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ABSTRACT

Low Complexity Channd Moddsfor Approximating
Flat Rayleigh Fading in Network Smulations. (August 2003)
Jeffrey Michad McDougdl,

B.S, Texas A&M Universty;

M.S., Johns Hopkins University

Chair of Advisory Committeer Dr. Scott L. Miller

The intricate dependency of networking protocols upon the performance of the
wireless channel mativates the investigation of network channd gpproximeations for
fading channels. Wirdess networking protocols are increasingly being designed and
evauated with the assstance of networking smulaors. While eva uating networking
protocols such as medium access control, routing, and reliable trangport, the network
channdl modd, and its associated capacity, will dragticaly impact the achievable
network throughput. Researcher relying upon smulation results must therefore use
extreme caution to ensure the use of amilar channel models when performing protocol
comparisons. Some channd gpproximations have been created to mimic the behavior of
afading environment, however there exigs little to no judtification for these channd
gpproximeations.

This dissertation addresses the need for a computationdly efficient fading
channel gpproximation for usein network smulations. A rigorous fla fading channel

model was developed for use in accuracy measurements of channel gpproximations. The



popular two-gate Markov modd channel approximation is analyzed and shown to
perform poorly for low to moderate signa-to-noise ratios (SNR). Three novel channe
gpproximations are derived, with multiple methods of parameter estimation. Each mode
is anayzed for both statistica performance and network performance. Thefind modd
IS shown to achieve very accurate network throughput performance by achieving avery
close matching of the frame run distributions.

Thiswork provides a rigorous eva uation of the popular two-state Markov modd,
and three novel low complexity channd modelsin both tatistical accuracy and network
throughput performance. The novel modd s are formed through attempts to match key
datistica parameters of frame error run and good frame run statistics. It is shown that
only matching key parametersisinsufficient to achieve an acceptable channd
gpproximation and that it is necessary to approximate the distribution of frame error
duration and good frame run duration. The final novel channel approximétion, the three-
gate run-length modd, is shown to achieve a good approximation of the desired

distributions when some key dtatistical parameters are matched.
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CHAPTER|

INTRODUCTION

Networks rely upon intricate interactions between layers of protocolsto achieve a
digtributed form of communication. As networks have grown in Size, complexity and
variety, researchers have gravitated towards network smulaionsto assist in the
introgpection of protocol interactions. Currently, researchers use network simulation
results to demonstrate the performance of new techniques and protocols. These
empirical trids have been used to achieve advances in networking protocols such as
medium access control (MAC), routing and transport control protocols (TCP). Recently
the use of wireless local area networks and wireless ad hoc networks has produced a
desire to anayze the performance of networking protocols acrosswirelesslinks. This
desire garnished attention for the subject of operating networking protocols across
wirdess links experiencing fading. While the motivation exists for observing networks
operating across such ‘faded’ channels, the fading channel models are themselves
problematic.

This dissartation will show the widely accepted two-state Markov Model
generates pessmigtic network performance for wireless devices operating at low to

moderate Sgnd-to-noiseratios (SNR).

Thejournd modd is|EEE Transactions on Automatic Control.



Protocols evaluated through smulations using the Markov Modd will reflect this
pessmism with complexity thus increasing the cost of implementation and power
consumption for wireless devices operating in low to moderate SNR.

Protocol development is inherently intuition based with performance established
through network simulations, hence protocols established under the two-state Markov
model tend to contain sgnificant complexity, not necessarily required at low to moderate
SNR. Worse, network smulations utilizing the Markov mode might indicate thet a
protocol will not function, precluding its usein low power devices. With the addition of
improved wirdess network channel models, new protocols can be generated to redlize
modest wireless packet data transmissons in low SNR, where the pessmism of previous
network smulations employing atwo-state Markov model precluded such operation.

Significant research in the areas of TCP performance, datalink and radio link
protocolsis based upon smulations employing a two- state Markov model. These bodies
of research will be fundamentdly adtered by employing amore redistic physicd layer
model, possibly diminishing the impact of suggested TCP variants or ad hoc
coordination schemes. Furthermore, the field of ad hoc wireless networking has largely
overlooked the effects of smdl-scale fading. In the case of transport control protocol,
the achievable wirdess link throughput is based upon consecutive successful packet
transmissons. Thus, physicd layer modds that cannot track the higher order variations

in frame error will tend to misrepresent the performance of a TCP scheme. In each of



these articles, the two-state Markov modd is used when observing the effects of amdl-
scdefading.
The subject of appropriate TCP variations for use on awirdesslink iswell
documented in the literature [1], [2], [3], [4], [5], [6], [7], [8].
Smilarly, datalink layer retransmission schemes and radio link protocols (RLP)
schemes can be affected by the higher order variationsin frame error. The
following articles represent some recent aress of interest in datalink and RLP
schemes, [9], [10], [11], [12], [13], [14], [15]. In some schemes, such as
MACAW [16] and some 802.11, MAC research [17], the subject of small-scae

fading is overlooked entirely.

Thefidd of ad hoc networking has experienced a significant amount of attention
and mogt research in this area, that incorporates fading on wirdess links, employs the
two-state Markov model. It is believed that the areas of ad hoc routing, medium access
coordination and power minimization will be dragticdly affected by employing a more
reditic channgl moddl.

Most Ad hoc routing protocols have neglected small-scae fading entirely,

including RDMAR [18], DREAM [19] and others[20], [21], [22], [23], [24].

The omission of fading can impact the delay, convergence speed and overhead

associated with ad hoc routing protocols and thus obscuring the actua impact of

each.



The optimum method for observing packet-data performance over wireless
channdsis to smulate the network interactions over a baseband equivadent physica
layer. Mogt network smulations involve the transmisson and reception of millions of
packets each containing thousands of bits. Due to the computationa complexity of
detaled physical layer smulations, this approach increases the run-time of networking
smulations by orders of magnitude, making them impracticd a best. Therefore, a
challenge exigts to add redligtic channd datistics to networking Smulations without
overburdening the smulation with complexity. Knowledge of the relaionships between
network performance and channel smulations would help quantify the costs of using
computationally efficient channel models. Thiswork analyzes the popular Markov
model fading channel approximation and produces three dternatives with more accurate
datistical and throughput performance.

In Chapter 11, the reader isintroduced to the background of fading channdls,
modulated sgnas and the coded modulation scheme of complementary code keying.
The term fading is defined for the case of large and smal tempord disperson relating to
frequency sdlective and flat fading respectively. The definitions are followed by a series
of channel measurements that help to quantify a‘real-world’ tempora disperson. The
coded- modul ation technique employed by the wirdessloca area network (WLAN)
protocol 802.11b is explained and accompanied by an AWGN performance
approximation.

Chapter 111 describes the most common network simulation tool employed by

network researchers. The network smulator 2, or ns2, is described through an



accounting of itsinception and roots as well as through a functiond description of its

operation. Following the smulator’s description, an explanation for each of the nove
channd approximation modulesis provided, describing how they were implemented

within ns2. The judtification of form and parameter estimation isleft for Chapter V.

Chapter 1V performs a detailed andys's of the popular two- state Markov mode
channel approximation. The chapter begins by explaining the theory behind using a
two-state Markov modd to approximate a flat fading channd. Implementation questions
are addressed in this chapter including how to model heterogeneous frames usng
homogeneous frame datistics. The method of parameter estimation for the two-state
Markov mode isdescribed. Frame Statigtics for the Markov model channel
approximation are compared againgt those from a representative flat Rayleigh fading
channel model. The chapter concludes with an andlysis of an ns2 network smulation
incorporating the two-state Markov model. The resultsindicate the two- state Markov
model is unable to accurately approximate both the frame statistics and network
throughpuit.

Chapter V presents three new low complexity models that are formed to better
approximate key frame statigtics. Each mode is described and the parameter estimation
procedure is explained. It is shown through the modd development that better network
performance is achieved through a more accurate gpproximetion of the probability mass
digtributions (PMD) for both frame error durations and good frame run durations. The
‘N’-gtate Markov moded is formed as a naturd extension to the two- state model and

andyzed for both statistical and network performance. The N=128 version of this model



is shown to match al of the observed frame error and good frame run statistics but not
was unable to match the desired PMD. Asaresult, thismodd performs very poorly in
network smulations. The second modd, the run-length model (RLM), isonly able to
match a subset of the desired Satigtical parameters, however it is capable of matching
thetail of the frame error duration PMD. The performance of the RLM is better than
that of the N-gtate Markov model, but is hampered by the inability to match the good
frame run duration PMD. The find model presented is the three- state run-length model
(3SRLM). Thismodel does agood job of approximating the key statisticd parameters
and matching the tails of both the frame error duration PMD and the good frame run
duration PMD.

Chapter VI presents the network performance for the channel approximations
described in Chapter IV and Chapter V. It is shown that the 3SRLM’ s ahility to match
the desired PMDs of frame error duration and good frame run duration, produces a good
goproximation of network throughput for the flat Rayleigh fading channd. Findly

conclusions are drawn in Chapter VII.



CHAPTERII

BACKGROUND

In wirdess networks, afundamenta issue in performance evaudion isthe
impact of the channel upon packet data throughput, delay and jitter. Thewireless
channd is susceptible to anumber of impairments including multipath, fading,
shadowing, interference and noise. These impairments can cause dragticdly different
performance results when compared to wirdline networks. Of these imparments, the
concept of fading channds merits discusson. This chapter provides the gppropriate
background concepts concerning the fading channd, the representation of modulated
signals and the block- coded modulation scheme specified in 802.11b called

complementary code keying (CCK).

A. TheFading Channel

Theterm fading is used to describe argpid fluctuation of aradio signa’s
magnitude over a short time period. Fading isthe result of interference between two or
more versons of atransmitted sgnal arriving at areceiver. Due to the nature of eectro-
magnetic (EM) wave propagetion, a sngle tranamisson from awireless device will
often encounter ‘reflective’ objects resulting in multiple versons of the transmitted
waveform that are attenuated, phase shifted and ddayed in time. The time difference

between arrivas plays an important role in channel modeling for wireless



communicatiions. When the tempora disperson is smal compared to the tranamitted
symbol period, the channel dters the received SNR but does not induce inter-symbol-
interference. Thistype of fading is often modded as a Rayleigh or Rician distributed
random processes. Jakes [25] origind work is one of the most heavily cited references
on the generation of a Rayleigh process.

When the time digpersion of the tranamitted symbols is large with respect to the
symbol period, the channd induces inter-symbol interference (1S1). Rapapport [26]
presents some common time disperson parameters to grossy quantify the multipath
channd. The parametersinclude mean excess delay, rms delay spread, and excess delay
spread (XdB), each of which can be derived from a power delay profile (PDP). The PDP
isa measurement of received signa power over time and is ameasure of achannd’s
impulse response.

Mean excess delay spread isthe first moment of the power delay profile. This
parameter is caculated from the impulse response magnitude samples a, and thelr
corresponding sampletimesty as

_aat,
t :—ka?. (2.2)
k
The metric of RMS delay spread is the square root of the second central moment of the

power delay profile displayed as

s, =4t - (t_ )2 where, (2.2)



| A
t = _é? . (2.3
k
The maximum excess dday (XdB) is the maximum time ddlay during which multipath
energy falsto within XdB of the maximum received power. This parameter measures
the time during which ‘sgnificant’ 19 is present, where the term significant is defined
by the vaue of ‘XdB'.
Each of the parameters presented above rely upon the knowledge of the received
power a2 over time from a specific transmitted waveform. Such knowledge can be
gained through the process of channd sounding. Many techniques have been developed
for observing tempora responses of awirdess channel [26]. Of these techniques, the
diding correlaor provides very accurate multipath arrival times and attenuation
measurements when compared to other forms of channel sounding including: direct
pulse, single tone and frequency modulated continuous wave [27].  Thus by performing

channel measurements with a diding correlator, one can achieve accurate observations

of the tempord digpersgon in specific channds.

1. Hat Fading Channel
Theterm flat fading is used to describe multipath channds that contain an RMS
delay spread (2.2) much smadler than the desired symbol period of a communication
scheme. If asgnd labded g4(t) istransmitted in awirdess channd, the resulting sgnd

obsarved at areceiver can be written as
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0.()= a Ag.t-t.)em(ia)+ N, (24)

where A, g and t; are defined as

A = atenuatio nof the 'i™ path,
g, = phase shift of the ™ path, (25)
t, = time ddlay of the 'i" path.

In generd, flat fading occurs when the maximum difference between any two significant
delay pathsis much less than the desired symbol period. When flat fading occurs, the

term g4(t-t;) can be approximated by the term g4(t), and (2.4) becomes

g,(t)= gs(t)iéli Aep(ja)+ N(t)
= g,(tly + N(t)

Thus flat fading will cause the tranamitted Sgnd to be dtered by a multiplicative

(2.6)

variable g and an additive noise term N(t). The term random fading process refers to the
varigion of the multiplicative term with respect to time. 1t isnot obvious from (2.6) that
the multiplicative term should vary with time, however as the environment is dtered the
attenuation and phase shifts of the different mulitpaths will change. Thisresultsina
change in the multiplicative term. It should be noted thet the rate of change in the
environment affects the rate of change in the multiplicative term.

Some dight agebraic manipulations can be performed upon the multiplicative

termin (2.6) to arrive a

g=x+jy=8 Aep(ja) (27)
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X= é A COS(Qi)’

o . 2.8
y=8 Asna,). 29

If one assumes there are alarge number of paths (i.e. N islarge) and that no sngle path
has congderably |ess atenuation than the rest (i.e. smilar vaues for A), then the central
limit theorem (CLT) can be gpplied to both the terms x and y. The CLT resultsin both x
and y being gpproximated as Gaussan random variables and the multiplicative term g
being approximated by a complex Gaussian random variable. It iswell known that for
these assumptions, the amplitude of the multiplicative term will have aRayleigh
didribution while the phase of the multiplicative term will have a uniform distribution.
Theterm Rayleigh fading is commonly used when one appliesthe CLT in deriving the
multiplicative term. So, aflat Rayleigh fading channd can be modeled as shown in Fg.

1.

a(t) —»@—»@—» ar(t)

L]

o(®) N(t)

Fig. 1 Flat Rayleigh Fading Channd Model

If elther the tranamitter or receiver isin motion, one can argue that the fading term g(t)

can be appropriately represented as a zero mean Gaussian process with a power spectral

density (PSD) of
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P

p\/l- (: / fd)2

The received power is represented as Pg, and the Doppler frequency is represented asfy.

S(f)= |f| < f,. (2.9)

The time domain method of creating such a random processis described in chapter 3.
Hat Rayleigh fading channds are very prevadent within the literature. They

contain almogt no variability as the Doppler frequency isthe only variablein (2.9) and it

smply aters the speed of the process. Thus, the flat Rayleigh fading channd offers

researchers the ability to easily reproduce experiments without the need to question

assumptionsin channd varidbles. The popularity of the flat Rayleigh fading channd

and its pervasvenessin the literature is judtification for itsincluson in network

Imulaiors.

2. Frequency- Sdective Fading Channdl

When the multipath delay spread is significant with respect to the symbol period,
the channd filters the transmitted signa. Conceptudly, the channd’ s passband
bandwidth is smdler than the transmitted sgnal’ s bandwidth resulting in distortion of
the tranamitted Sgnd. This digtortion causes inter-symbol interference (191) and is
commonly referred to as frequency selective fading. The term frequency selective
comes from the observation that the channd exhibits different gains for different
frequency components. A common rule of thumb [26] is that a channd can be
consdered frequency sdective if the symbols period Ts < 10 s;. In generd, frequency

sective fading channds are more difficult to mode and reproduce than flat fading
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channels. The frequency selective channd contains many variables where any one
choice can be questioned as to applicability for agiven scenario. In an effort to
determine the channels one might experience, a sudy was conducted to measure the
impulse response of an office environment. The results of this sudy are presented in the

next section.

3. Channd Measurements

Ray-tracing techniques offer an andytica goproximation for estimating the
propagation of eectro-magnetic waves in specific environments [28], [29], [30]. It was
determined that these techniques would not offer the desired accuracy [31], and thus
channdl measurements were taken to observe the indoor environment. Channel
sounding measurements were taken for an indoor office suite and the fusdlage of alarge
commercid arcraft. The measurements were performed using adiding correlator
system provided by Motorola. Siding correlators generate a continuous wave carrier
sgna that is modulated by a pseudonoise sequence (or PN sequence) of significant
length. The chip rate employed by the diding corrdator will determine the granularity
of time achievable while measuring a channd’simpulse reponse. The modulated sgna
is then amplified and exposed to abandpassfilter. A generic diding correlator
transmitter isshown in Fig. 2. The waveform produced by the trangmitter in Fig. 2 can
be expressed as [27]

-1

{t)= 8 a,plt - nT)cos(2pts). (2.10)

=0

]



14

where a, ={-1,+1} isthe PN sequence, T isthe chip period and p is the pulse shape.

Bandpass ;

fel®) filter

PN Sequence
Generator

Fig. 2 Generic Sliding Corrlator Transmitter

The receiver performs a corrdation againgt the same PN sequence used in the
transmitter but a a dightly dower chip rate. By using different chip rates, the local
(receiver) PN sequence ‘dides past the received sequence thus performing a correlation
between the two sequences over time. Due to the near self-orthogondity of the chosen
PN sequence, the cross-corrdation of the sgnaswill be maximized only when the two
sgnds are synchronized intime. At times when the two sequences are not
synchronized, the resulting cross-correlation is essentidly zero. A wirdess channd
often results in multiple paths between the transmitter and the receiver where each path
is attenuated, phase shifted and delayed intime asshownin (2.4).  When the received
signd is correlated againgt the PN sequence, each path will produce a strong correlation

atimet;, or a the relative delay of the path from the LOS path. Therefore, the output of



the recaiver corrdator yieds an estimate of the arrivd time t ¢ and relaive strength ax
parameters used in (2.1), (2.2) and (2.3).

The channel sounder utilized in this research, the ST-515, employs adiding
correlator operating at a transmission rate of 40M cps sending a chip sequence of 16,383
chipsto areceiver with asampling rate of 1220Msps. The resulting tempora resolution
achieved by the ST-515 under these settings is ~8.33ns. Each measurement requires a
cdibration routine and synchronization procedure to ensure the recelver is observing the
channd at the appropriate time. A sample power delay profile is presented for a severe
case of multipath in Fig. 3. The sample was measured in the cabin of acommercid

arrcraft and shows a channd with a 10dB maximum excess delay of ~200ns.
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Fig. 3 Sample Power Dday Profile
Some 85 different channd measurements were taken in asmdl suite of 7 offices

in the Wisenbaker and Engineering Research Center (WERC) a Texas A&M

15



Universty. Measurements induded line-of-sight (LOS) paths, nonLOS paths and one
st of extreme non-L OS paths between the adjacent halway and amiddle office. Each
measurement was anayzed for mean excess delay, rms delay spread, and maximum
excess delay spread (10dB). Theresults of all 85 tests are presented in Fig. 4 to provide
sample vaues of the tempord disperson encountered in an office environment. Given

that the symboal period of an 802.11b chip is ~91ns, the charts clearly indicate that these

devices will encounter only moderate frequency selectivity.
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Fig. 4 Tempord Digtortion Measurements of an Office Environment

Some 77 different channe measurements were taken insde the fusdage of a

large commercid arcraft. Messurements included line-of-gght (LOS) paths within a

16
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single cabin and non-L OS paths between two or more cabins. Each measurement was
andyzed for mean excess delay, rms delay spread, and maximum excess delay spread
(10dB). Theresultsof dl 77 tests are presented in Fig. 5. The arcraft results contain
even more sgnificant tempord distortion than the office environment and might justify

the use of afrequency sdlective channedl.
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Fig. 5 Tempora Digtortion Measurements of an Aircraft Fusdage

The moderate frequency sdectivity of the channd sounding results combined

with the smplidity and reproducibility of the flat Rayleigh fading channd modd,
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judtifies focusing efforts on producing network channel gpproximations for the case of

flat Rayleigh fading channdis,
B. Representation of Modulated Signals

Communication requires the transfer of information between parties. In the case
of wirdess communications, it is convenient to ater amessage by tranforming it into a
series of pulses whose frequency contert is within the passband of the wirdess channd.
Carrier modulation alows a direct manipulation of a high-frequency carrier sgnd to
obtain a desired frequency and message content. A carrier signd
t) = Alt) coslw ) +£ (t)), (2.12)
isusudly modulated in one or more of the three following areas amplitude (A(t)), phase
(f (1)) and frequency (df (t)/dt). Dueto rgpid fluctuations of amplitudein the wiress
channd, it is often desirable to restrain modulation to phase and frequency when
possible. A common dternative to the representation of (2.11) is the Cartesian-form
ft) = [Al)cosff (t)]costw,(t) - [Alt)sn(f (Dlsntw.(t)  (212)
Thisform does agood job of representing how maost modulation actudly occurs, through

the use of inphase (I(t)) and quadrature (Q(t)) components. By the assgnments

1(t) = A(t)cosff (1)) (2.13)

Qlt) = Alt)sin(f (1))

one can redize amodulator using the smple procedure outlined in Fg. 6.



19

I(t) X

cos(we(t))
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Fig. 6 1/Q Modulator Diagram

Quadrature phase shift keying (QPSK) is awell-known form of carrier
modulation that is employed in the wirdless loca area networking protocol 802.11b.
This schemeis very efficient and can be implemented by smply choosing I(t) and Q(t)
to be of the set {+A, -A}. Credting a possible four combinations (symbols), each of
which is capable of representing two bits of information. It isworth noting that the
standard does not impose a particular pulse shape on the symbols, however thereisa
spectral mask, under which the transmitted PSD must remain. To comply with the mask,
some sort of pulse shaping isrequired. The resulting waveform is
qt)=+Acosw,(t) + =+ Adn(w,(t)). (2.14)
It iswel known that the Maximum Likelihood (ML) detector is optimum for the

case of equaly probable transmitted symbols[32]. For the specid case of an additive
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white Gaussian noise (AWGN) channe, the ML detector reduces to a minimum distance
detector. A minimum distance detector smply findsthe sgnd sy, (from the transmitter’s
library) that is closest in distance to the recelved Signd ry given asgnd energy of E;,

ST

§ =min m{(r, sm>} = maxmi 20y (t)sn (t)ctt - = ; (2.15)
I o

The minimum distance detector can be represented in the form of the well-known

correlator detector shown in Fig. 7.
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Fig. 7 Correlator Detector
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Asshown in Fig. 7, the correlator detector |ooks for smilarities between the received
sgnd and the known symbol aphabet (s;...Sn). For additiona details see[32]. The

details of 802.11b modulation and coding are covered in the next section.

C. Complementary Code Keying

The wireless standard 802.11b utilizes a block-coded modulation scheme called
complementary code keying (CCK) [33]. This scheme combines eight bitsinto a
codeword that is then represented by eight QPSK symbols. Symbols are grouped into
frames and pilot symbols are added to aid in synchronization. The complied frames are

then tranamitted a arate of 11IMbps. The modulation procedure is depicted in Fig. 8.

bo,k-b7 .k Formphase | | 1k-j 4k Form Ck
— P siftsj from [ ®| codeword [
dibit patterns fromj 1-j 4

Fig. 8 Codeword Formation for 802.11b

Thefirgt step shown in Fig. 8 converts eight bits (b k-b7 k) into four phase shifts

( 1kJ ax) through aform of differentia encoding shownin Tablel.
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Tablel. Dibit to Phase Conversion for 802.11b 11Mbps

Dibit pattern [di,di+1] Phase

(d isfirgintime)

00 0

01 p/2

10 p

11 3p/2 (-p/2)

Following the formation of the phase terms, a codeword is constructed as

C:{ej(J 1 2d 3d 4) ei(i 13 a) ei(i 1 24 ) _ej(j ia)
el s 2ia) gilisia) gilisiz) @il 1)}_ (2.16)

The codeword consists of eight phases, each representing asingle QPSK symbol. CCK
as described in this chapter, issmply arate ¥z block code with atotal of 256 codewords.
As such, one can form a correlator detector as shown in Fig. 7 with each s representing
one of the 256 codewords. While this gpproach isinefficient for hardware architectures,
itissurprigngly efficient for use in software smulations. It should be mentioned that
thisis a coherent receiver, and thus requires knowledge of the received signd’ s phase.

All smulations conducted in this research assumed perfect phase knowledge for each
trangmitted frame. This assumption is judtified asaminimum of 1056 pilot symbols are
transmitted with each 802.11b frame operating a 11Mbps, and each frame has a

maximum sze of 20,528 symbals (induding pilot symbols).
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The performance of CCK in AWGN can be easily approximated by forming a

basis function for each of the QPSK symbolsin a CCK codeword. For a codeword of

theform
S . _1gP 3P0
o :{equo’eJQi; .“eIQiJ} where d; _{01 2aps 2% (217)
i ={1,2.-- 256},
one can define eght basis functions of the form
1T T, T
1[= for r=2£t<(r+1)-=
fr(t)=_ll\/g g Et<lr+D)g
t 0 Otherwise
(2.18)
wherer ={01.--7},
to represent the codewords in the form of
g
c(t)=a c.f. () (2.19)
r=0
The next step in performance analysis involves computing the distance between dll
symboals,
2 g
dx,y = Cx(t)- Cy(t)" =la Cx,r - Cy,r - (220)
r=0

The minimum value of (2.20) for any two codewords will tend to dictate the

performance a high sgna-to-noise ratios (SNR). It can be shown that the minimum
distance for CCK is d?in = 8. For each symbol, there are an average of 24 neighbors a
thisdistance. Since the probability of symbol error for the AWGN case can be

represented as [32]
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P chosenl, s )= Q| S @2
s chosen|s =QE, |-k 7 .
: g 2N°I.Zf

one can gpproximate the union bound to only consder the nearest neighbors forming the

performance eguation

Pr(symb- error)@Q4Q*§e /458 (2.22)
N, P

Fig. 9 compares the approximation of performance in (2.22) against asmulation of CCK

in AWGN.
o Performance of CCK in AWGN
10 T T T T T T 9
————— Approx Bound ]
-~ Simulation
1075
5107}
o
©
Q
£
Z10%}
a
107} :
g,
10’5 I ! 1 I I I
0 1 2 3 4 5 6 7

EbNo

Fig. 9 Performance of CCK in AWGN



D. Summary

In this chapter, background concerning the fading channd and modulation was
introduced. The concept of flat and frequency selective fading channels was reviewed.
Channd sounding measurements were presented for an office suite as means of
judtification for consdering the flat fading environment. The basic representation of
carrier modulation was reviewed and an I/Q modulator presented. In closing, this
chapter reviewed the modulation and detection of the 802.11b, 11Mbps modulation
scheme and provided an approximated unionbound performance measure. The next
chapter covers the operation of the network smulator n2 and the modifications

performed to the smulator during this research.
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CHAPTER I

NETWORK SIMULATOR 2

Specidized tools are prevaent and pervasve in most dl disciplines. The area of
networking is no different. Where carpenters rely upon plum lines and levels to ensure
flush connections and sturdy constructions, networking researchers use smulationsto
eva uate protocols and observe obscure interactions. In early research, each investigator
created unique Smulaions with little to no common functiondity. Without a common
tool, duplicating network research is problemétic at best. Even more troubling isthe
lack of reusability in early smulators. The issues of reproducibility and reusability of
unique smulations led researchers to investigate generalized tools that could be used as
acommon base for more advanced smulations. Network smulator 2 (ns2) is a mature
network-smulation software tool that has been widely accepted by the networking

community and hasfilled the need for a common networking tool.

A. Originsof n2

NS2 can trace its origin to the Network Simulation and Prototyping Tool (NEST)
developed in 1988 [34]. NEST evolved into the Redlistic and Large (REAL) [35]
network smulator that served as the base for the development of ns. In 1995, DARPA
funded the development of the Virtual InterNetwork Testbed (VINT) to “build a network

amulator thet will alow the study of scadle and protocol interaction in the context of
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current and future network protocols.” The VINT project, through the collective efforts
of the Univergity of Southern Caifornia/lnformation Sciences Indtitute (USC/1S)),
Xerox Palo Alto Research Center (PARC), Lawrence Berkeley Nationa Laboratories
(LBNL), and Universgity of Cdifornia Berkeey (UCB) jointly developed the network
smulator known as‘ns. The smulator was updated and reissued as Network Simulator
2. There exists acommunity of contributors to nsincluding Carnegie Mdlon University
(CMU), Sun Microsystems, and two new DARPA projects, SAMAN and CONSER.
The ‘Smulaion Augmented by Measurement & Analysis of Networks (SAMAN)
project was formed to build robust networks through understanding the detection and
prediction of failure conditions. CONSER, or Collaborative Smulation for Education &
Research, was formed to extend the functiondity of ns through network research (new
module integration, existing module improvement) and network educeation (nam,
educationd scripts repodtory, ns-edu mailing lit, nstutorid, etc).

The development of ns2 provided researchers atool for evauating network

protocols under varying network conditions, including the conditions presented in [36].

“ Abstraction: Varying Smulation granularity dlows asingle smulator to
accommodate both detailed and high-level smulations. Researchers sudy
networking from the detall of an individua protocol to the aggregation of
multiple data flows and the interaction of multiple protocols. The abstraction
mechanismsin ns alow researchers to examine protocols without changing

smulators and to vaidate abstractions by comparing detailed and abstract results.
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Emulation: Mog smulation experiments are confined to asingle smulated
world that employs only the protocols and dgorithmsin the smulator. In
contrast, emulation dlows arunning smulator to interact with operationa

network nodes.

Scenario generation: Testing protocols under appropriate network conditionsis
criticd to achieving valid, useful results. Automatic creation of complex traffic
patterns, topologies, and dynamic events (link failures) can help generate such

scenarios.

Visualization: Researchers need tools that help them understand the complex
behavior in network smulation. Merdly providing tables of summary
performance numbers does not adequately describe anetwork’ s behavior.
Visudization usng the network animation tool nam provides a dynamic
representation that alows researchers to develop better protocol intuition and

adsin protocol debugging.

Extensibility: The smulator must be easy to extend if its users are to add new
functionality, explore arange of scenarios, and study new protocols. Ns employs
a split-programming mode designed to make scripts easy to write and new

protocols efficient to run.”



Ns2 has proven itsdf a vauable tool for network researchers by providing a
common smulator with sufficient complexity to dlow protocol engineering to occur
with insght into the operations and interactions of networking protocols. In generd, ns2
iscommonly utilized for three broad researching themes. sdlecting a mechanism or
protocol variant among severa options, exploring the complex behavior of networks,
and investigating unforeseen multiple- protocol interactions. Researches have employed

ns2 to investigate many protocols, some examples are shown below:

TCP. sdective acknowledgement, forward acknowledgement, fast retart,

explicit congestion natification, rate-based pacing and asymmetric satellite links.

Routing: robustness and convergence speed of integrated distance-vector and
link-gtate routing protocols, multi-hop/wirel ess routing protocols, ad hoc routing

in wireless networks, fairness of routing protocols

Vaiable Traffic Sources. effects of variable traffic sources including web, ftp,

telnet, constant bit rate, and stochastic sources.

Queuing Disciplines. random early detection (RED), drop-tail, class-based

queuing and others
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Multicagt Trangport: scaable reliable multicast (SRM) and variants, PIM
variants, router support for multicast, congestion control, protocol validation and

testing, reliable multicast

Multimedia: layered video, audio and video qudity-of-service, transcoding

Wirdess Networking: snoop and split-connection TCP, medium access control

induding evauation of point-control function and digtributed control function.

With its ever-increasing popularity, ns2 has become a worldwide benchmark by which

network researchers eval uate protocols and vaidate innovative ideas and approaches.

B. Functiona Description of ns2

Ns2 isacallection of networking modules with awell-defined method of
interaction between the modules. Many modules have been designed and suggested for
the specific OSl network layers utilized by TCP/IP networks, specificaly: application,
trangport, inter-network, data-link (including medium access control), and physica
layers. Ns2 alows researchers to evauate unique techniques and networking protocols
with minima integration effort required.

Operaiondly, N2 is a discrete event smulator that provides a split-leve

programming model where packet processing is performed in the system language of



C++, while setup is performed in the scripting language Otcl. C++ code is utilized for
implementing the smulation kernel where dl brute force smulations occur, thus taking
advantage of the efficient computationa structure of thislanguage. The Otdl scripting
language performs the definition, configuration and control of the smulation. The split-
language approach cleanly separates the burden of smulator design, maintenance,
extenson and debugging from the user by providing the smulation programmer with an
easy-to-use, re-configurable, programmable smulation environment. NS2 iswrittenina
modular fashion, resembling the OSl network architecture. It contains modules for
smulating the gpplication layer, transport layer, network layer, medium access control
(MAC), and the physicd layer. Each layer contains multiple modules from which a

researcher can choose for any given smulation. That is, aresearcher may choose to test

a TCP-Reno transport layer across an IP network with an 802.11 defined MAC and a 2-

ray fading physica layer. Assuming the gppropriate C++ modules are included in the
smulator, aresearcher must smply ater hisher Otcl script file to choose specific
modules for each layer. The networking layers are interconnected with a common
interface so that a particular module can be dtered easly. Each modular layer is
comprised of multiple protocols. This alows for easy manipulation of a particular
protocol within a network smulation.

The execution mode for ns2 is best described by way of an example. Assume
two nodes exigt within a smulation where one node is sending data to the other. Each

node has associated with it at least one module at each of the following layers,
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application, transport & network, MAC and physicd. The relationships between the

layers are shown in Fg. 10.
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Fig. 10 Module Interaction Between Two ns2 Nodes for a Smplex Link

Modules are assigned to nodes depending upon their function. The gpplication

layer and transport & network layer can be set on a per-node bas's, with any node

containing multiple trangport and/or multiple applications. The queue type, MAC and

Physicd layer are usudly set to the same module type on dl nodes for smple

smulaions and are therefore configured on asmulation bass. In thisexample, an

application will be attached to a node thereby offering data to the transport/network

module to be sent to another gpplication. The transport/network module will contain

protocols dictating the rules for packaging and sending the gpplication’ sdata. When

packaged into a packet, the transport/network module places the packet into a queue to
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exit the node. The MAC layer isthen responsible for packaging a queued packet into a
frame and offering the frame to the physica layer (or channd). One the other side,
the recelving node is respongble for accepting the frame (MAC layer) and placing the
encapsulated packet into a receiving queue for processing by the trangport/network
module. The trangport/network module then defragments the incoming packets and
performs automatic repeat requests (ARQ) as directed by the modul€' s protocols. It
should be noted that the above example containsasmplex link. In aduplex link, each
node would have both a sending and receiving module for the queue and application
modules.

Since each node can contain multiple applications, each requiring specific
trangport/network modules, ns2 provides a generic interface for attaching applications
and trangport agents. An “Agent” is created to handle transporting data from an
gpplication to another agent. Therefore, agents should comein pairs with both a source
and ank. Agents define a transport methodology for data, alowing applications to
choose the gppropriate agent. Thisis very smilar to how IP-terminals communicate,
with each application having the ability to choose the associated transport layer
(TCPIUDP). Datais created by an entity called an “ Application”, where gpplications are
associated with agents. To summarize, aresearcher would first create two network
nodes and then create a source agent (like TCP/Reno) and attach it to node 0. Next, the
sink agent would be created (like TCPSInk) and attached to node 1. Then, the two
agents (TCP/Reno and TCPSInk) would be logically connected. Finaly, an gpplication

is created (like FTP) and attached to node O.
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Agentsrequire a“link” to facilitate communications. The link contains
information about how nodes are connected including information about the data rate,
delay and queue type (and length). So by setting up a“link” between node 0 and node 1,
the two agents can communicate and the gpplication can begin offering load to the
network.

Another exampleis provided below to solidify the concepts of ns2 module
interaction and to introduce the basics of Otcl scripting. This example is not intended
nor isit sufficient to teach Otcl or ns2 scripting. Assume asmple 3-node, linear, point-
to-point network like the one shown in Fig. 11 isdesired. The following Otcl script will
create this network and place an FTP application on one side sending data to the node on

thefar sde. Thisexample employs TCP Reno.

100Mbps, 1ms U 56K bps, 30ms

Fig. 11 Three-node Example Network
An example Otcl script follows below.

1 st ns[new Simulator]
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23

st tf [open “trace file_out.out” w]
$nstrace-al $if

st nl [$ns node]

St N2 [$ns node]

set N3 [$ns node]

$ns duplex-link $n1 $n2 100Mb 1ms Droptail
$ns duplex-link $n2 $n3 56K b 30ms Droptail
set tep_reno [new Agent/TCP/Reno]
$ns attach-agent $nl $tcp_type

st Snk_reno [new Agent/TCPSInk]
$ns attach- agent $n3 $aink_reno

st ftp_nl [new Application/FTP|
$ftp_n1 attach-agent $tcp_reno

$ns connect $tcp_reno $sink_reno
proc finish {} {

globd nstf

nsflush-trace

close $tf

exit0

}

$nsat 1.0 “$ftp_nl start”

$ns at 100 “$ftp_nl stop”
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24 $nsat 120 finish

25 $nsrun

Thefirg line smply calsanew smulator and assgnsit the handle ‘ns. The second
two lines,

set tf [open “ trace file_out.out” w]

$nstrace-all $tf
open an output file cdled trace file out.out and assign thisfile to the handietf. The
next line tells the smulator to record dl the information specified by trace-all. Lines4-
6 create three nodes naming them n1, n2 and n3. The next two lines,

$ns duplex-link $n1 $n2 100Mb 1ms Droptail

$ns duplex-link $n2 $n3 56Kb 30ms Droptail
cregte a data link between nodes. Line 7, the first line shown above, creates a 100 Mbps
link between nodes n1 and n2 with an average delay of 1ms. The queue for thislink is
specified as Droptail. Asthe second word implies, thisline of code creates two links or
aduplex link. At this point, the Otcl script has created the environment and placed links
between nodes. The next step isto create trangport agents for moving data between
nodes. Lines9 & 10, duplicated below, assign a new agent to the handle tcp_reno.

set tcp_reno [ new Agent/ TCP/Reno]

$ns attach-agent $nl $tcp_type
The transport agent is declared to be of the sub-class TCP, specificaly a subclass of TCP

cdled Reno. After the trangport agent is created and assigned a handle, the agent is



attached to node n1. Now, applications attached to node n1 will be ble to utilize the
trangport agent tcp_reno. The next two lines (11 & 12) create another agent, thistime on
node n3.

set sink_reno [new Agent/ TCPSnK]

$ns attach-agent $n3 $sink_reno
A new agent is created of the sub-class TCPS nk and assigned the handle sink_reno, and
then attached to node n3. Next, the Otcl script defines an application for node nl.

set ftp_nl [new Application/FTP]

$ftp_n1 attach-agent $tcp_reno
Line 13 creates a new application of sub-class FTP and assignsit to the handle ftp_n1.
The next line attaches the application to the trangport agent tcp_reno located on node nl.
Now the two transport agents (tcp_reno and sink_reno) must be connected. Thisis
accomplished through line 15. The remaining code is used to set Smulation parameters.
For example, the ftp application begins sending data at time 1.0 as set by line 22 and
turned off at time 100.0 by line 23. The amulation iskilled & time 120, dlowing
aufficient time for queued messagesto be ddivered. In summary, the Otcl script file
dtarted anew simulation, created nodes, crested and defined the links between nodes,
assigned agents to nodes nl and n3, created an ftp application and attached it to the agent
on node n1, linked the agentstcp_reno and sink_reno, and defined some events such as

garting and stopping times of the gpplication and smulation.
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C. Modificationsto ns2

1. Introduction

Point-to-point networks are of limited interest and thus ns2 was extended to
support the operation of aloca areanetwork (LAN). LANswithin ns2 operate by
sharing a common transmission medium, very much like a bus network architecture. To
facilitate this within the ns2 smulator, the data link is absiracted into three layers: link
layer, medium access control layer and physicd layer [37]. The physicd layer contains
aprocedure for determining if the channed corrupts a transmitted frame. The MAC layer
contains a certain set of functiondities such as: carrier sense, collison detection,
collison avoidance and such.  Since these functions affect both the sending and
receiving of frames, they areimplemented in asingle MAC object. TheLink layer Sts
above the MAC layer and contains two objects, a queue and adata link protocol.

This research focused upon dtering the MAC layer mac-802_11.cc and cregting
new physical layers. In order to allow complete control over the physica channd, the
MAC was dtered to utilize a custom function each time the smulation attempted to send
aframe from the MAC object. Information about the frame including length, sending
and receiving nodes positions and transmission time are passed to the physicd layer
function. The physica layer function then generates an outpuit to indicate frame
integrity to the MAC layer. This approach alowed for quick and efficient modification
of the physicd layer without the necessity of dtering the amulator for each variation.

Another modification made to the MAC layer was the inclusion of the pilot symbols for



an 802.11b network. The origind MAC layer did not adequately account for the 16-byte
pre-amble of each frame. The modified MAC layer employed in dl Smulaions

presented in this document accounted for the pre-amble in the mac-802_11 object and
a0 sttled pre-amble interference between frames with knowledge of the frames
received SNR. That is, when two frames collide at a node and both are in the pre-amble
date, the node attempts to receive (or synchronize to) the frame a a higher SNR even if
the other frame was transmitted first. Other than theses smal modifications a the MAC
layer, the mgority of thiswork focused upon creating unique physcd layersfor the ns2
smulaor. Four of these physica layer modules are included in this chapter: TAMU-

PHY, MM-PHY, RLM-PHY and 3SRLM-PHY.

2. TAMU-PHY

From the outst, this research had to establish a basdine from which to compare
possible channd modds. This basdline had to exactly modd awireless channel and the
transmission and reception of frames acrossit. The TAMU-PHY channd mode was
creeted to Smulate the 802.11b baseband equivaent modulation, demodulation and
transmission through atime sdective flat Rayleigh fading process. This TAMU-PHY
physica layer module operates a a symbol leve for each packet transmission, providing
avery thorough, and computationdly intense smulation of 802.11b performance over a
flat Raylegh fading channd. In this module, the scheduler clock instance rdlays the
frame tranamission time, alowing the module to advance the fading process for lapsed

time between frame transmissons.
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Fig. 12 Logica Operation of TAMU-PHY Module

To our knowledge, thisis the first time a network smulator has incorporated a rigorous
fading process that is based upon smulation time and does not require an assumption of

i.i.d. fading Satistics. Furthermore, modulation and demodulation of bassband symbols
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is actudly performed within the smulator. Fig. 12 depictsalogica operation of the
TAMU-PHY module.

Asshownin Fig. 12, information is gathered from the MAC module to assig in
determining the fading Satistic g, the noise power n and the number of bitsin the
trangmitted frame. Thisinformation is combined with previous values of the fading
datistic and the last *smulator time' the routine was executed. Together, the
information is sufficient to produce aredization of aflat fading process. Framelength
information is used to generate a set of random data bits d; that are subsequently
modulated using a block code caled complementary code keying (CCK). The resulting
symbols s are subjected to the traditiond flat fading channd (Fig. 2.1) including a
multiplicative fading datigic g and an additive white Gaussian noise term n;. Following
the channel corruption, the dtered symbols are recelved asr; and subjected to a
minmum-distance recelver that outputs an estimate of the datad;. The data estimeteis
compared againg the randomly generated data d; and the result is returned to the MAC
layer.

Generding a Rayleigh random process within the smulator was a sgnificant
effort. The common ‘time-domain method’ [38] was chosen for two reasons. it
provided an ‘open ended’ solution that did not require knowledge of the process
duration, and it required aminimal amount of memory to run. The god of the Rayleigh
random process generator isto produce a complex Gaussian random process with a
prescribed power spectra dengty (PSD). The time-domain method produces awhite

Gaussian process and then passes this through afilter to achieve a colored Gaussan



42

process with a prescribed PSD. For the TAMU-PHY modéd, the desired PSD is

describes as

P
f)= R fl<f,. 31
ey #

The Doppler frequency of the channel islabeled f4 and the power of the fading channd
(usudly normdized) isPr. The resulting autocorrelation is Smply a Bessdl function,
Rt ) = P.J, (20f t) (32)

Snce the filter input is awhite Gaussan process, it has an autocorrdation defined by a
Dirac ddtafunction. Itiswell know, that for lineer filters the autocorrelation of the
filter output can be represented as

Roolt )= Ry {t)*hlt )* hit ). (33)
where the input autocorreation is R (t ), the output autocorrelation is Roo(t) and the
filter simpulse responseish(t). Since R (t) = d(t), the output autocorrelation of the
filterissmply h(t)*h(t). Given that one desiresto match the autocorrdation of (3.2) it

follows that the filter should be designed to satisfy

H(f) @——. (3.4)

Following the gpproach used in [38], athird-order filter was designed with the transfer

function of

_. Wy
)= (o s twils ) (35)




_ 2pf,
w, = 12 (3.6)

Theresulting value of x is0.175 and fully describes the impulse response of athird-
order filter cgpable of gpproximating the desired autocorreation. It is often useful to
map the continuous time trandfer function into a discrete timefilter usng abilinear

transformation [39] as
H(z)=H(s) s=2 T2 3.7)

The solution to the transformation (3.7) can be organized into the form of

_Bthzltbzt+bz
H(Z)_ a0+aiz-1+a22-2+asz-3' (3.8)

If one creates the following intermediate variables A, B and C defined as:

A = (2f),
B = (2f,)w,(1+ ), (3.9)
C = (2f w21+ ),

then, (3.8) can be solved with:

3, =A+B+C+w},

a, =-3A- B+C+3w,
a, =3A- B- C+3n,
a,=- A+B- C+w.,
b, =wg,

b, = 3wg,

b, = 3w,

b, =w;.

(3.10)



Theterm f5in (3.9) isthe frequency of the random process, or the rate of redizations per
second. By saving the three previous inputs (1) and outputs (O) one can usethe valuesin

(3.10) to form the difference function

o[n] =byi[n] + b1 [n- 2]+ b, [n- 2] +b,1[n- 3
-a0[n-1- a,0[n- 2]- a[n- 3|

(3.11)
and solve directly for a current output of the random process. Thefilter coefficientsin
(3.10) should be scaed to insure the filter has again of unity. An easy way of
implementing thisis by finding the filter' s impulse response and normdizing the trandfer
function (3.8) by the root of the impulse response. 1t should be noted that there will be
some trangent responses a the beginning of thefilter. To obtain acceptable results,
initidize the filter by passng a sufficient number of inputs through the filter until dl
transients have passed. The number of inputs required will be inversely proportiond to
the channd’s Doppler frequency. By following this procedure, the TAMU-PHY model
is able to produce a Rayleigh fading process with fs samples per second. The application
of these redlizations to the smulator is not triviad and required the use of sub-frames.

Network smulators produce a variety of traffic resulting in widdy variable frame
gzes. Thedifference in frame Szes produces difficulties in fitting fading process
redizations with fade 9zes. 1dedly, the fading process would generate asingle
redization for every symbal trangmitted, however as fs grows the non-idedities of the
filter approximation become prohibitive. Since the transmission rate of 802.11b is

11Mbps, it was desirable to have asingle sample utilized for agroup of bits. This

gpproach is vdid as long as the fading process is sufficiently dow. The number of bits



grouped per redization was determined by examining the number of bitsin the smdlest
protocol packets. Each group of hitsis caled a sub-frame, where a single sub-frame
contains 296 hits. The choice of usng sub-frames makes this work extendable to block
codes such as turbo-codes, interleavers or truncated maximum likelihood sequence
esimators. 1t will be shown that other versons of the physicd layer, such asthe MM-
PHY!, require Sgnificant sub-frame sizes to appropriately set their parameters.

Another implementation detail not shown in Fg. 12 is the accounting for non-
transmisson time. That is, the Smulator must account for the time between frame
transmissions by advancing the random process atime equd to the idle period between
frame transmissons. For frames transmitted at afadt rate, the idle period will be
minimal and frames will experience corrdated fading redizations. When frames are
transmitted infrequently, the idle period between transmissonsis sgnificant and the
frames will experience nearly independent fading. A more detailed accounting of the

TAMU-PHY modd isshown in Fig. 13.
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Fig. 13 Sub-frame Operation of TAMU-PHY Module

The details of the modulation and demodulation operations shown in Fig. 13

were presented in Chapter 11. Most network smulations involve the transmission of




millions of packets, each containing thousands of bits thus resulting in extreme run times
when using the TAMU-PHY module. Whilethis physica layer module crestes avery
accurate representation of network performance across aflat Rayleigh fading channel,

the run time required by the TAMU-PHY is prohibitive for most protocol investigations.

3. MM-PHY

The Markov-Modd module (MM-PHY') was created to Smulate the two-state
Markov mode channel approximation. This MM-PHY module operates by dternating
between a‘*good’ and ‘bad’ state according to a set of trangition probabilities. The
occurrence of a‘bad’ state indicates achanne error. In order to maintain the
assumptions used to approximate the flat Rayleigh fading channd, the Markov model
must operate with afixed-length frame sze. As network smulétionsinvolve the
transmission of heterogeneous frame lengths, asingle Markov model sate trangition

cannot be used for dl smulated frames. To our knowledge thisissue of usng asingle

State transition to represent heterogeneous frame sizes has not been adequately addressed

in the literature. The severity of thisissue becomes apparent in smulations, as smal
protocol packets should not progress the frame error process the same amount as larger
data packets. Inway of an example consider the case of a Markov model created to
meatch a fixed-length frame sze of 500 bytes, where three successive frames are in error.
Thismodd represents the occurrence of aburst error length of 1500 bytes, however, in

the case of three protocol packets being sent, the actua bytes in error would be closer to
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200. Thus the next packet transmitted in our example would not experience an error,
even though it should.

Thismodule utilizes a smplistic solution through the use of sub-frames.
Whereby each frame is decomposed into a set of sub-frames, and each sub-frameis
evauated through asingle Markov mode dtate trangtion. The integrity of the actud
frame will depend upon the integrity of each sub-frame. State trandtion probabilities are
derived from observing the sub-frame error statistics of awireless system. Therefore,
the wireless system must be able to produce accurate sub-frame statistics so that the
MM-PHY can beformed properly. The actud procedure for generating the trangition
probabilities from sub-frame Statistics will be discussed later in this document. The
logica operation of the MM-PHY isshown in Fig. 14. Aswiththe TAMU-PHY, this
module must aso account for idle time between transmissions. Any occurrence of the
‘bad’ date during a sub-frame transmisson time will result in an entire frame error. The
MM-PHY isextremdy efficient and requires minima computationa load, making it
very attractive for most network smulations that desire to observe protocols in the

presence of fading.



49

aub-frames= N
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Round((frame_size)/296)
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Advance the process by A+N dtate trangtions and store resultsas ... Ma+n.

Form the frame integrity asfollows

O=if ay Ma+1...mMasn States resulted in the *bad’ State
1=ifdl mas1...masn States resulted in the ‘good’ State

Fig. 14 Sub-frame Operation of MM-PHY Module

4. RLM-PHY

The run-length modd (RLM) isvery smilar in form to the two- state Markov
model, however the RLM differs greetly in its operation. The RLM contains two
digtinct states representing the occurrence of a‘fade’ and the lack of afade, or ‘no-fade'.
The State trangtion probabilities of the RLM are fixed so that the variability of this
mode comes from the duration of both the ‘fade’ and ‘non-fade’ states. In addition to

this change, the RLM dso dlows for the possihility of frames transmitted during the




‘non-fade’ stateto bein error. Inthe RLM-PHY, dl frames tranamitted during the ‘ non-
fade’ dtate have afixed probability of error equa to fer. Thelogica operation of the

RLM-PHY is presented in Fig. 15.
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- Probability of sub-frame error = fer
Non-fade - Duration of state defined by random
variable NF

- Probability of sub-frame error =1
- Duration of state defined by random
vaiadleF

The duration of each dtate is defined by a random variable that indicates the
number of sub-frame contained in each Sate.

Fig. 15 Logicd Operation of RLM-PHY Module

Thismode aso accounts for idle times between frame transmissions by
advancing the process an appropriate number of sub-frames according the amount of
time lgpsed since the last transmisson. A smple counter is used to decrement the
number of sub-frames remaining in any Sate before atrangtion occurs. Upon a dtate
trangtion, anew number of sub-framesisfound by generating a redlization of ether the

F random variable (fade state) or the NF random varigble (non-fade state). The
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‘expiration’ of astate can occur during an idle period or during a frame transmission.

Each sub-frameis evauated for integrity according to the current Sate of the module,
wherein the ‘fade’ date the sub-frameisawaysin error and in the ‘non-fade’ satea
ub-frame error occurs with probability = fer. The sub-frame operation of the RLM -

PHY isdescribed in Fig. 16.

Advance process by ‘A’

Determine number of
- Previous State sub-frames=N Sub-frames:
- Sub-frames|eft N | i
Round((frame_size)/296) =round((current_time
—last_time) * g
- y

e [nputs

Loop: for j=1to A+N iterations
If frames_|eft=0 => change state and generate new frames_|eft

If state=‘fade’ => sub-frame‘ny’ in error
If state = ‘non-fade’ => sub-frame ‘my’ in error with probability fer

frames left = frames_left —1
end loop.

Form frame integrity according to the following rules

O=if any ma+1...Masn SUb-frames arein error
1=if noMa+1...Ma+n SUb-framesarein error

Fig. 16 Sub-frame Operation of RLM-PHY Module
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5. 3SRLM-PHY

The three-state run-length model (3SRLM) is an extension of the RLM, with a
new ‘transition’ state.  The trangition state better models the fading process by adlowing
the representation of adegraded SNR that is not necessarily a deep fade. For tractability,
the trangition state is moddled by a two-state Markov moddl. The operation of the
3SRLM-PHY isasmple combinaion of the MM-PHY and the RLM-PHY. Aswith
previous models, the 3SRLM operates upon sub-frames and accounts for idle time
between transmissons. Thelogica operation of the 3SRLM-PHY isshownin Fg. 17.
The modd beginsin the ‘non-fade’ state and remains for a duration of sub-frames
prescribed by aredization of the random variable NF. All sub-frames transmitted
during the ‘non-fade’ state are unaltered and no errors occur. Upon expiration of the
‘non-fade’ state, the 3SRLM-PHY movesinto the ‘trangtion’ state and remainsfor a
duration of sub-frames according to the random variable T. The ‘trangtion’ Sateis
composed of two ‘sub-states called ‘good t' and ‘bad t', where the relationship between
the sub-states is defined by atwo-gtate Markov modd. Theinitid sub-stateis chosen
randomly according to a desired trangition state probability of error (Tre). Each ingance
of asub-frame will cause the two- state Markov modd to attempt a trangtion that might
result in a sub-gtate trangtion between ‘good t' and ‘bad t'. The integrity of each sub-
framein the trangtion date is found exactly asin the MM-PHY with the ‘bad t' sub-
date resulting in a sub-frame error with probability one and the ‘good t' sub-state
resulting in no error with probability one. Upon expiration of the trangtion Sete, the

3SRLM entersthe ‘fade’ state and remains for a duration of sub-frames according to the



random variable F. All sub-frames transmitted during the ‘fade’ dtate result in errors.
Upon expiration of the fade ate, the 3SRLM returns to the non-fade state and the cycle
continues. The detailed sub-frame operation of the 3SSRLM-PHY isshownin Fig. 18. It
should be noted that the theory behind this modd and its structureis presented in

Chapter V, dong with amethod of parameter estimation to match specific frame error

datidtics.
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- Probability of sub-frame error =0
- Duration of gate defined by random
vaiable NF

Non-fade

- Initid trangtior state
randomly chosen
- Sub-frame error occursif
trangtion stateis ‘bad’
- Duration of gate defined by
random variable T
- Each sub-frame causes a
Markov modd trangtion

- Probability of sub-frame error =1
- Duration of state defined by random
vaidble F

The duration of each State is defined by arandom variable that indicates the
number of sub-frame contained in each date.

Fig. 17 Logica Operation of 3SRLM-PHY Module
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Loop: for j=1to A+N iterations
If frames_left=0 => change state and generate new frames_|eft

If state = ‘trangtion’ {

If state=‘fade’ => sub-frame‘ny’ in error

If state=‘non-fade’ => sub-frame‘m’ not in error

If sub-state="*good t'{
=> sub-frame‘m’ not in error
=> trangition to sub-state ‘bad t' with probability 1-p

If sub-state="bad t’ {
=> sub-frame‘m’ in error
=> trangition to sub-state ‘good t" with probability 1-q

}

frames left = frames_left —1

end loop.

Form frame integrity according to the following rules

O0=if any Ma+1...Masn SUb-frames arein error
1=if noMa+1...Ma+n SUb-framesarein error

Fig. 18 Sub-frame Operation of 3SRLM-PHY Module




D. Summary

This chapter began by describing of the origins of the network smulation tool
cdled n2. A functiona description isincluded in this chapter dong with a brief
example script. Four physica layer channd modules are presented in this chapter. Each
module contains a functiona description of the process employed to determine the
integrity of atranamitted frame. The origins of the modules and parameter estimation

for the MM-PHY, RLM-PHY and 3SRLM-PHY will be presented in Chapter V.
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CHAPTER IV

MARKOV MODEL CHANNEL APPROXIMATION

Since most networking protocols perform observations at the * packet leve’, there
is consderable interest in focusing upon the block-error gatistics of wireless channels.
The intricate dependency of networking protocols upon the performance of the wireless
channd motivates investigating the sengtivity of wirdess network performance to
higher-order block error gatitics. In recent years, sgnificant advances have been made
in forming smplified Markov Models that approximate some key block error statistics of
Rayleigh fading channdls. These modds are extremdly efficient and require very little
processing overhead to implement. However, in some fading environments, the two-
sate Markov Modd channel approximation is inadequate and should be avoided.

The two-state Markov modd channd approximation for the block error satistics
of aflat Rayleigh fading channd has been well documented in the literature [14], [40],
[41], [42], [43]. Wang [40], [41] presents an argument for using a Markov modd to
smulate a Rayleigh envelope random process. This argument was advanced through the
publications of Zorzi, Rao, and Milstein [14], [42], [43]. Currently, there exists a set of
work exploring the use of a computationaly efficient channel modd, which exhibits
representative block error gatistics of a sngle path Rayleigh fading channd.

The two-state Markov approach to modeling the frame error process of awireless
physical layer ssems to enjoy wide acceptance among the networking community. This

is evidenced by the large number of recent publications that have used a Markov mode
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channel approximation to study various network issues, eg. [1], [2], [3], [4], [5], [9],
[101, [11], [12], [13], [15], [44], [45], [46], [47], [48], [49], [50], [51], [52].

As summarized by Rao [53], network smulations are sengitive to the higher
order statistics of error processes, such that the effects of fading a the physical layer
have repercussons a progressively higher layers of the networking protocol stack. Due
to the rgpid acceptance of this channd approximation, there is a need to identify the
appropriate, and more importantly inappropriate, conditions under which the two-state
Markov Model should be employed.

Fird, this chapter covers the judtifications for usng atwo-state Markov model to
approximate the frame error process of a communication scheme operating over aflat
Rayleigh fading channd. Next, results are presented as to the proper implementation of
the two- state Markov modd including arguments for smulating arandom process using
aub-frames. The gatistics of the gpproximate channd are then compared to those
gathered from the actud channd. Findly, the chapter concludes by quantifying the

impact of employing atwo-state Markov modd through the use of network smulations.

A. Markov Approximation of Flay Rayleigh Fading

Much work has been conducted on the area of wireless network channel
modeing. Recently, flat fading channd approximations using two-state Markov models
have commanded the mgority of the atention in thisarea. The term fading is used to

describe arapid fluctuation of aradio sgnd’s amplitude over a short time period.
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Fading isthe result of interference between two or more versions of a transmitted sgnd
arriving & areceiver. Thetime difference between arrivas plays an important rolein
channd modding for wirdess communications. When the tempora dispersdon is smdl
compared to the transmitted symbol period, the channd is said to exhibit flat fading.
Hat fading dters the received symbol but will not induce inter-symbol-interference.
These fluctuations are often modeled as a Rayleigh or Rician distributed random
processes. Jakes [25] origind work is one of the most heavily cited references on the
generation of a Rayleigh fading process.

The dudy of the finite- state Markov channd originates from the two-state
(Markov) channed known as the Gilbert-Elliott channd [54]. In this channd modd, the
states correspond to specific channel conditions. In genera, the Sates can be viewed as
binary symmetric channels with given crossover probabilitiesof ‘0" and ‘0.5'.

Therefore, the Gilbert-Elliott channe represents elther a perfect or corruptive channd
environment.  Owing to its smplicity, the Gilbert- Elliott channd was utilized by early
network simulations without proof of its appropriateness.

Wang [40] advanced the notion of aflat fading process being appropriately
modeled as aMarkov process through the use of mutua information between successive
fading samples. The flat fading process is often modeled as a multiplicative complex

function, a (t), with unit energy and a covariance function, defined as

C. ) =Ela(t+t)- m>@(t)- m)] (4)
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wheremeE[ a (t)] . The specid case of =0, produces a Rayleigh digtribution for the
envelope of the fading datigtic a (t). In the literature, it iswidely acceptable to model the

random process a (t) with a band-limited, non-rationa spectrum defined as [26]

.i. é *2f 6 u
_Is (0@a-g—=xu for | f|< f
s.(1)=r %08 £ 2 [fl< o, 42)
i 0 otherwise
This spectrum corresponds to the covariance function
Coa )= 35(20f, ) (4.3)

where Jy(*) is azero-order modified Bessdl function of thefirst kind. It can be noted,
that the correlation properties of arandom process, thus defined, will greetly depend
upon the normalized Doppler frequency fpt. Asthe mobile experiences significant
normalized Doppler shifts, the correlation between successive samples becomes less and
the mobile is sad to experience “fag” fading. The dternative, “dow” fading, isa
product of inggnificant normalized Doppler shifts owing from adowly varying channe
that produces sgnificant correlation in the fading process. Wang [40] develops an
gpproach to evaluating the relative val ue contained in past samples of a Rayleigh fading
process by examining the mutua information between samples. Specificdly, Wang
suggests the mutud information in sample R provided by the sample R, with full
knowledge of R.1, or I(R;R-2|R-1), isinggnificant when compared to the mutud

informetion of R and R.1, or I(R;R-1). A metric isformed and defined as

v - RR.R)

S (44



where zr isameasure of the vaue in knowing the previous sample with respect to the
vaue of knowing the current sample in forming the future rediization. In fact, asmdl zg
indicates that knowledge of a single past sample (R.->) isinggnificant when compared to
knowledge of the current sate (R-1) when forming the next redizaion (R). The mutud
information argument is the foundation for judtifying the use of Markov modelsto
gpproximate the performance of flat Rayleigh fading channdls.

In [41], Wang stresses the importance of Markov state-transition probabilities
upon the smulated channel’ s capacity and cautions that the use of Markov channel
models with incorrect trangtion probabilities will cause sgnificant errorsin the channd
capacity and thus cause erroneous results. To better match redistic values to Markov
modd channels, atwo-state modd was evaluated and parameters defined in [42]. Zorzi,
Rao and Milgtein provide amethod of choosing the trangtion probabilities for asmple
‘firg-order Markov Model’ to approximate the frame-error datigtics of aflat Rayleigh
fading channel. Since network protocols operate on the success or falure of frames, not
bits, it follows that frame error Satistics are of more importance than bit error gatistics
when evaluating the performance of networking protocols. To this extent, anew random
process, b(t), is generated as a function of the Rayleigh fading process a (t), as

b(t)=j a(t)). (4.5)
In the scheme presented in [42], the block by is successfully received if |a;|*> 1/F, where
F iscdled the fading margin. The random process b (t) can be argued to be

approximately Markov through evauations of mutua information contained in previous
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samples. The quantity \, was defined and evaluated in [42] as a measure of the Markov
model approximation’s “goodness’.

(b5 b,_,|b;)

Theliterature shows that \f, isin fact <<1 for “dow” fading, thus suggesting the first-

V, = (4.6)

order Markov approximation is adequate for representing the block error process of aflat
Rayleigh fading channd. One sgnificant issue in this gpproach is the determination of

the fading margin ‘F’, as it depends upon the communication scheme. An gpproach,
suggested in [43], disregards the fading margin value and forms the trangtion

probabilities of atwo-state Markov modd from block error statistics generated through

smulating a communication scheme.
B. Proper Modeling of a Two-State Markov Model

This section provides some detail on the two-state Markov model channel
gpproximation and how itstrangtion matrix is defined. Start by defining amemoryless,
homogeneous, irreducible and recurrent non-null two-state Markov process defined by

the trangtion probabilities (see Fig. 19)

Pi=g % (4.7)
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where p isthe probability of a successfully transmitting a frame given the previous
frame was successfully transmitted, and 1-q is the probability of successully

transmitting a frame given the previous frame was in error.

Good 1-q Bad
State State

Fig. 19 Two-state Markov Mode

Minor evauation of the above trangtion probabilities results in the Seady-state error rate

(e) of thismodd,

ez P (4.8)

The quantities of e and average burst error length can be computed from any
arbitrary communication scheme by observing the block error atistics produced while
operating over aflat Rayleigh fading channd. Where e is set to be the average frame
error rate produced by the smulation and 1/(1-q) is set equa to the average burst error
length. With the knowledge of e and 1/(1-q), the caculaion of the remaining trangtion
probability p istrivid,

p=1. oak (4.9)
l-e
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and therefore fully defines the two-state Markov modd channel approximation. One
should note, the frame gatistics will be dependent upon frame size — and thus the

trangtion probabilities will dso depend upon frame sze.

1. Independent vs. Correlated Fading Processes

Hat fading will produce time-corrdated losses of signa such that multiple
successive samples will be affected. Some network smulations assume that traffic is
periodic and encounters nearly independent fading samples. This greatly smplifiesthe
modeling of fading by ignoring any dependence upon time; however the two- state
Markov model generates a correlated random process and thus does not perform
independent fading. Care should be taken to avoid improperly modeling independent
fading withaMarkov modd.  The magnitude of aflat Rayleigh fading processis
presented in Fig. 20 to illugtrate the tempora correation of fading samples.

As moativation for pursuing the use of modeling fading as a correlated random
processinstead of using awhite process, results are presented from network smulations
using both techniques. A smulation was conducted with one node sending datato a
second node employing an 802.11b communication scheme across two channels. The
first channd performs independent fading upon every tranamitted frame. The second
channd performs a fading process whereby successive transmissons will tend to

experience asmilar fading environment.
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Fig. 20 Example Flat Rayleigh Fading Process

Fig. 21 and Fig. 22 quantify the effects of ignoring fading correlations upon
throughput in atwo-node network operating over awireess channel. Asdepicted in the
Fig. 21, the independent fading assumption will tend to overestimate the throughput of a
network smulation employing the user data gram (UDP) transport protocol.
Furthermore, asimple fixed frame error rate (FER) was matched to the independent
fading case and produced smilar results. A smilar smulation was performed for the

case of transport control protocol (TCP) and the results are presented in Fig. 22.



Link Throughput (UDP 10dB) - Independent Flat Fading vs. Flat Rayleigh Fading Process
2500 L8 T T T T T

—x- Flat indep
-E- Flat RP
-+ Fixed FER |, N
2000 | F e

faxl
=

1500

1000

Througput (kbps)

500

0 1 2 3 4 5 6 7
Sending rate of node (Mbits/sec)

Fig. 21 UDP — Independent vs. Correlated Process Fading

Link Throughput (TCP 10dB) - Independent Flat Fading vs. Flat Rayleigh Fading Process

Througput (kbps)

1800 [ r T P Syt e T 1

—¢- Flat indep I-iﬁ-""__‘___'__'__—__ _______ —:&—-—:::_' -------- ;
1600 4 ~E- FlatRP 1

-+~ Fixed FER

77
1400 F /e .
p
i
1200 - i i
ﬁz/'/
1000 i .
/
/
800 h / ]
/
/
600+ [ -
#
400r [ :
200 .
L L L L L L

0 1 2 3 4 5 6 7
Sending rate of node (Mbits/sec)

Fig. 22 TCP — Independent vs. Correlated Process Fading



Theimpact of improperly modding fading as an independent process is to overestimate
the network throughput, motivating the use of fading processes within network
amulations. The following section will explore the proper method of implementing the

two-state Markov model as arandom process within network smulations.

2. Sub-Frame Andyss

Each state of the two-state Markov model represents the channd results from the

trangmisson of a sngle fixed-length frame operating a a constant sgna-to-noiseratio
(SNR) across a specific communication scheme. The desired *representative’ Markov
modd will, a best, approximate the frame error process of fixed-length frames, where
each date trangtion represents the elgpse of afixed amount of time.  Network
smulations involve variable frame sizes and must account for the proper tempord
progression of the representative frame error process.

Another issue involving the fixed length error processis the progression of time
between the transmissions of frames. Network smulations should account for idle time
between transmissions, such that successve frames trangmitted with a significant time
gap between them should experience roughly independent fading. To account for the
inequities of afixed-length frame, we propose to utilize sub-frames. Our approach
modd s the performance of smdl ‘sub-frames' to define the representative two-state
Markov moddl. Therefore, the trangitions within our Markov mode represent the

progression of avery small amount of time. Consequently, the performance of frames
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generated by network smulations can be andlyzed through observing the appropriate
number of sub-frames. Time gaps between frame transmissions are Smilarly accounted
for by advancing the process an gppropriate number of sub-frames. The use of sub-
frames dlows network smulations to appropriately utilize the random process generated

by arepresentative two-state Markov moddl.

C. Sdidicd Andyss of the Two-State Markov Approximation

The two-gtate Markov channd model can be designed to match the frame error
rate (FER) and average burst error length (ABEL) of acommunication scheme. Both
datistics have a decisive impact upon network performance, however it is not obvious
that matching FER and ABEL is sufficient for describing the performance of networking
protocols across aflat Rayleigh fading channel. In this section, we examine thisissue of
aufficiency through a comparison of frame error datistics generated first from a
communication scheme operating over aflat Rayleigh fading channd and second from
the representative two- state Markov model.

The wireless local area networking (WLAN) protocol 802.11b was chosen for
this comparison due to the intense interest within the networking community. Although
802.11b was chosen for our smulations the same approach readily applies for other
communication schemes of interest. The 802.11b physica layer communication
scheme, as described by [43], is used to send fixed-length frames across a smulated flat

Rayleigh fading channd. Frame successes and failures from the smulation are recorded
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and analyzed. The FER and ABEL of the recorded data provide sufficient parameters,
as discussed in section two, to produce the ‘representative’ two-state Markov channel
gpproximation.

Thefirgt step of this analyss involves generating a representative two- state
Markov mode for our chosen communication scheme of 802.11b. As suggested in [42],
fixed-length frames (matching the sub-frame length of 296 bits) containing random data
are generated, modulated and subjected to aflat Rayleigh multiplicative fading process
with additive white Gaussian noise. The Rayleigh fading process was created through
the well-accepted time-domain technique described by [25], where each sample
represents the fading encountered throughout the entire duration of the fixed-length
frame. Received frames are demodulated using a minimum distance detector, and the
results from the received frames are recorded as a frame error process.

The gpproximate Markov modd was designed by smulating the communication
scheme employing afixed frame Sze of 296 bits sent across aflat Rayleigh fading link
operating at 11Mbps with various SNR. The smulated fading processes were generated
using Doppler frequencies of 100Hz and 10Hz. The rdlative fading speeds represented
by the above frequency shifts (for a device operating at 2.45GHz) are ~12.24 and
1.23m/s.

Next, the frame error processes, from the above smulations, are andyzed for the
frame error rate e and the average block error length (1/r). Thetrangtion probability p is
then solved, and a two-state Markov modd is formed to approximate the frame error.

The representative two- state Markov modd is smulated and its frame error processis



andyzed for higher order satistics. The results are compared againgt those of the

communication scheme and are presented below in parts A and B.

1. Reaultsof FER and ABEL

The andyss focuses upon the accuracy of the Markov modd Satistics for the
Doppler frequencies of 100Hz and 10Hz with asignal to noiseratio of 5-20dB and a
fixed-length sub-frame sze of 296 bits. As designed, the Markov model amost exactly
replicates the FER and ABEL of the 801.11b communication scheme.
While the Markov modd channel matches some key frame error datidtics, there remains
doubt as to the sufficiency of matching FER and ABEL for evauating networking
protocols. For example, the transport control protocol (TCP) will seek to adjust the rate
of transmisson by monitoring packet loss and roundtrip travel time (RTT). Therefore,
frame errors that are masked by the Medium Access Control (MAC) of the 802.11
protocol stack would not cause packet errors observable by TCP. This provides
moativation for understanding the block error length satistics of any ‘ gpproximate’

channd modd.

2. Variance of Burst Error Length
The length of aburgt error will often determine to what extent networking
protocols are affected. A short duration channel burst error can often be overcome by
retransmission at layer two of the OSI model. Longer duration burst errors will often

resultsin a dropped packet causing perceptible errorsin the transport layer. Itis
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therefore desirable to match the burst error length Statistics for channd gpproximations.
The modd developed in section two is designed to exactly match the average burst error
length and frame error rate for a given communication scheme, however it does not
necessarily match the higher order statistics. But, isthe variance in burst error length an
important parameter in determining performance of networking protocols?

Consider the following hypothetical channd in which the first N-1 burst error
lengths contain only a single frame error while the find burst error length contains N*9
burg errors. This hypothetica burst error channel will yidd an average burst error
length of ~10 frames. Given that the MAC/DLL can overcome a single frame error, this
hypothetical scheme would alow TCP to achieve and sustain avery high transmisson
rate until thefina burst error. The Markov mode that matches the FER and ABEL of
the hypothetical channd will contain an ABEL of ~10 frames. If the variance in burst
error length of the representative two-state Markov channd is modest, burst errors will
tend to contain multiple frame errors. Multiple frame errors will often trigger packet
errors, thus reducing the achievable transmission rates of TCP. In this hypothetica
channd scenario the Markov channel will tend to underestimate TCP performance. Itis
obvious that our hypothetica, and entirely unredlitic, channe would not be well
approximated by the two-gtate Markov modd; however, itsrelevance is Smply to
emphasize the need for accurately modeing the variance of burst error length.

In certain redlizations of 802.11b operating in aflat Rayleigh fading channd, the
variance of burg error length is quite high. When modded by a representative two-state

Markov process, we have discovered that the variance of burst error length is very
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modest and thus results in amore evenly distributed burst error length. In fact for low
SNR, the VBEL dueto aflat Rayleigh fading channd tends to exceed the VBEL for its
representative two-state Markov model. This effect is exaggerated for dow fading. Fig.
23 and Fig. 24 reved the accuracy of the two-state Markov channe model in matching

the VBEL of 802.11b operating in aflat Rayleigh fading channd for the Doppler

frequencies of 100Hz and 10Hz.
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Fig. 23 Sub-Frame Error Statistics Comparison for fd=100Hz

It is obvious from the graphs above that atwo-state Markov modd cannot
produce a frame error process that tracks the variance in burst error length of the actua

frame error process. However, it is not obvious that adifferencein VBEL will dter



network performance. In the next section, the impact of improperly modding the VBEL

of the frame error statistics will be explored.
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In an attempt to quantify the sengtivity of network smulation performance to

vaiationsin VBEL, we congder the performance of awirdess link transmitting data at

variousrates across aflat Rayleigh fading channdl. The network smulator ns2 was

dtered to amulate the physical layer a a symbol level for each packet transmisson. A

new module was created to smulate the 802.11b baseband equivaent modulation,

demodulation and transmission through a time sengtive flat Rayleigh fading process.
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The scheduler clock ingtance relays smulation time to the module which then advances
the fading process accordingly. Through this effort, we obtained a very thorough, and
computationaly intense smulation of 802.11b performance over aflat Rayleigh fading
channd. Simulations were conducted for the Doppler frequency of 100Hz and SNR of 7
and 150dB, relating to the cases where VBEL deviated and converged for sub-frame
results of section four. The smulations were conducted using the 802.11b MAC
protocol and both TCP Reno and UDP transport protocols.

Additionaly, a module was generated to smulate the two- state Markov mode
channel gpproximation described in section three. The Markov trangition probabilities
were s&t to match the FER and ABEL obtained in part B (of section four) for the
normalized Doppler frequency and SNR Stated above. The results indicate that for the
case of smilar VBEL, the Markov modd is a reasonable approximation.

A ample two-node network is employed with one node sending application data
packets of 512 bytes to the other through an 802.11b link. The wirelesslink is modeled
using both the flat Rayleigh fading module and the representative Markov mode
module. The sending rate was dtered between 100kbps to 5Mpbs, and each smulation
was anayzed for throughput and the results are presented as throughput vs. offered load.
Fig. 25 depicts performance differences for the case of SNR = 7dB and f4=100Hz,
quantifying the impact of improperly modeling the VBEL.

As shown, there is a noticeable performance difference indicating thet the

Markov modéd is an inadequate approximation for this particular scenario. The
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performance differences for the case of SNR = 15dB and fi=100Hz is presented in Fig.

26; where the VBEL was similar in the sub-frame andyss.
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The results indicate that the appropriateness of using a two-state Markov model
to smulate flat Rayleigh fading is directly linked to the modd’ s ability to adequately

meaich the higher-order block error statistic of VBEL.
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E. Summary

This chapter reviewed the process of generating a representative two-state
Markov channd approximeation for aflat Rayleigh fading channd. The modd was
applied to the communication scheme of the popular 802.11b wirdess LAN standard.
We then analyzed the resulting block error setistics from both the communication
scheme and the gpproximated channd modd. The sufficiency of FER and ABEL for
defining a communication scheme operating in flat Rayleigh fading was chdlenged and

anew datistic was suggested as offering ingght into the appropriateness of the two-state
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channd modd. The statigtic, variance of block error length, was shown to be dragticaly
different between the two schemes in the case of moderate SNR. Furthermore, network
simulations were conducted to quantify the effects of employing atwo-state Markov
model for the WLAN standard 802.11b.

This chapter demongtrates that at low to moderate SNR, the Markov Mode does
not adequately portray the VBEL of aflat Rayleigh fading channd. Furthermore, it
quantified the importance of thiskey block error statistic through detailed wireless
network smulations. This chapter advances the understanding of the appropriate
environments under which the two-state Markov Modd is a suitable gpproximation of a
flat Rayleigh fading channd and provides ingght into akey block error Satistic

unacknowledged in previous works.
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CHAPTER V

INNOVATIVE LOW COMPLEXITY CHANNEL APPROXIMATIONS

A. Overview

In this chapter, new low complexity channe modds are developed to
approximate aflat Rayleigh fading channe for wireless packet data networks. The new
modd s are andyzed for their gppropriatenessin gpproximeating the frame error satistics
generated from a CCK modulated signd operating over afla Rayleigh fading channd.
Three new modds are presented each containing multiple variations.

Thefirst modd is an extenson of the current two- state Markov model to ‘N’
daes By induding additiond states with avery limited trangition matrix, some higher
order dtatistics can be matched through the use of an N-state Markov modedl. Itis
discovered that the additional computational complexity of the N-state Markov model
outwel ghs the improvements achieved in matching frame error atistics.

The second low complexity modd is a unique deviation from the traditiond two-
sate Markov model. The ‘Run Length Modd’ (RLM), asit’s caled, aternates between
afade and non-fade ate, but remains in each state for a variable length of time. When
the duration of a date expires, the model aways transitions to the opposite state.
Additiona degrees of freedom are achieved in the RLM by assgning durations

according to arandom varigble with predetermined statistics. Variaions are presented in



this chapter for assgning vauesto the RLM parameters. Of the variaions, the most
accurate requires knowledge of the frame error gatistics.

Thefind low complexity moded presented is a combination of the RLM and the
two-state Markov modd called the * Three State Run Length Mode’ (3SRLM). This
model adds a transition state between the faded and non-faded states of the RLM. The
3SRLM contains a two-sate Markov modd for the trangtion stete. The addition of the
third gate, allows the 3SRLM to match both frame error statistics and good- run length
datistics. The gatigtica performance of thismodel is outstanding when compared to the
previous models.

This chapter will explain the operation, parameter estimation and frame error
datisticd performance of: the N-state Markov mode approximation, the Run Length

Modd channd approximation and the 3SRLM channd gpproximetion.

B. ‘N’-State Markov Model Channel Approximation

The N-State Markov modd isanaturd extenson of the popular 2-state Markov
modd. Through the addition of extra states, the new N-state mode! is more capable of
emulating higher order frame error Satistics. In this modd, each state represents a series
of past frame redlizations as well as the current frame redization. The binary output of
‘good’ or ‘bad’ frame redlizations resultsin avery sparse state transition matrix for the
N-state Markov modd channd approximation. Trangtion probabilities for this model

are st by using the sample trangition matrix of a representative frame error process. The
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N-state Markov modd is presented in this section with example performance given for

N=4, 16, 64 and 128.

1. 'N’-State Markov Model Architecture

In thismodel, each State represents the current frame redlization aswell as
logx(N)-1 past frame redizations. The frame redization is abinary random variable
with ‘O representing a successful frame transmissonand a‘1’ representing aframe
falurein the wirdesslink. By increasing the number of states, this modd introduces
additiona trangition probabilities and should better mode the higher order Satigtics
encountered in aflat Rayleigh fading channd. Asameans of explanation, the 4-state
Markov modd is presented in this section.

The 4-state Markov modd’ s Sate represents the current frame realization as well
asasngle past frameredization as

aecurrent staterealization 0
State=
gprevl ous state reallzatlong

Thus, the four possible states are

5 96
= go;; %= goz == glz = gz
and have atrangtion matrix of

g@ 11 0 Py 0
_ P2 0 p 23 0+

4- state — (; 0 p3’2 0 p3’4i
g 0 p4,2 0 pA,AB

1O

P
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Theterm p; j represents the probability of trangtioning from Sate ‘i’ to state ‘j’. Itis
obvious that some trangtions are impossible, for example trangitioning between seates
two and onein asingle step.  Since each date contains a single new binary frame
redization, thereis only two possble trangtions from any date. Therefore the trangtion
matrix will contain only 2N norzero transition probabilities.

The N-gtate Markov modd, as described, is completely defined by the trandition
matrix and thus requires the estimation of 2N parameters to define the modd. One
gpproach to estimating these parametersis to form a probability mass didtribution
(PMD) for state trangitions from a representative error process, that is an error process
generated from sending frames across aflat Rayleigh fading channdl.

Once dl date trandtions are known, the model operates by choosing an initid
vaue (by state probability or from a gtatic choice) and then trangtioning between states
according to the date trangtion matrix. Each new state will contain the current value of

aframe redization and thus indicate the success or falure of aframe.

2. 'N’-State Markov Model Parameter Estimation
As gated in the previous section, 2N trangtion probabilities are required to fully
characterize the N-state Markov model, as presented in this chapter. Aswith the two-
sate Markov modd, the choice of these trangtion probabilitiesis based upon a
representative frame error process. Simulating the baseband modulation, transmission
and detection of frames across a channel with aflat Rayleigh process can generate such a

frame error process. This approach istime consuming and requires intimate knowledge
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of the physicd characterigtics of modulation and detection, which is not necessarily
prevaent in the networking community.

Once arepresentative frame error process is acquired, the N-state mode
parameter estimation will identify al the ‘logp(N)’ frame statesin the process. Each
sample frame after the (logx(N)-1)"" will represent asingle state. Thus a frame error
process of length ‘M’ will contain (M - logp(N) +1) states. After the State process has
been formed, the transtion PMD can be formed and discrete transition probabilities
assgned. Thisprocessis represented pictoridly in Fig. 27 for an example of the 4-state

Markov modd.

Frame error process. 000111101010001110 (18 redizations)
States: -11344423232113442 (17 states)
State Trangtion Matrix from the above set

a2/16 0 2/16 0 ¢
_81/16 0 2/16 0 -
“emeTG 0 2/16 0 2/167

go 2/16 0 3/16

Fig. 27 Example PMD Cdculation for a Frame Error Process

3. ‘N’-State Markov Model Performance
A frame error process, generated by CCK modulated frames traversing aflat

Rayleigh fading wirdess link, was used to determine the PMD of date trangtions for the
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N-state Markov model channelswith N=2, 4, 16, 64 and 128. Each N-state Markov
model was then used to generate aframe error process. The models' resulting frame
error processes were andyzed for frame error rate (FER), average burst error length
(ABEL) and variance in burgt error length (VBEL). Asshown by Fig. 28— Fig. 31, the

higher order statistic of VBEL was better matched by increasing the number of States.
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Fig. 29 Frame Error Statistic Comparison for the 16-state Markov Model
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Fig. 30 Frame Error Statistic Comparison for the 64-state Markov Model
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128-state FER Comparison fd=100Hz
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Fig. 31 Frame Error Statistic Comparison for the 128-state Markov Model

The case of the N=2-gtate Markov modd produces frame transition probabilities
of p=.9960 and q = .8823, exactly matching the vaues obtained when using (4.8) and
(4.9) for e =.2240 and 1/(1-q)=8.4995, relating to the values of frame error rate and
average FEL of the approximated CCK performance. Thus the N=2-state Markov model
produces an estimate of the values derived in chapter 4 for the 2-gtate Markov modd.

The case of the 16-state Markov modd, shown in Fig. 29, has better matching of
VBEL a high SNR but isincgpable of matching the desired VBEL &t lower SNR.

The 64-gtate Markov modd shows drastic improvement over the 2-state Markov model

by matching the VBEL for SNR>~10dB as shown in Fig. 30. The 128-state Markov



model matched the VBEL for SNR>~8dB, but required significant computationa
complexity and long run-times to generate. This smulation, however, did not match the
lower order gtatistics as accurately as the 64-state modd as shown in Fg. 31.
Increasing the number of statesin the Markov mode alows the low complexity
N-state Markov modd channd gpproximation to better match higher order Satistic of
VBEL than the traditiona two-state Markov modd. While the VBEL is an indicator of
meatching higher order gatistics, a more ingghtful comparison can be made through
examining the probability mass digtributions (PMD) of frame error duration generated
by the N-state Markov modd and those of CCK modulated frames transmitted over a
flat Rayleigh channd. Asshown in Fig. 31, the N=128-state Markov model providesa
close gpproximation of the frame error satistics of FER, ABEL and VBEL, however it
remains a Markov modd and will follow an exponentid digtribution for frame error

durations greater than ‘N’
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The PMD shown in Fig. 32 clearly indicates the N=128 state Markov modd distribution
contains an excessively heavy tal. The PMDsin Fig. 32 were formed with over 450,000
frame error durations equating to ~3.8 million frames for a SNR=10dB. Fig. 33 shows
the comparison of good frame run duration or the amount of frames received in
successon without error. Both probability mass distributions were formed from over
250,000 good frameruns. Even at 128 states, the N-state Markov mode channel
approximation does not accurately represent the PMD of frame error duration or good
frame run duration. Other drawbacks of the N-state Markov mode! include:

Ever increasing memory/processor utilization with larger vaues of ‘N’ asthe

transition matrix grows by N2,

The method describes in this chapter does not provide a method for choosing an

appropriate value of N.

After the N'" state, the model must contain an exponentia distribution for frame

error duration, which may or may not match the PMD of a generic frame error

Pprocess.
Due to these drawbacks and the uncertainty of choosing the correct value of ‘N’ for an
arbitrary scheme, the N-state Markov model channel gpproximation is not considered a
subgtantia replacement for the two- state Markov model’ s inadequacies. One very
atractive characterigtic of the N-gtate Markov modd isits generic structure. The
network performance of the N=128 state Markov model channel gpproximation is

included in Chapter 6.
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C. Run-Length Modd (RLM)

Frames traverang awirdess link are received ether with or without errors. The
popular two-state Markov modd assumes that frame errors only occur when the channdl
isinthe faded state. This assumption does not hold true for low signa-to-noise ratios,
where errors frequently occur in the un-faded state. Another issue with the two-state
Markov modd isfound in the lack of variability in the duration of fades. In fact, the
duration of fade lengthsis an exponentid ditribution for the two-state Markov modd.
Rice [55] developed a method for gpproximeting the didtribution of fading time intervas
for aRayleigh process. The conditiond PDF that a Rayleigh process R(t) crosses a
catanleve r for thefird timeintheinterva (t;+t, t1+t+dt) with postive dope, given
acrossng downward through r a timet=t; isrepresented asf(t ; r). Ric€'s
approximation to this dendty was later articulated in [56] (for the case of r <<1) as

f(t;r)z%glo(u)- §[+%gll(u)§ (5.4)
Where Tr(r ) is the average time duration a Rayleigh process remains below athreshold
r, and I(-) denotes the rf"-order modified Bessel function of the first kind and

u=2[Tr(r )/t]. Here, the average fade duration can be ca culated [26] from the threshold

r and Doppler frequency fq as

T()=—S"1 (5.5)



It isinformative to compare the gpproximation (5.4) againg asample PMD of f(t ; r).
As shown in Fig. 34, the anayticaly derived gpproximation contains asignificantly

heaver tail than the sample PMD.

Sample PMD vs. Approximated PDF of f(tao;rho)

I
----------- PMD
0.04 - - PDFEq [
0.02——%
yc "4‘%:‘“ .ol
OE CCLLNTTS oo RN, - O, FOPF. |
0 50 100 150 200 250 300

Fade lengths in Frames

Fig. 34 PMD of f(t ; r) vs. the Approximation (5.4)

The digparity in fade-length distributions between the gpproximated PDF (5.4)
and the sample PMD motivates the use of sample satisticsin future models. The
drawbacks associated with the N-state Markov model channel gpproximation and the
disparity in (5.4) motivate the creation of anew channel mode that can more accurately
predict the higher order satistics of the fading channel using sample digtributions. One

such modd is the run-length modd.
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1. Run-Length Modd Architecture

The run-length mode overcomes the previoudy stated deficiencies of the N-state
Markov modd by alowing frame errors to occur in the non-faded state, and by
attempting to match some of the satistical parameters of the fade-length digtribution for
aRayleigh fading process. Thismodd, Fig. 35, makes afundamenta departure from the
Markov modd by removing dl variability from sate trangtions and ingtead varying the
time duration spent in states. An arbitrary threshold r is chosen such that below this
magnitude, a Rayleigh processis said to be in afaded state and above thisthreshold it is
said to bein anon-faded gate. With this definition, the Rayleigh fading process will
trangition between the two states with probability one, meaning at the conclusion of a

non-fade sate the Rayleigh process will enter into a fade state with probability one and

viceversa
4 N\
Non-faded State
Pral b g Pre =1
4 N\
Faded State
. J

Fig. 35 RLM State Diagram and Trangition Probabilities

Whilein the non-fade state, the run-length mode will alow independent frame
errorsto occur with aprobability of fer. The fade Sate will produce frame errors with a

probability of one. The duration of each state will have a probability dendity function to
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meatch some of the attributes of a Rayleigh process. Although smplein theory, the run-
length mode adds significant variability unachievable through the two-state Markov
modd. The RLM, as shown in this chapter, can be directly tied to specific physicd layer

properties such as modulation, coding and receiver techniques.

2. Run-Length Model Parameter Estimation and Performance with
Respect to Physical Layer Properties

Parameter estimation is a challenge for the run-length modd, as many different
vaues are required to specify the operation of thismode. The first, and most obvious,
parameter is the non-fade probability of frame error, fer. Next, the duration of both the
non-fade and fade states must be defined to approximate, in some sense, the duration of
date lengths observed on an actua Rayleigh process. Thisvariation of the RLM sets
parameters according to the modulation, coding, demodulation and frame size employed
across the wirdess channel. One goa of parameter estimation for the run-length moddl
isto define amethod of choosing parameters given only the performance of the physica
layer and coding schemein AWGN, and the Doppler frequency of the flat Rayleigh
fading channdl.

One early attempt a parameter estimation setsthe fer and threshold r according
to the physcd layer bit-error rate (ber) and the frame length L¢ in bits. This gpproach

offers amethod to directly caculate thefer as

fer =1- (1- ber)". (5.6)
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Once the fer is known, the threshold defining the faded and non-faded statesr must be
caculated. Thisearly approach set a confidence metric P(succ | f) to measure the
probability of afaded frame being received correctly. Cdculaingr from the confidence
metric requires knowledge of the physical layer performance across an AWGN channel.
Assuming thisinvertible relationship is known and defined as

P, =z (S\R) (5.7)

one can form the threshold r with the assumption that the Rayleigh process has a unit

energy through:
ber =1- (P(succ| f))'", (5.8)
NR =2z *(ber), (5.9)
r =S\NR (SNR) Y, (5.10)

wheretheterm SNRis the non-faded Sgnd-to-noise retio of the system.

By defining these two parameters, one can Smulate a Rayleigh process and
observe the probability mass distribution (PMD) for the duration of fade lengths and the
duration of non-fade lengths.  This is accomplished through smulating a Rayleigh
process, where the faded state occurs whenever the magnitude of the fading process
drops below the threshold r . Once the PMD of state durations is known, random
variables must be congtructed to approximate them. Since the analyticaly derived
digtribution of fade lengths (5.4) contained excessvely heavy tails (Fig. 34), an dterative
approach was devised. Well-known distributions were ‘fitted’ to a sample PMD (of fade

lengths for a Rayleigh process) by matching the mean and variance of fade lengths. The
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gamma digribution fit well as shown in Fig. 36 and Fig. 37 for the cases of SNR of
15dB and 10dB respectively.

The dengity of run-lengthsis approximated as a gamma distribution defined by
(5.11) — (5.14). In order to approximate the PMD of a Rayleigh process’ run-lengths,

one should first define the faded state f and non-faded nf state' s mean and variance as;

m, = mean of faded - state duration , (5.11)
m., = mean of non - faded - state duration , (5.12)
S ; = variance of faded - state duration , (5.13)
s s = variance of non - faded - state duration, (5.14)

Sample PMD, 'matched' Gamma distribution and PDF Eq. @ SNR=15dB

- PMD
= = Gamma dist
0.1 -=-= PDF Eq
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Fade lengths in Frames

Fig. 36 PMD of f(t ; r), Matched Gamma Didribution and the Approximation (5.4)

for the case of SNR=15dB
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Sample PMD, 'matched' Gamma distribution and PDF Eq. @ SNR=10dB
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Fade lengths in 296-bit Frames
Fig. 37 PMD of f(t ; r), Maiched Gamma Digtribution and the Approximetion (5.4)

for the case of SNR=10dB

The gamma didribution parameters| and a are completely defined with knowledge of

the digtribution’s mean and variance.

a RLM Parameter Egtimation Using Nomina SNR and Confidence Metric

The parameter estimation method presented in this section operates by using a
confidence metric and the CCK modulation format to define a threshold below which a
Rayleigh fading processis consdered to be in afade. The threshold isused to

experimentdly set the RLM parameters of fer, mx, mpys, S and Spr.



Thefigt step in this method is to define a confidence metric according to the
probability of successfully transmitting a frame given the mode is in the faded Sate or
P(succ|f). Thistechniqueisillustrated by means of and example. For the case of CCK

modulation in the presence of flat Rayleigh fading, set the confidence metric to
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P(succ|f)=.001 for the case of SNR = [5..20dB] given the sub-frame Sze of 296 bits. For

each value of SNR, the following procedure is employed to achievefer andr :

ber =1- (.002)"**° =.02276,

&E 0 69’ E O
od ]

2
lae adber 30

SN == 6 IT— == =2.4056,
Rireshold 4% 312 0

r = 2.4056(SNR) .

Thevduer ispresented in the Fig. 38 for values of SNR = [5-20dB].
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Fig. 38 Threshold Vauer vs. SNR

(5.15)

(5.16)

(5.17)

(5.18)



96

In this method of parameter estimation, fer is caculated directly from the
modulation scheme operating over an AWGN channd at the nominal SNR. For the case

of CCK, the fer can be cdculated directly from ber, approximated in (2.22), as

E ¢

&k, 0 e 0 E
ber =z mkg—biz 24Q§ 4% for —2=[5,6...20]dB, (5.19)
No 4] No 1] o
fer =1- (1- ber)™”. (5.20)
Thevduesof fer are presented in Fig. 39 for this example.
. Example parameters ‘fer' & 'ber'
10 4 3

"1
E —A— ber

11 12 13 14 15

Fig. 39 Approximated Vaues of fer and ber for CCK in AWGN with 296bits/frame

The next step in parameter estimation for this variant is to determine the mean
and variance of both the faded and non-faded states. Again the Rayleigh fading process

is smulated and analyzed for the duration spent above (non-fade) and below (fade) the
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threshold r . The mean and variance of the durations spent in both the fade and non-fade

states are computed and used to form the Gamma distribution parametersof | and a as

|X:Sﬂ x={f,nf}, (5.21)
m2

a, =—— x={f,nf}. (5.22)
S

The low complexity RLMv1, with parameters set as previoudy described, was
used to generate a frame error process that is compared againgt the original CCK over
flat Rayleigh fading frame error processin Fig. 40. The two frame error processes are
compared with respect to frame error rate (FER), average burst error length (ABEL) and
variance of burgt error length (VBEL). The performance of a representative two-state
Markov modd’ s frame error processisincluded for completeness. Ascanbeseenin
Fig. 40, the observed frame error statigtics (FES), ABEL and VBEL, of the RLMv1 are
an extremely poor representation of the actual CCK FES. The PMD of frame error
durations and the PMD of good frame run durations for the RLMv1 are compared
againg those of the gpproximated CCK over Rayleigh channd in Fig. 41. The
comparison of PMD shown in Fig. 41 indicates that while the RLMv1 can track the
dope of the frame error duration it cannot accurately represent the PMD of good frame

run duration.
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Fig. 40 Comparison of RLMv1, CCK and MM Frame Error Statistics
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Fig. 41 PMD Comparison of RLMv1 and CCK over Rayleigh for SNR=10dB
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The inaccuracies of the RLMv1 parameter estimation can be contributed in part
to the fer parameter. In the case of CCK modulation over aflat Rayleigh fading channd,
the frame error rate while the Rayleigh process was abover is dominated by the
occurrences of low SNR at or directly above the threshold r . The Rayleigh process will
not be congtant in the non-faded case and thus the model must account for the variability
of the fading process when determining the fer parameter. In the next version of
parameter estimation for the RLM, fer is set through smulation of the physicd layer in

the non-faded state while operating across aflat Rayleigh fading channd.

b. RLM Parameter Estimation Using Confidence Metric and Simulated fer

Thisversgon of parameter estimation, RLMv2, operates exactly as before with
the exception of thefer parameter. In RLMv2, the parameter fer is set to the sample
mean of the frame error rate for CCK operating across aflat Rayleigh fading channd,
for the sub-set of samples thet occur while the Rayleigh process is greater than the
threshold r . The resulting vaue is an gpproximation of the actud frame error rate for
the non-fade gate. Applying the new fer parameters dong with ther s and gamma
digributions from RLMv1, one can form anew run-length mode!.

The low complexity RLMv2, with parameters set as previoudy described in
verson two, was used to generate aframe error process that is compared against the
origind CCK over flat Rayleigh fading frame error processin Fig. 42. Thetwo frame
error processes are compared with respect to frame error rate (FER), average burst error

length (ABEL) and variance of burst error length (VBEL). The performance of a



representative two-state Markov modd’ s frame error process is included for comparison.

In addition to the observed metrics of FER, ABEL and VBEL, the PMD of frame error

duration and the PMD of good frame run duration is presented in Fig. 43 for the RLMv2

and the approximated CCK over Rayleigh.
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Fig. 42 Comparison of RLMv2, CCK and MM Frame Error Statistics
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Fig. 43 PMD Comparison of RLMv2 and CCK over Rayleigh for SNR=10dB

Simulation results (Fig. 42) show that by dtering the parameter of fer, the run-

length model produces better estimations of model frame error rate (FER) at a cost of

poorer performance in ABEL and VBEL. The PMD results of Fig. 43 indicate the

RLMv2 is able to better gpproximate the frame error durations and the good frame run

durations. These resultsindicate that athough the 2-state Markov modd is incapable of

matching higher order frame error satigtics, it might be preferable to the RLM. This

comparison is a bit mideading, because the Markov model requires knowledge of the

frame error process stetistics of FER and ABEL. If wedlow the RLM accessto these

parameters, the model can more accurately match the statistics of aframe error process.



102

3. RLM Parameter Edtimation and Performance with
Respect to Frame-Error Process Statistics

The run-length mode is andyzed for frame error rate (FER) and average burst
error length (ABEL) in this section. Knowledge of these relationships alows usto
estimate the modd parameters, resulting in grester accuracy in matching aframe error
process s gatigtics. In this scenario, five unknown parameters describing the run-length
modd will be estimated with knowledge of the desired FER and ABEL. Somerun-
length parameters require the assumption that the frame error process was generated by a
packet data network operating over afla Rayleigh fading channd. The anadysis begins
with the derivation of FEL and ABEL for the RLM.

The RLM’sFEL isthe overdl average of frame errors and is comprised of the
rate of errorsin each state, scaled by the time spent in each Sate as

FER = Pr(fe) = Pr(fe|nf )Pr(nf )+ Pr(fe| f)Pr(f). (5.23)

Theterm feis frame error, nf indicates the non-faded state and f indicates the faded state.
The amount of time spent in both the faded and non-faded states can be determined from

the duration random variables as

Pr(f)=——, (5.24)
( ) rnnf +mf
_ mnf
Pr(nf )= o (5.25)

Given that frame errors occur in the nf state with probability fer, and in the f sate with a

probability of one, the FER can be restated as
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cero o)t m, (fer)R+1 (5.26)
m, +m; R+1

wheretheterm Ristheratio of mys to my.

The ABEL can be restated as the average duration of aburst error. 1n our
andysis, dl errorsare consdered ‘bursts and thus ABEL is ameasure of the average
duration of an ‘error’, whereasingle ‘error’ is defined as agroup of consecutive, bad

frames. The ABEL can be solved as,

Bl g )
ABEL:gl'aefirﬁfﬁlé’ oy —— ! . (527)
b ) gl e

Appendix A contains the derivation of (5.27).

This section has devel oped equations for the ABEL (5.27) and FER (5.26) for the
run-length modd with respect to three of the five modd parameters my, mps and fer. An
additiond relationship can be formed between some of the parameters with an
assumption that the frame error process was generated through aflat Rayleigh fading
process. Some common statistics of aflat Rayleigh fading processinclude average fade
duration Tr(r ) and average number of fades per second Nr(r ) [26]. The averagetime
spent in the fade and non-fade states can be related using Ng(r ) and the time period of a

angleframe as

m, =———-m,. (5.28)

where
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N.(r )=~2p f,r e<p(- r 2) (5.29)
defines Nr(r ) and fq isthe Doppler shift of the fading process.
The following iterative method was successfully employed to solve this system
of equations. Firg, an arbitrary vaue of r isused to produce the average fade duration
my according to Tr(r ), whereit is assumed that the Doppler frequency fqy of thefading

channd isknown. Next, the FER and ABEL equations are combined to form

m, - ABEL U AFER(m, - ABEL)

i =0. (530
m,(l- AFER)§  m, (- AFER) 0. (530

fer2[- ABEL]+ ferg(ABEL - 1)+
)

Since ABEL and FER are provided and my has been caculated from an arbitrary
threshold, this resultsin asmple quadratic equation for fer. Findly, the metric used in

thisiterative approach is

metric =

21- AFER 06 @& 1 :
_ _|el- AFER G i} : 531
my ( fer) mnf(r)i gAFER- fer me; Ng(r) m % o3

or the difference between the values of my,s produced from the fer caculation and My
produced from the threshold equation. Many iterative approaches are possible, however
adraightforward iteration of r about the operationa SNR was performed. Following
this optimization routine, the RLM parameters of my, mys and fer are computed, leaving
only the variances of the fade s+ and non-fade s s States to be computed.
The variances were set according to a sample variance of ‘X', afunction of a

Rayleigh process. For the case of s+, thefunction X is defined as

X, = duration of |Rayleigh process| <, (5.32)
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for the time period beginning a anegative r -crossing and ending a apogtiver -
crossing. For the case of s pf, the function X, is defined as
X, = duration of |Reyleigh process >r, (5.33)
for the time period beginning a a pogtiver -crossing and ending at a negativer -
crossing. And the RLM parameters are assigned according to
s, =sample variance (X,) forr={f,nf}. (5.34)

Thisversgon of the RLM, with parameters set though matching frame error
satistics, was used to generate aframe error process that is compared againgt the
origind CCK over flat Rayleigh fading frame error processin Fig. 44. The two frame
error processes are compared with respect to frame error rate (FER), average burst error
length (ABEL ) and variance of burst error length (VBEL). The performance of a
representative two-state Markov mode’ s frame error processisincluded for
compl eteness.

Fig. 44 presents afair comparison of the RLM and the two-state Markov model
(MM) as both models were created with the knowledge of the CCK’s frame error
datistics of FER and ABEL. Asshown in Fig. 44, both the RLM and the two-state MM
are capable of matching the given satistics of FER and ABEL, however only the RLM
is able to represent the higher order satistic of VVariance in Burst Error Length (VBEL).
No justification has been presented to the use of VBEL as ametric for comparing
channe approximations, however VBEL isagood indicator of a modd’s ability to
meaich the PMD of frame error durations. In fact, it will be shown that not only is VBEL

important, but aso the variance in good run lengths (VGRL), or the variance in the
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duration of successfully trangmitted frames. The frame error processes generated by the
RLM were analyzed for the average good run length (AGRL) and the VGRL and the

results are presented in Fig. 45.
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Fig. 44 Comparison of RLM, CCK and MM Frame Error Statistics

The PMD of frame error duration and the PMD of good frame run duration of the
RLM is presented in Fig. 46 for the case of SNR=10dB. By matching the Statigtics of
FER, ABEL and VBEL the RLM sacrifices the ability to match frame error durations of

moderate length in order to better match the longer duration frame errors.
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FER Comparison for fd=100Hz
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By employing a gatic probability of frame error in the non-fade case, the RLM
contains an exponentia didtribution for good frame run lengths. Unfortunatdly, the good
frame fun length PMD being gpproximated in Fig. 46 have amuch heaver tall than the
resulting RLM’s PMD. Theinability of the RLM to match the good frame run length
datistics led to the development of a new modd, one with sufficient variability to
approximate both the PMD of good frame run duration and the PMD of frame error
duration. The new model should attempt to match at a minimum the frame atigtics of
FER, ABEL, VBEL, AGRL and VGRL. One such modd is presented in the next

section.

D. Three-State Run-Length Model (3SRLM)

The three-gtate run-length modd (3SRLM) isa natura extension of the RLM to
include a trangtion state between the non-fade and fade states of the RLM. Through the
addition of athird Sate, the 3SRLM contains sufficient variability to attempt matching
the frame performance statistics of FER, ABEL, VBEL and VGRL. Many approaches
were attempted to define the operation of the trandtion state with the two most
successful being afixed frame error rate, and a two-state Markov modd. 1t was found
that the fixed frame error rate gpproach could be solved to exactly match the desired
frame gtatistics but in some casesit required unacceptable vaues for the parameters of
mx (5.11), myy, (5.12) or my,

m, = mean of trangtio n - state duration . (5.35)



By assgning the trangition sate to be a two-state Markov model, the 3SRLM was
cgpable of matching al the desired frame Statigtics while using acceptable vaues for dl
mode parameters. The generd architecture for the 3SRLM was presented in chapter 3,
but is repested here for the reader’ s convenience. Following the architectureis an
explanation for how the parameters of the 3SRLM are set and the resulting frame

datidtics.

1. Architecture of the 3SRLM

The three-state run-length model (3SRLM) is an extension of the RLM, with a
new ‘trangtion’ state.  The trangtion state better models the fading process by alowing
the representation of adegraded SNR that is not necessarily a deep fade. For tractability,
the transtion State is modeled by a two-state Markov model. The operation of the
3SRLM-PHY isasmple combination of the MM-PHY and the RLM-PHY. Thelogicd
operation of the 3SRLM-PHY isshown in Fig. 3.8. Themodd beginsin the ‘non-fade
dtate and remains for a duration of sub-frames prescribed by aredization of the random
vaiable NF. All sub-frames tranamitted during the ‘non-fade’ state are undtered and no
errors occur. Upon expiration of the ‘non-fade’ state, the 3SRLM -PHY movesinto the
‘trandtion’ state and remains for a duration of sub-frames according to the random
vaiable T. The‘trangtion’ state is composed of two ‘sub-states’ caled ‘good t' and
‘bad t', where the relationship between the sub-states is defined by a two-state Markov
mode. Theinitid sub-gate is chosen randomly according to a desired trangtion state

probability of error (Trer). Each instance of a sub-frame will cause the two-state Markov
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model to attempt a trangition that might result in a sub- state trangition between ‘good t'
and ‘bad t'. Theintegrity of each sub-framein the trandtion Sate isfound exactly asin
the MM-PHY with the ‘bad t' sub-gate resulting in a sub-frame error with probability
one and the ‘good t' sub-gtate resulting in no error with probability one. Upon
expiration of the trangtion State, the 3SRLM entersthe ‘fade’ state and remainsfor a
duration of sub-frames according to the random variable F. All sub-frames tranamitted
during the ‘fade’ sate result in errors. Upon expiration of the fade state, the 3SRLM
returns to the non-fade state and the cycle continues. The ordered trangtions between
the three states are determinigtic to reduce the complexity in matching frame gatitics.
The trangtion from the fade state bypasses the transtion state to increase the duration of
the trangtion state following the non-fade sate. Thisis desiregble to justify assumptions
made in parameter estimation, mainly in setting the expected frame error duration for the

trangtion gate.

2. 3SRLM Parameter Estimation and Performance with Respect to Frame Error
Statistics
In this section, the three-state run-length mode is andyzed for frame error rete
(FER), average burst error length (ABEL), average good run length (AGRL), variance of
burst error length (VBEL) and variance of good run length (VGRL). Knowledge of
these relationships alows the model parameters to be determined given a representative

frame error process to gpproximate. After the explanation of the parameter estimation,
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the 3SRLM isformed to gpproximate CCK operating over aflat Rayleigh fading channel
and the resulting frame dtatistics are presented.

The 3SRLM’s FEL isthe overdl average of frame errors, which can be
computed by summing the probability of an error in a state scaled by the time spent in

each state as

FER = Pr(fe) = Pr( fdnf )Pr(nf )+ Pr(fet)Pr(t) + Pr(fe f )Pr(f), (5.36)
wheret represents the trangtion state. Note that for this discussion, the term ‘error’
refersto agroup of frame errors or aburst error. All terms except t are asdefined in

(5.23). The probability of each state can be determined be examining the average time

spent in each Sate as

PI‘(I‘) = m r= {mnf , m[ , mf } (537)

Given that frame errors dways occur in the f state, never occur in the nf state and occur

with aprobability of fer inthet state, the FER can be restated as
FER=—— ~. (5.38)

The ABEL of the 3SRLM can be approximated as the sum of the expected error

lengthsin a cycle divided by the expected number of errorsin acycle, or

_& eleel]

ABEL =< "+
E[#BEL]

per cycle, (5.39)

where an error length is represented in the equations as BEL. The fade state will only

have a angle error while the non-fade state will contain no errors. If one makesthe
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definition of E[ BEL |t] for the expected error length in the t state, then ABEL canbe

restated as

m, +(ENRL - 1)E(BEL})
ABEL = , (5.40)
ENRL

where ENRL stands for the expected number of errorsin asingle cycle.

As can be expected, the average number of errorsin acycle should equa the
average number of good runsin acycle. Thisisevident as each good run isfollowed by
an eror and vice versa. Following thislogic and the assgnment of E[ GRL|t] to be the
expected good run length in Satet, the average good run length (AGRL) of the 3SRLM

can beformed as

m,; +(ENRL - 1)E[GRLI]
AGRL = . (5.41)
ENRL

Theterm ENRL can be solved by making the observation that al errors, except for one,
occur in the trangtion State as

ENRL = E[#BEL|t] +1. (5.42)
The expected number of errorsin t can be computed from the ratio of expected number
of frame errorsint to the expected error lengthin t, as

~ Ef# frameerrors|t] _ m(fer)
E[#BEL|| = BN R (5.43)

If the 3SRLM uses the same parameter names as shown in Fig. 3.5 for the two-state

Markov mode, it can be shown that the resulting frame error rate of the model is
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for =12 P (5.44)
2- p-q

The denominator of (5.43) is a Geometric random variable indicating the number of
independent Bernoulli trids until a successful departure from the ‘bad t' state. Using

thisinformation (5.42) can be restated as

enme = M- a)i- p) (5.45)
2- p- q

Now the mean of the trangition state can be solved with respect to my by reworking

(5.38) into
m (1- FER) m (fer - FER
mnf - f( )+rn[( er )’ (546)
FER FER
and (5.41) into
m, = ENRLgeAGRL- 1o, 1 (5.47)
1- pg 1-p

then substituting (5.45) into (5.47) to produce

1- FER
gAGRL-gg
FER 5
- (5.48)
é{‘efel’ FERO &(1 p)(l q AGRL - ng
eFERzé(qug 1- pgy

If one assumesthat my, p and g can be approximated, then my; can be solved by (5.46),
fer by (5.44) leaving only to solvefor ssand S py.
The variance of the non-fade and fade states can be found through andlysis of the

VBEL and VGRL of the 3SRLM. VGRL can be stated as

VGRL = E|(GRL - E[GRL])?|=E[GRL?]- AGRL?, (5.50)
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where E[ GRL] isthe AGRL and GRL issmply good run length. If one assumesthe
good run lengths due to trangtions between states are negligible, then the 3SRLM
digtribution of GRLs is smply aweighted sum of the GRL distributions of the non-fade

and trandtion States as

E|#GRL[t|Pr(t E[#GRL|nf [Pr(nf
o)=L (- IR ) e
Since the expected vaue of GRL? can be written as
E[GRLZ] - a: GRL fon (g)dg1 (5.52)

one can substitute (5.51) for fgr(g) and smplify to form

1 € Y Y Y
EloR"|= — - dENRL - ) (PR fon (@) +10PR fon_w(0)s (659)
e -¥ -¥

A~

a
and further amplified into the form

E[GRLZ]:ﬁ((ENRL - )E[GRL_t?]+E[GRL _nf2)) (5.59)

Theterm E[GRL_nf?] can be formed similar to (5.50) and altered to form

E[GRL _nf ?|= var(GRL _nf)+E[GRL _nf]* =s, +AGRLZ.  (5.55)
Since GRL_nf isagamma random variable, the varianceis smply theratio of a s and
| of as

anf
2
l nf

E[GRL _nf2]=20 4z (5.56)

nf

For ease of computation and lack of aredigtic metric, the random variable determining

the duration of the trangition state was removed and instead a constant duration of my is
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used for the duration of the trandtion state. Since the trandtion State is atwo-state

Markov modd, the vaue of GRL isageometric random variable with a mean of

E[GRL _t]= 1_—1p , (5.57)

and variance of

var(GRL _t)= (5.58)

Following the logic of (5.55), one can form

2l P 92 -
E[GRL _t ]-(1_ S e e (5.59)

E[GRLZ] gl =~ gl—p?a 1+ p)+

mz 2 (5.60)
nf =2 '
@

that can be solved for a s using (5.50) asfollows:

e U u
= &dveRL - AGRL?)- &~ 1 ¢ ig QL+ Pt 10 . (561)
op é ENRL@&El- pg M H

Due to the symmetry of the two-state Markov modd definition and the use of agamma

function for the fade state, the derivation of a ¢ followsthe samelogic asa pyf, resulting in

-1

eé u u
= &dveeL - aeL?)- - L &1 0 L+q)in 1 . (562)
A e ENRL%l ' g m; H

Theremaningterm | of agammadigribution X,
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fx(x):% for x>0 anda >0,1 >0, (5.63)
is solved by manipulating the mean
E[X]= T— (5.64)
and variance
var[x]= T—z (5.65)

to arrive at the following solution:

a a
| ==y =— forx={f,nf}. 5.66
e T o x=1ff) (5.66)

X

At this point, the 3SRLM parameters of my, myy, fer, an, ar, | nrand | ¢ havedl
been defined with respect to my, p and g. The average duration spent below a threshold
for aRayleigh processiswell known and is presented in (5.5). This equation is used to
approximate the value of my, using the threshold r as defined in (5.18). With the value
of my gpproximated, the only vauesremaining are p and g. It turns out that multiple
vauesof p and q will result in acceptable values for 3SRLM parameters. Dueto the
previous assumption that Sate trangtions can be ignored when forming the expected
vaue of run lengths, it is desirable to make m; aslong as possible. A three-dimensond
graph of m;, p and q is presented in Fig. 47 for the case of SNR=5dB, Fig. 48 for the case
of SNR=10dB and in Fig. 49 for the case of SNR=15dB. In each case there exists values
of p and q for which the vaue of m; is negative or closeto zero. It was discovered

through experimentation that the for the case of p = 0.8 and 0.3 < q < 0.8 the value of my
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was acceptable across the range of SNR={5—12dB}. For SNR > 12dB, the value of my

becomes smaller than E[ GRL|t] and the equations governing parameter estimation

change dramétically.

Wil of my w5, p & q for SHR=5dE:

Fig. 47 Vduesof m; vs. p and g for SNR=5dB



vumnfmlw.n&qfnrsﬂﬂﬂm

Fig. 48 Vauesof m; vs. p and q for SNR=10dB

el of 5. p & qfor SMR=15dB

Fig. 49 Vduesof m; vs. p and q for SNR=15dB

118



119

For the specia case of my < max{ E[ GRL|t], E[BEL|t]}, parameter estimation must be
dtered. Since the expected vaue of the run length (frame errors or good runs) is longer
than the expected vaue of the trangtion period for this case, it reasonable to assume that
al the framesin the trangtion state (on average) will either be good or in error. Under
this assumption, the trangition region is meaningless as the good frames are Smply a
continuation of the non-fade state and a series of errors are a continuation of the fade
date. It istherefore reasonable under this specid case to assume m=0. Thisassumption
leads to atwo state modd with al good run gatistics equd to the non-fade state statistics
and dl the frame error gatistics equd to the fade tate satistics. So, for the specia case

of m; < max{ E[ GRL|t], E[ BEL|t]}, the 3SRLM estimates parameters as.

m, < = AGRL, (5.67)

m, . =ABEL, (5.68)

m =0, (5.69)
2

anf s~ AGRL ' (570)
- VGRL

nf _sc = AGRL ’ (571)
-~ VGRL
2

af « = ﬂ’ (572)
- VBEL

_ ABEL (5.73)

s ™ VBEL



Employing a specid case for parameter estimation has very little impact upon the end
users as parameter estimation will be preformed infrequently and published for network
researchers.

By dlowing variahility in the vdues p and g, the 3SRLM has the possibility of
meatching future frame datistics (at low SNR) that are found to be important. For the
smulaions presented in thiswork, p = 0.8 and q = 0.6.

The 3SRLM was used to generate a frame error process that is compared against
the origind CCK over flat Rayleigh fading frame error processin Fig. 50 and Fig. 51.
The two frame error processes are compared with respect to FER, ABEL and VBEL in
Fig. 50 and FER, AGRL and VGRL in Fig. 51. The performance of arepresentative
two-state Markov modd’ s frame gatigtics isincluded for completenessin Fig. 50. One
can observe the exact matching of ABEL, VBEL, AGRL and VGRL when the 3SRLM
isin the specid case. Both Fig. 50 and Fig. 51 present the 3SRLM frame Statistics when

a perfect gamma random number generator is used.
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Fig. 50 Comparison of 3SRLM, CCK and MM Frame Error Statistics
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Fig. 51 Comparison of 3SRLM, CCK and MM Good Run Statistics
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For the case of high SNR, the terms a s and a + become very smdl and the gamma
distribution becomes quite large near the origin. Using the rgjection method for random
number generation, it becomes difficult to form adequate cover sequences that have a
defined pdf for the case of agammadigtribution with a <1. By taking somelibertiesin
the assignment of the cover sequence, one can form an approximate random number
generator that performswell for most values of a <1. One such random number

generator was employed in the 3SRLM to achieve the frame gatistics shown in Fg. 52

and Fig. 53.
FER Comparison for fd=100Hz
l T T T T T T
—&~ MM Channel
o —# CCK over Rayleigh
wo.5p Run-Length Model i
\‘,A
T ﬁ" — -
DO - S A
0 I I I S I 1 ror)
20 8 10 ABEL &%marison tlc# fd=100|—|:li6 18 20
—~ T T T r r .
A —&— MM Channel i
E —A— CCK over Rayleigh |
£ 10} Run-Length Model H
_I ‘@
w
)
< 0 I I I L L L
® " veeL Comparisof for fd=1004 '8 20
3000 . Comparison for fd=100Hz !
-~ MM Channel
= 2000 —A- CCK over Rayleigh !
Run-Length Model
> 10008 A, J
: = 2 = A Y
0 L. FaX & & B w

8 10 12 14 16 18 20
EbNo

Fig. 52 Comparison of 3SRLM, CCK and MM Frame Error Statistics for Sub-optima

Gamma Random Number Generator
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FER Comparison for fd=100Hz
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Fig. 53 Comparison of 3SRLM, CCK and MM Good Run Statistics for Sub-optimd

Gamma Random Number Generator

The focus of this research isto produce low complexity channel models that
more accurately reflect the network performance of asmulated flat Rayleigh fading
channd. Inlinewith this god the sub-optima gamma random number generator is used
in the 3SRLM-PHY module presented in chapter 2 and dso in forming the PMD

presented in Fig. 54.
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Fig. 54 PMD Comparison of 3SRLM and CCK over Rayleigh for SNR=10dB

Asshown in Fig. 52 and Fig. 53, the 3SRLM, is capable of matching not only the
frame error satistics of FER, ABEL and VBEL, but is dso capable of matching the good
run atistics of AGRL and VGRL. When a sub-optima gamma random number
generator is used, the 3SRLM is able to operate with minimal computational complexity
while only sacrificing a negligible amount of accuracy. The 3SRLM achieves agood
gpproximation for the observed frame datistics,and in doing o it dso achieves afar
approximation of both the PMD of frame error durations and the PMD of good frame
run durations, as shown in Fg. 54. This result suggests that matching the frame

datistics of FER, ABEL, VBEL, AGRL and VGRL can produce a good approximation
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of the PMD’sfor CCK modulated frames transmitted across a flay Rayleigh fading

channd.

E. Summary

This chapter presented dternatives to the two- state Markov model for moddling a
flat Rayleigh fading channd in network smulations. An *N’-state Markov modd was
presented and frame error results were obtained for the cases of N= 2, 4, 16, 64 and 128.
Poor ABEL and VBEL results were obtained for N < 64, furthermore the required
number of states (N) for matching a given frame error process was ambiguous at best.
Next, the run-length modd (RLM) was introduced with three methods for estimating
mode parameters. Thefirst two methods attempted to assign parameters according the
physicd layer performance of a modulation scheme and blind to the desired frame error
datistics. Results from the first two methods performed very poorly with respect to
FER, ABEL and VBEL but were able to gpproximate the tail performance of the PMD
of frame error duration. The third method for estimating RLM parameters was based
upon matching the frame error satistics of FER, ABEL and VBEL. This modd
performed very well with respect to producing the observed frame error atistics,
however the model was unable to match the good frame run duration statistic VGRL.
Findly, the 3SRLM was presented and parameter estimation derived for matching the
frame dtatistics of FER, ABEL, VBEL, AGRL and VGRL. Performance of the 3SRLM

was superb with the resulting modedl producing smilar frame gatistics to the CCK
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operating over aflat Rayleigh fading channd. Thusfar, this chapter has not quantified
the effects of matching the frame gtatigtics. It will be shown in chapter 6 thet by
matching frame gaigtics alow complexity channd modd increases a smulations ability
to emul ate the network performance obtained when smulating a modulation scheme

operating over actud flat Rayleigh fading channd.
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CHAPTER VI

NETWORK PERFORMANCE

While matching frame error datistics isimpressive, it has not been shown to be a
aufficient metric for determining the worth of achannel approximation. This chepter
again examines the sufficiency of low complexity channe gpproximation, but in contrast
to section 5, the metric of comparison is network performance instead of frame error
datigtics. In this chapter, the physica layer channd modules presented in Chapter 111
are formed through parameter estimations, as shown in Chapter V, placed into the
network smulator ns2 and examined for the network performance metric of throughput.
It was shown in Chapter 1V that the popular two-state Markov mode (MM) channel
gpproximation was unable to accurately represent the throughput of the TAMU-PHY
model. This chapter will present the performance of the run-length modd (RLM) and
the three-gtate run-length model (3SRLM) and compare them againgt the performance of
the two-state MM. It is shown using over 300 smulations, that the RLM is able to
achieve substantia improvements over the MM, but the 3SRLM is cgpable of faithfully

gpproximating the network performance of aflat Rayleigh fading channd.

A. Network Setup

Network smulations were conducted for the specific purpose of andyzing the

performance of low complexity channd approximations. The impact of accuratdy
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modding the flat fading channd should be very interesting, and produce fruitful
discussions however this document focuses specifically upon the performance of

channd approximations. Therefore, a smple two-node network was created with one
node sending application data packets to the other. The nodes are separated by asingle
symmetric flat fading channd represented by the modules TAMU-PHY, MM-PHY,
RLM-PHY and 3SRLM-PHY. An additiond module was included for the N=128 state
Markov model and called ‘N=128MM’. Thismoduleisasmple revison of the MM-
PHY to include N? states and otherwise operates exactly as stated in the MM-PHY
decription. Theinclusion of the *‘N=128MM’ module is not intended for analyss
purposes, as this approximation technique was deemed unsuitable, and is only included
for completeness.

Each smulation was conducted for afixed sgnd-to-noiseratio (SNR) alowing
for meaningful comparisons between modules. A symmetric channel was chosen to
reduce the amount of variability in the smulations. If unique channels were employed
for both the ‘forward’ and ‘reverse’ links, the correlation between the two channel
relizations would become important for relatively short duration smulations. The
transport layer datagram size of 512 bytes was chosen to fit completely within asingle
packet. By doing so across asingle link, the measurements of goodput and throughput
become synonymous.

The channd approximeations were formed for the Doppler frequency of 100Hz
and SNR {5dB-15dB}. The n2 smulations were conducted using the 802.11b MAC

protocol, as modified in Chapter 11 to accept custom physica layer channdls. Both TCP



Reno and UDP transport protocols are utilized. All ns2 network smulations employed
the digtributed coordination function (DCF) at the MAC layer and incorporated a queue
length of 50 packets. Those smulations using TCP Reno were initiated with awindow
length of 100. It isworth noting that the choice of packet length and window size do
impact network performance, however they have limited impact on link throughput and

the vaues chosen for thiswork are extremey conservative.

B. Parameter Egtimation

Asexplained in Chapter I11, the TAMU-PHY module performs symbol level
modulation and demodul ation across a Smulated flat Rayleigh fading channd. This
module contains sgnificant computationa complexity and is not feesble for usein large

network smulations. The physicd layer modules of MM-PHY, RLM-PHY and

3SRLM-PHY are formed to gpproximate the performance obtained in TAMU-PHY with

only afraction of the computationa complexity. The results of network throughput are

presented in this section.

The MM-PHY contains only two parameters, p and g that are caculated from the

frame error gatisticsof e andr in (4.8) and (4.9). The procedure defined in Chapter 1V
was used to create the vauesin Table Il to form the two-state MM channd

gpproximation for SNR={5-15dB} .
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Tablell. Two-State Markov Model Parameters

MM Parameters

SNR e avgBEL p q

5 0.5381| 11.775 |0.9011]0.9151
7 0.3898 | 9.8563 |0.9352| 0.8985
8 0.3256 | 9.527 ]0.9493] 0.8950
9 0.2797 | 8.9337 |0.9565|0.8881
10 0.224 | 8.4995 |0.9660| 0.8823
11 0.1809| 8.1269 |0.9728]|0.8770
12 0.1515| 7.8329 |0.9772|0.8723
13 0.1232| 8.3289 |0.9831]| 0.8799
14 0.0978| 7.7794 10.9861| 0.8715
15 0.076 | 8.0765 |0.9898|0.8762

Sub-frame 296 bits
fd 100 Hz

The RLM contains two states each with a duration random variable modeled as a
gammadidribution. The non-fade state of the RLM also contains aframe error rate
defined by fer. Chapter V presents multiple methods for parameter estimation of the
RLM, the third method defined in equations (5.23) through (5.35) was used for the
network smulations. RLM parameters are presented in Table 111, The gamma
digributiontermsof a and | are solved through (5.21) and (5.22).

The 3SRLM contains athird date caled a‘trangtion’ Satethat is defined by a
datic duration of m;. The parameter estimation was presented in Chapter V following
the RLM explanation. Table IV fully defines the 3SRLM for approximating the

performance of aflat Rayleigh fading channdl.

130



131

Tablelll. Run-Length Model Parameters

RLM Parameters

SNR m_nf m_f fer var_nf | var f
5 178.012[171.62|0.0927| 12040 [17010
7 222.54 [120.25]|0.0600| 19220 | 4490
8 248.56 | 102.9 |0.0465| 31680 | 2480
9 2.72.71 | 90.9 |0.0397| 39360 | 1329
10 310.13 | 77.27 |0.0306| 54490 | 881
11 349.65 | 66.87 |0.0242| 71760 | 584
12 385.64 | 59.68 |0.0201| 93430 | 265
13 427.97 | 53.04 [{0.0145|115920| 162
14 484.93 | 46.19 |0.0118|158500| 118
15 550.35 | 40.28 |0.0083[190300| 51

Sub-frame 296 bits
fd 100 Hz

TableV. Three State Run-Length Model Parameters

3SRLM Parameters

SNR m_nf m_f m_t | var_nf var_f p q
5 52.84 89.37 | 62.77 | 9398 14420 | 0.80 | 0.60
7 75.12 51.95 | 42.96 | 12967 | 6905 | 0.80 | 0.60
8 88.23 42.21 | 34.93 | 17098 | 4351 | 0.80 | 0.60
9 84.04 30.74 | 25,50 | 17066 | 3039 | 0.80 | 0.60
10 98.98 25.56 | 21.35 | 25250 | 2105 | 0.80 | 0.60
11 108.54 | 20.82 | 16.44 | 33685 | 1647 | 0.80 | 0.60
12 104.01 16.08 | 11.61 | 31137 941 0.80 | 0.60
13 100.03 12.70 | 5.64 | 45044 783 0.80 | 0.60
14 71.65 7.78 0.00 | 37268 367 0.80 | 0.60
15 98.18 8.08 0.00 | 60954 358 0.80 | 0.60
Sub-frame 296 bits

fd 100 Hz
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C. Network Performance

Simulations were conducted for an offered load of 1100kbps, 3300kbps,
6600kbps and 9900kbps representing a data link load of 10%, 30%, 60% and 90%
respectively of the 11IMbpslink. Each network smulation was conducted for a
smulation time of 10 minutes, representing atota of ~22.3 million smulated sub-
framesin the channe models. A trace file was formed for each smulation and later
andyzed for throughput. In addition to the trace file, the physical layer modules
recorded the frame integrity results and frame Sze each time the mac-802_11.cc file
cdled a*-PHY module. The following figures show the percent-throughput of each link
measured as aratio of the data delivered (in bytes) across the link to the data offered to
the link (in bytes).

For the case of 10% load in Fig. 55, the 3SRLM admost exactly matches the
performance of the TAMU-PHY module which it is built to approximate. At high SNR
al three channd gpproximations are very close in performance, however a low SNR
both the RLM and the MM do not provide an adequate approximation to the flat
Rayleigh fading channdl, as smulated in TAMU-PHY . Fig. 56, Fig. 57 and Fig. 58

present Smilar results.
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Throughput for WL using UDP and 10% offerd load
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Throughput for WL using UDP and 90% offerd load

>
o
‘g’» 0. ~A~ TAMU-PHY
g 04l 3SRLM-PHY
= —B- RLM-PHY
S0 ~6~ MM-PHY |
~#— N=128 MM
0 1 I I I I I T T
5 6 7 8 9 10 11 12 13 14 15

Throughput for WL using TCP and 90% offerd load
X x =

% % & >

0. —A— TAMU-PHY
3SRLM-PHY
~8- RLM-PHY

%- throughput

Fig. 58 Percent-throughput Comparison for Offered Load = 90%

I

I

—©— MM-PHY
—#— N=128 MM
I 1

i1

10
Link SNR

11

12

13 14

15

134



The use of percent-throughput as a metric can be deceptive asthe MAC and
trangport layers may attempt to send datawhen a*good’ channel is perceived. The

actua throughput for each module is presented in Fig. 59 for the case of 30% offered

load, and againin Fg. 60 in alog scde.

Throughput for WL using UDP and 3300kbps offerd load
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Fig. 59 Absolute-throughput Comparison for Offered Load = 30%

Y et another way to represent the performance of the channel approximationsis

through a percent-error calculation againg the TAMU-PHY . Fig. 61 clearly represents

the percent-error of the channel approximations’ percent-throughpt.

15

135



Throughput in Kbps

Throughput in Kbps

Fig. 60 Log Absolute-throughput Comparison for Offered Load = 30%

error

error

Throughput for WL using UDP and 3300kbps offerd load

10
3t
10 —&— TAMU-PHY
3SRLM-PHY
—f~ RLM-PHY
—8—- MM-PHY
100 I I I I I I i i
5 6 7 8 9 10 11 12 13 14 15
4 Throughput for WL using TCP and 3300bps offerd load
10
2
10 ~&= TAMU-PHY
3SRLM-PHY
~&~ RLM-PHY
~&— MM-PHY
10_ ! ' r ' r 1 h T I t
5 6 7 8 9 10 11 12 13 14 15

Link SNR

Percent-Error of "%-TP" for WL using UDP and 30% offerd load
—&~ MM-PHY
—&- RLM-PHY
3SRLM-PHY
—%— N=128 MM

0.2
0 i i i i 1 I i i i 11
5 6 7 8 9 10 11 12 13 14 15
Percent-Error of "% TP" for WL using TCP and 30% offerd load

—&~ MM-PHY
0.8 -~ RLM-PHY
06 3SRLM-PHY ||
: -5~ N=128 MM

Link SNR

Fig. 61 Percent-error for Offered Load = 30%

136



137

It is evident that the 3SRLM isavastly superior channd approximation for flat
Rayleigh fading channds asiit is designed to gpproximate higher order frame Satitics as
well as FER and ABEL. The two-state Markov modd is shown to contain as much as
40% error at an SRN of 10dB, an up to 80% error at 5dB SNR. The 3SRLM’sgainin
performance over the MM comes at the cost of greater complexity in parameter
edimation and operation. The resulting 3SRLM-PHY takes ~3 times longer to run than
the MM-PHY. Asadatapoint, the MM-PHY takes 68 seconds to execute a 600 second
smulation with an offered load of 90% using UDP on adua 1800M P+ processor
computer with 2GB of DDR RAM. The RLM takes 67 seconds to run the same
smulation, while the 3SRLM takes 186 seconds. The TAMU-PHY module requires
~68,000 seconds to perform the same smulation. 1f one assumes the mgority of the
smulation time is due to channel gpproximations, then the delay comparison can be
extended to networks with more than two nodes. Since every node is required to attempt
detection of every transmitted frame in an 802.11b network, the channd delay will be
N*(N-1)-1 times greater than the two node case for networks with N nodes. Fig. 62
represents the gpproximate channd delay of the MM-PHY, 3SRLM-PHY and TAMU-

PHY , with respect to the MM-PHY, for smulations with up to 100 nodes.
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Fig. 62 Run Time Comparison of Channel Modules

Inway of an example, if one smulated a 100 node network using the MM-PHY channdl
module, as previoudy described, it would take ~7.8 days using the workstation
mentioned earlier. The 3SRLM-PHY would require ~21.3 days and the TAMU-PHY
module would require ~21.3 years. The 3SRLM provides very accurate results at a
dight cogt in computational complexity. More over, the 3SRLM dlows smulationsto
incorporate the effects of flat Rayleigh fading channds with multiple nodes, where a

direct implementation would reguire unreasonably long run times.
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D. Summary

This chapter identified a network setup capable of comparing the physicd layer
channe gpproximationsin a network smulator. Furthermore, the parameter estimations
used in the physical layer modules of MM-PHY, RLM-PHY and 3SRLM-PHY were
presented. Network smulation results are presented for each PHY module developed in
Chapter 111. The throughput performance results clearly sgnify the 3SRLM asa
superior channel gpproximation to the widdy accepted Markov model for gpproximating
the performance of flat Rayleigh fading channds.  Additiondly, the 3SRLM isableto
remain within 20% of the actua throughput at low SNR where the MM can achieve
higher than 80% error. These results dso indicate a strong correlation between
gpproximating network performance and matching the PMD of frame error duration and
the PMD of good frame run durations of a representative frame error process.

The RLM exactly maiched the flat Rayleigh fading channe’ s frame Statitics of
FER, ABEL, VBEL and AGRL but was unable to match the variance in good run length
(VGRL). It was shown in Chapter V that the RLM produces a PMD of good fame run
durations with an exponentid distribution that was unable to match the approximated,
heavy tall PMD. Thisisdue to the parameter estimation requirement of exactly
matching the FER, ABEL, VBEL and AGRL. The RLM'’s throughput performance was
better than the MM, but not sufficient to acceptably gpproximate the flat fading
channd’s network performance. To overcome the restrictions of the RLM, additiona

degrees of freedom were added to form the 3SRLM.



The 3SRLM produces a PMD of frame error duration and PMD of good frame
run duration that very closdy approximates the PMD of the CCK operating across aflat
Rayleigh channd. Thisis achieved through the modd sructure and the parameter
edimation. By including two dates (fade, non-fade) with a controlled random
distribution, the 3SRLM is able to match frame-duration PMDs with tails heaver than
the trangtion gtate' s exponentid distribution. In addition to its extremdly flexible frame-
duration structure, the 3SRLM can be formed to dmost exactly maich the flat Rayleigh
fading channd’ s frame statistics of FER, ABEL, VBEL, AGRL and VGRL. Thus, the
3SRLM is capable of gpproximating the network performance exceptionaly well. The
additiona complexity of the 3SRLM-PHY was shown produce run times of only three
times longer than the MM-PHY . In summary, the results presented in this chapter
vaidate the gpproach of designing channd approximation to match high-order frame
satistics, and vaidate the 3SRLM as an appropriate, low complexity, flat Rayleigh

fading channd approximation.
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CHAPTER VII

CONCLUSION

The work contained in this dissertation addressed the design and analysis of low
complexity channel gpproximeations for network smulations. Firs, the popular two-state
Markov model channel approximation was explained and shown to inadequately
approximate the frame statistics and network performance of the TAMU-PHY fla
Rayleigh fading channd modd. Next, novd low complexity channel models were
described and andyzed for gatistical and network performance. Findly, it was shown
through gatistical and network andyss that the performance of a channd gpproximation
isdirectly rdated to its ability to mimic the probability mass digtribution (PMD) of
frame error duration and good frame run duration.

Detailed background information was provided on the fading environment. Red-
world channel measurements were taken and results provided. This information was
used to judtify the need for andyzing the flat fading channd for high-speed wireless
links.

The network smulator ns2 was introduced aong with a detailed description for
each channd module used in acquiring network smulation results. Implementation
issues such as heterogeneous frame sizes and tempora correlations were described aong
with ther solutions,

A wdll accepted two-gtate Markov model channel approximation was rigoroudy

andyzed for datigtical accuracy and network performance and found to provide



inappropriately conservative throughput results for low to moderate SNR. It was
hypothesized that matching the Satistical parameters of VBEL and VGRL dong with
FER, ABEL and AGRL would achieve accurate network performance results; however
thefirg novel chamnel modd (N=128 state Markov moddl) proved thisto be false.

The Markov model was extended to include multiple states through the first new
channel approximation: the N-state Markov Model. This modd was created to match
the frame datigtics of FER, ABEL, AGRL, VBEL and VGRL. While the modd
successfully approximated dl of the desired frame gtatidtics, it falled to match the PMD
of frame error duration and good frame run duration. The most obvious departure
between the desired and actual PMDs was the tail region, with the N-state Markov
model containing overly heavy tails. The network performance of the N-state Markov
model was overly-optimigtic, containing nearly 90% throughput acrossdl SNR. 1t was
desired to find amodd that could more accurately gpproximate the tails of a PMD.

The run-length modd (RLM) was introduced and analyzed for three different
versons. Thefirs two, RLMv1 and RLMV2, derived the parameter estimation through
physica layer performance equations without the use of frame error statistics. In both
cases, the RLM contained a frame error duration PMD that better approximated the
desired PMD than the N-state Markov moddl. The RLMv1 and RLMv2' singhility to
match the basic frame statistics of FER, ABEL and VBEL overshadowed the closer tall
PMD performance. A third approach was presented and smply called RLM, where
frame error gatistics are used to estimate the model parameters. This approach resulted

in an exact matching of the frame statistics of FER, ABEL, AGRL, and VBEL but was
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unable to accurately modd the good frame run duration gtatistic of VGRL. More
importantly, the RLM did not accurately match the distributions of good frame run
durations. This mode was shown to improve upon the accuracy of two-state Markov
mode and Hill provide a conservative estimate of the network performance.

The three-state run-length modd (3SRLM) wasthe find nove, low complexity
channd moded presented in thiswork. Parameter estimation for the 3SRLM was derived
through knowledge of the desired frame gatistics of FER, ABEL, AGRL, VBEL, and
VGRL. It was shown through the N-state Markov model that matching these frame
datigtics is insufficient to achieve the desired PMD for frame error duration and good
frame run duration, however the 3SRLM contained a structure that allowed purely
random good frame run and frame error states. The 3SRLM’ s structure allowed
aufficient variahility in the tails to achieve the desired probability mass distributions
through the matching of the aforementioned frame statistics. Network smulations were
performed upon the 3SRLM and showed a very accurate gpproximation of throughput.

In conclusion, thiswork provided motivation for the development and use of flat
fading channd gpproximations. Furthermore, it analyzed the most popular existing
channel gpproximation and found it lacking. New models were crested and, through
their andysis, it was determined that by matching the PMD of frame error duration and
the PMD of good frame run duration, a channel gpproximation achieves a more accurate
network performance in low to moderate SNR. One of the models, the 3SRLM, is
shown to achieve a good approximation of both the desired probability mass

digtributions with only knowledge of the key frame satistics of FER, ABEL, AGRL,
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VBEL and VGRL. The cogt of this new model is described in terms of rative
computationa complexity through run-time observations and is shown to be only three

times more complex than the two- state Markov moddl.
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APPENDIX A

DERIVATION OF AVERAGE BURST ERROR LENGTH (ABEL) FOR RLM

This gppendix contains the derivation of the ABEL (5.27) for the Run Length Model.
The ABEL can be restated as the average duration of aburst error. In our

andysis, dl errorsare consdered ‘bursts and thus ABEL is ameasure of the average

duration of an ‘error’, whereasingle ‘error’ is defined as a group of consecutive, bad

frames. One can define ABEL as the expected duration of an error given an error

occurs, through:
ABEL = E[E, | €], (A.2)
peeL =& ElE, 15]Ps 1o a2
ABEL = E[E, |nf]Pr[nf |+ E[E, | f]Pr[f | €] (A3)

Each of the termsin (A.3) can be found with respect to the RLM model
parameters. Thefirst term is the expected value of error duration in the non-faded state
E[EL|nf]. Eachframein the non-faded state has an independent probability of failure of
fer, making the value of error duration aversion of a Geometric random variable. So,

thisterm is actudly the number of independent Bernoulli trids until the first success.
E[E |nf]===—— (A.4)

The second term is the expected vaue of the error duration in the faded state E[ Ey |f] .

Thisis smply the mean of the faded state duration.
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E[E | f]=m, (A.5)
The next term is a bit more complex and involves finding the probaility of being in the
non-faded state given that an error has occurred P[ nf|e] . Using Bayes theorem, one can
form,

Pr[e | nfatt] Pr[nfatt] .

Pr[nf |e] = Pr[e]

(A.6)

where the probability of an error in the non-faded case can be considered as the rate of
errorsin the non-faded case. Note, thisis not the same asthe rate of frame errorsin the
non-faded case, asan ‘error’ may contain multiple frame errors. The term nf; refersto
the number of times an error can beinitiated when in the non-faded case. So, Pr(nf )
will take into account that an error may contain more than a single frame error and thus
will be fundamertaly different than Pr(nf).
The probability of an error given an attempt was made in the non-faded state
Pl e|nfa] can be expressed asaratio of the expected number of errorsin the non-faded

case relative to the expected total attempts in the non-faded case,

— El.ean - . El.leJ -
) Ela] e, T o ] ‘7
and smplified to,
_ fer
Pr[e| nfatt] - fer +1 (A-S)
through
Ele, |2 == fer(- fer), (A.9)

E[E, |nf]
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E[no - €y ] =1- fer. (A.10)
The only remaining unknown term in the probability of being in the non-faded

date givenan error Pr[nf|error], isthe probability of an error occurring

Prle]= a Priels, )Pr(s..)
= Pr(e[ nf , )Pr(nf )+ Pr(e] f..)Pr(f).

(A.11)

Asshown in (A.11), thisterm can be easily found with the knowledge of the probability
of anon-faded attempt,

— E[nfatt] — E[nfatt |1—CyC|e]

" Efatt] ~ Efatt|1_cydle] " (A.12)

Pr[nf,]

The probability of a non-faded attempt will be the ratio of the expected attemptsin the
non-faded case to the expected total attempts.

E[nf,, 11_cycle]
E[nfEltt |1_cyc e] +1

Prnf,, ] = (A.13)

The expected totd attempts in the non-faded case will be equa to the sum of the
expected successful attempts and the expected error attempts.

E[nf_, |1_cycle] = E[good,,| + E[e,,] (A.14)
It is known that the successful attempts will result in asingle good frame, while the error
atemptswill result inaseriesof ‘E[error_durr|nf]” frame errors. Since the expected
total framesin the non-faded case is the known mode parameter mys, one can form the
expected vaue of the error lengths given the non-fade state through:

m,, = E[good,,, |1_cycle] + E[e,, |1_cycle]E[E, |nf], (A.15)

E[good,,|=@- fer)m,, (A.16)
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E[E, |nf] ‘% (A.17)

Onecanform
E[nf,, |1_cycle] = @- fer®)m,, (A.18)
for the expected vaue of the number of non-faded attemptsin one cycle. Therefore,

(A.13) can be smplified to

m, (1- ferz)

Prinf.|= f —. A.19
It = et (A19)

Since each case of the ‘faded’ state will result in asingle error and the probability of a

faded attempt isjust 1-Pr[nfa] one can form the probability of an error as
m fer?
Prlerror] = g e for o m,(l- fer’) L (A.20)
1+

fer gm, (1- fer? )+1 my (L- fer?)+1’

Theterm Pr[error] can be used to solve for the probability of a non-faded state

give an error occurred, as

& fer 0
Hm, (1 fer )
Pr[nf | ] = :2:”“ | (A.21)
gfer +1,.a (1 fer® )

Theterm Pr[nf|e] isoneof the four origina termsin(A.3). Since the probability of the

faded gtate given aburgt error issmply 1-Pr[nf|€] , the ABEL can be solved as

e 1 aae fer © (1_ ferz)
ABEL = G- fo g farlp " m 1 (A22)
L f .. .
Eef;eilgmnf(l- ferz)+1 gf;eilo (1 fer? )+1
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