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ABSTRACT

Least-squares Variational Principles and

the Finite Element Method: Theory, Formulations,

and Models for Solid and Fluid Mechanics. (December 2003)

Juan Pablo Pontaza, B.S., Texas A&M University;

M.S., Massachusetts Institute of Technology

Chair of Advisory Committee: Dr. J. N. Reddy

We consider the application of least-squares variational principles and the finite el-

ement method to the numerical solution of boundary value problems arising in the

fields of solid and fluid mechanics. For many of these problems least-squares principles

offer many theoretical and computational advantages in the implementation of the

corresponding finite element model that are not present in the traditional weak form

Galerkin finite element model. Most notably, the use of least-squares principles leads

to a variational unconstrained minimization problem where stability conditions such

as inf-sup conditions (typically arising in mixed methods using weak form Galerkin

finite element formulations) never arise. In addition, the least-squares based finite

element model always yields a discrete system of equations with a symmetric positive

definite coefficient matrix. These attributes, amongst many others highlighted and de-

tailed in this work, allow the development of robust and efficient finite element models

for problems of practical importance. The research documented herein encompasses

least-squares based formulations for incompressible and compressible viscous fluid

flow, the bending of thin and thick plates, and for the analysis of shear-deformable

shell structures.
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CHAPTER I

INTRODUCTION

A. Background

It is well known that application of the weak form Galerkin procedure to problems

whose solutions can be characterized as global minimizers results in global minimiza-

tion of quadratic functionals, such is the case for linear elasticity problems; see [93].

In this case, given a conforming discretization, the finite element solution is an or-

thogonal projection of the exact solution onto the trial space, i.e., the finite element

solution is a minimizer of an energy functional on the trial space so that it represents

the best possible approximation in the energy norm. Such a setting, hereafter referred

to as a variational setting, is the most favorable for a finite element approximation.

Failure to immediately recognize the link between global minimization of un-

constrained convex functionals and the success of the method for linear elasticity

problems led to early attempts to extend weak form Galerkin formulations beyond

problems whose solutions could be characterized as unconstrained global minimizers.

For example, problems of the saddle-point type, whose solution can be interpreted

as a constrained minimization of a convex functional by requiring adherence of the

discrete spaces to restrictive compatibility conditions; lack many of the attractive

properties of the variational setting. Implementation of weak form Galerkin finite el-

ement models without accounting for the restrictive conditions leads to a non-optimal

finite element approximation and un-reliable numerical results, in some cases reveal-

ing itself as spurious oscillations in the numerical solution. A typical example is given

by the primitive variable formulation of the Stokes problem for which the velocity and

The journal model is IEEE Transactions on Automatic Control.
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pressure approximation spaces cannot be chosen independently and must satisfy an

inf-sup condition (see, e.g., [35]).

In the context of the Stokes and/or the Navier-Stokes equations, various finite

element models attempting to fully or partially recover some of the properties of the

variational setting have been proposed, and among them the Galerkin-Least-Squares

and stabilized Galerkin methods have been extensively researched (see, e.g., [18, 32]).

These approaches have failed to achieve widespread use and acceptance due to their

explicit dependence on various mesh-dependent calibration parameters that need to

be fine-tuned from application to application.

In the past few years finite element models based on least-squares variational

principles have drawn considerable attention (see, e.g., [55, 13]). In particular, given

a partial differential equation (PDE) or a set of partial differential equations, the

least-squares method allows us to define an unconstrained minimization principle

so that a finite element model can be developed in a variational setting. The idea

is to define the least-squares functional as the sum of the squares of the equations

residuals measured in suitable norms of Hilbert spaces. Assuming the governing

equations (augmented with suitable boundary conditions) have a unique solution,

the least-squares functional will have a unique minimizer. Thus, by construction, the

least-squares functional is always positive and convex, ensuring coerciveness, symme-

try, and positive definitiveness of the bilinear form in the corresponding variational

problem. Moreover, if the induced energy norm is equivalent to a norm of a suit-

able Hilbert space, optimal properties of the resulting least-squares formulation can

be established. However, as we shall elaborate further in Chapter II, an optimal

least-squares formulation may result in an impractical finite element model. The rec-

onciliation that must exist between practicality and optimality in least-squares based

finite element models if of great importance and was first recognized by Bochev and
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Gunzburger [11, 13]. The practicality of the resulting finite element model is, to

a large extent, determined by the complexity of algorithm development and CPU

solve time of the resulting discrete system of equations. Typically, the practicality

is measured in terms of Ck continuity/regularity of the finite element spaces across

inter-element boundaries. Ideally, a least-squares finite element model with “C0 prac-

ticality” and full (mathematical) optimality is to be developed – unfortunately, this

can seldom be achieved in a satisfactory manner.

The first rigorous mathematical analysis of least-squares finite element formu-

lations can be traced back to the work of Bramble and Schatz [16] and Bramble

and Nitsche [15]. Earlier work on least-squares is documented in the review of Ea-

son [30]. Bramble and Schatz [16] analyzed least-squares models for 2mth order scalar

elliptic boundary value problems, where the least-squares functional was defined in

terms of L2 norms. Conforming discretizations require that the finite element space

be spanned by functions that belong to the Hilbert space H2m, in contrast to weak

form Galerkin models which require only Hm regularity (due to the weakened differ-

entiability requirements induced by the integration by parts). For the least-squares

model, this implies a minimum of C1 regularity of the finite element spaces across

inter-element boundaries. Moreover, the least-squares discrete problem has associated

with it a matrix conditioning of order h−4m, in contrast to the h−2m conditioning of

the Galerkin models. As a result, least-squares formulations lost appeal and failed to

gain popularity due to the higher regularity requirements (relative to the weak form

Galerkin formulation).

To reduce the higher regularity requirements, the PDE or PDEs are first trans-

formed into an equivalent lower order system by introducing additional indepen-

dent variables, sometimes termed auxiliary variables, and then formulating the least-

squares model based on the equivalent lower order system. The additional variables
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imply an increase in cost, but can be argued to be beneficial as they may represent

physically meaningful variables, e.g., fluxes, stresses or rotations, and will be directly

approximated in the model. Such an approach, is believed to be first explored by Jes-

person [52] and is the preferred approach in modern implementations of least-squares

finite element models. For 2nd order PDEs, and equivalent first order system is in-

troduced, and if the least-squares functional is defined in terms of L2 norms only,

the finite element model allows the use of nodal/modal expansions with merely C0

regularity.

In this work, to retain the “C0 practicality”, we use L2 norms to define the

least-squares functional, which in turn is defined in terms of first-order PDEs only.

Moreover, we can require the boundary conditions to be imposed either strongly or,

alternatively, in a weak sense through the least-squares functional. Notable benefits

from working in a variational setting include the fact that stability requirements such

as inf-sup conditions will never arise and that the resulting algebraic problem will

have a symmetric positive definite (SPD) coefficient matrix, which can be solved by

using robust iterative methods, such as preconditioned conjugate gradient methods.

In order to fully emulate the variational setting, one must define a L2 least-squares

functional that induces an energy norm that is equivalent to the H1-norm. If this is

achieved, the least-squares finite element solution can be interpreted as an orthogonal

projection in the Hilbert space with respect to the induced energy inner product and

thus results in an optimal approximation in the H1-norm.

Identifying norm equivalent functionals associated with a partial differential

equation is not a trivial task. We rely on the Agmon, Douglis, and Nirenberg (ADN)

theory [1] for elliptic operators to identify appropriate spaces to define a least-squares

functional that is norm-equivalent. First-order differential operators that are homoge-

neous elliptic in the ADN sense allow the construction of a L2 least-squares functional
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that is H1-norm equivalent. For non-homogeneous elliptic first-order differential op-

erators (in the ADN sense), a norm-equivalent least-squares functional may also be

constructed. However, the least-squares functional will be defined in terms of com-

putationally impractical norms (e.g., H−1 norms or norms that would require C1

regularity of the finite element spaces across inter-element boundaries) which could

be replaced by computable equivalents (e.g., weighted L2 norms); perhaps at the

expense of sacrificing properties of the variational setting.

First-order systems that allow the construction of a L2 least-squares functional

that is H1-norm equivalent are commonly referred to as H1-coercive formulations.

Such systems yield optimal error estimates with respect to the H1-norm for all vari-

ables.

B. Motivation of the research

In previous work concerned with least-squares finite element formulations, predomi-

nantly low order nodal expansions have been used to develop the discrete finite ele-

ment model (see [55] and references therein). When the formulation is not H1-norm

equivalent (sometimes referred to as a quasi-norm-equivalent or a non-equivalent for-

mulation), low order nodal expansions tend to lock and reduced integration tech-

niques must be used to obtain acceptable numerical results. When enough redundant

degrees of freedom are constrained the least-squares finite element solution using re-

duced integration yields a collocation least-squares finite element solution. However,

the collocation solution may not always be reliable and the least-squares functional

cannot be used to measure the quality of the solution (as it identically vanishes at

the collocation points).
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Least-squares finite element models that invoke the use of reduced integration

techniques are thus not bona fide least-squares based models, but rather collocation

least-squares based models. With this in mind, it is important to note that reduced

integration techniques will only result in a collocation solution if a strict balance

between the number of collocation points and total number of degrees of freedom is

satisfied. It is thus safe to say that, in general, blind application of reduced integration

techniques will not result in a collocation solution and should be avoided.

Even though a quasi-norm-equivalent or a non-equivalent formulation departs

from the ideal mathematical setting, it does not lead to disastrous results; as a vi-

olation of the inf-sup condition would, in a mixed weak form Galerkin formulation.

Motivation for this study arose from the resiliency of least-squares formulations to

such departures from the mathematically ideal setting. Furthermore, we refrain from

using reduced integration techniques and it is through our work that we wish to

advance the practice of full integration and residual minimization through proper

hp-refinement. In particular, we find that use of high p-levels (typically p ≥ 4) are

desirable for least-squares based finite element models and that such practice provides

a desirable balance between practicality and optimality.

C. Scope of the research

The research started at Texas A&M University in the Fall of 2001 and encompasses

the formulation of least-squares based finite element models for incompressible viscous

fluid flow [87, 86], inviscid compressible flow [81], viscous compressible flow in the sub-

sonic/transonic/supersonic flow regime [83], the bending of thin and thick plates [85],

and shear-deformable shells [84]. In addition we develop a novel least-squares formu-

lation for transient problems where the effects of space-time are fully coupled [86],

resulting in an unconditionally stable time-stepping scheme where spectral accuracy
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is achieved in space-time. Throughout this work we emphasize the advantages of

using least-squares based finite element models, as opposed to the traditional weak

form Galerkin based finite element models.

The dissertation is organized as follows. In Chapter II, we present the steps

involved in developing a least-squares based finite model, we do so in the context

of an abstract initial boundary value problem. We briefly present the mathematical

theory of least-squares based formulations, specifically the notion of norm-equivalence

of least-squares functionals and its consequences in the form of optimal a priori error

estimates.

Chapters III and IV are concerned with incompressible and compressible fluid

flows. In Chapter III, we develop least-squares based formulations and finite element

models for viscous incompressible fluid flows governed by the Navier-Stokes equa-

tions. Least-squares finite element models based on equivalent first-order systems

obtained by introducing vorticity, stresses, or velocity gradients as additional inde-

pendent variables are presented and compared. Verification and validation of the

models and associated computational algorithm is presented in the form of numerical

results and comparisons with well established benchmark problems, including flow

over a backward-facing step, lid-driven cavity flows, and flow past a circular cylinder.

In Chapter IV, we present least-squares formulations for viscous compressible fluid

flows. Such formulations are aimed at flow problems characterized by incompressible

flow in parts of the domain with imbedded regions where compressibility effects are

significant and cannot be neglected. The formulation is directly applicable to viscous

flows in the subsonic, transonic, or supersonic regime. The ease by which character-

istic based boundary conditions are imposed through the least-squares functional is

emphasized. Numerical results for flow past a circular cylinder at different free-stream

Mach numbers and different surface thermal loadings are presented.
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Chapters V and VI are concerned with applications to solid mechanics, specif-

ically plates and shells. In Chapter V, we present a least-squares formulation for

the bending of thin and thick plates, i.e., plate models based on the Kirchhoff and

Mindlin theories. The least-squares based plate elements are shown, through the

solution of carefully chosen benchmark problems, to be insensitive to shear-locking

and severe geometric distortions. In Chapter VI, we develop a least-squares formu-

lation for the analysis of shear-deformable shell structures. Specifically we consider

cylindrical shell structures and illustrate the performance of the formulation through

the numerical solution of several well established benchmark problems, including the

barrel-vault problem and the pinched cylinder problem. Finally in Chapter VII, we

give concluding remarks and comment on the direction of ongoing and future research.
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CHAPTER II

AN ABSTRACT LEAST-SQUARES FORMULATION

In this chapter we present the steps involved in developing and arriving at a least-

squares based finite element model. We wish to present the procedure in a general

setting, and to this end present the procedure in the context of an abstract initial

boundary value problem.

First, we introduce notation that will be used throughout this chapter and in

the remainder of this work. Given the abstract initial boundary value problem, our

first task is to form the least-squares functional; which may be defined to yield a

space-time coupled or decoupled formulation. The variational problem statement is

obtained by defining the least-squares minimization principle in infinite dimensional

spaces and the corresponding finite element model obtained by restricting the spaces

to finite dimensional subspaces. These closed spaces are spanned at the element level

by piecewise nodal/modal polynomial expansions.

Of paramount importance is to establish whether or not the resulting least-

squares based formulation is within the ideal mathematical setting, i.e., whether or

not the least-squares functional defines an equivalent norm in a suitable Hilbert space.

Although norm-equivalence is always desirable, it sometimes needs to be sacrificed to

yield practical finite element models. We discuss in detail the properties that are lost

when this compromise between optimality and practicality is made, and whether or

not the resulting formulation is able to yield optimal results.

We conclude the chapter by giving details on the nodal/modal expansions used

in this work and discussing effective and efficient solution procedures designed to

take advantage of the (always) symmetric positive definite structure of the resulting

coefficient matrix associated with the discrete least-squares finite element model.
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A. Notation

Let Ω̄ be the closure of an open bounded region Ω in R
d, where d = 2 or 3 represents

the number of space dimensions, and x = (x1, . . . , xn) = (x, y, z) be a point in

Ω̄ = Ω ∪ ∂Ω, where ∂Ω = Γ is the boundary of Ω.

For s ≥ 0, we use the standard notation and definition for the Sobolev spaces

Hs (Ω) and Hs (Γ) with corresponding inner products denoted by (·, ·)s, Ω and (·, ·)s, Γ

and norms by ‖ · ‖s, Ω and ‖ · ‖s, Γ, respectively. Whenever there is no chance of

ambiguity, the measures Ω and Γ will be omitted from inner product and norm

designations. We denote the L2 (Ω) and L2 (Γ) inner products by (·, ·) and (·, ·)Γ,

respectively. By Hs (Ω) we denote the product space [Hs (Ω)]d. We denote by H1
0 (Ω)

the space consisting of H1 (Ω) functions that vanish on the boundary Γ and by L̄2 (Ω)

the space of all square integrable functions with zero mean with respect to Ω.

B. The abstract problem

Consider the following abstract initial boundary value problem:

Lt(u) + L
x
(u) = f in Ω × (0, τ ] (2.1)

G(u) = h on Γ × (0, τ ] (2.2)

in which Lt and L
x

are first-order partial differential operators in time and space

respectively, acting on the vector u of unknowns, f is a known vector valued forcing

function, G is a trace operator acting on u, and h represents a known vector valued

function on the boundary. We assume initial conditions are given such that the

problem is well posed and a unique solution exists.
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C. L2 least-squares formulation

The L2 least-squares functional associated with the abstract initial boundary value

problem is constructed by summing up the squares of the equations residuals in the

L2-norm and is given by

J (u; f ,h) =
1

2

(

‖Lt(u) + L
x
(u) − f ‖2

0, Ω×(0,τ ] + ‖ G(u) − h ‖2
0, Γ×(0,τ ]

)

. (2.3)

It is easy to see that the minimizer of (2.3) solves (2.1)-(2.2) and viceversa.

Note that in presenting the abstract initial boundary value problem and defining

its associated least-squares functional we made two restrictions: (1) the temporal and

spatial partial differential operators are of first-order and (2) the least-squares func-

tional is defined exclusively in terms of L2 norms. These restrictions are necessary

in order to ensure a pre-determined level of practicality in the resulting least-squares

based finite element model: specifically, the permission to use finite element spaces

with merely C0 regularity across inter-element boundaries. This is done with the un-

derstanding that the resulting finite element formulation may depart from the ideal

mathematical setting and hence may not yield optimal a priori error estimates. Nev-

ertheless, as we shall demonstrate with the aid of numerical examples, such departures

from the ideal mathematical setting will not result in disaster (as a violation of an

inf-sup condition would, in a weak form Galerkin formulation). In fact, least-squares

formulations that depart from the ideal mathematical setting show remarkable ro-

bustness and are able to recover optimal properties provided the expansion order is

high enough. For the purposes of this study we shall retain the aforementioned pre-

determined level of practicality (i.e., C0 practicality). However, ongoing research is

pointing towards relaxing this level of practicality by considering finite element spaces

with better regularity across inter-element boundaries: C1 or C2 regularity. This re-
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laxes restrictions (1) and (2) and hence may improve on the compromise between

optimality and practicality (see Chapter VII).

If the partial differential equations (PDEs) under consideration are not of first

order, the “C0 practicality” of the least-squares based finite element model comes at

an extra cost, implied in restriction (1); which requires that the partial differential

operators be of first order. This can always be achieved by introducing auxiliary

variables until a first order system is attained. The added cost might be viewed as

beneficial, in the sense that the auxiliary variables may have physical relevance to the

problem under consideration, e.g., fluxes, stresses, or rotations.

1. Space-time coupled formulation

In addition, note that prior to defining functional (2.3) we did not replace the tem-

poral operator with a discrete equivalent. This results in a fully space-time coupled

formulation, implied in the definition of functional (2.3) where the L2 norm is de-

fined in space-time, i.e., ‖ · ‖0, Ω×(0,τ ] denotes the L2 norm of the enclosed quantity in

space-time:

‖u‖2
0, Ω×(0,τ ] =

τ
∫

0

∫

Ω

|u|2 dΩ dt .

This implies, for example, that a two-dimensional time-dependent problem will be

treated as a three-dimensional problem in space-time domain. When dealing with

the stationary form of the equations the integral over time domain is simply dropped.

In the space-time coupled approach, the effects of space and time are allowed to

remained coupled. There is no approximation of the initial boundary value problem.

Instead, a basis is introduced in time domain to represent the time evolution of the

independent variables.

Invariably, we as analysts would like to simulate and study the time evolution of

an initial value problem for large values of time. Taking into consideration modelling
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issues, we realize that this would require a space-time mesh with a large number

of elements in time domain. The size of the resulting set of assembled algebraic

equations could be large and prohibitively expensive in terms of available computer

memory and non-optimal in terms of CPU solve time. To alleviate the drawbacks,

we adopt a time-stepping procedure in which the solution is obtained for space-time

strips in a sequential manner. The initial conditions for the current space-time strip

are obtained from the latest space plane from the previous space-time strip. Hence, for

each space-time strip we solve a true initial boundary value problem, by minimizing

the following functional in space-time domain:

J (u; f ,h) =
1

2

(

∥

∥Lt(u) + L
x
(u) − f

∥

∥

2

0, Ω×[ts,ts+1]
+ ‖ G(u) − h ‖2

0, Γ×[ts,ts+1]

)

(2.4)

where the interval [ts, ts+1] can be taken arbitrarily large, i.e., there are no restrictions

on the size of the interval.

Since the initial boundary value problem in each space-time strip is represented

and solved with predetermined accuracy of order p, the question of stability does

not arise (see [86, 8, 9] and Chapters III and IV). The only issue that remains is

accuracy; which we can control by hp refinements in time. Furthermore, the L2 least

squares functional can provide an error measure for adaptive h, p, or hp refinements

in space-time.

2. Space-time decoupled formulation

In a space-time decoupled formulation, discretization in space and time are done inde-

pendently. Traditionally, the temporal operators are represented by truncated Taylor

series expansions in time domain. Such formulations result in an inherent approxi-

mation of the initial boundary value problem and thus the investigation of stability

is essential. Representation of the temporal operator by high-order approximations,
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such as multi-step schemes, are only conditionally stable; imposing severe limitations

on the size of the allowable time increment. To further illustrate we present in the

following a space-time decoupled formulation.

First, the temporal operator in Eq. (2.1) is replaced by a discrete equivalent:

Lt(u) ≈ L∆t(u
s+1,us−q) ,

where the time increment dependence of the discrete operator is explicit as well as its

dependence on histories of previous time steps. For sufficiently small ∆t, the modified

problem is equivalent to the original problem. To march the problem in time using

a least-squares spatial finite element model, we must minimize the following space

functional at each time step:

J∆t (u; f ,h) =
1

2

(

‖L∆t(u
s+1,us−q) + L

x
(us+1) − f s+1 ‖2

0, Ω

+ ‖ G(us+1) − hs+1 ‖2
0, Γ

)

(2.5)

where the dependence on the time increment ∆t = ts+1 − ts is evident. Once the

discrete model is obtained, the eigen-spectrum of the amplification matrix needs to be

examined and the time-step restriction determined as a function of an upper bound

for the maximum eigenvalue; see Reddy [94]. The upper bound for the maximum

eigenvalue will undoubtedly be highly dependent on the spatial expansion order,

resulting in severe restrictions in the allowable time increment for high-order spatial

expansions. Note that, unlike the weak form Galerkin formulation of time-dependent

problems, a semidiscrete system of ordinary differential equations in time for the

element degrees of freedom does not arise because the temporal approximation was

performed first.
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D. The variational problem

Having defined the least-squares functional (2.3), the abstract least-squares minimiza-

tion principle can be stated as:

find u ∈ X such that J (u; f ,h) ≤ J (v; f ,h)∀v ∈ X (2.6)

where X is a suitable vector space, e.g. X = H1
(

Ω̄ × (0, τ ]
)

, and we assume that the

functions f ,h are sufficiently regular, e.g. f ∈ L2 (Ω × (0, τ ]) and h ∈ L2 (Γ × (0, τ ]).

The Euler-Lagrange equation for this minimization problem is given by the fol-

lowing variational problem (also see [93]):

find u ∈ X such that B (u,v) = F (v) ∀v ∈ X (2.7)

where B is a symmetric form given by

B(u,v) = (L(u),L(v))0, Ω×(0,τ ] + (G(u),G(v))0, Γ×(0,τ ]

and F is a functional given by

F(v) = (f ,L(v))0, Ω×(0,τ ] + (h,G(v))0, Γ×(0,τ ]

where L = L
x

+ Lt.

The inclusion of the boundary residual in (2.3) allows the use of spacesX that are

not constrained to satisfy the boundary condition (2.2). In such a case, the boundary

condition (2.2) is enforced in a weak sense through the least-squares functional. This

is a tremendous advantage of least-squares based formulations, as it allows boundary

conditions that are computationally difficult to impose to be efficiently included in the

least-squares functional. An example where this property becomes extremely useful is

for viscous or inviscid compressible flow (see [83] or Chapter IV), where characteristic-
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based boundary conditions need to be prescribed at outflow/inflow boundaries. Of

course, if the boundary condition (2.2) can be easily imposed and included in the

space X, we omit the residual associated with the boundary term in (2.3).

E. The finite element model

The finite element model is obtained by either restricting (2.7) to the finite dimen-

sional subspace Xhp of the infinite dimensional space X, or equivalently by minimiz-

ing (2.3) with respect to the chosen approximating spaces. This process leads to the

discrete variational problem given by

find uhp ∈ Xhp such that B
(

uhp,vhp
)

= F
(

vhp
)

∀vhp ∈ Xhp (2.8)

We proceed to define a discrete problem by choosing appropriate finite element

subspaces for each of the components of the vector valued function u. There are

no restrictive compatibility conditions on the discrete spaces, so we choose the same

finite element subspace for each of the primary variables. The only requirement on

the approximating spaces is that we choose continuous piecewise polynomials that

are at least bi-linear (in two dimensions) or tri-linear (in three dimensions).

F. Norm-equivalence and its implications

Our ultimate goal is to use (2.7) to compute approximate solutions to (2.1)-(2.2).

Clearly, the least-squares functional is consistent in the sense that for sufficiently

smooth data f , h and smooth solutions u of (2.1)-(2.2), J (u; f ,h) = 0. Furthermore,

by construction, the least-squares functional is convex and positive. Which allows us

to define an energy norm:

‖ · ‖E = J (·; 0, 0)1/2 : X → R , (2.9)
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and an associated energy inner product:

( (·, ·) )E : X ×X → R . (2.10)

Then, if Xhp ⊂ X,

1. the variational problem (2.8) has a unique solution given by uhp ∈ Xhp, and

2. uh is the orthogonal projection of u with respect to the energy inner prod-

uct (2.10), and thus represents the best possible solution in the energy norm (2.9).

In addition, if {ϕi}n
i=1 spans Xhp; the variational problem (2.8) is a linear system

of algebraic equations whose coefficient matrix K has entries given by

Kij = ((ϕj, ϕi))E . (2.11)

Thus, the coefficient matrix K is a Gramm matrix with respect to the energy inner

product (2.10) and thus is symmetric and positive definite. As a result, the system

KU = F has a unique solution.

Note that so far we have said nothing about norm-equivalence and already we

have established that the least-squares based finite element model will yield a convex,

unconstrained minimization problem with a unique minimizer that coincides with

the best possible approximate solution to (2.1)-(2.2) in a well defined norm. In

addition we have also established that the resulting discrete algebraic problem will

have a symmetric positive definite coefficient matrix. This explains the robustness of

least-squares based formulations, even when they depart from the ideal mathematical

setting (which has not yet been established).

Establishing norm-equivalence (and hence, and ideal mathematical setting) will

enable us to predict the asymptotic behavior of how uhp approaches u. For simplicity,

consider the stationary version of (2.1)-(2.2) and let X = H1(Ω̄). If the coercivity
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relation

C2 ‖u‖1, Ω ≤ ‖L(u) ‖0, Ω + ‖ G(u) ‖0, Γ ≤ C1 ‖u‖1, Ω (2.12)

holds for all smooth solutions u of (2.1)-(2.2), then the L2 least-squares functional

defines an equivalent norm in H1 in the sense

1

2
C2

2 ‖u‖2
1, Ω ≤ J (u) ≤ 1

2
C2

1 ‖u‖2
1, Ω (2.13)

or equivalently (and for the more general case),

1

2
C2

2 ‖u‖2
X ≤ ‖u‖2

E ≤ 1

2
C2

1 ‖u‖2
X (2.14)

and optimal h-convergence rates should be attained as follows [13]:

‖u − uhp‖r, Ω ≤ C hp+1−r , r = 0, 1 (2.15)

for smooth solutions u, with C independent of h. If norm-equivalence cannot be

established the constant C may be dependent on the mesh parameter h and/or not

much can be said about the optimality of the convergence rates of the resulting

formulation. This, however, does not imply that the resulting method is not optimal.

It simply means that its optimality cannot be determined a priori using standard

elliptic theory.

We illustrate the behavior of a non-equivalent least-squares functional with the

solution of the stationary incompressible Navier-Stokes equations in its velocity-

pressure-vorticity based first-order form with pure velocity boundary conditions. For

the purposes of this demonstration, we solve the well-known two-dimensional lid-

driven cavity problem in a series of meshes and for different p-levels such that the

total number of degrees of freedom remains constant. We consider the three cases

shown in Fig. 1 and flow conditions with Re = 103. For each case we plot the u-
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velocity profile along the geometric vertical mid-line of the cavity and the v-velocity

profile along the geometric horizontal mid-line of the cavity. We take the target solu-

tion to be that reported and tabulated by Ghia et al. [34], frequently used and widely

accepted as a verification benchmark.

60 × 60

p = 1, dof = 14,884

30 × 30

p = 2, dof = 14,884

10 × 10

p = 6, dof = 14,884

Fig. 1. Series of meshes used for the two-dimensional lid-driven cavity problem at flow

conditions Re = 103. The meshes are chosen such that the total number of

degrees of freedom remains constant for p-levels of 1,2, and 6, as shown.

Figures 2 and 3 show the u- and v- velocity profiles along the geometric vertical

and horizontal mid-lines of the cavity. For the 60 × 60 finite element mesh with a

p-level of 1 (i.e., bi-linear elements), the predicted velocity profiles are surprisingly

of extremely poor quality. Initially one might be disappointed at the performance

of the least-squares based formulation, as the 60 × 60 bi-linear finite element mesh

will give considerably better results with a weak form Galerkin formulation. However,

knowing that the least-squares functional we used to develop the finite element model

does not define an equivalent norm in Xhp ⊂ X, we conjecture that the constant C

in Eq. (2.15) depends on the mesh parameter h and thus expect a poor numerical

solution. To keep the cost of the computation comparable and the total number of

degrees of freedom constant we consider a 30 × 30 finite element mesh with a p-level

of 2 (i.e., bi-quadratic elements). The predicted velocity profiles are significantly
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improved, however not yet completely satisfactory. Still we are led to believe that

the constant C depends on the mesh parameter h but with a weakened dependence

at this p-level. Finally, we consider a 10 × 10 finite element mesh with a p-level of

6, where the total number of degrees of freedom is the same as for the previous to

cases. The predicted velocity profiles are in excellent agreement with the benchmark

solution and we are led to believe that at this p-level the dependence of the constant

C on the mesh parameter h is negligible or nonexistent. Typically a p-level of 4 is

sufficient to assure negligible or nonexistent dependence on the mesh parameter h.

u - velocity

y

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

60×60, p = 1

30×30, p = 2

10×10, p = 6

Ghia et al.

Fig. 2. u-velocity profiles along the vertical mid-line of the cavity at flow conditions

Re = 103.

The above illustrative example shows that if a non-equivalent least-squares func-

tional is used to develop the finite element model, high-order expansions are desir-

able. In general, as we will show in subsequent chapters, high order expansions are

always desirable when using bona fide least-squares based finite element models. If
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Ghia et al.

Fig. 3. v-velocity profiles along the horizontal mid-line of the cavity at flow conditions

Re = 103.

low-order expansions are to be used (i.e., p-levels of 1 or 2), it is best to use non-

standard least-squares procedures such as collocation. This is the preferred procedure

in the work presented by Jiang [55, 53, 54], Jiang et al. [58, 60, 59, 112], and Tang

et al. [102, 101, 103], although they refer to the collocation solution as a reduced

integration solution. However, in general, blind application of reduced integration

techniques will not result in a collocation solution and should be avoided.

G. Nodal/modal expansions

Having motivated the use of high-order expansion, we present in this section some

details on the high-order nodal/modal expansions used in this work. In accordance to

the pre-determined level of practicality, the nodal/modal expansion considered herein

have merely C0 regularity across element boundaries.
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Consider the two-dimensional case u = (u, v) and let Ph = {Q} be a family of

quadrilateral finite elements Ω̄e that make up the connected model Ω̄h. We map Ω̄e

to a bi-unit square Ω̂e = [−1, 1] × [−1, 1], where ξ = (ξ1, ξ2) = (ξ, η) is a point in Ω̂e.

Over a typical element Ω̂e, we approximate u by the expression

u(ξ, η) ≈ uhp(ξ, η) =
n

∑

j=1

∆j ϕj(ξ, η) in Ω̂e (2.16)

In a modal expansion, ϕj are tensor products of the one-dimensional C0 p-type

hierarchical basis

ψi(ξ) =































1−ξ
2

i = 1

(

1−ξ
2

) (

1+ξ
2

)

P α,β
p−2 2 ≤ i ≤ p, p ≥ 2

1+ξ
2

i = p+ 1

(2.17)

and ∆j are coefficients associated with each of the modes of the hierarchical basis.

In definition (2.17), P α,β
p are the Jacobi polynomials of order p. We use ultraspheric

polynomials corresponding to the choice α = β with α = β = 0 or 1.

ξ

ψ

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. C0 p-type hierarchical modal basis. Shown is the case of p = 5. The p-bubbles

are scaled by a factor of 4, for viewing ease.
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Figure 4 shows the one-dimensional modal basis for the case p = 5. The linear

basis or “hat-functions” ensure the C0 continuity requirement across element bound-

aries and the p-bubbles hierarchically enrich the finite element space. Note that by

construction the p-bubbles vanish at ξ = −1, ξ = +1 and have no nodes associated

with them.

In a nodal expansion, ϕj are tensor products of the one-dimensional C0 spectral

nodal basis

hi(ξ) =
(ξ − 1)(ξ + 1)L′

p(ξ)

p(p+ 1)Lp(ξi)(ξ − ξi)
(2.18)

and ∆j are nodal values due to the Kronecker delta property of the nodal basis.

In Eq. (2.18), Lp = P 0,0
p is the Legendre polynomial of order p and ξi denotes the

location of the roots of (ξ−1)(ξ+1)L′
p(ξ) = 0 in the interval [−1, 1]. The set of points

{ξi}p+1
i=1 are commonly referred to as the Gauss-Lobatto-Legendre (GLL) points.

ξ

h

-1.0 -0.5 0.0 0.5 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. C0 p-type (spectral) nodal basis. Shown is the case of p = 4.

Figure 5 shows the one-dimensional nodal basis for the case p = 4. The location

of the nodes coincides with the roots of the aforementioned Legendre polynomial and

thus receives the name of a “spectral” basis. The Kronecker delta property is evident

from the figure and is an attractive feature of this basis, as the coefficients ∆j in (2.16)

coincide with nodal values. The nodal basis is not hierarchical, i.e., all its “modes”

are of polynomial order p.
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In actual implementations the computationally more stable version of Eq. (2.18)

is used to generate the nodal basis:

hi(ξ) =

p+1
∏

j=1

j 6=i

(ξ − ξj)

/ p+1
∏

j=1

j 6=i

(ξi − ξj) . (2.19)

Details on the multidimensional construction of both the modal and nodal expansions

can be found in Ref. [64].

We approximate the rest of the components of the vector valued function u =

(u, v) in similar manner as we did for u in Eq. (2.16) and proceed to generate a

system of linear algebraic equations at the element level using (2.8). The integrals

in Eq. (2.8) are evaluated using Gauss quadrature rules. In our implementation the

Gauss-Legendre rules are used for both the modal and nodal expansions, and full

integration is used to evaluate the integrals.

The global system of equations is assembled from the element contributions using

the direct stiffness summation assembly approach. The assembled system of equations

can be written as






[K11] [K12]

[K12]
T

[K22]













{∆1}

{∆2}






=







{F 1}

{F 2}






(2.20)

where {∆1} , {∆2} are the modal/nodal unknown coefficients associated with u and v.

For details on standard finite element methods, such as mapping Ω̄e � Ω̂e, numerical

integration in Ω̂e, and assembly using the direct stiffness summation approach, see

Refs. [91, 94].

H. Solution procedures for SPD systems

The assembled system of linear equations resulting from the least-squares based finite

element model will always have a symmetric positive definite (SPD) coefficient matrix.
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It is thus appropriate to take full advantage of the symmetric positive definiteness by

using solvers specially designed for such systems. In this section we briefly discuss

the storage schemes and solution procedures used in the computational algorithms

developed for the numerical solution of the least-squares finite element models.

1. Direct solvers

Given a SPD coefficient matrix K ∈ R
N×N with bandwidth B, provided N >> B,

and effective direct solution procedure is banded Cholesky factorization. The amount

of work required for such an algorithm is approximately N(B2 + 3B) flops and N

square roots [36]. This, of course, requires a suitable storage scheme, e.g., storing

only the nonzero lower or upper triangular part in a (B + 1) by N array. A more

efficient storage scheme is the so called skyline storage, where B is allowed to vary

from row to row and the data is stored in a one-dimensional array.

The constraint, N >> B, implies that a narrow band is always desirable. This

is achieved, in the context of a finite element model, by numbering the local and

global degrees of freedom in an optimal, problem dependent manner. This places

severe restrictions on the size and geometry of the model. If we insist upon a banded

direct solver, an alternate approach is to use graph-theory to minimize the bandwidth

B of the matrix. For SPD matrices a popular choice is the Reverse Cuthill-McKee

permutation (see Ref. [95] for details on permutations). Applying the permutation

prior to the direct solve will always guarantee a minimum bandwidth, thus lifting

the burden on the user to find an optimal degree of freedom numbering for a given

problem.
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2. Iterative solvers

Direct methods become impractical when N is large, e.g., large three-dimensional

problems. In such cases, storage space may be limited in terms of available computer

memory and solve times may become non-optimal in terms of CPU time.

In loose terms, iterative methods generate a sequence of approximate solutions

{uk}M
k=1 and essentially involve the matrix K only for matrix-vector multiplications

(matvecs). This implies that sparse-oriented storage schemes or element by element

methods will prove useful in effectively computing the matvecs.

The performance of an iterative method is invariably measured on how quickly

the iterates converge to within an acceptable tolerance, i.e., we want M small in

achieving the prescribed tolerance. For a SPD coefficient matrix, an optimal choice

are preconditioned conjugate gradient (PCG) methods, whose convergence rate is

strongly dependent on the condition number of the (preconditioned) coefficient ma-

trix [36, 95]. A suitable preconditioner will effectively lower the condition number of

the coefficient matrix and result in fast convergence of the iterates. Ideally, the pre-

conditiner would be a cheap, good approximation to the exact Cholesky factor of K.

In this study we consider only a Jacobi preconditioner and a Symmetric Gauss-Seidel

(SGS) preconditioner. Details of the PCG algorithms and construction of the Jacobi

and SGS preconditioners can be found in Refs. [36, 95] among many others.

Application of the Gauss-Seidel preconditioner requires storage of the lower and

upper parts of the assembled system of equations to perform the preconditioning

step. The sparse storage scheme implemented for the computational algorithm is the

compressed sparse row/column scheme, which is probably the most popular for storing

general sparse matrices. The data structure uses three arrays with the following

functions:
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• a real one-dimensional array GLK containing real values Kij stored row by row,

from row 1 to N . The total size of GLK is nnz (number of non-zero entries in

Kij).

• an integer one-dimensional array JA containing the column addresses of the

elements Kij as stored in the array GLK. The total size of JA is also nnz.

• an integer one-dimensional array IA containing the address to the beginning of

each row in the arrays GLK and JA. The total size of IA is N + 1.

Such data structure allows for fast matvecs, whose computational cost dominates

each iterative step and thus its optimization is of paramount importance to the overall

speed of the computations.

For sufficiently large N , even the sparse storage scheme may prove inconvenient.

We therefore have to resort to storage-free techniques, also known as element-by-

element solution algorithms, and implement a matrix-free version of the conjugate

gradient method with a Jacobi preconditioner. The Jacobi preconditioner is easy

and inexpensive to construct and apply, but is significantly of lower quality than the

Gauss-Seidel preconditioner.

As implied earlier, the Gauss-Seidel preconditioner cannot be applied in a matrix-

free setting, as it requires storage of the lower and upper parts of the assembled system

of equations to perform the preconditioning step. It is necessary to emphasize that

the matrix-free conjugate gradient algorithm with a Jacobi preconditioner does not

require the assembly of a global matrix, not even an element matrix, which leads to

tremendous savings in computer memory; and if implemented properly, considerable

solve time speed-ups. Provided N is large enough, the matrix-free Jacobi CG solver

will outperform the Gauss-Seidel CG solver in terms of CPU time – but never in

terms of number of iterations required to converge within a specified tolerance.
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CHAPTER III

VISCOUS INCOMPRESSIBLE FLUID FLOWS

In this chapter† we specialize the abstract formulation presented in Chapter II to the

incompressible Navier-Stokes equations, governing the flow of viscous incompressible

fluids – relevant to various engineering disciplines.

The numerical solution of the incompressible Navier-Stokes equations using least-

squares based finite element models is among the most popular applications of least-

squares methods. Least-squares formulations for incompressible flow circumvent the

inf-sup condition, thus allowing equal-order interpolation of velocities and pressure,

and result (after suitable linearization) in linear algebraic systems with a SPD coeffi-

cient matrix. This translates into easy algorithm development and leads to the use of

robust and fast iterative solvers, resulting in substantial improvements over the weak

form Galerkin finite element model – where the finite element spaces for velocities

and pressure must satisfy the inf-sup compatibility condition and one must deal with

an un-symmetric and indefinite coefficient matrix.

Recall from Chapter II, that to ensure the pre-determined “C0 practicality” of

the least-squares based finite element model the governing equations must be recast

as an equivalent first-order system and the least-squares functional defined in terms

of L2 norms only. The incompressible Navier-Stokes equations, in particular the

conservation of momentum equations, contain second-order derivatives implying u ∈

H2 as a minimum requirement. A least-squares finite element model can indeed be

†Part of the numerical results reported in this chapter appear in the articles
“Spectral/hp least-squares finite element formulation for the Navier-Stokes equa-
tions” by J. P. Pontaza and J. N. Reddy, J. Comp. Phys., vol. 190, pp. 523–549,
2003 and “Space-time coupled spectral/hp least-squares finite element formulation
for the incompressible Navier-Stokes equations” by J. P. Pontaza and J. N. Reddy,
J. Comp. Phys., accepted for publication. Copyright (2003) Elsevier Science.
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developed by using the Navier-Stokes equations in their strong form, however such

formulation would require C1 regularity of the finite element spaces across inter-

element boundaries as a minimum requirement (see Chapter VII for examples). In

addition, if we are willing to upgrade to a “C1 practicality” level, we are allowed to

accommodate least-squares functionals defined in terms of H1 norms for first-order

operators.

Wishing to retain the “C0 practicality” level we realize that auxiliary variables

need to be introduced to recast the incompressible Navier-Stokes as an equivalent

first order system. The most popular choice of an equivalent first-order system for

the incompressible Navier-Stokes equations is the vorticity based first-order system.

In two-dimensions the total number of variables is only increased by one and this

formulation has the benefit of directly solving for a quantity of physical relevance,

the vorticity. Formulations based on the velocity-pressure-vorticity first order system

were first presented in the work of Jiang [55, 53, 54] and Jiang et al. [58, 60, 59].

However, Jiang’s work has been mostly based on non-standard least-squares proce-

dures: specifically, collocation (where the collocation points coincide with the Gauss-

Legendre reduced integration points).

Yet another approach is to introduce the stresses as independent variables. This

leads to a stress based first-order system. In two-dimensions the total number of

variables is increased by three. Surana and co-workers prefer this first-order system

in their work [110, 9].

A third option is to introduce all components of the gradient of the velocity vector

field as independent variables. Such an approach was first suggested and studied by

Cai et al. [20] and by Bochev et al. [12, 14]. In two dimensions the total number

of variables is increased by four and this formulation has the added benefit to easily

compute (in the post-processing stage) physical quantities of interest that are linear
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combinations of the partial derivatives of the velocity vector field, e.g., vorticity and

stresses.

Each of the three formulations has practical and mathematical advantages and

disadvantages. For example, the L2 least-squares functional for the vorticity based

formulation fails to define an equivalent norm in H1 for particular sets of bound-

ary conditions (details are given in Refs. [13] and [11]) and thus the optimality of

such formulation cannot be determined a priori (see Chapter II). Nevertheless, the

formulation has had widespread acceptance, and in actual implementations performs

exceptionally well. The L2 least-squares functional for the stress based formulation

is always non-equivalent, regardless of the choice of boundary conditions [13]. By

adding additional constraints to weaken the dependencies between variables, the L2

least-squares functional for the velocity gradient based first-order system can define

an equivalent norm in H1 [20, 12, 14]. However, the velocity gradient based system

is the most expensive of the three choices considered here.

We start by presenting the governing equations and the aforementioned equiva-

lent first-order systems where vorticity, stresses, or velocity gradients are introduced

as auxiliary variables. Verification procedures are presented for our computational

algorithm, showing exponentially fast decay (spectral convergence) of suitable error

measures as the element expansion order (p-level) is increased. The analysis is carried

out in geometrically un-distorted and distorted meshes, to reveal that the exponen-

tially fast rate of decay is preserved. Even though the L2 least-squares functional

used for the vorticity and stress based formulations is non-equivalent, spectral con-

vergence rates are achieved. Through the verification procedures we show that the

vorticity based formulation is preferred, as it is associated with fewer degrees of free-

dom and yields same order of accuracy results as the other more expensive equivalent

first-order formulations.
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Results for verification benchmarks, such as flow over a backward-facing step and

three-dimensional lid-driven cavity flow are presented. The chapter concludes with

a validation benchmark: flow past a circular cylinder, where predictions of various

flow metrics are compared against reliable experimental data and previously reported

high-order numerical simulation results and found to be in excellent agreement.

A. The incompressible Navier-Stokes equations

We consider the solution of the Navier-Stokes equations governing incompressible

flow, which in dimensionless form can be stated as follows:

Find the velocity u (x, t) and pressure p (x, t) such that

∂u

∂t
+ (u · ∇)u + ∇p− 1

Re
∇ ·

[

(∇u) + (∇u)T
]

= f in Ω × (0, τ ] (3.1)

∇ · u = 0 in Ω × (0, τ ] (3.2)

u (x, 0) = 0u (x) in Ω (3.3)

u = us on Γu × (0, τ ] (3.4)

n̂ · σ = f s on Γf × (0, τ ] (3.5)

where Γ = Γu∪Γf and Γu∩Γf = ∅, τ is a real number (time) > 0, Re is the Reynolds

number, ∇ · 0u = 0, σ = −p I + 1/Re
[

(∇u) + (∇u)T
]

, f is a dimensionless force, n̂

is the outward unit normal on the boundary of Ω, us is the prescribed velocity on the

boundary Γu, f s are the prescribed tractions on the boundary Γf , and in Eq. (3.3)

the initial conditions are given. We assume the problem is well posed.

In situations where outflow boundary conditions need to be modelled, the Navier-

Stokes equations in the ∇2u form are preferred [96]. In such cases, (using the incom-

pressibility constraint given in Eq. (3.2)) we would drop the (∇u)T term in Eq. (3.1),
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and the boundary conditions in Eq. (3.5) would then become

n̂ · σ̃ = f̃ s on Γf × (0, τ ] (3.6)

where σ̃ is a pseudo-stress, σ̃ = −p I+(1/Re) ∇u, and f̃ s are the prescribed pseudo-

tractions on the boundary Γf , prescribed as zero at an outflow boundary.

1. The vorticity based first-order system

Introducing the vorticity vector, ω = ∇×u, then by making use of the vector identity

∇×∇× u = −∇2u + ∇ (∇ · u)

and in view of the incompressibility constraint given in Eq. (3.2), the non-stationary

Navier-Stokes equations, Eqs. (3.1)-(3.5), can be replaced by their first-order system

equivalent:

Find the velocity u (x, t), pressure p (x, t), and vorticity ω (x, t) such that

∂u

∂t
+ (u · ∇)u + ∇p+

1

Re
∇× ω = f in Ω × (0, τ ] (3.7)

ω −∇× u = 0 in Ω × (0, τ ] (3.8)

∇ · u = 0 in Ω × (0, τ ] (3.9)

∇ · ω = 0 in Ω × (0, τ ] (3.10)

u (x, 0) = 0u (x) in Ω (3.11)

u = us on Γu × (0, τ ] (3.12)

ω = ωs on Γω × (0, τ ] (3.13)

The seemingly redundant equation (3.10) is needed in the three dimensional case to

make the system of equations uniformly elliptic [13]. In addition, Γu ∩ Γω = ∅, i.e., if
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velocity is specified at a boundary, vorticity need not be specified there. This implies

that no artificial boundary conditions for vorticity need to be devised at boundaries

where the velocity is specified. Outflow boundary conditions are imposed in a weak

sense through the least-squares functional as discussed in Chapter II.

2. The stress based first-order system

In the stress based first-order system we introduce the components of the stress tensor,

T = (∇u) + (∇u)T ,

as additional independent variables. Note that the stress tensor is symmetric, imply-

ing that Tij = Tji.

In terms of T, the non-stationary Navier-Stokes equations, Eqs. (3.1)-(3.5), can

be replaced by their first-order system equivalent:

Find the velocity u (x, t), pressure p (x, t), and stresses T (x, t) such that

∂u

∂t
+ (u · ∇)u + ∇p− 1

Re
∇ · T = f in Ω × (0, τ ] (3.14)

T −
[

(∇u) + (∇u)T
]

= 0 in Ω × (0, τ ] (3.15)

∇ · u = 0 in Ω × (0, τ ] (3.16)

u (x, 0) = 0u (x) in Ω (3.17)

u = us on Γu × (0, τ ] (3.18)

n̂ · T = Ts on ΓT × (0, τ ] (3.19)

Outflow boundary conditions are imposed in a weak sense through the least-squares

functional or can be modelled and imposed strongly by using the components of the

stress tensor.
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3. The velocity gradient based first-order system

To define the first-order velocity-pressure-velocity gradient system, we introduce all

components of the gradient of the velocity vector field as independent variables. View-

ing the d-vector functions as column vectors and the new d2-vector functions as either

block column vectors or matrices, using the notation of Ref. [20], we define the velocity

gradients, U, as follows:

U = ∇ (u)T

In terms of U, the non-stationary Navier-Stokes equations, Eqs. (3.1)-(3.5), can

be replaced by their first-order system equivalent:

Find the velocity u (x, t), pressure p (x, t), and velocity gradients U (x, t) such

that

∂u

∂t
+ (u · U)T + ∇p− 1

Re
(∇ · U)T = f in Ω × (0, τ ] (3.20)

U −∇ (u)T = 0 in Ω × (0, τ ] (3.21)

∇ · u = 0 in Ω × (0, τ ] (3.22)

∇× U = 0 in Ω × (0, τ ] (3.23)

∇ (trU) = 0 in Ω × (0, τ ] (3.24)

u (x, 0) = 0u (x) in Ω (3.25)

u = us on Γu × (0, τ ] (3.26)

n̂ · U = Us on ΓU × (0, τ ] (3.27)

where trU =
∑d

i=1 Uii. For d = 2 (the two-dimensional case) we may also specify

t̂ · U = t̂ · ∇ (us(x))T on Γu , where t̂ is the unit tangent on the boundary of Ω.
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Similarly, for d = 3, we may specify t̂1 · ∇ (us(x))T and t̂2 · ∇ (us(x))T on Γu,

where t̂1 and t̂2 are unit tangent vectors on the boundary of Ω.

The seemingly redundant equations (3.23) and (3.24) are needed to make the

system achieve H1-coercivity [20, 12, 14]. Outflow boundary conditions are imposed

in a weak sense through the least-squares functional or can be modelled and imposed

strongly by using the components of the gradient of the velocity vector field.

B. Numerical examples: verification benchmarks

Having presented the three equivalent first-order systems for the incompressible Navier-

Stokes, we use the procedures outlined in Chapter II to develop and arrive at the

least-squares based finite element model. Depending on the size of the problem, the

storage scheme and solution procedure are chosen as discussed in Chapter II.

In this section we are concerned with the verification of the spectral/hp least-

squares based finite element computational algorithm, we follow the verification proce-

dures suggested in Ref. [80]. The algorithm verification procedure must convincingly

demonstrate that the governing equations, in this case the incompressible Navier-

Stokes, are being solved consistently. The process of verification is thus a quantita-

tive study of the accuracy of the numerical solution which deals with investigation

of spatial and temporal convergence rates and independence of solutions to coordi-

nate transformations. Theoretical a priori error estimates may prove useful in such

a study, but are not considered to be part of the verification procedure: the code

must be used to demonstrate that the optimal (or sub-optimal) spatial and temporal

convergence rates are achieved.

Rigorous verification requires proof, in a practical sense, that the computational

algorithm accurately represents the mathematical model (i.e., the governing equa-
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tions) and its solution. With this is mind, it is of great importance to choose suitable

error measures that convincingly show, through a convergence study, that the gov-

erning equations are being solved consistently.

A suitable error measure is, for example, the L2 least-squares functional (J ). In

fact, this error measure is of great value and importance in the verification procedure.

Convergence of this measure to zero implies that the L2 norm of the residuals of the

governing equations are going to zero, i.e., conservation of mass and momentum are

being satisfied. Equally important error measures are the L2 norms of the differ-

ence between the numerical solution and the analytic solution. Convergence of this

measure to zero implies that the numerical solution approaches the exact solution.

The aforementioned measures will be used to demonstrate that the computational

algorithm solves the governing equations consistently, i.e., verification.

In the following we present two analytic solutions to the incompressible Navier-

Stokes equations and use them for the purpose of algorithm verification. The first

benchmark problem is well suited for verification of the stationary (steady) equations

and the second benchmark problem for the non-stationary (unsteady) case. A series of

benchmark problems in the form of well-documented published numerical studies are

then used to further verify the computational algorithm. Among these benchmarks we

consider flow over a backward-facing step and two- and three-dimensional lid-driven

cavity flows.
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1. Kovasznay flow

The first benchmark problem for verification is an analytic solution to the two-

dimensional, stationary incompressible Navier-Stokes due to Kovasznay [66]. The

spatial domain in which Kovasznay’s solution is defined is taken here as the bi-unit

square Ω̄ = [−0.5, 1.5] × [−0.5, 1.5]. The solution is given by

u(x, y) = 1 − eλx cos(2πy)

v(x, y) =
λ

2π
eλx sin(2πy)

p(x, y) = p0 −
1

2
e2λx

(3.28)

where λ = Re/2 − (Re2/4 + 4π2)1/2 and p0 is a reference pressure (an arbitrary

constant). Figure 6a shows u-velocity contours of the exact solution for Re = 40.

a. p-refinement study

First, we perform a p-refinement study. For such a study, we choose and fix a spatial

discretization Ω̄h, and systematically increase the p-level of the element approximation

functions. Figure 6b shows the discretization of the domain, Ω̄h, for the p-refinement

study. The discretization is a non-uniform mesh of 8 quadrilateral finite elements Ω̄e.

Having chosen appropriate error measures, these measures should decay exponentially

fast as the p-level is increased. In a logarithmic-linear scale the expected rate of

convergence would appear as a straight line.

The incompressible Navier-Stokes equations in the vorticity based first-order form

are used to develop the least-squares finite element model. Nodal expansions (spec-

tral elements) are used to obtain the discrete model. The exact solution, given by

Eq. (3.28), is used to prescribe Dirichlet velocity boundary conditions on Γ and pres-

sure is specified at a point. No boundary conditions for the vorticity are necessary.
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Fig. 6. Kovasznay flow: (a) u-velocity contours of the exact solution for Re = 40; (b)

computational domain for p-refinement study.

The discrete system is linearized using Newton’s method and the resulting linear

algebraic system of equations with a symmetric positive definite coefficient matrix

solved using Cholesky factorization at each Newton step. Nonlinear convergence was

declared when the relative norm of the residual in velocities, ‖∆uhp‖/‖uhp‖, was less

than 10−4, which typically required five Newton iterations.

Even though the resulting linear algebraic system of equations lends itself nat-

urally to be solved using robust iterative methods, such as preconditioned conjugate

gradient methods, we have chosen to use a direct solver. The reason for this choice,

during the verification stages, is twofold. First, we prevent iterative convergence

errors to pollute the error measures for verification of the algorithm. Second, the

results obtained from the direct solver are to be used to verify results obtained from

the iterative solver once the algorithm has been verified.

In Fig. 7 we plot the L2 least-squares functional and L2 error of the velocity,

pressure, and vorticity fields as a function of the expansion order in a logarithmic-
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linear scale. Exponentially fast decay (spectral convergence) of the L2 least-squares

functional and L2 error is observed. For a p-level of 9, the L2 norm of the error in

velocities and pressure is already of machine order zero, meaning that the computed

velocity and pressure fields are exactly those given by the analytic solution. Of course,

for practical purposes, a satisfactory solution could already be claimed at p-levels of

5 or higher.
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Fig. 7. Decay of the least-squares functional and convergence of the velocity, pressure,

and vorticity fields to the Kovasznay solution in the L2-norm. p-convergence.
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b. h-refinement study

Next, we perform a h-refinement study. For such a study, we fix the p-level of the

element approximation functions, and systematically refine the mesh. The error mea-

sures should decay at an algebraic rate as the mesh is refined. In a log-log scale the

expected rate of convergence would appear as a straight line. For a fixed p-level of 4,

standard elliptic theory predicts an optimal convergence rate of 5 in the L2 norm for

velocities.

h
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slope = 5

Fig. 8. Decay of the least-squares functional and convergence of the velocity field to

the Kovasznay solution in the L2-norm. h-convergence.

Five different uniform meshes are used to perform the h-refinement study. The

meshes varied successively from 3 × 3 to 6 × 6 uniformly spaced elements in Ω̄. In

Fig. 8 we plot the L2 least-squares functional and L2 error of the velocity field for

successively refined meshes in a log-log scale. We see that an algebraic convergence

rate slightly better than that predicted by standard elliptic theory is achieved.
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c. Distorted meshes

Having demonstrated that the error measures tend to zero through h and/or p refine-

ment studies using meshes aligned with an orthogonal coordinate system is generally

not yet sufficient. To fully exercise all the terms in the finite element formulation,

specifically cross-derivative terms, we still must perform a h or p refinement study

using a distorted mesh. To illustrate the procedure, we perform a p-refinement study

for the geometrically distorted mesh shown in Fig. 9.

-0.5 0.0 0.5 1.0 1.5

-0.5

0.0
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1.0

1.5
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Fig. 9. Kovasznay flow: computational domain consisting of 4 × 4 geometrically dis-

torted elements.

In Fig. 10 we plot the L2 least-squares functional and L2 error of the velocity,

pressure, and vorticity fields as a function of the expansion order in a logarithmic-

linear scale for the analysis in the geometrically distorted mesh. Exponentially fast

decay (spectral convergence) of the L2 least-squares functional and L2 error is ob-

served. As expected, for the distorted mesh, slightly higher p-levels are needed to

obtain the same level of accuracy when compared to the geometrically undistorted

mesh results.
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Having performed a h- and/or p-refinement study in geometrically distorted and

undistorted meshes, we have conclusively shown that the error measures tend to zero.

Hence, the verification procedures have been completed successfully. Although the

verification results shown here correspond to the vorticity based formulation, similar

results are obtained for the stress and velocity gradient based formulations.
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Fig. 10. Distorted mesh study: decay of the least-squares functional and convergence

of the velocity, pressure, and vorticity fields to the Kovasznay solution in the

L2-norm. p-convergence for the geometrically distorted mesh.
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d. Cost comparison

Also of interest is the cost and relative performance of the three equivalent first-order

systems. A cost comparison between the vorticity, stress, and velocity gradient based

formulations for the Kovasznay problem is illustrated in Fig. 11, by plotting the L2

error of the velocity field as a function of the total number of degrees of freedom in a

logarithmic-linear scale. Clearly, the vorticity based formulation is preferred because,

for a given number of degrees of freedom, it allows for a more accurate solution

at higher p-levels. Or equivalently, for a desired order of accuracy, a lower cost is

incurred.
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Fig. 11. Convergence of the velocity field to the Kovasznay solution in the L2-norm

for the vorticity, stress, and velocity gradient based first-order systems. Cost

comparison.
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The lower cost of the vorticiy based formulation is due to the fact that for

d = 2 (the two-dimensional case) the vorticity first-order decomposition introduces

only one component of the vorticity vector as an additional variable, whereas the

stress first-order decomposition introduces three additional variables and the velocity

gradient first-order decomposition introduces four additional variables. For d = 3 the

vorticity first-order decomposition introduces the three components of the vorticity

vector as additional variables, whereas the stress first-order decomposition introduces

six additional variables and the velocity gradient first-order decomposition introduces

nine additional variables.

In addition we note that for the p-convergence study, both the non-equivalent

and norm-equivalent formulations achieve spectral convergence. Clearly, the fact

that the L2 least-squares functional for the vorticity and stress based formulations

is not H1-norm equivalent and hence defines a non-equivalent formulation; does not

imply that the method is not optimal. It simply means that the optimality of the

resulting method cannot be established a priori using standard elliptic theory. Similar

observations were reported by Proot and Gerrtisma [88], for non-equivalent and norm-

equivalent formulations, when verifying spectral convergence for the vorticity based

first-order Stokes equations.
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2. A manufactured solution

Having verified the computational algorithm with a stationary (steady) solution to

the incompressible Navier-Stokes equations, we now wish to verify the algorithm with

a non-stationary (unsteady) problem. The second benchmark problem for verification

is based on a closed form manufactured solution. The basic idea behind manufac-

tured solutions is to simply come up with an exact solution, preferably one that is

infinitely differentiable (i.e., smooth), not trivially reproduced by the element ap-

proximation functions (i.e., no polynomials), and will exercise all the terms in the

governing equation (or at least the ones we are interested in exercising).

We consider two-dimensional, unsteady flow in the bi-unit square, Ω̄ = [−1, 1]×

[−1, 1]. We prescribe the closed form analytic solution to the non-stationary, incom-

pressible Navier-Stokes equations to be of the form,

u(x, y, t) = au + bu cos(ωu x) sin(ωu y) cos(ωu,τ t)

v(x, y, t) = av + bv sin(ωv x) cos(ωv,τ t)

p(x, y, t) = ap + bp sin(ωp y) cos(ωp,τ t)

(3.29)

The prescribed analytic solution does not satisfy conservation of momentum or

conservation of mass, i.e., if the above velocity and pressure fields are substituted into

Eq. (3.1) (with f = 0) and Eq. (3.2) a residual term for each of the equations will

result. For the conservation of momentum, Eq. (3.1), a residual R
mom will result.

Likewise, for the conservation of mass given by Eq. (3.2), a residual Rcon will result.

These residuals are simply treated as source terms, belonging to their respective

equations, that produce the desired (prescribed) solution. These source terms or

residuals are commonly referred to as the consistent forcing functions.

The choice of constants in Eq. (3.29) are shown in Table I. Here we have chosen
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ωu = ωv = ωp = ω = mπ and ωu,τ = ωv,τ = ωp,τ = ωτ = mπ, with m = 2. The

higher the value of m and the lower the value of the constants bu, bv, bp, the more

challenge for the computational algorithm to reproduce the exact solution. As m

is increased the solution becomes more oscillatory, the amplitude of the oscillations

being controlled by the constants bu, bv, bp. The smaller these constants are chosen,

the harder it is to detect the oscillations.

Table I. Numerical values of the constants used in the manufactured solution for the

incompressible Navier-Stokes equations.

u v p

a 1.0 0.0 0.0
b 0.4 0.5 0.5
ω 2π 2π 2π
ωτ 2π 2π 2π

For the purposes of verification, we need only consider a p-refinement study in

space-time. The reason behind this is that when going from the stationary to the

non-stationary formulation only minor changes are needed in the source code, mostly

data management changes are made.

a. p-refinement study

The connected model in space-time for the bi-unit square, s+1
s Λ̄h = Ω̄h × [ts, ts+1],

is shown in Figure 12. It consists of a 4 × 4 uniform finite element mesh in space

and a single element layer in time. Having chosen the space-time discretization, we

now systematically increase the p-levels of the element approximation functions (in

space-time) and expect the error measures to decay exponentially fast as the p-level

is increased. As before, in a logarithmic-linear scale the expected rate of convergence

would appear as a straight line.
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Fig. 12. Space-time computational domain and mesh for the bi-unit square on which

the non-stationary incompressible Navier-Stokes problem is defined. The com-

putational domain is a space-time strip, denoted by s+1
s Λ̄h, with ∆t = ts+1−ts.

The non-stationary incompressible Navier-Stokes equations in the vorticity first-

order form were discretized using the space-time coupled least-squares finite element

formulation with nodal expansions in space-time. We take ∆t = ts+1 − ts = 0.5 and

compute the solution in a single space-time strip for increasing expansion orders, p, in

space-time. The exact solution was used to compute the initial condition and Dirichlet

boundary conditions for the velocity components. Pressure was prescribed only at a

point, i.e., a space-time line. In Fig. 13 we plot the L2 least-squares functional and

L2 error of the velocity, pressure, and vorticity fields in space-time as a function of

the expansion order in a logarithmic-linear scale. Exponentially fast decay (spectral

convergence) of the L2 least-squares functional and L2 error is observed in space-

time. Note that only algebraic decay in time would be observed using a space-time

decoupled formulation.

Implicitly, Fig. 13 also verifies the unconditional stability of the space-time cou-
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Fig. 13. Decay of the least-squares functional and convergence of the velocity, pressure,

and vorticity space-time fields to the exact solution in the L2 norm.

pled formulation. In a space-time decoupled formulation as the order of the time

approximation is increased the stability region for the time approximation decreases

and a smaller time increment must be used to remain stable. Here we have continu-

ously increased the order of the time approximation and kept ∆t = ts+1 − ts constant

at 0.5. This completes the verification procedures (by means of convergence studies)

for the incompressible Navier-Stokes equations.
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3. Flow over a backward-facing step

We consider two-dimensional, steady flow over a backward-facing step at Re = 800.

The geometry and boundary conditions are taken from the benchmark solution of

Gartling [33] and are shown in Fig. 14. As shown in Fig. 14 the standard step geometry

was simplified by excluding the channel portion upstream of the step. The boundary

conditions for the step geometry include the no-slip condition at all solid surfaces and

a parabolic inlet velocity profile given by u(y) = 24y(0.5 − y) for 0 ≤ y ≤ 0.5. The

Reynolds number is based on the mean inlet velocity and height of the channel.

u = uS

v = 0

u = 0, v = 0

u = 0, v = 0

outflow

( 0.0, 0.5 )

( 0.0, -0.5 )

( 30.0, 0.5 )

( 30.0, -0.5 )

Fig. 14. Geometry and boundary conditions for flow over a backward-facing step.

The outflow boundary condition is of relevance in the context of the least-squares

finite element formulation and is discussed in the following. Instead of imposing an

outflow boundary condition in a strong sense we impose it in a weak sense through

the least-squares functional. For example, if we use the vorticity based first-order

system the L2 least-squares functional is now

J
(

u, p,ω; f , f̃ s
)

=
1

2

(

∥

∥ (u · ∇)u + ∇p+
1

Re
∇× ω − f

∥

∥

2

0
+ ‖ω −∇× u ‖2

0

+ ‖∇ · u ‖2
0 + ‖∇ · ω ‖2

0 + ‖ n̂ · σ̃ − f̃ s ‖2
0, Γoutflow

)

(3.30)

where σ̃ is a pseudo-stress (see Eq. (3.6)), σ̃ = −p I + (1/Re) ∇u, and f̃ s are the

prescribed pseudo-tractions, typically taken to be zero at an outflow boundary. The
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strong outflow boundary condition p = 0 for the vorticity based first-order system

or p = 0, ∂v/∂n = 0 for the velocity gradient based first-order system also give

good results. However, we prefer the weak imposition of outflow boundary conditions

through the least-squares functional as it allows for more freedom in their modelling.

We discretize the domain, Ω̄ = [0, 30] × [−0.5, 0.5], using 20 finite elements: two

elements along the height of the channel and 10 uniformly spaced elements along

the length of the channel. The numerical simulation is performed using the two-

dimensional incompressible Navier-Stokes equations in the vorticity based first-order

form. We use a 11th order modal expansion in each element and linearize the re-

sulting discrete model (having a total of 10, 212 degrees of freedom) using Newton’s

method. At each Newton step, the linear system of equations with a SPD coefficient

matrix is solved using the conjugate gradient method with a symmetric Gauss-Seidel

preconditioner; see [95]. Convergence of the conjugate gradient method was declared

when the norm of the residual was less than 10−6. Nonlinear convergence was de-

clared when the relative norm of the residual in velocities, ‖∆uhp‖/‖uhp‖, was less

than 10−4, which typically required four Newton iterations. The analysis starts with

Re = 100 and steps to Re = 800 using a solution continuation technique with in-

crements of Re = 100. Away from the corner of the step at (x, y) = (0, 0), the L2

least-squares functional remained below 10−5 through the Reynolds number stepping.

Figure 15 shows the streamlines, the vector velocity field, and pressure contours

for 0 ≤ x ≤ 10, where most of the interesting flow structures occur. The flow separates

at the step corner and forms a large recirculation region with a reattachment point on

the lower wall of the channel at approximately x = 6. A second recirculation region

forms on the upper wall of the channel beginning near x = 5 with a reattachment

point at approximately x = 10.5.
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Fig. 15. Flow over a backward facing step at Re = 800: (a) streamlines, (b) vector

velocity field, and (c) pressure field. Modal expansion of order 11 using 2

elements along the height and 10 uniformly spaced elements along the entire

length of the channel.



52

Figure 16 shows u-velocity profiles along the channel height at x = 7 and x = 15.

We compare with tabulated values from the benchmark solution of Gartling [33] and

find excellent agreement. Gartling’s benchmark solution is based on a mixed weak

form Galerkin formulation using discretizations ranging from 6 × 120 to 40 × 800

bi-quadratic elements, corresponding to discrete systems of 8, 426 to 355, 362 degrees

of freedom respectively. Figure 17 shows pressure profiles along the length of the

channel walls. The slopes of the pressure profiles become constant near the exit

plane, meaning that the flow has recovered to fully developed conditions at the exit.

In Fig. 18 we present the convergence history of the preconditioned conjugate

gradient (PCG) method using a Jacobi preconditioner and a symmetric Gauss-Seidel

preconditioner. The algebraic set of equations being solved corresponds to the 11th

order modal expansion discrete model (having a total of 10, 212 degrees of freedom)

and flow conditions of Re = 800. We plot the convergence history corresponding to

each of the four Newton iterations, after which the nonlinear tolerance is achieved.

The number of PCG iterations reduces during the nonlinear iteration procedure be-

cause a continuation technique is used with respect to the nonlinear loop, i.e., the

last converged solution is used as an initial guess for the PCG solver. As expected,

the Gauss-Seidel preconditioner gives a higher convergence rate. It should be noted,

however, that to apply the Gaus-Seidel preconditioner the assembled system of equa-

tions needs to be stored, this is not the case for the Jacobi preconditioner. For

three-dimensional problems the cost of applying a Gauss-Seidel preconditioner might

be high in terms of computer memory. Similar convergence rates and accuracy were

observed for the stress and velocity gradient formulations, although at higher CPU

solve times due to having additional degrees of freedom.
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Fig. 16. Horizontal velocity profiles along the height of the channel at x = 7 and

x = 15. Comparison with the benchmark solution of Gartling [33].
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Fig. 17. Pressure profiles along lower and upper walls of the channel.
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Fig. 18. Convergence history of the conjugate gradient (CG) solver using a Jacobi and

a Gauss-Seidel preconditioner. (a)-(d) Correspond to Newton iterations 1-4,

for an 11th order modal expansion and flow conditions of Re = 800 in the

channel.
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4. 3-D lid-driven cavity flow

Next, we consider the three-dimensional flow of an incompressible fluid bounded in a

cubic enclosure, Ω̄ = [0, 1]× [0, 1]× [0, 1], where the flow is driven by the translation of

the top boundary. The connected model, Ω̄h = [0, 1]× [0, 1]× [0, 0.5], using 6× 6× 3

brick finite elements, Ω̄e, is shown in Fig. 19. It has been established that, up to

Re = 3200, the flow is symmetric about the plane z = 0.5 [59, 90]. We therefore

model only half the domain.

X

Y

Z

Fig. 19. Computational domain and mesh for the three-dimensional lid-driven cavity

problem. Due to symmetry about the plane z = 0.5, only half the domain is

modeled.

The Reynolds numbers considered here are 100 and 400, for which it has been

well established that a steady-state solution exists. We perform the analysis using

the three-dimensional incompressible Navier-Stokes equations in the vorticity based

first-order form, for which there are a total of seven primary variables: three velocity

components, pressure, and three vorticity components. The boundary conditions are

as follows: u = v = w = 0 on all solid walls, p = 0 at a point, w = ωx = ωy = 0
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on the symmetry plane (z = 0.5), and u = us(x, z), v = w = 0 on the top driven

surface (y=1.0). On the driven surface we specify a hyperbolic tangent u-velocity

distribution: us = g(x) g(z), where

g(s) =















tanh(β s) 0 ≤ s ≤ 0.5

− tanh(β (s− 1)) 0.5 < s ≤ 1.0

(3.31)

with β > 0. Here we take β = 50, which gives a smooth but at the same time sharp

transition from u = 0.0 to u = 1.0 near the walls of the driven surface. This boundary

condition results in a well-posed boundary condition, in the sense that singularities

at the corners of the driven surface are eliminated.

We use a 5th order nodal expansion in each element, resulting in a discrete model

with a total of 107, 632 degrees of freedom. The stress or velocity gradient based first-

order system was not considered in this study for the solution of three-dimensional

flow conditions, as it is significantly more expensive than the vorticity based first-

order system. For the discretization considered here, the resulting velocity-gradient

based discrete model would have a total of 199, 888 degrees of freedom. Which, based

on results from the two-dimensional numerical examples, would yield equally accurate

results when compared to the vorticity-based formulation.

At each Newton step the (SPD) linear system of equations is solved using the

matrix-free conjugate gradient algorithm with a Jacobi preconditioner. Convergence

of the conjugate gradient method was declared when the norm of the residual was less

than 10−6. Nonlinear convergence was declared when the relative norm of the residual

in velocities was less than 10−4, which typically required six Newton iterations. The

analysis starts with Re = 100 and steps to Re = 400 using a solution continuation

technique with increments of Re = 100. The L2 least-squares functional remained

below 10−3 for the flow conditions considered.
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Figure 20 shows velocity vectors, vorticity contours , and pressure contours on the

plane z = 0.5 for Re = 400. On this plane, we see the primary re-circulation region

which looks similar to the well documented two-dimensional solution. Figure 21

show the solution on the planes x = 0.5 and y = 0.5. We see a pair of vortices at

the bottom wall of the plane x = 0.5 and a weak pair of vortices near the top wall.

On the plane y = 0.5 we see vortices on the side-wall of the cavity. Figure 22 shows

u-velocity profiles along the vertical mid-line of the plane z = 0.5, our results are

in good agreement with tabulated data from published results of Jiang et al. [59].

Jiang and co-workers used a least-squares finite element formulation with an almost

uniform 50 × 52 × 25 mesh with tri-linear elements and reduced integration, i.e., one

collocation point per element.

x

y

u,v ωz p

Fig. 20. Velocity vectors, vorticity, and pressure contours on plane z = 0.5 for

Re = 400.
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w,u ωy p

Fig. 21. Velocity vectors, vorticity, and pressure contours on planes x = 0.5 and

y = 0.5 for Re = 400.
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Fig. 22. Profiles of u-velocity along the vertical mid-line of the plane z = 0.5. Com-

parison with tabulated values from the published results of Jiang et al. [59].
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5. Impulsively started lid-driven cavity flow

We consider the two-dimensional flow of an incompressible fluid bounded in a square

enclosure, Ω̄ = [0, 1] × [0, 1]. The fluid is initially at rest and is put into motion

by the sudden translation of the top boundary. The connected model in space-time,

s+1
s Λ̄h = Ω̄h× [ts, ts+1], is shown in Fig. 23. It consists of 6×6 finite elements in space

and a single element layer in time.

0

0.5

1

x

∆t

0

0.5

1

y

Fig. 23. Space-time computational domain and mesh for the lid-driven cavity prob-

lem. The computational domain is a space-time strip, denoted by s+1
s Λ̄h, with

∆t = ts+1 − ts.

The boundary conditions are as follows: u = v = 0 on all solid walls, p = 0 at a

point, and u = us(x), v = 0 on the top driven surface (y = 1.0). On the driven surface

we specify a hyperbolic tangent u-velocity distribution ulid(x) = g(x), with g(s) given
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in Eq. (3.31). Like before, we take β = 50 which gives a smooth but at the same time

sharp transition from u = 0.0 to u = 1.0 near the walls of the driven surface. The

u-velocity of the driven surface also varies in time according to a hyperbolic tangent

distribution, ulid(t) = tanh(t). This ensures a smooth and fast start-up translation of

the driven surface.

Note that the boundary conditions are imposed on space-time surfaces, so that

the boundary condition p = 0 at a point translates into p = 0 in a space-time line.

Similarly, u = v = 0 on all solid walls implies u = v = 0 on all space-time surfaces

associated with a solid wall. On the space-time surface corresponding to the “driven

surface”, spatial and temporal variations need to be accounted for when specifying

the boundary condition.

The Reynolds number considered here is 400. We use the unsteady, two-dimensional

incompressible Navier-Stokes equations in the vorticity based first-order form and a

space-time coupled formulation with nodal expansions of pξ = pη = 5 and pγ = 2

in each element, i.e., resolution of order 5 in space and of order 2 in time. At each

Newton step the linear system of algebraic equations is solved using the matrix-free

conjugate gradient algorithm with a Jacobi preconditioner.

For the time marching procedure the size of the time step, ∆t = ts+1 − ts, was

chosen as ∆t = 0.2 for t ∈ (0, 2], ∆t = 0.5 for t ∈ (2, 10], and ∆t = 1.0 for t > 10.

We march in time until a steady-state is reached.

Convergence of the conjugate gradient method was declared when the norm of

the residual was less than 10−6. Nonlinear convergence was declared when the rel-

ative norm of the residual in velocities between two consecutive iterations was less

than 10−4, which typically required three Newton iterations per space-time strip.

Steady-state was declared when the relative norm of the residual in velocities be-
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tween two consecutive space-time strips was less than 10−5, which was reached at

t = 35. The L2 space-time least-squares functional remained below 10−3 throughout

the time marching procedure.

Figure 24 shows the time history of the flow by streamline plots. Upon start-up

a long narrow vortex forms close to lid. The vortex gradually moves to the right and

begins to grow. Around t = 6 the recirculation region in the lower right corner of

the cavity appears. The primary vortex continues to broaden and moves towards its

steady-state position.

Figure 25 shows the time history of the u-velocity component at two locations

along the vertical mid-line of the cavity, one 0.2 units away from the lid and the other

0.2 units away from the bottom surface. It is interesting to see that upon start-up

the fluid close to the lid starts moving in the opposite direction. Figure 26 shows the

steady-state velocity profile along the vertical mid-line of the cavity. The steady-state

solution is in excellent agreement with the benchmark solution of Ghia et al. [34].
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Fig. 24. Impulsively started lid-driven cavity flow: Time history streamline plots for

Re = 400.
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Fig. 25. Time history of the u-velocity component at two selected locations along the

vertical mid-line of the cavity.
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Fig. 26. Steady-state u-velocity profile along the vertical mid-line of the cavity.

Re = 400: — computed, ◦ Ghia et al. [34].
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6. Oscillatory lid-driven cavity flow

Again, we consider the two-dimensional flow of an incompressible fluid bounded in

a square enclosure, Ω̄ = [0, 1] × [0, 1]. The fluid is initially in a steady-state motion

brought about by the translation of the top boundary. The top boundary suddenly

begins to oscillate in a periodic fashion. The connected model in space-time is the

same as that used for the impulsively started lid-driven cavity flow, and is shown in

Fig. 23. It consists of 6×6 finite elements in space and a single element layer in time.

The boundary conditions are the same as that used for the impulsively started lid-

driven cavity flow, with the exception that now the u-velocity of the driven surface

varies in time according to the cosine distribution: ulid(t) = cos(t), with period

T = 2π.

The Reynolds number considered here is 400. We use the unsteady, two-dimensional

incompressible Navier-Stokes equations in the vorticity based first-order form and a

space-time coupled formulation with nodal expansions of pξ = pη = 5 and pγ = 2 in

each element. At each Newton step the linear system of algebraic equations is solved

using the matrix-free conjugate gradient algorithm with a Jacobi preconditioner. For

the time marching procedure the size of the time step, ∆t = ts+1 − ts, was chosen

as ∆t = 2π/20; so that twenty time steps make one period. We march in time until

a periodic steady-state is well established. Convergence of the conjugate gradient

method was declared when the norm of the residual was less than 10−6. Nonlinear

convergence was declared when the relative norm of the residual in velocities between

two consecutive iterations was less than 10−4, which typically required three Newton

iterations per space-time strip. The L2 space-time least-squares functional remained

below 10−3 throughout the time marching procedure.
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Figure 27 shows streamline plots at time t = T , 2T , 4T , and 8T . It takes about

six periods to reach the periodic steady-state at which the solution is identical at time

t and t+ T .

(a) (b)

(c) (d)

Fig. 27. Oscillatory lid-driven cavity flow: Time history streamline plots for Re = 400.

Streamlines at (a) t = T , (b) t = 2T , (c) t = 4T , and (d) t = 8T .

Figure 28 shows the time history up to t = 16T of the u-velocity component at

two locations along the vertical mid-line of the cavity, one 0.2 units away from the

lid and the other 0.2 units away from the bottom surface. Streamline contour plots

for the periodic steady state solution are presented in Fig. 29 at the 8th cycle for

8T ≤ t ≤ 9T . Figures 29a-h correspond to the time sequence t = 8T + βT , where

β = 2/10, 3/10, 4/10, 5/10, 7/10, 8/10, 9/10, 10/10. The property of mirror images



68

is observed between Figs. 29a-d and Figs. 29e-h with respect to x = 0.5. Our results

compare well with those by Iwatsu et al. [49] using the MAC method and Soh et

al. [99] using an artificial compressibility method.
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Fig. 28. Time history of the u-velocity component at two selected locations along the

vertical mid-line of the cavity.
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(b)
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(d)
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Fig. 29. Oscillatory lid-driven cavity flow: Periodic steady-state time history stream-

line plots for Re = 400. Streamlines at time t = 8T + βT ; (a) β = 2/10,

(b) β = 3/10, (c) β = 4/10, (d) β = 5/10, (e) β = 7/10, (f) β = 8/10, (g)

β = 9/10, (h) β = 10/10.
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7. Transient flow over a backward-facing step

We consider again the two-dimensional flow over a backward-facing step at Re = 800.

In Section 3, the stationary incompressible Navier-Stokes equations were used directly

to develop the finite element model (i.e., we assumed a priori that a steady-state

solution existed) and our numerical results were compared and found to be in excellent

agreement with the benchmark numerical solution of Gartling [33], who also used the

stationary form of the incompressible Navier-Stokes equations directly.

Here we are concerned with the fundamental question of whether a steady-state

solution exists for flow over a backward facing step at Re = 800. In the work of

Kaiktsis et al. [61] it was concluded, by means of a (weak form Galerkin space-time

decoupled) high-order splitting spectral/hp numerical simulation, that transition to

turbulent flow had occurred by Re = 800 and that the flow was steady at Re = 500,

time periodic at Re = 700, and chaotic at Re = 800. The time periodic and chaotic

temporal behavior at Re = 700 and Re = 800, respectively, contradicted results

reported in numerous previous published articles (summarized in Ref. [39]) which

obtained steady flow results at those flow conditions. In response to the controversy

concerning the stability at flow conditions of Re = 800, Gresho et al. [39] performed a

detailed grid refinement study using four different numerical methods and conclusively

showed that the flow over a backward-facing step at Re = 800 attains a stable (i.e.,

non-periodic) steady state. The numerical simulations of Gresho et al. [39] were

performed on the simplified step geometry shown in Fig. 14 and among the four

numerical methods considered, a (weak form Galerkin space-time decoupled) spectral

element formulation similar to that of Kaiktsis et al. [61] was used.

The study of Gresho et al. [39] revealed that inadequate spatial resolution in-

duces chaotic-like temporal behavior, whereas when sufficiently high spatial resolution
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is used the flow evolves towards a steady state by a monotonic decay of the transient.

This behavior was also observed in the work of Torczynski [104], who performed

simulations using the standard step geometry (where the channel portion upstream

of the step is included) and also used a (weak form Galerkin space-time decoupled)

spectral element formulation. These observations were further confirmed in a subse-

quent study by Kaiktsis et al. [62]. In addition, a study by Fortin et al. [31] using

dynamical systems theory, showed that the first Hopf bifurcation point (transition

point) for two-dimensional flow over a backward-facing step occurs at least up to

Re = 1600. Adding to the study of Torczynski [104], Yee et al. [111] showed that

the initial condition (in addition to the spatial resolution) also strongly influences the

temporal behavior of the flow.

In the present study, we wish to investigate the temporal behavior of the two-

dimensional flow over a backward-facing step at Re = 800 using a least-squares based

finite element formulation. We consider space-time decoupled and space-time cou-

pled formulations. For comparison of the two formulations, we choose a second-order

accurate in time discretization for the temporal terms in constructing the space-time

decoupled formulation (see Chapter II) and restrict the space-time coupled formula-

tion to a p-level of order 2 in time domain. The simulations are performed using the

simplified step geometry shown in Fig. 14, with the length of the channel extending

a distance L/H = 15 downstream of the step, which is sufficiently long to preclude

undue influence of the finite channel length at this Reynolds number [33, 39]. Even

though the geometric singularity of the corner step is excluded by ignoring the por-

tion of the channel upstream of the step, the singularities in pressure and vorticity

still exist due to the inlet boundary condition (see Fig. 14).

The boundary and initial conditions used here are those used in the work of

Gresho et al. [39] for the spectral element numerical simulation: u = v = 0 on the
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horizontal walls, −p + µ ∂u/∂n = 0 and ∂v/∂n = 0 on the outflow boundary, and

u = [tanh(t/4)]uB(y)+[1−tanh(t/4)]uP(y) and v = 0 on the inflow boundary and the

step face. Here uB(y) = max [0, 24y(0.5−y)] is the true inlet boundary condition and

uP(y) = 3(0.5 − y)(0.5 + y) is the Poiseuille flow observed infinitely far downstream

at steady flow conditions. The initial velocity field is set to u = uP(y) and v = 0

everywhere in the computational domain. Note that the inlet condition is varied fast

but smoothly from Poiseuille flow to flow over a backward-facing step, thus inducing

a transient wave strong enough to excite sustained unsteady behavior, if that is the

correct asymptotic steady state behavior.

The transient wave will travel through the entire channel length. The main flow

coming from the inlet will follow a sinuous path through the channel, forming a series

of eddies along the upper and lower wall (see Fig. 35). As the flow evolves, the

strength of the eddies should diminish and the two major separation zones near the

inlet of the channel attain their steady-state position. Eventually the weaker eddies

along the channel length die out and the flow reaches a steady state. Based on the

observations made in the previous work of Gresho et al. [39] and Torczynski [104], high

enough spatial resolution should be used to adequately resolve all spatial features of

the flow. Otherwise, lack of spatial resolution will induce unrealistic temporal chaotic

behavior resulting in an erroneous prediction of the long-term behavior of the flow.

The rich physics of the flow and the danger of polluting the long-term behavior of the

flow by inadequate spatial resolution render this benchmark problem a challenging

one for high-order methods. In addition, as we subsequently show through numerical

results, the problem is ideally suited to test and compare the performance of space-

time coupled and decoupled formulations.

We discretize the domain, Ω̄ = [0, 15]× [−0.5, 0.5], using 120 finite elements: four

uniformly spaced elements along the height of the channel and 30 uniformly spaced
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elements along the length of the channel. This mesh coincides with the high resolution

mesh in the work of Gresho et al. [39] (although their computational domain extended

a distance L/H = 17 downstream of the step). The numerical simulation is performed

using the unsteady, two-dimensional incompressible Navier-Stokes equations in the

vorticity based first-order form. The outflow boundary conditions are imposed in a

weak sense through the least-squares functional.

First we use a spatial resolution of order 7, for which Gresho et al. [39] reported a

steady monotonic decay of the transient. Recall that, for this simulation, a temporal

resolution of order 2 is used for the space-time coupled formulation and a second-order

accurate representation (the trapezoidal rule) is used for the temporal terms in the

space-time decoupled formulation. For the time marching procedure the size of the

time step, ∆t = ts+1 − ts, was chosen as ∆t = 0.20 for the space-time coupled and

decoupled formulations. We march in time until a steady-state is well established.

The resulting discrete models (having a total of 73, 428 dof for the space-time

coupled finite element model and 24, 476 dof for the space-time decoupled finite ele-

ment model) are linearized using Newton’s method. At each Newton step, the linear

system of equations with a SPD coefficient matrix are solved using the conjugate gra-

dient method with a Jacobi preconditioner in matrix-free form. Convergence of the

conjugate gradient method was declared when the norm of the residual was less than

10−6. Nonlinear convergence was declared when the relative norm of the residual in

velocities, ‖∆uhp‖/‖uhp‖, was less than 10−4, which typically required three Newton

iterations per space-time strip/time-step.

Figure 30 shows a plot of the L2 least-squares functional as a function of time, for

the space-time coupled and decoupled formulations. The legend in Fig. 30 describes

the resolution of the simulation in space-time and the size of the space-time strip/time-

step. For example, 7/7/2 ∆t = 0.20 denotes a space-time coupled simulation with
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isotropic resolution of order 7 in space and order 2 in time, with the the size of the

space-time strip fixed at 0.20. On the other hand, 7/7/TR ∆t = 0.20 denotes a

space-time decoupled simulation with isotropic resolution of order 7 in space and a

trapezoidal rule (TR) representation for the temporal terms, with the the size of the

time-step fixed at 0.20.
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Fig. 30. Time history of the L2 least-squares functional for space-time coupled and

decoupled formulations. Fixed spatial resolution of order 7.

From Fig. 30 it is clear that the space-time decoupled formulation (for ∆t = 0.20)

becomes unstable, forcing an early termination of the simulation. On the other hand,

the space-time coupled formulation remains stable throughout; at a lower value of the

L2 least-squares functional than that initially attained by the decoupled formulation.

The decoupled formulation is stable at early times, during the smooth transition from

Poiseuille flow to flow over a backward-facing step. However, by the time the transient
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wave reaches the outflow boundary a severe instability had occurred and grown to

such extent which forced the termination of the simulation.

Next, we investigate the effect of the time step size on the stability of the de-

coupled formulation. The results, also plotted in Fig. 30, show that the space-time

decoupled formulation remains unstable, even for ∆t = 0.05. In fact, when ∆t is

decreased the instability starts at earlier times in the simulation – perhaps suggesting

a lack of numerical damping (inherent to the TR representation). With this in mind

and in an attempt to stabilize the space-time decoupled simulation we implement the

generalized α-method family of approximations [25, 51, 27], which retain second-order

accuracy in time and allow for user controlled high frequency damping by the single

free integration parameter, 0 ≤ ρh
∞ ≤ 1. For ρh

∞ = 1.0 the method is identical to the

trapezoidal rule and for choices of 0 ≤ ρh
∞ < 1.0 numerical damping is added with

decreasing ρh
∞. Figure 31 shows the time history of the L2 least-squares functional

for the space-time decoupled formulation using the generalized α-method (GAM)

for ∆t = 0.10 and popular choices of ρh
∞ (see Ref. [27]). Increasing the numerical

dissipation clearly does not stabilize the simulation.

Realizing the underlying assumption in the decoupled formulation, namely that

space and time are decoupled, we are led to believe that the spatial resolution is still

not high enough and is inducing chaotic temporal instabilities that cause the space-

time decoupled formulation to become unstable. Clearly this observation does not

apply to the space-time coupled formulation, where no instability is observed.

Based on the above observation, we increase the spatial resolution of the space-

time decoupled simulation to order 9 (having a total of 40, 108 dof for the space-time

decoupled finite element model). For this spatial resolution the space-time decoupled

formulation, with TR and ∆ = 0.20, is stable. Figure 32 shows the time history of the

L2 least-squares functional for the space-time coupled simulation 7/7/2 ∆t = 0.20 and
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Fig. 31. Time history of the L2 least-squares functional for space-time decoupled for-

mulation using the generalized-α method. Fixed spatial resolution of order 7.

the space-time decoupled formulation 9/9/TR ∆t = 0.20. Even though the space-

time decoupled simulation has a higher spatial resolution, the space-time coupled

formulation (with a lower spatial resolution) achieves a lower value for the L2 least-

squares functional.

At t = 400.0 the relative norm of the residual in velocities between two con-

secutive space-time strips was less than 10−5 for the space-time coupled formulation

and less than 10−4 between two consecutive time-steps for the space-time decoupled

formulation , indicating that a steady-state was achieved. Figure 33 shows the time

history of the v-velocity component at two locations along the channel’s mid-section

for the space-time coupled (7/7/2 ∆t = 0.20) and decoupled formulations (9/9/TR
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Fig. 32. Time history of the L2 least-squares functional for space-time coupled simu-

lation 7/7/2 ∆t = 0.20 and decoupled simulation 9/9/TR ∆t = 0.20.

∆t = 0.20). It is seen that both simulations do not exhibit a monotonic decay of the

transient but rather an oscillatory decay of the transient, indicating that additional

spatial resolution is needed. In addition, the space-time decoupled simulation exhibits

a more oscillatory temporal behavior than the coupled simulation. Nevertheless, the

desired steady-state flow condition is achieved using both approaches.

Of importance is also the computational cost associated with each of the simu-

lations. Figure 34 shows the time histories of the number of PCG iterations at each

space-time strip/time-step for the space-time coupled (7/7/2 ∆t = 0.20) and decou-

pled formulations (9/9/TR ∆t = 0.20). Each data point in the plot is the sum of PCG

iterations at each Newton step per space-time strip/time-step (typically 3 Newton
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Fig. 33. Time history of the v-velocity component along the mid-section of the channel. Space-time coupled simulation
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steps), thus representing the total cost per space-time strip/time-step. From Fig. 34

we see that initially both simulations have approximately the same cost, with the

space-time coupled simulation eventually achieving an overall lower computational

cost.
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Fig. 34. Time history of total PCG iterations per space-time strip/time-step.

Space-time coupled simulation 7/7/2 ∆t = 0.20 and decoupled simulation

9/9/TR ∆t = 0.20. Jacobi preconditioner with stopping criteria εPCG = 10−6.

In an attempt to obtain an unstable simulation with the space-time coupled for-

mulation, we decrease the spatial resolution to order 5, and run the simulation 5/5/2

∆t = 0.20. For such spatial resolution Gresho et al. [39] reported ‘numerical errors’,

denoting termination of the numerical solution due un-physically large values in veloc-
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ities. In contrast to the results reported using the high-order (space-time decoupled)

weak-form Galerkin formulation in Gresho et al. [39], the least-squares space-time

coupled simulation remained stable and predicted a steady-state. All the above re-

sults, indicate that the least-squares space-time coupled formulation (for unsteady

two-dimensional simulations) is robust, computationally affordable, and superior to

the space-time decoupled formulation.

This problem is clearly more demanding, in terms of space-time resolution, than

the previously considered unsteady cavity flows. For the lid-driven cavity flows con-

sidered earlier, the space-time coupled and decoupled formulations give indistinguish-

able time histories (using time-domain p-resolution of order 2 for the space-time cou-

pled simulation and a TR representation for the decoupled simulation). However, in

general, we can never classify a problem a priori as needing low or high space-time

resolution. In this sense, it is best to be conservative and use a space-time coupled for-

mulation. For three-dimensional unsteady problems, a space-time coupled approach

is currently prohibitively expensive and a decoupled approach must be used.
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Fig. 35. Time history streamline plots of time-dependent simulation using Poiseuille flow as an initial condition.

Space-time coupled simulation 7/7/2 ∆t = 0.20.
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C. Numerical examples: validation benchmarks

In this section we are concerned with the validation of the spectral/hp least-squares

based finite element computational algorithm. Validation commonly involves compar-

ison of the numerical results with reliable experimental data. In such a comparison,

there is invariably error tolerance involved, and the levels of acceptable error are

problem and purpose dependent.

The ongoing process of algorithm validation procedures must demonstrate, to

within application dependent tolerances, that the computational algorithm reliably

simulates nature through the mathematical model. Validation metrics are of great

importance in validation procedures and are used to quantitatively compare numer-

ical results with experimental measurements. Ideally, the validation metric should

quantify errors and uncertainties in the comparison study. Examples of typical val-

idation metrics are lift and drag coefficients for external flows, and surface pressure

coefficient distributions for both external and internal flows.

In the following, we demonstrate the validation procedure of the (already veri-

fied) least-squares spectral/hp finite element algorithm by means of the benchmark

problem of flow past a circular cylinder.

1. Flow past a circular cylinder

We consider the two-dimensional flow of an incompressible fluid past a circular cylin-

der. At low Reynolds numbers (5 < Re < 40.0) the flow is stationary and character-

ized by a pair of standing vortices appearing behind the cylinder. The size of the sep-

arated flow region increases with increasing Reynolds number, until a limit in which

the wake becomes unstable. At this critical Reynolds number, Rec ≈ 46.2 [50, 29],

the flow becomes unstable and vortices are shed from the aft of the circular cylin-
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der, forming the well-known von Karman vortex street. The flow may be treated as

two-dimensional until Re3-D
c ≈ 188.5 [44], at which point the cylinder wake becomes

three-dimensional due to a secondary instability of the vortex street.

From the numerical simulation point of view, the interest of this problem is in

the accurate resolution of the vortex street and the modelling of the outflow boundary

conditions, the latter which arises from the necessity of truncating the domain in a

region where the vortex street is fully developed. This transient problem is frequently

used to assess the accuracy of time-marching numerical procedures and open bound-

ary conditions, as it is characterized by several important flow parameters, such as

the non-dimensional frequency of the vortex shedding (the Strouhal number), the

amplitude of the lift coefficient, and the mean drag coefficient. First, we perform a

simulation for the cases Re = 20 and 40, for which a steady-state solution exists and

then consider the case Re = 100 for which a transient simulation is necessary.

a. Simulation at Re = 20 and 40

The issue of proper placement of the computational boundaries is of great importance,

as it may significantly pollute the accuracy of the characteristic flow parameters. For

the set of stationary simulations, the cylinder is of unit diameter and is placed in

the finite region Ω̄ = [−15.5, 30.5] × [−20.5, 20.5]. The center of the cylinder lies

at (x, y) = (0, 0), so that the inflow boundary is located 15.5 cylinder diameters in

front of the center of the cylinder and the outflow boundary 30.5 cylinder diameters

downstream of the center of the cylinder. The top and bottom boundaries are located

each 20.5 cylinder diameters above and below the center of the cylinder. The Reynolds

number is based on the free-stream velocity and cylinder diameter.

Having considered a large computational domain allows us to impose free-stream

boundary conditions at the top and bottom of the domain without noticeably affecting
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the solution. The boundary conditions include a specified value of 1.0 for the x-

component of velocity at the inflow, top, and bottom boundaries, i.e., the free-stream

velocity u∞ is specified to be unity. At these boundaries the y-component of velocity

is set to zero. The outflow boundary conditions are imposed in a weak sense through

the least-squares functional.

x

y

-10 0 10 20 30

-20

-10

0

10

20

(a) (b)

Fig. 36. Computational domain and mesh for flow past a circular cylinder. (a) Con-

nected model, Ω̄h. (b) Close-up view of the geometric discretization around

the circular cylinder.

The connected model, Ω̄h, consists of 501 finite elements and is shown in Fig. 36,

where a close-up view of the geometric discretization around the circular cylinder

is also shown. In the previous examples a subparametric formulation using a linear

basis for the mapping, Ω̄e � Ω̂e, was sufficient to exactly represent the straight-

sided geometries. In order to accurately represent the circular surface, we implement

an isoparametric formulation; i.e., we use the same expansion order for the element

degrees of freedom and for the mapping, Ω̄e � Ω̂e.

We use the two-dimensional incompressible Navier-Stokes equations in the vortic-

ity based first-order form and a 6th order nodal expansions in each element, resulting
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in a discrete model with a total of 73, 344 degrees of freedom. At each Newton step

the (SPD) linear system of equations is solved using the matrix-free conjugate gradi-

ent algorithm with a Jacobi preconditioner. Convergence of the conjugate gradient

method was declared when the norm of the residual was less than 10−6. Nonlinear

convergence was declared when the relative norm of the residual in velocities between

two consecutive iterations was less than 10−4, which required six Newton iterations.

The L2 least-squares functional remained below 10−6 for the flow conditions consid-

ered.

Figure 37 shows the computed surface pressure coefficient distributions along

the cylinder surface for Re = 20 and 40, together with experimental measurements of

Grove et al. [40] for the case Re = 40. We observe that the simulation result is in good

agreement with the experimental measurements. The computed drag coefficients for

flow conditions of Re = 20 and 40 were CD = 2.0862 and 1.5537, respectively. Good

agreement is found between the computed drag coefficients and the experimental

mean curve of Tritton [105], where the corresponding values are CD = 2.05 and 1.56,

and with the high-order splitting spectral/hp numerical results of Henderson [44],

reported as C̄D = 2.06 and 1.54.

Figure 38 shows computed pressure contours and streamlines in the wake region

for Re = 20 and 40. The predicted wake extends 1.86 and 4.55 cylinder radii measured

from the back of the cylinder, respectively. The values for the wake lengths are in good

agreement with the numerical solution of Dennis and Chang [26], whose computed

wake lengths for Re = 20 and 40 were reported as 1.88 and 4.69 cylinder radii,

respectively. Better agreement for the case Re = 40 is found with the numerical

solution of Kawaguti and Jain [65], who reported a computed wake length of 4.50

cylinder radii.
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Fig. 37. Flow past a circular cylinder at Re = 20 and 40: Computed pressure coeffi-

cient distributions along the cylinder surface. Comparison with experimental

measurements of Grove et al. [40] for the case Re = 40.
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Fig. 38. Flow past a circular cylinder at (a) Re = 20 and (b) 40: Pressure contours

and streamlines in the wake region.
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b. Simulation at Re = 100

Next we consider the case Re = 100, for which a transient simulation is necessary.

The spatial discretization used is similar to that shown in Fig. 36, except that the

outflow boundary is placed 25.5 cylinder diameters downstream of the center of the

cylinder. This was done in order to maintain the number of elements constant st 501

and redistribute the elements behind the cylinder as to provide better h-resolution.

For the space-time coupled formulation, a single element layer is used to account for

the temporal discretization. We use nodal expansions with pξ = pη = pγ = 4 in each

element, i.e., uniform p-resolution of order 4 in space-time.

The fluid is initially at rest and the freestream velocity is gradually increased in

time from 0.0 to 1.0 according to a hyperbolic tangent distribution, u∞(t) = tanh(t).

An alternate initial condition is a steady-state solution (computed with the steady-

state solver). The final periodic steady-state should be independent of the well-posed

initial condition.

For the time marching procedure the size of the time step, ∆t = ts+1 − ts, was

chosen as ∆t = 0.5. Even though the space-time coupled formulation is stable for

arbitrarily large time increments, a (somewhat) small time increment is desirable.

When a small time increment is used the solution from the previous space-time strip

serves as a very good initial guess for the solution at the current strip, thus the

conjugate gradient method takes only a few iterations to converge which in turn

significantly decreases the CPU solve time per space-time strip.

We march in time until a periodic steady-state is well established. Convergence

of the conjugate gradient method was declared when the norm of the residual was

less than 10−6. Nonlinear convergence was declared when the relative norm of the

residual in velocities between two consecutive iterations was less than 10−4, which
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typically required three Newton iterations. The L2 space-time least-squares functional

remained below 10−3 throughout the time marching procedure.

We choose two points in the near wake of the cylinder to trace the change of

the velocity components and vorticity with time. Figures 39 and 40 show the time

history of the v-velocity component and vorticity at the points (x, y) = (1, 0) and

(x, y) = (2, 0), located 0.5 and 1.5 cylinder diameters behind the cylinder. From the

figures we see that shedding starts around t = 50. No artificial perturbation is used to

induce the vortex shedding. The flow reaches a periodic steady-state by t = 100. The

shedding period for the v-velocity component is the same as that for the vorticity.

The shedding period, obtained from Fig. 39 to within 0.05 time units, is found to be

T = 6.05; which gives a dimensionless shedding frequency of St = 0.1653. Our results

are in good agreement with the experimental results of Williamson [109] and with the

high-order splitting spectral/hp numerical results of Sherwin and Karniadakis [98],

reported as St = 0.1643 and 0.1667 respectively.

The viscous and pressure forces acting on the cylinder are given by

Fs = −
∮

µ
[

(∇u) + (∇u)T
]

· n̂ ds , Fp = −
∮

p n̂ ds

and the corresponding force coefficients obtained by normalizing the forces by the

dynamic pressure, 1
2
ρu2

∞, acting on a unit span of the circular cylinder. The pre-

dicted average drag coefficient is C̄D = 1.345, in good agreement with the high-order

splitting spectral/hp numerical results of Henderson [44], reported as C̄D = 1.35. The

amplitude of the lift coefficient is predicted as CL = ±0.332. Figure 41 shows the

time history of the lift coefficient with its pressure and viscous contributions.

Figure 42 depicts the vortex shedding cycle behind the circular cylinder by show-

ing vorticity contours at four successive times during one period. Eddies are formed

behind the cylinder and are washed away into the wake region. This flow pattern
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is popularly known as the von Karman vortex street. Two eddies, alternatively of

positive and negative vorticity, are shed within each period from the aft of the cir-

cular cylinder. Figure 43 shows instantaneous velocity and pressure contours at the

reference dimensionless time t0 = 160. From visual inspection of the contour plots in

Figs. 42 and 43 it is clear that the outflow boundary condition allows the flow to exit

the computational domain gracefully and does not disturb the upstream flow.
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Fig. 39. Time history of v-velocity component behind the circular cylinder at points:

(a) (x, y) = (1, 0) and (b) (x, y) = (2, 0).
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Fig. 40. Time history of vorticity behind the circular cylinder at points: (a)

(x, y) = (1, 0) and (b) (x, y) = (2, 0).
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bution (dashed line) and the viscous contribution (dotted line).
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Fig. 42. Time history of vorticity contours behind the circular cylinder for four suc-

cessive moments of time over a period. (a) t0, (b) t0 + 3∆t, (c) t0 + 6∆t, (d)

t0 + 9∆t.



94

-5 0 5 10 15 20 25

-4

-2

0

2

4

(b)

-5 0 5 10 15 20 25

-4

-2

0

2

4

(c)

-5 0 5 10 15 20 25

-4

-2

0

2

4

(a)

Fig. 43. Instantaneous (a) u-velocity, (b) v-velocity, and (c) pressure contours for the

flow around a circular cylinder at t = t0.
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CHAPTER IV

VISCOUS COMPRESSIBLE FLUID FLOWS

In this chapter we present a least-squares formulation for the compressible Navier-

Stokes equations. Numerical solutions for compressible flows using least-squares based

finite element models have been limited to inviscid flows (i.e., the compressible Euler

equations) [57, 69, 100, 81] and low-speed viscous compressible flows (i.e., anaelas-

tic flows) [112, 87]. Here, for the first time, we present a least-squares formulation

and accompanying numerical results for viscous compressible flows in the subsonic

regime [83]. Such formulations are aimed at flow problems characterized by incom-

pressible flow in parts of the domain with imbedded regions where compressibility

effects are significant and cannot be neglected. For example, flow around an exter-

nally cooled turbine airfoil is characterized by an upstream Mach number of 0.3 (the

upper end of the incompressible flow regime), but flow over the airfoil may reach

local Mach numbers as high as 0.7 or 0.8. In addition, due to the external cool-

ing mechanism, density variations induced by high temperature gradients cannot be

neglected.

The formulation is not limited to simulate flows in the subsonic regime. It can

be used directly to simulate transonic or supersonic flows. However, as we shall

demonstrate later by a numerical example, such simulations would require an adap-

tive h-refinement scheme for adequate shock resolution, which we have not yet im-

plemented. The formulation is a a density based formulation, developed using the

non-conservative form of the compressible Navier-Stokes. A pressure based formula-

tion is also possible and has been investigated, details of which will be reported in a

near-future publication.
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Traditional formulations for viscous compressible flows are based on treatment

of the inviscid part of the equations by applying methods for the Euler equations

and separate treatment of the viscous part of the equations. The underlying argu-

ment being that the viscous contributions can be thought of as corrections to the

hyperbolic Euler equations, and thus a different numerical approach to treat the vis-

cous part is allowed. For example, modern formulations based on the weak form

Galerkin approach use a discontinuous formulation to treat the hyperbolic contri-

butions and a mixed discontinuous (or continuous) formulation to treat the viscous

contributions [72, 107]. Such an approach requires that interface patching schemes

between elements be devised. Interface boundary conditions for the Euler part of the

equations are imposed by specifying the incoming characteristic variables. In addi-

tion, when treating the viscous part with a mixed continuous formulation a reliable

and optimal discretization requires that an inf-sup condition be satisfied. Another

type of discontinuous weak form Galerkin formulation is that where a single varia-

tional statement is used to treat the conservation laws in flux vector form [7]. Such an

approach does not require a mixed formulation for the viscous part of the equations.

In the proposed formulation no inviscid/viscous splitting is performed and no

interface patching schemes are needed. The viscous compressible Navier-Stokes equa-

tions in non-conservative form are expressed as an equivalent set of first-order equa-

tions by introducing the velocity and temperature gradients as independent variables.

The least-squares functional is constructed using the L2 norms of the governing equa-

tions residuals and minimized with respect to the approximation spaces to develop

the finite element model of the equations (see Chapter II). The formulation, based on

least-squares variational principles, results in an unconstrained minimization problem

through a variational framework of residual minimization. In such a variational set-

ting the approximation spaces can be chosen independently, i.e. stability requirements

such as the inf-sup condition never arise.
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The issue of open boundary conditions of inflow and outflow type for the com-

pressible Navier-Stokes equations is of paramount importance and is addressed herein.

Artificial open boundaries are unavoidably introduced, for example, when addressing

external flow problems where due to computational reasons one is forced to truncate

the computational domain. Imposition of boundary conditions on the open bound-

aries becomes necessary and has been the subject of extensive research and numerical

experimentation (see, for example, [41, 78, 37, 76, 28, 77, 46]).

For the purely hyperbolic problem, i.e. the Euler equations, it is well known that

specifying the incoming characteristics results in a well posed problem and stable nu-

merical approximation. The Euler characteristics have been used to impose boundary

conditions at open boundaries for the viscous compressible Navier-Stokes equations.

Although there are theoretical problems with this, it works well in practice (see, for

example, [28]). The argument has been that sufficiently far away from the immersed

body the flow is essentially inviscid (except in the wake region) and the Euler char-

acterics can be used to impose the boundary conditions as a good approximation.

In this study we account for the viscous effects and apply the energy method to the

linearized, constant coefficient viscous compressible Navier-Stokes equations in non-

conservative form to obtain energy inequalities which bound the temporal growth

of solutions to the initial-boundary value problem. Boundary operators which en-

sure maximum energy dissipation are obtained from the inequalities. The resulting

boundary conditions ensure a strongly well posed problem and in the limit of vanish-

ing viscocity recover the Euler characteristics.

Discussion and derivation of well-posed boundary conditions for the viscous com-

pressible Navier-Stokes equation in non-conservative form was considered by Gustafs-

son and Sundström [41], Oliger and Sundström [78], and Nordström [76]. They

all used the energy method to derive well-posed, dissipative boundary conditions.
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Gustafsson and Sundström’s approach was to start with a set of boundary conditions

that would give a well-posed problem for the corresponding hyperbolic system and

modify them in such a way that the number of conditions was correct and the energy

inequality remained satisfied. In the present study we follow the latest work of Nord-

ström [77] and use energy inequalities in terms of characteristic variables to arrive

at the desired boundary conditions. This results in maximally dissipative boundary

conditions and a strongly well-posed problem. The same procedure was also used

by Hesthaven and Gottlieb [46] in deriving boundary conditions for the viscous com-

pressible Navier-Stokes equations in conservative form.

We also address numerical implementation regarding the imposition of the bound-

ary conditions. We develop a fully coupled space-time least-squares finite element

model for the viscous compressible Navier-Stokes equations and use high order nodal

expansions (spectral basis) in space-time to discretize the model. Imposition of

boundary conditions at the open boundaries is done through the least-squares func-

tional. Weak imposition of the boundary conditions through the least-squares func-

tional enforces the boundary conditions as well as considers the governing equations

at the boundary. The use of least-squares principles leads to a symmetric and positive

definite algebraic system of equations. The system of equations is linearized by New-

ton’s method and solved by the preconditioned conjugate gradient method in matrix

free form.

Numerical implementation regarding the imposition of the boundary conditions

for the conservative form of the viscous compressible Navier-Stokes equations was

addressed by Hesthaven and Gottlieb [46] in the context of a pseudo-spectral collo-

cation method. Boundary conditions were enforced through an asymptotically stable

penalty method. Appropriate bounds for the penalty parameter and its effect on

the CFL condition when using explicit Runge-Kutta methods for time-stepping were
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discussed. In the proposed formulation there is no need for a penalty parameter,

as the boundary conditions are enforced in a least-squares sense through the func-

tional. Furthermore, the issue of time-stepping stability never arises in a fully coupled

space-time formulation [86].

First, we present the governing equations and derive maximally dissipative open

boundary conditions for the two-dimensional viscous compressible Navier-Stokes equa-

tions in non-conservative form using primitive variables (ρ, u, v, T ). Exponentially fast

decay of the L2 least-squares functional and L2 error norms is verified using smooth

solutions to the stationary and non-stationary viscous compressible Navier-Stokes

equations. The performance of the formulation is tested by simulating subsonic com-

pressible flow past a circular cylinder for a range of free-stream Mach numbers.

A. The compressible Navier-Stokes equations

We consider the solution of the Navier-Stokes equations governing viscous compress-

ible flow of an ideal, Newtonian gas. The governing equations in dimensionless,

non-conservative form can be written as:

Find the density ρ (x, t), velocity u (x, t), pressure p (x, t), and temperature

T (x, t) such that

∂ρ

∂t
+ (u · ∇) ρ+ ρ (∇ · u) = 0 in Ω × (0, τ ] (4.1)

ρ
∂u

∂t
+ ρ (u · ∇)u + ∇p− 1

Re
∇ · µ

[

(∇u) + (∇u)T
]

− 1

Re
∇λ (∇ · u) = f in Ω × (0, τ ] (4.2)

ρ
∂T

∂t
+ ρ (u · ∇)T − 1

Pe
∇ (k∇T ) − (γ − 1) M2 Dp

Dt

=
(γ − 1) M2

Re
Φ in Ω × (0, τ ] (4.3)
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1 + γM2 p = ρ T in Ω × (0, τ ] (4.4)

where τ is a real number (time) > 0, M is the Mach number, Pr is the Prandtl

number, Re is the Reynolds number, Pe = Re Pr is the Peclet number, γ is the ratio

of specific heats, µ is the dynamic viscosity, λ is the bulk viscosity, k is the coefficient

of thermal conductivity, and Φ is the viscous dissipation function,

Φ = λ (∇ · u)2 + 2µD : D ,

with D = (1/2)
[

(∇u) + (∇u)T
]

denoting the deformation tensor. We assume initial

and boundary conditions are given such that the problem is well posed.

1. Well-posed open boundary conditions

Next, we present in detail the derivation of boundary conditions that are maximally

dissipative and lead to a strongly well posed problem. The derivation presented here

is strongly based on previous work by Nordström [77] and Hesthaven [45].

We consider the two-dimensional viscous compressible Navier-Stokes equations

in non-conservative form. For the sole purpose of deriving the open boundary condi-

tions we neglect off-diagonal terms in the stress tensor, the full stress tensor will be

considered in future work.

In dimensionless form the linearized, constant-coefficient Navier-Stokes equations

can be written as

∂W

∂t
+ A 1

∂W

∂x
+ A 2

∂W

∂y
= ε

(

B 1

∂2W

∂x2
+ B 2

∂2W

∂y2

)

(4.5)

where W = [ρ, u, T, v]T , ε = 1/Re,
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ū

1

γM2 0

0 (γ − 1) c̄ 2M2 ū 0
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,

c denotes the speed of sound, and the Navier-Stokes have been linearized around

a constant state (ρ̄, ū, T̄ , v̄), which in general is different from the reference state

(ρ0, u0, T0, v0) about which Re, Pr, and M have been defined and the Navier-Stokes

non-dimensionalized. In Eq. (4.5) the pressure has been eliminated using the equa-

tions of state, Eq. (4.4), resulting in a density based system.

a. The Navier-Stokes equations in symmetric characteristic form

For ease of exposition, the boundary conditions will be imposed in the x direction

and hence we work with the following form of the Navier-Stokes equations

∂W

∂t
+ A 1

∂W

∂x
= εB 1

∂2W

∂x2
(4.6)

and rewrite A 1 and B 1 as follows

A 1 =







A 0

0 ū






, B 1 =







B 0

0 µ̄/ρ̄
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where A and B are 3× 3 matrices containing the first three rows and columns of A 1

and B 1 respectively. In what follows we need only work with the 3× 3 matrices since

the last equation is decoupled from the first three and the last equation is already in

the desired form. Hence for the time being we need only work with

∂w

∂t
+ A

∂w

∂x
= εB

∂2w

∂x2
(4.7)

where w = [ρ, u, T ]T .

The energy method requires that we work with symmetric differential operators,

to this end we symmetrize Eq. (4.7) with the symmetrizer S as follows

∂(Sw)

∂t
+ SAS−1∂(Sw)

∂x
= ε SBS−1∂

2(Sw)

∂x2
(4.8)

where

S =
√

2













c̄ 2/
√
γ 0 0

0 ρ̄ c̄ 0

0 0 ρ̄/
√

γ (γ − 1) M4













Defining AS = SAS−1 and realizing that BS = SBS−1 = B because B is a

diagonal matrix; Eq. (4.8) is written as

∂(Sw)

∂t
+ AS ∂(Sw)

∂x
= εB

∂2(Sw)

∂x2
(4.9)

where

AS =













ū c̄ /
√
γ 0

c̄ /
√
γ ū c̄

√

(γ − 1)/γ

0 c̄
√

(γ − 1)/γ ū













The matrix AS is symmetric with distinct eigenvalues and orthogonal eigenvec-

tors. Thus AS can be expressed as AS = KλK−1, in terms of a diagonal matrix

λ and a matrix K. The diagonal elements of λ are the eigenvalues of AS and the
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columns of K are the right eigenvectors of AS. Specifically,

λ =













ū− c̄ 0 0

0 ū 0

0 0 ū+ c̄













, K−1 =













−1 /
√

2γ 1 /
√

2 −
√

(γ − 1) /2γ
√

(γ − 1) /γ 0 −1 /
√
γ

1 /
√

2γ 1 /
√

2
√

(γ − 1) /2γ













We define the symmetric characteristic variables as c = K−1Sw, so that an

equation in terms of symmetric characteristic variables can be obtained from Eq. (4.9)

as follows

∂(K−1Sw)

∂t
+ K−1AS K

∂(K−1Sw)

∂x
= ε K−1BK

∂2(K−1Sw)

∂x2

or, equivalently

∂c

∂t
+ λ

∂c

∂x
= εx

∂2c

∂x2
(4.10)

where

x = K−1BK =
1

2













θ + φ αφ θ − φ

αφ α2 φ −αφ

θ − φ −αφ θ + φ













and

θ =
(2µ̄+ λ̄)

ρ̄
, φ =

(γ − 1)k̄

Pr ρ̄
, α =

√

2

γ − 1

The final equation based on symmetric characteristic form corresponding to

Eq. (4.6) (the 4 × 4 system) is

∂C

∂t
+ Λ

∂C

∂x
= εX

∂2C

∂x2
(4.11)

where

Λ =







λ 0

0 ū






, X =







x 0

0 µ̄/ρ̄







and C = [cT , v]T = [ ρ̄ c̄ u − p , α (ρ c̄ 2 − p) , ρ̄ c̄ u + p , v ]T . Where p is a linearized
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pressure defined as

p ≡ 1

γM2 (ρ T̄ + ρ̄ T )

b. Maximally dissipative boundary conditions

Consider the following problem for the x-split Navier-Stokes equations in symmetric

characteristic form:

∂C

∂t
+ Λ

∂C

∂x
= εX

∂2C

∂x2
t ≥ 0, x ∈ [0, 1] (4.12)

C = 0C(x) t = 0, x ∈ [0, 1] (4.13)

L − C = g −(t) t ≥ 0, x = 0 (4.14)

L + C = g +(t) t ≥ 0, x = 1 (4.15)

where L− and L+ are boundary operators to be determined such that the temporal

growth of energy of the initial-boundary value problem is bounded.

Applying the energy method, obtain the energy inequality by multiplying Eq. (4.12)

with CT and integrate over x ∈ [0, 1] to arrive at

1

2

∂||C||2
∂t

= −
∫ 1

0

CTΛ
∂C

∂x
dx+ ε

∫ 1

0

CTX
∂2C

∂x2
dx

integration by parts yields

1

2

∂||C||2
∂t

= −1

2

[

CTΛC − 2 εCTX
∂C

∂x

]x=1

x=0

− ε

∫ 1

0

∂CT

∂x
X
∂C

∂x
dx ≤ 0

If the boundary conditions in the x-direction are constructed in such a way that

−1

2

[

CTΛC − 2 εCTX
∂C

∂x

]x=1

x=0

≤ 0
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then it is evident that if we can show that

ε

∫ 1

0

∂CT

∂x
X
∂C

∂x
dx ≥ 0

the initial-boundary value problem is strongly well-posed.

It is a matter of algebra to show that

ε

∫ 1

0

∂CT

∂x
X
∂C

∂x
dx =

∫ 1

0

( 2 θ∆2
1 + 2φ∆2

2 + (µ̄/ρ̄) ∆2
4 ) dx ≥ 0

if the following conditions are satisfied

µ̄ ≥ 0 , λ̄+ 2µ̄ ≥ 0 ,
k̄

Pr
≥ 0 , γ ≥ 1

These conditions are natural, in fact if not obeyed the Navier-Stokes equations violate

the second law of thermodynamics.

We are now left with the task to construct an appropriate boundary operator.

We rewrite the boundary operator inequality, aligned with the outward pointing unit

normal, as follows

−
4

∑

i=1

1

λn
i

[

(

|λn
i |C n

i − ε
λn

i

|λn
i |
Gn

i

)2

− ( εGn
i )2

]

(4.16)

where


















λn
1

λn
2

λn
3

λn
4



















=



















ūn − c̄

ūn

ūn + c̄

ūn



















,



















C n
1

C n
2

C n
3

C n
4



















=



















ρ̄ c̄ un − p

α (ρ c̄ 2 − p)

ρ̄ c̄ un + p

v



















,



















Gn
1

Gn
2

Gn
3

Gn
4



















=



















θ∆n
1 + φ∆n

2

αφ∆n
2

θ∆n
1 − φ∆n

2

(µ̄/ρ̄) ∆n
4
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and

∆n
1 =

1

2

∂

∂x
(C n

1 + C n
3 ) = ρ̄ c̄

∂un

∂x

∆n
2 =

1

2

∂

∂x
(C n

1 + αC n
2 − C n

3 ) = − ρ̄

(γ − 1) M2

∂T

∂x

∆n
4 =

∂v

∂x

It is now fairly obvious how to construct appropriate boundary operators for the

continuous viscous compressible Navier-Stokes equations. Depending on the sign of

the eigenvalues λn
i , the contribution of the boundary terms is made as negative as

possible.

Without loss of generality, assume ū > 0, so that there is inflow at x = 0 and

outflow at x = 1. For the moment we consider the case of homogeneous boundary

data. Let us now consider all the possibilities at the open boundaries:

Inflow. At an inflow boundary un < 0 or un = −u

Subsonic inflow: λn
1 < 0, λn

2 < 0, λn
3 > 0, λn

4 < 0

|λn
1 |C n

1 + εGn
1 = 0

|λn
2 |C n

2 + εGn
2 = 0

εGn
3 = 0

|λn
4 |C n

4 + εGn
4 = 0

(4.17)
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Supersonic inflow: λn
1 < 0, λn

2 < 0, λn
3 < 0, λn

4 < 0

|λn
1 |C n

1 + εGn
1 = 0

|λn
2 |C n

2 + εGn
2 = 0

|λn
3 |C n

3 + εGn
3 = 0

|λn
4 |C n

4 + εGn
4 = 0

(4.18)

Outflow. At an outflow boundary un > 0 or un = u

Subsonic outflow: λn
1 < 0, λn

2 > 0, λn
3 > 0, λn

4 > 0

|λn
1 |C n

1 + εGn
1 = 0

εGn
2 = 0

εGn
4 = 0

(4.19)

Supersonic outflow: λn
1 > 0, λn

2 > 0, λn
3 > 0, λn

4 > 0

εGn
1 = 0

εGn
2 = 0

εGn
4 = 0

(4.20)

Note that only three conditions need be specified at an outflow boundary. This

is a consequence of Gn
1 = −Gn

3 in the case when Gn
2 = 0. Hence, for the two-

dimensional viscous compressible Navier-Stokes equations, four boundary conditions

are required at an inflow boundary and three at an outflow boundary; regardless if

the flow is subsonic or supersonic. Furthermore, in the limit of the Reynolds number

approaching infinity the characteristic boundary conditions for the compressible Euler

equations are recovered.
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2. The velocity/temperature gradient first-order system

Introducing the gradient of the velocity vector field and the gradient of the tem-

perature field as independent variables, the compressible Navier-Stokes equivalent

first-order system in dimensionless, non-conservative form can be written as:

Find the density ρ (x, t), velocity u (x, t), velocity gradients U (x, t), temperature

T (x, t), and temperature gradients q (x, t) such that

∂ρ

∂t
+ (u · ∇) ρ+ ρ (∇ · u) = 0 in Ω × (0, τ ] (4.21)

ρ
∂u

∂t
+ ρ (u · ∇)u +

1

γM2 ∇ (ρ T ) − 1

Re
(∇ · U)T

− 1

3

1

Re
∇ (trU) = f in Ω × (0, τ ] (4.22)

U −∇ (u)T = 0 in Ω × (0, τ ] (4.23)

∇× U = 0 in Ω × (0, τ ] (4.24)

ρ
∂T

∂t
+ ρ (u · ∇)T − γ

Pe
∇ · q + (γ − 1) ρ T (trU)

=
γ (γ − 1) M2

Re
Φ in Ω × (0, τ ] (4.25)

q −∇T = 0 in Ω × (0, τ ] (4.26)

∇× q = 0 in Ω × (0, τ ] (4.27)

where we’ve adopted Stokes’s hypothesis to obtain λ = −(2/3)µ, neglected tempera-

ture dependence effects on the dynamic viscosity and coefficient of thermal conduc-

tivity (i.e., µ = 1, k = 1 in Eqs. (4.2) and (4.3)), and used the equation of state,

Eq. (4.4), to eliminate pressure form the governing equations.
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B. Numerical examples: verification benchmarks

Having presented the characteristic based, maximally dissipative boundary operators

and the equivalent first-order system for the viscous compressible Navier-Stokes, we

use the procedures outlined in Chapter II to develop and arrive at the least-squares

based finite element model.

In this section we are concerned with the verification of the spectral/hp least-

squares based finite element computational algorithm, we follow the verification pro-

cedures suggested in Ref. [80] and illustrated in Chapter III.

First, we present a (manufactured) analytic closed form solution to the com-

pressible Navier-Stokes equations. We use the analytic solution for the purposes

of algorithm verification, specifically to verify exponentially fast decay of errors for

our stationary and non-stationary algorithms. We then use the benchmark of flow

past a circular cylinder to further verify the computational algorithm. Keeping the

free-stream Reynolds number fixed at 100, we consider a range of free-stream Mach

numbers (0.2 ≤ Mach ≤ 2.0) and thermal loadings Tcyl/T∞ of 1.0 and 2.0. Where

possible, we compare the predicted characteristic flow parameters with published nu-

merical studies.

The limit problems of low-speed compressible flow and inviscid compressible flow

are not documented here, since they are but special cases of this formulation. Instead,

we refer the interested reader to our work in these flow regimes [87, 81].

1. Convergence

To verify spectral convergence, we use the method of manufactured solutions. We

consider two-dimensional, unsteady flow in the bi-unit square, Ω̄ = [−1, 1] × [−1, 1].

We prescribe a solution to the viscous compressible Navier-Stokes equations, com-
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pute the consistent forcing functions, and solve to verify spectral convergence of the

numerical solution. We choose the exact solution to be of the form

ρ(x, y, t) = aρ + bρ sin(ωρ x) cos(ωρ,τ t)

u(x, y, t) = au + bu cos(ωu x) sin(ωu y) cos(ωu,τ t)

v(x, y, t) = av + bv sin(ωv x) cos(ωv,τ t)

T (x, y, t) = aT + bT cos(ωT y) cos(ωT,τ t)

(4.28)

First we perform a steady-state verification, i.e. we take ωτ = 0. Table II shows

the choice of constants in Eq. (4.28) for the verification procedure. The connected

model of the bi-unit square is a 4 × 4 uniform finite element mesh. Having chosen

the spatial discretization, we now systematically increase the p-levels of the element

approximation functions and expect the error measures to decay exponentially fast as

the p-level is increased. In a logarithmic-linear scale the expected rate of convergence

would appear as a straight line.

Table II. Numerical values of the constants used in the manufactured solution for the

compressible Navier-Stokes equations.

ρ u v T

a 1.0 1.0 0.0 1.0
b 0.2 0.4 0.5 0.5
ω π π 2π 2π
ωτ 0.0 0.0 0.0 0.0

As noted in Chapter III, a suitable error measure is the L2 least-squares functional

(J ). Convergence of this measure to zero implies that the L2 norm of the residuals of

the governing equations are going to zero, i.e., conservation of mass, momentum, and

energy are being satisfied. An equally important error measure is the L2 norm of the
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difference between the numerical solution and the analytic solution. Convergence of

this measure to zero implies that the numerical solution approaches the exact solution.

The stationary viscous compressible Navier-Stokes equations in the velocity /

temperature gradient first-order form were discretized using the least-squares finite

element formulation with nodal expansions (spectral basis). The exact solution was

used to compute Dirichlet velocity and temperature boundary conditions on Γ and

density was specified only at the “inflow” (left) boundary. The resulting discrete

system was linearized using Newton’s method. The initial guess vector for the start-

up of the non-linear iteration procedure was unity for the density and temperature

fields and zero for all other degrees of freedom. Non-linear convergence was declared

when the normalized norm of the residual in density, velocities, and temperature,

‖∆Uhp‖/‖Uhp‖, was less than 10−4; which for the aforementioned initial guess required

eight Newton iterations. In Fig. 44 we plot the L2 least-squares functional and L2

error of the density, velocity, velocity gradient, temperature, and temperature gradient

fields as a function of the expansion order in a logarithmic-linear scale. Exponentially

fast decay (spectral convergence) of the L2 least-squares functional and L2 error is

observed.

Next we consider the non-stationary case, i.e. ωτ 6= 0. The choice of constants

in Eq. (4.28) remain the same as shown in Table II, but now we take ωτ = 2π. The

connected model in space-time, consists of a 4 × 4 uniform finite element mesh in

space and a single element layer in time.

The non-stationary viscous compressible Navier-Stokes equations in the velocity

/ temperature gradient first-order form were discretized using the space-time coupled

least-squares finite element formulation with nodal expansions in space-time. We

take ∆t = ts+1 − ts = 0.5 and compute the solution in a single space-time strip

for increasing element expansion orders. The exact solution was used to compute
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|| T - T p ||

|| q - q p ||

Fig. 44. Decay of the least-squares functional and convergence of the density, velocity,

velocity gradient, temperature, and temperature gradient fields to the exact

solution in the L2-norm. Stationary case.

the initial condition and Dirichlet boundary conditions. In Figure 45 we plot the

L2 least-squares functional and L2 error of the density, velocity, velocity gradient,

temperature, and temperature gradient fields as a function of the expansion order in

a logarithmic-linear scale. Like for the stationary case, exponentially fast decay of

the L2 least-squares functional and L2 error is observed (for this case in space-time).

Implicitly, Fig. 45 also shows the unconditional stability of the space-time cou-

pled formulation. In a space-time decoupled formulation as the order of the time

approximation is increased the stability region for the time approximation decreases

and a smaller time increment must be used to remain stable. Here we have continu-

ously increased the order of the time approximation and kept ∆t = ts+1 − ts constant

at 0.5.
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Fig. 45. Decay of the space-time least-squares functional and convergence of the

density, velocity, velocity gradient, temperature, and temperature gradient

space-time fields to the exact solution in the L2-norm. Non-stationary case.
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2. Flow past a circular cylinder

We consider the two-dimensional viscous flow of a compressible ideal gas past a circu-

lar cylinder. The interest of this problem is in the periodic flow pattern that develops

when the flow remains subsonic and the free-stream Reynolds number is greater than

a critical Reynolds number, e.g., Rec ≈ 46.2 [50, 29] for incompressible flow. The

problem is ideal to test the open boundary conditions as the inflow boundary may be

well defined and the outflow boundary condition must be imposed in a region where

the vortex street is fully developed.

In this study we consider two-dimensional, unsteady simulations for flow con-

ditions with a free-stream Reynolds number of 100 only, for which the characteris-

tic flow parameters should closely approximate values observed experimentally, i.e.,

three-dimensional effects are not yet dominant. Keeping the free-stream Reynolds

number fixed, we consider a range of free-stream Mach numbers and thermal load-

ings (Tcyl/T∞) of 1.0 and 2.0, with Pr = 0.7 and γ = 1.4.

As noted in Chapter III for the incompressible flow simulation, the issue of

proper placement of the computational boundaries is of great importance, as it may

significantly pollute the accuracy of the characteristic flow parameters. For the set of

simulations presented here, the cylinder is of unit diameter and is placed in the finite

region Ω̄ = [−15.5, 30.5] × [−20.5, 20.5].

For the numerical simulations we implement a space-time coupled least-squares

formulation (see Chapter II). The spatial discretization used is similar to that shown

in Fig. 36, except that a finer mesh consisting of 792 elements is used. A single element

layer is used to account for the temporal discretization and use nodal expansions with

pξ = pη = 4, pγ = 3 in each element, i.e., a spectral basis of isotropic order 4 in space-

domain and a spectral basis of order 3 in time-domain. At each Newton step the
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linear system of algebraic equations is solved using a matrix-free conjugate gradient

algorithm with a Jacobi preconditioner. For the time marching procedure the size of

the time step, ∆t = ts+1 − ts, was chosen as ∆t = 0.5.

The boundary conditions at the outflow/inflow boundaries are of the maximally

dissipative characteristic type (derived in Section A-1) and are imposed in a weak

sense through the least-squares functional. At the lateral boundaries free-stream

boundary conditions could be imposed, however we choose a weaker no-flux boundary

condition: ∂u/∂n = 0, v = 0, ∂T/∂n = 0 imposed strongly. At the cylinder surface

we prescribe the no slip boundary condition: u = 0, v = 0, and a prescribed cylinder

temperature T = Tcyl. For a well-posed problem, the initial conditions should satisfy

the compressible Navier-Stokes equations. To prescribe such a condition, we use as an

initial condition a steady-state solution at the corresponding free-stream conditions.

a. Simulation at M∞ = 0.2

We consider isothermal flow conditions (Tcyl/T∞ = 1.0) and a free-stream Mach num-

ber of 0.2. At such free-stream Mach number we expect the flow to remain essentially

incompressible, and thus the simulation results in a valuable verification/validation

exercise as experimental data and extensive numerical simulation data is readily avail-

able. In other words, we expect the simulation to yield values for the characteristic

flow parameters that are very close to the incompressible case.

To further emphasize the need for boundary conditions that lead to a strongly

well-posed problem, we first perform a simulation with the so-called Neumann outflow-

type boundary conditions, commonly used in low-order finite-difference/control-volume

based simulations:

∂u

∂n
=
∂v

∂n
=
∂T

∂n
= 0 on Γ+ × (0, τ ] . (4.29)
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Figure 46 shows the time history of density contours behind the circular cylinder

when (4.29) is used as an outflow boundary condition.
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Fig. 46. Time history of density contours behind the circular cylinder for M = 0.2,

Re = 100, Pr = 0.7. Outflow boundary conditions are not of the maximally

dissipative characteristic type, resulting in an ill-posed problem and spurious

density predictions which eventually lead to total loss of numerical stability.

(a) t = 50.0, (b) t = 70.0, (c) t = 72.0.

From Fig. 46 we see that artificial boundary layers form at the outflow bound-

ary and density waves start to propagate into the domain. Eventually the ill-posed

outflow boundary condition causes the numerical simulation to become unstable due
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to spurious predictions in density, temperature, and velocity fields. This illustrates

the well know fact that high-order methods are less tolerant to ill-posed boundary

conditions. Clearly, the same boundary conditions that produce stable (and perhaps

erroneous) results in low-order finite-difference/control-volume based simulations are

not tolerated in a high-order based simulation.

Having seen the catastrophic results resulting from using an open boundary con-

dition that lead to an ill-posed problem, we now run a simulation with the maximally

dissipative characteristic-based open boundary conditions derived in Section A-1 and

imposed in a weak sense through the least-squares functional. Figure 47 shows the

time history of density contours behind the circular cylinder when the maximally dis-

sipative characteristic-based open boundary conditions are used. No boundary layers

are present and no wave propagation into the domain occurs; the simulation carries

on smoothly with no spurious predictions in density, temperature, or velocity fields.

As expected, the flow remains essentially incompressible: as shown in Fig. 47,

where the density contours shown are in the range [0.96, 1.03]. Figure 48a shows

instantaneous vorticity contours ar t = 175.0, at which time the vortex shedding

cycle is already well established. The shedding period, to within 0.05 time units, is

found to be T = 6.05; which gives a dimensionless shedding frequency of St = 0.1653.

The predicted average drag coefficient is C̄D = 1.375 and the amplitude of the lift

coefficient is CL = ±0.326. The characteristic flow parameters are in good agreement

with experimental measurements and with our incompressible numerical results (see

Chapter III).

Figure 48b shows instantaneous local Mach number contours ar t = 175.0. Even

though the flow may be regarded as essentially incompressible, we realize that com-

pressibility effects are still present as the local Mach number reaches a maximum

value of 0.27; a borderline value for the flow to still be regarded as incompressible.
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Fig. 47. Time history of density contours behind the circular cylinder for M = 0.2,

Re = 100, Pr = 0.7. Outflow boundary conditions are of the maximally

dissipative characteristic type, resulting in a strongly well-posed problem.

Density contours are in the range [0.96, 1.03]. (a) t = 75.0, (b) t = 100.0, (c)

t = 150.0.
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Fig. 48. Instantaneous (a) vorticity and (b) local Mach number contours behind the

circular cylinder at t = 175.0 ( M = 0.2, Re = 100, Pr = 0.7 ). Local Mach

number contours are in the range [0.0, 0.27].
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b. Simulation at M∞ = 0.5

We consider flow conditions with Tcyl/T∞ = 2.0 and a free-stream Mach number of 0.5.

The cylinder is now heated and the free-stream conditions are well into the subsonic

regime. At this Mach number the vortex street still exists, as shown in Fig. 49 where

at t = 200 the vortex street is already well established. However, unlike the (almost)

incompressible flow conditions considered before, we see large density variations in the

flow field. These can be attributed to compressibility effects and to high temperature

gradients near the cylinder’s surface: Fig. 49a shows density contours in the range

[0.40, 1.11]. In addition, a thermal boundary layer now forms around the cylinder and

high temperature gas is shed from the aft of the cylinder (see Fig. 49b).

The shedding period, to within 0.05 time units, is found to be T = 6.45; which

gives a dimensionless shedding frequency of St = 0.1550. The predicted average

drag coefficient is C̄D = 1.545. The correct trends are observed, i.e., the shedding

frequency decreases and the average drag coefficient increases (relative to the incom-

pressible case) due to compressibility effects. We note, however, that for the thermal

loading considered here the temperature dependence of the dynamic viscosity and

thermal conductivity cannot be neglected. An appropriate constitutive relation like

Sutherland’s law [108] should be used in this simulation. In spite of this modelling

issue, we see that the least-squares formulation is able to provide excellent resolution

of the flow field and yield (qualitatively)† accurate predictions for the characteristic

flow parameters.

†due to lack of experimental or numerical data at this flow conditions
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Fig. 49. Instantaneous (a) density, (b) temperature, and (c) u-velocity contours be-

hind the heated circular cylinder at t = 200.0 ( M = 0.5, Re = 100, Pr = 0.7 ).

Density and temperature contours are in the range [0.40, 1.11], [0.97, 2.00] re-

spectively.
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c. Simulation at M∞ = 0.7

We consider isothermal flow conditions (Tcyl/T∞ = 1.0) and a free-stream Mach

number of 0.7. As shown in Fig. 50, at this Mach number, the vortex street still

exists and is well developed at time t = 200. Event though the cylinder is at the

free-stream temperature (i.e., the cylinder is not heated) we see density variations in

the flow field due to compressibility effects (see Fig. 50a). In addition, we also see

temperature variations in the flow field. At this Mach number viscous dissipation is

significant on the cylinder surface and acts like a source term in the energy equation,

inducing a thermal boundary layer (see Fig. 50b).

The shedding period, to within 0.05 time units, is found to be T = 6.30; which

gives a dimensionless shedding frequency of St = 0.1587. Our results are in good

agreement with the high-order splitting discontinuous Galerkin hp numerical results

of Lomtev et al. [72], reported as St = 0.158. The predicted average drag coefficient

is C̄D = 1.843, also in excellent agreement with the simulations of Lomtev et al. [72],

who reported a value of C̄D = 1.841.
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Fig. 50. Instantaneous (a) density contours, (b) temperature contours, and (c) stream-

lines behind the circular cylinder at t = 200.0 ( M = 0.7, Re = 100, Pr = 0.7 ).

Density and temperature contours are in the range [0.54, 1.42], [0.89, 1.09] re-

spectively.
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d. Simulation at M∞ = 2.0

As a last example, we test the formulation in the supersonic flow regime. To this

end, we consider isothermal flow conditions (Tcyl/T∞ = 1.0) and a free-stream Mach

number of 2.0. At this free-stream Mach number we expect a shock to appear in front

of the cylinder.

At the time of this writing we have not yet developed the capability of adaptive

mesh refinement, which could be used for accurate resolution of shocks. Nevertheless,

we believe the simulation is valuable to verify whether the formulation is able to

predict the formation of shocks.

At this Mach number the vortex street no longer exists and a steady state solu-

tion is obtained. Figure 51 shows the steady-state density contours, from which the

formation of the shock in front of the cylinder is evident. Clearly, the shock is not

well resolved. However, the least-squares formulation is able to predict the shock.

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

Fig. 51. Density contours for flow past a circular cylinder at supersonic free-stream

conditions M = 2.0, Re = 100.



125

CHAPTER V

BENDING OF THIN AND THICK PLATES

This chapter and the following are concerned with the formulation and application

of least-squares finite element models to problems in the field of solid mechanics. In

this chapter† we consider the bending of thin and thick plates.

Finite element formulations for the bending of plates have been traditionally de-

rived from the principle of virtual displacements or the principle of minimum total

potential energy (see Reddy [92, 93, 91]). Equivalently, the traditional finite ele-

ment formulations can be derived by applying the Ritz-Galerkin procedure (i.e., the

weak form Galerkin procedure) to the plate bending equations. Displacement-based

finite element models for the classical plate theory (CPT) require the use of C1 in-

terpolation functions because the essential boundary conditions involve specifying

the transverse deflection as well as its derivatives. Displacement-based finite element

models for the first-order shear deformation theory (FSDT) allow the use of C0 in-

terpolation functions for the transverse deflection and the two independent rotations.

The displacement-based FSDT finite element model presents computational difficul-

ties when the side-to-thickness ratio of the plate, a/h, is large (i.e., when modeling

thin plates). A strong stiffening of the element matrices occurs, resulting in spuri-

ous shear stress predictions and erroneous results for the generalized displacements.

This phenomenon is known as shear-locking. The problem is commonly treated by

reduced integration techniques, although other remedies may be found (see, for ex-

ample, [10, 89]).

†The numerical results reported in this chapter appear in the article “Mixed
plate bending elements based on least-squares formulation” by J. P. Pontaza and
J. N. Reddy, Int. J. Numer. Meth. Engng, accepted for publication. Copyright (2003)
John Wiley & Sons.
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Shear-locking is evident in Ritz-Galerkin displacement-based finite element mod-

els with equal order interpolation of all generalized displacements when full integration

is used to analyze thin plates (a/h ≥ 20), and is more pronounced when low-order

elements are used. Higher-order elements show less sensitivity to shear-locking but

with slower convergence. The Ritz-Galerkin plate elements behave uniformly well for

thin and thick plates when reduced or selective reduced integration is used. Highly

distorted meshes tend to aggravate the predictive capabilities of these elements, even

for high-order elements and/or when reduced integration techniques are used. Shear-

locking can also be alleviated by using mixed interpolation, i.e., un-equal order inter-

polation for the generalized displacements.

An alternate approach is to use mixed formulations, where in addition to the

generalized displacements the stress resultants are introduced as independent vari-

ables [89]. Other types of mixed formulations are those where the shears strains are

treated as independent variables [48, 5]. However, reliable and optimal Ritz-Galerkin

mixed formulations require that the finite element approximation spaces satisfy an

inf-sup condition [19]. In many cases it is very difficult to analytically show that the

inf-sup condition is satisfied for a given combination of finite element spaces. More-

over, discrete models based on mixed formulations result in symmetric but indefinite

systems of equations; although static condensation procedures may be invoked to

remedy this shortcoming.

In the context of least-squares finite element formulations for plate bending,

Jiang [56] presented a formulation based on the CPT where low order nodal expan-

sions were used to develop the discrete finite element model. The resulting least-

squares functional is non-equivalent and reduced integration techniques were used

to obtain acceptable numerical results (i.e., to obtain a collocation solution). As

recommended in Chapter II, blind application of reduced integration techniques will
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not result in a collocation solution and should be avoided. Of course, in the work

of Jiang [56] the conditions necessary to ensure that a reduced integration solution

coincide with a collocation solution were considered and explained in detail.

The proposed bona fide formulation uses the generalized displacements and stress-

resultants as independent variables for both the CPT and FSDT. The plate bending

equations are used in their first-order form to allow the use of C0 interpolation func-

tions in the finite element model. The use of least-squares principles leads to a vari-

ational unconstrained minimization problem where the approximation spaces can be

chosen independently, i.e. stability requirements such as the inf-sup condition never

arise (see Chapter II). Equal order interpolation and full integration is used to develop

the discrete finite element model, which results in a symmetric and positive-definite

system of algebraic equations. We show by numerical examples that the proposed

high-order plate bending elements are free of shear-locking, insensitive to geometric

distortions, and predict accurate displacements as well as stress resultants along plate

boundaries.

We present the governing equations for the bending of plates and use the pro-

cedures in Chapter II to develop and arrive at the finite element model. The per-

formance of the plate bending elements is tested for circular, rectangular, and skew

plates with various boundary conditions and plate thickness. Exponentially fast de-

cay (spectral convergence) of the L2 least-squares functional and L2 error norms of

the generalized displacements and stress-resultants is verified using a smooth solution

to the FSDT plate bending equations.
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A. Governing equations

Consider the bending of an isotropic plate of thickness h subjected to a transverse

load q(x, y). In this case, Ω̄ is the undeformed mid-plane of the plate. The problem

can be stated as:

Find the generalized displacement fields w(x, y), φx(x, y), φy(x, y), and the thickness-

averaged stress resultants Mxx(x, y), Myy(x, y), Mxy(x, y), Qx(x, y), Qy(x, y), such

that

∂Qx

∂x
+
∂Qy

∂y
+ q(x, y) = 0 in Ω (5.1)

∂Mxx

∂x
+
∂Mxy

∂y
−Qx = 0 in Ω (5.2)

∂Mxy

∂x
+
∂Myy

∂y
−Qy = 0 in Ω (5.3)

Mxx −D

(

∂φx

∂x
+ ν

∂φy

∂y

)

= 0 in Ω (5.4)

Myy −D

(

ν
∂φx

∂x
+
∂φy

∂y

)

= 0 in Ω (5.5)

Mxy −D
(1 − ν)

2

(

∂φx

∂y
+
∂φy

∂x

)

= 0 in Ω (5.6)

αQx − β

(

∂w

∂x
+ φx

)

= 0 in Ω (5.7)

αQy − β

(

∂w

∂y
+ φy

)

= 0 in Ω (5.8)

Equations (5.1)-(5.3) are the equilibrium equations and Eqs. (5.4)-(5.8) are gener-

alized displacements-stress resultants relationships (see Reddy [92] for further details).

In Eqs. (5.4)-(5.6) D is the plate flexural rigidity

D =
E h3

12 (1 − ν2)
,

E is the Young’s modulus and ν the Poisson’s ratio.
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For α = 0 and β = 1 we have the classical plate theory and Eqs. (5.7) and (5.8)

simply become definitions for the rotations in terms of the transverse deflection w.

For α = 1 and β = KsGh we recover the first-order shear deformation plate theory

and Eqs. (5.7) and (5.8) become relationships for the stress resultants in terms of the

two independent rotations and the transverse deflection. For this definition of β, G

is the shear modulus and Ks = 5/6 is the shear correction factor.

Appropriate boundary conditions for the support types considered here are given

in the following

w = φn = φs = 0 on ΓC (5.9)

w = φs = Mnn = 0 on ΓSS (5.10)

Mnn = Mns = Qn = 0 on ΓF (5.11)

where Γ = ΓC ∪ΓSS ∪ΓF and ΓC ∩ΓSS ∩ΓF = ∅. In Eqs. (5.9)-(5.11) ΓC is a clamped

boundary, ΓSS is a simply-supported boundary, and ΓF is a free boundary.

Keeping in mind the “C0 practicality” level, we realize that the equations gov-

erning the bending of plates, Eqs. (5.1)-(5.8), are already of first-order. Hence, we

need only construct the L2 least-squares functional and minimize it with respect to

the chosen approximating spaces to obtain the finite element model.

Additional smoothness for the stress resultants may be requested for the CPT

model (α = 0 and β = 1) by including the following four seemingly redundant

constraints

∂φy

∂x
− ∂φx

∂y
= 0 in Ω (5.12)

∂Qy

∂x
− ∂Qx

∂y
= 0 in Ω (5.13)
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∂

∂y
(Mxx − ν Myy) − (1 + ν)

∂Mxy

∂x
= 0 in Ω (5.14)

∂

∂x
(Myy − ν Mxx) − (1 + ν)

∂Mxy

∂y
= 0 in Ω (5.15)

which implicitly enforce the following compatibility relations for the deflection w

∂

∂y

(

∂w

∂x

)

=
∂

∂x

(

∂w

∂y

)

∂

∂y

(

∂2w

∂x∂y

)

=
∂

∂x

(

∂2w

∂y2

)

,
∂

∂y

(

∂2w

∂x2

)

=
∂

∂x

(

∂2w

∂x∂y

)

∂2

∂y∂x

(

∂2w

∂x2
+
∂2w

∂y2

)

=
∂2

∂x∂y

(

∂2w

∂x2
+
∂2w

∂y2

)

Similarly, additional smoothness for the stress resultants may be requested for

the FSDT model (α = 1 and β = KsGh) at the expense of introducing an additional

degrees of freedom: the transverse twist (Λ) defined as

Λ −D
(1 − ν)

2

(

∂φy

∂x
− ∂φx

∂y

)

= 0 in Ω (5.16)

and including the following three seemingly redundant constraints

∂Qy

∂x
− ∂Qx

∂y
−KsGh

2 Λ

D (1 − ν)
= 0 in Ω (5.17)

∂

∂y
(Mxx − ν Myy) − (1 + ν)

∂

∂x
(Mxy − Λ) = 0 in Ω (5.18)

∂

∂x
(Myy − ν Mxx) − (1 + ν)

∂

∂y
(Mxy + Λ) = 0 in Ω (5.19)

which implicitly enforce the following compatibility relations for the deflection w and

independent rotations φx and φy

∂

∂y

(

∂w

∂x

)

=
∂

∂x

(

∂w

∂y

)
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∂

∂y

(

∂φx

∂x

)

=
∂

∂x

(

∂φx

∂y

)

,
∂

∂y

(

∂φy

∂x

)

=
∂

∂x

(

∂φy

∂y

)

The transverse twist is a very important and physically meaningful quantity as it

governs edge zone-behavior of rotations and stress resultants for the FSDT [42].

The additional compatibility constraints for the CPT and FSDT models make

the dependencies between the stress resultants and generalized displacements sub-

dominant, i.e., it helps the formulation “forget” that the stress resultants are linear

combinations of the derivatives of the generalized displacements. The weakening of

the interdependencies may help retain full-coercivity of the system, resulting in op-

timal convergence rates for the stress resultants, as given by error estimates based

on standard elliptic theory (see [13] for further details). Neglecting the compatibility

constraints may result in sub-optimal convergence rates for the stress resultants but

will not lead to disastrous results. The effect of neglecting the compatibility con-

straints may be especially pronounced when low p-levels (e.g., p-levels of 1 or 2) are

used to construct the finite element model, and the effect becomes less pronounced

when using higher-order element expansions. Since the inclusion of the compatibility

constraints does not represent a significant increase in cost, except perhaps for the

FSDT model where an additional degree of freedom is introduced, we have included

them in our implementation.

B. Numerical examples: verification benchmarks

In this section we present some numerical results obtained with the proposed formu-

lation. The problems have been selected to assess the predictive capabilities of the

plate bending elements.
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1. Convergence

To illustrate the performance of the elements and verify exponentially fast decay of

discretization errors for increasing p-levels we consider the following test problem.

We prescribe a solution for the generalized displacement fields (for the FSDT) in the

bi-unit square, Ω̄ = [−1, 1] × [−1, 1], compute the consistent forcing functions and

solve to verify convergence of the numerical solution to the exact solution. We choose

the generalized displacement fields to be of the form

w(x, y) = aw + bw cos(ωw x) sin(ωw y)

φx(x, y) = aφx
+ bφx

cos(ωφx
x) cos(ωφx

y)

φy(x, y) = aφy
+ bφy

sin(ωφy
y) sin(ωφy

y)

(5.20)

The exact solution was used to prescribe values of the generalized displacements

on the entire boundary. The connected model, Ω̄h, consists of a 4 × 4 finite ele-

ment mesh. We consider uniform and distorted meshes. The choice of constants in

Eq. (5.20) were as follows: aw = aφx
= aφy

= 0, ωw = ωφx
= ωφy

= 2π, bw = 0.5,

bφx
= 0.2, and bφy

= 0.4.

For the case considered here, namely ωw = ωφx
= ωφy

= ω, the generalized

displacement field in Eq. (5.20) is a prototypical response of a square plate subjected

to a trigonometric type transverse load with spatial frequency ω.

In Figure 52 we plot the L2 least-squares functional (J ) and L2 error of the

generalized displacements (w,φ) and stress resultants (M,Q) as a function of the

expansion order in a logarithmic-linear scale. Exponentially fast decay (spectral con-

vergence) of the L2 least-squares functional and L2 errors is observed for both uniform

and distorted meshes.
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Fig. 52. Decay of the least-squares functional and convergence of the generalized dis-

placements and stress resultants for uniform and distorted meshes.
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2. Circular plates

We consider the bending of circular plates. The total domain of the plate is Ω̄ ×

[−h/2, h/2], where h is the thickness of the plate. The undeformed mid-plane of the

plate, Ω̄, has dimensions [0, a] × [0, 2π] and is shown in Fig. 53. The labeled open

circles in Fig. 53 show locations at which deflections, stress resultants, and stresses

will be tabulated for the different boundary conditions and used to compare against

closed form analytic solutions for both the CPT and FSDT (see Reddy [92]).

c d

e

x

y

a

Fig. 53. Circular plate showing points and respectively assigned labels where displace-

ment, stress resultants, and stresses are recorded and tabulated.

Unless otherwise stated stresses are reported at the top fibers of the plate, i.e.

at z = h/2. The reported deflections (w), stress resultants (M,Q), and stresses (σ)

are normalized as follows

w̄ = w
D

q0 a4
× 103, M̄ = M

100

q0 a2
, Q̄ = Q

100

q0 a
(5.21)

[

σ̄xx σ̄yy σ̄xy

]T

=
10

q0 (a/h)2

[

σxx σyy σxy

]T

(5.22)

[

σ̄yz σ̄xz

]T

=
10

q0 (a/h)

[

σyz σxz

]T

(5.23)
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a. Simply supported circular plate

Consider a simply supported, circular isotropic plate subjected to a uniformly dis-

tributed load of intensity q0. Due to the symmetry only one quadrant of the plate need

be modelled. The boundary conditions of the computational domain are specified as

φx = 0 , Mxy = 0 , Qx = 0 on x = 0 , y = [0, a]

φy = 0 , Mxy = 0 , Qy = 0 on y = 0 , x = [0, a]

w = 0 , φs = 0 , Mnn = 0 on r = a , θ = [0, π/2] CPT

w = 0 , Mnn = 0 , Mns = 0 on r = a , θ = [0, π/2] FSDT

The connected models of the quarter plate, Ω̄h, used for the analysis are shown

in Fig. 54. For the analysis of the simply supported plate we wish to fix the p-level at

4 and study the effect of h-refinement with meshes A and B in Fig. 54. The circular

arc at r = a is represented using the same nodal basis with a p-level of 4 in each

element.

Table III shows results for normalized deflection, stress resultants, and stresses

for the case ν = 0.30. The left-superscript on each normalized variable in Table III

denotes the location at which the parameter of interest was recorded (see Fig. 53).

We observe excellent agreement between the numerical results and the closed form

solution for the shear-deformable model at moderate and high diameter-to-thickness

ratios and for the classical plate model. Mesh A gives sufficiently accurate results

for moderate diameter-to-thickness ratios and for the CPT. For the case 2a/h = 100

mesh B gives an improved solution; although the results obtained for mesh A are

relatively good for such a coarse mesh and low p-level.

It is known that for the traditional (i.e., based on the Ritz-Galerkin procedure)



136

Table III. Normalized deflection, stress resultants, and stresses for a simply supported,

isotropic (ν = 0.30) circular plate under a uniformly distributed load. FSDT

model (Ks = 5/6). p-level fixed at 4.

2a/h mesh cw̄ cM̄xx
dM̄yy

eQ̄y
cσ̄xx

dσ̄yy
eσ̄yz

5 A 75.1235 -20.6240 -8.7499 50.0179 -12.3744 -5.2499 6.0022
B 75.1301 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 6.0000

Analytic 75.1305 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 6.0000

20 A 64.3847 -20.6226 -8.7459 50.0224 -12.3735 -5.2475 6.0027
B 64.4156 -20.6250 -8.7496 50.0000 -12.3750 -5.2498 6.0000

Analytic 64.4162 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 6.0000

100 A 61.9073 -20.5131 -8.6992 50.2649 -12.3079 -5.2195 6.0318
B 63.6478 -20.6200 -8.7473 50.0567 -12.3719 -5.2484 6.0068

Analytic 63.7305 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 6.0000

CPT A 63.6956 -20.6240 -8.7497 50.0005 -12.3744 -5.2498 0.0000
B 63.7015 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 0.0000

Analytic 63.7019 -20.6250 -8.7500 50.0000 -12.3750 -5.2500 0.0000

displacement-based finite element formulations, even high-order elements still do not

display a good predictive capability, particularly when the elements are geometrically

distorted and used for stress predictions. Of particular interest is the transverse

shear stress prediction, as it is often the most difficult stress component to predict

for Ritz-Galerkin FSDT plate elements. The circular plate problem is ideal to asses

the accuracy of the prediction as the analytical solution is readily available in closed

form, no boundary layers are present, and the elements are naturally distorted to

accommodate the plate geometry.

In Figs. 55 and 56 we present the predicted transverse shear stress distributions

for a plate with diameter-to-thickness ratio of 100 using mesh A with a p-level of 4.

Figure 55 shows the distributions along the radial line ce and Fig. 56 along the circular

arc de, with θ measured counterclockwise from the x-axis. We plot the stresses at

the elements nodal mid- and end-points along radial line ce and along circular arc

de. For comparison, we also present results obtained using the displacement based
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Ritz-Galerkin formulation using the same mesh and p-level. We do not employ stress

smoothing to present the results, i.e. there may be different values for the shear stress

where elements meet. Clearly, the stress predictions using the proposed least-squares

formulation are superior.

In Fig. 57 we present contour plots of the predicted shear force Q̄x for a plate

with diameter-to-thickness ratio of 100 using mesh A with a p-level of 4. The Ritz-

Galerkin FSDT plate elements give spurious shear force predictions, displaying a

localized locking behavior near the curved boundary. On the other hand, the least-

squares FSDT plate elements give a smooth and highly accurate shear force prediction

throughout.

mesh A mesh B

Fig. 54. Quarter plate computational domain for the analysis of the circular plate.
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Fig. 55. Transverse shear stress predictions along radial line ce. Simply supported

circular plate with diameter-to-thickness ratio 100. Mesh A with p-level fixed

at 4 for both least-squares and Ritz-Galerkin elements.
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Fig. 56. Transverse shear stress predictions along circular arc de. Simply supported

circular plate with diameter-to-thickness ratio 100. Mesh A with p-level fixed

at 4 for both least-squares and Ritz-Galerkin elements.
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Fig. 57. Predicted shear force contours for a simply supported circular plate with

diameter-to-thickness ratio 100. Mesh A with p-level fixed at 4 for both

least-squares and Ritz-Galerkin elements.
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b. Clamped circular plate

Consider a clamped, circular isotropic plate subjected to a uniformly distributed load

of intensity q0. Due to the symmetry only one quadrant of the plate need be modelled.

The boundary conditions of the computational domain are specified as

φx = 0 , Mxy = 0 , Qx = 0 on x = 0 , y = [0, a]

φy = 0 , Mxy = 0 , Qy = 0 on y = 0 , x = [0, a]

w = 0 , φn = 0 , φs = 0 on r = a , θ = [0, π/2] CPT

w = 0 , φn = 0 , Mns = 0 on r = a , θ = [0, π/2] FSDT

Like for the simply supported case, we wish to fix the p-level at 4 and study the

effect of h-refinement with meshes A and B in Fig. 54. Table IV shows results for

normalized deflection, stress resultants, and stresses for the case ν = 0.30. We observe

excellent agreement between the numerical results and the closed form solution for

the shear-deformable model and for the classical plate model.

In Fig. 58 we present the predicted transverse shear stress distributions along

radial line ce for a plate with diameter-to-thickness ratio of 100 using mesh A with a

p-level of 4. For the clamped case, the Ritz-Galerkin FSDT elements behave uniformly

better when compared to the simply supported case. Nevertheless, the least-squares

FSDT elements still give a more accurate prediction of the transverse shear stress

distributions.
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Table IV. Normalized deflection, stress resultants, and stresses for a clamped, isotropic

(ν = 0.30) circular plate under a uniformly distributed load. FSDT model

(Ks = 5/6). p-level fixed at 4.

2a/h mesh cw̄ cM̄xx
dM̄xx

dM̄yy
eQ̄y

dσ̄xx
dσ̄yy

eσ̄yz

5 A 27.0515 -8.1246 12.5026 3.7505 50.0121 7.5015 2.2503 6.0015
B 27.0534 -8.1250 12.5000 3.7500 50.0006 7.5000 2.2500 6.0000

Analytic 27.0536 -8.1250 12.5000 3.7500 50.0000 7.5000 2.2500 6.0000

20 A 16.3376 -8.1246 12.4977 3.7502 49.9253 7.4986 2.2501 5.9910
B 16.3392 -8.1250 12.5000 3.7500 49.9956 7.5000 2.2500 6.0000

Analytic 16.3393 -8.1250 12.5000 3.7500 50.0000 7.5000 2.2500 6.0000

100 A 15.6488 -8.1245 12.4554 3.7107 48.6536 7.4733 2.2264 5.8384
B 15.6535 -8.1250 12.4967 3.7472 49.8244 7.4980 2.2483 5.9789

Analytic 15.6536 -8.1250 12.5000 3.7500 50.0000 7.5000 2.2500 6.0000

CPT A 15.6235 -8.1246 12.5008 3.7500 50.0001 7.5005 2.2500 0.0000
B 15.6249 -8.1250 12.5000 3.7500 50.0000 7.5000 2.2500 0.0000

Analytic 15.6250 -8.1250 12.5000 3.7500 50.0000 7.5000 2.2500 0.0000
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Fig. 58. Transverse shear stress predictions along radial line ce. Clamped circular plate

with diameter-to-thickness ratio 100. Mesh A with p-level fixed at 4 for both

least-squares and Ritz-Galerkin elements.
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3. Rectangular plates

We now consider the bending of rectangular plates with various boundary conditions.

The total domain of the plate is Ω̄ × [−h/2, h/2], where h is the thickness of the

plate. The undeformed mid-plane of the plate, Ω̄, has dimensions [−a/2, a/2] ×

[−b/2, b/2] and is shown in Fig. 59. The labeled open circles in Fig. 59 show locations

at which deflections, stress resultants, and stresses will be tabulated for the different

boundary conditions and used to compare against available analytic solutions for both

the CPT and FSDT. Results are reported in normalized form as defined in Eqs. (5.21)

through (5.23).

c d

ef

g

x

y

a / 2 a / 2

b / 2

b / 2

Fig. 59. Rectangular plate showing points and respectively assigned labels where dis-

placement, stress resultants, and stresses are recorded and tabulated.

a. Clamped plate

Consider a square isotropic plate with clamped edges and subjected to a uniformly

distributed load of intensity q0. Due to the symmetry only one quadrant of the plate

need be modeled. The boundary conditions of the computational domain are specified
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as

φx = 0 , Mxy = 0 , Qx = 0 on x = 0 , y = [0, b/2]

φy = 0 , Mxy = 0 , Qy = 0 on y = 0 , x = [0, a/2]

w = 0 , φx = 0 , φy = 0 on x = a/2 , y = [0, b/2]

w = 0 , φx = 0 , φy = 0 on y = b/2 , x = [0, a/2]

The connected model of the quarter plate, Ω̄h, consists of 2 × 2 quadrilateral

finite elements, Ω̄e, and is shown in Fig. 60. Table V shows result of a p-convergence

study using the uniform mesh (mesh A in Fig. 60) for normalized deflection, bending

moment, and in-plane normal stress for a square plate with ν = 0.30. We consider

p-levels in the range of 4 to 12, corresponding to discrete systems in the range of 648

to 5000 degrees of freedom respectively.

mesh Bmesh A

Fig. 60. Quarter plate computational domain using 4 quadrilateral finite elements.

The element discretization is shown by the thick lines and the nodal points

for sixth-order expansion are shown by the intersection of the thin lines. Mesh

A: uniform mesh. Mesh B: distorted mesh.
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The left-superscript on each normalized variable in Table V denotes the location

at which it was recorded (see Fig. 59). We observe good convergence for the shear-

deformable model at moderate and high side-to-thickness (a/h) ratios and for the

classical plate model. We compare the computed values against the analytic series

solution of Lim and Reddy [71]. The computed center deflection is exact for p-levels

of 6 and higher. The slight discrepancy between the computed and analytic value

for the bending moment is explained by realizing that a representative analytic value

was taken by using only the first 20 terms in the series representation.

In Table VI we present results for normalized deflection, stress resultants, and

stresses at various locations in the plate for a range of plate thickness. p-levels of

10 are used for side-to-thickness ratios up to 100, a p-level of 12 is used for the case

a/h = 200. Such high p-levels were used to instill confidence in the results so that

they may be used as a benchmark for comparison with low-order methods.

From Table V we see that no catastrophic loss of accuracy (shear-locking) is

encountered for the least-squares formulation for such a course mesh and the range

of p-levels considered. In the Ritz-Galerkin formulation, shear locking is more pro-

nounced for low-order elements and for high side-to-thickness ratios (thin plates).

Shear locking is alleviated by using selective reduced integration techniques or an

appropriate mixed interpolation formulation [92, 93]. Again, these problems need not

be treated here because they simply do not arise.

To further test the predictive capability and robustness of the plate bending

elements using the least-squares formulation we consider a new connected model of

the quarter plate, Ω̄h, consisting of 2 × 2 geometrically distorted quadrilateral finite

elements (mesh B in Fig. 60).

In Table VII we present the geometrically distorted mesh results for the same

variables and their respective locations as in Table VI for p levels of 6 and 10. We
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observe little or no change in the prediction of deflection, stress resultants, and stresses

when compared to the geometrically undistorted mesh results of Table VI. Hence,

the high-order plate bending elements based on the least-squares formulation not

only display shear-locking-free behavior but are also insensitive to element geometric

distortions.

Table V. p-convergence study showing normalized deflection, bending moment, and

in-plane normal stress for a clamped, square, isotropic (ν = 0.30) plate

under a uniformly distributed load. FSDT model (Ks = 5/6). Quarter plate

using a 2 × 2 uniform mesh.

a/h p level cw̄ dM̄xx
dσ̄xx

10 4 1.5037 4.9572 2.9239
6 1.5046 4.9383 2.9608
8 1.5046 4.9364 2.9610
10 1.5046 4.9366 2.9616
12 1.5046 4.9367 2.9619

Analytic 1.5046 5.0738

100 4 1.2693 5.1514 3.0432
6 1.2680 5.1365 3.0829
8 1.2679 5.1322 3.0799
10 1.2679 5.1314 3.0791
12 1.2679 5.1312 3.0788

Analytic 1.2679 5.1327

CPT 4 1.2654 5.1486 3.0822
6 1.2653 5.1333 3.0801
8 1.2653 5.1333 3.0802
10 1.2653 5.1333 3.0800
12 1.2653 5.1333 3.0800

Analytic 1.2653 5.1334
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Table VI. Normalized deflection, stress resultants, and stresses for a clamped, square,

isotropic (ν = 0.30) plate under a uniformly distributed load. FSDT model

(Ks = 5/6). Quarter plate using a 2 × 2 uniform mesh.

a/h p level cw̄ dM̄xx
gM̄xy

f Q̄y
cσ̄xx

dσ̄xx
gσ̄xy

dσ̄xz

5 10 2.1722 4.6246 0.5728 38.2058 -1.4145 2.7747 0.3438 4.5848
Analytic 2.1722 4.9797 38.1903

10 10 1.5046 4.9366 0.6814 41.2186 -1.3920 2.9616 0.4089 4.9463
Analytic 1.5046 5.0738 41.1982

20 10 1.3273 5.0781 0.7287 42.8833 -1.3800 3.0466 0.4368 5.1460
Analytic 1.3273 5.1166 42.8595

100 10 1.2679 5.1314 0.7509 43.8450 -1.3746 3.0791 0.4471 5.2613
Analytic 1.2679 5.1327 43.9145

200 12 1.2660 5.1328 0.7500 43.9555 -1.3744 3.0800 0.4481 5.2746
Analytic 1.2660 5.1332 44.0202

CPT 10 1.2653 5.1333 0.7475 44.1244 -1.3743 3.0800 0.4485 0.0000
Analytic 1.2653 5.1334 44.1193
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Table VII. Geometrically distorted mesh results: normalized deflection, stress resul-

tants, and stresses for a clamped, square, isotropic (ν = 0.30) plate under a

uniformly distributed load. FSDT model (Ks = 5/6). Quarter plate using

a 2 × 2 geometrically distorted mesh (mesh B in Fig. 60).

a/h p level cw̄ dM̄xx
gM̄xy

f Q̄y
cσ̄xx

dσ̄xx
gσ̄xy

dσ̄xz

5 6 2.1722 4.6204 0.5720 38.2029 -1.4123 2.7691 0.3430 4.5836
10 2.1722 4.6252 0.5730 38.2053 -1.4145 2.7750 0.3436 4.5847

Analytic 2.1722 4.9797 38.1903

10 6 1.5046 4.9359 0.6783 41.1520 -1.3895 2.9515 0.4074 4.9517
10 1.5046 4.9369 0.6816 41.2184 -1.3920 2.9621 0.4087 4.9463

Analytic 1.5046 5.0738 41.1982

20 6 1.3272 5.0767 0.7243 42.3852 -1.3776 3.0458 0.4361 5.1520
10 1.3273 5.0780 0.7284 42.8666 -1.3799 3.0468 0.4370 5.1462

Analytic 1.3273 5.1166 42.8595

100 6 1.2679 5.1159 0.7313 42.8093 -1.3719 3.0700 0.4486 5.1978
10 1.2679 5.1297 0.7463 43.5255 -1.3743 3.0810 0.4482 5.2568

Analytic 1.2679 5.1327 43.9145

200 6 1.2660 5.1135 0.7324 43.5820 -1.3736 3.0734 0.4485 5.1758
10 1.2660 5.1308 0.7461 43.5317 -1.3743 3.0799 0.4486 5.2520

Analytic 1.2660 5.1332 44.0202

CPT 6 1.2653 5.1348 0.7476 44.1323 -1.3741 3.0831 0.4484 0.0000
10 1.2653 5.1333 0.7475 44.2010 -1.3743 3.0799 0.4485 0.0000

Analytic 1.2653 5.1334 44.1193
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b. Orthotropic simply supported plate

Consider a square orthotropic plate with simply supported edges subjected to two

different types of transverse loads: a sinusoidally distributed load with maximum

intensity q0 and a uniformly distributed load of intensity q0. Due to the symmetry

only one quadrant of the plate need be modelled. The boundary conditions of the

computational domain are specified as

φx = 0 , Mxy = 0 , Qx = 0 on x = 0 , y = [0, b/2]

φy = 0 , Mxy = 0 , Qy = 0 on y = 0 , x = [0, a/2]

w = 0 , φy = 0 , Mxx = 0 on x = a/2 , y = [0, b/2]

w = 0 , φx = 0 , Myy = 0 on y = b/2 , x = [0, a/2]

Like before we consider the 2× 2 uniform and geometrically distorted meshes for the

quarter plate, shown in Fig. 60.

For an orthotropic material the constitutive relationships are replaced by

M = D ε1 in Ω (5.24)

αQ = β ε0 in Ω (5.25)

with the following new definitions for D and β

D =
h3

12













q11 q12 0

q12 q22 0

0 0 q66













β =

[

Ks q55 h Ks q44 h

]
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where

q11 =
E1

1 − ν12 ν21

, q12 = ν21 q11 , q22 =
E2

1 − ν12 ν21

q44 = G23 , q55 = G13 , q66 = G12

Ei are Young’s moduli in the xm
i material direction, νij is the Poisson’s ratio, and Gij

are shear moduli in the i-jth material planes. Here we take the material directions

to coincide with the cartesian directions. Of course, for the CPT model β = [1 1].

For the uniform mesh (mesh A in Fig. 60), lines of constant ξ and η in Ω̂e coincide

with the material directions. Of particular interest is to test the predictive capability

of the elements when the geometrically distorted mesh is used (mesh B in Fig. 60).

For this mesh, lines of constant ξ and η in Ω̂e no longer coincide with the material

directions.

We consider the case E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25.

Table VIII shows results for the sinusoidally distributed load case at a fixed p-level

of 6, corresponding to a discrete system of 1352 degrees of freedom, for both uniform

and geometrically distorted meshes. We present results for normalized deflection and

stresses at various locations in the plate for a range of plate thickness and compare

with the analytic closed form solution of Reddy [92]. The normalization for the

deflection is defined as w̄ = 103wD22/q0 a
4.

From results recorded in Table VIII we see that we predict exact deflection

and stresses (including transverse shear stresses) for all the side-to-thickness ratios

considered; using either the uniform or geometrically distorted mesh.

Table IX shows results for the uniformly distributed load case using the uniform

mesh for p-levels of 6, 8, and 10; corresponding to discrete systems of 1352, 2312, and

3528 degrees of freedom respectively. We present results for normalized deflection and
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stresses at various locations in the plate for a range of plate thickness and compare

with the analytic series solution of Reddy [92].

We see from the table that the numerical solution at a p-level of 6 is already exact

for the center deflection and well within an acceptable tolerance (when compared to

higher p-level values) for the stresses for moderate and high side-to-thickness ratios.

The slight discrepancy between the computed and analytic values for the stresses can

be explained by realizing that only the first 19 terms of the series solution were used

as a representative analytic value (see Reddy [92]). The analytic series representa-

tion associated with the shear stresses are typically characterized by slow asymptotic

convergence, especially those associated with the transverse shear stresses.

Table X shows results using the geometrically distorted mesh for p-levels of 6, 8,

and 10. We observe no deterioration in the numerical results and, like for the uniform

mesh, a p-level of 6 is sufficient to obtain good accuracy.
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Table VIII. Normalized deflection and stresses for a simply supported, square, or-

thotropic plate under a sinusoidally distributed load. FSDT model

(Ks = 5/6). p-level fixed at 6.

a/h mesh cw̄ cσ̄xx
cσ̄yy

eσ̄xy
dσ̄xz

f σ̄yz

10 A 0.5332 -5.2480 -0.3386 0.2463 3.4522 0.3675
B 0.5332 -5.2480 -0.3385 0.2463 3.4522 0.3674

Analytic 0.533 -5.248 -0.338 0.246 3.452 0.367

20 A 0.4040 -5.3499 -0.2859 0.2217 3.5008 0.3190
B 0.4040 -5.3500 -0.2858 0.2218 3.5005 0.3185

Analytic 0.404 -5.350 -0.286 0.222 3.501 0.319

50 A 0.3673 -5.3809 -0.2698 0.2143 3.5156 0.3042
B 0.3673 -5.3809 -0.2697 0.2143 3.5143 0.3027

Analytic 0.367 -5.380 -0.270 0.214 3.515 0.304

100 A 0.3620 -5.3854 -0.2675 0.2132 3.5177 0.3020
B 0.3620 -5.3851 -0.2674 0.2131 3.5164 0.3014

Analytic 0.362 -5.385 -0.267 0.213 3.517 0.302

CPT A 0.3603 -5.3870 -0.2667 0.2128 0.0000 0.0000
B 0.3603 -5.3869 -0.2667 0.2128 0.0000 0.0000

Analytic 0.360 -5.387 -0.267 0.213 0.000 0.000
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Table IX. Normalized deflection and stresses for a simply supported, square, or-

thotropic plate under a uniformly distributed load. FSDT model

(Ks = 5/6). Quarter plate using a 2 × 2 uniform mesh.

a/h p level cw̄ cσ̄xx
cσ̄yy

eσ̄xy
dσ̄xz

f σ̄yz

10 6 0.7953 -7.7065 -0.3523 0.5249 6.2739 1.6511
8 0.7953 -7.7065 -0.3524 0.5321 6.2747 1.6517
10 0.7953 -7.7065 -0.3524 0.5365 6.2748 1.6518

Analytic 0.795 -7.706 -0.352 0.539 6.147 1.529

20 6 0.6067 -7.8288 -0.2727 0.4822 6.3192 1.5877
8 0.6067 -7.8286 -0.2728 0.4830 6.3207 1.5886
10 0.6067 -7.8286 -0.2728 0.4838 6.3209 1.5888

Analytic 0.607 -7.828 -0.272 0.487 6.194 1.466

50 6 0.5531 -7.8611 -0.2491 0.4681 6.3277 1.5709
8 0.5531 -7.8610 -0.2491 0.4687 6.3315 1.5726
10 0.5531 -7.8610 -0.2491 0.4689 6.3321 1.5730

Analytic 0.553 -7.860 -0.249 0.468 6.207 1.452

100 6 0.5454 -7.8654 -0.2456 0.4656 6.3265 1.5677
8 0.5454 -7.8654 -0.2457 0.4659 6.3325 1.5703
10 0.5454 -7.8654 -0.2457 0.4660 6.3335 1.5708

Analytic 0.545 -7.865 -0.245 0.464 6.206 1.449

CPT 6 0.5428 -7.8670 -0.2446 0.4672 0.0000 0.0000
8 0.5428 -7.8669 -0.2446 0.4658 0.0000 0.0000
10 0.5428 -7.8669 -0.2446 0.4653 0.0000 0.0000

Analytic 0.543 -7.866 -0.244 0.463 0.000 0.000
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Table X. Geometrically distorted mesh results: normalized deflection and stresses for

a simply supported, square, orthotropic plate under a uniformly distributed

load. FSDT model (Ks = 5/6). Quarter plate using a 2 × 2 geometrically

distorted mesh (mesh B in Fig. 60).

a/h p level cw̄ cσ̄xx
cσ̄yy

eσ̄xy
dσ̄xz

f σ̄yz

10 6 0.7953 -7.7050 -0.3493 0.4611 6.2750 1.6491
8 0.7953 -7.7062 -0.3526 0.4879 6.2749 1.6512
10 0.7953 -7.7065 -0.3524 0.5084 6.2750 1.6518

Analytic 0.795 -7.706 -0.352 0.539 6.147 1.529

20 6 0.6067 -7.8236 -0.2701 0.3968 6.3214 1.5855
8 0.6067 -7.8289 -0.2732 0.4192 6.3208 1.5873
10 0.6067 -7.8287 -0.2728 0.4389 6.3210 1.5884

Analytic 0.607 -7.828 -0.272 0.487 6.194 1.466

50 6 0.5530 -7.8514 -0.2477 0.4428 6.3315 1.5728
8 0.5531 -7.8616 -0.2495 0.4429 6.3326 1.5723
10 0.5531 -7.8610 -0.2491 0.4444 6.3323 1.5727

Analytic 0.553 -7.860 -0.249 0.468 6.207 1.452

100 6 0.5454 -7.8603 -0.2442 0.4647 6.3174 1.5575
8 0.5454 -7.8660 -0.2459 0.4599 6.3344 1.5706
10 0.5454 -7.8654 -0.2457 0.4592 6.3341 1.5709

Analytic 0.545 -7.865 -0.245 0.464 6.206 1.449

CPT 6 0.5428 -7.8687 -0.2444 0.4683 0.0000 0.0000
8 0.5428 -7.8666 -0.2446 0.4664 0.0000 0.0000
10 0.5428 -7.8669 -0.2446 0.4653 0.0000 0.0000

Analytic 0.543 -7.866 -0.244 0.463 0.000 0.000
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c. Square plate with two opposite simply supported edges

Consider a square isotropic plate with two opposite simply supported edges (and two

opposite free edges) subjected to a uniformly distributed load of intensity q0. Due

to the symmetry only one quadrant of the plate need be modelled. The boundary

conditions of the computational domain are specified as

φx = 0 , Mxy = 0 , Qx = 0 on x = 0 , y = [0, b/2]

φy = 0 , Mxy = 0 , Qy = 0 on y = 0 , x = [0, a/2]

w = 0 , φy = 0 , Mxx = 0 on x = a/2 , y = [0, b/2]

Myy = 0 , Mxy = 0 , Qy = 0 on y = b/2 , x = [0, a/2]

This case is of particular relevance, as it has been reported that when the p-Ritz

method is used to analyze this problem (using the FSDT model) it is found that

the shear forces and twisting moments are not accurate when thin plates are consid-

ered [63, 106]. Oscillations are observed in the computed stress-resultant distributions

and the natural boundary conditions cannot be satisfied. A penalty function method

was proposed to ensure the satisfaction of the natural boundary conditions and a

post-processing curve fitting procedure to filter out the oscillations (see Wang et

al. [106]).

Such “fixes” are not needed in the least-squares formulation as boundary condi-

tions on shear forces and/or bending moments can be imposed strongly (pointwise).

Figures 61 and 62 show the computed shear force and twisting moment distributions

along the simply supported edge (with ν = 0.30). No oscillations are observed as the

plate thickness is decreased. A graded 4 × 4 mesh using a p-level of 6 was used to

generate the distributions.
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In Table XI we present results for normalized deflection and stress resultants

at various locations in the plate for a range of plate thickness. We see that the

computed maximum deflection is exact, when compared against the analytic series

solution value of Lim and Reddy [71]. Analytic values for the stress resultants were

not reported in Ref. [71].
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Fig. 61. Shear force Q̄x distribution along simply supported edge for decreasing plate

thickness: full-view (0.0 ≤ s/a ≤ 0.5) and close-up view (0.0 ≤ s/a ≤ 0.05).

Uniformly loaded square plate with two opposite simply supported edges.
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Fig. 62. Twisting moment M̄xy distribution along simply supported edge for de-

creasing plate thickness: full-view (0.0 ≤ s/a ≤ 0.5) and close-up view

(0.0 ≤ s/a ≤ 0.1). Uniformly loaded square plate with two opposite sim-

ply supported edges.

Table XI. Normalized deflection and stress resultants for a square, isotropic (ν = 0.30)

plate with two opposite simply supported edges under a uniformly dis-

tributed load. FSDT model (Ks = 5/6). Quarter plate using a 4 × 4

graded mesh.

a/h p level f w̄ fM̄xx
cM̄yy

dQ̄x
eQ̄x

20 6 15.2165 12.9344 2.6415 46.6828 202.57
Analytic 15.2165

50 6 15.0706 13.0389 2.6826 46.7946 430.93
Analytic 15.0706

100 6 15.0380 13.0710 2.6954 46.8321 810.55
Analytic 15.0380
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4. Skew plates

We now consider the bending of skew, simply supported, isotropic plates subjected

to a uniformly distributed load of intensity q0. We denote by θ the skew angle of the

plate (see Fig. 63).

a

a

x

y

θ

c

d e

Fig. 63. Skew plate with side lengths a and skew angle θ.

We expect deterioration of accuracy in the numerical solution as θ becomes

smaller. As pointed out by Babuška and Scapolla [4], the main cause in deterioration

of the numerical solution is the rapid decay of smoothness of the exact solution with

decreasing θ, and has little to do with the skewness of the elements which would

worsen with decreasing θ.

For the CPT we find singular behavior of the bending moments at the obtuse

angle corners of the plate. Babuška and Scapolla [4] estimated that for the analysis

of a plate with skew angle θ = 30◦ using a uniform mesh, 106 degrees of freedom for

a displacement-based conforming C1 element based on the Ritz-Galerkin formulation

would be needed to achieve a five percent accuracy for the displacement at the center

of the plate. Here we construct a connected model of the full plate, Ω̄h, consisting of

4 × 4 uniformly spaced quadrilateral finite elements, Ω̄e, shown in Fig. 64a.
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(a)

(b)

Fig. 64. Computational domain for θ = 30◦ using (a) 4×4 uniform mesh and (b) 6×6

non-uniform mesh.

Table XII shows result of a p-convergence study for normalized deflection, prin-

cipal bending moments, and principal stresses at the center of the plate for θ = 60◦

and θ = 30◦. Results are reported in normalized form as defined in Eqs. (5.21)

through (5.23). We see excellent agreement with the analytic series solution of Mor-

ley [74]. As expected, we observe better convergence for the smoother case of θ = 60◦,

for which the solution at a p-level of 4 (2312 degrees of freedom) is already well within

one percent accuracy for the displacement at the center of the plate. For the case of

θ = 30◦ a slower rate of convergence is observed; for a a p-level of 10 (13448 degrees of

freedom) we are well within one percent accuracy for the displacement at the center

of the plate.

For the FSDT simulation of the transversely loaded skew plate we specify simply

supported boundary conditions of the soft type: w = Mnn = Mns = 0; as opposed to

the hard type: w = φs = Mnn = 0. This allows the natural occurrence of boundary

layers at the corners so as to neutralize the CPT singularity; a great improvement

in the description of the actual physical behavior of the plate allowed by the FSDT

model. Good resolution is desired near the obtuse corners to capture the boundary
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Table XII. p-convergence study showing normalized deflection, principal bending mo-

ments, and principal stresses for a simply supported, isotropic (ν = 0.30)

skew plate under a uniformly distributed load. CPT model. Full plate

using a 4 × 4 uniform mesh.

θ p level cw̄ cM̄min
cM̄max

cσ̄min
cσ̄max

60◦ 4 2.5618 3.4146 4.1840 2.0208 2.5291
6 2.5602 3.3433 4.2342 2.0119 2.5365
8 2.5601 3.3304 4.2502 2.0010 2.5491
10 2.5601 3.3285 4.2537 1.9977 2.5524

Analytic 2.56 3.33 4.25

30◦ 4 0.3823 1.1848 1.8333 0.6458 1.0428
6 0.4000 1.1140 1.8852 0.6504 1.1185
8 0.4053 1.0954 1.9009 0.6515 1.1371
10 0.4069 1.0909 1.9045 0.6510 1.1415

Analytic 0.408 1.08 1.91

layers. We construct a connected model of the full plate, Ω̄h, using a 6×6 non-uniform

quadrilateral finite element mesh, shown in Fig. 64b. The spacing of the elements

near the edges of the plate was chosen as δ/a = 0.035.

Table XIII shows results for normalized deflection, principal bending moments,

and principal stresses at the center of the plate for θ = 60◦, θ = 30◦, and decreasing

plate thickness h. We present results for p-levels of 10. At these p-levels the change in

normalized center deflection (between p-levels of p and p−2) was less than 0.05% and

1% for skew angles of θ = 60◦ and θ = 30◦ respectively. As expected, the effect of the

transverse shear strains for thick plates is to increase the center deflection. We see nice

convergence towards the CPT solution as the plate becomes thin. No shear-locking

due to element skewness and/or decreasing plate thickness was observed.

Figure 65 shows the normalized transverse shear stress distribution along line de

for a plate with skew angle θ = 60◦ and decreasing plate thickness. The normalization

is taken here as σ̄xz = 10σxz/q0 (a/h)2. We observe a mild boundary layer at the
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obtuse corner for low values of a/h (thick plates). The boundary layer becomes more

pronounced as the plate becomes thin.

Table XIII. Normalized deflection, principal bending moments, and principal stresses

for a (softly) simply supported, isotropic (ν = 0.30) skew plate under a

uniformly distributed load. FSDT model (Ks = 5/6). Full plate using a

6 × 6 non-uniform mesh (see Fig. 64b).

θ a/h p level cw̄ cM̄min
cM̄max

cσ̄min
cσ̄max

60◦ 5 10 3.6449 3.7769 4.7776 2.2661 2.8665
20 10 2.7505 3.5129 4.4174 2.1075 2.6505
100 10 2.6001 3.3800 4.2930 2.0273 2.5758

30◦ 5 10 0.7306 1.2199 2.1414 0.7320 1.2848
20 10 0.4553 1.1858 2.0123 0.7089 1.2060
100 10 0.4073 1.1364 1.9346 0.6499 1.1433
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Fig. 65. Transverse shear stress distribution along line de for a plate with skew angle

of 60◦ and decreasing plate thickness: full-view (0.0 ≤ s/a ≤ 1.0) and close-up

view (0.0 ≤ s/a ≤ 0.2).
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CHAPTER VI

SHEAR-DEFORMABLE SHELL STRUCTURES

In this chapter† we present a least-squares finite element model for the analysis of

shear-deformable shells. Shell structures are encountered in many important engi-

neering applications and a reliable method to numerically analyze such structures is

highly desirable. Unlike (linear) plate bending, where the membrane and bending

effects are uncoupled, shell structures naturally couple the membrane and bending

effects to support externally applied loads. On the other hand, very much like plate

bending, a shell model can be derived according to the classical shell theory or the

first-order shear deformation shell theory (also known as the Kirchhoff/Koiter and

Mindlin/Naghdi shell theories, respectively).

Finite element formulations for the analysis of shell structures are traditionally

derived from the principle of virtual displacements or the principle of minimum total

potential energy (see Reddy [93, 94]). Moreover, two distinct classes of shell finite

element models are available: degenerate shell elements based on three-dimensional

continuum theory and shell elements based on a (curvilinear) two-dimensional shell

theory. The degenerate approach appeared first in the work of Ahmad et al. [2], it

degenerates the shell element from a three-dimensional solid element via kinemati-

cal assumptions on the displacements. In this approach no explicit two-dimensional

model is employed, although implicitly a first-order shear deformation shell theory

model can be identified. Furthermore, shells of arbitrary shape can be modelled

since the surface is constructed through isoparametric interpolation. In shell theory

†The numerical results reported in this chapter appear in the article “Hierar-
chical mixed least-squares shear-deformable shell elements” by J. P. Pontaza and
J. N. Reddy, Int. J. Numer. Meth. Engng, submitted for publication. Copyright
(2003) John Wiley & Sons.
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based models the underlying kinematic assumptions associated with the description

of the shell are identified explicitly and the strain measure, constitutive equations,

and equilibrium equations derived in general curvilinear coordinates. Typically the

analytic definition of the undeformed shell surface geometry is given, and restricted to

relatively simple geometries. Shells of arbitrary shape can be represented by isopara-

metric interpolation in a local tangent surface using a two parameter representation

typically provided by a CAD system. In the present study we work with a first-

order shear deformation shell theory based finite element model, where an analytic

definition of the undeformed shell surface geometry is given.

When considering the limiting behavior of a shell as the thickness becomes small,

for a given shell geometry and boundary conditions, the shell problem will in general

fall into either a membrane dominated or bending dominated state – depending on

whether the membrane or bending energy component dominates the total energy.

Displacement-based finite element models have no major difficulties in predicting

the asymptotic behavior of the shell structure in the membrane dominated case.

However, computational difficulties arise in the case when the deformation is bending

dominated [70, 79, 43]. A strong stiffening of the element matrices occurs, resulting in

spurious predictions for the membrane energy component. This phenomenon is known

as membrane-locking, and occurs because the unconstrained minimization problem

becomes a penalized form of an optimization problem under constraints that are

not well represented in the numerical approximation of the mathematical model.

Specifically, that the membrane and shear energy components should vanish and

that the displacement field should belong to the space of inextensional displacement

patterns. In shear-deformable shell models, yet another form of locking occurs and

presents itself (again) in a strong stiffening of the element matrices, resulting in

spurious predictions for the shear energy component. This form of locking is also
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present in plate bending analysis when the side-to-thickness ratio of the plate is large

(i.e., when modelling thin plates). This locking phenomenon is known as shear-

locking.

Displacement-based finite element models for the first-order shear deformation

theory (FSDT) allow the use of C0 interpolation functions for the three displacements

and the two independent rotations. Membrane- and shear-locking are evident in Ritz-

Galerkin displacement-based finite element models with equal order interpolation of

all generalized displacements when full integration is used to analyze thin shells, and

is more pronounced when low-order elements are used. The performance of low-order

elements can be considerably improved by the use of reduced integration techniques.

However, highly distorted meshes tend to aggravate the predictive capabilities of these

elements, even when reduced integration techniques are used. An alternate approach

is to use mixed formulations, where in addition to the generalized displacements

the shear and membrane strains are treated as independent variables [6, 47, 24, 3,

17]. These mixed approaches, also know as assumed strain methods, interpolate

displacements and strains in such a way as to have no locking in bending-dominated

states and aim to preserve good properties for membrane-dominated states. Such

methods can efficiently relax the problems of membrane- and shear-locking to some

extent for low-order elements [73].

Higher-order displacement based elements show less sensitivity to membrane-

and shear-locking, and when sufficiently high p-levels are considered the problems

associated with locking disappear [43, 23]. It is well known that to mitigate the

locking effects it is far more effective to raise the element p-level than refining the finite

element mesh at a fixed p-level. Furthermore, when a comparison between cost and

accuracy is taken into account, high-order elements require a smaller computational

effort to achieve a desired level of accuracy [23].
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In this chapter we present a finite element formulation for the analysis of shell

structures that is robust with regards to membrane- and shear-locking and yields

highly accurate results for displacements as well as stresses (or stress resultants).

The formulation is based on least-squares variational principles, which results in an

unconstrained minimization problem through a variational framework of residual min-

imization.

The proposed formulation is a mixed formulation, in that it uses the generalized

displacements and stress-resultants as independent variables. The equilibrium equa-

tions in general curvilinear coordinates are used in their first-order form to construct

the least-squares functional which in turn allows the use of C0 interpolation functions

in the finite element model. The use of least-squares principles leads to a variational

unconstrained minimization problem where the approximation spaces can be chosen

independently, i.e., stability requirements such as the inf-sup condition never arise

(see Chapter II). Equal order interpolation and full integration is used to develop

the discrete finite element model, which results in a symmetric and positive-definite

system of algebraic equations. We show by numerical examples that the proposed

high-order shell elements are free of membrane- and shear-locking, insensitive to ge-

ometric distortions, and predict accurate displacements as well as stress resultants

along the shell boundaries.

First, we outline the first-order shear deformation linear shell theory in tensor

based form and arrive at the governing equations for the shear-deformable shell model.

We use the procedures in Chapter II to develop and arrive at the finite element

model, and verify exponentially fast decay (spectral convergence) of the L2 least-

squares functional and L2 error norms of the generalized displacements and stress-

resultants for a smooth solution to the FSDT shell equations. The performance of the

shell elements is first tested for the membrane- and bending-dominated benchmark
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problems suggested in Ref. [79], using uniform and distorted meshes. The accuracy

and cost of the least-squares based elements is compared to that of displacement

based Ritz-Galerkin elements for the same meshes and p-levels. The elements are

further tested by considering the well-known Scordelis and Lo barrel vault problem

and the pinched circular cylinder shell problem.

A. The shear-deformable shell model

1. Shell geometry

Let Ω̄ be the closure of an open bounded region Ω in R
2 and (ξ1, ξ2) be a point in

Ω̄ = Ω ∪ ∂Ω, where ∂Ω = Γ is the boundary of Ω. Suppose that the shell mid-

surface S under consideration is parametrized by a single chart ~φ = (φ1, φ2, φ3),

~φ : Ω̄ ⊂ R
2 −→ S ⊂ R

3, so that we can write S = ~φ
(

Ω̄
)

.

In the following we briefly recall the classical definitions and notation of dif-

ferential geometry that we need for the purposes of presenting the shell model, see

Ref. [38] for details. We employ the convention that Greek indices range over 1 and 2

and Latin indices over 1, 2, and 3. We start by defining a local curvilinear coordinate

system for the mid-surface S, and we do so by assuming that the one-to-one mapping

~φ and the boundary of Ω, Γ, are sufficiently regular to define covariant base vectors

of the tangential plane. At a point ~φ(ξ1, ξ2), the covariant base vectors are given by

~aα =
∂~φ(ξ1, ξ2)

∂ξα
= ~φ,α , (6.1)

so that the vectors ~aα define a basis for the tangent space of the mid-surface S at

that point. The unit normal to the tangent plane is

~a3 =
~a1 × ~a2

‖~a1 × ~a2‖
, (6.2)
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so that for each (ξ1, ξ2) ∈ Ω, the vectors ~ai define a basis for R
3.

We define the first fundamental form of the mid-surface S by the relation

aαβ = ~aα · ~aβ , (6.3)

or alternatively in contravariant form by

aαβ = ~aα · ~aβ , (6.4)

where the contravariant base vectors are given by ~aα·~aβ = δ β
α , and δ β

α is the Kronecker

delta operator.

The second fundamental form is defined by

bαβ = ~a3 · ~aα,β = −~aα · ~a3,β , (6.5)

and the mixed and contravariant forms are easily derived as bβα = aβγ bγα and bαβ =

aαγ aβδ bγδ.

Let a denote the determinant of the matrix [aαβ], given by

a = ‖~a1 × ~a2‖ = a11 a22 − (a12)
2 , (6.6)

be a never-vanishing function on Ω̄, so that if f : S −→ R is any function, then
∫

S
f dS =

∫

Ω
f

(

~φ(ξ1, ξ2)
) √

a dξ1 dξ2.

Denoting by t the shell thickness and considering shells of constant thickness

only, the shell occupies the region

{~φ(ξ1, ξ2) + ξ3~a3(ξ
1, ξ2) | (ξ1, ξ2) ∈ Ω,−t/2 < ξ3 < t/2} ⊂ R

3 , (6.7)

so that the three-dimensional geometry of the shell can be parametrized by the chart

~Φ defined by

~Φ(ξ1, ξ2, ξ3) = ~φ(ξ1, ξ2) + ξ3~a3(ξ
1, ξ2) , (6.8)
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2. Strain measures and strain energy

In Naghdi’s shear-deformable shell model [75], the displacement vector is assumed to

be of the form

~U =
(

uα + ξ3 θα

)

~aα + u3~a
3 , (6.9)

where uα are the displacements of the shell mid-surface, u3 is the out-of-plane dis-

placement, and θα are rotations of the transverse material fibers originally normal

to the shell mid-surface. In addition, it is assumed that the transverse shear stress

measure is constant through the thickness. From these assumptions, the linear mem-

brane, bending, and shear strain measures in terms of displacements and mid-surface

metrics are given by

εαβ (~u) =
1

2

(

uα|β + uβ|α

)

− bαβ u3 , (6.10)

χαβ (~u, θ) =
1

2

(

θα|β + θβ|α − bγα uγ|β − bγβ uγ|α

)

+ bγα bγβ u3 , (6.11)

ζα (~u, θ) = u3,α + θα + bγα uγ , (6.12)

where covariant differentiation on the shell mid-surface is denoted by the vertical bar,

e.g., uα|β = uα,β − Γδ
αβ uδ with Γδ

αβ = ~a δ · ~aα,β. Note that we have used over-arrows

to indicate that the underlying vector has three components, and an under-line to

indicate two components.

The strain energy of the shell can be written as the sum of the membrane,

bending, and shear strain energies as U = Um + Ub + U s, where

Um =
1

2

∫

Ω

Nαβ εαβ

√
a dξ1 dξ2 , (6.13)

Ub =
1

2

∫

Ω

Mαβ χαβ

√
a dξ1 dξ2 , (6.14)
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U s =
1

2

∫

Ω

Qα ζα
√
a dξ1 dξ2 , (6.15)

and Nαβ, Mαβ, Qα are the membrane, bending, and shear thickness-averaged stress-

resultants. The stress-resultants are related to the strain measures through the fol-

lowing constitutive relations

Nαβ =t Eαβγµ εγµ , (6.16)

Mαβ =
t3

12
Eαβγµ χγµ , (6.17)

Qα =t Jαβ ζβ , (6.18)

with the constitutive tensors defined as

Eαβγµ =
E

2 (1 + ν)

(

aαγ aβµ + aαµ aβγ +
2 ν

1 − ν
aαβ aγµ

)

(6.19)

Jαβ =
E

2 (1 + ν)
Ks a

αβ (6.20)

where E is the Young’s modulus, ν is the Poisson’s ratio, andKs is the shear correction

factor for the isotropic material, respectively.

Contributing to the total potential energy of the shell are the energy due to

external distributed loads and applied resultant loads along the edge of the mid-

surface:

WΩ =

∫

Ω

(

pα uα + p3 u3

) √
a dξ1 dξ2 , (6.21)

WΓ =

∫

Γ

(

N̄αβ nα uβ + M̄αβ nα θβ + Q̄α nα u3

)

dΓ , (6.22)

where nα are the components of the unit normal to Γ. The total potential energy of

the shell is thus I = U −WΩ −WΓ.
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3. Variational formulation and asymptotics

According to the principle of minimum total potential energy, the shell assumes a

state of deformation such that the total potential energy, I, is minimized. This

conveniently provides a variational setting for the solution of the shear-deformable

shell model: find (~u, θ) in a suitable vector space, such that δI = 0, or equivalently

(and more formally)

Find U = (~u, θ) ∈ X such that for all V =
(

~v, ψ
)

∈ X

t3Ab (U, V ) + t Ams (U, V ) = F (V ) (6.23)

where

X =
{

(~u, θ) ∈
[

H1(Ω)
]3 ×

[

H1(Ω)
]2

}

(6.24)

and the space X satisfies the essential boundary conditions. The bilinear forms Ab(·, ·),

Ams(·, ·) = Am(·, ·) + As(·, ·) represent the bending and membrane plus shear strain

energies, respectively. Using Eqs. (6.13)-(6.15) and Eqs. (6.16)-(6.18), the bilinear

forms are written as

Am (U, V ) =

∫

Ω

Eαβγµ εαβ (~u) εγµ (~v)
√
a dξ1 dξ2 , (6.25)

Ab (U, V ) =

∫

Ω

Eαβγµ

12
χαβ (~u, θ) χγµ

(

~v, ψ
) √

a dξ1 dξ2 , (6.26)

As (U, V ) =

∫

Ω

Jαβ ζα (~u, θ) ζβ
(

~v, ψ
) √

a dξ1 dξ2 (6.27)

with the effect of external distributed loads represented by

F (V ) =

∫

Ω

(

pα vα + p3 v3

) √
a dξ1 dξ2 . (6.28)

It is important to understand how the properties of the shell model are affected
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when the thickness of the shell becomes small compared to other fixed length scales

of the shell geometry. In such an asymptotic analysis the subspace X0 of X plays an

important role,

X0 =
{

U ∈ X |Ams(U,U) = 0
}

, (6.29)

which corresponds to the space of pure bending displacements, sometimes referred

to as the space of inextensional displacements. The case X0 = {0} corresponds to a

membrane-dominated state, where the applied loading can be resisted by membrane

and shear stresses only, while the case X0 6= {0} corresponds to a bending-dominated

state. A more in-depth asymptotic analysis of shells can be found in Ref. [22].

The Ritz-Galerkin displacement based finite element model is obtained by re-

stricting (6.23) to the finite-dimensional subspaceXhp of the infinite dimensional space

X. When the finite-dimensional subspace is spanned by low-order polynomials the

displacement based finite element model is effective only when membrane-dominated

problems are considered. If a bending-dominated problem is considered, numerical

locking occurs, resulting in spurious predictions for the membrane and/or the shear

strain energy components.

4. Equilibrium equations

To develop the least-squares finite element model we will use the equilibrium equations

associated with the shear-deformable model to define the least-squares functional.

The equilibrium equations are easily obtained as the Euler equations associated with

the minimization of the total potential energy, δI = δU − δWΩ − δWΓ = 0, where

δU =

∫

Ω

(

Nαβ δεαβ +Mαβ δχαβ +Qα δζα
) √

a dξ1 dξ2 , (6.30)
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δWΩ =

∫

Ω

(

pα δuα + p3 δu3

) √
a dξ1 dξ2 , (6.31)

δWΓ =

∫

Γ

(

N̄αβ nα δuβ + M̄αβ nα δθβ + Q̄α nα δu3

)

dΓ . (6.32)

Using Eqs. (6.10)-(6.12), integrating by parts, and setting each of coefficients

associated with the variations of the generalized displacements equal to zero yields

the equilibrium equations,

δuα : Nαβ
|β −

(

Mγβ bαβ
)

|γ
−Qγ bαγ + pα = 0 (6.33)

δu3 : Qα
,α +Nαβ bαβ −Mαβ bγα bγβ + p3 = 0 (6.34)

δθα : Mαβ
|β −Qα = 0 (6.35)

and the variationally consistent boundary conditions

uα = ūα or Nαβ nβ −Mγβ bαβ nγ = N̄αβ nβ (6.36)

u3 = ū3 or Qα nα = Q̄α nα (6.37)

θα = θ̄α or Mαβ nβ = M̄αβ nβ (6.38)

Keeping in mind the “C0 practicality” level, we realize that the equations gov-

erning the shear-deformable shell model, Eqs. (6.33)-(6.35) and Eqs. (6.16)-(6.18), are

already of first-order. Hence, we need only construct the L2 least-squares functional

and minimize it with respect to the chosen approximating spaces to obtain the finite

element model.

We are now in a position to emulate a variational setting where the shell assumes

a state of deformation such that the L2 norms of the equilibrium and constitutive

equations are minimized. This variational framework is one associated with residual
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minimization, in contrast to that presented in Section 3 where the variational frame-

work is one associated with energy minimization. We have thus constructed a new

variational setting for the solution of the shear-deformable shell model.

B. Numerical examples: verification benchmarks

In this section we present some numerical results obtained with the proposed formula-

tion. In the present study we restrict our analysis to problems where the undeformed

shell surface geometry is given analytically. Specifically, we consider circular cylin-

drical shells, where the shell mid-surface S is given by

S = {−L < x1 < L , x2
2 + x2

3 = R2 | (x1, x2, x3) ∈ R
3} ⊂ R

3 , (6.39)

where 2L and R are the length and radius of the shell. The shell mid-surface S,

given by Eq. (6.39), can be parametrized by the single chart ~φ = (φ1, φ2, φ3), ~φ : Ω̄ ⊂

R
2 −→ S ⊂ R

3,

φ1(ξ
1, ξ2) =ξ1

φ2(ξ
1, ξ2) =R sin(ξ2/R)

φ3(ξ
1, ξ2) =R cos(ξ2/R)

(6.40)

so that Ω is the rectangle occupying the region

{(ξ1, ξ2) ∈ Ω | − L < ξ1 < L,−Rπ < ξ2 < Rπ} ⊂ R
2 . (6.41)

For the circular cylindrical shell, the membrane, bending, and shear strain mea-

sures, given in Eqs. (6.10)-(6.12), become

ε11 = u1,1 , 2 ε12 = u1,2 + u2,1 , ε22 = u2,2 +
u3

R
(6.42)

χ11 = θ1,1 , 2χ12 = θ1,2 + θ2,1 +
u2,1

R
, χ22 = θ2,2 +

1

R

(

u2,2 +
u3

R

)

(6.43)
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ζ1 = u3,1 + θ1 , ζ2 = u3,2 + θ2 −
u2

R
(6.44)

and the equilibrium equations, given in Eqs. (6.33)-(6.35), take the form

δu1 : N11
,1 +N12

,2 + p1 = 0 (6.45)

δu2 : N12
,1 +N22

,2 +
M12

,1

R
+
M22

,2

R
+
Q2

R
+ p2 = 0 (6.46)

δu3 : Q1
,1 +Q2

,2 −
N22

R
− M22

R2
+ p3 = 0 (6.47)

δθ1 : M11
,1 +M12

,2 −Q1 = 0 (6.48)

δθ2 : M12
,2 +M22

,2 −Q2 = 0 (6.49)

The least-squares formulation and finite element model follow from the procedures in

Chapter II. Note that if we let R → ∞ we recover the (linear) shear-deformable plate

bending strain measures and governing equations (see Chapter V), where membrane

and bending effects are decoupled.

1. Convergence

To verify exponentially fast decay of appropriate error measures for increasing p-levels

we consider the following test problem. We prescribe a solution for the generalized

displacement fields in the bi-unit square, Ω̄ = [−1, 1]× [−1, 1], compute the consistent

forcing functions and solve to verify convergence of the numerical solution to the exact

solution. We choose the generalized displacement fields to be of the form

ui(ξ
1, ξ2) = aui

+ bui
cos(ω ξ1) sin(ω ξ2) ,

θ1(ξ
1, ξ2) = aθ1

+ bθ1
cos(ω ξ1) cos(ω ξ2) ,

θ2(ξ
1, ξ2) = aθ2

+ bθ2
sin(ω ξ1) sin(ω ξ2) .

(6.50)
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The exact solution is used to prescribe values of the generalized displacements on

the entire boundary. The connected model, Ω̄h, consists of a 4×4 finite element mesh.

We consider uniform and distorted meshes. The choice of constants in Eq. (6.50) were

as follows: aui
= aθ1

= aθ2
= 0, ω = 2π, bu1

= 0.5, bu2
= 0.4, bu3

= 0.7, bθ1
= 0.2, and

bθ2
= 0.4.

In Figs. 66 and 67 we plot the L2 least-squares functional (J ) and L2 error of

the generalized displacements (~u, θ) and stress resultants (N,M, Q) as a function of

the expansion order in a logarithmic-linear scale. Exponentially fast decay (spectral

convergence) of the L2 least-squares functional and L2 errors is observed for both

uniform and distorted meshes.

This test problem does not illustrate or attempts to measure the predictive capa-

bility of the shell elements, it simply verifies the computational algorithm and shows

that for smooth solutions exponentially fast decay of error measures can be achieved.

In practice, the response of the shell structure may include strong boundary layers

at several scales [79, 43], depending on the boundary conditions and shell geometry.

Hence, we may not achieve exponentially fast decay of error measures, at least when

using uniform meshes (i.e., non-graded meshes). This point is illustrated in the next

two example problems, where we consider the membrane- and bending-dominated

benchmark problems suggested in Ref. [79].
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mesh A
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LS functional: mesh A

LS functional: mesh B

Fig. 66. Decay of the least-squares functional for uniform and distorted meshes.
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expansion order, p
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Fig. 67. Convergence of the generalized displacements and stress resultants for uniform

and distorted meshes.
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2. Clamped cylindrical shell

We consider a clamped circular cylindrical shell of uniform thickness t, length 2L,

and radius R with L = R. The shell is loaded by a self-balanced, axially-constant

pressure distribution on its outer surface, given by

p3(ξ2) = p0 cos
(

2 ξ2/R
)

. (6.51)

By symmetry considerations, the computational domain is limited to 1/16 of the

total shell, so that

Ωh = {(ξ1, ξ2) | 0 < ξ1 < L , 0 < ξ2 < π
4
R} . (6.52)

The analytical solution for this problem, using the Naghdi shell theory, for any value of

t is given in Ref. [79]. The shell is in a membrane-dominated state with the combined

bending and shear energy components being less that 2% of the total energy for

R/t ≥ 100.

For the numerical simulation we use R = L = 1 m, E = 2 × 105 MPa, ν = 1/3,

Ks = 1, and p0 = 1 MPa. The connected model, Ω̄h, consists of a 4× 4 finite element

mesh. We consider uniform and distorted meshes, shown in Fig. 68. By uniform mesh,

we mean that the element sides are aligned with the principles directions of curvature.

We systematically increase the p-level of the element approximation functions and

monitor the decay of a suitable error measure for the case R/t = 100. For this

problem boundary layers play a dominant role in a region of order
√
t away from

the clamped ends [79], thus we may not see a uniform convergence rate due to this

non-smooth solution component.

The boundary conditions of the computational domain are specified as follows:

u1 = 0 , θ1 = 0 , N12 = 0 , M12 = 0 , Q1 = 0 on ξ1 = 0 , ξ2 =
[

0, π
4
R

]

(sym.) ,
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Fig. 68. Computational domain, using 4 × 4 uniform and distorted meshes, for the

clamped and free cylindrical shell problems.

u2 = 0 , θ2 = 0 , N12 = 0 , M12 = 0 , Q2 = 0 on ξ2 = 0 , ξ1 = [0, L] (sym.) ,

u1 = 0 , u2 = 0 , u3 = 0 , θ1 = 0 , θ2 = 0 on ξ1 = L , ξ2 =
[

0, π
4
R

]

(clamped) ,

u2 = 0 , u3 = 0 , N22 = 0 , M22 = 0 , M12 = 0 on ξ2 = π
4
R , ξ1 = [0, L] (anti-sym.) .

Analytic values for the scaled strain energy of the shell are tabulated in Ref. [79],

so we choose the error measure to be the relative error in the strain energy of the

shell. Denoting by U the exact strain energy of the shell (see Section 2), the error

measure is given by

E =
| U − Uhp |

U (6.53)

We numerically solve the test problem using the proposed least-squares formulation

and also using the displacement based Ritz-Galerkin formulation (see Section 3). Note

that the Ritz-Galerkin formulation is based on a variational setting that naturally

minimizes the chosen error measure, nevertheless we expect good performance from

the least-squares formulation.
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In Fig. 69 we plot the error measure E as a function of the expansion order

in a logarithmic-linear scale, for both least-squares and Ritz-Galerkin formulations,

using the uniform mesh. Despite the non-smooth solution component dominant near

the clamped edge, good convergence is achieved by both formulations. No locking is

observed and the Ritz-Galerkin formulation achieves a lower error in strain energy

at any given p-level. In Fig. 70 we present the convergence results obtained using

the distorted mesh. No dramatic changes in convergence rates are observed for either

formulation.

Figure 71 shows the normalized radial displacement profiles at various p-levels,

for both least-squares and Ritz-Galerkin formulations, using the uniform mesh and

for the case R/t = 1, 000. The normalized radial displacement is given by

ū3 = u3
D

p0R t2
, (6.54)

with D = E t3/12(1 − ν2). Slight oscillations appear near the clamped end due to

the unresolved boundary layer. These oscillations disappear once the p-level is high

enough to resolve the layer. The Ritz-Galerkin formulation is able to resolve the

boundary layer at a lower p-level. Proper mesh grading near the clamped end would

be effective to resolve the boundary layer at lower p-levels.
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Fig. 69. Convergence of strain energy for the clamped cylindrical shell using the

least-squares and Ritz-Galerkin formulations. 4×4 uniform mesh, R/t = 100.
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Fig. 70. Convergence of strain energy for the clamped cylindrical shell using the

least-squares and Ritz-Galerkin formulations. 4×4 distorted mesh, R/t = 100.
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Fig. 71. Convergence of the normalized radial displacement for the clamped cylindrical

shell using the least-squares and Ritz-Galerkin formulations. 4 × 4 uniform

mesh, R/t = 1, 000.
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3. Free cylindrical shell

The geometry and loading for this test problem are the same as described for the

clamped circular cylindrical shell. Like before, by symmetry considerations, the com-

putational domain is limited to 1/16 of the total shell. The shell is in a bending-

dominated state with the membrane and shear energy components being essentially

negligible even for the moderately thick case of R/t = 10. The analytical solution for

this problem, using the Naghdi shell theory, for any value of t is given in Ref. [79].

We systematically increase the p-level of the element approximation functions and

monitor the convergence in strain energy for the case R/t = 100 using the uniform

and distorted meshes, shown in Fig. 68.

The boundary conditions of the computational domain are the same as those

specified for the previous problem, except that the clamped ends are now left free:

N11 = 0 , N12 = 0 , M11 = 0 , M12 = 0 , Q1 = 0 on ξ1 = L , ξ2 =
[

0, π
4
R

]

(free) .

In Fig. 72 we present the convergence results obtained using the uniform mesh.

For the purpose of comparison we also present results obtained with the displace-

ment based Ritz-Galerkin formulation. The asymptotic convergence rate of the Ritz-

Gakerkin formulation in the bending-dominated case is much lower than that seen

for the membrane-dominated case, even though the initial error at a p-level of 4

is lower for the bending-dominated case. The least-squares formulation displays a

good convergence rate in strain energy and asymptotically seems to achieve a slightly

better convergence rate than the Ritz-Gakerkin formulation. In Fig. 73 we present

the convergence results obtained using the distorted mesh. No dramatic changes in

convergence rates or behavior are observed for the formulations.

Regarding the bending- and membrane-dominated shell problems presented in
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this and the previous example we see from the convergence in strain energy curves

that the least-squares solution, for the finite element meshes considered, is sufficiently

accurate only for p-levels of 6 or higher. This was also the case for the smooth

solution example presented in Section 1. Better accuracy at lower p-levels (e.g.,

p = 1 or 2) can be achieved by using reduced integration techniques to force a least-

squares collocation solution. Or, an alternate least-squares functional that defines

an equivalent norm in H1 could be defined. Unfortunately, such an approach may

yield a least-squares functional in terms of computationally impractical norms which

at some point must be replaced by computable equivalents. Here we have chosen to

define the least-squares functional in terms of L2 norms only, which are readily and

easily computable.

Having shown results using the displacement based Ritz-Galerkin formulation

for this and the previous example, we note that when considering the computational

cost associated with each of the formulations, for a given p-level and finite element

mesh, the least-squares formulation is the most expensive; treating the generalized

displacements (~u, θ) and stress resultants (N,M, Q) as independent variables. A cost

comparison between the least-squares and displacement based Ritz-Galerkin formu-

lation is illustrated in Fig. 74, by plotting the convergence in strain energy for the

free cylindrical shell as a function of the the total number of degrees of freedom in a

logarithmic-linear scale. Clearly, the Ritz-Galerkin formulation is the most cost effi-

cient allowing for more accurate solutions at higher p-levels at a lower computational

cost. Nevertheless, the computational cost of the least-squares formulation could be

reduced to that of the displacement based formulation by choosing an appropriate

basis for the stress resultants so that these degrees of freedom can be condensed out

at the element level. This approach is currently under investigation.
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Fig. 72. Convergence of strain energy for the free cylindrical shell using the

least-squares and Ritz-Galerkin formulations. 4×4 uniform mesh, R/t = 100.
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Fig. 73. Convergence of strain energy for the free cylindrical shell using the

least-squares and Ritz-Galerkin formulations. 4×4 distorted mesh, R/t = 100.
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Fig. 74. A cost comparison between the least-squares and displacement based

Ritz-Galerkin formulations: convergence of strain energy for the free cylin-

drical shell as a function of the the total number of degrees of freedom. 4× 4

uniform mesh, R/t = 100.
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4. Barrel vault

We consider a barrel vault loaded by its own weight. The barrel vault is a segment

of a circular cylindrical shell whose mid-surface, after being parametrized by (6.40),

is given by

Ω = {(ξ1, ξ2) | − L < ξ1 < L , −2 π
9
R < ξ2 < 2 π

9
R} . (6.55)

The barrel vault is simply-supported on rigid diaphragms on opposite edges and is

free on the other two edges. For the described loading, geometry, and boundary

conditions, the problem is popularly known as the Scordelis-Lo roof.

The boundary conditions and geometry of the shell imply that, in the limit of

vanishing thickness, this problem is a membrane-dominated problem [22]. However,

the self-weight loading fails to meet certain regularity requirements that make the

limit problem ill-posed; the limit problem being in a mixed state with the bending

and membrane strain energy components asymptotically concentrated near the free

edge [68]. Here we only consider the case R/t = 100, for which the limiting ill-posed

behavior is not yet dominant.

By symmetry considerations, the computational domain is limited to 1/4 of the

total shell, so that

Ωh = {(ξ1, ξ2) | 0 < ξ1 < L , 0 < ξ2 < 2 π
9
R} . (6.56)

The geometry of the barrel vault is specified as follows: 2L = 50 ft, R = 25 ft, and

t = 3 in.. The material is homogeneous and isotropic with E = 3 × 106 psi and

ν = 0. The shear correction factor Ks is specified as 5/6 and the self-weight loading

as pz = 90 lb/ft2 uniformly distributed over the surface area of the vault. This specific

geometry, loading, and material data (but with ν = 0.3) first appeared in the work

of Cantin and Clough [21], who used Scordelis and Lo’s [97] computer algorithm to

verify their results.
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The connected model, Ω̄h ⊂ R
2, consists of a 4 × 4 finite element mesh, shown

in Fig. 75. For illustrative purposes we present in Fig. 76 the finite element mesh

on the entire mid-surface of the barrel vault, S ⊂ R
3. The mesh is regular (i.e.,

not distorted) and graded. We expect strong boundary layers in the stress resultant

profiles along the free and supported edges, so the mesh is graded towards those

regions. In our experience with the mixed least-squares formulation, boundary layers

in generalized displacements and stress resultants need to be adequately resolved to

obtain an accurate prediction of the shell response. This justifies the use of the graded

mesh.

ξ1

ξ2

0 5 10 15 20 25

0

5

10

15

Fig. 75. Quarter shell computational domain for the analysis of the barrel vault. 4×4

graded mesh.

The boundary conditions of the computational domain are specified as

u1 = 0 , θ1 = 0 , N12 = 0 , M12 = 0 , Q1 = 0 on ξ1 = 0 , ξ2 =
[

0, 2 π
9
R

]

(sym.)

u2 = 0 , θ2 = 0 , N12 = 0 , M12 = 0 , Q2 = 0 on ξ2 = 0 , ξ1 = [0, L] (sym.)
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X

Y

Z

ξ1

ξ2

θ
R

Fig. 76. Finite element mesh on the entire mid-surface of the barrel vault, S ⊂ R
3,

showing the surface coordinate system (ξ1, ξ2) ∈ R
2.

u2 = 0 , u3 = 0 , θ2 = 0 , N11 = 0 , M11 = 0 on ξ1 = L , ξ2 =
[

0, 2 π
9
R

]

(supp.)

N22 = 0 , N12 = 0 , M22 = 0 , M12 = 0 , Q2 = 0 on ξ2 = 2 π
9
R , ξ1 = [0, L] (free)

and the (vertical) pressure distribution is decomposed into its contravariant compo-

nents, so that p2 = pz sin(ξ2/R) and p3 = −pz cos(ξ2/R).

First, we present a convergence study in strain energy for increasing p-levels of

the element approximation functions. An analytic value for the strain energy is not

available, so we use instead a reference value. The reference value was obtained with

a p-level of 12 using the displacement based Ritz-Galerkin formulation in the graded

finite element mesh (shown in Fig. 75). Denoting by U ref the reference strain energy

of the barrel vault, the error measure is given by

E =
| U ref − Uhp |

U ref
. (6.57)
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In Fig. 77 we plot the error measure E for the least-squares formulation as a function

of the expansion order in a logarithmic-linear scale. We see from the figure that

the asymptotic exponential convergence rate is achieved for p-levels of 6 and higher.

In the context of the least-squares formulation, this does not imply that the finite

element solution for a p-level of 4 is membrane-locked. It simply means that, for this

specific problem and the given finite element mesh, a p-level of 4 is not yet sufficient to

yield a satisfactory least-squares solution. The point is further illustrated by Fig. 78,

where we plot the vertical displacement and shear-stress resultant profiles along the

mid-section of the vault for increasing p-levels. From Fig. 78 we see that the finite

element solutions at p-levels of 6, 8, and 10 are essentially the same and fall on top

of each other.

Table XIV shows results for the vertical displacement and stress resultants at

the center of the free edge of the barrel vault, (ξ1, ξ2) = (0, 2 π
9
R), for p-levels of 4, 6,

8, and 10. Similarly, in Table XV we present results for the vertical displacement and

stress resultants at the crown of the barrel vault, (ξ1, ξ2) = (0, 0). We see from the

tabulated data that a p-level of 4 is not sufficient to yield a satisfactory least-squares

solution and that a p-level of 6 or 8 is already sufficient. The predicted vertical

deflection at the center of the free edge (Table XIV) is in good agreement with the

shallow shell analytical value of 3.7032 in. and the commonly used reference value

for finite element analysis of 3.6288 in..

Figure 79 shows the vertical displacement and non-zero stress resultant profiles

along the mid-section of the vault for a p-level of 10. Similarly, Fig. 80 shows the axial

displacement and non-zero stress resultant profiles along the simply-supported section

of the vault. Strong boundary layers are observed for the bending- and shear-stress

resultants along this edge.
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Fig. 77. Convergence of strain energy for the barrel vault problem. Least-squares

formulation, 4 × 4 graded mesh.
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Fig. 78. Vertical displacement and shear stress-resultant profiles along the mid-section

of the vault for increasing p-levels. Least-squares formulation, 4 × 4 graded

mesh.
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Fig. 79. Vertical displacement and stress resultant profiles along the central section

of the vault. Least-squares formulation, p-level of 10, 4 × 4 graded mesh.
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Fig. 80. Axial displacement and stress resultant profiles along the support section of

the vault. Least-squares formulation, p-level of 10, 4 × 4 graded mesh.
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Table XIV. p-convergence study showing vertical displacement and stress resultants

at the center of the free edge of the barrel vault.

p level w (in.) N11 (kip/ft) M11 (kip ft/ft)

4 -3.1208 68.3942 -0.5610
6 -3.6162 75.7476 -0.6400
8 -3.6173 75.7582 -0.6400
10 -3.6174 75.7593 -0.6400

Table XV. p-convergence study showing vertical displacement and stress resultants at

the crown of the barrel vault.

p level w (in.) N11 (kip/ft) N22 (kip/ft) M11 (kip ft/ft) M22 (kip ft/ft)

4 0.4109 -3.5870 -3.4148 0.0714 1.7597
6 0.5423 -1.5835 -3.4861 0.0959 2.0579
8 0.5425 -1.5805 -3.4862 0.0959 2.0583
10 0.5425 -1.5802 -3.4862 0.0959 2.0583
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5. Pinched cylinder

We consider a circular cylindrical shell of uniform thickness t, length 2L, and radius

R with L = R. The shell is simply-supported on rigid diaphragms at each end and

loaded by two opposed forces of equal magnitude acting on the shell’s mid-section.

The boundary conditions and geometry of the shell imply that, in the limit of

vanishing thickness, this problem is a membrane-dominated problem [22]. Typically

the loading is specified as a transverse concentrated load (a point load), which fails

to meet certain regularity requirements making the limit problem ill-posed. Further-

more, it has been established that the transverse displacement under the concentrated

load grows unbounded when p-type refinements are performed to analyze the problem

using a shear-deformable shell model [43], whereas low p-levels (and h-refinement) de-

ceptively yield finite values. Even though we do not consider the limit problem in this

study, we have modified the loading so that the applied load is not a point load, but

a distributed pressure confined to a circle whose radius is of the order of the thickness

of the shell. This eliminates all the singularities associated with the point load and

closely emulates a point load.

By symmetry considerations, the computational domain is limited to 1/8 of the

total shell, so that

Ωh = {(ξ1, ξ2) | 0 < ξ1 < L , 0 < ξ2 < π
2
R} . (6.58)

The geometry of the cylindrical shell is specified as follows: 2L = 600 in., R = 300

in., and t = 3 in. so that R/t = 100. The material is homogeneous and isotropic

with E = 3 × 106 psi and ν = 0.3. The shear correction factor Ks is specified as 5/6

and the resultant of the distributed pressure as 1 lb (or P = 0.25 lb in the one-eight

model).
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The connected model, Ω̄h, consists of a 6×6 finite element mesh, shown in Fig. 81.

The mesh is regular (i.e., not distorted) and graded. The mesh is graded towards the

region where the distributed pressure is applied, this is needed to appropriately resolve

the imposed pressure distribution. For illustrative purposes we present in Fig. 82 the

finite element mesh on one-eight of the mid-surface, S ⊂ R
3, of the cylinder.

ξ1

ξ2

0 100 200 300

0

50

100

150

200

250

300

350

400

450

Fig. 81. One-eight shell computational domain for the analysis of the pinched cylinder.

6 × 6 graded mesh.

In the (ξ1, ξ2) space the (vertical) pressure distribution is taken to vary smoothly

in the form of a sine curve, defined here as follows

pz(r; δ) =















C
2

{

1 − sin
[

π
δ

(

r − δ
2

)]}

if 0 ≤ r < δ,

0 otherwise,

(6.59)

where r2 = (ξ1)2 + (ξ2)2 and δ defines the size of the domain of influence of the
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Fig. 82. Finite element mesh on one-eight of the mid-surface of the cylinder, S ⊂ R
3.

pressure distribution. To emulate the point load we take δ = t. The constant C is

chosen such that P =
∫

Ωh pz dΩh = 0.25, which gives C = 2π/δ2(π2 − 4).

The boundary conditions of the computational domain are specified as

u1 = 0 , θ1 = 0 , N12 = 0 , M12 = 0 , Q1 = 0 on ξ1 = 0 , ξ2 =
[

0, π
2
R

]

(sym.)

u2 = 0 , θ2 = 0 , N12 = 0 , M12 = 0 , Q2 = 0 on ξ2 = 0 , ξ1 = [0, L] (sym.)

u2 = 0 , u3 = 0 , θ2 = 0 , N11 = 0 , M11 = 0 on ξ1 = L , ξ2 =
[

0, π
2
R

]

(supp.)

u2 = 0 , θ2 = 0 , N12 = 0 , M12 = 0 , Q2 = 0 on ξ2 = π
2
R , ξ1 = [0, L] (sym.)

and the (vertical) pressure distribution is decomposed into its contravariant compo-

nents, so that p2 = pz sin(ξ2/R) and p3 = −pz cos(ξ2/R).

In Fig. 83 we present a convergence study in strain energy for increasing p-levels of

the element approximation functions. The error measure is given by Eq. (6.57), where

the reference value for the strain energy was obtained using the displacement based
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Ritz-Galerkin formulation in the graded finite element mesh (shown in Fig. 81) with

a p-level of 12. Fig. 83 shows the error measure E for the least-squares formulation

as a function of the expansion order in a logarithmic-linear scale. We infer from the

convergence study that an acceptable least-squares solution is achieved for p-levels

of 6 and higher.

p, expansion order

E

4 6 8 10
10-6

10-5

10-4

10-3

10-2

10-1

100

Fig. 83. Convergence of strain energy for the pinched cylinder problem. Least-squares

formulation, 6 × 6 graded mesh.

As noted earlier, in the context of the least-squares formulation, this does not

imply that the finite element solution for a p-level of 4 is membrane-locked. It simply

means that, for this problem and the given finite element mesh, a p-level of 4 is not

yet sufficient to yield a satisfactory least-squares solution.

Figure 78 shows the vertical displacement and bending-stress resultant profiles

along the mid-section (arc AD) of the pinched cylinder for increasing p-levels. From
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the figure we see that the finite element solutions at p-levels of 6, 8, and 10 are

essentially indistinguishable from each other.

In Table XVI we present a p-convergence study for the vertical displacement and

stress resultants at point A (see Fig. 82) of the pinched cylinder. The predicted verti-

cal displacement is in good agreement with the Kirchhoff/Koiter model analytic value

of 1.8248 × 10−5 in.. Table XVII shows a p-convergence study for the axial displace-

ment at point B and radial displacement at point D of the pinched cylinder. The

predicted displacements are in good agreement with the analytic Kirchhoff/Koiter

model values of 4.5711 × 10−7 in. and 5.2222 × 10−8 in., respectively. By far the

most challenging convergence study is that of the radial displacement at point D (see

Ref. [67]), which is rarely reported in presentations of this example in the literature.

Figure 85 shows the vertical displacement and non-zero stress resultant profiles

along the mid-section of the cylinder (arc AD) for a p-level of 10. Similarly, Fig. 86

shows the axial displacement and non-zero stress resultant profiles along the simply-

supported section (arc BC) of the cylinder. Figure 87 shows the vertical displacement

profile along the section AB and radial displacement profile along section DC of the

cylinder. The deformed mid-surface of the pinched cylinder, magnified by a factor of

5 × 106, is shown in Fig. 88.
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Fig. 84. Vertical displacement and bending stress-resultant profiles along the

mid-section of the pinched cylinder for increasing p-levels. Least-squares for-

mulation, 6 × 6 graded mesh.

Table XVI. p-convergence study showing vertical displacement and stress resultants

at point A (see Fig. 82) of the pinched cylinder.

p level w (in.) N11 (lb/in.) N22 (lb/in.) M11 (lb in./in.) M22 (lb in./in.)
× 10−5 × 10−2 × 10−2 × 10−2 × 10−2

4 -1.0680 -4.1254 -6.6065 -30.7228 -32.1089
6 -1.8384 -5.7882 -6.7883 -32.3984 -36.1080
8 -1.8408 -5.7853 -6.7850 -32.4088 -36.1391
10 -1.8408 -5.7853 -6.7850 -32.4085 -36.1389

Table XVII. p-convergence study showing axial displacement at point B and radial

displacement at point D (see Fig. 82) of the pinched cylinder.

p level u1 (in.) u3 (in.)
× 10−7 × 10−8

4 -2.1549 -91.2305
6 -4.5866 1.0132
8 -4.5787 -4.8651
10 -4.5787 -4.9439
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Fig. 85. Vertical displacement and stress resultant profiles along the mid-section (arc

AD) of the pinched cylinder. Least-squares formulation, p-level of 10, 6 × 6

graded mesh.
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Fig. 86. Axial displacement and stress resultant profiles along the support section (arc

BC) of the pinched cylinder. Least-squares formulation, p-level of 10, 6 × 6

graded mesh.
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Fig. 87. Vertical displacement profile along the section AB and radial displacement

profile along section DC of the pinched cylinder. Least-squares formulation,

p-level of 10, 6 × 6 graded mesh.
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Fig. 88. Deformed mid-surface of the pinched cylinder. Deformation magnified by a

factor of 5 × 106.
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CHAPTER VII

CONCLUSIONS

A. Summary and concluding remarks

In this work we have presented least-squares based finite element formulations, as

an alternate approach to the well-known weak form Galerkin finite element formu-

lations. Formulations based on least-squares principles offer many theoretical and

computational advantages in the implementation of the corresponding finite element

model that are not present in the traditional weak form Galerkin finite element model.

Most notably, the use of least-squares principles leads to a variational unconstrained

minimization problem where stability conditions such as inf-sup conditions (typically

arising in mixed methods using weak form Galerkin finite element models) never arise.

In addition, the finite element model always yields a discrete system of equations with

a symmetric positive definite coefficient matrix, allowing the use of robust and fast

iterative methods for its solution.

The steps involved in developing a least-squares based finite element model were

presented in Chapter II. The procedure was presented in a general setting by con-

sidering an abstract initial boundary value problem. The notion of norm equivalence

and its implications on the resulting finite element model were discussed and assessed.

Having developed an understanding of the compromise that must exist between the

optimality and practicality of the finite element model, we chose to retain a pre-

determined level of “C0 practicality” throughout this work. This level of practicality

was achieved by assuring that the governing equations of the physical problem under

consideration were recast as an equivalent first-order system and the least-squares

functional defined by summing the squares of the equations residuals in the L2 norm.
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This level of practicality came at a price, which reflected upon the finite element

formulation in two distinct forms:

1. the resulting formulation may depart from the ideal mathematical setting, in the

sense that the resulting least-squares functional may not define an equivalent

norm in a suitable Hilbert space. This prevents standard elliptic theory from

establishing a priori estimates to predict asymptotic convergence behavior and

thus the optimality of the formulation cannot be assured.

2. auxiliary variables need to be introduced to recast the governing equations

as a first-order equivalent system of equations, thus increasing the size of the

resulting finite element model.

Despite these drawbacks, bona fide least-squares formulations are still able to be com-

petitive as the impact of these drawbacks are alleviated, respectively, in the following

sense:

1. departure from the ideal mathematical setting does not imply that the result-

ing formulation is not optimal, it simply means that its optimality cannot be

established a priori using standard elliptic theory. Through numerical examples

we showed that the C0 formulations recovered optimal properties if the finite

element spaces were spanned by sufficiently high p-levels.

2. auxiliary variables may be viewed as beneficial, in the sense that they may

be variables of physical interest. For example, in the context of fluid flow:

vorticity or stresses, and in the context of solid mechanics: (bending, shear, or

membrane) stress-resultants, rotations, and/or twists.

In Chapter III, we presented least-squares models for the incompressible Navier-

Stokes equations. We considered equivalent first-order systems based on vorticity,
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stresses, and velocity gradients. Due to the unconstrained minimization setting of

the least-squares formulation, the inf-sup condition (also known as the LBB con-

dition), ever present in the weak form Galerkin formulation, representing a strict

compatibility condition between the velocity and pressure finite element spaces does

not arise. In addition, the resulting discrete model yields a linear system of equations

with a symmetric positive definite coefficient matrix, in contrast to the weak form

Galerkin model where the resulting coefficient matrix is unsymmetric and indefinite.

These properties inherent to the least-squares based model, resulted in the devel-

opment of robust and efficient computational algorithms for the numerical solution

of the incompressible Navier-Stokes equations. The performance of the formulations

was demonstrated and exemplified through the solution of several verification and

validation benchmarks, including flow over a backward-facing step, lid-driven cavity

flows, and flow past a circular cylinder.

In Chapter IV, we considered the compressible Navier-Stokes equations and its

equivalent first-order system based on velocity gradients and heat fluxes. Previous

work on least-squares formulations for compressible flow dealt only with the limit

problems of low-speed compressible flow or invscid compressible flow. Here, for the

first time, we presented a formulation that is directly applicable to viscous flows in

the subsonic, transonic, or supersonic regime. For such flow conditions the Navier-

Stokes equations are of mixed hyperbolic and parabolic type and the the issue of well

posed open boundary conditions is of relevance, as the problem naturally exhibits

wave propagation. Boundary operators which ensure maximum energy dissipation

and result in a strongly well posed problem were derived by applying the energy

method to the characteristic based, linearized, constant coefficient viscous compress-

ible Navier-Stokes equations. In the limit of vanishing viscocity, the boundary oper-

ators recover the Euler characteristics. The complex boundary conditions in terms
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of characteristics are easily enforced in the finite element model through the least-

squares functional. Numerical results for flow past a circular cylinder at different

free-stream Mach numbers and different surface thermal loadings were presented to

demonstrate the performance of the formulation.

In Chapters V and VI we considered least-squares formulations for applications

in the field of solid mechanics, specifically we presented least-squares based plate and

shell elements. The formulations were of the mixed type, having generalized dis-

placements and stress-resultants as independent variables. For plate bending, finite

element models for the classical plate theory (CPT) and first-order shear deformation

theory (FSDT) were presented. We showed through several well chosen verification

benchmarks that the proposed plate bending elements are free of shear-locking, in-

sensitive to geometric distortions, and predict accurate displacements as well as stress

resultants along plate boundaries. For the analysis of shell structures, we presented

a finite element model for the Naghdi shear-deformable theory. The shell elements

were tested for membrane- and bending-dominated benchmark problems, using uni-

form and distorted meshes, and found to be effective in both asymptotic states.

Results for the well established benchmark problems of the Scordelis-Lo roof and

the pinched cylinder were also presented and found to be in good agreement with

reference solutions.

B. Topics of ongoing and future research

Throughout this work we have retained the pre-determined level of “C0 practicality”

in arriving at the least-squares based finite element models.

Ongoing research points towards relaxing the “C0 practicality” level and allowing

the finite element spaces to retain better regularity across inter-element boundaries.
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This idea has spawned finite element spaces of class Ck, where regularity of order k

is allowed across inter-element boundaries, i.e., the derivatives up to order k remain

continuous across inter-element boundaries.

Such an approach may result in better least-squares finite element formulations,

in the sense that a better compromise between optimality and practicality may be

achieved. Retaining a pre-determined level of “Ck practicality” (for k ≥ 1),

1. the least-squares functional may be defined in terms of L2 and Hk norms, thus

enlarging the class of least-squares functionals that define an equivalent norm

in a suitable Hilbert space.

2. the strong form of the governing equations can be used to define the least-

squares functional, thus eliminating the need to introduce auxiliary variables.

In the following we present some preliminary results for formulations of the class

C1. The results are presented in the context of viscous incompressible flow, details

will be presented in [82].

With a pre-determined level of “C1 practicality”, the following least-squares func-

tionals may be considered to develop a finite element model for the stationary incom-

pressible Navier-Stokes:

J (u, p; f) =
1

2

(

‖ (u · ∇)u+∇p− 1

Re
∇·

[

(∇u) + (∇u)T
]

− f ‖2
0 +‖∇·u ‖2

0

)

(7.1)

or

J (u, p; f) =
1

2

(

‖ (u · ∇)u+∇p− 1

Re
∇·

[

(∇u) + (∇u)T
]

− f ‖2
0 +‖∇·u ‖2

1

)

(7.2)

Functional (7.1) is defined in terms of L2 norms only, while functional 7.2 is defined

in terms of L2 norms and H1 norms and defines an equivalent norm in H1.
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Figure 89 shows convergence of the velocity field in the L2 norm as a function

of total number of degrees of freedom for the Kovazsnay verification benchmark pre-

sented in Chapter III. The figure shows results for the three C0 formulations presented

in Chapter III and the C1 formulation resulting from using functional (7.1) to develop

a least-squares finite element model.
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Fig. 89. Convergence of the velocity field to the Kovasznay solution in the L2-norm for

the C1 formulation and C0 vorticity, stress, and velocity gradient formulations.

Cost comparison.

Clearly, the C1 formulation outperforms the C0 formulations, as it is able to

achieve the same order of accuracy at significantly lower costs. This is due partly to

the fact that the only independent variables are the velocities and pressure and also

due to fact that more degrees of freedom are shared at the boundaries of the elements

– to ensure the C1 continuity of the velocity and pressure fields.
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