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ABSTRACT 

 
The Monitoring and Multiplexing of Fiber Optic Sensors 

Using Chirped Laser Sources. (May 2003) 

Xiaoke Wan, 

B.S., Jilin University, China; 

M.S., Chinese Academy of Sciences; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ohannes Eknoyan 

 

A wide band linearly chirped erbium-doped fiber laser has been developed. The 

erbium-doped fiber laser using a rotating mirror/grating combination as one of the 

reflectors in a Fabry-Perot laser cavity has been tuned over a 46 nm spectral range.  

Linearization of the chirp rate has been achieved using feedback from a fiber Fabry-

Perot interferometer (FFPI) to adjust the voltage ramp which drives the rotating mirror. 

In a demonstration of monitoring an array of two fiber Bragg grating (FBG) sensors, a 

wavelength resolution of 1.7 pm has been achieved. 

The linearly chirped fiber laser has been used in measuring the optical path 

difference (OPD) of interferometric fiber optic sensors by performing a Fourier 

transform of the optical signal. Multiplexing of an array of three FFPI sensors of 

different lengths has been demonstrated, with an OPD resolution ranging from 3.6 nm to 

6.3 nm. Temperature was measured with one of the sensors over the range from 20°C to 

610°C with a resolution of 0.02°C.   

Short FBGs are used to form the two mirrors of a fiber Bragg grating pair 

interferometer (FBGPI) sensor, so that the mirror reflectances change gradually as a 

function of temperature. Modulating the drive current of a DFB laser produces chirping 



 iv

of the laser frequency to scan over ~2.5 fringes of the FBGPI reflectance spectrum. 

Because the fringes are distinguished due to the FBG reflectance change, the ambient 

temperature can be determined over the range from 24 oC to 367 oC with a resolution of 

0.004 oC. 

Multiplexing of FBGPI sensors of different lengths with a linearly chirped fiber 

laser has demonstrated improved sensitivity and multiplexing capacity over a 

conventional FBG WDM system. The FBG spectral peak position and the phase shift of 

an FBGPI are determined through the convolution of the sensor reflected signal with an 

appropriately matched reference waveform, even though the reflectance spectra for the 

FBGs from different sensors overlap over a wide temperature range. A spectral 

resolution for the FBG reflectance peak of 0.045 GHz (0.36 pm), corresponding to a 

temperature resolution of 0.035 oC, has been achieved.  
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I. INTRODUCTION 

 

1.1. Background and motivation 

Although optical fibers are primarily used in optical communications, they are 

also very useful for sensing applications. Optical fiber sensors are small in size, light in 

weight, and geometrically versatile so they can be configured as “point” or “distributed” 

sensors. Their ability to withstand high temperature and pressure makes them ideal for 

applications in harsh environments. The low optical loss of the fibers makes it possible 

to locate sensors far from the signal processing electronics. Fiber optic sensors are also 

inherently immune to electro-magnetic interference. Additional desired features of 

optical fiber sensor systems include high resolution, the ability to obtain accurate 

measurement from a “cold start”, multiplexing capability, and simple, low-cost signal 

processing.  

A Fiber Fabry-Perot interferometer (FFPI) sensor is the cavity between two 

dielectric mirrors formed inside a single mode fiber.1 It is extremely sensitive to 

perturbations (i.e., temperature and strain) which affect the optical path difference 

(OPD) of the sensor cavity. Since FFPI sensors were first fabricated at Texas A&M 

University in 1988, several schemes have been developed for their monitoring and 

multiplexing. The use of a chirped diode laser as the light source provides a simple 

approach to monitor FFPI sensors.2 However, due to the ambiguity between interference 

fringes, it can not achieve an accurate measurement from a “cold start”. White light 

interferometry (WLI) is established as a practical method of measuring the absolute 

OPD in interferometric sensors.3 Compared to the laser monitoring technique, it offers 

two important advantages: the ability to make accurate measurement from “cold start”, 

and the ability to monitor many sensors deployed along a single fiber using coherence 

                                                 
  The journal model is Applied Optics. 
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multiplexing. However, optical implementation and signal processing for a WLI system 

are somewhat complex. 

A Fiber Bragg grating (FBG) is a section of fiber with refractive index 

periodically modulated along the fiber axis.4 The FBG reflects light at a wavelength 

which is sensitive to a temperature or a strain perturbation. FBG sensors have very low 

excess loss, can be monitored in a straightforward manner, and are amenable to 

multiplexing. A typical wavelength division multiplexing (WDM) scheme monitors an 

array of FBG sensors with a broadband light source and a wavelength detecting device 

for signal demodulation. Various wavelength detecting techniques have been 

demonstrated with use of an optical spectrum analyzer (OSA), edge filters, scanning 

filters and interferometers. However, these schemes have shown difficulties associated 

with low spectral resolution of the filters or spectrometers, or limited dynamic range 

with the interferometric phase read out. In addition, the multiplexing capacity of a 

WDM sensor system is limited because the sensors are generally not allowed to share 

optical spectrum bandwidth. 

1.2. Objective 

In this research, several novel techniques the monitoring and multiplexing of 

FFPI and FBG sensors with chirped laser sources are investigated. The objective is to 

provide cost-effective solutions, either in a form of a simple arrangement for single 

sensor monitoring or a system with improved multiplexing capacity, for “cold start” 

measurements with high resolution (< 0.1 oC) over a large dynamic range (> 300 oC).  

A wideband linearly chirped erbium-doped fiber laser is developed for the sensor 

applications.5 Using an arrangement of a rotating mirror and a bulk grating in the 

Littrow configuration, the laser is tuned over the entire erbium-doped fiber gain spectral 

region while keeping a narrow linewidth. The frequency shift is monitored by an FFPI 

sensor such that the laser frequency is shifted at a constant rate with a feedback control 

loop.  
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Monitoring and multiplexing of an array of FFPI sensors using a linearly chirped 

fiber laser is tested theoretically and demonstrated experimentally.6 This method 

represents an optical implementation of the frequency modulated continuous wave 

(FMCW) technique first applied in radar systems. The reflected signal from each FFPI 

sensor is modulated at a frequency proportional to the OPD of the sensor, such that the 

OPD is determined from the Fourier transform of the detected signal. Taking advantage 

of the wide wavelength tuning range, this technique allows using both the amplitude and 

phase of the Fourier transform to obtain spatial resolution <<1 wavelength and range 

>>1 wavelength. Because of the primary benefit of laser monitoring – high fiber-

coupled optical power and high signal-to-noise ratio - this scheme is capable of 

achieving a higher dynamic range for an individual sensor and also enables the 

multiplexing of a greater number of sensors with a single light source and photodetector 

than is possible with a conventional WLI setup. Furthermore, optical implementation of 

the chirped laser is somewhat simpler than a conventional WLI system. 

The FBG pair interferometer (FBGPI) is introduced: an FFPI constructed using 

FBG mirrors with similar reflectance spectra.7 This new sensing element combines the 

benefit of the high resolution of an FFPI sensor and the wavelength demodulation 

technique in an FBG sensor. In a simple arrangement using a current modulated diode 

laser, the laser-chirping-induced interference pattern of the FBGPI sensor is monitored. 

Because the spectral dependence of the FBG mirror reflectances provides coarse 

measurement capability in conjunction with the fine resolution of the interference 

fringes, it provides a “cold start” measurement with high resolution.  

Finally, an array of FBGPI sensors monitored with the wide band tunable fiber 

laser is demonstrated in theory and experiment.8 The sensor signal is convolved with in-

phase and quadrature components of a reference waveform corresponding to an 

interferometer of approximately the same length to obtain a coarse measurement of the 

optical frequency corresponding to the FBG reflectance peak, and refine this 

measurement to a higher level of precision, using the phase of the convolved signal. 

Compared to a conventional FBG sensor system, it provides an improved resolution 
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because of the determination of phase as well an enhanced multiplexing capacity by 

allowing multiple sensors to share the same regime of the optical spectrum.  
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II.  THE FIBER FABRY-PEROT INTERFEROMETER SENSOR 

 

2.1. Introduction 

The Fabry-Perot interferometer (FPI), sometimes called the Fabry-Perot etalon, 

has been widely used for high-resolution spectroscope since its invention in the late 19th 

century.9,10 The first fiber Fabry-Perot interferometer (FFPI) appeared in the early 

1980s, when it began to be applied to the sensing of temperature, strain and pressure.  

The FPI is extremely sensitive to perturbations which affect the optical path 

length between the mirrors. Unlike other fiber interferometers (Mach-Zehnder, 

Michelson, Sagnac), the FFPI contains no fiber couplers – components which can 

complicate the interpretation of data. The compact size of the FFPI also enables “point” 

sensing in some applications. Finally, it is amenable to the application of space division, 

time division, and coherence multiplexing techniques for reducing the cost of multi-

point monitoring.  

 

Fig. 1. Fabry-Perot interferometer, with Pi, Pr, and Pt the incident, 

reflected, and transmitted optical power. 

L

R1 R2
Pi 

Pr 
Pt 
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2.2. Theory 
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Fig. 2. The reflectance R as a function of the round trip phase shift for 

two individual mirror reflectance value, R=0.9 and R=0.05. The 

quadrature points, halfway between the maximum and minimum 

reflectance points, represents the greatest sensitivity of reflectance to 

phase change. 

 An FPI consists of two mirrors of reflectance R1 and R2 separated by a cavity 

length of L, shown as in Fig. 1. The Fabry-Perot reflectance and transmittance are given 

by 

)cos21/()cos2( 21212121 φφ RRRRRRRRRFP ++++= , (2.1) 

)cos21/()1()1( 212121 φRRRRRRTFP ++−⋅−= , (2.2) 

 

where the round-trip propagation phase shift, is given by 
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λπφ /4 nL= , (2.3) 

 

with n the refractive index and λ the free space optical wavelength. It is evident from 

eq.(2.1) that FPR  is maximum for πφ m2= , with m  an integer. In the case that 

R=R1=R2, with R<<1, then 

)cos1(2 φ+⋅≅ RRFP , (2.4) 

)cos1(21 φ+⋅−≅ RTFP . (2.5) 

According to eq. (2.1), the reflectance is plotted as a function of phase shift in Fig. 2 

with R=0.9 and R=0.05. The approximation expression from eq. (2.4) closely follows 

the curve in the latter case. 

2.3. FPI sensor configuration 

As shown in Fig. 3, an intrinsic FFPI has two internal mirrors followed by a 

“non-reflecting” fiber end. The internal mirrors formed from dielectric coatings have 

shown good mechanical properties,1 low excess loss, and a wide range of reflectance. 

The most commonly used mirror material is TiO2, which has a refractive index of 2.4 

(vs. 1.46 for fused silica). Thus the reflection results from refractive index 

discontinuities at the two film-fiber interfaces. A film ~100 nm thick is deposited on the 

end of a fiber by electron beam evaporation. This fiber is then fusion spliced to the end 

of a second uncoated fiber. The fusion splicer is operated at lower arc current and 

duration than for a normal splice, and several splicing pulses are applied.1 The mirror 

reflectance generally decreases as a function of the number of splicing pulses, making it 

possible to select a desired reflectance over the range from ~1% to about 10%. An 

excess loss as low as 1% can be achieved. Cavity lengths from 100 µm to 1 m have been 

demonstrated, with lengths in the vicinity of 1 cm commonly used. 
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 Fig. 3. FFPI sensor with dielectric internal mirrors.  

2.4. Interrogation methods  

In most electrical sensors (e.g., thermocouples for temperature, piezoelectric 

pressure sensors) the raw signal is a monotonic and fairly linear function of the 

measurand.  In the case of interferometric optic sensors, it is often not so 

straightforward. Following eq. (2.3), the phase shift change is in the form 

T
dT
dLn

dT
dnL ∆+=∆ )(4

λ
πφ , 

(2.6) 

 

where T∆  is the ambient temperature change. The refractive index variation with 

temperature (first term in parentheses in the above equation) dominates over the effect 

of length change with temperature in silica fibers. The value of 
dT
dn

⋅
φ
1  is ~8×10-6/ oC 

in a silica fiber at room temperature, and changes only slightly over the range from 0 – 

600 oC.11 Since the phase shift can not be directly measured, it is determined from the 

optical signal, e.g., reflectance or transmittance, which is often a highly nonlinear 

function of the phase shift. It is evident from Fig. 2 that the reflectance signal is a 

periodic function of the round trip phase shift in the cavity. Determining the measurand-

R2 R1

Dielectric Internal 

Cladding 

Core Pi 

Pr 
Pt

L
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induced phase shift from the optical signal is a major challenge in an interferometric 

system.  

2.4.1. Laser (single wavelength) 

A simple experimental arrangement for monitoring the reflectance of an FFPI 

sensor using a single laser is shown in Fig. 4. Light from a laser diode is directed to an 

FFPI and a laser power monitoring photodiode through a fiber coupler. An optical 

isolator is connected in serial with the laser to block the destabilizing optical feedback. 

The reflected light from the FFPI is converted by another photodiode to an electrical 

current signal Ir, such that the reflectance is obtained as RFP  = CIr/Ii, with C a constant 

and Ii the photocurrent measured by the laser power monitoring photodiode. The 

absolute value of RFP can be obtained through calibration, although it is often not 

necessary.  

 

 

Fig. 4. Experimental arrangement for monitoring the reflectance of an 

FFPI sensor with a laser diode. 

In the case that the laser is operated at constant bias current (cw condition), it is 

desirable to operate the interferometer at the quadrature point to get a quasi-linear 

dependence of reflectance on phase shift. Referring to Fig. 2, sensitivity null/ambiguity 
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points occur at maxima and at minima in the reflectance signal. Thus, the linear 

dynamic range of phase shift is limited << πradians. 12,13 

One way to overcome the problems of sensitivity nulls and direction-of-change 

ambiguities in interferometric sensors is to modulate the frequency of the light source. 

In one case, the bias current to a distributed feedback (DFB) laser was ramped 

repetitively to produce a linear dependence of optical frequency on time (linear 

chirping), such that the reflectance signal from an FFPI is a temporal fringe pattern for 

each modulation cycle. The interferometer phase shift is determined from the time delay 

of the quadrature point relative to the beginning of a modulation cycle.2 In a 

continuously monitoring mode, it is also possible to “count fringes” with aid of 

software. Thus, a phase shift can be accurately measured through many πradians. 

2.4.2. Broadband light source 

Broadband light source interferometry, often referred as “white light 

interferometry” (WLI), is commonly used for FFPI sensing. In this case, the spectral 

width of the light source is sufficiently large that its coherence length is much less than 

the round-trip optical path of the FFPI. Suitable light sources for WLI include 

semiconductor superluminnescent diodes (SLDs), light emitting diodes (LEDs), and 

amplified spontaneous emission (ASE) light of erbium-doped fiber amplifiers (EDFAs). 

These light sources typically have a spectral width of a few tens of nm. 

 



 

 
 
 

11

 

Fig. 5. White light interferometry for monitoring the optical path 

difference of an FFPI. 

In an example of WLI shown in Fig. 5, light from the broadband source is 

transmitted by a reference Michelson interferometer and then reflected by a sensing 

FFPI before reaching the photodetector.14 The Michelson interferometer can be replaced 

with a Mach-Zehnder interferometer,3 or a Fabry-Perot interferometer.15 With 2nL the 

optical path difference (OPD) of the sensor interferometer, and 2nL+∆ the OPD of the 

reference interferometer, the photodetector output is given as a function of the OPD 

mismatch as 

ννπνπνη d
c
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0
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(2.7) 

where C andη  are constants and )(νg  is the spectral density of the light source. In the 

case that )(νg  satisfies a Gaussian distribution, eq. (2.7) becomes 3 
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(2.8) 

with P the total power and Lc the coherence length of the light source. In a sensor 

monitoring experiment, the OPD of the reference sensor is scanned such that the 

scanning range includes the OPD of the sensor interferometer; i.e., so that the OPD 

mismatch, ∆, is changing in the vicinity of zero. As illustrated in Fig. 6, the photo 

current output is an interference pattern modulated by a Gaussian envelope function 

profile, and the maximum amplitude (peak fringe) occurs when ∆=0. The width of the 

interference pattern is proportional to the coherence length of the light source. A change 

in the OPD of the sensor causes a lateral translation of the fringe pattern. Thus, the exact 

OPD change is determined by the shift of central fringe peak. Identification of the 

central fringe is a key issue, because even with a minimum noise, the central fringe is 

barely distinguishable from adjacent fringes in term of amplitude. A mistaken central 

fringe identification leads to an error in OPD of at least one wavelength. An approach 

using two broadband light sources with a wide wavelength separation has considerably 

reduced the chance of central fringe error by improving the fringe amplitude 

contrast.16,17 
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Fig. 6. Interference pattern of a white light interferometer. 

2.5.  Multiplexing techniques 

Sensor multiplexing provides a means to reduce the number of expensive 

components and hence the overall system cost. Space division multiplexing, time 

division multiplexing and coherence multiplexing can be utilized with FFPI sensors. 

2.5.1.  Space division multiplexing 

Fig.7 shows a typical configuration for space division multiplexing. Light from a 

continuous wave (cw) source is directed to each sensor through a multi-port directional 

coupler and the reflected light signal is measured by separate photodetectors. A signal 

processor utilizes the photodetector signals to determine a measurand value for each 

sensor. Monitoring up to 32 extrinsic Fabry-Perot interferometer (EFPI) sensors with 

two broadband light sources operating at different wavelengths was reported.18 With a 
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similar physical configuration, a single DFB laser and one mirocontroller-based 

processor can monitor up to 24 FFPI sensors.1   

 

Fig. 7. Space division multiplexing configuration monitoring multiple 

FFPIs with a single processor. 

2.5.2. Time division multiplexing 

In a time-division multiplexing configuration, fiber delay lines of different 

length are deployed between a transmitter and receiver. When a laser pulse is 

transmitted, the reflected light pulses from each of the accessed sensors reaches the 

photodetector in different time slots via fiber delay lines of different length. To 

determine the measurand value for one specific sensor, the reflected signal is sampled 

for analog-to-digital conversion at fixed time delays relative to the start of the pulse, and 

the samples are averaged. 
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2.5.3. Coherence multiplexing 

As an example of coherence multiplexing, the WLI monitoring configuration of 

Fig. 5 is extended to the interrogation of FFPI sensors of different length connected 

along a linear bus. Light from the broadband source is transmitted by a reference 

interferometer before reaching the sensors. When the reference interferometer is 

scanned, separated interference patterns are observed, and one local fringe peak is 

located for each sensor. The location of the fringe peaks determines the measurand 

value for each sensor. In an experiment using a quartz halogen lamp as the light source 

and scanned Michelson reference interferometer, 6 EFPI strain sensors of different 

optical cavity lengths were multiplexed in series along the length of a single mode 

fiber.19 

2.6. Summary 

In this chapter we have reviewed the theory of the Fabry-Perot interferometer, 

and introduced FFPI sensors formed with two low reflectance dielectric mirrors inside a 

single mode fiber. The OPD change of FFPI sensors can be optically interrogated using 

a laser which emits at a single wavelength or a broadband light source. The laser 

approach has the advantage of high-speed measurement but generally cannot provide 

accurate reading from “cold start” and the unambiguous range is limited. The broadband 

light source approach provides an absolute OPD measurement over a large dynamic 

range. FFPI sensors are also amenable to space division, time division and coherence 

multiplexing. 
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III.   FIBER BRAGG GRATING AND ITS APPLICATIONS 

3.1. Fiber Bragg grating (FBG) fundamentals  

An FBG is a section of single mode fiber in which the refractive index varies 

along the fiber axis in a periodic manner. This index modulation is normally produced 

by exposure of the fiber core to an intense optical interference pattern from an 

ultraviolet laser.4,21 Due to the coherent scattering from the index variations, a strong 

reflection occurs at the Bragg wavelength Bλ  , which is given by 

Λ= effB n2λ , (3.1) 

where effn  is the effective refractive index and Λ  is the grating period. Fig. 8 shows 

that an FBG acts as a wavelength stop-band filter when monitored in transmission and 

as a band-pass filter when monitored in reflection. 

 

Fig. 8. FBG as a band reflecting filter, with Pi, Pt and Pr the incident, 

transmitted, and reflected power, respectively. 
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For a uniform Bragg grating formed within the core of single mode fiber, the 

refractive index of the fiber core can be expressed as  

)
2

cos()(
Λ

∆+=
z

nnzn co

π
, 

(3.2) 

where n∆  is the amplitude of the induced index modulation (typical values are in the 

range of 10-5 to10-3), and the z axis is along the fiber core. The reflectance of such an 

FBG is given from the coupled mode theory as22 

222

22

)(cosh
)(sinh)(

ksL
sLkR

∆−Ω
Ω

= , 
(3.3) 

where L is the grating length; λπ /2 effnk =  is the wavevector, and the wavevector 

detuning is defined as  

Λ−=−=∆ /)( πλ kkkk B ; (3.4) 

Ω  is the coupling coefficient, and the complex variable s  is defined as 222 ks ∆−Ω= . 

The coupling coefficient is given by 

pMn
λ

π∆
=Ω , 

(3.5) 

where pM  the fraction of the fiber mode power inside the fiber core can be 

approximated as  

)(4
1 2222

2

clco
p nna

M
−

−=
π

λ , 
(3.6) 

with a the core radius and cln  the cladding refractive index. Following from eq. (3.3), 

the peak reflectance at the Bragg wavelength is given as 

)(tanh)( 2 LR B Ω=λ . (3.7) 

Noting that s  can be real or imaginary, eq. (3.3) is expressed as following when s  is 

imaginary,  

)|(|cos
)|(|sin)( 222
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Fig. 9. Calculated FBG reflectance spectra in different grating lengths. 

The FBG reflectance spectrum given by eq. (3.3), with n∆  =2×10-4 and 

Bλ =1550 nm, is plotted in Fig. 9. Fig. 9 (a) shows a spectrum for a 2-cm long grating 

with a flat high reflectance band, which is normally used in dense wavelength division 

multiplexing (DWDM) as an add-drop filter or demultiplexer. The sidelobes of the 
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reflectance profile can be removed by modifying the uniform index modulation with an 

apodized index modulation envelope.23 Figs. 9 (b) and (c) show that an FBG with a 

short length has lower reflectance and a more gradually changing profile. The grating 

with the reflectance spectrum in Fig. 9 (c) can be used as one reflector in a low finesse 

Fabry-Perot interferometer.  

3.2. FBG in optical communication applications 

FBGs are used in a variety of optical communication components. Their unique 

filtering property and versatility as in-fiber devices are applied in wavelength stabilized 

lasers, fiber lasers, remote pump amplifiers, Raman amplifiers, phase conjugators, 

wavelength converters, passive optical networks, wavelength division multiplexers and 

demultiplexers, add/drop multiplexers, dispersion compensators, and gain equalizers.  

3.2.1. Wavelength stabilizer 

 

 Fig. 10. The FBG as a wavelength selective reflector for (a) a 

wavelength stabilized pump laser; (b) an all-fiber laser. 
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FBGs are commonly used as feedback reflectors in wavelength stabilized 980 

nm semiconductor lasers for erbium-doped amplifiers.24, 25 As shown in Fig. 10 (a), laser 

stabilization is achieved using a weak, narrow-band FBG in the fiber pigtail to couple 

light back into a Fabry-Perot semiconductor pump laser, creating an external laser 

cavity. Shown in Fig. 10 (b), all-fiber lasers can be constructed using FBGs as resonator 

mirrors and an erbium-doped fiber as the gain medium. Because of the short cavity 

length and the narrow bandwidth of the FBG reflectors, the laser is operated in a single 

longitudinal mode, such that the narrow laser linewidth is suitable as an externally-

modulated cw source in a gigabit/s transmission system.26 

 

 

Fig. 11. FBG multiplexer/demultiplexer in (a) circulator arrangement, (b) 

Mach-Zehnder interferometer arrangement. 
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3.2.2. Add/drop filter 

There are several techniques to make use of an FBG in an add/drop filter. One of 

the most straightforward methods is to connect an FBG with circulators as shown in Fig. 

11(a). With port 1 as the input port, the wavelength channel reflected by the FBG is 

transmitted through port 2, and a new signal in this channel can be added through port 3. 

Commercial circulators have very high port-to-port isolation (typically 50-60 dB) and 

thus give the filter excellent wavelength isolation and return loss. The disadvantage of 

this configuration is relatively high insertion loss and high price of the circulators. Fig. 

11 (b) shows another approach in which a Mach-Zehnder interferometric arrangement is 

formed with two 3-dB coupler and two identical FBGs. With port 1 as the input port and 

port 3 as the add port, it is possible to adjust the phases of the reflected and transmitted 

signals such that interferometric maxima are produced at port 2 and port 4. As a result of 

the symmetry of the device, multiplexing and demultiplexing can take place 

simultaneously in the same device. A monolithic version of this device can be fabricated 

without fiber splicing. Two fibers are laid parallel so the fused couplers are formed and 

then identical FBGs are written.27 Accurate phase adjustment is accomplished by 

exposing one arm of the interferometer to UV light to produce refractive index changes. 

3.2.3. Dispersion compensator 

Chromatic dispersion in a transmission fiber can cause significant distortion of 

optical pulses, leading to system power budget and bandwidth penalties. Dispersion 

compensation can be accomplished by using a long chirped FBG where the periodicity 

of the grating decreases continuously along the length of the grating.28 As shown in Fig. 

12, longer wavelengths are reflected from the front of the grating, whereas the shorter 

wavelengths penetrate farther into the grating before being reflected. The wavelength-

dependent time delay of the reflection compensates for the pulse broadening resulting 

from propagation of the light over the long fiber.  
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Fig. 12. Chirped FBG used to compensate for the dispersion of an optical 

pulse. 

3.3. FBG sensors and interrogation methods 

The FBG is an excellent sensor element, suitable for measuring static and 

dynamic fields, such as temperature, strain, and pressure.29 The principal advantage is 

that the measurand information is wavelength-encoded (an absolute quantity), thus a 

system incorporating FBGs as sensor elements is potentially interrupt-immune. In 

addition, their low insertion loss and narrow reflection bandwidth allows for WDM 

multiplexing/demultiplexing techniques to be applied to an array of FBGs along a single 

optical fiber. Combined with other advantages of intrinsic fiber sensors, such as 

immunity to electromagnetic interference (EMI), light weight, flexibility, stability, high 

temperature tolerance and durability, the FBG is a strong candidate for use in smart 

structures. 

The most commonly used monitoring technique in an FBG-based sensor system 

is based on determining the Bragg wavelength which shifts with the changes in the 
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measurand (e.g. strain, temperature). From eq. (3.1), the Bragg wavelength is a nearly 

linear function of temperature or strain as indicated by the following expressions:29 
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Fig. 13. Monitoring and multiplexing of FBG sensors using a broadband 

illumination arrangement. 

The most frequently utilized method for the interrogation of an FBG sensor is 

based on a passive broadband illumination arrangement. The input light source has a 

broad spectrum, and either the narrowband component reflected by the FBG is directed 

to a wavelength detecting device, or the transmitted spectral with Bragg “notch” is 

analyzed. Fig. 13 shows the general arrangement for the reflective approach. The 

broadband light source is often a SLED or the amplified spontaneous emission (ASE) 

light of an Erbium-doped amplifier, with a bandwidth in the tens of nm range. A 

commercially available optical spectrum analyzer (OSA) can be used as a wavelength 

monitoring device, such that the measured Bragg wavelength resolution approaches ~1 

pm, which is required to resolve a temperature of ~0.1 oC and a strain change of ~1 µε. 

However, it is a more challenging goal to measure the spectrum using small electro-
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optic devices. Various wavelength detecting techniques such as edge filters, scanning 

filters, and interferometers have been demonstrated.  

3.3.1. Edge filter approach 

In a ratiometric approach based on the use of a broadband light source, the FBG 

wavelength is determined by comparing the transmittance of the FBG-reflected light 

through a filter with the transmittance of light which passes through a direct reference 

path.30 Edge or bandpass filters provide a suitable wavelength-dependent loss for this 

type of detecting system. A wavelength resolution of ~5 pm, corresponding to 5 µs or 

0.5 oC in strain and temperature respectively, has been achieved using a fiber WDM 

coupler as the filter.31 The wavelength detecting arrangement is shown in Fig. 14. The 

multiplexing of sensors using this approach has yet to be addressed.  

 

Fig. 14. Using a WDM coupler to determine the Bragg wavelength. 

3.3.2. Scanning filter approach 

FBG wavelength monitoring has also been demonstrated using scanning filters 
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grating-based filter.34 When using an FP filter, the light reflected by the FBG is returned 

via the coupler to the scanning filter and to a detector. The FP passes a narrowband 

wavelength component, depending on the spacing between the two mirrors. Electrical 

control of this mirror spacing via a piezoelectric stack allows for tuning the pass band 

wavelength. Typical characteristics of this type of FP used are a free spectrum range 

(FSR) of 50 nm and bandwidth of ~0.3 nm. This allows as many as 16 FBG sensors 

spaced by ~3 nm to be multiplexed in a serial configuration. A 16-bit digital-to-analog 

converter generates the control voltage for the FP and produces a minimum wavelength 

resolution of ~0.8 pm. An FP scanning rate of >300 Hz also makes fast measurement 

possible.  The impact of the piezo hysterisis and nonlinearity on the wavelength 

accuracy has yet to be addressed. The scanning filter technique also has the drawback 

that it only utilizing a narrow “slice” of optical spectrum during each scanning cycle. A 

strong erbium fiber ASE light source with average power in the range of 10 mw can be 

used to compensate for the extra power penalty.   

3.3.3. Interferometer approach 

In an interferometer wavelength detection approach, the FBG wavelength shift is 

converted into a phase change of the interferometer. Fig. 15 shows an asymmetric 

Mach-Zehnder interferometer arrangement as a wavelength detection device. As the 

phase in one interferometer arm is ramped over exact π radians, an electrical carrier is 

generated at the receiver. The output signal is band-pass filtered at the fundamental 

ramp modulation frequency, such that the phase modulation of the carrier can be 

detected using a lock-in amplifier. The dependence of the output phase change on Bragg 

wavelength shift is given by 

 

λ
λ
πφ ∆=∆ 2

2 nd , 
(3.11) 

where nd is the interferometer optical path difference (OPD).  
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Fig. 15.  Mach-Zehnder interferometer arrangement for wavelength 

detection. 

Since the temporal coherence has to be maintained as the light beams travels 

through the two interferometer arms, the OPD must be less than the effective coherence 

length of the light reflected from the FBG. By appropriate choice of the interferometer 

OPD, this technique can be extremely sensitive to a small dynamic wavelength shift. 

However, the detection of quasi-static strain is precluded by temperature-induced 

interferometer OPD drift and by the limited unambiguous range, corresponding to a 

phase change of 2π radians in the interferometer. Therefore, this technique is most 

suited for recovering dynamic strain signals, with the dynamic range limited to <104. A 

dynamic strain resolution of ~6 nanostrain/√Hz has been reported for a 4.5 mm OPD 

interferometer.35 A combination of WDM multiplexing and interferometric detection 

has also been demonstrated.36 A drawback which exists in such a WDM system is that 

the phase modulation can not be exactly 2π radians for all the FBG sensors. This leads 

to a cyclic phase error which has yet to be addressed. 
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3.4. Summary 

An FBG is formed by a spatially periodic refractive index modulation inside a 

fiber core, such that a strong reflection band is produced near the Bragg wavelength. 

The wavelength response of an FBG is calculated using mode coupled theory. 

Numerical results have been given for particular FBG parameters including: Bragg 

wavelength, index modulation depth and grating length.  

FBG applications in communication have been illustrated. An FBG is used as a 

selective wavelength feedback element for wavelength stabilizing a pump laser diode 

and for constructing a narrow linewidth fiber laser cavity. The FBG is also a very 

important element for many DWDM multiplexing/demultiplexing devices. A circulator 

configuration and a Mach-Zehnder interferometer arrangement for an add-drop 

multiplexer/demultiplexer have been described. A chirped FBG can be used to 

compensate for the chromatic dispersion of a fiber used for long-haul transmission.  

The FBG is a very important sensor element. Compared to interferometric fiber 

sensors, the measurand information is wavelength-encoded, such that a direct absolute 

measurement is available, and WDM multiplexing/demultiplexing is readily 

implemented. A passive broadband illumination arrangement is commonly used in FBG 

interrogation. Besides using the commercially available optical spectrum analyzer 

(OSA), methods using other small electro-optic devices have been illustrated. The edge 

filter approach is based on the principle of detecting the wavelength dependent 

transmission through the filter. It provides a simple solution with good resolution and 

instantaneous measurement, but the measurement range and the multiplexing capability 

is limited. Scanning filters are successfully used for FBG sensor interrogation. A piezo 

driven Fabry-Perot tunable filter is shown as an example. The wavelength resolution is 

excellent and the system is able to multiplex an array of many FBGs along a single 

fiber. Finally, an interferometric approach is introduced. Although this method 

relinquishes absolute measurement by converting wavelength detection into phase 

detection, extremely high resolution is obtained. An interferometer normally suffers 
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from slow drift, so this technique is suited for high resolution dynamic strain 

measurement, but not for absolute parameter measurement. Multiplexing can also be 

combined with this approach.   
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IV. LINEARLY CHIRPED  ERBIUM-DOPED FIBER LASER 

4.1. Erbium-doped fiber 

The Erbium-doped fiber has found wide applications as the gain medium for 

Erbium-doped fiber amplifiers (EDFAs). Since it is able to compensate for the optical 

signal attenuation which occurs during long distance fiber transmission, the EDFA 

repeater plays an exceptionally important role in supporting the backbone of the optical 

fiber communication networks since its invention in late 1980s. Compared to electronic 

regenerators, EDFAs are more versatile and intrinsically reliable, and much less 

expensive. With a wideband gain spectrum centered at 1550 nm wavelength, the EDFA 

can simultaneously amplify > 100 wavelength channels in a single fiber. 

 

Fig. 16. Absorption spectrum of erbium-doped fiber. 
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Fig. 16 shows the absorption spectrum measured in an erbium-doped fiber, 

where the peaks represent the transitions between the Er3+ ion 4I15/2 ground energy level 

and higher energy levels.37 Two main spectral regions near 1480 nm and 980 nm with 

strong absorption are potential pump bands. The 4I15/2 →4I11/2 transition is responsible 

for the pump absorption at 980 nm and the 4I13/2 ↔ 4I15/2 transition is responsible for 

pump absorption at 1480 nm and emission in the 1550 nm wavelength region. 

 

Fig. 17. Er3+ ion energy level diagram with presence of 980 nm pumping. 

In the 980 nm pumping case, the energy levels can be treated as a three-level 

energy system. Fig. 17 shows the energy level diagram with transition actions. The 

lifetime of the Er3+ 4I13/2 level is about 10-2 s.37 The transition from the 4I11/2   level is 

considerably faster with a transition rate in the order of 10-5 s.38 Therefore, the 

population inversion can be built between the 4I13/2 level and the 4I15/2 ground level. It is 

reasonable to neglect the ion population in the 4I11/2 level due to the fast transition to the 

level of 4I13/2, thus the rate equation is given 

d(N2-N1)/dt= βσ1N1+ ρσ2 (N2-N1)- γ N2. (4.1) 

with N1, N2 the population in the level   4I15/2 and 4I13/2   respectively, σ1 the absorption 

cross section at pump wavelength, σ2 the absorption or stimulated emission cross section 
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at the signal wavelength, γ is the spontaneous emission rate, and β and ρ are the photon 

flux density of the pump light and signal light respectively.  

 

Fig. 18. Er3+ ion energy level diagram with presence of 1480 nm 

pumping. 

In the case of 1480 nm pumping, we have to consider the Stark splitting of the 
4I13/2 level and the 4I15/2 level, because a population inversion is impossible to build for a 

pure two-level energy system. The energy diagram is shown in Fig. 18. According to the 

McCumber theory of emission,39 the population in the sublevels is considered as the 

Boltzmann distribution, instead of equal distribution. The relationship between the 

emission cross section σ21 and the absorption cross section σ12 is thus written as 

σ21(ν)=σ12(ν)exp[(ε-hν)/kT], (4.2) 

with ν is the optical frequency, ε the “mean” transition energy between the two energy 

levels of 4I13/2 and 4I15/2, k the Boltzmann constant. It indicates that the absorption and 

emission cross sections are equal only at one wavelength, ~1530 nm, and that for 

wavelengths lower than the crossing point, the absorption cross section is larger and 

vice versa for wavelengths larger than the crossing point. The McCumber analysis is 

verified by experiment.40 Fig. 19 shows the measured and calculated cross sections for 

an erbium-doped from Miniscalco’s and Quimby’s work. The rate equation is given by 
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d(N2-N1)/dt = [β(ν1480)σ12(ν1480)+ρ(ν1550)σ12(ν1550)]N1 

                   -[β(ν1480)σ21(ν1480)+ρ(ν1550)σ21(ν1550)]N2-γ N2. 

(4.3) 

With the presence of pump light at 1480 nm, the population inversion between the 

excited state and the ground state is made possible for amplification in the 1550 nm 

wavelength region. 

 

 

Fig. 19. Measured stimulated cross section agrees with the result using 

McCumber theory. 

4.2.  Erbium-doped fiber laser background 

Neodymium doped crystal fiber lasers were investigated during the early 1970’s 

as potential devices for fiber transmission.41,42 Lasing at 1.06 µm wavelength was 

achieved for these devices.  A laser is typically fabricated by polishing and coating the 

end face of the fiber and then aligning it to a pump laser diode or LED. In 1985, an Nd3+ 

doped single mode fiber laser pumped by a GaAlAs laser diode was demonstrated.43 
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Shortly after the recognition of Er3+ ion as an ideal amplifying medium for modern 

fiber-optic transmission system at 1.5 µm, the erbium-doped fiber laser (EDFL) was 

demonstrated. In an EDFL device, the Erbium-doped fiber is fusion spliced or 

connected with a fiber connector to standard single-mode fiber and other optical 

components such as a pump laser diode with fiber connection, coupler, isolator, tunable 

filter and polarization controller. Easily adaptable and versatile, the EDFL has become a 

very useful tool in the telecommunication and fiber sensing areas.  

4.2.1. Ring type tunable EDFL 

A tunable EDFL in a ring configuration is shown in Fig. 20, where the pump 

laser is normally a 980 nm or 1480 nm laser diode, and the Erbium doped fiber is about 

15 m long.44 An isolator is connected such that the light travels in one direction inside 

the laser cavity. In this case, the traveling wave cavity eliminates the “spatial hole 

burning” commonly existing in a standing wave cavity. When the laser is operated in a 

cw condition, the laser output is most likely in single longitude mode.44 However, with 

the presence of environmental disturbance, special techniques have to be applied to keep 

the laser from mode hopping and frequency drifting.45,46 Operated in a stable single 

mode condition, the laser linewidth is in the order of kHz. The tunable bandpass filter is 

connected so the laser wavelength can be tuned within the wide erbium-doped fiber gain 

spectrum span ranging from 1520 nm to 1570 nm. The tunable intracavity filter can be a 

Fabry-Perot etalon,47 Mach-Zehnder interferometer,48 ultra strength fiber Bragg grating 

(FBG),49 acousto-optic tunable filter,50 or bulky external cavity grating mirror.44 Slope 

efficiency of 10%~15% is commonly achieved in this type of laser, which gives an 

output power in the order of mw. In general, the ring type EDFL offers many desired 

features such as: single mode operation and narrow laser linewidth, wide tuning range, 

and large output power.  
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Fig. 20. Scheme of a ring type tunable Erbium-doped fiber laser. 

However, continuous wavelength tuning has not yet been demonstrated in the 

ring type tunable lasers. According to the studies investigating mode hopping and mode 

competition during the wavelength transition of the ring type EDFL,51,52 it is difficult to 

achieve continuous tuning. 

4.2.2. Tunable EDFL with fiber Bragg gratings 

 

Fig. 21. Configuration of an EDFL with FBG reflectors. 
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Another popular tunable EDFL is built as a Fabry-Perot laser cavity with FBG 

reflectors.53,54 The configuration is shown in Fig. 21. The cavity length is often a few cm 

long, such that the narrow reflection bandwidth of the FBGs only allows one single 

mode oscillation. Thus, the laser wavelength can be given as 

λ = 4neff L/m, (4.4) 

with neff the effective reflective index of the laser cavity, L the cavity length, and m the 

longitude mode order. The wavelength is tuned by applying tensile stress along the fiber 

laser cavity with a piezoelectric transducer (PZT). The center wavelength of an FBG 

reflector, also known as the Bragg wavelength, is given as in a similar form as 

λb = 2nbΛ, (4.5) 

where Λ is the FBG grating pitch. Assuming that the refractive index change and fiber 

elongation of the FBG fiber and the erbium-doped fiber have the same dependence on 

the strain change, the Bragg wavelength will always track the laser wavelength, λb≡λ, 

thus allowing continuous tuning without mode hopping.  However, the laser has two 

disadvantages:53 1. Because of the short Er: fiber, the output power is low; 2. The tuning 

range is limited to less than a few nm due to the fiber tensile strength and the limited 

strain a PZT can provide.  

4.2.3. Comments 

In most of these previous EDFL experiments, the goal has been to demonstrate 

and characterize lasers with wide spectral tunability and narrow linewidth as needed for 

dense WDM systems.  However, these lasers can be applied in areas other than optical 

communications.  In particular, the broad spectral tuning range makes these fiber lasers 

useful in spectroscopy, where a chirped laser can replace a broadband light source and 

optical spectrum analyzer.  Ideally, the laser should be tuned continuously over the 

entire scanning range at constant rate, while a narrow instantaneous linewidth is 

maintained. The ring type and FBG approaches have not demonstrated this capability, 

because the former has difficulties in the continuous tuning mode and the later is limited 

by tuning range. 
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4.3.  Constructing a tunable EDFL with a Fabry-Perot cavity 

 

 

Fig. 22. Experimental arrangement of the tunable fiber laser. The Fabry-

Perot laser cavity can be easily converted to a ring cavity. 

The experimental arrangement of the tunable erbium-doped fiber laser is shown 

in Fig. 22.  A 14-m long erbium-doped fiber is pumped by a diode laser emitting at 980 

nm. A high-reflectance fiber mirror and a rotating mirror-grating combination in the 

Littrow configuration serve as reflectors for the Fabry-Perot laser cavity. The high-

reflectance fiber mirror is formed by gold plating on a cleaved fiber, with a measured 

reflectance of 87%. In the mirror-grating combination, the light exiting from the fiber is 

first collimated by a lens with a focal length of 50 mm, and then reflected by a rotating 

mirror before it reaches the grating. The fiber end is angle polished and anti-reflection 

(AR) coated to eliminate back reflection and reduce loss. The 600 line/mm grating is 
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oriented at an angle of ~28 o relative to the input beam, such that the first order 

diffraction light will travel against the incident light propagation and be coupled back 

into the fiber, if the light wavelength satisfies 

λ = 2dsinα, (4.6) 

with d the grating pitch, and α the incidence angle. The resolution of the first order 

diffraction equals the total number of grating lines illuminated by the light beam, given 

by 

δλ/λ = dcosα/(fθ), (4.7) 

where f is the lens focal length and θ the divergence angle of light exiting from the 

single mode fiber given by 

θ = 4λ/(πD), (4.8) 

with D the mode field diameter of the fiber. Combining eq. (4.5), (4.6), (4.7), the 

wavelength resolution is  

δλ= 0.41D(4d2-λ2)-1/2/f. (4.9) 

In the 1550 nm wavelength region, with a fiber mode field diameter of 9 µm, the 

minimum bandwidth of the grating mirror is 0.22 nm. When wideband light is sent to 

the grating mirror, the spectrum of the feedback light signal is measured with an optical 

spectrum analyzer (OSA). In , the 3-dB bandwidth is measured to be 0.32 nm.  

The commercial rotating mirror used in the experiment is from Gsi Lumonics, 

model number M3. The mirror is driven by a DC servo motor with an embedded 

position sensor and an electronic feedback circuit. A Labview computer program 

generating a 1 Hz triangle waveform serves as the command signal, such that the mirror 

is scanning back and forth in a linear fashion. According to eq. (4.6), the mirror needs to 

turn ~1.0 o to scan over a 50 nm wavelength region near 1550nm. By adjusting the 

command signal amplitude, the laser wavelength is tuned over the entire erbium-doped 

fiber gain region. 
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Fig. 23. Reflection spectrum of the mirror-grating combination. 

As mentioned in section 2, the Fabry-Perot cavity laser is operated in multi 

longitude mode due to the “spatial hole burning” effect. Shown in Fig. 22, the laser 

cavity can be easily converted into a ring type such that the “spatial hole burning” effect 

can be eliminated. Single mode oscillation was confirmed in a very similar ring type 

laser.44 

4.4. Monitoring the laser performance 

4.4.1. Tuning range and laser power 

Before the laser light reaches the OSA in Fig. 22, an isolator is connected to 

block any unwanted feedback. When the laser wavelength is scanned over the erbium-

doped fiber gain region, temporal spectrum lines are captured by the OSA. Fig. 24 

shows 5 traces of spectrum lines at different laser wavelengths and one trace of 
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spontaneous emission (laser-free) spectrum. Considering the laser power versus the total 

spontaneous emission power, the laser-noise ratio is >10 dB from 1521 nm through 

1569 nm, and >25 dB from 1530 nm through 1561 nm. Additionally, the laser power 

variation is less than 2 dB over the 1521~1569 nm wavelength region. The OSA does 

not detect any light signal near the pump laser wavelength of 980 nm. Evidently, the 3-

dB coupler and the isolator remove any unabsorbed pump light passing through the 

erbium-doped fiber.  

 

 

 

Fig. 24. Spectrum lines captured at 5 different laser wavelengths are 

compared to a spontaneous emission profile. 
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By replacing the OSA with a power meter, the laser power as a function of pump 

laser power is measured as shown in Fig. 25. The laser threshold and slope efficiency 

are found 13 mw and 20% respectively. 
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Fig. 25. Laser power as a function of pump power. 

4.4.2. Continuous tuning 

In Fig. 22, the laser is directed to a 10-mm long FFPI sensor, and a photodetector 

detects the reflected light signal. The photocurrent signal is converted to voltage by a 

transimpedence amplifier and a computer data acquisition program saves the voltage 

data. Fig. 26(a) shows the temporal variation of the reflected signal as the laser is 

scanned over a small portion (≈ 3 %) of the scanning, where the rotating mirror is 

scanned in a 1 Hz triangle waveform and the data acquisition sampling frequency is 20 

kHz.  According to the FFPI theory, the FFPI reflectance can be given as 

R=C1+C2(1+cosφ), (4.10) 

with C1, C2 constants, and φ the FFPI round trip phase shift given as 

φ=4πnLν/c, (4.11) 
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with n the index of refraction, L the FFPI cavity length, ν the optical frequency, and c 

the free space speed of light. The phase shift is calculated according to eq. (4.9). Shown 

in Fig. 26(b), the phase shift curve indicates that the laser frequency shifts linearly with 

little discontinuity. It follows from eq. (4.10) that the frequency change for 2π phase 

shift in the interferometer output signal is c/(2nL).  With c = 3 x 10 m/s and n = 1.46, the 

frequency change per fringe is calculated to be 10.3 GHz, corresponding to a 

wavelength change of 78 pm.   
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Fig. 26. (a) Reflected signal of the FFPI, (b) phase shift of the FFPI. 

To further demonstrate the tuning continuity of the laser, a ring cavity laser 

operated in single longitudinal mode was constructed for comparison. As shown in Fig. 

22, the laser cavity conversion can be easily done by connecting an isolator and closing 

the fiber loop. When the laser is operated in the same condition (i.e. pump power and 

tuning speed), it produces much larger wavelength noise such that the FFPI interference 

pattern can not be clearly identified. The reflected signal obtained by replacing the 10-
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mm FFPI with a 2.5-mm long FFPI is shown in Fig. 27, which also plots the monitored 

laser output power signal. Notice that each fringe corresponds to ~0.31 nm in 

wavelength, the laser wavelength randomly hops in steps of 20~40 pm, and relaxation 

oscillation is occasionally present.  
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Fig. 27. In ring cavity configuration, the laser power and FFPI reflected 

signal as a function of time. 

When the ring cavity laser operates in steady condition (i.e. the mirror is at fixed 

angle position), only one oscillating mode survives the mode competition. When the 

mirror is scanning, the cavity loss continually breaks the mode competition balance, 

such that the wavelength shifting is achieved by mode “hopping”. In addition, the mode 

hopping carries random noise because it is very sensitive to many factors, including 

cavity loss, mode distribution and population inversion. On the contrary, the Fabry-
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Perot laser cavity allows a large number of modes to oscillate simultaneously, such that 

the mean wavelength closely follows the minimum cavity loss wavelength with less 

noise. In conclusion, the Fabry-Perot cavity configuration has the advantage over a ring 

cavity configuration to produce continuous wavelength tuning.  

 

Fig. 28. Arrangement to measure the coherence length of the tunable 

laser. 

4.4.3. Linewidth 

Another important characteristic of the laser is the instantaneous linewidth 

during a spectral scan. Fig. 28 shows an arrangement to measure the coherence length of 

the laser light. The two fibers of a 3-dB coupler are cleaved to construct a Michelson 

interferometer. The visibility was measured using a fiber Michelson interferometer in 

which the OPD was varied by reducing the length of one of the arms by a cut-back 

technique.1  The fringe visibility V, defined for equal-reflectance fiber ends as 

V= (Pmax-Pmin)/(Pmax+Pmin), (4.12) 

with Pmax and Pmin the maximum and minimum optical powers within a fringe, is plotted 

as a function of OPD in Fig. 29.   From this plot, the coherence length of the laser was 

determined to be 4.7 cm, corresponding to a spectral line width of 33 pm. Since the 
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longitudinal mode spacing is about 5.2 MHz, the laser is emitting in about 800 

longitudinal modes at any given time. 
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Fig. 29. Interference visibility as a function of OPD of the Michelson 

interferometer. 

4.5.   Linear laser tuning  

Although Fig. 26 shows a nearly linear tuning over a limited wavelength range, 

the nonlinear effect becomes more noticeable when the wavelength range is extended. A 

quantitative indication of the chirp rate stability is obtained by measuring the time 

interval for scanning through a fixed number of fringes of the FFPI signal.  A variation 

of about 5% in frequency scanning rate is found over the 46 nm frequency scanning 

range of the laser. To improve the chirp rate stability, an active optical feedback 

technique is employed.  During each frequency scan, the Labview program determines 

the accumulated time t(N) for scanning through N fringes from the FFPI data by the 

computer, and then calculates an error signal proportional to the difference between the 

measured t(N) and a function t'(N) = KN, with K a constant proportional to the desired 

chirp rate.  This error signal is fed back to the voltage generating program to adjust the 
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mirror angular rotation as needed to compensate for the accumulated error. In the 

experiment, N = 25. 

The improvement in scan linearity achieved by this optical feedback technique is 

shown in Fig. 30.  The root mean square variation in the optical chirp rate is reduced to 

0.3%.   
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Fig. 30. The time interval for 25 fringe shift in different wavelength 

sections. 

Another indication of the effect of the optical feedback is shown by the Fourier 

transform of the temporal data from the FFPI for the two cases, shown in Fig. 31. The 3 

dB spectral width is 75 Hz without feedback and 5 Hz with feedback. 
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Fig. 31. Fourier amplitude of the reflected signal data in the cases (a) 

without feedback, (b) with the feedback. 

4.6.    Summary  

In this section, we have introduced the fundamentals of the Erbium-doped fiber, 

and reviewed the history and background of Erbium-doped fiber lasers. In previously 

reported EDFL research, the tunability and single longitude mode oscillation with 

narrow linewidth were studied. In the present work, an EDFL using rotating a mirror-

grating combination as one of the reflectors in a Fabry-Perot laser cavity has been tuned 



 

 
 
 

47

over a 46 nm spectral range. Linearization of the chirp rate has been achieved using 

feedback from a fiber Fabry-Perot interferometer (FFPI) to adjust the voltage ramp 

which drives the rotating mirror.  This method represents a simple and relatively 

inexpensive alternative to the optical spectrum analyzer in some spectroscopy 

applications. 
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V. THE MONITORING AND MULTIPLEXING OF FFPI 

SENSORS USING A LINEARLY CHIRPED ERBIUM-DOPED 

FIBER LASER  

5.1. Introduction 

White light interferometry (WLI) is established as a practical method of 

measuring the absolute optical path difference (OPD) in interferometric fiber optic 

sensors. In most such systems, light from a broadband source is coupled into a scanned 

Michelson interferometer and then into the fiber sensor.3,56,57 A fringe pattern is 

produced by the optical power transmitted or reflected from the sensor. The peak of the 

central fringe occurs when the OPD of the scanned Michelson interferometer exactly 

matches that of the fiber sensor. 

Compared to monitoring systems for interferometric sensors which make use of 

single frequency (laser) light sources, WLI offers two important advantages: (1) the 

ability to make accurate measurements from a "cold start" with no a priori knowledge of 

the OPD, and (2) the ability to monitor many sensors deployed along a single fiber using 

coherence multiplexing.58-60  

Another approach to monitoring the OPD in an interferometer makes use of a 

linearly chirped light source. In this case, the OPD is proportional to the frequency of 

the photodetector signal produced by the coherent addition of the amplitudes of the light 

waves which have traversed the two interferometer paths.61,62 This method represents an 

optical implementation of the frequency modulated continuous wave (FMCW) 

technique first applied in radar systems.63 Generally, the OPD is determined from the 

Fourier transform of the detected signal. The amplitude of the Fourier transform is used 

to evaluate the OPD with relatively low spatial resolution (>> 1 optical wavelength) 

over long ranges (>> 1 km), while the phase information allows for measurement of 
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OPDs with high spatial resolution (<< 1 wavelength) over short ranges (< 1 

wavelength).   

This research encompasses the application of the FMCW technique to obtain 

spatial resolution << 1 wavelength and range >> 1 wavelength in OPD measurements by 

utilizing both the amplitude and phase of the Fourier transform of the output signal.  

This is made possible by the wide spectral tuning range of the chirped laser. This 

scheme combines the primary benefit of laser monitoring - high fiber-coupled optical 

power and high signal-to-noise ratio - with the two advantageous features of WLI 

mentioned above. Thus, in cases where absolute OPD measurements are needed, the 

present scanned laser scheme is capable of achieving a higher dynamic range for an 

individual sensor and is also capable of multiplexing a greater number of sensors with a 

single light source and photodetector than is a conventional WLI setup. Furthermore, 

optical implementation of the scanned laser system is somewhat simpler than a 

conventional WLI system. 

5.2. Theory 

In the general case of N interferometers arranged in series, the photocurrent 

signal Is due to the light which has passed through the interferometers can be written 

∑ =

=
+=

Nj

j jjs CCI
10 )cos(φ , (5.1) 

where the jC 's are real constants which depend on the configuration of the system and 

the jφ 's are the optical phase shifts in the interferometers given by  

cD jj /2πνφ = , (5.2) 

with ν  the optical frequency, jD  the optical path difference (OPD) for the j'th 

interferometer, and c   the free-space speed of light. Here, it is assumed that the 

modulation depths for the interferometers are small ( jC  << 0C , all j), so that in eq. (5.1) 

terms in sI   involving products of the jC 's are neglected. If only one interferometer is 
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present, the photocurrent will vary sinusoidally with ν , suggesting Fourier analysis of 

)(νsI  as a means of determining the OPD. If multiple interferometers with different 

OPDs are present, each Fourier component will correspond to a different jD  value. The 

optical transit time cD /=τ  is the Fourier conjugate to ν. Values for the jD 's can now 

be determined from the photocurrent signal by taking the Fourier transform )(τsA , 

defined as 

ννντπντ
ν

ν
diIA ass

b

a

)](2exp[)()( −−= ∫  (5.3) 

where νa and νb are the optical frequencies at the start and at the end of the chirp. It 

follows from eqns. (5.1), (5.2), and (5.3) that, for the case of a single interferometer of 

OPD jD ,  

2222 )](2/[)])(([sin|)(| ττπννττπτ −−−= jbajjs CA . (5.4) 

The magnitude of the Fourier transform | )(τsA | has a maximum value of 

)2/()( πνν abiC −  at the delay time cD jj /=τ .  Furthermore, the Fourier transform at 

that maximum can be expressed as 

)](exp[|)(|)( ajjsjs iAA νφττ = . (5.5) 

Therefore, the sensor phase shift )( aj νφ  can be determined from the phase part of the 

Fourier transform as )(2)( ajjaj Q νφπνφ += , with jQ  an arbitrary integer and 

0≤ )( aj νφ <2π. We notice that once it is determined, the sensor phase shift at an arbitrary 

frequency is also determined: 

νπτνφπνφ iajjj Q 2)(2)( ++= . (5.6) 
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According to eq. (5.2), )( aj νφ  varies by 2π rad. for a change in jD  of one wavelength. 

In order for )( aj νφ  to be of practical value, it is necessary to determine the OPD value 

to a small fraction of an optical wavelength such that jQ  can be determined.   

The absolute square of the Fourier transform in eq. (5.4) is a sinc-squared 

function with a full width to the first zeroes τ∆  given by 

)/(2 ab νντ −=∆ , (5.7) 

and the corresponding change in jD  is given by 

)/(2 abj cD νν −=∆ . (5.8) 

Since caa =νλ , with aλ  the free-space optical wavelength at the start of the laser scan, 

it follows from eq. (5.8) that 

)/(2 abaajD νννλ −=∆ . (5.9) 

Thus, the width of the spectral peak of the electrical signal, in terms of OPD, is much 

wider than an optical wavelength; for example, if the spectral scanning range is 2% of 

the laser frequency, the width of the spectral peak, to the first zeroes, is 100 

wavelengths.  

It is assumed, and later verified experimentally, that jD  can be determined to 

within a range substantially less than one wavelength using the measured spectral 

position of the peak in | )(τsA |. Although this represents a coarse OPD determination, it 

makes it possible to fine tune this result based on the measured phase of the Fourier 

transform )( aj νφ  and applying eq. (5.2) to determine jD .  

The determination of jD  to an accuracy much less than one wavelength is 

facilitated by the use of a reference interferometer of known OPD. As a practical matter 

this interferometer, of optical length rD , would be held in a controlled environment 

(i.e., at a fixed temperature and shielded from other perturbing effects) so that its optical 
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length is known to a high degree of accuracy. The signal from this interferometer, 

interrogated by the same chirped laser as the sensing interferometer, produces a 

photocurrent rI  given by 

)cos('0 rrr CCI φ+= , (5.10) 

where, as before, '0C  and rC  are constants determined by the system configuration, and 

the phase shift cDrr /2πνφ = . Then, a coarse value for jD  is determined from jτ  and 

rτ , the spectral peak positions of the signal and reference waveforms, respectively, 

using the expression 

rjrj DD ττ /=  . (5.11) 

Similarly, eq. (5.2) can be applied so that a fine value for jD  is determined from the 

difference between )( aj νφ  and )( ar νφ , the phase shifts of the signal and reference 

waveforms, respectively, by evaluating 

aarajrj cDD πννφνφ 2/)]()([ −+= . (5.12) 

5.3. Monitoring a single FFPI sensor 

The experimental arrangement is shown in Fig. 32. The linearly chirped erbium-

doped fiber laser developed at Texas A&M University is described in Section IV. 

Tuning is accomplished using an intracavity rotating mirror driven by a function 

generator with a 1 Hz triangular waveform. The laser output is directed to a reference 

FFPI and two sensing FFPIs, and three photodiodes monitor the reflected signal from 

each FFPI separately. Lengths of the reference FFPI and the sensor FFPIs are 10mm, 12 

mm and 10 mm respectively.  
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Fig. 32. Experimental arrangement for monitoring FFPI sensors. 

A data acquisition program is trigged by the function generator clock to take the 

data of the reflected signal from the three photodiodes. 16,000 samples are taken for one 

sweep at a sampling rate of 40 kHz (25 µs sampling interval). Fig. 33 shows the 

reflected signal waveforms for a portion of one sweep. It is evident from the regular 

interference fringe patterns in Fig. 33 that, although the optical frequency from the laser 

is close to a linear function of time, there are noticeable fluctuations in the scan rate. 
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Fig. 33. Reflected single as a function of time for (a) R-FFPI, (b) S1-

FFPI, (c) S2-FFPI. 

According to the theory in the preceding section, aν , the Fourier transform 

starting frequency defined in eq. (5.3), must be a constant for repeated measurements, 

such that the obtained )( as νφ  is valid to represent the OPD. Therefore, a strict 

procedure must be followed: At the first peak of the R-FFPI signal of the ith 

measurement, the phase iir m ∆+= πφ 2 , with im  an integer and the deviation i∆  << 

2π. It is assumed, and later verified in the experimental results, that Mmi ≡  is a 

constant for repeated measurements. Now we can choose πνφ Mar 2)( = , so that aν  is 

defined as ra DcM /=ν . Furthermore, we define the phase shift relative to )( ar νφ  as: 
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πνφφ Mrr 2)(~
−= . We notice that rφ~  is a quantity that can be unambiguously obtained 

from the continuous R-FFPI signal by applying eq. (5.10). Therefore, eq. (5.3) becomes:  

rrrrs
r

s diIA φτφτφ
πτ

τ
π ~)/~exp()~(

2
1)(

1350

0
−= ∫ , 

(5.13) 

where the integral range of 1350π corresponds to the entire laser wavelength region. For 

the discrete data set { kt , )(),(~
kskr tItφ } in Fig. 33, eq. (5.13) is approximated as: 

)](~)(~[]/)(~exp[)(
2

1)( 1
1350~

0 −
=

−⋅−= ∑ krkrrkrks
r

s tttitIA r φφτφτ
πτ

τ πφ . 
(5.14) 
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Fig. 34. Fourier amplitude of the S1-FFPI signal. 

Fig. 34. shows the amplitude of the complex Fourier transform for the S1-FFPI 

signal. To compute OPD for the sensor, the first step is to determine as precisely as 

possible the peak position in the plot and apply eq. (5.11). The peak position 1sτ  is 

determined by averaging the values of | )(1 τsA | on the rising and falling edges of the 
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curve at the half-maximum points, thus taking advantage of the high slope at those 

locations. Following eq. (5.5), )(1 as νφ is determined from the phase of the Fourier 

component at 1sτ  within 0~2π range. Furthermore, the sensor phase shift at an arbitrary 

frequency follows eq. (5.6): 

rsrasss Q ττνφνφπνφ /)(~)(2)( 1111 ++= . (5.15) 
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Fig. 35. At the start, end and central frequency, the phase as a function of τ . 

Curves are vertically shifted to give a close view of the linear 

dependence in the same figure. 

 
Nevertheless, the 1sτ  value thus obtained is a coarse OPD measurement, so the 

deviation 1sτ∆  is carried over to the phase shift result. Following eq. (5.15), the phase 

shift deviation is given as: 
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111 )(2)()( sccss τννπνφνφ ∆−+∆=∆ , (5.16) 

where 2/)( bac ννν +=  is the center of the Fourier frequency integral range, and 

0≤ )(1 νφs <2π . As shown in Fig. 35, )(1 cs νφ  is nearly a constant in the neighborhood of 

1sτ , whereas )(1 as νφ  and )(1 bs νφ are linear functions of τ  with slopes of opposite sign. 

It follows from eq. (5.15) that, because linear function )(1 νφs  thus obtained is the best 

fit of the actual one with the slope 1sτ , points at near the center frequency region should 

be least affected by the deviation of 1sτ , whereas points at two end frequencies have 

errors proportional to the slope deviation.  

0 5 10 15 20
1.22515
1.22516
1.22517
1.22518
1.22519

(b)
 

 

τ s1
/τ

r

Scan Index

0 5 10 15 20

3.65

3.70

3.75

3.80

3.85

(a)

φs1(νb)

φs1(νc)

φs1(νa)

 

 

φ s1
(ν

) (
R

ad
.)

 

Fig. 36. Parameters of S1-FFPI for 20 consecutive laser scans, showing 

(a) variations in the phase, (b) variations in the relative interferometer 

delay time. Curves in (a) are vertically shifted to give a close view. 
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In a resolution test, sensor S1-FFPI and S2-FFPI are collocated with R-FFPI, and 

the parameters are calculated for the data of 20 consecutive laser scans. The results of 

S1-FFPI are shown in Fig. 36. The results of S2-FFPI are similar. 

Table 1 summarizes the statistics of the measurement. It is confirmed again that 

)(1 cs νφ  is more accurate than )(1 as νφ  and )(1 bs νφ . In addition, the largest OPD error 

resulting from sτ  is much smaller than one fringe, thus making it possible to utilize the 

phase information )(1 cs νφ  to improve the resolution of the OPD measurements 

substantially over what would be possible using sτ  alone.  

Table 1. Sensors’ OPD deviations (RMS) based on the Fourier peak and 

phase shift. 

Sensor ∆τs ∆φs(νa) ∆φs(νb) ∆φs(νc) OPD unit 

60 1.3 1.2 0.48 nm 
S1 

0.039 8.1×10-4 7.3×10-4 3.0×10-4 fringe 

24 0.64 0.52 0.42 nm 
S2 

0.015 4.1×10-4 3.3×10-4 2.7×10-4 fringe 

 

Previously, aν  was defined such that πνφ Mar 2)( ≡ , and the first reflective 

peak of R-FFPI data has been assumed to be very close to the M th reflective maximum 

of R-FFPI. However, if the data acquisition were triggered advanced or delayed, the first 

peak could possible shift to the kM + th maximum. Consequently, the obtained )(1 as νφ  

from eq. (5.14) would carry an error of )1/(2 −rsk ττπ . As is evident from Fig. 36, the 

first peak maintains at the same fringe for repeated tests, so the data acquisition trigger 

is proved reliable.  
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Although M  is confirmed to be a constant, the exact value remains to be 

determined. According to the definition of cν , the phase at the frequency 

πνφ )6752()( += Mcr . Applying the described Fourier transform technique, the phase 

of the sensor FFPIs can be generally expressed as )(2)( csscs N νφπνφ += , with sN  an 

integer and πνφ 2)(0 <≤ cs . Consider the following equation 

πνφττ 2/)(2/)6752( csrss mn −+= , (5.16) 

where sn  will approach to the integer sN , if the integer variable Mm = . Applying the 

parameters obtained in Fig. 36, sn  is plotted as a function of m  in Fig. 37. Among the 

adjacent ~4,000 integers, 18339 is the only integer that makes 1sn  and 2sn  both 

approach to integers. Therefore, it is determined that M =18339, 1sN =22991, and 2sN = 

18787. Combining the results shown in Fig. 37, the OPD dynamic range is 7.7×107. 
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Fig. 37. M is located when ns1 and ns2 both approach to integers. 
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Fig. 38. A “WLI signal” produced by “scanning” a virtual Michelson interferometer. 

 
Now that the absolute phase of R-FFPI is known, a virtual WLI monitoring with 

an OPD scanned Michelson interferometer can be implemented: The reflectance of a 

virtue Michelson interferometer is 

]/)(cos[1)( rrR ττνφτ += . (5.17) 

When the OPD of this interferometer is “scanned” by changing the parameterτ , a “WLI 

signal” is produced as 

νττνφντ
ν

ν
dII rrss

b

a

]}/)(cos[1{)()( += ∫ . (5.18) 
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With the “WLI signal” shown in Fig. 38, a special algorithm can be applied to locate the 

center peak, which is the OPD of the FFPI sensor.  

5.4. Multiplexing of FFPI sensors 
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Fig. 39. Experimental setup for multiplexing three FFPIs. 

One distinct advantage of the FMCW technique for the monitoring of 

interferometers is the multiplexing capability. An experimental arrangement shown in 

Fig. 39 is implemented to investigate the multiplexing performance. The laser output is 

directed to a reference fiber Fabry-Perot interferometer (R-FFPI) and three sensing 

interferometers (S1-FFPI, S2-FFPI, S3-FFPI) connected in series. Lengths of the three 

sensing interferometers are approximately 10 mm, 12 mm, and 11 mm, respectively, 

while the length of the reference interferometer is approximately 12 mm. A reference 

photodiode and a sensing photodiode monitor the reflected light from the FFPIs.   
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Fig. 40. Reflected signal over a portion of a laser frequency scan for (a) 

reference FFPI, (b) three multiplexed sensing FFPIs. 

It is evident from the regular interference fringe pattern from R-FFPI in Fig. 

40(a) that, although the optical frequency from the laser is close to a linear function of 

time, there are noticeable fluctuations in the scan rate. Fig. 40(b) shows the sensor 

waveform, which is a superposition of reflected light from the three sensing 

interferometers. Following eq. (5.14), a Fourier transform is applied to the sensor data. 

The Fourier amplitude is shown in Fig. 41. 
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Fig. 41. Fourier transfer amplitude obtained from the sensor scan data 

(main plot) and the reference interferometer scan (inset). 

Variations in the peak positions determined in this manner over 30 consecutive 

laser frequency scans for the three sensors are plotted in Fig. 42(a-c). The root mean 

square errors for the three sensors, in fringes, are summarized in Table 2. By contrast, 

when the raw data was processed without compensating for laser scan rate variations, 

the root mean square errors were of the order of 10 fringes - an indication of the 

importance of compensating the data before processing it to determine the OPDs. 
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Fig. 42. Data for 30 consecutive laser scans, showing (a-c) variations in the 

interferometer delay time τ  for the sensors, (d) variations in the phase 

determined for one of the sensors. 
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 Table 2. OPD measurement resolution using Fourier transform 

amplitude information only, and using both amplitude and phase 

information. 

   Sensor Fourier 
component 

∆τs ∆φs(νc) OPD unit    

Amp. only 200 4.1 nm 
   S1 

Amp. & Phase 0.15 0.0027 fringe 

Amp. only 300 3.6 nm 
   S2 

Amp. & Phase 0.2 0.0024 fringe 

Amp. only 400 6.3 nm 
   S3 

Amp. & Phase 0.25 0.0042 fringe 

 

Since the largest error for any of the sensors indicated in Table 2 is << 1 fringe, 

it is possible to utilize the phase information inherent in the complex Fourier transform 

and apply eq. (5.12) to improve the resolution of the OPD measurements substantially 

over what would be possible using amplitude information alone. Fig. 42(d) shows the 

phase variation for one of the sensors over 30 consecutive laser scans. As indicated in 

Table 1, the resolution improvement is nearly 2 orders of magnitude. 

Finally, the results of measuring the variation in OPD of sensor S2-FFPI over the 

range from 20°C to 610°C during a heating and cooling cycle are plotted in Fig. 43.  

Temperature was determined with a reference thermocouple colocated with the sensor in 

a small oven. Both amplitude and phase information were used in obtaining this plot.   
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Fig. 43. Variation in OPD of S2-FFPI during a heating and cooling cycle. 

5.5. Discussion 

It is useful to compare the results reported above with other OPD measurements 

using conventional FMCW techniques. A useful basis for comparison is the dynamic 

range DR, which will be defined for the results reported here as 

DR = Lc/∆(OPD), (5.19) 

with Lc the coherence length of the light source (an indication of the maximum 

measurable OPD) and ∆(OPD) the measurement resolution. The measured coherence 

length of the scanned Erbium-doped fiber laser used in these experiments was 4.7 cm. 

Using the value ∆(OPD) = 3.6 nm from Table 2, the calculated DR from eq. (5.19) is 

1.3×107. 
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A large number of FMCW experiments in optical fibers have been carried out 

using the Fourier transform amplitude to determine the OPD.64 The best resolution 

reported was 14 cm and the best DR was 7,200.65 On the other hand, in an experiment 

using a linearly chirped semiconductor laser light source in which a phase measurement 

was used to determine the OPD, the shot-noise-limited resolution was 3 x 10-5 λ, with 

λ the optical wavelength of 1300 nm.2 Assuming a maximum OPD of one fringe, as is 

the case for an absolute measurement system, the DR in this case is equal to 30,000.  

As the results reported above indicate, the ability to use both phase and 

amplitude information to determine the OPD makes it possible to extend the 

measurement dynamic range in an FMCW system by orders of magnitude.   

5.6. Conclusions 

It has been shown that a linearly chirped laser can be used in measuring the OPD 

of interferometric fiber optic sensors by performing a Fourier transform of the optical 

signal. A coarse determination of the OPD is obtained by measuring the position of the 

peak of the absolute square of the Fourier transform amplitude, while fine resolution is 

obtained from the phase of the Fourier transform.  Experimentally, a scanned Erbium-

doped fiber laser was used to interrogate three FFPI sensors located serially along a 

single mode fiber. For accurate OPD measurement, it was necessary to compensate the 

raw data for variations in the laser scan rate.  Temperature was measured with one of the 

sensors from 20°C to 610°C with a 0.02°C resolution.  Multiplexing of three of the 

sensors arranged in series was demonstrated, with OPD resolution ranging from 3.6 nm 

to 6.3 nm. 

Although the chirped laser monitoring system reported here was characterized 

for temperature measurement only, with appropriate packaging of the sensing elements66 

it can be used for measurands such as strain and pressure as well. Due to the ability to 

obtain high accuracy over wide dynamic range for many multiplexed sensors with a 

single light source, photodetector, and fiber transmission line, such a system could prove 

cost-effective in a variety of applications. Examples include downhole measurement of 
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temperature67 and pressure68 in oil and gas wells, and strain measurement on railroad69 

and highway bridges70 and the hulls of ships.71 
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VI. THE MONITORING AND MULTIPLEXING OF FBG 

SENSORS USING CHIRPED LASERS 

 

6.1. FBG sensors with linearly chirped fiber laser 

In an FBG sensor system, the measurand information is resolved by determining 

the induced Bragg wavelength change. One typical interrogation method is based on the 

combination of a broadband light source and a wavelength detecting device. The 

broadband light source is generally either a superluminescent light emitting diode 

(SLED) or the amplified spontaneous emission (ASE) light of an EDFA.Various 

wavelength detecting techniques have been demonstrated using an OSA, edge filters, 

scanning filters and interferometers. However, these schemes have shown difficulties 

associated with low signal due to the use of narrow spectral band of the light source, low 

spectral resolution of the filters or spectrometers, or limited dynamic range with the 

interferometric phase read out.  

 

Fig. 44.  FBG sensors with tunable laser arrangement. 
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Active erbium-FBG laser sensors were introduced to increase the signal-to-noise 

ratio over a broadband illuminating system.72,73 The laser cavities serve as sensing 

elements such that the laser wavelengths are monitored to resolve the measurand 

information. A more attractive interrogation approach has been demonstrated that allows 

a tunable laser to serve as both light source and spectral analyzer.74,75 The general 

arrangement is shown in Fig. 44. When the laser frequency shifts over a spectral range 

that covers the FBG sensor array spectrum, the reflected optical signal consists of a 

series of pulses in the time domain such that the Bragg wavelengths are determined 

from the timing of the pulse sequence. In order to maximize the sensitivity, accuracy 

and measurement range, desired features of the laser include narrow linewidth, wide 

tuning range, sufficient power, continuous tuning, and wavelength calibration.  

In the experiment reported by Ball et al.,74 a short cavity erbium-doped fiber 

laser with FBG reflectors was implemented to monitor an array of three FBG 

temperature sensors. The laser was tuned over ~2.3 nm wavelength region by applying 

tensile strain along the fiber with a piezo-translator. Output power of ~100 µw was 

obtained at 3 mw pump power. Position sensors and an expansion control loop were 

applied to the piezoceramic to remove hysterisis and thermal drift such that the laser is 

tuned as linearly as possible. The expansion accuracy was achieved better than 0.2%, 

which resulted in the measured FBG sensor wavelength resolution of ~2.3 pm. 

In another experiment reported by Yun et al.,75 an array of 3 FBG strain sensors 

was monitored with an erbium-doped fiber ring cavity laser. The laser is tuned over 28 

nm wavelength range by a piezo driven intracavity Fabry-Perot filter. The tuning range 

was limited by the 33 nm wide free spectral range for the Fabry-Perot filter. The laser 

linewidth was estimated to be <0.1 nm. At 60 mw pump power, the output power was 

~3.3 mw with 3-4% random fluctuations.  The sensor strain resolution is determined as 

0.47 µε, corresponding to ~0.4 pm in wavelength. However, the experiment results 

indicated that the laser wavelength shifting has a nonlinearity > 1.5 %, possibly due to 

the piezo hysterisis. Since the FBG wavelength was determined by the timing of the 
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return pulses, the impact of the nonlinearity on the measurement accuracy was not 

carefully examined. 
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Fig. 45. Laser scanned reflective spectrum of two FBG sensors. 

In the present work, the linearly tunable erbium-doped fiber laser designed and 

assembled at Texas A&M University is used to monitor two FBG sensors serially 

connected along a single fiber. The laser is tuned over the 1522 to 1568 nm wavelength 

region with an arrangement of a rotating mirror and bulk grating in Littrow 

configuration as in Fig. 22. The instantaneous linewidth is measured as 33 pm, and an 

average laser power of 5.5 mw is obtained at 43 mw pump level. The wavelength shift is 

monitored with an FFPI sensor such that the laser frequency is shifted at a constant rate 

with a feedback control loop. Fig. 45 shows the measured spectrum of the FBG sensors, 

where the time-domain signals have been linearly converted to the frequency domain. 

The FBG wavelength is identified as the point at which the reflectance is half the 
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maximum value. Wavelength variations over 30 laser scans were 1.3 pm and 1.7 pm, 

respectively, for the two FBG sensors. 

6.2. Monitoring an FBG pair interferometer sensor with a chirped DFB laser 

   Most fiber optic temperature sensing devices reported to date are classed as 

intrinsic; i.e., with the sensing element in the fiber itself. Intrinsic sensors are of two 

basic types: interferometric and fiber Bragg grating (FBG). Some intrinsic temperature 

measurement schemes which have been reported, with drawbacks of each, include: (1) 

fiber Fabry Perot interferometer (FFPI) sensor with chirped laser monitoring - cannot 

provide accurate measurement from a “cold start”, 76,77 (2) FFPI sensor with broadband 

light source (white light interferometry) - signal processing is relatively complex,3 and 

(3) FBG with broadband light source - resolution is relatively low78 and signal 

processing is somewhat complex. 79,80
 

In this research study, we report a new intrinsic fiber optic temperature sensor – 

FBG pair interferometer (FBGPI) – which is intended to provide all the desired features 

indicated above: high resolution, the ability to make measurements from a “cold start”, 

and relatively simple signal processing. The spectral dependence of the FBG mirror 

reflectance makes it possible to determine the “absolute” optical path difference (OPD) 

in the fiber interferometer from a cold start using chirped laser monitoring. 

6.2.1. FBGPI 

As shown in Fig. 46, two short sections (~2 mm in length) are cut from a 2-cm 

long commercial FBG and then spliced into a single mode fiber to form an FFPI sensor 

with a cavity length of ~14.5 mm. The reflectance of the sensor is expressed the same as 

a conventional FFPI: 

φcos2 2121 rrrrR ++= , (6.1) 

where r1 and r2 are the individual reflectance of the FBGs, and φ , the round trip 

propagation phase shift, is given by 
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λπφ nL4= , (6.2) 

with n the effective refractive index of the fiber mode, L the effective cavity length for 

the FFPI, and λ the free space optical wavelength. The free spectrum range (FSR) of 

this interferometer sensor is ~7.3 GHz, corresponding to ~0.058 nm in wavelength.  

 

Fig. 46. Diagrams of the FBGPI and the original FBG. 

Fig. 47 shows the reflectance spectra of the FBGPI sensor and the original FBG 

measured with a commercial OSA. Because the 0.2 nm wavelength resolution is much 

larger than the FSR, the figure shows a “smoothed out” sensor spectrum without the 

sinusoidal details. It generally agrees with the FBG reflectance dependence on grating 

length, that the FBGPI sensor has a much lower reflectance and wider bandwidth than 

the original FBG. At room temperature, the central Bragg wavelength is 1528.3 nm and 

the DFB laser used in the experiment emits at 1530.6 nm. The FBG sensor spectrum 

shifts toward longer wavelengths almost linearly at an increasing temperature, so that 

when the FBGPI sensor is heated, the reflectance vs. temperature plot is a scan of the 

reversed senor reflectance spectrum.  
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Fig. 47. Reflectance spectrum of (a) the FBGPI sensor; (b) the original  

FBG. 

6.2.2. Experiment and results 

It is well known that a modulation of drive current causes laser wavelength 

chirping, an effect which has been used for Fabry-Perot sensing.2 In the experimental 

arrangement shown in Fig. 48, the laser driving current is repetitively modulated by a 

computer generated waveform at frequency of 2 kHz. The modulated laser output is 

directed to the FBGPI sensor and a conventional reference FFPI sensor with mirrors of 

reflectance independent of wavelength. The reference FFPI is ~12 mm long and it is 

held in a controlled environment (i. e., at a known temperature and shielded from other 

perturbing effects) so that its optical length is kept constant to a high degree of accuracy. 
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The FBG sensor is placed inside an oven, with temperature monitored by a 

thermocouple.   

 

Fig. 48. Experimental arrangement for monitoring an FBGPI with a DFB 

laser. 

When a data acquisition starts, the reflectances of the FBGPI and the reference 

FFPI are measured by taking the ratio of the reflected light photocurrents to the laser 

output monitor photo current. Fig. 49 shows the repetitive waveforms of modulated 

laser power, the FBG sensor reflectance, and the reference sensor reflectance during one 

full modulation cycle. The data acquisition rate is 400 kHz (2.5 µs sampling interval), so 

each cycle has 200 sample points. When a modulation cycle begins, the laser 

wavelength continuously decreases by ~0.15 nm, which produces ~2.6 interference 

fringes of the FBGPI sensor. At the end of the modulation cycle the laser wavelength 

abruptly increases to the beginning level. It is evident from Fig. 49(b) that, the 

amplitude of the FBGPI reflectance is larger at a shorter laser wavelength. When the 
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FBGPI sensor temperature is increased by 1.5 oC, the interference pattern shifts toward 

left and the modulated amplitude is observed to change by a small increment. This data 

thus suggests possible absolute OPD method using the amplitude and the phase shift for 

rough and fine tuning respectively.  

In order to determine the phase shift and amplitude for the FBGPI sensor, the 

Fourier analysis technique previously introduced in a FMCW sensor system is followed. 

First of all, the laser chirping induced reference FFPI phase shift is monitored. 

Following eq. (6.1), the phase shift rφ~  is determined from the data in Fig. 49(c) and 

plotted in Fig. 49(d). Next, the average reflectance and phase shift of the FBG sensor 

can be respectively determined from the magnitude and phase part of the following 

complex expression:  

rrss diRA φτφ
π

τ τπ ~)~exp(
4

/4

0∫ −⋅= , (6.3) 

where sR  is the FBG sensor reflectance, and τ  is a constant approximately equals to 

the OPD ratio of the FBGPI over the reference FFPI. The integral range covers exact 

two FBGPI interference fringes. At room temperature,τ  can be accurately measured by 

averaging a large number of results from a fully Fourier analysis. Furthermore, it can be 

regarded as a constant within the proposed 400 oC temperature measurement range, 

because an error of less than 0.3% could barely impact on the calculation of amplitude 

or phase shift. Considering rφ~ and sR  are in the discrete data set },~{ k
s

k
r Rφ , eq. (6.3) is 

approximated as: 
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Fig. 49. Repetitive waveforms of (a) laser power, (b) FBGPI reflectance 

(c) reference FFPI reflectance, (d) reference FFPI phase shift.  In (c), the 

temperature induced amplitude increment (∆amp) is marked for two 

waveforms. 
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Fig. 50., Plots of the average FBG sensor reflectance Rs, the reflectance 

difference between two adjacent fringes ∆Rs, and the sensor phase shift 

φs(νa) as a function of time, as the temperature increases from 24 oC to 

367 oC. 

During heating from 24 oC to 367 oC, the data acquisition program (in Labview) 

simultaneously calculates the sensor average reflectance and phase shift by applying eq. 

(6.4). Fig. 50 shows the results recorded every 0.2 second. Because of the nearly linearly 
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increasing temperature, the reflectance curve in Fig. 50(a) shows similarity with the 

reversed spectrum profile in Fig. 47(a). The maximum reflectance point at the 

temperature ~ 180 oC divides the rising edge and falling edge into two separate 

measurement regions which allow the temperature to be determined from the 

reflectance. In order to connect these two regions and double the measurement range, 

the derivative of reflectance vs laser wavelength is determined from the original data in 

Fig. 49(b). The derivative is found proportional to the average reflectance difference 

between two adjacent fringes: 
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where each integral term covers one full interference fringe of the sensor. Appling the 

discrete data set, eq. (6.5) can be calculated as: 
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(6.6) 

 

The result of eq. (6.6) is also plotted in Fig. 50(a). Evidently, the rising edge and falling 

edge of the sA  curve become distinguishable, because sA∆  is in the positive and 

negative regions respectively.  
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Fig. 51.  (a) Fringes where sA  is low at near 24 oC; (b) Fringes where sA  

approaches toward maximum at near 180 oC; (c) Fringes where sA∆  

crosses zero at near180 oC. 

In Fig. 50(b), the phase shift results provide the fine determination of 

temperature. However, the figure also clearly illustrates the ambiguity problem among 

fringes. To prove that the information in Fig. 50(a) can resolve the ambiguity problem, 

portions of the data in Fig. 50 are redrawn in Fig. 51, where the phase shift serves as the 

horizontal axis. In Fig. 51(a), sA  is distinct between adjacent fringes within the 

temperature region near 24 oC. In Fig. 51(b), the sensitivity of sA  becomes low when it 

approaches the peak value at the temperature near 180 oC, such that the top 3~4 fringes 
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are not distinguishable. However, within the same temperature region in Fig. 51(b), Fig. 

51(c) shows that sA∆  is distinct between adjacent fringes. Combining sA and sA∆  

information, the fringe order can be assigned for every point over the whole temperature 

region, thus the ambiguity problem is completely removed. Fig. 52 shows that the 

resultant phase shift is close to a linear function of thermocouple temperature reading. 

Every 2π-radian phase shift corresponds to ~ 4.6 oC temperature change.  
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Fig. 52. The resultant phase shift as a function of temperature. 

During a system resolution test, the phase shift is determined for 160 consecutive 

modulation cycles and plotted in Fig. 53. The RMS resolution is determined as 0.005 

radian, corresponding to a 0.004 oC temperature variance.  
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Fig. 53. Obtained phase shift for 160 consecutive modulation cycles. The 

slope in the phase shift vs. time plot corresponds to a rate of temperature 

decrease of  ~1.6 oC/sec. 

In conclusion, we present a simple and cost effective technique with fast 

response to measure temperature. Short FBGs are used to form the two mirrors of an 

FBGPI sensor, so that the mirror reflectances change gradually as a function of 

temperature. Modulating the drive current of a DFB laser produces chirping of the laser 

frequency to scan over ~2.5 fringes of the FFPI reflectance spectrum. Because the 

fringes are distinguished due to the FBG reflectance change, the ambient temperature 

can be determined over the range from 24 oC to 367 oC with a resolution of 0.004 oC. 
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6.3. Multiplexing of FBGPI sensors with a linearly chirped fiber laser 

Because of the wavelength-encoded nature of the FBG sensors, wavelength 

division multiplexing (WDM) of FBG sensor is straightforward and attractive. There 

have been two WDM schemes to monitors an array of FBG sensors: (1) broadband light 

source and a spectrometer for signal demodulation,32 and (2) wide band tunable laser as 

a combination of light source and spectrum analyzer.75 In such a system, crosstalk 

between neighboring sensors generally should be avoided, unless the individual sensor 

spectral profiles can be distinguished from an overlapped spectral signal.81,82 Therefore, 

in a conventional WDM system, the maximum number of sensors is limited by the ratio 

of the light source spectral width (or tuning range) over the bandwidth allocated to each 

sensor. In this research, a new FBG sensing scheme is introduced to provide improved 

measurement sensitivity for individual sensing elements and enhanced multiplexing 

capacity by allowing multiple sensors to share the same regime of the optical spectrum.  
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Fig. 54. Experimental arrangement to multiplexing two FBGPIs. 
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The experimental arrangement is shown in Fig. 54. The light source is a linearly 

chirped erbium-doped fiber laser, with a rotating galvanometer mirror as the tuning 

element.  The laser output power varies < 1 dB over a 46 nm spectral range from 1522 – 

1568 nm.  The sensing elements are two FBG pair interferometers FBGPI1 and FBGPI2, 

arranged in series. Mirrors for the two interferometers are ≈  2 mm long sections 

(reflectance peak wavelength of 1528.3 nm, maximum reflectance ≈  1%, spectral full 

width at half maximum ≈  2.3 nm) cut from a single 2 cm commercial FBG with a peak 

reflectance of almost 100% and a spectral width of about 1 nm.  Cavities for the FBGPIs 

are formed by sections of single mode telecommunications fiber of lengths L1 = 12.0 

mm and L2 = 14.5 mm.  

Another interferometer, a fiber Fabry Perot interferometer (FFPI),10 is used to 

monitor the chirp rate of the laser and correct for nonlinearities in that chirp rate in 

processing the FBGPI signals.  Internal dielectric mirrors for the FFPI, each with a 

reflectance of about 5 %, are formed in a continuous length of single mode fiber by a 

fusion splicing technique.  

Fig. 55 shows the reflected FFPI reference signal and the sensor signal as a 

function of time during a portion of a modulation cycle of the laser.  The data 

acquisition rate was 20 KHz. The laser frequency range of 1100 GHz in Fig. 55 

corresponds to a wavelength tuning of 8.6 nm.  The modulation depth for the sinusoidal 

FFPI signal in Fig. 55(a) is practically constant over the spectral range because the 

internal mirror reflectance is almost independent of the optical frequency, while the 

grating sensor signals in Fig. 55(b) - (d) show the spectral dependence of the FBG 

reflectance superimposed upon sinusoidal modulation.  At room temperature the 

reflectance spectra for the two sensors nearly coincide. Heating of FBGPI2 causes its 

reflectance envelope to shift to longer wavelengths until, at 360°C, there is almost no 

overlap in the spectra. 
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Fig. 55. Comparison of FFPI reflected signal (a) with reflected sensor 

waveform when the FBGPI spectra are (b) overlapped; (c) partially 

overlapped; (d) separated. 

The FFPI reference signal, used to monitor the laser frequency and correct for 

nonlinearities in the chirp rate, is given by 

Rr = ra + rb + 2(rarb)1/2cos (4πnLν/c), (6.7) 
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with ra and rb the mirror reflectances, n the effective refractive index of the fiber mode, 

L the cavity length, ν the optical frequency, and c the free space speed of light.  This 

expression assumes that ra and rb are both << 1. Defining a fixed frequency ν0, the laser 

chirping introduced phase shift cLn rrr /)(4~
0ννπφ −=  can be determined from the 

reference signal in Fig. 55(a). 

The reflectance signal Rs from the FBGPIs can be written 
1/ 2

s ja jb ja jb j j
j

R r r 2(r r ) cos(4 n L / c) = + + π ν ∑  (6.8) 

with njLj, the optical length of the j’th FBGPI. This is similar to the expression (6.1) for 

FFPI reflectance, but now the individual mirror reflectances rja and rjb for FBGPIj have a 

strong dependence on optical frequency.    
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Fig. 56. Calculated |)~(| νjF  for the data in Fig. 45(b). 

A coarse measurement of the spectral position of the reflectance peak for the j’th 

sensor is obtained by convolving the sensor signal Rs, as shown in Fig. 55(b) -(d), with a 
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complex  function  )~exp( rji φη− , where the constant jη  approximately equals to the 

sensor-reference optical length ratio njLj/nrLr. The convolution 
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(6.9) 

is evaluated over a frequency range ∆. The magnitude of the integral peaks at the optical 

frequency j*ν  at which the product of rja and rjb is a maximum, as shown in Fig. 56. 

But  

jjj nc Λ= 2/*ν , (6.10) 

with jΛ  the spatial period of the FBGs for the j’th sensor. In addition, the phase φj of 

the j'th sensor signal at the frequency ν0 is  

)]Re(/)[Im(tan 1
jjj FF−=φ , (6.11) 

Assuming that the measurand is experienced uniformly over the length of the FBGs and 

of the fiber in between, it can be shown that 

jjjj φδφνδν /*/* −= . (6.12) 

Thus, the magnitude and phase part of the convolution independently provides two ways 

of determining the position of spectral reflectance peak. 
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Fig. 57. Results of repetitive measurements of (a) spectral peak position 

and (b) phase shift for the two FBGPI’s at constant temperature. 

Fig. 57 gives the calculated variation in the reflectance peak frequency, as 

determined from the function |)~(| νjF , and the phase shift as determined from eq. 

(6.11), for 30 consecutive laser scans.  As shown in Table 3, analysis of these data 

shows that the reflectance peak frequency determined using the phase shift data is nearly 

two orders of magnitude more precise than that obtained using a direct measurement.  
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Table 3. RMS deviation based on the Spectral peak position (SPP) 

calculation and the phase shift (PS) calculation. 2π in phase shift 

corresponds to one free spectrum range in frequency. 

Sensor Method ∆ν*1 (GHz) ∆φ1 (2π) 

SPP 1.7 0.21 
FBGPI1 

PS 0.045 0.0052 

SPP 1.1 0.15 
FBGPI2 

PS 0.04 0.0057 

 

 
Finally, Fig. 58 compares the reflectance peak frequency obtained directly with 

that deduced from a phase shift measurement when FBGPI2 was cooled at a constant 

rate from 141.4 oC to 126.4 oC.   The benefit in accuracy from using the phase shift data 

is evident.  However, the use of phase shift data alone limits the unambiguous dynamic 

range to 2π rad, which corresponds to 7.3 GHz in peak reflectance frequency or 4.5 oC 

in temperature, if the signal processing is initiated from a "cold start". However, by 

applying both the directly measured reflectance peak frequency and the phase shift data 

the dynamic range of the sensor can be extended to the laser scanning range, while 

retaining the high precision of the phase shift measurement.  In the case of the data 

shown in Fig. 58 this is possible because, as indicated in Table 3, the equivalent phase 

shift uncertainty for the direct reflectance measurement is << 2 π rad (21% of 2π for 

FBGPI1 and 15% of 2π for FBGPI2). 
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Fig. 58. As FBGPI2 is cooling at a constant rate, comparison of direct 

measured spectral peak position (a) with resultant spectral peak position 

(c) using phase shift (b). 

In conclusion, a new technique for the monitoring and multiplexing of FBG 

sensors is described. The sensing elements are low-finesse Fabry-Perot interferometers 

formed using Bragg grating mirrors with similar spectral characteristics. The sensors are 

reflectively monitored with an erbium-doped fiber laser which is linearly scanned in 

optical frequency. The resulting signal from an interferometer varies sinusoidly with 
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time, at a frequency proportional to its optical length. The sensor signal is convolved 

with in-phase and quadrature components of a reference waveform corresponding to an 

interferometer of approximately the same length to obtain a coarse measurement of the 

optical frequency corresponding to the FBG reflectance peak, and refine this 

measurement to a higher level of precision, using the phase of the convolved signal. The 

signal from a fiber Fabry Perot interferometer (FFPI) is used to compensate the data for 

variations in the laser scan rate.  Multiplexing of two interferometers of different lengths 

used as temperature sensors was demonstrated. Their signals were distinguished through 

convolution with appropriately matched reference waveforms, even though the 

reflectance spectra for the FBGs for the two sensors overlap over a wide temperature 

range. For temperature measurement with two multiplexed sensors, a spectral resolution 

for the FBG reflectance peak of 0.045 GHz (0.36 pm), corresponding to a temperature 

resolution of 0.035 oC, has been achieved. 
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VII. CONCLUSIONS 

 
In conclusion, a wide band linearly chirped erbium-doped fiber laser has been 

developed. Several new techniques for the monitoring and multiplexing of fiber Bragg 

grating (FBG), fiber Fabry-Perot interferometer (FFPI) and fiber Bragg grating pair 

interferometer (FBGPI) sensors have been investigated using this laser. A chirped 

distributed feedback (DFB) laser is applied to the monitoring of a single FBGPI sensor. 

High resolution and large dynamic range have been achieved for temperature 

measurement. 

The erbium-doped fiber laser using a rotating mirror/grating combination as one 

of the reflectors in a Fabry-Perot laser cavity has been tuned over a 46 nm spectral 

range.  Linearization of the chirp rate has been achieved using feedback from an FFPI to 

adjust the voltage ramp which drives the rotating mirror.  This method represents a 

simple and relatively inexpensive alternative to the optical spectrum analyzer in some 

spectroscopy applications. In a demonstration of the monitoring an array of two FBG 

sensors, a wavelength resolution of 1.7 pm has been achieved. 

It has been shown that the linearly chirped fiber laser can be used in measuring 

the optical path difference (OPD) of interferometric fiber optic sensors by performing a 

Fourier transform of the optical signal. This is an application of the frequency 

modulated continuous wave (FMCW) technique first applied in radar system. A coarse 

determination of the OPD is obtained by measuring the position of the peak of the 

absolute square of the Fourier transform amplitude, while fine resolution is obtained 

from the phase of the Fourier transform.  Multiplexing of an array of three FFPI sensors 

of different lengths has been demonstrated, with an OPD resolution ranging from 3.6 nm 

to 6.3 nm. Temperature was measured with one of the sensors over the range from 20°C 

to 610°C with a 0.02°C resolution.   

A simple and cost effective technique of monitoring an FBGPI sensor with a 

chirped DFB laser has been introduced for temperature measurement. Short FBGs are 
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used to form the two mirrors of an FBGPI sensor, so that the mirror reflectances change 

gradually as a function of temperature. Modulating the drive current of the DFB laser 

produces chirping of the laser frequency to scan over ~2.5 fringes of the FBGPI 

reflectance spectrum. Because the fringes are distinguished due to the FBG reflectance 

change, the ambient temperature can be determined over the range from 24 oC to 367 oC 

with a resolution of 0.004 oC. 

Multiplexing of FBGPI sensors of different lengths with a linearly chirped fiber 

laser has demonstrated improved sensitivity and multiplexing capacity over a 

conventional FBG WDM system. The FBG spectral peak position and the phase shift of 

an FBGPI are determined through the convolution of the sensor reflected signal with an 

appropriately matched reference waveform, even though the reflectance spectra for the 

FBGs of multiple FBGPI sensors overlap over a wide temperature range. For 

temperature measurement with two multiplexed sensors of different lengths, a spectral 

resolution for the FBG reflectance peak of 0.045 GHz (0.36 pm), corresponding to a 

temperature resolution of 0.035 oC, has been achieved.  

 

Table 4. Comparison of prior results of monitoring interferometric fiber 

optic sensors by the FMCW technique with those reported here (shaded). 

Sensor/Chirped laser Resolution (fringe) Dynamic Range 

FFPI / Diode laser2 1/1000 103 

FI/ Diode laser64 104 5×103 

FFPI / Fiber laser6 1/3000 6×107 

FBGPI / Fiber laser8 1/200  5×106 

FI: fiber interferometer.  

 

Table 4 summarizes the performance of FMCW techniques for monitoring 

interferometer sensors reported here with some previously reported results. The large 
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improvement in dynamic range for the present results is a consequence of the broad (46 

nm) tuning range of the erbium-doped fiber laser and the compensation scheme for 

linearizing the chirp rate. Although the techniques reported here are characterized for 

temperature measurement only, with appropriate packaging of the sensing elements they 

can be used for measurands such as strain and pressure as well. Cost-effective systems 

can be developed for a variety of applications. Examples include downhole 

measurement of temperature and pressure in oil and gas wells, and strain measurement 

on railroad and highway bridges and the hulls of ships. 
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VIII. SUGGESTIONS FOR FUTURE RESEARCH 

8.1.  Fast tunable fiber laser 

In the demonstrated sensing experiments using the linearly chirped fiber laser, 

the tuning repetition rate is less than 5 Hz. They are fast enough for temperature 

measurement or other static measurements. However, this laser can also be very useful 

for other sensing applications requiring fast tuning rate, such as dynamic strain sensors 

and optical coherence tomography.  

The rotating mirror in Fig. 22 can be operated at up to 1 kHz, and high speed 

data acquisition hardware is also available to process the data. However, we have 

observed that the instantaneous linewidth increases with faster tuning speed, such that 

the interference visibility of a 10-mm long FFPI becomes too low for processing at a 

repetition rate higher than 30 Hz. Therefore, to narrow the laser linewidth, the tuning 

element has to be redesigned so that it will have narrower reflectance bandwidth. One 

approach is to increase focal length of the lens in Fig. 22. For instance, if the focal 

length increases from 5 cm to 10 cm, the reflectance bandwidth can be reduced from 0.3 

nm to 0.15 nm. Another approach is to use a tunable fiber Fabry-Perot filter. To achieve 

0.15 nm transmission bandwidth over a 60 nm tuning range, a fiber Fabry-Perot with 

finesse of over 400 must be used. A fiber Fabry-Perot filter can also be tuned at up to a 

few hundred Hz. 

8.2.  Q-switched and mode-locked fiber laser 

Time division multiplexing (TDM) is an important technique for multiplexing 

optic fiber sensors, and it is briefly introduced in section 2.5.3. By modifying the 

linearly chirped fiber laser sources, it is possible to combine TDM with our reported 

multiplexing techniques such that the total multiplexing capacity can be considerably 

increased. Moreover, because the FFPI and FPGPI sensors can be made with very low 
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reflectance, they are suitable for serially connecting a large number of sensors along a 

single fiber cable. 

Q-switching can be applied to generate a laser pulse train for the implementation 

of TDM. By connecting an electro-optical modulator inside the laser cavity, Q-switched 

laser pulses can be generated when the switch is opened and then closed. In order to 

achieve a spatial resolution of 100 m, the gate-open speed should be optimized to obtain 

a desired pulse width of less than 1 µs. On the one hand, a shorter gate-opening time 

will generally produce a narrower Q-switched pulse. On the other hand, when the open 

gate time is short enough and becomes comparable to the cavity roundtrip time, ~200 

ns, undesired incomplete mode-locked spikes will occur.83 The repletion rate of the Q-

switch can be adjusted according to the range of the distributed fiber sensors. For 

instance, a repetition rate less than 100 kHz can be used for monitoring fiber sensors 

within a1 km range.   

Another approach to obtain pulse trains is to apply a mode-locking technique. As 

an example of active mode-locking, an in-cavity electro-optical switch is modulated 

harmonically at a frequency of the longitudinal mode spacing, such that a single pulse is 

traveling inside the laser cavity.  Because an output pulses occur once every roundtrip 

time, the cavity length can be adjusted to achieve a pulse train at the desired repetition 

rate. For instance, by connecting a 1 km-long fiber inside the laser cavity, the laser can 

be used for monitoring fiber sensors within a 1 km range.   
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