. The

computer allows ideas and methods related to a wide range of media to converge and

be redefined through the adaptability and robustness of computer software. Hence,

computer art has become an increasingly popular means of creative expression and

experimentation.

As computer graphics technology advances toward an ability to reproduce reality

through lifelike character animation and digital renderings indistinguishable from

photographs, so grows the likelihood of a divergence from this goal in the spirit

of the many non-representational art movements of the late nineteenth and early

twentieth centuries. Just as technological advances have allowed computers to be

used to create strikingly vivid images, so too should they allow computers to be used

for the development of abstract images of high aesthetic value.

In computer graphics, although there has been an increasing interest in artistic

(or non-photorealistic) approaches, only a few truly abstract rendering approaches

have been developed to create abstract digital paintings [1, 20, 23]. The goal of

this thesis is to use 3D computer graphics technology to create a new framework for

producing art in the 3D realm, one that emphasizes the creation of images that are

abstract in nature.

The journal model is IEEE Transactions on Visualization and Computer
Graphics.

2

I.2. Introduction

The departure from representational methods in traditional painting provides a dis-

tinction between abstraction and realism that can be carried over into computer

graphics. Realistic paintings, like photography, have a definite subject, and possess

certain degrees of adherence to strict conventions of representing true perspective and

natural light as a means of reproducing human vision. Abstract paintings through

some means redefine the form and/or the content of the work of art, and have a dis-

tinct non-photorealistic appearance. Many styles of abstract paintings were invented

in the early twentieth century, including Cubism, Futurism, Surrealism, Construc-

tivism, and Abstract Expressionism [18],

The distinction between abstraction and realism in traditional painting is anal-

ogous to computer graphics artwork and the difference between photo realistic and

non-photo realistic renderings. The aim of photo-realistic rendering is to produce

a high- quality image with realistic lighting of detailed 3D models, that when ren-

dered becomes a convincing substitute for a photograph captured on film. Non-photo

realistic rendering is concerned with modifying existing digital images or rendering

methods to the extent that renderings appear to be rendered through a medium other

than that of their origin. An additional category of computer graphics artwork is de-

fined here as ”abstract” rendering, and is described as methods that modify existing

computer graphics rendering methods to produce images that are assuredly non-photo

realistic, but are also non-objective.

Within the category of abstract rendering, many techniques have been explored,

and can generally be sub-categorized into two groups. First among these is the group

that represents the methods whose purpose is to create abstract imagery, which may

be inspired by a particular artistic style, but are primarily synthesized through the

3

use of established computer graphics techniques such as physically based modeling

and animation or artificial intelligence [4, 20, 23]. The second category is a group of

cubism-related techniques, which attempt to emulate the multiple-view and collage

aspects of cubism to develop algorithms for creating abstract renderings of 3D scenes

[7, 1].

The method presented in this study resembles most closely the cubism-related

approaches [7, 1, 24]. In the cubism-related approaches, a scene can be thought of

as a three-dimensional space which contains a number of objects that comprise the

subject of the work. A camera or eye point provides a view, or window into the scene.

When one camera records a view of a given scene, the resulting image is repre-

sentative of a single moment in time captured from a single point in space, as in most

photographs and 3D renderings. In this kind of image, an artistic, painterly feel is

absent due to the static, photorealistic nature of the work.

One way in which interesting imagery is created involves increasing the area over

which the viewing mechanism exists. A number of cameras are spread out over this

area, with the resulting images from each camera combined afterwards into a single

image. In addition, the cameras, instead of each being aimed at the exact same point

in the scene, can be aimed at unique points of view in the scene.

By creating multiple cameras and viewpoints and slightly altering the orientation

of each one, a collage of the resulting images will appear to contain movement. The

result of this movement is the addition of a time element to the work, and an increased

aesthetic value of the image. Alternately, movement in the individual views can be

represented by an advance through time, if the medium being used is a video sequence.

Each of the cubism-related methods is capable of creating rich, interesting com-

positions by distorting and warping the 3D camera structure. However, interactivity

in these methods is absent, resulting in less direct control over the output image.

4

Before a user of one of these systems can receive feedback on the composition of the

image, a full scene must be rendered. This usually takes many seconds, if not minutes,

to complete. Generally, these systems have control only over the camera structure in

a scene, with the modeling and rendering left for another piece of software to handle.

One may control the nature of the subject matter, and also the nature of the viewing

apparatus, but never both within the same interface.

One advantage of the approach presented here is that the OpenGL API [16] is

used to create multiple viewports and to render objects in real time. This system

features interactive multiple-camera control, which treats arrays of camera points

as modifiable shapes, with each camera represented by a separate viewport in the

rendering interface. The user can control the positions of every camera at once, while

receiving real-time updates of the output image. Moreover, the user is able to distort

the 2D image space of the output by interactively changing the 2D coordinates of

the many viewports. An additional advantage lies in the user’s ability to experiment

with color, lighting and rendering operations in conjunction with camera and viewing

parameters.

In this process, photorealism and instant capture systems are used only as an ini-

tial step in the artistic process. The artist controls distortions, abstractions, color ef-

fects, media, and decisions regarding composition. Rather than starting from scratch,

the artist can use photorealistic rendering and correct perspective methods to cre-

ate an initial motif. From there the artist can apply abstract rendering techniques

to create disjunctions in the image, while also making decisions regarding color and

lighting. Finally, the image may be reworked in a 2D paint application or by hand

using traditional media.

5

CHAPTER II

RELATED WORK

The work presented in this thesis draws influence from many areas of traditional and

computer artwork. The non-representational nature of the work is based on ideas

and methods first explored by late-nineteenth and early-twentieth century artists,

as well as in early computer art. The work presented here is also related in its non-

photorealistic and non-objective nature to many studies in various computer graphics

and digital image rendering methods.

II.1. Traditional Artwork

In the nineteenth century, many renaissance conventions of picture making began to

break down in art [18]. Methods of representing reality as defined by a similarity to

human visual perception gave way to methods of abstraction that sought to represent

knowledge more than appearance. Soon after the Impressionist painters experimented

with the technique of broken color to simulate the way that the eye mixes elements

of light, the widely used conventions of linear perspective and natural lighting were

discarded in favor of a more expressionistic style. The idea that a painting should be

nothing more than a copy of what the eye sees was no longer valid.

II.1.1. Cezanne

The artist Paul Cezanne is recognized as one of the first modern painters to break

from the use of traditional perspective. Many of Cezanne’s paintings are charac-

terized by odd distortions of scale and perspective, including compression of depth,

discontinuous line use, and a tendency for objects to appear tilted upward toward the

6

viewer [21]. These distortions can be attributed to Cezanne’s method of recording

different angles of view as his focus shifted throughout the course of the painting, and

to his lack of reliance on established perspective conventions [21].

Cezanne’s use of color differs from that of the impressionists, who attempted to

re-create the phenomenon of observing light through a mixture of color [18]. Rather

than using many small spots of color that are meant to blend in the viewer’s eye and

thus reproduce light effects, Cezanne developed color relationships by employing a

grid-like structure of larger patches of color [18]. An example of a work inspired by

Cezanne is shown in Figure 1.

Fig. 1. Bathers I by Robert Schiffhauer. Image used with permission of Robert

Schiffhauer.

II.1.2. Cubism

A significant departure from traditional realistic methods of painting came with the

Cubist painters [5]. The paintings of this movement were characterized mainly by a

new way of handling space: a volumetric structure in which depth was flattened and

7

objects and their surrounding environment were often simplified into many facets

(see example in Figure 2). Objects were often depicted from many sides at once.

The idea of multiple, simultaneous views allowed a reality of the object to be shown

that was more clear and complete than by means of a single perspective. Time and

memory were now added to the overall experience of a subject through painting.

Later, non-painted objects were added to the surface of the canvas in an effort to

recognize the medium of the work. Many of the collaged elements were related in

some way to the subject, and were meant to add to the overall experience of the

painting. The work of art was no longer defined as representative of two dimensions

or three dimensions. With pieces jutting out of the surface of the canvas, the spatial

structure of the painting was more ambiguous, yet the experience of the motif was

communicated with more clarity.

II.1.3. Other Movements

The realization that the motif in painting need not be static and realistic, but could be

an imaginative arrangement of free-form elements, led to new ways of thinking about

art [18]. Once this new way of describing reality became widespread, additional

art movements were developed as extensions of cubist concepts. A group of Italian

painters, known as Futurists, developed a style that was based on the multiple views

of Cubism, but incorporated also the idea of movement through time and space into

multiple-view compositions. In a writing entitled Manifesto of the Techincs of Futurist

Painting, the Futurist painter Umberto Boccioni proclaimed that ”motion and light

destroy the material of bodies” and that static subject matter should be done away

with in favor of expression of the ”modern vortex of life”-steel, speed, and pride[18].

A work of the painter Marcel Duchamp, entitled Nude Descending a Staircase, is best

8

Fig. 2. Cubist Self-Portrait by Robert Schiffhauer. Image used with permission of

Robert Schiffhauer.

9

known for the futurist elements the painting includes. In the painting, movement

is represented by multiple views, each representing a successive motion of a figure

walking down a staircase [5].

As the stylistic conventions of painting were redefined, so were the conventional

motifs of artwork. Cubists and Futurists had invented new ways of displaying static

or dynamic scenes, but their paintings remained tied to the subject in those scenes.

The Bauhaus artist Wassily Kandinsky, in his writing, Concerning the Spiritual in

Art, spoke of the idea that works of art should be related to music, and that form

and color should be used to express inner emotions, and not appear real or represent

a real subject [18].

With new challenges in expression and abstraction, art reached new audiences

and began to incorporate scientific ideas. Constructivism was a bridging of art and

science through the movement’s founders, Antoine Pevsner, a painter, and Naum

Gabo, trained in the medical field. Their work included many sculptures made of

wood, metal and plastic, which were non-objective and abstract in form. The goal of

the constructivists was a ”synthesis of the plastic arts”, the discovery of newer and

broader art forms that were born out the merging of arts and science [18].

II.1.4. Hockney

One principle of Cubism that gave paintings of that genre a distinct look was the

idea of combining multiple fragments of an image, each taken from a different per-

spective, into one final image. One recent artist, David Hockney, translated this idea

into a medium other than painting. In an effort to represent reality in a non-static

form, Hockney produced many collages composed of Polaroid and 35mm photographic

prints [13]. In Hockney’s collages, any attempt at viewing the objects normally is dis-

10

rupted by the grid structure, and each view must be investigated separately in order

to gain a clear understanding of the subject. The fragmented composition and multi-

ple perspectives of Hockney’s collages are reminiscent of a Cubist style, and produced

a painterly feel in the work, instead of photographic realism.

II.2. Computer Graphics Work

In the field of computer graphics, many early attempts at creating artwork with a

computer were abstract, due to the limited capability of early graphical displays [10].

The first graphical images made with a computer were electronic abstractions of light

beams on the cathode ray tube of an oscilloscope, created by mathematician Ben

F. Laposky in 1950. In the constructivist tradition, these images were technical in

nature, yet aesthetic and non-objective in appearance. Another mathematician, A.

Michael Noll, used a computer to emulate works of art from the great masters, includ-

ing those of the cubist and modern movements [10]. Noll used a type of programmed

randomness to create his version of Composition with Lines, after Piet Mondrian. The

German artist, Manfred Mohr, along with a group called Art et Information, sought

to explore uses for the computer as an artistic medium [10]. Mohr produced a number

of images by using a plotter and a program that generatedrandomized arrangements

of cubic forms (see Figure 3).

With the advent of more sophisticated software programs and graphical displays,

the efforts of computer scientists turned more toward the creation of photorealistic

images. Using the technique of raytracing, for example, renderings of 3D models

achieved a high degree of realism through the ability to render specular highlights,

shadows, reflections and refractions [10].

As the frontier of simulating reality in computer graphics became within reach,

11

Fig. 3. P-197-K, acrylic on canvas, 136 cm x 136 cm, 1977, Collection Daim-

ler-Chrysler, Germany. Copyright 1977 Manfred Mohr. Image used with per-

mission of Manfred Mohr [15].

12

many efforts were shifted to the production of non-photorealistic images. Many of

these techniques produce the effect of traditional media in digital images, without

relying on physically accurate, photo-realistic rendering methods [9].

Paul Haeberli of Silicon Graphics Computer Systems developed one of the first

systems of digital image abstraction [11]. Using photographs or digital renderings as

a point of departure, Haeberli’s system allowed the user to specify brush strokes by

clicking and dragging the mouse over the original image. Each click of the mouse over

the input image sampled colors to use for each brush stroke in the final rendering.

Each brush stroke was saved in the output image, allowing additional operations to

be performed on the brushstrokes in order to create painterly or abstract effects.

Other examples of non-photorealistic techniques include programs that can create

the look of watercolor and oil painting in digital images or 3D renderings [6, 14]. While

non-photorealistic rendering techniques have grown in number and complexity, these

tools are mainly used to render pre-defined content in an artistic style, and are not

aimed at creating abstract content in digital paintings.

II.2.1. Abstract Rendering Applications

In 1991, Karl Sims created a system of artificial evolution to produce wildly abstract

digital images [20]. Sims’ system used lisp expressions as genotypes that were able to

evolve into increasingly complex images as a result of user selection and programmed

mutation and mating. Each generation of the mutation algorithm produced a unique

and progressively intricate design.

Scott Snibbe and Golan Levin, using a system of two-dimensional interactive

dynamic abstraction, performed additional experiments in abstract computer graphics

[23]. Inspired by the abstract art and writing of Wassily Kandinsky and animation by

13

Oscar Fischinger, which attempted to unify the senses and relate form and color to

music, these programs incorporated human motion, recorded through a mouse, into

abstract two- dimensional animation loops consisting of imagery created by dynamic

line drawing, Voronoi diagrams, and particle systems (Figure 4).

Bubble Harp Motion Phone

Fig. 4. Bubble Harp and Motion Phone renderings. Copyright 1991-98 Scott Snibbe.

Images used with permission of Scott Snibbe [22].

II.2.2. Multiple-View Applications

A number of applications have been developed that use ideas related to cubism, most

notably multiple perspectives and simultaneous views, to perform various tasks. Many

of these applications use methods similar to those presented in this thesis, though the

work serves a different purpose.

Wood, Finkelstein, Hughes, Thayer, and Salesin used the idea of multiple per-

spectives to develop a system for creating backdrops for cel animations to mimic

camera movement [25]. Panoramic images composed of multiple viewpoints from a

3D scene can be created using their system, which provides an alternative to hand

14

creation of backdrop paintings as was done in traditional hand-drawn cel animation.

Rendering from multiple viewpoints has applications in many computer graph-

ics areas of interest. Holographic and stereo image displays make use of multiple

viewpoints of a static image, so that the effect of viewing a three-dimensional image

can be created [12]. In this process, a two-dimensional surface displays information

from different viewpoints depending on the direction from which the surface is viewed

(examples: lenticular displays, baseball cards). Animations that change perspective

or show an object moving can also benefit from multiple perspective rendering [12].

If a set of images of the object from multiple viewpoints is rendered prior to the

animation, the different viewpoints can represent differences between the positions

of the camera and the object, and frames of the final animation can be created by

interpolation of the pre-rendered views.

In Michael Halle’s multiple-viewpoint rendering technique [12], a set of pre-

rendered images from multiple perspectives is compiled, and from these images corre-

sponding rows of pixels are compiled into reference images. One reference image for

each row of pixels of the original image size is made, and from the pixel information

in this set of reference images, a final image can be produced that represents a view

from a range of possible perspectives. The purpose of this process is to optimize

rendering of animations with changing views.

Rademacher and Bishop in 1998 developed a system of collecting image data

for image-based rendering, an emerging field of research in computer graphics [17].

With image-based rendering, realistic images can be produced by sampling color

and lighting information recorded from a real-world scene and then applying that

information to different viewing parameters than those from which the real-world

scene was sampled.

In their system, images are produced by sampling information in a 3D scene from

15

multiple vantage points, allowing a greater amount of information about an object to

be sampled than would be possible from a single viewpoint. All of the information

recorded by cameras animated along a path around an object is compiled into one

data set, known as the multiple-center-of-projection image. The positions of a set of

cameras can be interpolated, forming a continuous surface. By interpolating lighting

and color information from each camera’s position, a smooth and continuous image

is created which becomes a data set from which to sample information for creating a

new view of the object from any point in the scene.

In a study by Alan Z. Chen, artistic digital rendering styles were applied to

computer animations sequences to determine the viewer’s perception of speed in the

animation [4]. The rendering styles were inspired by cubism and futurism, and in-

cluded such features as the simultaneous drawing of various positions of a runner,

as well as a rendering style that reduced the human form in motion to overlapping

geometric forms.

II.2.3. Cubism-Related Techniques

The Cubist principle of creating images from multiple points of view rendered simul-

taneously has also been used for creating new methods of visual storytelling. Andrew

Glassner devised a ”Cubist” camera system [7] through which stories can be told

from various viewpoints as reflected in multiple-viewpoint images. Glassner imple-

ments the free-form camera system using the 3D modeling and rendering package, 3D

Studio Max. The system uses raytracing to render images on a per-pixel basis, taking

one unique sample viewpoint for each pixel in the final image. Viewing vectors are

produced by sampling points from the surfaces of two NURBS planes, one designated

as the ”eye” plane and another as the ”lens” plane. By distorting the shape of the eye

16

and lens planes, multiple-view renderings can be produced. This method is limited,

however, by the lack of a simple way to create the appropriate camera coordinates

for the Cubist renderings. The connection between the manipulation of the eye and

lens planes and the composition of each rendering is not seen until after the scene is

rendered, which may take considerable time with raytracing.

Ergun Akleman and Scott Meadows in 2000 developed an abstract rendering

system, known as camera painting [1], that used the color information from digital

images to distort 3D scenes rendered with raytracing. The system uses the r,g,b

color components of a digital image to replace the x,y,z coordinate information of

the camera point for each pixel in a raytraced image. The output produced is an

abstraction of a normal raytraced scene, controlled by an input image of the user’s

choice. In this way, control over the final image is based on the user’s production of

the input image by means of painting or photography, or selection of other imagery.

Although interesting looking images can be created with relative ease with camera

painting (see Figure 5), the method does not allow interactivity.

The digital artist Camille Utterback in 2000 devised an interactive installation

that explored the idea of cubism as it applied to video sequences [24]. Through his

program, frames from a video sequence were each divided into slices, representing

vertical regions of equal size in each frame. These slices were projected onto a screen,

forming a picture that would be distorted based on motion tracking equipment that

recorded the position of visitors to the installation. Based on the visitor’s position,

different frames from the sequence would be shown in each slice region, producing a

video collage effect. This installation is capable of producing intriguing interactions

between movement, images, and time, and could be easily applied to an interactive

software program. Generally the output images of this system are largely based on

the original sequence, which limits the user’s control over the image.

17

Fig. 5. Camera Painting by Akleman and Meadows [2].

18

CHAPTER III

METHODOLOGY

III.1. Scene Methods

The method presented here for creating abstract imagery is based on 3D modeling

and rendering methods. A scene in the MultiCam system is a 3D coordinate space

containing a 3D model, a number of cameras from which the model can be viewed,

and two lights (Figure 6). User interaction is provided through the ability to rotate

and translate the model, and to change the camera’s angle of view (or zoom) in real

time.

Fig. 6. Multi-Camera scene description.

19

III.2. Camera Methods

The positions in three-dimensional space formed by the cameras make up a surface,

which can be thought of as a ”camera surface”. By default, each of the camera surfaces

may take a planar, cylindrical, or spherical form, as shown in (Figure 7). The entire

camera system, based on the Glassner model [7], is composed of two camera surfaces,

known as an ”eye” surface and an ”aim” surface. The eye surface contains the points

at which the cameras are placed, while the aim surface contains the points at which

the cameras are aimed. Each camera shape is based on a unique arrangement of

control points according to the specified form, as in (Figure 8). It should be noted

that the camera system may contain differently-shaped eye and aim surfaces.(i.e. an

eye sphere and an aim plane).

To provide increased control over the shape of this camera surface, each initial

form is derived based on a set of control points. In this algorithm, the control points

are placed in three-dimensional space, and a free-form, parametric surface of cameras

is then generated from these points. A diagram of the relationship between the control

points and the camera surface is shown in Figure 9. Once the camera surface has

been generated, the control points can be manipulated in order to shape the camera

surface, which in turn will warp the output image.

An additional step can be taken to randomly dislocate, or ”jitter” each camera

point, so that the final outcome will be an image with a disrupted perspective. A

random decimal value is added to the position of each camera point after its position

on the surface is determined, creating a slightly altered surface, as shown in Figure 10.

20

(A) (B)

(C)

Fig. 7. Examples of multiple-camera ”eye” surface shapes: (A) planar, (B) cylindrical,

and (C) spherical.

21

(A) (B)

(C)

Fig. 8. Examples of multiple-camera ”eye” and ”aim” surface shapes: (A) planar, (B)

cylindrical, and (C) spherical.

22

Fig. 9. Control point-camera surface relationship.

III.3. Image Placement Methods

In addition to creating variations in the structure of the 3D camera setup, an addi-

tional step can be taken in the form of abstraction of the 2D image space. Once the

initial views as determined by the camera surface positions are captured, each view

is compiled into a two-dimensional collage. Dividing an initial drawing area into a

grid provides the structure of the collage, with each grid square containing a unique

view of the scene, as shown in Figure 11(A). Each window shows updated views of

the object as it is rotated or translated interactively.

After each view is initially placed in a grid, it can then be jittered slightly to

enhance the senses of movement and rhythm in the image, as shown in Figure 11(B).

23

Fig. 10. Control point-camera surface relationship after addition of random value to

camera positions.

To jitter the placement of an individual view, a random decimal value is added to

the position in 2D coordinate space of the view. In addition to jittering, and to allow

negative space to be filled,the size of each viewport can be increased or decreased

causing the viewports to overlap, as shown in Figure 11(C).

To provide increased control over the placement of individual views in the col-

lage, a system of ”view-control”, which is similar to the previously mentioned camera

control system, is included. In the view-control system, a parametric surface of indi-

vidual views is described by a set of sixteen control points, with each control point

existing in two-dimensional image space. Initially, the control points are placed in

positions so that each small view is arranged in a grid structure. By manipulating

one or more of the 2D control points as shown in Figure 12, the shape of the grid

24

(A) (B)

(C)

Fig. 11. Multiple-view images of a cube composed from (A) a grid of individual views,

(B) individual views with random values added, and (C) individual views with

random and overlap values added.

25

structure can be modified to a large extent.

Fig. 12. Two-dimensional view surface in image space showing control points and in-

terpolated surface of individual views of a cube.

III.4. Lighting and Rendering Methods

An artist’s control over the composition of an image depends largely on the choice of

a color scheme and lighting parameters for the subject of the scene (in this case a 3D

model). For these reasons, the scene in the Multi-Camera system includes two lights,

whose intensities and color values may be adjusted in real-time. The specified light

colors have a direct effect on the appearance of the model in the scene, as shown in

26

Figure 13(A). To enable a modulation effect similar to the technique used by Cezanne

and other cubist painters, warm and cool light colors and intensities are allowed to

mix.

To incorporate the use of line into the Multi-Camera drawing system, a ”silhou-

ette” edge drawing option is included, which provides an outline for the 3D model as

shown in Figure 13(A). The use of a silhouette outline is meant to emulate the use of

line by Cezanne and the cubist painters.

Also important to an object’s appearance are surface properties, such as surface

color, shininess, and texture, as well as the color of the background. The Multi-

Camera system allows direct manipulation of the object’s diffuse color (local or re-

flected color, meaning the inherent color of the object), shininess, and specular color

(the color of reflected light or highlight on the object), as well as the background color

(see Figure 13(B)). Texture mapping, which allows a 2D image to be mapped onto

a 3D object, resulting in an increased level of detail, is also featured in the Multi-

Camera system (see Figure 13(C)). Each of these properties are manipulated with

reference to the 3D model in the scene, and are constant throughout the rendering of

individual views.

27

(A) (B)

(C)

Fig. 13. (A) Diagram showing warm and cool light colors. (B) An example of diffuse

and specular material colors with a shininess value of 5.0. (C) An example of

a texture-mapped object.

28

CHAPTER IV

IMPLEMENTATION

This system uses the OpenGL Application Programming Interface [16] in a C++ pro-

gram called ”MultiCam (multiple cameras)” to create the many views and distortions

needed to render objects in an abstract style. OpenGL allows the user to have control

over 3D viewing transformations as well as image space or ”screen” coordinates, and

also is capable of rendering objects in real time. The MultiCam OpenGL program is

capable of running on both the IRIX and LINUX operating systems.

This system includes a user interface that was developed using the Fast Light

Toolkit (FLTK). The interface provides an organized set of controls that the artist

may use to execute procedures that create abstract images. The main application

window consists of a drawing area, in which the image composition can be viewed

and updated, and a side option panel, which contains menu bars that display the many

options for creating what appears in the drawing area (see Figure 14). The drawing

area is a GLUT window, which resides inside the main window, using routines defined

in the GL utility library to create images. The side option panel uses a structure of

FLTK interface controls that are based on code written by Vinod Srinivasan and

Michael Stanley. This section includes a number of illustrations of the MultiCam

interface which show various options related to the display of a cube from multiple

views.

IV.1. Viewport Options

In the MultiCam system, an individual camera is represented in the drawing area by

an OpenGL viewport, which is any rectangular area on the screen specified in which

29

to draw. This program uses the GL scissor test, which is an OpenGL technique

that allows the display window to be divided into many viewports. The scissor test

provides the primary break from the correct perspective of 3D viewing in OpenGL.

The algorithm for using the scissor test is based on code from an OpenGL example

program written by Nate Robbins. A number of options exist for controlling the

number and placement of the viewports within MultiCam’s drawing area.

IV.1.1. Viewport Placement

From each small viewport in the main drawing area, a unique view of the scene is

shown, with each view having a different viewing transformation, or vantage point.

The user of MultiCam has the option of specifying the number of camera views to be

placed in the horizontal (x) and vertical (y) directions in the drawing area. A view of

the MultiCam interface with a multiple-view image created using the scissor method

is shown in Figure 14. The series of small views of the same scene when combined will

show the scene from many viewing angles, thus providing more information about the

object than can be shown from a single perspective.

To provide an additional break from conventional viewing, an option for ran-

domly ”jittering” the placement of viewports in two dimensions is provided. For the

cases in which the jittering produces undesired space between viewports, an ”overlap”

factor can be set by the user and included in the calculation for the size of each view-

port. This option causes all viewports to overlap near their edges, which effectively

covers the spaces between each viewport. By retaining the Z-Buffer information be-

tween the drawing of each viewport, instances of each object appear to intersect when

views overlap. Examples of images with jittered and overlapping views are shown in

Figure 15.

30

Fig. 14. MultiCam interface with drawing area and side option panel.

IV.1.2. Viewport Control

An option for ”Viewport Control” is included, which allows the user to have direct

control over the placement of OpenGL viewports within the drawing area. When the

Viewport Control option is set, a series of sixteen control points appear in the drawing

area along with the initial grid of viewports. The control points make up a control

cage for a 2D spline surface of viewports. To enable varying degrees of control over the

viewport surface, the user is given two interpolation options, one which is based on a

uniform cubic b-spline algorithm[3], and one based on a bezier surface algorithm[19].

Through mouse and keyboard interaction, a user can manipulate individual control

points and define the shape of the viewport surface (see Figure 16).

31

Fig. 15. MultiCam interface with jittered placement of overlapping viewports.

IV.2. Camera Options

The MultiCam system treats the group of cameras in the viewing mechanism as well

as their aim points as surfaces that can be manipulated. Each camera point in the

viewing mechanism is shown in an individual view in the drawing area. Many options

exist for determining the shape of the camera surface, which affects what appears in

the drawing area of the MultiCam interface.

IV.2.1. Camera Placement

The differing points of view for each small viewport in the drawing area are specified

as a series of ”eye” vectors and ”aim” vectors, representing the points at which each

camera is placed and aimed, respectively. Each ”eye” and ”aim” vector contains x, y,

32

Fig. 16. MultiCam interface showing viewport-control functionality.

and z values in a 3D coordinate system. The viewing transformation of each window

is determined by supplying these vectors to the ”gluLookAt” function in the GL

utility library. With the supplied ”eye” and ”aim” vectors, the ”gluLookAt” function

effectively places the camera object at the eye point and directs the view toward the

aim point. The creation of arrays of eye and aim vectors allows for each viewpoint

to be changed by performing various operations on the data in the arrays. As these

values are interactively changed, the final composite view of the scene is controlled.

The area over which the viewing vectors are spread is determined by parameters

entered by the user of the MultiCam system. In the MultiCam system, the overall

camera mechanism is comprised of an ”eye” and an ”aim” shape, which refer to the

forms taken by the grouped placement in space of eye and aim vectors, respectively.

An eye or aim shape in the MultiCam system can begin as one of three options: a

33

plane, a cylinder, or a sphere. In the plane option, the user specifies the size of an

imaginary plane on which to spread the viewing vectors, determining the size of the

eye or aim plane in the 3D space. The user can also specify the depth of each plane

in the viewing direction. For the cylinder option, the user can change the height and

the radius of the cylinder shape, while the sphere option allows only for the radius

value to be augmented. Examples of the effects of different camera shapes on the

drawing area are shown in Figures 17, 18, and 19.

Fig. 17. MultiCam interface with planar camera eye shape.

IV.2.2. Camera Control

The camera eye and aim shapes are determined not by explicit operations defining

these shapes, but by a set of sixteen control points that determine how each camera

shape is built. The control points are specified as arrays of vectors in the same way

34

Fig. 18. MultiCam interface with cylindrical camera eye shape.

that the eye and aim vectors are specified. Based on where the control points are

located in 3D space, a free-form surface of cameras is generated from these points.

For example, when the camera eye plane shape is selected, the size variable first

places the sixteen control points in a 4x4 grid arrangement in space that is the same

size as the specified size variable. A function is then called that uses a free-form

surface generation scheme to determine the placement of each camera in the eye

or aim surface. The user has the option of using either a uniform bi-cubic spline

algorithm[3] or a bezier surface algorithm[19] to create the surface. U and V values

that are generated to describe different parts of a surface are used as values for the

placement of each camera in the eye or aim shape surface (see Figure 20).

The user has a number of options for manipulating camera-control points to

sculpt the camera surface shape. By selecting an option to go into camera-control

35

Fig. 19. MultiCam interface with spherical camera eye shape.

mode, the user is given the ability to select, by clicking with the mouse, a point

in the drawing area representative of a camera-control point. Through mouse and

keyboard interaction, the user can move control points in the 3D object space (see

Figure 21). For example, pressing and holding the ’alt’ key while dragging with the

middle mouse button after clicking on a control point translates the selected camera-

control point and manipulates the surface shape. Similarly, dragging with the left

mouse button pressed rotates the control point for the camera aim surface relative

to its corresponding control point for the eye surface. Options are available allowing

the user to specify in which direction to translate and about which axis to rotate.

Additionally, the user has the option to modify the camera shape by ”jittering”

each view vector. Much like the option to jitter the viewports in the drawing area

mentioned above, the camera jitter option allows a random value to be added to the

36

Fig. 20. U and V coordinates of a camera surface.

placement of each eye camera vector, disrupting the regular placement of the vector

arrays.

IV.3. Drawing Options

The MultiCam system includes a number of drawing routines designed to modify and

enhance the appearance of an object viewed in the scene by controlling the object’s

world-space drawing parameters. The objects are polygonal objects that are imported

into the scene from Wavefront OBJ files using functions written by Nate Robbins for

importing objects using OpenGL. The OBJ files consist of a series of vertices, which

serve as the corners of each polygon in the model, as well as texture coordinates that

can be imported and used to display texture maps on the objects. Once imported, the

37

Fig. 21. MultiCam interface with camera control point manipulation.

object can be rotated through mouse control using code derived from the ”Arcball”

functions written by Paul Rademacher. The Arcball algorithm converts x and y

screen coordinates into quaternion rotation values. Also featured is an interactive

zoom control that changes the angle of view of every camera as well as mouse-driven

object translation.

To light the object in the scene and enhance the artist’s choice of color, a warm-

cool lighting system is included, based on the system developed for technical illustra-

tion and adapted to use OpenGL functions by Gooch, Gooch, Shirley, and Cohen[9].

The user has the choice of using one or two lights, one designated as warm and the

other as cool, and is also able to interactively choose their color. The two light colors

mix across the surface of the object, adding a rich color effect to the object through a

smooth color transition. This effect along with the fragmented multiple-camera view

38

creates a modulation effect, in which colors pass from one hue to another through

mixing in gradual steps (see Figure 22).

Fig. 22. MultiCam interface showing warm-cool color modulation.

Other user controls include diffuse color value, which determines the object’s

local color, as well as specular intensity and color value, which determine how shiny

an object looks and the color of the object’s highlights. Textures can be displayed

through either of two OpenGL texture display modes: modulate mode, in which the

color of the texture is scaled in comparison to the light color, and blend mode, in which

the texture and object colors are mixed evenly[16]. Additional options for adding color

to the scene are the choice of a static background color and a ”silhouette” option (see

Figure 23), which allows the user to experiment with line weight by specifying the

color and thickness of the object’s outline. The silhouette edge utility is based on code

developed by Vinod Srinivasan, in which a model is drawn twice in OpenGL, once in

39

wireframe mode without lighting calculations to create an outline, and another time

with normal lighting calculations, drawn over the wireframe. All lighting and drawing

options are specified in reference to the 3D model, and remain constant throughout

the drawing of individual views.

Fig. 23. MultiCam interface showing silhouette-edge rendering.

IV.4. Rendering Options

The appearance of the final rendered scene will vary depending on the position of

each viewing vector in object space, the position of each viewport in screen space, the

rotation angle of the object, and surface and lighting properties given to the objects

in the scene. For single images, a function to write TIFF (Tagged Image File Format,

copyright Adobe Systems, Inc.) files has been included that was adapted from the

TIFF library specification in code written by Michael Mistrot.

40

CHAPTER V

RESULTS

The MultiCam system is a tool for 3D artists that is capable of producing expressive

3D renderings of high aesthetic quality. In this section, a number of examples of

artwork produced with MultiCam are shown, along with a brief discussion of the

process used to create the works. The Digital Paintings section discusses MultiCam

renderings that are imported into a paint program to create digital still images. In the

Traditional Media section, examples of MultiCam renderings enhanced by an artist

using traditional drawing media are shown. The final section provides images from

abstract animations created with MultiCam.

V.1. Digital Paintings

The worth of MultiCam as a tool to create digital paintings lies in its ability to create

an initial motif for the artist. Using this system, a 3D object can be viewed from a

number of perspectives and then have that viewing mechanism shaped and distorted

to suit the artist’s needs. In this way, the program allows the artist to ”paint” the

collage onto the digital drawing area by sculpting the 2D viewing mechanism and

by changing the shape of the camera surface. Another way to ”paint” digitally is

to import the MultiCam rendering into a paint program in order to enhance the

rendering using the program’s many available drawing tools. Both painting methods

described here were used to create the images in this section.

The first image, shown in Figure 24, was created using a simple cube object as

the 3D model in the scene. Initially, the cube was rotated until the orientation was

deemed satisfactory, and then the number of viewports was increased substantially

41

in both directions, totalling 55 in X and 67 in Y. To provide a sense of texture to the

rendering, viewports were jittered, with and overlap factor included. The size of the

camera eye plane was increased in order to spread the viewing area out over a large

distance, allowing five sides of the cube to be viewed at once. Tweaking the central

control points with the camera control option along with the rotation of the original

cube allowed the composition to take the form of a skewed, reversed perspective view

of a cube.

After importing the initial rendering into Adobe Photoshop, the image was copied

onto a new layer and blurred to provide a background texture layer. The opacity of the

original image layer was decreased by a small amount in order for the background to

show through. A small amount of noise was applied using the noise filter to enhance

the textured look of the image. The textured look of figure along with the large

number of overall cameras in the MultiCam image provides a fluid, yet somewhat

jittered feel to the image.

In Figure 25, an abstract 3D model with two handles was used for the initial

object. A red-green complimentary color scheme was used to provide a contrast of

hue in the composition. To add highlight values to the image, a silhouette outline

was used with a light green color. Random and overlap values were used, with and

overlap value less than 1.0 to provide spacing between viewports. Camera and view-

control parameters were adjusted so that the spacing of the viewports followed the

form of the 3D model, in an attempt to introduce dynamism to the composition. In

Photoshop, a background layer was produced by copying the red shapes many times

and blurring them into the dark green background, slightly echoing the pronounced

foreground forms. Noise was added to the entire composition to soften the originally

crisp 3D rendering.

The rendering shown in Figure 26 emulates a cubist technique using a slightly

42

Fig. 24. Digital painting created in MultiCam showing five sides of a cube.

43

Fig. 25. Digital painting using an abstract model created in MultiCam.

44

randomized grid structure to display various views of a single subject, in this case,

an .obj model of a head provided by Stephen Parker. In this image, 6 views in the X

direction and 10 in the Y direction were created. Random and overlap factors were

used to place the viewports, and additionally the view directions were skewed using

the ”Camera Jitter” option. For the color scheme, the warm-cool lighting system

was used with a yellow warm light color mixing with a blue cool light color. To

create a background image, portions of the original image were duplicated, resized,

and rotated in Photoshop.

To create the image in Figure 27, again a large number of views were used (41

in X and 69 in Y). Large eye plane and aim plane sizes were used, to spread the view

vectors over a large area and create a wide overall field of view for the object, which

in this case was again a cube. Each view of the cube was zoomed out, so that in each

small window a unique and partially complete view of the cube would be seen. Using

camera control, the views in the central portion of the screen were brought closer to

the object, while the outer views remained zoomed out. The large number of cameras

brought a fluid feel to the image, while the negative space in the outer portion of the

image created a semi-transparent appearance, reminiscent of an afghan blanket or a

curtain of beads. Using the view-control system, views were shifted to enhance the

feeling of flow in the image. To create a background in Photoshop, portions of the

original image were copied, offset, and blended into the background dark blue color

by decreasing the opacity levels of each portion.

V.2. Traditional Media

To test the applicability of MultiCam’s output to traditional art media such as draw-

ing and painting, a number of abstract images produced in MultiCam, including the

45

Fig. 26. Cubist-style digital painting created in MultiCam.

46

Fig. 27. Abstract digital painting created in MultiCam.

47

one shown in Figure 28, were given to an artist, Prof. Dick Davison, to work with.

In the image reprinted in Figure 29, the artist used pastel chalks and acrylic paint to

develop a color scheme based on the geometry in the original greyscale image. An-

other version of the rendering, shown in Figure 30, was done in charcoal and tinted

with pastel chalks. In both images the space in the original rendering was extended

through line and color work.

Fig. 28. Reprint of original MultiCam rendering.

V.3. Animation

In addition to still images, a number of abstract animations have been created using

MultiCam. Abstract movement was obtained by interpolating 3D model rotation and

48

Fig. 29. MultiCam rendering worked over with acrylic paint and pastel chalk by

Richard Davison. Image used with permission of Richard Davison.

49

Fig. 30. MultiCam rendering worked over with charcoal and pastels by Richard Davi-

son. Image used with permission of Richard Davison.

50

translation values, sizes of camera eye and aim shapes, and positions of view-control

points and camera-control points. In Figure 31, frames are shown from an animation

involving 48 cameras with morphing camera surfaces viewing a rotating 3D model. In

Figure 32, frames are shown from an animation involving approximately 250 cameras

horizontally placed along a cylindrical camera surface. Because a large number of

cameras in one direction were specified, the disc-shaped model is viewed from nearly

all sides and the camera interpolation appears smooth.

51

Fig. 31. Frames from an abstract animation created with 48 cameras in MultiCam.

52

Fig. 32. Frames from an abstract animation created with approximately 250 cameras

in MultiCam.

53

CHAPTER VI

CONCLUSION AND FUTURE WORK

The tools available to create 3D computer graphics are becoming increasingly sophis-

ticated. While these tools push the limits of what can be done in the photorealistic

realm, the limits to what can be done if current highly-developed rendering algorithms

are applied to the creation of abstract works are virtually unimagined.

A number of previous abstract rendering approaches from an array of sources

are linked by their goal of warping camera parameters to create abstractions and

by the inspiration of traditional abstract art movements. While these tools laid

important groundwork in developing a multi-perspective viewing apparatus, they

lacked the ability for artists to see the results of the changing of multi-perspective

viewing parameters in real time.

In this research, a tool has been developed that allows artists to experiment

with multi-perspective viewing parameters in real-time through mouse-driven control

of the size and shape of camera surfaces. Through an efficient and user-friendly

interface, artists can adjust color and lighting information, material properties, and

drawing techniques in addition to being able to control the multi-perspective camera

properties of a 3D scene. Additionally, the real-time nature of the MultiCam viewing

mechanism allows artistic computer image manipulation to take on an interesting

mixture of two- and three-dimensional forms in the same interface, providing a unique

system of creating computer-generated art.

Future research endeavors in the area of Multi-camera rendering for artistic pur-

poses can include a number of options for improving the functionality and increasing

the flexibility of the MultiCam software. Functions to read in more complex scenes

54

and use more complex surface material properties can be implemented. Alterna-

tively, the camera surface information can be exported to separate, more sophisticated

photo-realistic rendering software.

A number of ideas exist for building on functionality already present in the Multi-

Cam system as well. In its current state, MultiCam provides controlled interpolation

over the placement of viewports and camera positions only. During the process of

rendering each small view, any number of modeling and rendering options can also

be interpolated. For instance, object motion (not implied by camera changes) can be

interpolated across viewports. Light colors and positions can also change during the

rendering process and be illustrated by multiple camera views. Bounding volumes can

be interpolated by the camera views so that the interiors of the objects can be seen

through sections cut by the bounding volumes. Another example would be to have

the program read in two .obj models, and render one or the other in each viewport

based on a blending function, in order to create a morphing effect.

An additional limitation of the MultiCam interface is that even though each

small window is scaleable in size, because they are OpenGL viewports they must

remain rectangular and cannot be rotated. Functionality can be added that provides

non-rectangular windows that can be manipulated and adjust in size in real time,

giving the user additional control over the output.

55

REFERENCES

[1] E. Akleman and S. Meadows, ”Abstract Digital Paintings Created with Painting

Camera Technique”, Proc. D’ART 2000/Information Visualization 2000, Lon-

don, United Kingdom, July, 2000.

[2] E. Akleman and S. Meadows, ”Camera Painting”,

http://www-viz.tamu.edu/faculty/ergun/research/artisticdepiction/

[3] R.H. Bartels, J.C. Beatty, and B.A. Barsky, An Introduction To Splines for

Use in Computer Graphics & Geometric Modeling. Los Altos, Calif.: Morgan

Kaufmann Publishers, Inc., 1987.

[4] A. Chen, K. Knudtzon, J. Stumpfel, and J. Hodgins. ”Artistic Renderings of

Dynamic Motion”, Conference Abstracts and Applications of SIGGRAPH 2000,

p. 177, July, 2000.

[5] D. Cooper, The Cubist Epoch. New York: Phaidon Publishers, Inc., 1971.

[6] C. Curtis, S. Anderson, K. Fleischer, and D. Salesin. ”Computer-Generated Wa-

tercolor”, Proc. SIGGRAPH ’97, pp. 421-430, Aug., 1997.

[7] A. Glassner, ”Cubism and Cameras: Free-form Optics for Com-

puter Graphics”, Microsoft Technical Report, MSR-TR-2000-05,

http://www.glassner.com/andrew/cg/research/cubism/cubism.htm

[8] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, ”A Non-Photorealistic Lighting

Model for Automatic Technical Illustration”, Proc. SIGGRAPH ’98, pp. 447-452,

Aug., 1998.

56

[9] B. Gooch and A. Gooch, Non-Photorealistic Rendering. Natick, Mass.: A.K.

Peters, Ltd., 2001.

[10] C. Goodman, Digital Visions Computers and Art. New York: Harry N. Abrams,

Inc., 1988.

[11] P. Haeberli, ”Paint by Numbers: Abstract Image Representations”, Proc. SIG-

GRAPH ’90, pp. 207-214, Aug., 1990.

[12] M. Halle. ”Multiple Viewpoint Rendering”, Proc. SIGGRAPH ’98, pp. 243-254,

Aug., 1998.

[13] C. Knight, ”Composite Views: Themes and Motifs in Hockney’s Art.” David

Hockney: A Retrospective. Organizers, M. Tuchman and S. Barron. New York:

Harry N. Abrams, Inc., 1988.

[14] B. Meier, ”Painterly Rendering for Animation”, Proc. SIGGRAPH ’96, pp. 477-

484, Aug., 1996.

[15] M. Mohr, Personal website, http://www.emohr.com/index.shtml.

[16] OpenGL Architecture Review Board, M. Woo, J. Neider, T. Davis, D. Shreiner,

OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version

1.2. Reading, Mass.: Addison-Wesley, 1999.

[17] P. Rademacher and G. Bishop. ”Multiple-Center-of-Projection Images”, Proc.

SIGGRAPH ’98, pp. 199-206, Aug., 1998.

[18] H. Read, A Concise History of Modern Painting. London: Thames and Hudson,

1974.

57

[19] D. Rogers and J.A. Adams, Mathematical Elements for Computer Graphics. New

York: McGraw-Hill, Inc., 1976.

[20] K. Sims, ”Artificial Evolution for Computer Graphics”, Proc. SIGGRAPH ’91,

pp. 319-328, July, 1991.

[21] P. Smith, Interpreting Cezanne. London: Tate Publishing, 1996.

[22] S. Snibbe, Personal website, http://www.snibbe.com/scott/index.html.

[23] S. Snibbe and G. Levin, ”Interactive Dynamic Abstraction”, Proc. NPAR 2000,

pp. 21-29, June, 2000.

[24] C. Utterback. ”Liquid Time: An Exploration of Video Cubism”, SIGGRAPH

2000 Conference Abstracts and Applications, p. 223, July, 2000.

[25] D. Wood, A. Finkelstein, J. Hughes, C. Thayer, and D. Salesin, ”Multiperspec-

tive Panoramas for Cel Animation”, Proc. SIGGRAPH ’97, pp. 243-250, Aug.,

1997.

58

VITA

Jeffrey Statler Smith

16213 Wall St.

Houston, TX 77040

jeffsmitty77@hotmail.com

Education

M.S. in Visualization Sciences Texas A&M University, December 2003

B.E.D. Texas A&M University, August 2000

Employment

Graduate Assistant, Teaching Texas A&M University,

September 2000 - May 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

