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ABSTRACT 
 

 Mueller Matrix Imaging for Skin Cancer Detection. (May 2004) 

Angela Michelle Baldwin, B.S., Louisiana Tech University 

Chair of Advisory Committee:  Dr. Gerard Coté 

  
 

Over one million Americans are afflicted with skin cancer each year. Even though 

skin cancer has a 95% cure rate, approximately 10,000 people die in the United States 

each year of this disease. The current ABCDE(F) detection method is not sensitive 

enough to detect skin cancer in its early stages and requires a biopsy for any suspicious 

lesions. A lot of unnecessary biopsies, which are painful and costly to the patient, are 

taken. Therefore, a noninvasive technique is needed that can accurately detect the 

presence of skin cancer.  

In this thesis, an optical approach will be presented that has potential to be a 

noninvasive skin cancer detection technique. Several morphological and biochemical 

changes occur as tissue becomes cancerous, and therefore the optical properties of the 

tissue can be used to detect skin cancer. A Mueller matrix imaging system has been 

developed by our group that measures the 16 or 36-element Mueller matrix, which 

completely describes the optical properties of the tissue sample. The system is automated 

and can collect the Mueller matrix in less than one minute. This system will be used to  

image Sinclair swine, and data analysis techniques will be employed to determine if the 

system can distinguish between cancerous and noncancerous tissue. System software 

improvements will also be made, and a new calibration technique will be presented. 
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CHAPTER I 
 

INTRODUCTION 
 

Biological tissues can be characterized by their optical properties, namely the 

absorption coefficient (µa), the scattering coefficient (µs) and the anisotropy factor (g). 

The scattering of light in tissues is primarily due to tissue morphology and the 

absorption of light is due primarily to tissue biochemistry. Skin tissue is known to be 

birefringent primarily do to the ordered collagen fibers in the tissue.  Birefringence in the 

skin is responsible for the strong randomization of polarized light.   The tissue 

morphology and biochemistry change as tissue becomes cancerous and therefore the 

optical properties can potentially be used as a means of detecting skin cancer.  It is 

hypothesized that when backscattered light is observed, cancerous tissues, due to 

unordered collagen fibers, increased size of cell nuclei, and added mitochondria, 

depolarize light less than non-cancerous tissue. This is because cancerous tissues do not 

allow the light to penetrate the tissue as deeply and therefore undergo less scattering than 

non-cancerous tissues. This is the basis for the use of an optical method of noninvasive 

skin cancer detection used in this thesis. 

The American Cancer Society estimates that more than 1 million new cases of 

basal cell and squamous cell carcinoma will be diagnosed in the United States each year 

[1]. In 2004 alone, it is estimated that there will be approximately 59,350 new cases of 

melanoma and an estimated 10,250 deaths attributed to all forms of skin cancer [1]. 

These figures have increased from the 2003 estimate, which approximated 58,800 new 

 This thesis follows the style and format of the IEEE Transactions on Biomedical Engineering. 
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cases of melanoma and 9,800 deaths [2]. In addition, nearly half of all new cancer cases 

are skin cancers, which have a 95% cure rate if detected and treated early [3].  The 

current method of detecting skin cancer is the ABCDEF technique, which stands for 

Asymmetry, Border, Color, Diameter, Evolutionary change, and Funny-looking lesion 

[3]. With this technique if a lesion looks suspicious, a biopsy of the suspect lesion is 

required in order to determine if cancer is present. Many times an unnecessary biopsy, 

which is very painful and costly to the patient, is taken [3]. Therefore, a technique is 

needed that can non-invasively and effectively detect skin cancer. 

As a tissue becomes cancerous, several morphologic and chemical changes occur 

that affect the optical properties of the tissue.  Uncontrolled growth in cancerous tissue 

causes the ordered collagen fibers to break down and thus changes the birefringence of 

the tissue [4]. Also due to increased blood perfusion, cancerous tissue is typically higher 

in absorption than normal tissue [5]. Finally, cancerous cells are known to change their 

morphology, such as increased nucleus size or number of mitochondria, which changes 

the light scattering properties of the tissue [6].  An optical approach, specifically 

polarimetry, will be used to sense these types of changes and ideally distinguish 

cancerous from non-cancerous tissue.  Polarized light was chosen because it carries 

information about birefringence, absorption, and scattering simultaneously. 

The Automated Mueller Matrix Polarization Imaging System (AMMPIS) 

developed by our group measures the 16 or 36-element Mueller matrix, which 

completely describes the optical properties of the sample. This is accomplished by using 

all combinations of polarized input and output light, including horizontal, vertical, ±45o, 
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and right and left circular. The polarization states are created using an input and output 

arm that both consist of a polarizer, liquid crystal variable rotator, and liquid crystal 

variable retarder. In order to create the required polarization states, each electro-optic 

component must be calibrated so that the required voltage can be determined which is a 

time consuming process. The first goal of this thesis is to improve the calibration 

technique by using Matlab and Labview software to automate the calibration steps. The 

second purpose of this thesis is to image Sinclair swine and determine a method of 

analyzing the images that can differentiate between normal, mole, and cancerous tissue. 
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CHAPTER II 
 

BACKGROUND 
 

This chapter presents the background necessary to understand this research, and 

the significance of the problem needed to understand why this research is important. The 

first section gives a general overview of the skin, and the second section describes the 

types of skin cancer, their causes, their symptoms, and their current treatments. The third 

section describes the optical techniques that are currently being investigated and their 

limitations for skin cancer detection. The final section gives an overview of the 

melanoma morphology of the Sinclair swine animal model that is used in this research. 

 

2.1 Skin 

The skin is the largest and one of the most versatile organs of the body, and it is 

vital in maintaining homeostasis. It is a turbid medium that has two distinct tissue layers 

(Figure 1). The outer layer, called the epidermis, is composed of stratified squamous 

epithelium. Its thickness ranges from 0.07 mm to 0.12 mm, and it is constantly renewing 

itself.  The epidermis consists of four cell types and five layers. The four cell types are 

keratinocytes, melanocytes, Merkel cells, and Langerhans cells. Keratinocytes (called 

squamous cells) produce keratin that helps protect the body, melanocytes produce the 

dark pigment melanin that provides skin color, Merkel cells associate with a disc-like 

sensory nerve ending to form the Merkel disc, and Langerhans cells aid in the defense 

against microorganisms. The five layers are the stratum basale, stratum spinosum, 

stratum granulosum, stratum lucidum, and stratum corneum. The stratum basale is the 
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deepest layer, and is composed of a single row of melanocytes and cubodial or columnar 

cells that reproduce and grow. The stratum spinosum is the next layer and is composed 

of many layers of cells with centrally located, large, oval nuclei and developing fibers of 

keratin. The stratum granulosum is three to five layers of flattened granular cells that 

contain shrunken fibers of keratin and shriveled nuclei. The stratum lucidum, which is 

only on the soles and palms and is between the stratum corneum and stratum 

granulosum, has cells that appear clear and have nuclei, organelles, and cell membranes 

that are no longer visible. The outer most layer, the stratum corneum, is composed of 

many layers of keratinized, dead epithelial cells that are flattened and nonnucleated [7].   

 

 

Figure 1: Anatomy of the Skin [8] 
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The inner layer of skin, or dermis, is thicker than the epidermis, and it is made up of 

connective tissue containing collagen and elastic fibers, epithelial tissue, smooth muscle 

tissue, nervous tissue, and blood. The average thickness of the dermis is 1-2 mm and 

varies from 0.5 mm or less on the eyelids to 3 mm on the soles of the feet. The dermis 

consists of two layers: the papillary layer and the reticular layer. The papillary layer is 

the outer layer closest to the epidermis and is composed of areolar loose connective 

tissue. The reticular layer is the deepest and thickest layer. It is made of dense irregular 

connective tissue containing thick bundles of interlacing collagen fibers and elastic 

fibers. Beneath the dermis, the hypodermis, which is composed of masses of loose 

connective and adipose tissues, binds the skin to the underlying organs [7]. 

Skin is composed of many light scattering and light polarization changing 

components, including numerous membrane-bound subcellular organelles such as the 

nuclei, mitochondria, secretory granules, melanosomes, and the highly laminated 

desmasomes. Another source of light polarization change in the skin is the birefringence 

of epidermal keratin and dermal collagen. Cancerous tissue is characterized by 

disordered cell maturation and epithelial architecture, keratin composition, fibrillar 

packing and loss of cellular orientation, which could influence the transport and 

remittance of polarized light. Also, differences in nuclei and mitochondrial size and 

concentration are often seen between normal and cancerous tissues that could be 

measured using the polarimetric approach.   
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2.2 Skin Cancer 

The American Cancer Society estimates that more than 1 million new cases of 

basal cell and squamous cell carcinomas and approximately 55,100 new cases of 

melanoma will be diagnosed in the United States each year [1].  In 2004 alone, it is 

estimated that there will be approximately 10,250 deaths, 7,910 from melanoma and 

2,340 from other non-epithelial cancer, attributed to the disease [1].  In addition, nearly 

half of all new cancer cases are skin cancers, which have a 95% cure rate if detected and 

treated early [3].   

Three main types of skin cancer exist: basal cell carcinoma, squamous cell 

carcinoma, and melanoma. Basal cell carcinoma is the most common form of skin 

cancer, affecting more than 800,000 Americans each year [9].  It is also the most 

common form of all cancers. Basal cell carcinomas arise in the basal cells, which are at 

the bottom of the epidermis. Squamous cell carcinoma, the second most common skin 

cancer, afflicts more than 200,000 Americans each year [10]. It arises from the 

epidermis and resembles the squamous cells that comprise most of the upper layers of 

the skin.  Melanoma is the most serious form of skin cancer. During the past 10 years the 

number of cases of melanoma has increased more rapidly than that of any other cancer. 

Early detection of melanoma is crucial to the patient’s survival. If melanoma is left 

undiagnosed, it will metastasize to other parts of the body. Melanoma is a malignant 

tumor that originates in the melanocytes, the cells that produce the pigment melanin that 

colors the skin, hair, and eyes. Melanoma falls into four basic categories: superficial 

spreading melanoma, nodular melanoma, acral lentiginous melanoma, and lentigo 
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maligna melanoma. Superficial spreading melanoma, which spreads laterally before it 

invades the deeper tissues, is the most common type and may produce tumors on any 

part of the body. Nodular melanomas invade deeper tissues earlier than superficial 

spreading melanomas and tend to have a poorer prognosis. Acral lentiginous melanoma 

is most commonly found in dark-skinned people and has the poorest prognosis. Lentigo 

maligna melanoma is the slowest growing form of melanoma and occurs on sun-

damaged skin of elderly patients [11]. 

Squamous cell carcinoma usually appears as a tiny, painless nodule or patch that 

sometimes is surrounded by a margin of inflammation. The surface of the cancer can be 

scaly, crusted or wartlike, and its center can form an open sore [10]. Basal cell 

carcinoma usually appears as a tiny, painless lump with a shiny surface. As the cancer 

slowly grows, the center of the lump may become sore and produce a crater that bleeds, 

crusts, or forms a scab [11]. If a lesion is suspect, a biopsy is performed to verify the 

diagnosis. For squamous cell and basal cell carcinomas, the most common treatment 

options are excision, curettage and electrodesiccation, cryosurgery, radiation, and Moh’s 

micrographic surgery. Excision is where all visible cancer is cut away together with a 3 

to 10 mm margin of healthy tissue and then the skin is stitched closed with sutures. 

Curettage and electrodesiccation are where all visible cancer is scraped away and then an 

electric probe is used to kill any remaining microscopic malignant cells. For very small 

tumors, cryosurgery, which is a technique whereby cancerous cells are killed by freezing 

them with liquid nitrogen, is used. Radiation destroys the cancer with high-energy rays 

aimed from outside the body. For cancers on the eyelids, nose, fingers, and other areas, a 
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technique called Moh’s micrographic surgery is used that shaves away the tumor in thin 

layers and one layer at a time is checked under the microscope in order to preserve as 

much healthy tissue as possible. Other less common treatments are (1) 5-fluorouracial 

(Efudex, Fluoroplex), which is an anticancer drug applied directly to the skin, (2) laser 

therapy, which uses a narrow laser beam to destroy the cancer, (3) chemotherapy, and 

(4) photodynamic therapy, which kills cancer with chemicals and light.  The most 

effective treatment depends on many factors, including the size and location of the 

cancer, whether it has recurred, and age and general health of patient [12, 13]. 

The current method of detecting melanoma is the ABCDEF technique, which 

stands for Asymmetry, Border, Color, Diameter, Evolutionary change, and Funny-

looking lesion [14]. The criteria are as follows: Asymmetry- one side of the lesions is 

unlike the other side of the lesion, Border-scalloped or blotchy borders or pigment that 

appears to blend into the surrounding skin, Color-multiple colors or shades, Diameter-

sudden increase in size or larger than 6 mm, and Evolutionary change-changes in color, 

size, symmetry, surface characteristics, pain, bleeding, and tenderness. The last criterion 

is added to improve the diagnostic sensitivity of the method. It insures a low threshold 

for biopsy of suspect lesions even if they don’t meet the ABCDE criteria. With this 

technique, a biopsy of the suspect lesion is required in order to determine if cancer is 

present. If the lesion is cancerous, then it is excised along with a margin of normal-

looking skin [15]. 
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2.3 Optical Techniques for Skin Cancer Detection 

 Several optical approaches have been used for the detection of skin cancer.  One 

technique is optical coherence tomography (OCT), which is based on the Michelson 

interferometer. OCT is a novel tomographic imaging technique with micron scale 

resolution that can be used to image through highly scattering media, such as tissue [16]. 

OCT can also be combined with polarization to detect the presence of cancer. 

Polarization sensitive OCT (PS-OCT) reveals important information about biological 

tissues such as birefringence, which is related to the collagen of the tissue. Cancer causes 

the collagen fibers in the tissue to breakdown and therefore this technique could be used 

to detect this change. PS-OCT measures the Mueller or Jones matrix of the sample, 

where the latter is possible because OCT only detects the coherent light [17]. The Jones 

matrix reduces the number of images required and therefore reduces the imaging time.  

Even though PS-OCT has very high resolution, it has four main problems: (1) a limited 

depth of field (1-2 mm) [18], (2) slow measurement speed, (3) speckle appearance on 

images [19], and (4) fiber polarization [20].     

 Another optical modality for skin cancer detection is fluorescence spectroscopy. 

This method uses the autofluorescence of the skin to detect changes between normal and 

cancerous tissue. Brancaleon et al have shown that endogenous fluorescence due to 

tryptophan was more intense in both basal cell carcinomas and squamous cell 

carcinomas than in normal tissue [21]. Another modality that uses fluorescence for skin 

cancer detection is photodynamic therapy. Photodynamic therapy uses the combination 

of light and photosensitizers to detect or treat cancer. Photosensitizers are molecules that 
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have the property of absorbing light energy and using this energy to carry out chemical 

reactions in cells and body tissues. The most popular photosensitizer is 5-

aminolaevulinic acid (ALA), which is a metabolic precursor in the biosythesis of heme. 

The immediate precursor to heme in this pathway is protoporphyrin IX (PpIX), which is 

a natural photosensitizer. With the method, the photosensitizer is applied topically or 

injected into the blood stream and absorbed by cells all over the body. PpIX is then 

induced rather selectively in epithelial tumors, which can be visualized after excitation 

with light.  A CCD camera can be used to acquire fluorescence images of the cancerous 

tissue [22]. This method has several disadvantages. First, it is not cancer specific and 

therefore even healthy cells take up the photosensitizer. Also, the patient must avoid 

direct sunlight and bright indoor light for at least 6 weeks because the treatment makes 

the skin and eyes sensitive to light [23]. 

 Scattered light has also been used for cancer detection. The two types of optical 

scattering are elastic and inelastic. The elastic scattering can be described using Mie 

theory (or Rayleigh scattering for particles small compared to the wavelength), which 

relates the intensity of the scattered radiation with the concentration, size, and shape of 

the scattering particles. Mourant et al have shown that differences in scattering from 

cells in different stages of growth are due to internal changes of the nucleus. They also 

found that light scattering is caused by both the nucleus and cytoplasmic structures such 

as mitochondria [24]. Since tissue undergoes many morphological changes that occur 

due to changes in size and shape of the cellular and subcellular structures, this method 

could be used to detect changes in tissue as it becomes cancerous. The disadvantages of 



 12

this method are that multiple wavelengths may be required, and it effectiveness is 

limited in tissues because the effects of many scatters is not known. 

 The inelastic scattering approach that is used to identify cancer is Raman 

spectroscopy. Raman measures the molecular specific inelastic scattering of laser light 

within tissue, which enables the detection of biochemical changes as tissue becomes 

cancerous [25]. Huang et al have shown that Raman signals differ significantly between 

normal and cancerous tissue, with tumors showing higher percentage signals from 

nucleic acid, tryptophan, and phenylalanine and lower signals from phospholipids, 

proline, and valine, compared to normal tissues [26]. Another study found that there 

were no differences in water content between malignant and benign skin tumors, but the 

tetrahedral (free) water structure was found to increase in malignant skin tumors and 

sun-damaged skin relative to normal, healthy skin and benign tumors [27]. Even though 

this technology shows to be promising for skin cancer detection, the Raman signal in 

general is very weak and the equipment is bulky and expensive [18]. Also, background 

fluorescence from the skin inhibits the Raman signal. 

 Polarized light, the topic of this thesis, is the last optical modality to be 

discussed. The concept behind this method is that the amount of rotation of polarized 

light changes with the concentration of an optically active material such as collagen. 

Collagen fibers begin to breakdown as tissue becomes cancerous and therefore change 

the amount of rotation of polarized light. Also, changes in size and shape of cellular and 

subcellular structures cause light to depolarize less in cancerous tissue than in normal 

tissue. In 1808, E.L. Malus noted the effects of polarization when he noticed that light 
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was not the same in all directions around its line of travel [28]. In 1812, Biot developed 

the first known polarimeter and formulated the quantitative laws of polarimetry [29]. 

Many other advances in the field of polarimetry between the 17th and 19th century can 

also be attributed to the works of  Bartholinus, Huygens, Brewster, Arago, Newton and 

Fresnel but will not be described in detail here [29].  In 1976, Bickel et al. advanced 

polarimetry into the field of biomedical sensing when they described a technique that 

measured the polarization effects of the forward-scattered light from bacterial 

suspensions [30]. However, more recently there is a growing interest in the use of 

backward-scattered polarized light in biomedical applications [31-34].  Hielscher et al 

[35] introduced the Mueller matrix imaging concept for diffusely backscattered light 

from turbid media. They have investigated cancerous and noncancerous cell suspensions 

using this technique, but had to manually insert 49 various polarizer/analyzer 

combinations that took over 2 hours to produce the Mueller matrix. Pezzaniti et al. have 

presented data for a mechanical transmission-based 16-EMM polarization imaging 

system [36]. For their system, it took approximately 3 minutes to sequence through all of 

the measurements recorded by a 512 X 512 CCD detector [36]. Other semi-automated 

systems have also been developed that use Mueller matrix imaging [37-39]. This group 

has developed an Automated Mueller Matrix Polarization Imaging System (AMMPIS) 

that measures the experimental 16-element Mueller matrix of a sample in near real-time, 

which is needed for in vivo imaging [40].  The system is capable of collecting the 

Mueller matrix in less time than that of currently developed systems.   
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2.4 Melanoma Morphology of the Sinclair Swine Animal Model 

The Sinclair swine model was established at Texas A&M in the 1970’s by Dr. Max 

Amoss in the College of Veterinary Medicine and have been selectively bred to increase 

the frequency of Sinclair swine cutaneous melanoma (SSCM) [41].  The model has been 

considered a useful model for human melanoma and up to 85% of these animals are born 

with or develop cutaneous melanoma soon after birth [41].  The natural history of the 

Sinclair swine cutaneous melanoma (SSCM) tumor follows a predictable pattern of 

growth and spontaneous regression. The SSCM tumor progresses through four phases. 

The first phase is from birth to around 30 days of age and the tumor is characterized by a 

rapid increase in melanoma cell numbers. During the second phase, from about 30 to 60 

days of age, there is an initial phase of regression marked by infiltration of macrophages 

and a decrease in melanoma cell numbers. Unique to this model is a third phase, 

beginning at around 60 days of age, during which surviving melanoma cells undergo 

rapid clonal expansion. This rapid growth phase usually begins to slow at about 90 days 

of age when lymphocytes infiltrate the tumor and the final phase of regression is 

initiated. The fourth phase is total regression of the tumors, which is usually achieved by 

around 120 days of age. This well characterized model will be used to test the proposed 

system and guide the analysis of the polarization images. 
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CHAPTER III 

THEORY 

 The fundamental theories underlying this research are described in this chapter. 

The first section reviews the optical principles involved in polarimetry and the Stokes 

vector. The relationship between the Stokes vector and the Mueller matrix is discussed 

in the second section. The final section describes the statistical analysis software that 

was used in this research to classify the image data taken from the Sinclair swine. 

  

3.1 Polarized Light and Stokes Vectors 

Under normal atmospheric conditions, it has been well established that light can 

be treated as an electromagnetic wave.  Light consists of both electric and magnetic 

waves and therefore has inherent magnitude and phase for each (Figure 2).  In terms of 

the science of polarization and the property of light to be polarized, the magnetic vector 

is ignored, as it holds no bearing on the polarization phenomenon.  Therefore, in 

discussing the principle of polarization only the electric field of light will be of value.  

Light is also considered a transverse electromagnetic wave (Figure 2) meaning that the 

medium is displaced in a direction perpendicular to the motion of the wave.  Natural 

light is termed unpolarized, which has been thought of as a misnomer.  Light always has 

a polarization state; however, natural light has a very fast oscillating polarization state, 

and therefore appears to not prefer any distinct polarization state.  It can be thought of as 

containing all polarization states over a very short period of time, therefore undetectable 

by modern detection systems [42].   



 16

 

 

 

 

 

 

 

E

B 

A linearly polarized wave 

Polarization  
axis 

direction of wave motion

Figure 2: Light as a Transverse Electromagnetic Wave 
 
 

 
Mathematically, light can be thought of as two orthogonal electric waves 

oscillating at the same frequency.  The set of equations (1) below describe the electric 

field of monochromatic light propagating in free space (which is by definition 

polarized).   
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In these equations, Ex and Ey represent the electric fields in the x and y directions 

respectively, E0x and E0y represent the magnitude of the electric fields, ω is the 

frequency of the light, k = 2*π/λ, t is equal to time, z is the distance in the propagation 

direction, ε is relative phase difference between the waves, and λ is the wavelength of 

the light. 

The polarization state of light can be described as either linear, circular, or 

elliptical polarization.  All possible polarization states of a light wave can be described 

by applying certain constraints on Equation 2, which is the fundamental elliptical 

polarization state [42]. 
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where E0x and E0y represent the magnitudes of the electric field vector along the 

orthogonal Ex and Ey axes as the light wave propagates along the z-axis with a phase 

difference of ε=εy - εx between the Ex and Ey components. Table 1 shows the basic 

polarization states obtained from Equation 2, and the conditions that are necessary to 

obtain each [43]. 
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Table 1: Summary of the Derivation of the Standard Polarization States from the 
General Elliptical Polarization 

 
POLARIZATION 
STATE [Symbol] 

       CONSTRAINT 
Phase        Amplitude 

EQUATION 
 

 
Horizontal [H] 
 
 

 
ε = ±nπ 
n=0, 1,... 

 
Ey= 0 
Eo= Eox 

 
E = Ex+ Ey = Ex 

Ex(z,t) = î Eocos(kz-ωt) 

 
Vertical [V] 
 
 

 
ε = ±nπ 
n=0, 1,... 

 
Eox= 0 
Eo= Eoy 

 
E = Ex+ Ey = Ey 

Ey(z,t) = j Eocos(kz-ωt) 

 

Plus 45 deg. [P] 
 
 
 

 
ε = ±nπ 
n=0, 1,... 

 
Eoy= Eox 

= Eo 

 
E = Ex+ Ey 

E(z,t) = (î + j) Eocos(kz-ωt) 

 
Minus 45 deg. [M] 
 
 
 
 

 
Ε = ±nπ 
n=0, 1,... 

 
Eoy= Eox 

= Eo 

 
E = Ex+ Ey 

E(z,t) = (î - j) Eocos(kz-ωt) 

 
Right Circular [R] 
 
 

 
ε = ± nπ/2 
n=1, 2,... 
 

 
Eoy= Eox 

 
 

 
E = Eo[î Eocos(kz-ωt)+ j Eosin(kz-ωt)] 
 
 

 
Left Circular [L] 
 
 

 
ε = ± nπ/2 
n=1, 2,... 
 

 
Eoy= Eox 

 
 

 
E = Eo[î Eocos(kz-ωt)- j Eosin(kz-ωt)] 
 
 

 
 
 
The intensity of the polarization vector of light can be completely described by 

the  Stokes vector as defined below in Equation 3. The polarization state of a beam 

of light, whether it is natural, totally, or partially polarized, can be described in terms of 

these quantities. 

14×
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where I is the measured intensity value, S0 is the total detected light intensity, of which 

S1 is the portion that corresponds to the difference between linear horizontal and vertical 

polarization states, S2 is the portion that corresponds to the difference between the linear 

+45o and –45o polarization states, and S3 is the portion that corresponds to the difference 

between the right circular and left circular polarization states [42].  In this equation < >T 

refers to time averaging and I is the detected intensity represented with a subscript for 

the polarization type it represents (H=horzontal, V=vertical, P= +45o, M= -45o, R= right 

circular, and L= left circular).  These measured intensities translate into the Stokes 

values.  All of the values lie between -1 and 1, and they represent the tendency of the 

measured light to be polarized linearly, ±45o, and right or left- handedness.  Using the 

values of the Stokes vector a value termed the degree of polarization (DOP) can be 

computed (Equation 4): 
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The DOP is 1 for completely polarized light, zero for totally depolarized light, and 

assumes a fractional value for any case in between. 
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3.2 Mueller Matrix 

In 1943, Hans Mueller developed a matrix that relates the Stokes vector of the 

light impinging on a sample to the Stokes vector leaving the sample [42]. Using the 

method with the input and output polarization states (Stokes vectors) known, the 4x4 

Mueller matrix can be used to describe the polarization properties of a sample.  This 

relationship is shown below in Equation 5 where M is the Mueller matrix and Sout and Sin 

are the output and input Stokes vectors respectively. 
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The Mueller matrix can be calculated using 16, 36, or 49 polarization images, 

with 36 and 49 images corresponding to an over determined system [43]. Sometimes it is 

necessary to use more than 16 images to reduce the error due to noise associated with the 

Mueller matrix calculation [39]. The Mueller matrices are shown in Table 2, where the 

first term and second terms represent the input and output polarization states 

respectively. The polarization states are defined as: H=Horizontal, V=Vertical, P=+45o, 

M=-45o, R=Right circular, L=Left circular, and O=Open (i.e. no polarization). 
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Table 2: Mueller Matrix Equations for (a) 16, (b) 36, and (c) 49 Polarization Images 

M11  = HH+HV+VH+VV M12  = HH+HV−VH−VV M 1 3  = 2PH+2PV−M 1 1 M 1 4  = 2RH+2RV−M 1 1

M21  = HH−HV+VH−VV M22  = HH−HV−VH+VV M 2 3  = 2PH−2PV−M 2 1 M 2 4  = 2RH−2RV−M 2 1

M 3 1   = 2HP+2VP−M 1 1 M 3 2   = 2HP−2VP−M 1 2 M33 = 4PP−2PH−2PV−M31 M34 = 4RP−2RH−2RV−M31

M 41  = 2HR+2VR−M 11 M 42  = 2HR−2VR−M 12 M43 = 4PR−2PH−2PV−M41 M44 = 4RR−2RH−2RV−M41

(a) 

M11 = HH+HV+VH+VV M12 = HH+HV−VH−VV M13 = PH+PV−MH−MV M14 = RH+RV−LH−LV 

M21  = HH−HV+VH−VV M22 = HH−HV−VH+VV M23 = PH−PV−MH+MV M24 = RH−RV−LH+LV 

M31  = HP−HM+VP−VM M32 = HP−HM−VP+VM M33 = PP−PM−MP+MM M34 = RP−RM−LP+LM 

M41  = HR−HL+VR−VL M42 = HR−HL−VR+VL M43 = PR−PL−MR+ML M44 = RR−RL−LR+LL 

(b) 

M11 = OO M12 = HO−VO M13 = PO−MO M14 = RO−LO 

M21  = OH−OV M22 = HH−HV−VH+VV M23 = PH−PV−MH+MV M24 = RH−RV−LH+LV 

M31  = OP−OM M32 = HP−HM−VP+VM M33 = PP−PM−MP+MM M34 = RP−RM−LP+LM 

M41  = OR−OL M42 = HR−HL−VR+VL M43 = PR−PL−MR+ML M44 = RR−RL−LR+LL 

                                                         (c) 
 
 
 
If the sample is said to be non-depolarizing, meaning that the input light is 

polarized and the sample does not depolarize (DOP=1) the light, the Mueller matrix can 

be simplified into the Jones Matrix shown below in Equation 6, where E’ and E are the 

output and input Jones vectors respectively.  This, however, does not mean the output 

must be in the same polarization state as the input, it just needs to be polarized.  For 

example, a coherent laser (vertically polarized) passes through a half wave plate (optical 

retarder), which rotates the polarization angle of the light but doesn’t depolarize the 

light. 
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The Jones vector only requires 7 independent measurements, whereas the Mueller 

matrix needs a minimum of 16 independent measurements [43]. The Mueller matrix is 

chosen for biomedical applications involving cancer because cancerous tissue is a 

depolarizing sample. 

 

3.3 Classification and Regression Tree (CART) Software 

 Classification and regression tree (CART) software is used in this thesis to 

analyze Mueller matrix data taken from Sinclair swine. CART was first introduced by 

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone in 1984 [44].  

CART is a tree structured nonparametric data analysis software that uses tree pruning 

and cross validation. The CART procedure for growing trees is binary recursive 

partitioning. It is binary partitioning because parent nodes are always subdivided into 

two child nodes and recursive because the process is repeated for each subdivision of 

data continuing until further partitioning is impossible or is limited by some criterion set 

by the analyst. The keys of a CART analysis are (1) splitting each node in a tree, (2) 

deciding when a tree is complete, and (3) assigning each terminal node to a class 

outcome.  The first step is splitting each node in a tree and determining the goodness-of-
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split. CART uses node impurity, or heterogeneity of a node, to rank candidate splits. If Y 

is a categorical dependent variable that takes on values j=1,…,J for which we want to 

grow a classification tree, each node in the tree will be represented by a symbol t and 

will have probability distribution for the values of the dependent variable. Gini impurity 

criterion, shown in Equation 7, is the default for determining the node impurity [44]. 

Sti −= 1)(         (7)  

where i(t) is the impurity of node t and S is the sum of squared probabilities p(j | t) 

summed over all levels of the dependent variable. Another splitting criterion that can be 

chosen by the analyst is the Twoing criterion, which is the measure of the difference in 

probability that a class appears in the left descendant rather than the right descendant 

node. This criterion is bases on class separation rather than node heterogeneity. The 

Twoing criterion is given in Equation 8 [44]. 

( )∑ −
j

RL
RL tjptjppp 2)|()|(

4
     (8) 

where pL and pR are the probability of going left or right respectively.  

 The Twoing criterion divides the classes into two groups, gathering similar 

classes together and attempting to separate the two aggregated groups in the descendent 

nodes. It thus treats every multi-class split as if it were a two-class problem.  The 

Twoing criterion also reveals class similarities within each node because it separates the 

data by similar classes [44]. 

 Other splitting criteria are available such as ordered Twoing, forced splitting, and 

linear combination splits. Ordered Twoing is used when the categorical variables are 
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ordered and therefore the class label is not arbitrary. This criterion is similar to Twoing 

except the two class groups are restricted to consist of adjacent classes. Forced splitting 

is used when the analyst wants to generate a CART tree using specific splitting variables 

in selected nodes. This can either be done manually when the split value is known or by 

allowing CART to determine the root node split value. The last splitting criterion is 

linear combination splits, which is used with data that has a linear structure [44]. 

 Once the best split is found, CART repeats the process for each child node, 

continuing recursively until further splitting is impossible or is stopped by the analyst. 

Splitting will be impossible if only one case remains in a particular node or if all the 

cases in that node are exact copies of each other. Once this maximal tree is obtained, 

CART examines smaller trees obtained by pruning away braches of the maximal tree.  

Then the cases in each node are classified. The criterion that is used is the plurality rule, 

which states that the group with the greatest representation determines the class 

assignment [44].  

 Once the maximal tree has been pruned into a set of sub-trees, the best tree is 

determined by testing each for its error rate or cost. When there is sufficient data (at least 

200 cases), this is done by dividing the sample into learning and test sub-samples. The 

learning sample is used to split the nodes, continuing until the largest tree is grown. The 

independent test sample is then used to estimate the rate at which cases are misclassified. 

The misclassification error rate is calculated for the largest tree and also for sub-tree 

obtained by pruning. The best sub-tree is the one with the lowest or near-lowest cost 

[44].  
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If there is insufficient data for a separate test sample (less than 200 cases), CART 

employs a cross validation technique, in which a maximal tree is grown on the entire 

learning sample. The learning sample is then divided into 10 roughly equal parts 

containing smaller distributions for the dependent variable. CART takes the first 9 parts 

of the data, constructs the largest possible tree, and uses the remaining 1/10 of the data to 

obtain initial estimates of the error rate of selected sub-trees. The same process is then 

repeated on another 9/10 of the data while using a different 1/10 part as the test sample. 

This continues until each part of the data has used as a test sample. The results of the 10 

test samples are then combined to form error rates for trees of each possible size. This 

process gives an accurate estimate of the independent predictive accuracy of the tree 

[44].  

Besides the primary split, two other types of splits, surrogate and competitor, are 

performed by CART. A competitor is a variable that might have been used instead of the 

primary split variable. The surrogate split is a splitting rule that closely mimics the 

action of the primary split. A good surrogate splits the parent node into descendant nodes 

similar in size and composition to the primary split and also tries to match the primary 

split on the specific cases that go to the left and right child nodes [44].   

The surrogate splits along with the primary splits are used to determine variable 

importance. This is necessary because variables that are not a primary node splitter may 

be highly important. Since two variables that contain similar information will be split 

based on how they perform in a given context, they can not be classified as one 

important and the other unimportant. Because of this possibility of one variable hiding 
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the significance of another, CART calculates a variable importance score. The variable 

importance is the improvement measure attributable to each variable in its role as a 

surrogate to the primary split. The values of these improvements are summed over each 

node and totaled, and are scaled relative to the best performing variable. The variable 

with this highest importance is scored 100, and all other variables will have lower scores 

ranging downwards towards zero [44]. 
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CHAPTER IV 
 

MATERIALS AND METHODS 
 

 This chapter presents a detailed description of the Mueller matrix imaging system 

implemented in this research. The first section presents an overview of the system setup 

and equipment, and the polarization vector is then traced from the light source to the 

detector to provide a basis for the calibration procedure. The second section describes 

the current system calibration procedure and shows the theoretical calibration curves for 

each electro-optic. The next section describes the in vivo Sinclair swine experiments and 

discusses the image analysis techniques. A new calibration technique is discussed in the 

final section. 

 

4.1 Mueller Matrix Imaging System 

4.1.1 Experimental Setup 

 The Automated Mueller Matrix Polarization Imaging System, shown in Figure 3, 

consists of two branches: an input and an output. A 150-watt (Navitar, Rochester, NY), 

halogen bulb light source is passed through a red 633.8 nm filter (Thermo Oriel, 

Stratford, CT) with a bandwidth of ± 10.5 nm and is collimated by a convex lens, focal 

length 38.1 mm (Newport Corporation, Fountain Valley, CA). This wavelength is 

chosen because the amount of scatter and absorption in a turbid medium, such as skin, 

falls off with increasing wavelength in the visible to near-infrared region. The beam is 

sent through the input branch that consists of a Glan Thompson 100,000:1 linear 

polarizer (Newport Corporation, Fountain Valley, CA) set at +45o (to the horizontal) and 
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two voltage-controlled optical devices, a polarization rotator and a variable retarder 

(Meadowlark Optics, Frederick, Colorado). These voltage-controlled components allow 

for the production of the necessary input polarization states.  The variable rotator, which 

rotates the polarization vector of the initially polarized beam, produces all the necessary 

states of linearly polarized light (horizontal, vertical, and ±45o), and the variable 

retarder, which changes the relative phase between the two components of the electric 

field vector, produces left and right circular polarization states. After passing through the 

input optics, the polarized light hits the sample and the diffusely reflected light passes 

through the output optical branch, which consists of the same components as the input 

branch except in the reverse order with the polarizer set at -45o. A 508x509, 14-bit CCD 

camera (Apogee, Auburn, CA) is placed at the end of the output branch and is used to 

capture the resulting images.  Automation of the system is accomplished via a 

LabVIEW® program that controls the variable rotators, retarders, and the CCD camera.  
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(2)

(3)

(4)

(5)

(8)

(9)

CCD
Camera

Sample
45 45

(7)

Components

(1)   White light source
(2)   635nm red filter
(3)   Collimating lens
(4)   Polarizer (+45degrees)
(5)   Variable Rotator
(6)   Variable Retarder
(7)   Variable Retarder
(8)   Variable Rotator
(9)   Polarizer (-45degrees)

Computer

Specular
reflection

(6)

 

Figure 3: The Fully Automated Mueller Matrix Polarization Imaging System [44] 
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4.1.2 Liquid Crystals 

 The variable rotators and retarders used in this research to modulate the polarized 

light are liquid crystals, and some background on them will be given here. In 1888, 

Friedrich Reintzer discovered the first liquid crystal when he noticed that cholesteryl 

benzoate seemed to have two distinct transition points, one at which the crystal changed 

into a cloudy liquid and another where it became transparent [42].  Liquid crystals have 

long cigar-shaped molecules that can move about and lack positional order. However, 

they do sustain a large-scale orientational order because the molecules strongly interact. 

The nematic liquid crystals tend to have their molecules parallel even though their 

positions are fairly random.  

Liquid crystal cells are constructed using two pieces of flat glass coated with a 

transparent conducting metallic film, such as indium tin oxide or fused silica [42,45]. 

The two pieces of glass are spaced a few microns apart, and the cavity is filled with the 

liquid crystal. In this configuration, the glass serves as electrodes and a controlling 

voltage will be applied across them [42]. It is necessary to produce ridges on the interior 

of each glass window so that the liquid crystal molecules will be parallel to the glass and 

each other. This can be accomplished by rubbing the surface of the window so that 

parallel microgrooves are produced.  

Liquid crystals are used to make variable rotators and variable retarders, both of 

which are composed of a liquid crystal variable retarder. The rotator also has a quarter-

wave plate within it so that only linear polarization states are produced (Figure 4). The 

long axis of the liquid crystal molecules defines the extraordinary index, and with no 
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voltage present, the molecules lie parallel to the windows. This is where maximum 

retardance occurs. When voltage is applied across the liquid crystal, the molecules tip 

parallel to the applied electric field, and as voltage increases, the effective birefringence 

decreases, causing a reduction in retardance (Figure 5) [45]. The retardance ∆ϕ of a 

liquid crystal is shown in Equation 9. 

                          ),,(2),,( o
o

o TVndTV λ
λ
πλϕ ∆=∆     (9) 

where V is applied voltage, T is temperature, λo  is the vacuum wavelength, d is 

thickness of crystal, and ∆n is the refractive index change. It can be seen from this 

equation that the retardance is not only dependent on voltage but also on temperature 

and wavelength. The retardance decreases 0.4% per oC increase and decreases as λo 

increases. The retardance maximum occurs when the voltage is zero and is minimum 

when the applied voltage is approximately 5-7 volts.  At the maximum voltage, the 

minimum retardance is only about 30 but can be reduced to 0 if a compensator is used 

[42,45]. 

 
 

 

Figure 4: Liquid Crystal Variable Rotator Schematic [45] 
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(a) Maximum 
Retardance 
 
 
 
 
 
 
 
(b) Minimum 
Retardance 

Figure 5: Liquid Crystal Variable Retarder Construction [45] 

 

Liquid crystals, as described above, do not require high driving voltages and are 

therefore easily implemented into a system in which a computer controls them. The 

drawbacks of using liquid crystals include instability with temperature changes, low 

modulation frequency compared to other methods (2 kHz), and true rotation can not be 

obtained. Also, their response time is 5-20 ms, which is longer than other types of 

polarization modulators such as Pockels cells [45].  

 

4.1.3 Polarization Vector 

 In order to understand the system calibration procedure, it is important to 

comprehend the signal being measured. The light is initially linearly polarized by a fixed 

polarizer at +45o. The light then passes through a variable retarder that is capable of 

producing all linear polarization states, including but not limited to horizontal, vertical, 
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and ±45o.  The light then passes through a variable retarder, which is capable of 

producing right and left circular light. The light then impinges on the sample, and the 

diffusely reflected light is sent through the output arm. The output arm consists of the 

same components as the input arm except in reverse order with the polarizer set at -45o. 

The output arm is set up in this manner to “unwind” the diffusely reflected light.  In 

order to calculate the 36-element Mueller matrix of a sample, a minimum of 16 

independent measurements must be made by producing different combinations of input 

and output polarization states. According to the Mueller matrix equations given in the 

theory section, the polarization states that are needed with 36 measurements are 

horizontal (H), vertical (V), +45o (P), -45o (M), right circular (R), and left circular (L). 

To obtain these polarization states, the three optics in the input arm (and similarly the 

output arm) must together produce each state. Table 3 below shows the rotation and 

retardance combinations necessary to produce different input polarization states with 

input polarization set by polarizer at +45o. This table is also true for the output 

polarization states because the direction of light propagation is reversed. This 

information is needed to calibrate the system because the three input or output optics 

work together to produce a given polarization state.  
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Table 3: Rotation and Retardance Required to Produce Different Input Polarization 
States with Input Polarization at +45o 

 
Polarizer Rotator Retarder Output 

+45o 0o 0o +45o (P) 
+45o +45o 0o Horizontal 

(H) 
+45o 90o 0o -45o (M) 
+45o 135o 0o Vertical 

(V) 
+45o +45o QWP Left 

circular 
(L) 

+45o 135o QWP Right 
circular 

(R) 
 
 
 
 In order to calibrate each electro-optic to produce a desired polarization state, the 

theoretical model of how each optic acts in the system must be known. This can be done 

by using Mueller-Stokes calculus to describe the system with each optic’s unique 

Mueller matrix.  An ideal linear rotator can be described as follows:   
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where θ is the fast axis. 

 To calibrate rotator(1), the input polarizer is set to +45o and the analyzer is 

changed between horizontal (H), vertical (V), +45o (P), and -45o (M). To model the 

system in this configuration with the fast axis of the rotator changing between 0 and π 

radians, the Stokes vector for +45o is multiplied by the rotator Mueller matrix then this 
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combination is multiplied by the Mueller matrix for H, V, P, or M. This process is 

shown in Appendix A, and is summarized below where the irradiance is the first 

component of the Stokes vector. 
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 (2) Vertical output (Vo) 
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(3) +45o output (Po) 
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(4) -45o output (Mo) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−

−

0
2cos1

0
2cos1

2
1

θ

θ

 



 35

 The irradiance, the first element of the output Stokes vector, is the quantity of 

interest because it is the measurable quantity. It is measured using the CCD camera. The 

other three elements of the Stokes vector give information on the polarization state of 

light, which is not measured by the system. To obtain the theoretical plot for rotator(1), 

the irradiances are plotted as a function of the fast axis of the rotator. This procedure can 

be done again for rotator(2) with the difference being that the analzyer is held constant at 

-45o but the polarizer is changed between H, V, P, M.  The rotator(2) calculations are 

shown below. The plots for the components are shown in the Results section. 
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 (2) Vertical input (Vi) 
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(3) +45o input (Pi) 
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(4) -45o input (Mi) 
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 The general equation of the Mueller matrix of an ideal retarder is given in 

Equation 11. 
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where δ is retardance, C2 = cos2θ, S2 = sin2θ, and θ is fast axis. For the retarder used in 

this system, the fast axis is +45o. The Mueller matrix for a retarder with fast axis at +45o 

is shown below in Equation 12. 
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 Mueller Stokes calculus is again used to model the effect of the retarder on the 

system. Retarder(1) is calibrated by changing the input polarization between H, V, P, 

and M and setting the output polarization to H. The following shows the calculations for 

retarder(1). 
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(1) Horizontal input (Hi) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+
+

0
0
cos1
cos1

2
1 δ

δ

 

 

 (2) Vertical input (Vi) 
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(3) +45o input (Pi) 
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(4) -45o input (Mi) 
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 The calculations for retarder(2) produce the same irradiance values as retarder(1). 

The calculations are shown below, and the plots for retarder(1) and retarder(2) are 

shown in the Results section. 
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 (2) Vertical output (Vo) 
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(3) +45o output (Po) 
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(4) -45o output (Mo) 
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4.2 Current System Calibration 

4.2.1 Main Calibration 

 The Mueller matrix imaging system must be precisely calibrated so that errors 

are not induced in the measured Mueller matrices. This process is carried out in several 

steps so that each optic is calibrated separately. When an electro-optic is calibrated, the 

voltage necessary to produce a specific rotation or retardance is determined. For 

calibration, the system is setup in transmission mode, and the polarizer and analyzer are 

placed in the input and output arms respectively and the desired angles (+45o for 

polarizer, -45o for analyzer) are determined. This is accomplished by first setting the 

polarizer to horizontal and analyzer to vertical so that minimum intensity is found, then 

the horizontal position for the analyzer is found by subtracting (or adding) 90o to the 

vertical angle setting. The analyzer horizontal position is verified by detecting maximum 

intensity. The polarizer is then set to vertical by adding (or subtracting) 90o to the angle 

setting for horizontal and with the analyzer set to horizontal, the minimum intensity is 

found. The polarizer and analyzer are also set to vertical and maximum intensity is 

verified. Now that the horizontal and vertical angles for both the polarizer and analyzer 

have been determined, the desired angles (+45o for polarizer, -45o for analyzer) can be 

found. The polarizer is then set to +45o with the analyzer at vertical and horizontal and 

the half intensity value is verified. The half intensity should be (max intensity + min 

intensity)/2.  Next retarder(2) is placed in the output arm to verify polarizer and analyzer 

settings. If the polarizer and analyzer are set properly then the retarder should have no 

effect when the analyzer is set to vertical and horizontal and polarizer at 45o (PH=PV). 
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The voltages in the Labview program calibration are set to go from 0 to 5 Volts in 0.05 

increments for channel 2. The Labview program must be changed for each electro-optic 

so that the program changes the voltage to the desired optic and leaves the voltages to 

the other optics constant. The Matlab program cal100.m (Appendix B) is ran on the 

images, and the output intensity values are manually copied to Excel. The results are 

plotted and a straight line should be seen with amplitude of the half intensity value for 

both PV and PH. If not, then the polarizer and analyzer must be realigned to find the 

correct angles.  

Once the correct angles are found, the analyzer is fixed at -45o, and retarder(2) is 

removed. Rotator(2) is then placed into the output arm, and the Labview program is 

changed so that the channel 3 voltage is varied from 0 to 3 Volts in increments of 0.05. 

The polarizer is rotated between horizontal, vertical, +45o, and -45o, and the Labview 

program calibration is run for each position. The Matlab program cal60.m (Appendix C) 

is ran and the data is copied to Excel so the results can be graphed. The locations of Ho, 

Vo, Po, Mo (output) are then determined by comparing the results to the theoretical 

graph for rotator 2 shown in Figure 6. According to Figure 6, Ho occurs when the rotator 

is rotated by 3π/4 or when PiMo and MiMo intersect and Hi is maximum. Therefore, the 

value for Ho is found to two decimal places by zooming in at the voltages around the 

intersection of PiMo and MiMo, and then found to three decimal places by zooming in 

again. This is done for Vo (intersection of PiMo and MiMo where Vi is max), Po 

(intersection of HiMo and ViMo where Pi is max), and Mo (intersection of HiMo and 

ViMo where Mi is max) so that all are found to three decimal places. 
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Figure 6: Theoretical Results for Rotator(2) 
 
 
 

 Next rotator(1) is inserted into the input arm and the Labview program is 

changed so that the voltage to channel 1 is  varied from 1-3 Volts in 0.05 increments. 

The Ho voltage is set in Labview as channel 3, and the data for rotator(1) is taken. This 

is done three more times, each time changing the channel 3 voltage first to Vo, then Po, 

and last Mo. After each set, the Matlab program cal40.m (Appendix D) is run, and the 

intensity values are copied into Excel. A graph of all the cases is made and the Hi, Vi, 

Pi, and Mi voltages are found to three decimal places the same way the output voltages 

were found by using Figure 7.  In order to obtain horizontal (Hi), vertical (Vi), +45o (Pi), 
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and -45o (Mi) input polarizations, the rotator must rotate the polarized light by π/4, 3π/4, 

π, and π/2 respectively. 
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Figure 7: Theoretical Results for Rotator(1) 
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Now that all the voltages necessary to produce the input and output linear 

polarization states have been found, the next step is to find the circular polarization 

states. To do this, retarder(2) is inserted into the output arm, and the Labview program is 

changed so that channel 2 can be varied from 1.5-5.5 Volts in 0.05 increments. In the 

Labview program, the Hi voltage is set as channel 0, and the data for Ho, Vo, Po, and 

Mo cases taken by changing channel 3 to the corresponding voltage. After each set, the 

Matlab program cal80.m (Appendix E) is ran, and the data is copied into Excel. All the 

data is plotted on one graph, and the quarter wave plate (QWP) and zero retardance 

voltages are determined. According to the theoretical graph for the retarder (Figure 8), 

the QWP occurs when HiHo and HiVo intersect at the half intensity, and zero retardance 

occurs when HiHo is maximum and ViVo is minimum. As done previously, the voltages 

are determined to three decimal places by zooming in around the appropriate region. For 

an ideal retarder, the QWP and zero retardance voltages are equal for both horizontal 

(Hi) and vertical (Vi) inputs. Since there is error introduced in the system by 

misalignments and optic imperfections, the retarders are not ideal and therefore the QWP 

and zero retardance voltages have to also be found for the vertical input (Vi). This is 

done the same as Hi except the voltage to channel 0 is set to Vi. 
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Figure 8: Theoretical Results for Retarder(2) 
 
 
 

 The final step is to calibrate retarder (1). Once it is placed into the input arm, the 

Labview program is changed so that channel 1 can be incremented by 0.05 Volts from 

1.5-5.5 Volts. Channel 0 is set to Hi, channel 2 to zero retardance, and channel 3 to Ho, 

and retarder(1) calibration data is taken. This is done three more times, each time with 

channel 0 set to Hi, channel 2 set to zero retardance, and changing channel 3 to Vo, Po, 

and Mo. Also, this should be done for the output right and left circular cases by setting 

channel 2 to the QWP voltage and channel 3 to Ho and Vo. Table 4 shows the channel 

settings for all six cases. From these results, the QWP and zero retardance voltages are 
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determined to three decimal places for retarder(1) as done previously except using 

Figure 9.  
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Figure 9: Theoretical results for Retarder(1) 
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4.2.2 Fine Tune the Calibration 

 Once a rough calibration has been obtained, a fine tune calibration is needed. For 

this calibration, the intensity of each case is observed independently, and the voltages to 

the rotators and retarders are adjusted so that the appropriate intensity value is achieved. 

For the cases where input and output are the same polarization state, the intensity is 

maximum, and when the input and output are 90 degrees out of phase the intensity is 

minimum. All the other cases the theoretical intensity is maximum plus minimum 

divided by 2 (half intensity). For each case, there are four variables (voltages) that 

attribute to the intensity, and in order to determine the correct voltage to adjust, a system 

model that is a function of the four voltages is needed. The system is modeled using 

Mueller-Stokes calculus and is shown below in Equations 13 and 14. 

inout SMS ⋅= '         (13) 

11Re2Re2' RotatortardersampletarderRotatorAnalyzer MMMMMMM ⋅⋅⋅⋅⋅=  (14) 

where Sout and Sin are the output and input Stokes vectors respectively and M’ is the 

Mueller matrices of all the optical components in the system. For calibration, the system 

is setup in transmission mode with air as the sample and the initial polarization set to 

+45o. The following shows the calculation of Sout, where θ1 and θ2 are the rotation of 

rotator 1 and 2 respectively, and δ1 and δ2 are the retardance of retarder1 and retarder2 

respectively. 
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Since the quantity that the system measures is intensity, S0 is the Stokes parameter of 

interest, and the output vector can be simplified as shown in Equation 15. 

[ ])sinsincos(cos2cos2cos2sin2sin1
2
1

121212120 δδδδθθθθ −−+=S  (15) 

 This equation can be used to determine the correct voltages to adjust in order to 

obtain a particular combination of input and output polarization states. See Appendix F 

for Matlab plots that show the effect of changing each of the four variables for each 

combination of input and output polarization states. 
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4.3 Sinclair Swine Experiments 

4.3.1 Data Collection 

Nine Sinclair swine piglets, which are housed at Texas A&M University’s 

Veterinary medicine complex, were used for this study. The Sinclair swine model is 

shown in Figure 10. An approved animal use protocol controlled their treatment. The 

pigs were anesthetized with a ketamine/xylezine complex so that they would not be able 

to move during data collection in order to reduce the error associated with motion 

artifact.  

 
 
 

 
Figure 10: Sinclair Swine Model 

 
 
 
 A veterinary assistant that was responsible for administering anesthesia and 

caring for the pigs identified normal skin, benign moles, and melanoma tumors on each 
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pig. Since the pigs were used in other research, biopsies of the lesions could not be 

taken. Therefore, the lesions were classified by the veterinary assistant’s knowledge of 

the differences between benign and melanoma lesions.  The lesion or normal skin was 

covered with gel and placed against a glass slide for index of refraction matching, and 36 

polarization images were taken. A total of 102 tissue samples, 29 normal, 30 mole, and 

43 cancerous lesions, were imaged.  

 

4.3.2 Data Analysis 

Data processing was accomplished by cropping the images to include only pixels 

within the boundaries of the lesion. These cropped images were then processed using 

Matlab to calculate the Mueller matrix.  In order to compare the Mueller matrices, one 

numerical value for each Mueller matrix element was used. Two methods of obtaining 

this value included: (1) the mean and (2) the 10th-90th percentile intensities of each 

image.  The Mueller matrix for each sample was calculated using both methods, making 

a total of 10 Mueller matrices for each sample.  

In order to separate the data into the three types, normal, mole, and cancer, 

statistical processing using Classification and Regression Tree (CART) software was 

performed. The software was used to produce a classification tree, and the importance of 

each Mueller matrix element in the classification was determined. The 102 cases, each 

with 10 Mueller matrices, were analyzed using CART. The data was also separated by 

exposure time and analyzed using CART. Exposure times of 0.06, 0.12, and 4 seconds 
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were used with 19, 20, 19 samples respectively. The remaining 44 samples could not be 

divided into large enough groups to do a separate exposure time analysis.   

 

4.4 New Calibration 

 Since the calibration procedure described previously is a time consuming and 

cumbersome process, a new technique has been developed. The new calibration 

technique is automated and is incorporated into a new Labview program that controls the 

system (Appendix G).  The new Labview program fixes many of the previous software 

problems such as having to take two images instead of one, and it also has new features 

such as calculating and displaying the sample Mueller matrix. Within this program, there 

is a drop down menu on the user interface that gives several options, one of which is 

calibration. The calibration program allows the user to determine the necessary voltages 

to be used in the main program for data collection.  Before the program can be used to 

calibrate the system, the zero rotation voltage for rotator1 and the zero retardance 

voltages for retarder1 and retarder2 must be determined. The zero rotation voltage for 

rotator1 is determined by first nulling the system with the polarizer at +45o and the 

analyzer at -45o, and then rotator1 is placed between them with its slow axis parallel to 

the input polarization state. The calibration data that was given from the manufacturer 

for rotator1 is used to approximate where zero rotation will occur, and then the voltage is 

varied in a window of about 0.1 volts around that voltage until the system is nulled at 

minimum intensity. If the system is unable to be nulled, then the polarizer and analyzer 

angles are not exactly correct and need to be adjusted. This is done by changing the 
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polarizer and analyzer angles a degree at a time until the system is nulled with rotator1 

in place. Once the zero rotation voltage has been determined, the zero retardance 

voltages for retarder1 and retarder 2 are determined the same way as the rotator1 zero 

rotation voltage.  

 Once all the “zero” voltages have been determined, all of the components are 

aligned using the backreflected beam from a laser with the system in transmission mode. 

It is important to note here that alignment errors produce large errors in the calibration 

results, and hence in the Mueller matrix. The zero rotation and retardance voltages are 

input into the calibration program under the ROTATOR2 tab, and the voltage to rotator2 

is set to vary between 1.00 and 2.30 Volts in 0.01 Volt increments. The “Take Images?” 

button is pressed and the program takes the requested data. The program calculates the 

Ho, Vo, Po, and Mo voltages by using the PiMo curve from Figure 3 above, where Ho and 

Vo are calculated as the half intensity voltages, Po is the maximum intensity voltage, and 

Mo is the minimum intensity voltage.  The program calls a Matlab program that searches 

for the voltages, and it displays them on the screen.  Figure 11 shows the rotator2 data 

acquired using the calibration program with the points of interest enlarged to show the 

voltages calculated by the Matlab program.  
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Rotator2 Calibration Curve
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Figure 11: Rotator2 Calibration Curve 
 
 

 
The next component to calibrate is rotator1. The user then chooses the 

ROTATOR1 tab and sets the zero rotation voltages for the retarders as done before and 

sets the Mo voltage for rotator2 obtained from rotator2 calibration. Then the voltage is 

set to vary between 1.00 and 2.30 Volts in 0.01 Volt increments, and the Hi, Vi, Pi, and 

Mi voltages are determined as before. Figure 12 shows the data obtained from the 

rotator1 calibration, where the points chosen by the Matlab program are enlarged.  
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Rotator1 Calibration Curve
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Figure 12: Rotator1 Calibration Curve 
 
 
 

After all the voltages necessary to produce the linear polarization states have 

been determined, retarder2 is calibrated by clicking on the RETARDER2 tab in the 

program and setting the zero retardance voltage for retarder1, the Hi voltage for rotator1, 

and the Vi voltage for rotator2.  The retarder2 voltages are set to go from 1.5 to 5.5 in 

0.01 increments, and the “Take Images?” button is pressed to collect the data. A Matlab 

program similar to that for the rotators calculates the quarter wave plate (QWP) voltage 

for the retarder. This process is repeated again using the Vi voltage for rotator1 and the 

Hi voltage for rotator2. This is done because the experimental QWP voltages for the 
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horizontal and vertical polarization states are not the same. Figure 13 shows the 

horizontal and vertical QWP voltages determined using the calibration program.  

 
 
 

Retarder2 Calibration Curve
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Figure 13: Retarder2 Calibration Curve 
  
 
 
The last component to be calibrated is retarder1. The RETARDER1 tab is 

chosen, and the voltages are set to increment by 0.01 Volts from 1.5-5.5 volts. The 

process used to calibrate retarder2 that was described above is used, and the horizontal 

and vertical QWP voltages are determined. Figure 14 shows the retarder1 calibration 

data. 
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Retarder1 Calibration Curve
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Figure 14: Retarder1 Calibration data 
 
 
 

Once all of the voltages are determined, the user can close the calibration 

program by clicking the “OK” button, and can now choose VOLTAGES from the drop 

down menu. The voltages can be set in the window and will be displayed on the main 

window for each case of input and output polarization state. Other settings can also be 

made using the drop down menu such as image save path, number of images to take (16 

or 36), and DAQ board settings. Once everything is set and Kestrel Spec Imaging 

software is opened, the “Acquire Images” button can be pressed to take the polarization 

images and display the Mueller matrix. 
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CHAPTER V 

RESULTS AND DISCUSSION 

This chapter reviews and discusses the results obtained during this research. The 

initial section presents the Mueller matrix image analysis using the mean and percentile 

intensity values for each image. The second section shows the statistical analysis results 

for the Mueller matrix data, and gives the variables that are capable of distinguishing 

between cancerous and noncancerous tissue.  The final section gives the new calibration 

verification results and discusses its potential as a new calibration method.  

 

5.1 Mueller Matrix Results 

 After the data was collected, the Mueller matrix was calculated for each sample. 

Figure 15 shows the full intensity polarization image, HH, for each skin type. 

 
 
 

  

    (a) Normal Skin                                                   (b) Benign Mole 

Figure 15: HH Images of Skin Lesions from the Sinclair Swine 
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                (c) Cancerous Lesion 
Figure 15: Continued 

 
 
 
 The Mueller matrix images are shown in Figure 16. The images are normalized 

by the first (M11) image, except the M11 image which was left for comparison.  
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(a) Normal Skin 

Figure 16: Mueller Matrix Images from the Sinclair Swine 
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(b) Benign Mole 
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M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 

(c) Cancerous Lesion 

Figure 16: Continued 
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 From these images alone, it is difficult to distinguish between the tissue types. 

Therefore, the images were cropped to include only the pixels of the lesion contained 

within the border, and they were analyzed using both the percentile and mean intensities 

as described in the previous chapter. The data was analyzed all together and separated by 

exposure time since exposure time determines the dynamic range of the data. Exposure 

times of 0.06, 0.12, and 4 seconds were used with 19, 20, and 19 samples respectively 

for each. The rest of the data was at other exposure times, but not enough data was 

collected for each to be used. It was determined as will be seen later in the CART 

analysis that the exposure time not only needs to be constant across the data set, but it 

must also be large. Therefore, the results of the images with exposure time 4 will be 

presented, which contained a total of 19 samples -5 normals, 7 moles, 8 cancers. The 

following plots (Figures 17-26) show the results from this analysis for the images with 

exposure time of 4 seconds where each line represents the average for each tissue type. 
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Figure 17: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 10th 
Percentile of Each Image 
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Figure 18: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 20th 

Percentile of Each Image 
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Figure 19: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 30th 
Percentile of Each Image 
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Figure 20: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 40th 

Percentile of Each Image 
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Figure 21: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 50th 
Percentile of Each Image 
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Figure 22: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 60th 

Percentile of Each Image 
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Figure 23: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 70th 
Percentile of Each Image 
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Figure 24: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 80th 

Percentile of Each Image 



 64

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M12 M13 M14 M21 M22 M23 M24 M31 M32 M33 M34 M41 M42 M43 M44

N
or

m
al

iz
ed

 In
te

ns
ity

normal
mole
cancer

 

Figure 25: Mueller Matrix for Images with Exposure Time 4 secs Obtained using 90th 
Percentile of Each Image 
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Figure 26: Mueller Matrix for Images with Exposure Time 4 secs Obtained using the 

Mean of Each Image 
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 For the above images M11 was not included because it would be a value of 1 for 

all cases since the data was normalized by M11. Therefore, the raw (unnormalized) M11 

data was also included in the data analysis and is shown in Figure 27. It can be seen from 

this plot that the raw M11 value can be used to classify the tissue types. For comparision, 

the raw M11 plot for the data with exposure time less than 4 is shown in Figure 28. This 

plot shows that with lower exposure time cancer and moles are indistinguishable. 

 
 

0

10000

20000

30000

40000

50000

60000

10% 20 30 40 50 60 70 80 90 mean

Variable

In
te

ns
ity normal

mole
cancer

 

Figure 27: 10-90th Percentile and Mean Analysis for Raw M11 for Images with 
Exposure Time of 4 secs 
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Figure 28: 10-90th Percentile and Mean Analysis for Raw M11 for Images with Exposure 
Time Less than 4 seconds 

 
 
 

5.2 CART Results 

 The goal of the statistical analysis was to separate the data according into tissue 

types according to a classification scheme and to identify the importance of each matrix 

element in the classification. Classification and Regression Tree (CART) software was 

used to determine the ability of the Mueller matrix imaging system in distinguishing 

between cancerous and noncancerous tissue. CART uses binary recursive portioning as 

described in the Theory section to classify the data.  

 The data was separated by exposure time and a CART analysis was performed on 

each set. The data was also grouped by exposure times greater than 1 and exposure times 

greater than 2 to determine if different exposure times could be used together. It was 
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determined that the data with the largest exposure time, 4 seconds, was accurately 

classified into the three classes - normal, mole, and cancer. Table 5 shows the 

classification probability for the data. 

  
 

Table 5: Learning Sample Probability 

Predicated Class Actual 
Class 1 2 3

Actual 
Total 

1-normal 1.000 0.000 0.000 1 
2-mole 0.000 1.000 0.000 1 
3-cancer 0.000 0.000 1.000 1 

 
 
 

 Cross validation was performed on the data since there were less than 200 

samples. The cross validation classification probability, Table 6, shows classification 

percentages for each case and provides a numerical analysis of the accuracy of the 

classification scheme. The classification criteria determined from the classification tree 

along with the number of misclassified using cross validation are summarized in Table 7 

where M11Twenty is the 20% of the M11 matrix element. The full classification tree is 

displayed in Appendix H. 
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Table 6: Results from CART Analysis of Data with Exposure Time 4 seconds 

MisclassifiedSample 
Type Classification Pathway No.1 #2 As3

Cancer 
M11Twenty <= 
5450.00 Node 1   8 0 - 

Mole 
M11Twenty > 
5450.00 

M11Twenty <= 
15640.50 Node 2 7 5 1

Normal 
M11Twenty > 
5450.00 

M11Twenty > 
15640.50 Node 3 4 0 - 

Classification: 1=normal, 2=mole, 3=cancer. 
1No. indicates the number of cases classified by the specific path 
2# indicates the number of each case that was misclassified 
3As indicates what the misclassified cases were actually classified as 
 

 
 

Table 7: Cross Validation Probability 

Predicated Class Actual 
Class 1 2 3

Actual 
Total 

1-normal 1.000 0.000 0.000 1 
2-mole 0.714 0.286 0.000 1 
3-cancer 0.000 0.000 1.000 1 

 
 
 
 From the cross validation probability table above, a 2x2 decision matrix for 

cancer was made (Table 8). From the table it can be seen that cancer was correctly 

diagnosed for all of the samples. The sensitivity, defined as true positive divided by the 

sum of true positive and false negative, and the specificity, which is defined as true 

negative divided by the sum of true negative and false positive, can be determined using 

Table 8. The sensitivity is calculated to be 100.0%, and the specificity is determined to 

be 100.0%. 
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Table 8: Decision Matrix for Cancer 

True Positive   
8 

False Positive  
0 

False Negative  
0 

True Negative  
11 

 
 
 
 A similar matrix can be made for moles, which is shown in Table 9. The 

sensitivity for moles is 28.6%, and the specificity is 100%.  The 5 moles that were 

misclassified were classified as normal tissue, which does not present a problem in 

detecting cancer.  

 
 

Table 9: Decision Matrix for Mole 

True Positive   
2 

False Positive  
0 

False Negative  
5 

True Negative  
12 

 
 
 
 The CART analysis also determines the importance of each variable in the 

classification. Table 10 shows the relative variable importance, where the variables with 

zero importance are not listed. 
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Table 10: Relative Importance of the Variables 

Variable 
Relative 
Importance 

M11Twenty 100.000
M11Thirty 100.000
M11Forty 100.000
M11Fifty 100.000
M11Sixty 100.000
M11Seventy 100.000

 

 

5.3 New Calibration Verification 

 To verify the new calibration procedure, the Mueller matrix for several known 

samples was calculated using the Mueller matrix imaging system with both a rough and 

fine tune calibration. The known samples used were air, a polarizer oriented at 

horizontal, and a polarizer oriented at + 45o. The Mueller matrix was taken 10 times for 

each sample to show system repeatability, and the mean and standard deviation were 

calculated. The experimental and theoretical Mueller matrices for each sample using a 

rough calibration are shown below in Tables 11-13. 
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Table 11: Mueller Matrix Results for Air 

Experimental 
1 0.0097 0.0136 0.0034

-0.031 0.9214 -0.008 0.0136
0.0734 0.0395 0.9263 -0.026

0.018 -0.004 -0.018 0.924
Theoretical 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Absolute Error 
0.00 0.97 1.36 0.34

-3.09 7.86 -0.82 1.36
7.34 3.95 7.37 -2.58
1.80 -0.38 -1.82 7.60

 

 

Table 12: Mueller Matrix Results for Horizontal Polarizer 

Experimental 
1 0.9267 0.0729 -0.026

0.9349 0.9116 0.0721 -0.021
-0.083 -0.084 0.0073 -0.087
0.0332 0.0435 0.0061 -0.077

Theoretical 
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Absolute Error 
0.00 7.33 7.29 -2.61
6.51 8.84 7.21 -2.05

-8.25 -8.44 0.73 -8.66
3.32 4.35 0.61 -7.67
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Table 13: Mueller Matrix Results for +45o Polarizer 

Experimental 
1 -0.088 1.0036 0.0105

-0.035 -0.007 -0.029 0.0026
0.9676 0.0176 0.9212 -0.01

-0.06 -0.004 0.0248 -0.057
Theoretical 

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

Absolute Error 
0.00 -8.82 -0.36 1.05

-3.45 -0.71 -2.86 0.26
3.24 1.76 7.88 -1.02

-5.95 -0.36 2.48 -5.65
 

 

 The results show that the maximum absolute error for air was 7.86%, which 

occurred in the M22 element. For the horizontal polarizer, the maximum absolute error 

was 8.84% in the M22 element. The final sample, +45o polarizer, had a maximum 

absolute error of 8.82 in the M12 element. Even though this error is within reasonable 

range, the calibration was fine tuned using the system model in Equation 15 and 

Appendix F to determine if the error could be reduced. With this method, each element 

of the Mueller matrix is analyzed to determine the images that are responsible for the 

error. Then the intensity of those images is examined and compared with theoretical 

values. The plots in Appendix F are used to determine the voltages to change so that the 

experimental intensity is approximately equal to the theoretical intensity. For example 

for the M22 element of air, the equation for M22 from the theory section was used to 
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determine that the images HH, HV, VH, and VV needed to be examined. For the VV 

image, the plots in Appendix F show that the rotator voltages are responsible for the 

irradiance, and therefore were changed until the correct intensity (maximum) was found. 

This process was repeated for the other three images (HH, VH, and HV), and then 

another matrix element was examined in the same manner.  The polarization images 

were taken again, and the Mueller matrix was calculated. The results after fine tuning are 

shown in Tables 14-16 below. 

 

Table 14: Mueller Matrix after Fine Tune Calibration for Air 

Experimental 
1 -0.005 0.0183 0.0093

-0.002 0.9907 0.0178 0.0036
0.015 0.011 0.9819 -0.016
0.013 0.0095 0.0127 0.9996

Theoretical 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Absolute Error 
0.00 -0.47 1.83 0.93

-0.15 0.93 1.78 0.36
1.50 1.10 1.81 -1.59
1.30 0.95 1.27 0.04
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Table 15: Mueller Matrix after Fine Tune Calibration for Horizontal Polarizer 

Experimental 
1 0.9866 0.0152 -0.013

0.9962 0.9885 0.0053 -0.008
-0.013 -0.016 -0.006 -0.017
0.0093 0.0042 -0.003 -0.015

Theoretical 
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Absolute Error 
0.00 1.34 1.52 -1.32
0.38 1.15 0.53 -0.82

-1.26 -1.58 -0.57 -1.74
0.93 0.42 -0.29 -1.49

 

 

Table 16: Mueller Matrix after Fine Tune Calibration for +45o Polarizer 

Experimental 
1 0.0066 0.9905 0.0182

-0.013 0.0056 -0.013 -0.003
0.9812 0.0043 0.9827 -0.014
-0.009 -0.006 0.0185 -0.007

Theoretical 
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

Absolute Error 
0.00 0.66 0.95 1.82

-1.29 0.56 -1.34 -0.29
1.88 0.43 1.73 -1.41

-0.94 -0.62 1.85 -0.68
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 The maximum absolute error after fine tuning was found to be 1.83 for air, 1.74 

for the horizontal polarizer, and 1.88 for the +45o polarizer. Fine tuning is capable of 

reducing the error by 6 - 7%. The new calibration method was shown to be accurate and 

a viable method to replace the old, time consuming technique.  

 The error in the sample Mueller matrices is due to several issues. First, the optics 

are not perfect and therefore introduce error in the system. Also, since a broadband red 

filter is used, light at other wavelengths gets through which causes error in the 

retardance. The system also shows preferential polarization in the vertical direction, 

which causes intensity differences that create error in the Mueller matrix. The liquid 

crystals are temperature sensitive, and therefore their rotation/retardance varies as a 

function of the room temperature. A temperature monitor/controller is needed to ensure 

that the liquid crystals are maintained at a constant temperature. Also, the computer used 

to drive the system does not have sufficient RAM. It only has 128MB of RAM, which 

causes problems with the systems performance in terms of acquiring and saving images.  

 To demonstrate the repeatability of the system, the Mueller matrix was taken 10 

times, and the standard deviation of each case was calculated and is shown below in 

Table 17. The maximum standard deviation was 0.0078, 0.0072, and 0.0089 for air, 

horizontal polarizer, and the +45o polarizer respectively. The standard deviation shows 

that the repeatability of the system is good, and therefore the calibration held over ten 

runs of the system. 
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Table 17: Standard Deviation of Each Mueller Matrix Element for Each Sample 

  Air Hpolarizer Ppolarizer
M11 0.0000 0.0000 0.0000
M12 0.0045 0.0051 0.0041
M13 0.0074 0.0047 0.0089
M14 0.0031 0.0028 0.0084
M21 0.0046 0.0031 0.0046
M22 0.0019 0.0034 0.0038
M23 0.0042 0.0047 0.0047
M24 0.0078 0.0072 0.0076
M31 0.0047 0.0050 0.0026
M32 0.0038 0.0059 0.0051
M33 0.0052 0.0041 0.0077
M34 0.0062 0.0039 0.0087
M41 0.0049 0.0049 0.0059
M42 0.0048 0.0050 0.0044
M43 0.0069 0.0062 0.0066
M44 0.0045 0.0062 0.0070
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 The American Cancer Society estimates that more than 1 million new cases of 

basal cell and squamous cell carcinomas and approximately 55,100 new cases of 

melanoma will be diagnosed in the United States each year [1].  If the cancer is detected 

in its early stages, it has a 95% cure rate, but current detection methods cannot 

adequately detect the presence of cancer. These methods are painful and costly to the 

patient and are not guaranteed effective. Therefore, the work done for this thesis was an 

optical approach for skin cancer detection in hopes of overcoming the problems with 

current detection methods.   

 The two main purposes of this thesis were to analyze Sinclair swine data taken 

using the Mueller matrix imaging system, and to redesign the calibration procedure for 

the system.  The Sinclair swine data was analyzed to determine the ability of the system 

to distinguish between cancerous and noncancerous tissue. The results, shown 

previously, show that the system is capable of distinguishing between cancer, mole, and 

normal tissue as long as the exposure time is constant for the data set and the dynamic 

range is large. The Raw M11 images with exposure time of 4 seconds were able to 

correctly classify all of the cancers and only misclassified 5 moles as normal skin. 

 The system calibration procedure was redesigned because the previous technique 

took nearly a day to complete. The new procedure takes about half the time and is just as 

accurate. A fine tune calibration should be done in conjunction with the new calibration 

technique to reduce the error associated with calibrating all of the optics together.  
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 Future investigations will be directed to improve the system electronics. The 

electro-optics require a 2 kHz square-wave, and very specific voltages to produce 

different polarization states. These voltages should be very accurate, and therefore 

circuitry should be designed to do this. The voltages supplied from the DAQ should be 

measured and compared across days.  

 Other future work should be focused on monitoring and controlling the liquid 

crystal’s temperature. Meadowlark Optics, the liquid crystal manufacturer, sells a 

temperature sensor for the liquid crystals for accurate monitoring of the operating 

temperature. A temperature sensor is recommended, but ideally it would work in 

conjunction with a temperature regulator.  

 The system stability is another issue in question. To quantify the stability of the 

system, the calibration program should be run several times, and the voltages used to 

produce the polarization states should be recorded. The voltages should also be 

compared over days.   

 Using the new calibration procedure and data analysis tools, more Sinclair swine 

or other animal data should be collected to obtain a larger data set. The CART analysis 

should again be performed so that the ability of the system to classify the tissue types 

over a large sample is validated. The system should then be made portable so that it can 

be used for clinical studies. The system should also be able to distinguish between skin 

cancer types, and thus work in this area is also needed. Although, much work is still 

needed before the system is ready for clinical studies, progress has been made towards 

attaining this goal. 
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APPENDIX A 
 

CALIBRATION EQUATIONS 
 

Rotator1 
 
(1) Horizontal output (Ho) 
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(2) Vertical output (Vo) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+−
−

≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

≡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

0
0

2sin1
2sin1

2
1

0
2cos
2sin

1

0000
0000
0011
0011

2
1

45
0
1
0
1

1000
02cos2sin0
02sin2cos0
0001

0000
0000
0011
0011

2
1

θ
θ

θ
θ

θθ
θθ

atPolarizerRotatorPolarizerVertical
 

 

 



 84

(3) +45o output (Po) 
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(4) -45o output (Mo) 
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Rotator2 
 
(1) Horizontal input (Hi) 
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 (2) Vertical input (Vi) 
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(3) +45o input (Pi) 
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(4) -45o input (Mi) 
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Retarder1 

(1) Horizontal input (Hi) 
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 (2) Vertical input (Vi) 
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(3) +45o input (Pi) 
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(4) -45o input (Mi) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0
0
1
1

2
1

0
1

0
1

0000
0000
0011
0011

2
1

45Re

0
1

0
1

cos0sin0
0100

sin0cos0
0001

0000
0000
0011
0011

2
1

oatPolarizertarderPolarizerHorizontal

δδ

δδ

 

 

 

 

 

 



 89

Retarder2 

(1) Horizontal output (Ho) 
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 (2) Vertical output (Vo) 
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(3) +45o output (Po) 
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(4) -45o output (Mo) 
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APPENDIX B 
 

MATLAB PROGRAM CAL100.M 
 
T0=fitsread('test0.fit');T1=fitsread('test1.fit'); 
T2=fitsread('test2.fit');T3=fitsread('test3.fit'); 
T4=fitsread('test4.fit');T5=fitsread('test5.fit'); 
T6=fitsread('test6.fit');T7=fitsread('test7.fit'); 
T8=fitsread('test8.fit');T9=fitsread('test9.fit'); 
T10=fitsread('test10.fit');T11=fitsread('test11.fit'); 
T12=fitsread('test12.fit');T13=fitsread('test13.fit'); 
T14=fitsread('test14.fit');T15=fitsread('test15.fit'); 
T16=fitsread('test16.fit');T17=fitsread('test17.fit'); 
T18=fitsread('test18.fit');T19=fitsread('test19.fit'); 
T20=fitsread('test20.fit');T21=fitsread('test21.fit'); 
T22=fitsread('test22.fit');T23=fitsread('test23.fit'); 
T24=fitsread('test24.fit');T25=fitsread('test25.fit'); 
T26=fitsread('test26.fit');T27=fitsread('test27.fit'); 
T28=fitsread('test28.fit');T29=fitsread('test29.fit'); 
T30=fitsread('test30.fit');T31=fitsread('test31.fit'); 
T32=fitsread('test32.fit');T33=fitsread('test33.fit'); 
T34=fitsread('test34.fit');T35=fitsread('test35.fit'); 
T36=fitsread('test36.fit');T37=fitsread('test37.fit'); 
T38=fitsread('test38.fit');T39=fitsread('test39.fit'); 
T40=fitsread('test40.fit');T41=fitsread('test41.fit'); 
T42=fitsread('test42.fit');T43=fitsread('test43.fit'); 
T44=fitsread('test44.fit');T45=fitsread('test45.fit'); 
T46=fitsread('test46.fit');T47=fitsread('test47.fit'); 
T48=fitsread('test48.fit');T49=fitsread('test49.fit'); 
T50=fitsread('test50.fit');T51=fitsread('test51.fit'); 
T52=fitsread('test52.fit');T53=fitsread('test53.fit'); 
T54=fitsread('test54.fit');T55=fitsread('test55.fit'); 
T56=fitsread('test56.fit');T57=fitsread('test57.fit'); 
T58=fitsread('test58.fit');T59=fitsread('test59.fit'); 
T60=fitsread('test60.fit');T61=fitsread('test61.fit'); 
T62=fitsread('test62.fit');T63=fitsread('test63.fit'); 
T64=fitsread('test64.fit');T65=fitsread('test65.fit'); 
T66=fitsread('test66.fit');T67=fitsread('test67.fit'); 
T68=fitsread('test68.fit');T69=fitsread('test69.fit'); 
T70=fitsread('test70.fit');T71=fitsread('test71.fit'); 
T72=fitsread('test72.fit');T73=fitsread('test73.fit'); 
T74=fitsread('test74.fit');T75=fitsread('test75.fit'); 
T76=fitsread('test76.fit');T77=fitsread('test77.fit'); 
T78=fitsread('test78.fit');T79=fitsread('test79.fit'); 
T80=fitsread('test80.fit');T81=fitsread('test81.fit'); 
T82=fitsread('test82.fit');T83=fitsread('test83.fit'); 
T84=fitsread('test84.fit');T85=fitsread('test85.fit'); 
T86=fitsread('test86.fit');T87=fitsread('test87.fit'); 
T88=fitsread('test88.fit');T89=fitsread('test89.fit'); 
T90=fitsread('test90.fit');T91=fitsread('test91.fit'); 
T92=fitsread('test92.fit');T93=fitsread('test93.fit'); 
T94=fitsread('test94.fit');T95=fitsread('test95.fit'); 
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T96=fitsread('test96.fit');T97=fitsread('test97.fit'); 
T98=fitsread('test98.fit');T99=fitsread('test99.fit'); 
T100=fitsread('test100.fit'); 
 
T0=double(T0);t0=mean(mean(T0));T1=double(T1);t1=mean(mean(T1)); 
T2=double(T2);t2=mean(mean(T2));T3=double(T3);t3=mean(mean(T3)); 
T4=double(T4);t4=mean(mean(T4));T5=double(T5);t5=mean(mean(T5)); 
T6=double(T6);t6=mean(mean(T6));T7=double(T7);t7=mean(mean(T7)); 
T8=double(T8);t8=mean(mean(T8));T9=double(T9);t9=mean(mean(T9)); 
T10=double(T10);t10=mean(mean(T10));T11=double(T11);t11=mean(mean(T11))
T12=double(T12);t12=mean(mean(T12));T13=double(T13);t13=mean(mean(T13))
T14=double(T14);t14=mean(mean(T14));T15=double(T15);t15=mean(mean(T15))
T16=double(T16);t16=mean(mean(T16));T17=double(T17);t17=mean(mean(T17))
T18=double(T18);t18=mean(mean(T18));T19=double(T19);t19=mean(mean(T19)) 
T20=double(T20);t20=mean(mean(T20));T21=double(T21);t21=mean(mean(T21))
T22=double(T22);t22=mean(mean(T22));T23=double(T23);t23=mean(mean(T23))
T24=double(T24);t24=mean(mean(T24));T25=double(T25);t25=mean(mean(T25))
T26=double(T26);t26=mean(mean(T26));T27=double(T27);t27=mean(mean(T27))
T28=double(T28);t28=mean(mean(T28));T29=double(T29);t29=mean(mean(T29)) 
T30=double(T30);t30=mean(mean(T30));T31=double(T31);t31=mean(mean(T31))
T32=double(T32);t32=mean(mean(T32));T33=double(T33);t33=mean(mean(T33))
T34=double(T34);t34=mean(mean(T34));T35=double(T35);t35=mean(mean(T35))
T36=double(T36);t36=mean(mean(T36));T37=double(T37);t37=mean(mean(T37))
T38=double(T38);t38=mean(mean(T38));T39=double(T39);t39=mean(mean(T39)) 
T40=double(T40);t40=mean(mean(T40));T41=double(T41);t41=mean(mean(T41))
T42=double(T42);t42=mean(mean(T42));T43=double(T43);t43=mean(mean(T43))
T44=double(T44);t44=mean(mean(T44));T45=double(T45);t45=mean(mean(T45))
T46=double(T46);t46=mean(mean(T46));T47=double(T47);t47=mean(mean(T47))
T48=double(T48);t48=mean(mean(T48));T49=double(T49);t49=mean(mean(T49)) 
T50=double(T50);t50=mean(mean(T50));T51=double(T51);t51=mean(mean(T51))
T52=double(T52);t52=mean(mean(T52));T53=double(T53);t53=mean(mean(T53))
T54=double(T54);t54=mean(mean(T54));T55=double(T55);t55=mean(mean(T55))
T56=double(T56);t56=mean(mean(T56));T57=double(T57);t57=mean(mean(T57))
T58=double(T58);t58=mean(mean(T58));T59=double(T59);t59=mean(mean(T59)) 
T60=double(T60);t60=mean(mean(T60));T61=double(T61);t61=mean(mean(T61))
T62=double(T62);t62=mean(mean(T62));T63=double(T63);t63=mean(mean(T63))
T64=double(T64);t64=mean(mean(T64));T65=double(T65);t65=mean(mean(T65))
T66=double(T66);t66=mean(mean(T66));T67=double(T67);t67=mean(mean(T67))
T68=double(T68);t68=mean(mean(T68));T69=double(T69);t69=mean(mean(T69)) 
T70=double(T70);t70=mean(mean(T70));T71=double(T71);t71=mean(mean(T71))
T72=double(T72);t72=mean(mean(T72));T73=double(T73);t73=mean(mean(T73))
T74=double(T74);t74=mean(mean(T74));T75=double(T75);t75=mean(mean(T75))
T76=double(T76);t76=mean(mean(T76));T77=double(T77);t77=mean(mean(T77))
T78=double(T78);t78=mean(mean(T78));T79=double(T79);t79=mean(mean(T79)) 
T80=double(T80);t80=mean(mean(T80));T81=double(T81);t81=mean(mean(T81))
T82=double(T82);t82=mean(mean(T82));T83=double(T83);t83=mean(mean(T83))
T84=double(T84);t84=mean(mean(T84));T85=double(T85);t85=mean(mean(T85))
T86=double(T86);t86=mean(mean(T86));T87=double(T87);t87=mean(mean(T87))
T88=double(T88);t88=mean(mean(T88));T89=double(T89);t89=mean(mean(T89)) 
T90=double(T90);t90=mean(mean(T90));T91=double(T91);t91=mean(mean(T91))
T92=double(T92);t92=mean(mean(T92));T93=double(T93);t93=mean(mean(T93))
T94=double(T94);t94=mean(mean(T94));T95=double(T95);t95=mean(mean(T95))
T96=double(T96);t96=mean(mean(T96));T97=double(T97);t97=mean(mean(T97))
T98=double(T98);t98=mean(mean(T98));T99=double(T99);t99=mean(mean(T99)) 
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T100=double(T100);t100=mean(mean(T100)); 
 
RAW=[t0;t1;t2;t3;t4;t5;t6;t7;t8;t9; 
     t10;t11;t12;t13;t14;t15;t16;t17;t18;t19; 
   t20;t21;t22;t23;t24;t25;t26;t27;t28;t29; 
   t30;t31;t32;t33;t34;t35;t36;t37;t38;t39; 
   t40;t41;t42;t43;t44;t45;t46;t47;t48;t49; 
   t50;t51;t52;t53;t54;t55;t56;t57;t58;t59; 
   t60;t61;t62;t63;t64;t65;t66;t67;t68;t69; 
   t70;t71;t72;t73;t74;t75;t76;t77;t78;t79; 
   t80;t81;t82;t83;t84;t85;t86;t87;t88;t89; 
     t90;t91;t92;t93;t94;t95;t96;t97;t98;t99; 
     t100]  
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APPENDIX C 
 

MATLAB PROGRAM CAL60.M 
 
T0=fitsread('test0.fit');T1=fitsread('test1.fit'); 
T2=fitsread('test2.fit');T3=fitsread('test3.fit'); 
T4=fitsread('test4.fit');T5=fitsread('test5.fit'); 
T6=fitsread('test6.fit');T7=fitsread('test7.fit'); 
T8=fitsread('test8.fit');T9=fitsread('test9.fit'); 
T10=fitsread('test10.fit');T11=fitsread('test11.fit'); 
T12=fitsread('test12.fit');T13=fitsread('test13.fit'); 
T14=fitsread('test14.fit');T15=fitsread('test15.fit'); 
T16=fitsread('test16.fit');T17=fitsread('test17.fit'); 
T18=fitsread('test18.fit');T19=fitsread('test19.fit'); 
T20=fitsread('test20.fit');T21=fitsread('test21.fit'); 
T22=fitsread('test22.fit');T23=fitsread('test23.fit'); 
T24=fitsread('test24.fit');T25=fitsread('test25.fit'); 
T26=fitsread('test26.fit');T27=fitsread('test27.fit'); 
T28=fitsread('test28.fit');T29=fitsread('test29.fit'); 
T30=fitsread('test30.fit');T31=fitsread('test31.fit'); 
T32=fitsread('test32.fit');T33=fitsread('test33.fit'); 
T34=fitsread('test34.fit');T35=fitsread('test35.fit'); 
T36=fitsread('test36.fit');T37=fitsread('test37.fit'); 
T38=fitsread('test38.fit');T39=fitsread('test39.fit'); 
T40=fitsread('test40.fit');T41=fitsread('test41.fit'); 
T42=fitsread('test42.fit');T43=fitsread('test43.fit'); 
T44=fitsread('test44.fit');T45=fitsread('test45.fit'); 
T46=fitsread('test46.fit');T47=fitsread('test47.fit'); 
T48=fitsread('test48.fit');T49=fitsread('test49.fit'); 
T50=fitsread('test50.fit');T51=fitsread('test51.fit'); 
T52=fitsread('test52.fit');T53=fitsread('test53.fit'); 
T54=fitsread('test54.fit');T55=fitsread('test55.fit'); 
T56=fitsread('test56.fit');T57=fitsread('test57.fit'); 
T58=fitsread('test58.fit');T59=fitsread('test59.fit'); 
T60=fitsread('test60.fit'); 
 
T0=double(T0);t0=mean(mean(T0));T1=double(T1);t1=mean(mean(T1)); 
T2=double(T2);t2=mean(mean(T2));T3=double(T3);t3=mean(mean(T3)); 
T4=double(T4);t4=mean(mean(T4));T5=double(T5);t5=mean(mean(T5)); 
T6=double(T6);t6=mean(mean(T6));T7=double(T7);t7=mean(mean(T7)); 
T8=double(T8);t8=mean(mean(T8));T9=double(T9);t9=mean(mean(T9)); 
T10=double(T10);t10=mean(mean(T10));T11=double(T11);t11=mean(mean(T11))
T12=double(T12);t12=mean(mean(T12));T13=double(T13);t13=mean(mean(T13))
T14=double(T14);t14=mean(mean(T14));T15=double(T15);t15=mean(mean(T15))
T16=double(T16);t16=mean(mean(T16));T17=double(T17);t17=mean(mean(T17))
T18=double(T18);t18=mean(mean(T18));T19=double(T19);t19=mean(mean(T19)) 
T20=double(T20);t20=mean(mean(T20));T21=double(T21);t21=mean(mean(T21))
T22=double(T22);t22=mean(mean(T22));T23=double(T23);t23=mean(mean(T23))
T24=double(T24);t24=mean(mean(T24));T25=double(T25);t25=mean(mean(T25))
T26=double(T26);t26=mean(mean(T26));T27=double(T27);t27=mean(mean(T27))
T28=double(T28);t28=mean(mean(T28));T29=double(T29);t29=mean(mean(T29)) 
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T30=double(T30);t30=mean(mean(T30));T31=double(T31);t31=mean(mean(T31))
T32=double(T32);t32=mean(mean(T32));T33=double(T33);t33=mean(mean(T33))
T34=double(T34);t34=mean(mean(T34));T35=double(T35);t35=mean(mean(T35))
T36=double(T36);t36=mean(mean(T36));T37=double(T37);t37=mean(mean(T37))
T38=double(T38);t38=mean(mean(T38));T39=double(T39);t39=mean(mean(T39)) 
T40=double(T40);t40=mean(mean(T40));T41=double(T41);t41=mean(mean(T41))
T42=double(T42);t42=mean(mean(T42));T43=double(T43);t43=mean(mean(T43))
T44=double(T44);t44=mean(mean(T44));T45=double(T45);t45=mean(mean(T45))
T46=double(T46);t46=mean(mean(T46));T47=double(T47);t47=mean(mean(T47))
T48=double(T48);t48=mean(mean(T48));T49=double(T49);t49=mean(mean(T49)) 
T50=double(T50);t50=mean(mean(T50));T51=double(T51);t51=mean(mean(T51))
T52=double(T52);t52=mean(mean(T52));T53=double(T53);t53=mean(mean(T53))
T54=double(T54);t54=mean(mean(T54));T55=double(T55);t55=mean(mean(T55))
T56=double(T56);t56=mean(mean(T56));T57=double(T57);t57=mean(mean(T57))
T58=double(T58);t58=mean(mean(T58));T59=double(T59);t59=mean(mean(T59)) 
T60=double(T60);t60=mean(mean(T60)); 
 
RAW=[t0;t1;t2;t3;t4;t5;t6;t7;t8;t9; 
     t10;t11;t12;t13;t14;t15;t16;t17;t18;t19; 
   t20;t21;t22;t23;t24;t25;t26;t27;t28;t29; 
   t30;t31;t32;t33;t34;t35;t36;t37;t38;t39; 
   t40;t41;t42;t43;t44;t45;t46;t47;t48;t49; 
   t50;t51;t52;t53;t54;t55;t56;t57;t58;t59; 
   t60]  
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APPENDIX D 
 

MATLAB PROGRAM CAL40.M 
 
T0=fitsread('test0.fit');T1=fitsread('test1.fit'); 
T2=fitsread('test2.fit');T3=fitsread('test3.fit'); 
T4=fitsread('test4.fit');T5=fitsread('test5.fit'); 
T6=fitsread('test6.fit');T7=fitsread('test7.fit'); 
T8=fitsread('test8.fit');T9=fitsread('test9.fit'); 
T10=fitsread('test10.fit');T11=fitsread('test11.fit'); 
T12=fitsread('test12.fit');T13=fitsread('test13.fit'); 
T14=fitsread('test14.fit');T15=fitsread('test15.fit'); 
T16=fitsread('test16.fit');T17=fitsread('test17.fit'); 
T18=fitsread('test18.fit');T19=fitsread('test19.fit'); 
T20=fitsread('test20.fit');T21=fitsread('test21.fit'); 
T22=fitsread('test22.fit');T23=fitsread('test23.fit'); 
T24=fitsread('test24.fit');T25=fitsread('test25.fit'); 
T26=fitsread('test26.fit');T27=fitsread('test27.fit'); 
T28=fitsread('test28.fit');T29=fitsread('test29.fit'); 
T30=fitsread('test30.fit');T31=fitsread('test31.fit'); 
T32=fitsread('test32.fit');T33=fitsread('test33.fit'); 
T34=fitsread('test34.fit');T35=fitsread('test35.fit'); 
T36=fitsread('test36.fit');T37=fitsread('test37.fit'); 
T38=fitsread('test38.fit');T39=fitsread('test39.fit'); 
T40=fitsread('test40.fit'); 
 
T0=double(T0);t0=mean(mean(T0));T1=double(T1);t1=mean(mean(T1)); 
T2=double(T2);t2=mean(mean(T2));T3=double(T3);t3=mean(mean(T3)); 
T4=double(T4);t4=mean(mean(T4));T5=double(T5);t5=mean(mean(T5)); 
T6=double(T6);t6=mean(mean(T6));T7=double(T7);t7=mean(mean(T7)); 
T8=double(T8);t8=mean(mean(T8));T9=double(T9);t9=mean(mean(T9)); 
T10=double(T10);t10=mean(mean(T10));T11=double(T11);t11=mean(mean(T11))
T12=double(T12);t12=mean(mean(T12));T13=double(T13);t13=mean(mean(T13))
T14=double(T14);t14=mean(mean(T14));T15=double(T15);t15=mean(mean(T15))
T16=double(T16);t16=mean(mean(T16));T17=double(T17);t17=mean(mean(T17))
T18=double(T18);t18=mean(mean(T18));T19=double(T19);t19=mean(mean(T19)) 
T20=double(T20);t20=mean(mean(T20));T21=double(T21);t21=mean(mean(T21))
T22=double(T22);t22=mean(mean(T22));T23=double(T23);t23=mean(mean(T23))
T24=double(T24);t24=mean(mean(T24));T25=double(T25);t25=mean(mean(T25))
T26=double(T26);t26=mean(mean(T26));T27=double(T27);t27=mean(mean(T27))
T28=double(T28);t28=mean(mean(T28));T29=double(T29);t29=mean(mean(T29)) 
T30=double(T30);t30=mean(mean(T30));T31=double(T31);t31=mean(mean(T31))
T32=double(T32);t32=mean(mean(T32));T33=double(T33);t33=mean(mean(T33))
T34=double(T34);t34=mean(mean(T34));T35=double(T35);t35=mean(mean(T35))
T36=double(T36);t36=mean(mean(T36));T37=double(T37);t37=mean(mean(T37))
T38=double(T38);t38=mean(mean(T38));T39=double(T39);t39=mean(mean(T39)) 
T40=double(T40);t40=mean(mean(T40)); 
RAW=[t0;t1;t2;t3;t4;t5;t6;t7;t8;t9; 
     t10;t11;t12;t13;t14;t15;t16;t17;t18;t19; 
   t20;t21;t22;t23;t24;t25;t26;t27;t28;t29; 
   t30;t31;t32;t33;t34;t35;t36;t37;t38;t39; 
   t40]  



 97

APPENDIX E 
 

MATLAB PROGRAM CAL80.M 
 
T0=fitsread('test0.fit');T1=fitsread('test1.fit'); 
T2=fitsread('test2.fit');T3=fitsread('test3.fit'); 
T4=fitsread('test4.fit');T5=fitsread('test5.fit'); 
T6=fitsread('test6.fit');T7=fitsread('test7.fit'); 
T8=fitsread('test8.fit');T9=fitsread('test9.fit'); 
T10=fitsread('test10.fit');T11=fitsread('test11.fit'); 
T12=fitsread('test12.fit');T13=fitsread('test13.fit'); 
T14=fitsread('test14.fit');T15=fitsread('test15.fit'); 
T16=fitsread('test16.fit');T17=fitsread('test17.fit'); 
T18=fitsread('test18.fit');T19=fitsread('test19.fit'); 
T20=fitsread('test20.fit');T21=fitsread('test21.fit'); 
T22=fitsread('test22.fit');T23=fitsread('test23.fit'); 
T24=fitsread('test24.fit');T25=fitsread('test25.fit'); 
T26=fitsread('test26.fit');T27=fitsread('test27.fit'); 
T28=fitsread('test28.fit');T29=fitsread('test29.fit'); 
T30=fitsread('test30.fit');T31=fitsread('test31.fit'); 
T32=fitsread('test32.fit');T33=fitsread('test33.fit'); 
T34=fitsread('test34.fit');T35=fitsread('test35.fit'); 
T36=fitsread('test36.fit');T37=fitsread('test37.fit'); 
T38=fitsread('test38.fit');T39=fitsread('test39.fit'); 
T40=fitsread('test40.fit');T41=fitsread('test41.fit'); 
T42=fitsread('test42.fit');T43=fitsread('test43.fit'); 
T44=fitsread('test44.fit');T45=fitsread('test45.fit'); 
T46=fitsread('test46.fit');T47=fitsread('test47.fit'); 
T48=fitsread('test48.fit');T49=fitsread('test49.fit'); 
T50=fitsread('test50.fit');T51=fitsread('test51.fit'); 
T52=fitsread('test52.fit');T53=fitsread('test53.fit'); 
T54=fitsread('test54.fit');T55=fitsread('test55.fit'); 
T56=fitsread('test56.fit');T57=fitsread('test57.fit'); 
T58=fitsread('test58.fit');T59=fitsread('test59.fit'); 
T60=fitsread('test60.fit');T61=fitsread('test61.fit'); 
T62=fitsread('test62.fit');T63=fitsread('test63.fit'); 
T64=fitsread('test64.fit');T65=fitsread('test65.fit'); 
T66=fitsread('test66.fit');T67=fitsread('test67.fit'); 
T68=fitsread('test68.fit');T69=fitsread('test69.fit'); 
T70=fitsread('test70.fit');T71=fitsread('test71.fit'); 
T72=fitsread('test72.fit');T73=fitsread('test73.fit'); 
T74=fitsread('test74.fit');T75=fitsread('test75.fit'); 
T76=fitsread('test76.fit');T77=fitsread('test77.fit'); 
T78=fitsread('test78.fit');T79=fitsread('test79.fit'); 
T80=fitsread('test80.fit'); 
 
T0=double(T0);t0=mean(mean(T0));T1=double(T1);t1=mean(mean(T1)); 
T2=double(T2);t2=mean(mean(T2));T3=double(T3);t3=mean(mean(T3)); 
T4=double(T4);t4=mean(mean(T4));T5=double(T5);t5=mean(mean(T5)); 
T6=double(T6);t6=mean(mean(T6));T7=double(T7);t7=mean(mean(T7)); 
T8=double(T8);t8=mean(mean(T8));T9=double(T9);t9=mean(mean(T9)); 
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T10=double(T10);t10=mean(mean(T10));T11=double(T11);t11=mean(mean(T11))
T12=double(T12);t12=mean(mean(T12));T13=double(T13);t13=mean(mean(T13))
T14=double(T14);t14=mean(mean(T14));T15=double(T15);t15=mean(mean(T15))
T16=double(T16);t16=mean(mean(T16));T17=double(T17);t17=mean(mean(T17))
T18=double(T18);t18=mean(mean(T18));T19=double(T19);t19=mean(mean(T19)) 
T20=double(T20);t20=mean(mean(T20));T21=double(T21);t21=mean(mean(T21))
T22=double(T22);t22=mean(mean(T22));T23=double(T23);t23=mean(mean(T23))
T24=double(T24);t24=mean(mean(T24));T25=double(T25);t25=mean(mean(T25))
T26=double(T26);t26=mean(mean(T26));T27=double(T27);t27=mean(mean(T27))
T28=double(T28);t28=mean(mean(T28));T29=double(T29);t29=mean(mean(T29)) 
T30=double(T30);t30=mean(mean(T30));T31=double(T31);t31=mean(mean(T31))
T32=double(T32);t32=mean(mean(T32));T33=double(T33);t33=mean(mean(T33))
T34=double(T34);t34=mean(mean(T34));T35=double(T35);t35=mean(mean(T35))
T36=double(T36);t36=mean(mean(T36));T37=double(T37);t37=mean(mean(T37))
T38=double(T38);t38=mean(mean(T38));T39=double(T39);t39=mean(mean(T39)) 
T40=double(T40);t40=mean(mean(T40));T41=double(T41);t41=mean(mean(T41))
T42=double(T42);t42=mean(mean(T42));T43=double(T43);t43=mean(mean(T43))
T44=double(T44);t44=mean(mean(T44));T45=double(T45);t45=mean(mean(T45))
T46=double(T46);t46=mean(mean(T46));T47=double(T47);t47=mean(mean(T47))
T48=double(T48);t48=mean(mean(T48));T49=double(T49);t49=mean(mean(T49)) 
T50=double(T50);t50=mean(mean(T50));T51=double(T51);t51=mean(mean(T51))
T52=double(T52);t52=mean(mean(T52));T53=double(T53);t53=mean(mean(T53))
T54=double(T54);t54=mean(mean(T54));T55=double(T55);t55=mean(mean(T55))
T56=double(T56);t56=mean(mean(T56));T57=double(T57);t57=mean(mean(T57))
T58=double(T58);t58=mean(mean(T58));T59=double(T59);t59=mean(mean(T59)) 
T60=double(T60);t60=mean(mean(T60));T61=double(T61);t61=mean(mean(T61))
T62=double(T62);t62=mean(mean(T62));T63=double(T63);t63=mean(mean(T63))
T64=double(T64);t64=mean(mean(T64));T65=double(T65);t65=mean(mean(T65))
T66=double(T66);t66=mean(mean(T66));T67=double(T67);t67=mean(mean(T67))
T68=double(T68);t68=mean(mean(T68));T69=double(T69);t69=mean(mean(T69)) 
T70=double(T70);t70=mean(mean(T70));T71=double(T71);t71=mean(mean(T71))
T72=double(T72);t72=mean(mean(T72));T73=double(T73);t73=mean(mean(T73))
T74=double(T74);t74=mean(mean(T74));T75=double(T75);t75=mean(mean(T75))
T76=double(T76);t76=mean(mean(T76));T77=double(T77);t77=mean(mean(T77))
T78=double(T78);t78=mean(mean(T78));T79=double(T79);t79=mean(mean(T79)) 
T80=double(T80);t80=mean(mean(T80)); 
 
RAW=[t0;t1;t2;t3;t4;t5;t6;t7;t8;t9; 
     t10;t11;t12;t13;t14;t15;t16;t17;t18;t19; 
   t20;t21;t22;t23;t24;t25;t26;t27;t28;t29; 
   t30;t31;t32;t33;t34;t35;t36;t37;t38;t39; 
   t40;t41;t42;t43;t44;t45;t46;t47;t48;t49; 
   t50;t51;t52;t53;t54;t55;t56;t57;t58;t59; 
   t60;t61;t62;t63;t64;t65;t66;t67;t68;t69; 
   t70;t71;t72;t73;t74;t75;t76;t77;t78;t79; 
   t80]  
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APPENDIX F 
 

SYSTEM MODEL PLOTS 
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APPENDIX G 
 

MUELLER MATRIX IMAGING SYSTEM LABVIEW PROGRAM 
 

Main Program 
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Calibration Program 
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APPENDIX H 
 

CART OUTPUT FOR IMAGES WITH EXPOSURE TIME OF 4 
SECONDS 

 
*** CART *** 
 COPYRIGHT, 1991-1995 
 SALFORD SYSTEMS, SAN DIEGO, CALIFORNIA, U.S.A. 
 02-15-2004    14:13 
 1500000 PREPROCESSOR 8-BYTE WORKSPACE ELEMENTS. 
 3000000 TREE BUILDING 4-BYTE WORKSPACE ELEMENTS. 
 BASIC WORKSPACE CLEARED. 
 VARIABLES IN SYSTAT-FORMAT RECT FILE ARE: 
     M11TEN       M11TWENT       M11THIRT       M11FORTY       M11FIFTY 
   M11SIXTY       M11SEVEN       M11EIGHT       M11NINET        M11MEAN 
     M12TEN       M12TWENT       M12THIRT       M12FORTY       M12FIFTY 
   M12SIXTY       M12SEVEN       M12EIGHT       M12NINET        M12MEAN 
     M13TEN       M13TWENT       M13THIRT       M13FORTY       M13FIFTY 
   M13SIXTY       M13SEVEN       M13EIGHT       M13NINET        M13MEAN 
     M14TEN       M14TWENT       M14THIRT       M14FORTY       M14FIFTY 
   M14SIXTY       M14SEVEN       M14EIGHT       M14NINET        M14MEAN 
     M21TEN       M21TWENT       M21THIRT       M21FORTY       M21FIFTY 
   M21SIXTY       M21SEVEN       M21EIGHT       M21NINET        M21MEAN 
     M22TEN       M22TWENT       M22THIRT       M22FORTY       M22FIFTY 
   M22SIXTY       M22SEVEN       M22EIGHT       M22NINET        M22MEAN 
     M23TEN       M23TWENT       M23THIRT       M23FORTY       M23FIFTY 
   M23SIXTY       M23SEVEN       M23EIGHT       M23NINET        M23MEAN 
     M24TEN       M24TWENT       M24THIRT       M24FORTY       M24FIFTY 
   M24SIXTY       M24SEVEN       M24EIGHT       M24NINET        M24MEAN 
     M31TEN       M31TWENT       M31THIRT       M31FORTY       M31FIFTY 
   M31SIXTY       M31SEVEN       M31EIGHT       M31NINET        M31MEAN 
     M32TEN       M32TWENT       M32THIRT       M32FORTY       M32FIFTY 
   M32SIXTY       M32SEVEN       M32EIGHT       M32NINET        M32MEAN 
     M33TEN       M33TWENT       M33THIRT       M33FORTY       M33FIFTY 
   M33SIXTY       M33SEVEN       M33EIGHT       M33NINET        M33MEAN 
     M34TEN       M34TWENT       M34THIRT       M34FORTY       M34FIFTY 
   M34SIXTY       M34SEVEN       M34EIGHT       M34NINET        M34MEAN 
     M41TEN       M41TWENT       M41THIRT       M41FORTY       M41FIFTY 
   M41SIXTY       M41SEVEN       M41EIGHT       M41NINET        M41MEAN 
     M42TEN       M42TWENT       M42THIRT       M42FORTY       M42FIFTY 
   M42SIXTY       M42SEVEN       M42EIGHT       M42NINET        M42MEAN 
     M43TEN       M43TWENT       M43THIRT       M43FORTY       M43FIFTY 
   M43SIXTY       M43SEVEN       M43EIGHT       M43NINET        M43MEAN 



 128

     M44TEN       M44TWENT       M44THIRT       M44FORTY       M44FIFTY 
   M44SIXTY       M44SEVEN       M44EIGHT       M44NINET        M44MEAN 
       TYPE 
 BASIC WORKSPACE CLEARED. 
 RECORDS READ: 19 
 RECORDS WRITTEN IN LEARNING SAMPLE: 19 
 PRIORS SET EQUAL 
 CURRENT MEMORY REQUIREMENTS 
     TOTAL:      16007      DATA:       3059  ANALYSIS:      12948 
 AVAILABLE:    3000000 
   SURPLUS:    2983993 
 The data are being read ... 
 19 Observations in the learning sample. 
 File: angelanew.Systat 
 CART is running. 
 Tree   1 of  12 
 Tree   2 of  12 
 Tree   3 of  12 
 Tree   4 of  12 
 Tree   5 of  12 
 Tree   6 of  12 
 Tree   7 of  12 
 Tree   8 of  12 
 Tree   9 of  12 
 Tree  10 of  12 
 Tree  11 of  12 
 
 ============= 
 TREE SEQUENCE 
 ============= 
 Dependent variable: TYPE 
   Terminal         Cross-Validated     Resubstitution   Complexity 
 Tree Nodes          Relative Cost       Relative Cost    Parameter 
 ------------------------------------------------------------------ 
    1**   3        0.357 +/- 0.085               0.000        0.000 
    2     1        1.000 +/- 0.000               1.000        0.333 
 Initial misclassification cost = 0.667 
 Initial class assignment =  1 
 Tree  12 of  12 
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 =========================== 
 CLASSIFICATION TREE DIAGRAM 
 =========================== 
                              | 
 -----------------------------1---------------------------- 
 |                                                        | 
                                       -------------------2------------------- 
                                       |                                     | 
 Terminal Regions 
 1                                     2                                     3 
 ================ 
 NODE INFORMATION 
 ================ 
          *             Node  1 was split on variable M11TWENT 
         * *            A case goes left if variable M11TWENT <=     5450.000 
        *   *           Improvement =  0.333          C. T. =  0.333 
       *   1 * 
        *   *           Node     Cases     Class              Cost 
         * *               1        19         1             0.667 
          *               -1         8         3             0.000 
         * *               2        11         1             0.500 
        *   * 
        8    11              Number Of Cases            Within Node Prob. 
      *       *      Class   Top  Left Right         Top        Left       Right 
     *         *         1     4     0     4       0.333       0.000       0.500 
 ---*---        *        2     7     0     7       0.333       0.000       0.500 
 |     |       * *       3     8     8     0       0.333       1.000       0.000 
 |     |      *   * 
 |   1 |     *   2 *      Surrogate          Split       Assoc.     Improve. 
 |     |      *   *     1 M11SEVEN  s     8142.000        1.000        0.333 
 |     |       * *      2 M11THIRT  s     5981.000        1.000        0.333 
 -------        *       3 M11FORTY  s     6450.000        1.000        0.333 
                        4 M11FIFTY  s     6920.000        1.000        0.333 
                        5 M11SIXTY  s     7454.000        1.000        0.333 
                          Competitor         Split                 Improve. 
                        1 M11THIRT        5981.000                     0.333 
                        2 M11FORTY        6450.000                     0.333 
                       3 M11FIFTY        6920.000                     0.333 
                       4 M11SIXTY        7454.000                     0.333 
                        5 M11SEVEN        8142.000                     0.333 
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         *             Node  2 was split on variable M11TWENT 
         * *            A case goes left if variable M11TWENT <=    15640.500 
        *   *           Improvement =  0.333          C. T. =  0.333 
       *   2 * 
        *   *           Node     Cases     Class              Cost 
         * *               2        11         1             0.500 
          *               -2         7         2             0.000 
         * *              -3         4         1             0.000 
        *   * 
        7     4              Number Of Cases            Within Node Prob. 
      *       *      Class   Top  Left Right         Top        Left       Right 
     *         *         1     4     0     4       0.500       0.000       1.000 
 ---*---     ---*---     2     7     7     0       0.500       1.000       0.000 
 |     |     |     |     3     0     0     0       0.000       0.000       0.000 
 |     |     |     | 
 |   2 |     |   3 |      Surrogate          Split       Assoc.     Improve. 
 |     |     |     |    1 M11SEVEN  s    25219.000        1.000        0.333 
 |     |     |     |    2 M11THIRT  s    18404.000        1.000        0.333 
 -------     -------    3 M11FORTY  s    20481.000        1.000        0.333 
                        4 M11FIFTY  s    21988.500        1.000        0.333 
                        5 M11SIXTY  s    23553.500        1.000        0.333 
                          Competitor         Split                 Improve. 
                        1 M11THIRT       18404.000                     0.333 
                        2 M11FORTY       20481.000                     0.333 
                        3 M11FIFTY       21988.500                     0.333 
                        4 M11SIXTY       23553.500                     0.333 
                        5 M11SEVEN       25219.000                     0.333 
 
 ========================= 
 TERMINAL NODE INFORMATION 
 ========================= 
 [Breiman adjusted cost, lambda = 0.333] 
                                                                 Complexity 
 Node    N        Prob Class      Cost Class     N        Prob    Threshold 
 -------------------------------------------------------------------------- 
   1     8       0.333   3       0.000     1     0       0.000        0.333 
                         [       0.357]    2     0       0.000 
                                           3     8       1.000 
   2     7       0.333   2       0.000     1     0       0.000        0.333 
                         [       0.357]    2     7       1.000 
                                           3     0       0.000 
   3     4       0.333   1       0.000     1     4       1.000        0.333 
                         [       0.357]    2     0       0.000 
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                                           3     0       0.000 
 ========================== 
 MISCLASSIFICATION BY CLASS 
 ========================== 
                 |------CROSS VALIDATION------||-----LEARNING SAMPLE--------| 
            Prior         N Mis-                        N Mis- 
 Class      Prob.    N  Classified         Cost    N  Classified         Cost 
 ---------------------------------------------------------------------------- 
   1        0.333     4          0        0.000     4          0        0.000 
  2        0.333     7          5        0.714     7          0        0.000 
  3        0.333     8          0        0.000     8          0        0.000 
 ---------------------------------------------------------------------------- 
  Tot       1.000    19          5                 19          0 
 
 
 ================================================= 
 CROSS VALIDATION CLASSIFICATION PROBABILITY TABLE 
 ================================================= 
       ACTUAL  PREDICTED CLASS                             ACTUAL 
        CLASS          1            2            3          TOTAL 
 ---------------------------------------------------------------- 
            1        1.000        0.000        0.000        1.000 
            2        0.714        0.286        0.000        1.000 
            3        0.000        0.000        1.000        1.000 
 ---------------------------------------------------------------- 
 
 ================================================ 
 LEARNING SAMPLE CLASSIFICATION PROBABILITY TABLE 
 ================================================ 
       ACTUAL  PREDICTED CLASS                             ACTUAL 
        CLASS          1            2            3          TOTAL 
 ---------------------------------------------------------------- 
            1        1.000        0.000        0.000        1.000 
            2        0.000        1.000        0.000        1.000 
            3        0.000        0.000        1.000        1.000 
 ---------------------------------------------------------------- 
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 =================== 
 VARIABLE IMPORTANCE 
 =================== 
                  Relative     Number Of   Minimum 
                Importance    Categories  Category 
 ------------------------------------------------- 
 M11TWENT          100.000 
 M11THIRT          100.000 
 M11FORTY          100.000 
 M11FIFTY          100.000 
 M11SIXTY          100.000 
 M11SEVEN          100.000 
 M44MEAN               0.000 
 M22FORTY              0.000 
 M22FIFTY                0.000 
 M22SIXTY               0.000 
 M22SEVEN              0.000 
 M22EIGHT               0.000 
 M22NINET               0.000 
 M22MEAN               0.000 
 M22THIRT               0.000 
 M22TWENT             0.000 
 M22TEN                   0.000 
 M21MEAN               0.000 
 M21NINET               0.000 
 M21EIGHT               0.000 
 M21SEVEN              0.000 
 M21SIXTY               0.000 
 M21FIFTY                0.000 
 M23TEN                   0.000 
 M23TWENT             0.000 
 M23THIRT               0.000 
 M24NINET               0.000 
 M24EIGHT               0.000 
 M24SEVEN              0.000 
 M24SIXTY               0.000 
 M24FIFTY                0.000 
 M24FORTY              0.000 
 M24THIRT               0.000 
 M24TWENT             0.000 
 M24TEN                   0.000 
 M23MEAN               0.000 
 M23NINET               0.000 
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 M23EIGHT             0.000 
 M23SEVEN            0.000 
 M23SIXTY             0.000 
 M23FIFTY              0.000 
 M23FORTY            0.000 
 M21FORTY            0.000 
 M21THIRT             0.000 
 M13THIRT             0.000 
 M13TWENT           0.000 
 M13TEN                 0.000 
 M12MEAN             0.000 
 M12NINET             0.000 
 M12EIGHT             0.000 
 M12SEVEN            0.000 
 M12SIXTY             0.000 
 M12FIFTY             0.000 
 M12FORTY           0.000 
 M12THIRT            0.000 
 M12TWENT          0.000 
 M12TEN                0.000 
 M11MEAN            0.000 
 M11NINET            0.000 
 M11EIGHT            0.000 
 M13FORTY           0.000 
 M13FIFTY             0.000 
 M13SIXTY            0.000 
 M21TWENT          0.000 
 M21TEN                0.000 
 M14MEAN            0.000 
 M14NINET            0.000 
 M14EIGHT            0.000 
 M14SEVEN           0.000 
 M14SIXTY            0.000 
 M14FIFTY             0.000 
 M14FORTY           0.000 
 M14THIRT            0.000 
 M14TWENT          0.000 
 M14TEN                0.000 
 M13MEAN            0.000 
 M13NINET            0.000 
 M13EIGHT            0.000 
 M13SEVEN           0.000 
 M24MEAN            0.000 
 M31TEN                0.000 
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 M42NINET            0.000 
 M42EIGHT            0.000 
 M42SEVEN           0.000 
 M42SIXTY            0.000 
 M42FIFTY             0.000 
 M42FORTY           0.000 
 M42THIRT            0.000 
 M42TWENT          0.000 
 M42TEN                0.000 
 M41MEAN            0.000 
 M41NINET            0.000 
 M41EIGHT            0.000 
 M41SEVEN           0.000 
 M41SIXTY            0.000 
 M41FIFTY             0.000 
 M41FORTY           0.000 
 M41THIRT            0.000 
 M41TWENT          0.000 
 M42MEAN            0.000 
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