
MAPPING MULTIMODE SYSTEM COMMUNICATION

TO A NETWORK-ON-A-CHIP (NoC)

A Thesis

by

PRAVEEN SUNDER BHOJWANI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAPPING MULTIMODE SYSTEM COMMUNICATION

TO A NETWORK-ON-A-CHIP (NoC)

A Thesis

by

PRAVEEN SUNDER BHOJWANI

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Rabi N. Mahapatra
(Chair of Committee)

Duncan M. H. Walker
(Member)

A. L. Narasimha Reddy
(Member)

Valerie E. Taylor
(Head of Department)

December 2003

Major Subject: Computer Engineering

iii

ABSTRACT

Mapping Multimode System Communication to a

Network-on-a-Chip (NoC). (December 2003)

Praveen Sunder Bhojwani, B. Tech.(Honors),

Indian Institute of Technology, Kharagpur, India

Chair of Advisory Committee: Dr. R. N. Mahapatra

Decisions regarding the mapping of system-on-chip (SoC) components onto a

NoC become more difficult with increasing complexity of system design. These com-

plex systems capable of providing multiple functionalities tend to operate in multiple

modes of operation. Modeling the system communication in these multimodes aids

in efficient system design. This research provides a heuristic that gives a flexible

mapping solution of the multimode system communications onto the NoC topology

of choice. The solution specifies the immediate neighbors of the SoC components

and the routes taken by all communications in the system. We validate the mapping

results with a network-on-chip simulator (NoCSim). This thesis also investigates the

cost associated with the interfacing of the components to the NoC. With the goal of

reducing communication latency, we examine the packetization strategies in the NoC

communication. Three schemes of implementations were analyzed, and the costs in

terms of latency, and area were projected through actual synthesis.

iv

To my parents Neela and Sunder.

v

ACKNOWLEDGMENTS

Thanks are first due to Dr. Rabi Mahapatra. His insight and guidance have

been instrumental in the completion of this research.

I would like to thank the members of the Network-On-Chip group, past and

present, Narayanan, Subrata and Brenna, for all their help in furthering research in

this domain.

I would further like to thank Siddharth, Junyi and Anand, for the endless hours

of relief from the monotony of research.

Thanks also go to Lee Vick at Tensilica Corp. for aiding this research by helping

with the synthesis of the TIE code and providing the important results.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II PRESENT STATUS OF THE QUESTION 6

III MAPPING MULTIMODE SYSTEM COMMUNICATION TO

A NOC . 9

A. Multimode System Communication 9

B. Mapping Multimode System Communication to a NoC . . 11

1. Problem Formulation 12

2. Preliminaries . 14

3. Heuristic . 17

C. NoCSim - A Verification Test Bed for Network-on-Chips . 21

D. Experiments and Results 21

IV INTERFACING CORES WITH

ON-CHIP PACKET-SWITCHED NETWORKS 26

A. Introduction . 26

B. Implementation Details . 31

1. Software Library for Packetization 31

2. On-core Module for Packetization 31

3. Wrapper Logic for Packetization 32

C. Results . 34

V CONCLUSIONS AND FUTURE WORK 37

REFERENCES . 38

VITA . 40

vii

LIST OF TABLES

TABLE Page

I Heuristic for mapping the combined mode graph of a system onto

a NoC topology. 18

II Sample set of the latency results obtained from NoCSim vs those

provided as constraints to the mapping heuristic. 22

III Sample set of the latency results obtained from NoCSim vs those

provided as constraints to the mapping heuristic. 25

IV Generic packet structure. 28

V Generic packetizing process for a simple distributed memory model. . 29

VI Expected characteristics of the packetization schemes. 30

VII Latency results. 35

VIII Area results. 35

viii

LIST OF FIGURES

FIGURE Page

1 (a) Generic Network-on-Chip architecture (b) Network tile structure 2

2 An example combined mode graph with the traffics in the different

mode being highlighted . 11

3 (a) Combined mode graph (b) network graph 13

4 An example demonstrating the merge operation 16

5 Sample execution of the mapping heuristic 20

6 The result obtained after mapping the 3 input mode graphs onto

a 4 x 4 folded torus topology. The final layout of the resources in

the NoC has also been shown . 23

7 (a) The mode graphs of the system being developed. The three

mode graphs provide four functionalities (JPEG, MPEG, AD-

PCM, MP3). (b) This shows the mapping of the four resources

on to the NoC . 24

8 Configuration file structures . 32

1

CHAPTER I

INTRODUCTION

With on-chip physical interconnections becoming a limiting factor for performance

and possibly energy consumption in modern day system-on-chips (SoC), designers

face the challenge of utilizing suitable interconnect architectures to guarantee reliable

operation of the interacting components. The shared bus, which is today’s dominant

interconnect template, will not meet the performance requirements of tomorrow’s

systems [6]. A suitable replacement in the form of an on-chip packet-switched in-

terconnection template has been suggested by many researchers [6, 3, 8]. These

networks-on-a-chip (NoC) are well suited for heterogeneous communication among

cores in a SoC environment and would address the performance and the scalability

requirements of the SoCs.

Researchers have suggested the usage of regular layouts for the cores/resources

(processor cores, memory cores, etc.) constituting the SoC [3, 8], i.e. utilizing topolo-

gies like the folded torus or the mesh. The communication architecture for such

systems consists of the basic building block, the network tile. These tiles are con-

nected to an on-chip network that routes packets between them. Each tile may consist

of one or more cores and would also have routing logic responsible for routing and

forwarding the packets, based on the routing policy of the network. Fig.1 below il-

lustrates the generic network-on-chip architecture that has the folded torus topology.

Given the on-chip interconnect architecture, the system designer needs to make an

important decision as to how the resources in the SoC are to be interconnected, i.e.

mapping the resources to the NoC topology, thereby deciding which resources are to

The journal model is IEEE Transactions on Automatic Control.

2

Fig. 1. (a) Generic Network-on-Chip architecture (b) Network tile structure

be placed next to one another in the NoC and how the communication in the SoC

is routed amongst these resources. The obvious drawback of cementing the on-chip

interconnect network is that a resource in the system may not have a direct commu-

nication link to the other resources that it may communicate with. These extraneous

communications will have to be routed through the switching logic of the network

tiles that are directly connected to it. So the selection of the immediate neighbors of

a resource now becomes crucial. The decision of how each resource is connected to

the rest of the resources will affect the performance of the system being developed.

The decision making process is further complicated when the systems being de-

veloped are conglomerates of functionalities. These multifunctional systems, while

providing multiple functionalities, also have a consequential increase in the communi-

cation complexity within the system and make decisions on the immediate neighbors

more complex.

For a better portrayal of the system communication we consider the operation

3

of the system in different modes for its multiple functionalities. Traditionally, when

a system is referred to as being multimode, the mode is associated with the mode

of operation of the resources that constitutes the system [13]. For example, consider

a multifunctional system such as the present day cell phone, which can behave as a

MP3 player, a digital recorder, a PDA and a cell phone. This system is not only

capable of operating in the four basic modes of operation that have been listed here,

but can also operate as an MP3 player and a PDA at the same time. So the number

of possible modes depends on the number of functionality that the system provides.

The resources that constitute the multifunctional system, are capable of operating

in more than a single mode of the system and the operation characteristics, such as

execution times and deadlines may differ in the different modes of the system.

It is evident from above that the communication requirements of the resources

may be different in the various modes of its operation. By providing the ability

to model the communication in the system based on the different modes, we get a

clearer picture of the communication characteristics and requirements of the on-chip

interconnect. We refine the original concept of the multimode system, to now reflect

the modes of communication in the system. The availability of this mode-based

communication model supplements a system development strategy that will decide

the interconnections amongst the resources of the SoC.

This research provides the mode-based communication model that allows for the

abstraction of the multimode communication within the system being developed. The

information provided by the model aids in reducing the design space explored and

yields a solution that conforms to the communication restrictions set by the design

specifications. A design heuristic to aid in determining the immediate neighbors of a

resource in a NoC topology and the routing of the communication within the system

is also presented here.

4

The solution obtained does not provide the exact mapping of resources onto the

NoC. It only determines the immediate neighbors of the resources in the SoC and the

routes taken by all the communications in the system. This flexible solution provided

can then be mapped onto the NoC template, depending on placement constraints that

the system designer may have. A scenario where such flexibility may be essential

is when a particular resource may need to be placed along the chip boundary for

I/O operations. Hence by not providing the exact mapping, we give the system

designer the flexibility to place the resources anywhere, while guaranteeing latency-

performance constraints, as long as the neighbors are set according to those specified

by the given solution.

The solution obtained through the mapping heuristic is verified through a network-

on-a-chip simulator, NoCSim [15]. When operating in a trace-based mode, this simu-

lator generates packets using execution traces of the resources in the SoC. The packets

are injected into the NoC to obtain latency-performance characteristics.

Another issue that has to be addressed before such a system can be deployed

is the on-chip communication latency. We need to reduce this latency as much as

possible, at every stage of the data communication. The communication comprises of

three stages, the packet assembly, packet transmission and the packet disassembly and

delivery. This research examines the latency characteristics in the packet assembly

stage of the on-chip communication.

The different packetization strategies that have been investigated in this research

are

1. Software library based,

2. On-core module based,

3. Wrapper based.

5

The implementations vary depending on the reconfigurability and programma-

bility of the core in question. This research investigates the suitability of these three

methods and determines the subsequent performance differences between them. The

results will provide crucial information to the system designer at the time of core-

network interface design.

6

CHAPTER II

PRESENT STATUS OF THE QUESTION

The concept of SoC network communication in the form of packet-switched commu-

nication was suggested by Guerrier and Greiner [6]. They proposed a generic inter-

connection template that addressed the performance and scalability requirements of

system-on-chip using integrated switching networks. In [3, 8], the authors discussed

the advantages of using regular NoC architectures.

Micheli and Benini [5] proposed that on-chip micro-networks, designed with lay-

ered methodology, would meet the distinctive challenges of providing functionally

correct, reliable operation of interacting system-on-chip components. This idea was

also suggested by Sgroi et.al. [12]. They suggested a formal approach to system-

on-chip design. Their approach considered communication between components as

important as the computations they performed.

The mapping problem is a well studied problem and has been very important

with respect to multiprocessor systems. Most of the work in this regard has dealt with

assigning tasks to processors and the focus has been on minimizing the communica-

tion overhead. A graph theoretic approach in [9], assumes fixed cost communciation

edges. The algorithm then determines a n-way cut, aggregating the cost of the com-

munication to be sum of the communication across the cuts. Formulation of the

mapping problem as an optimization problem, has also been done by numerous au-

thors. Bokhari [1] uses the number of task graph edges that fall onto the host graph

edges, as a mapping evaluation function. Also, the algorithm assigns a uniform traffic

intensity to all pairs of communicating processes. This is an unreasonable restiction

considering the possibility of variation in the communication profiles. Using simulated

annealing, the authors in [2], frame the optimization problem as a two-phase strategy.

7

In the first phase, they assign the tasks to the processors and in the later phase, they

schedule traffic connections over network data links to reduce interprocess communi-

cation conflicts. Simulated annealing was also used by Steele [14], but the network

contention issues were ignored. In [10], the authors provide a mapping heuristic that

is guided by an evaluation function that approximates the total completion time of

the given assignment, by taking into consideration the communication delays caused

by the network contention. [11] provides a heuristic to reduce the channel contention

when mapping.

To the best of our knowledge, no past work provides a flexible mapping solution

of the resources to the NoC by determining the immediate neighbors of the resources

constituting the system. No previous work addresses this mapping process for the

case of multifunctional systems with multiple modes of operation. The absence of a

suitable model to accommodate the multimode communications of complex heteroge-

neous systems and a design heuristic to determine the mapping of the resources onto

the desired NoC topology were the factors driving this research.

The need for a test bed to simulate systems built on the NoC backbone led to

the development of NoCSim, a network-on-chip simulator [15]. This simulator was

developed using SystemC [16] and was initially designed with the intention of injecting

packets generated by random sources that would have parameters to control the

packet injection rate characteristics. One of the drawbacks of this system was the lack

of support for simulating real-life system communication characteristics. NoCSim was

upgraded to provide it with the ability to generate NoC traffic based on the execution

traces of the target applications. The following section describes the multimode

system model.

Current research does not address design methodologies that are NoC-aware,

i.e. they do not consider NoC issues that directly affect system performance. The

8

absence of a design validation environment hampers the ability of researchers from

analyzing NoC related concepts. Research is also required to examine the various

costs associated with interfacing cores to the NoC environment. This research will

address these issues.

9

CHAPTER III

MAPPING MULTIMODE SYSTEM COMMUNICATION TO A NOC

A. Multimode System Communication

A multimode system is defined by a set of a fixed number of modes. Each mode is

characterized by a set of communicating resources (i.e. processing elements (PEs),

memory elements, etc.) and their corresponding communication characteristics. A

graph representation Mi(R,T) - termed as the mode graph, contains resources (R) as

the nodes, the communication traffics (T) between these resources as the edges and

operates in mode i. This mode graph describes the resources that operate and con-

tribute to the communication traffics in the mode being represented in the graph. The

communication edges are characterized by the communication parameters, i) inter-

arrival time (IA) - the minimum inter-arrival time between (outgoing communication

requests) requests for communication to another resource, ii) deadline (DL) - for the

completion of the communication and iii) the size of data being communicated (DS)

- to determine the traffic load of this communication edge.

With the aid of the individual mode graphs, the communication requirements

of the system in each mode are highlighted. Combining the individual mode graphs

yields the combined mode graph (M*), which will provide system developers with the

communication requirements of the system.

M∗ =
⋃

i∀MODES

Mi(Ri, Ti)

where Mi(Ri, Ti) is the mode graph for mode i, with resource set Ri and communica-

tion traffic set Ti. The resource set may be the same for different mode graphs. The

variable factor will be the communication edges.

10

Let us now define some notations that can be used to specify the communications

in these multimode systems. The communication traffic present in a multimode sys-

tem is characterized by a set of traffics T, such that TR,S
i,j ε T , where R is the resource

from where the communication originates, S is the sink for this communication, i is

the mode of the traffic patterns and j ranges from 1 to k, where k is the number of

traffics originating from R in mode i. The attributes of the traffic are the inter-arrival

time (IA), deadline (DL) and the size of the data (DS). For example consider the

following traffic set:

T = {TA,B
1,1 , TA,C

1,2 , TA,B
2,1 , TB,A

1,1 , TC,A
2,1 , TC,B

2,2 }

From this traffic set, we can determine the following information:

1. This multimode system has 2 modes (mode 1 and 2),

2. It has 3 resources (A, B and C).

3. Resource A has 3 traffics originating from it, 2 of them are in mode 1 and 1 in

mode 2.

4. Resource B has only 1 traffic, in mode 1.

5. Resource C has 2 traffics, both in mode 2.

This traffic set can further be partitioned into set of traffics associated with a

particular mode.

T1 = {TA,B
1,1 , TA,C

1,2 , TB,A
1,1 } − traffic in mode 1

T2 = {TA,B
2,1 , TC,A

2,1 , TC,B
2,2 } − traffic in mode 2

Fig. 2 above shows a graphical representation of the combined mode graph of the

11

Fig. 2. An example combined mode graph with the traffics in the different mode being

highlighted

example above. The mode graph for this example is:

M∗ = {M1(R1, T1)
⋃

M2(R2, T2)}

R1 = {A,B, C} T1 = {TA,B
1,1 , TA,C

1,2 , TB,A
1,1 }

R2 = {A,B,C} T2 = {TA,B
2,1 , TC,A

2,1 , TC,B
2,2 }

It is important to note that the communication traffic in one mode may not

conflict with the communication traffic in another mode. The information provided

by the mode-based communication model aids in reducing the design space explored

and enumerates the necessary attributes needed by the mapping heuristic presented

in the following section.

B. Mapping Multimode System Communication to a NoC

A crucial step in the system design methodology, the mapping stage facilitates the

determination of the immediate neighbors of the resources in the NoC topology. The

reason for its importance is that it is not always possible to provide a direct com-

12

munication channel between a particular resource and all the resources that it may

communicate with. The NoC topology constrains the number of immediate neighbors

that a resource (present in a network tile) may have when placed on the interconnect

template. So the communication traffics of the resource can now be partitioned into

two sets - (i) communication to the immediate NoC tile neighbors of the resource and

(ii) communication to the rest of the resources. The latter set of communication will

have to be routed through the routing logic of its immediate neighbors. Hence an

important design decision has to be made to select the resources critical enough to

be placed as immediate neighbors, and route the rest of the communication through

the switching logic of these immediate neighbors. We provide a heuristic that aids in

determining the immediate neighbors of each resource in the system, without provid-

ing the exact placement, and also the routes taken by communications to the rest of

the resources in the system.

1. Problem Formulation

The essential idea that has been used here to solve the problem, involves the transfor-

mation of the arbitrary cardinality combined mode graph (or resource interconnection

graph), into a network graph of fixed cardinality. As described in the previous section,

the combined mode graph (M*) provides the communication characteristics of each

resource in all modes of operation of the system. The network graph (N) shows how

the resources of the SoC are interconnected in the NoC topology, and can further be

mapped onto the NoC topology selected for the system. The network graph is char-

acterized by a resource set (NR), which is the node set of the graph and is equivalent

to the resource set of the combined mode graph (M*). The network graph’s edge set

is characterized by network edge set (NE). It has a restriction set on it by the target

topology of the NoC being utilized for the SoC. The restriction limits the number of

13

Fig. 3. (a) Combined mode graph (b) network graph

outgoing edges from a network resource nr ε NR. For example, if the NoC topology to

be used in the SoC is the folded torus, then the number of outgoing links possible on

the network resource is 4. Another property of the network edges is that if a resource

A has a network edge to resource B, then resource B must also have a network edge

to resource A. Each network edge in the network graph has associated with it a set

of communication traffics that flow through it. It also has associated with it, the

average communication delay offered by the network edge in each mode of operation

of the system. This network graph is clearly a representation of the resources and

their communications in the NoC, with the only exception being that the position of

the resources has not been fixed.

Fig. 3 shown above summarizes the crux of the transformation operation. The

input to the heuristic is a combined mode graph. If the target NoC architecture has a

folded torus topology the number of interconnections on a resource is constrained to

four. The mapping heuristic attempts to determine the four immediate neighbors in

the network. Once these have been decided, it also determines the suitable candidates

of these four that will support the communication requirements of the extraneous

edges.

Example: In the example in Fig. 3(a), we note that resource A is connected to

resource B, C, D, F and E. When mapped to the folded torus topology, the heuristics

14

decides that the 4 immediate neighbors have to be B, C, D, and F. The communi-

cation between A and E has to now be routed either through C, D, B, or F. The

heuristic ranks the candidate immediate neighbors and selects the best candidate to

merge the extraneous communications with, thereby deciding on the route that this

communication will take. In this case it decides that communication between A and

E can be supported by either F or D. Fig. 3(b) provides the final mapping of the

immediate neighbors of all resources in the system.

2. Preliminaries

Before we present the mapping heuristic, the reader must be made aware of some of

the terminologies used in the mapping heuristic.

Definition 1 : A candidate for transformation is a node in the combined mode

graph that has a cardinality greater than the constraint set by the target NoC topol-

ogy, i.e. we attempt to solve the most difficult problem first.

Candidate = max{| Ti | : i ε R}

where R is the resource set of the system and — Ti — is the size of the communication

traffic set of resource i.

Definition 2 : A secondary edge is a communication edge on a resource in the

combined mode graph, that has not yet been merged with a network edge of the

resources. The attributes associated with a secondary edge are the communication

traffics TR,S
i,j , i.e. the inter-arrival time, deadline and the amount of data being trans-

mitted.

Definition 3 : A critical edge in the secondary edge set is the next edge that is

selected by the heuristic to merge with one of the network edges. The selection of the

critical edge is made from the traffic set TR, where R is the candidate resource being

15

considered. The heuristic examines the traffic in all the modes and then decides on

the critical edge that will it attempt to place.

We now define the operations that are performed by the mapping heuristic.

Operation 1 : In the merge operation we assign the secondary edges to the selected

network edge and update the delay values on that network edge. The merge operation

has three possible scenarios.

1. Case 1: If the network edge has no destination assigned yet, we set the des-

tination of the network edge to be the same as that of the critical secondary

edge.

2. Case 2: If the network edge destination is the same as that of the secondary

edge, we add the secondary edge to the network edge and update the delay in

the mode that is affected.

3. Case 3: If the network edge destination is not the same as that of the secondary

edge, we need to add this secondary edge to the network edge and propagate it

forward. We also update the delay in the mode that is affected.

Operation 2 : In the rank operation, the heuristic assigns scores to the candidate

network edges. The ranking results are used to determine the network edge to merge

with. The scores are assigned based on four criteria:

1. Criteira 1: If the network edge has already been visited as a solution for this

edge. This condition is checked to prevent cyclic passing of of secondary edges

when we merge-and-propagate. This helps keep a check on the cyclic propaga-

tion of secondary edges amongst the resources.

2. Criteira 2: If the network edge was backtracked from.

16

Fig. 4. An example demonstrating the merge operation

3. Criteira 3: The number of secondary edges that need to be assigned at the

resource pointed to by the network edge

4. Criteira 4: The number of secondary edges - at the resource pointed to by the

network edge - whose communication clashes with the communication mode of

the candidate secondary edge.

Example: In the example in Fig. 4, consider the given mode graph (assume

edge labels in the form of TR,S
i,j , they have been ignored here so as to provide a neater

figure). We are to map this resource interconnection graph to the folded torus network

topology. We need to reduce the cardinality of resource A to 4 and route the extra

edge through one of the other resources. The heuristics selects the four most critical

outgoing edges of resource A and assigns them to the four vacant outgoing network

edges. In this case, it has selected the edges to B, C, D and E to be the critical edges

and hence places B, C, D and E as the immediate neighbors of A. The edge to F

17

(TA,F
1,1) needs to be routed through either of the four outgoing edges, i.e. we need to

merge the communication of A to F through either B, C, D or E. From Fig. 4(c) we

notice, that the heuristic selects resource D to be the candiate through which this

connection is to be routed. This selection is done based on the results obtained by

the ranking operation. So we now merge TA,F
1,1 to the network edge from A to D. The

communication from A to F, has now been decomposed into communication from A

to D and from D to F. So we now need to have a secondary edge at D, pointing to

F (TD,F
1,1). This new traffic edge that is added to D will now have updated traffic

information that considers the delay incurred on network edge.

3. Heuristic

The heuristic presented in this paper takes in the combined mode graph of the sys-

tem as input and transforms the arbitrary cardinality graph, into a fixed cardinality

network graph. This network graph provides the necessary interconnections of the

resources in the system. The solution provided can then be mapped to the NoC

topology of choice. Table 3 enumerates the steps in the heuristic.

The heuristic that has been provided here is iterative in nature. In each of the

iterations we consider a resource of the system and attempt to make decisions on its

immediate neighbors in the NoC. This resource is termed as the candidate. It has a

set of communication edges, called the secondary edges. These secondary edges are of

the form TR,S
i,j and belong to T, the communication set of the combined mode graph.

The objective of the heuristic is to merge these secondary edges with the network

edges. These network edges are nothing more than the network links between tiles in

the NoC network.

When we attempt to merge a secondary edge with a network edge, there are

three possible scenarios. These scenarios were have already been highlighted in the

18

Table I. Heuristic for mapping the combined mode graph of a system onto a NoC

topology.

while (resource graph has more candidates for transformation) {

candidate = getNextCandidate()

SE = {set of secondary edges of resource candidate}

NE = {set of network edges of resource candidate}

while (SE has more secondary edges to merge with the network edges of candidate){

se = getCriticalSE()

if (a network edge to the destination of se already exists) {

if (merge with this network edge is possible) {

Merge se with this network edge

update the slacks and the edge routes for each edge

Rip up the old routes through this network edge and update their values

}

else {

if (an empty network edge to connect to the destination of se is available) {

if (a return edge to candidate is possible) {

merge se with this empty network edge

update the slacks and routes for this edge

set the return edge to point to candidate

}

else {

rank network edges to select best candidate for merge

select the best possible candidate network edge to merge with

merge se with this network edge

update the slacks and the edge routes of the affected edges

}

if (a merge is not possible) {

we need to backtrack and pass back the violating edge back to its predecessor

}

}

}

}

19

previous section. In case 1 of the merge operation, when the network edge has no

destination specified yet, the merge operation will set the destination resource of the

secondary edge as an immediate neighbor of the candidate. In case 2 of the merge

operation, the network edge has the same destination as that of the secondary edge.

Here we just merge the communication and update the delays for the different modes

of communication on this network edge. In case 3 of the operation, the destination

of the network edge is not the same as that of the secondary edge. In this case too,

we merge the communication with the network edge. Aside from that we also add

a secondary edge to the destination resource pointed too by the network edge. This

new secondary edge would have the same destination as that of the critical secondary

edge being merged. The only difference is that the communication characteristics on

this edge have been updated after delay updations on the network edge. These steps

are performed for each un-merged secondary edge in each resource in the system.

Example: In Fig. 5, an example execution of the heuristic is demonstrated. In

(a), we present the initial configuration of the resource interconnection graph. In (b),

we have selected resource A as the candidate (since it has the highest cardinality).

Resource A now becomes a network graph node. In (c), we select the communication

to G to be a critical communication edge. The decision to make G an immediate

neighbor to A is made. After three more iterations, we select the next three critical

communications. B, C and H are selected and assigned as the immediate neighbors of

A in (d). In (e), we address the communication edge from A to F. This edge is merged

with the edge to G, and the secondary edge is propagated to G. In (f), resource C is

selected as the candidate node. In (g), D and E are set as the immediate neighbors

of C. In (h), we finally assigned F as the immediate neighbor of G. We now have the

complete network graph. This graph provides us with the immediate neighbors of all

the resources in the NoC.

20

Fig. 5. Sample execution of the mapping heuristic

21

C. NoCSim - A Verification Test Bed for Network-on-Chips

NoCSim is a network-on-chip system simulator developed using the popular system-

level design programming language SystemC. The simulator operates at the flit-level

and utilizes a virtual-channel based flow control scheme [4]. It has some parameteri-

zable parameters, such as the number of virtual channels, the buffer depth, and the

size of the mesh network. Presently, the simulator has two modes of traffic gener-

ation. In the first mode it can generate traffic with a constant bit rate (CBR) and

random Poisson distribution. The user using configuration files can specify the traf-

fic generation parameters. In the second mode, the traffic generated is trace-based,

i.e. the traffic is generated using exact communication traces. These communication

traces provide the information needed by a traffic generator, i.e. the time at which to

generate the packet and the amount of data to transmit over the network. The traffic

generated is routed from the sources to the destinations for which it is configured.

It then provides the end-to-end latency information for each flit that can be used to

evaluate the performance of the system designed. The results obtained from the map-

ping heuristic will be used to setup NoCSim and run simulations. These simulations

will provide latency details that will validate the results of the mapping heuristic.

D. Experiments and Results

To test the mapping heuristic, we developed two test cases. The first test case consists

of a set of random mode graphs that are to be mapped onto a 4 x 4 folded torus

topology. We chose to create the random data set because of the lack of a complex

real-life system to suitably test the mapping heuristic. As shown in Fig. 6 below, the

target system is capable of operating in three modes. The mode graphs are input to

the mapping heuristic to obtain the immediate neighbor information for each resource

22

in the system. This information is used to map the resources onto the folded torus

topology, as can be seen in Fig. 6. The mapped solution is used to configure NoCSim

and run simulations. We compare the latency results obtained from NoCSim to those

set as constraints in the mode graphs. This comparison will aid in validating the

mapping solution.

Table II. Sample set of the latency results obtained from NoCSim vs those provided

as constraints to the mapping heuristic.
S.No. Comm. Source(S) Comm. Destination(T) T S,T

i,j NoCSim latency results

IA DS DL
1 3 14 6 64Kb 9 3
2 15 4 7 64Kb 9 4
3 4 10 9 64Kb 9 10 *
4 14 1 9 64Kb 7 7
5 6 9 9 64Kb 8 6

The results obtained from NoCSim provide the latency characteristics of all com-

munications that take place in the NoC configured. Table II above shows a sample

set of the results obtained. This sample set shows the communication characteris-

tics (T S,T
i,j) of some of the communication traffics in the system. The last column of

the table shows the latency results obtained from NoCSim. We compare the latency

constraints set on the communication traffics to that obtained from NoCSim. We

note that the communication constraints are met for most of the traffic. For this

test case, only a single communication constraint was violated (* in the above table).

This violation is due to the fact that the mapping heuristic approximates the delays

on the network edges in the NoC. However, our experiments on other test cases have

shown that the error in approximation is limited to 12%, and can further be reduced

with better delay models.

For our second test case, we developed a hypothetical multimode system capa-

ble of providing four functionalities and capable of operating in three modes. The

four selected functionality were JPEG encoder, MPEG encoder, ADPCM and MP3

23

Fig. 6. The result obtained after mapping the 3 input mode graphs onto a 4 x 4 folded

torus topology. The final layout of the resources in the NoC has also been

shown

24

Fig. 7. (a) The mode graphs of the system being developed. The three mode graphs

provide four functionalities (JPEG, MPEG, ADPCM, MP3). (b) This shows

the mapping of the four resources on to the NoC

25

Table III. Sample set of the latency results obtained from NoCSim vs those provided

as constraints to the mapping heuristic.
S.No. Comm. Source(S) Comm. Destination(T) T S,T

i,j NoCSim latency results

IA DS DL
0 0 4 17 96Kb 60 50
1 2 3 63 192Kb 100 98
2 1 0 2.82 40Kb 25 22
3 1 3 1076 128Kb 75 67
4 2 0 260 256Kb 128 132 *

decoder. We partitioned the modules constituting the functionalities, into four re-

sources. These would be placed on the NoC and used to provide the above func-

tionalities. Fig. 7 above shows the mode graphs input to the mapping heuristic and

the final mapping of the resources on the NoC. The mapping obtained was verified

through NoCSim and a sample set of the latency results obtained, have been pre-

sented in Table III. In this test case, most of the latency constraints were met. Only

one of the constraints was violated (* in Table III).

26

CHAPTER IV

INTERFACING CORES WITH

ON-CHIP PACKET-SWITCHED NETWORKS

A. Introduction

With the onset of packet-switched networks being a possible mode of communication

on SoCs, various aspects of the communication need to be evaluated and optimized to

provide the required quality of service (QoS). In order to reduce the packet-switched

network on-chip communication latency, several schemes are possible, starting at the

compiler-level where the compiler will place instructions - requiring communication

medium usage - earlier in the sequence of execution, to have the controllers such

as those of memory pre-fetching and transmitting data to the consumers to reduce

latency. But these can only be addressed once such a network is deployed.

In this work, we address the core-network logic interface issues. The packet

communication process is a target for the reduction of latency. The packet communi-

cation process has essentially three stages - packet preparation, packet transmission

and packet handling at receiver. Primarily we look at the packet preparation stage

of the communication over the network. This is the period from where the processor

knows that it has to communicate with an external component (w.r.t. to its tile), to

the time it delivers the packet to the network logic of that tile, which eventually deliv-

ers it to the destination component. Since this stage could be a possible bottleneck,

apart from the latency of the communication channel, we try to reduce the latency

exhibited by the system at the beginning of the communication process. These results

can also be used for analyzing the system for the final stage of communication too,

the packet handling stage. Since these stages are essentially complementary, they will

27

exhibit similar tendencies.

Another important issue that arises here is of whether the core should be aware

of the network or not. The pros for a network-aware core are:

• Reduced latency, because the core directly provides the packet, once it is in-

formed of the packet format.

• Reduced complexity of the network interface of the core.

The cons of a network-aware core are:

• Specification of packet parameters to the core.

• Core requires a certain degree of programmability.

• Need to modify existing cores to make them network-aware.

The experimental scenario considered for this research, was of a simple dis-

tributed memory environment. The system consists of a core that can access separate

memory cores spread through the on-chip network. To the software executing on the

processor core, the memory is one contiguous block present at a single location. The

processor core is aware of the distributed nature of the memory space. When the soft-

ware attempts to access a memory location, the destination core has to be identified

and accessed. We shall demonstrate how this is implemented in the three different

schemes. Before we examine the packet preparation steps and methods, we take a look

at the generic structure of the packets. The structure of the packet can be tuned for

a particular network, so as to reduce the overhead of packetizing the data. A packet

essentially consists of 3 parts, the packet header, the packet data and the packet tail.

The packet header contains the necessary routing and network control information.

These will be the destination and source addresses. When source routing is used, the

28

Table IV. Generic packet structure.

Packet Header Packet Data Packet Tail

destination address will be ignored. It is replaced with a route field that will specify

the route to the destination. A disadvantage of source routing is the added overhead

of including the route field in the packet header. But the inclusion of such a field

reduces the complexity of the routing logic on the cores on the network. It simplifies

their routing decisions and their task will be to just look at the route field and route

the packet over the specified output port. The packet data consists of essentially two

types of information. The first is the control information that will indicate to the

receiving memory core about the type of memory request being made. The second

will be the actual data, i.e. the memory address being accessed. The packet tail

contains error-checking code and error-correcting code. But this part of the packet

is optional. The inclusion of this information will depend on the error probability

of the underlying network. The packet structure utilized for this research was tuned

to the corresponding implementation strategy. With the simple distributed memory

environment scenario in mind, we identified the generic operational steps that need

to be performed when an address at a memory core needs to be addressed. Fig.

A illustrates these steps. The set of operations stated above are executed at differ-

ent locations, depending on the type of packetization strategy. The location will be

incumbent on the configurability and programmability characteristic of the core in

question.

1. Software Library-based Strategy: The software implementation of the packet

preparation provides the user with a library of instructions that can be used

29

Table V. Generic packetizing process for a simple distributed memory model.

Step 1: Translate address by determining which memory core needs to be accessed, and determine
the effective address at that memory core.

Step 2: Prepare packet header by setting the source address and the route to the destination.
Step 3: Examine program instruction requiring memory access, and set control flags in the packet

data.
Step 4: Set effective address in packet data.
Step 5: If using error-checking codes and error-correcting codes, calculate the values and set them in

the packet tail.
Step 6: Assemble packet and deliver to the network logic of the core.

to access a memory address in a distributed memory space. The cost of this

implementation will be considered in terms of the size of the library and the

execution time overhead for each instruction.

2. On-core module-based Strategy: In this implementation, a processor with an

on-core packetization module will have to be developed. The facility to be able

to add on a co-processor to an existing processor, is provided by the Tensilica’s

Xtensa Core. This configurable, extensible and synthesizable processor core was

designed specifically to address Embedded System-on-Chip (SoC) applications.

This processor can be molded by the system designer to suit the application.

The designer can also describe additional data-types, instructions and execution

units using the Tensilica Instruction Extension (TIE) language. Using this core,

it is possible to develop an application specific core for packetization.

3. Wrapper-based Strategy: A wrapper compliant with a standard core interface

- typically the VSI Alliance’s Virtual Component Interface (VCI) Standard -

will be developed. This standard defines the basic characteristics of the Virtual

Component Interface (VCI). The HDL implementation will be synthesized to

provide for the performance costs. The tool used here will be the Synopsys

Design Analyzer.

30

Table VI. Expected characteristics of the packetization schemes.

Type Area Latency Complexity Flexibility

Software
Library

(on-core)

Low on HW area, but
increases code size

(increased instructions
to packetize)

High Increased code size. Requires programmable
cores.

RTL (HW)
implementa-

tion
(on-core)

Additional register and
logic to packetize

Low Additional registers and
logic and an increase in

instruction set.

Requires programmable
cores or development of

modified cores.

Wrapper RTL
(HW) Imple-
mentation
(off-core)

Additional control,
registers and logic to

packetize.

Low Additional control,
registers and

logic.Ability to
understand core

operation

Can use existing cores.
Modify wrappers for

plug-and-play into different
networks.

The trade-offs here would be of latency, area, complexity and flexibility. Table A

provides a tabular representation of these features in the three possible implemen-

tations. As mentioned in Chapter 1, one of the focuses of this research has been

the analysis of the alternative packet preparation methods available to the system

designer. For our research, we used the Xtensa Processor Core from Tensilica [17].

This configurable, extensible and synthesizable processor core was designed specifi-

cally to address Embedded System-on-Chip (SoC) applications. This processor can

be molded by the system designer to suit the application. The designer can also

describe additional data-types, instructions and execution units using the Tensilica

Instruction Extension (TIE) language. Using this core, it is possible to develop an

application specific core for packetization. In the following section we shall discuss

three implementations of the packetizing modules.

31

B. Implementation Details

1. Software Library for Packetization

The software implementation of the packet preparation provides the user with a li-

brary of instructions that can be used to access a memory address in a distributed

memory space. The library requires three configuration files. These files provide

important network associated properties. Fig. 8 provides an overview of the config-

uration file structure. The socnet.conf configuration file specifies the address of the

host. It also provides the route information to the network elements. The packet

structure used is specified in packet.conf and this specifies the fields in the packet

and their corresponding size in terms of bits. mem alloc.conf contains the memory

allocation information, i.e. the address space of the memory cores in the environ-

ment. When the user issues a memory access instruction, the corresponding packet

is prepared according to the steps highlighted in the figure A. The sample code to

test the library was executed on the basic Xtensa Processor Core. The core was

configured with a 128-bit processor interface. The cycle count for the execution of

the packetization instruction was determined by using the profiling tool - xt-gprof -

included in the Xtensa toolset. The area results for this strategy are the size of the

software library code.

2. On-core Module for Packetization

In this implementation we utilized the Xtensa Processor Core’s configurability and its

Tensilica Instruction Extension (TIE) language to define instructions for preparing

the packets. This program. The Xtensa toolset has tools that allow the profiling of

the executed instructions. From the profile one can obtain the required results such

as the cycle-count for the executed instructions The TIE compiler also generates the

32

Fig. 8. Configuration file structures

required Verilog/VHDL files that are then analyzed using Synopsys Design Analyzer,

to obtain the timing and area costs. The TIE definition used for our research, included

the specification of the stages listed in Fig. A, in terms of the TIE language. The

TIE code was successfully compiled with the TIE compiler and the execution of the

custom instruction was tested on the Xtensa processor. The packet structure used in

this implementation is equivalent to the one shown in Fig. A. The cycle count for

this implementation was obtained using the Instruction Set Simulator (ISS), provided

with the Xtensa tool set. The ISS provides detailed information on the contents of

the registers in use and the output available at the processor interface.

3. Wrapper Logic for Packetization

For cores that are neither programmable nor reconfigurable, the only option for in-

terfacing with the networking logic of the tile is to utilize a wrapper, which would

have the responsibility of packetizing and de-packetizing the cores requests and re-

sponses. The wrappers have the responsibility of (i) receiving the contents from the

33

core interface, preparing the packets and dispatching them to the network logic of the

tile and (ii) receiving the packets from the networking logic and presenting the con-

tents to the core interface. For our experiment, we designed the packetizer module of

the wrapper, which was compliant with VSI Alliance’s Virtual Component Interface

(VCI) Standard Version 2 [18]. This standard defines the basic characteristics of the

Virtual Component Interface (VCI). It provides detailed information on the different

complexity interfaces, the Peripheral VCI (PVCI), the Basic VCI (BVCI) and the

Advanced VCI (AVCI). We developed the wrapper that would be compliant with the

BVCI standard. The implementation details are not provided here due to the restric-

tive nature of the standards document. The VSIA vision is to dramatically improve

the productivity of SoC development by specifying open standards and specifications

that facilitate the integration of software and hardware VCs from multiple sources.

This was the reason we chose to develop a wrapper compliant with the VCI standard

because we believe that most future cores will have well-defined interfaces similar to

or be VCI standard compliant. The packetizing module attempts to optimize the

packets being generated for the on-chip network. The packet structure in this imple-

mentation was dependent on the signals used in the BVCI interface (details cannot

be provided due to non-disclosure agreement). The packetizer module maintains the

address translation information, i.e. the mapping of memory addresses to destination

core addresses. It analyses the content of the core request and tries to optimize on

the amount of data being sent over the on-chip network, by filtering the redundant

information from the packets. The timing, and area analysis for this implementation

was obtained using the Synopsys’ Design Analyzer.

34

C. Results

The results obtained for the analysis carried out evaluates the performance of the

packetization schemes in terms of latency, and area. Table C provides a summary

of the results that were obtained for the latencies experienced. The latency in the

case of the software library, was determined using the cycle count obtained from the

Instruction Set Simulator (ISS) and the clock frequency. This result will vary with

different processors and implementations of the packetization library. In the case of

the on-core packetization, the latency was determined in a similar way. However, the

clock frequency was obtained through synthesis of the TIE specification. It should

be noted here that, these two schemes were implemented on the Xtensa Processor

Core. The lower clock frequency is due to the slow-down caused by the TIE logic

that was incorporated into the processor core. This is an acceptable trade-off, in light

of the performance improvement. This conservative result was obtained by using the

TSMC 0.18micron and slow libraries. With a little more effort and better libraries it is

possible to have the Xtensa processor operate at its normal clock frequency of 200MHz

and will further reduce the latency. The result for the wrapper implementation is

obtained using the 0.35micron technology library. With better technology, there will

be a further reduction in the latency. The latency result in this case provides the

developer with the time taken through the longest path in the wrapper, and will

enable him to decide on the clocking rate for the interface.

Table C, provides the area costs of the three schemes that were implemented.

The area cost of the three implementations cannot be compared quantitatively. The

results provide a measure of the cost that the system designer would experience using

a particular strategy. The area for the software implementation was determined in

terms of the code size of the software library. To determine the area of the TIE logic,

35

Table VII. Latency results.

Packetization Strategy Cycle Count Clock Frequency Latency

Software Library 47 193 MHz 243.5ns

On-core Packetization 2 185 MHz 10.8ns

Wrapper Packetization - - 3.02ns

Table VIII. Area results.

Packetization Strategy Area Remarks

Software Library 118 KB Code size

On-core Packetization 13K Gate count using
0.18 micron
technology

Wrapper Packetization 4K Gate count using
0.35 micron
technology

36

for the on-core packetization, the TIE specifications were synthesized following the

regular steps (i.e. compilation of the TIE specification and synthesis of the compiler

output). The 13K gate count is an overly conservative estimate. The silicon area

appeared to be under 0.2 square mm. The area for the wrapper was determined using

Synopsys’ Design Analyzer. It cannot be directly compared to the one obtained for

the Xtensa Core, as the technologies used in both are considerably different.

37

CHAPTER V

CONCLUSIONS AND FUTURE WORK

The need for a high-performance on-chip interconnect architecture to meet the de-

mands of the complex modern day systems has spurred the on-chip interconnect

research community to research into probable solutions. Using technology originated

in parallel computing, and merging its ideas with those of the networking domain has

presented the network-on-chip as the plausible solution. Minimizing the associated

costs requires research into design methodlogy issues.

One such issue that has been addressed here, is the mapping of the heteroge-

nous communicating cores onto the selected topology. This thesis provides a flexible

mapping solution that attempts to guarantee latency performance constraints. Other

immediate issues that crop up, are those of power budgetting. With power becoming

a crucial factor in the design of mobile systems, the mapping will also need to consider

the energy constraints of the on-chip interconnects.

Once the on-chip interconnect architecture is selected for a particular system,

one cannot just ”plug-in” IPs and expect the system to function. The IPs need to be

interfaced with the network. With three possible scenarios possible for the interfacing,

the system designer needs to select the appropriate core-network interface. The results

provided in this thesis will aid system designers in fathoming the costs associated with

the possible implementations. Future work in this regard would look to provide more

cost effective solutions for core-network interfacing.

38

REFERENCES

[1] S. H. Bokhari, “On the mapping problem”, IEEE Trans. on Computers, Vol. 30,

pp. 207-214, March 1981.

[2] S. W. Bollinger and S. F. Midkiff, “Heuristic technique for processor and link

assignment in multicomputers”, IEEE Trans. on Computers, Vol. 40, pp. 325-

333, March 1991.

[3] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection

networks”, in Proc. DAC, 2001, pp. 684-689.

[4] W. J. Dally, “Virtual-channel flow control”, IEEE Trans. Parallel and Distributed

Systems, Vol. 3, pp. 194-205, March 1992.

[5] G. De Micheli and L. Benini, “Networks on chip: A new SOC paradigm”, IEEE

Computer, Vol. 35, pp. 70 -78, Jan 2002.

[6] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched

interconnections”, in Proc. DATE, 2000, pp. 250-256.

[7] A. Jantsch and H. Tenhunen, Networks on Chip, Dordrecht, The Netherlands:

Kluwer Academic Publishers, 2003.

[8] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, et al., “A network

on chip architecture and design methodology”, in Proc. IEEE Computer Society

Annual Symposium on VLSI, April 2002, pp. 117-124.

[9] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems”,

IEEE Trans. on Computers, Vol. 37, pp. 1384-1397, November 1988.

39

[10] R. Perego and G. De Petris, “Minimizing network contention for mapping tasks

onto massively parallel computers”, in Proc. Euromicro Workshop Parallel and

Distributed Processing, January 1995, pp. 210-218.

[11] L. Schwiebert and D. N. Jayasimha, “Mapping to reduce contention in multi-

processor architectures”, in Proc. Parallel Processing Systems, April 1993, pp.

248-253.

[12] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, et al., “Addressing the

system-on-a-chip interconnect woes through communication-based design”, in

Proc. DAC, 2001, pp. 667-672.

[13] Y. Shin, D. Kim, and K. Choi, “Schedulability-driven performance analysis of

multiple mode embedded real-time systems”, in Proc. DAC, 2000, pp. 495-500.

[14] C. S. Steele, “Placement of communicating processes on multiprocessor net-

works”, Technical Report 5184:TR:85, California Institute of Technology,

Pasedena, California, April 1985.

[15] N. Swaminathan, P. Bhojwani and R. Mahapatra, “Communication synthesis

for on-chip networks”, Technical Report #TR-CS-2002-08-0, Texas A&M Uni-

versity, College Station, 2002.

[16] SystemC 2.0.1, White paper, www.systemc.org/projects/sitedocs/document/

v201 White Paper/en/1, [Accessed June 2002].

[17] Tensilica, Xtensa Core Product Brief, www.tensilica.com/Xtensa PB 91102.pdf,

[Accessed May 2002].

[18] VSI Alliance, Virtual Component Interface Standard Version 2 (OCB 2 2.0),

April 2001, www.vsi.org/resources/datasheets/ocb2ds.pdf [Accessed May 2002].

40

VITA

Praveen Bhojwani was born in Sharjah, United Arab Emirates (U.A.E.) on the

30th of July, 1979. After completing his schooling at The Modern High School, Dubai,

U.A.E., he went on to attain his Bachelor of Technology (Honors) in Computer Sci-

ence and Engineering at the Indian Institute of Technology, Kharagpur, India, in May

2001.

Permanent Address:

A/41 Archana Co-op. Housing Society,

New Versova Link Road,

Andheri(W),

Mumbai 400 053,

India.

The typist for this thesis was the author.

