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ABSTRACT 

 
IMPES Modeling of Volumetric Dry Gas Reservoirs with Mobile Water. (May 2004) 

Saeed Forghany, B.Sc., Sahand University of Technology (Iran) 

Chair of Advisory Committee: Dr. David. S. Schechter 

 

As the importance of natural gas as a resource increases, the importance of volumetric 

dry gas reservoirs with mobile water as the dominant gas reservoir types will also 

increase. 

     This research developed an efficient, user-friendly simulation program specifically 

designed to model two-phase flow of gas and water in these reservoirs. 

Since fluid compression and viscous forces are the dominant parameters that control 

fluid movement in a dry gas reservoir, we used the Implicit Pressure and Explicit 

Saturation (IMPES) formulation of flow equations in which neither gravity nor capillary 

pressure terms are pertinent. Therefore, the IMPES approach showed greater stability for 

all cases considered in this work. The developed simulator is a Visual Basic Application 

(VBA) code for which the users can obsereve the results in a pertinent Microsoft Excel 

file. 

     This program allows users to study the depletion behavior of volumetric dry gas 

reservoirs with mobile water as efficiently and accurately as is now possible in more 

expensive commercially available reservoir simulators. The program was validated by 

comparing the results with a well-recognized commercial reservoir simulator (CMG). 

The results of a battery of tests of this simulator matched very well with results of the 

commercial reservoir simulator for all tested schemes including different simulation 

plans; reservoir, grid and fluid data; and well configurations. 
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     The observed applicability of the program suggests when dealing with volumetric dry 

gas reservoirs with mobile water there is no need to employ more expensive commercial 

reservoir simulators, as the program can reliably be used for any simulation scheme of 

this case. Furthermore, the program can later be applied in a more robust reservoir 

simulator as the part that handles dry gas cases.  
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CHAPTER I 

 

INTRODUCTION 

 
Natural gas is becoming an increasingly important source of the world’s energy. In 

recent years, natural gas use has grown the fastest of all the fossil fuels, and it will 

continue to grow rapidly for several decades. World gas consumption grows by 3.3 

percent/year compared with 2.2 percent/year for oil and 2.1 percent/year for coal. This 

higher growth rate can be attributed to several factors such as the fact that natural gas, 

including unconventional gas, is available in abundant quantities in many parts of the 

world and also the lower price of gas relative to other fuels makes it attractive to many 

gas operators and consumers.1 Fig. 1.1 demonstrates the world supply and consumption 

of natural gas over the past few decades up to the present time. From these trends and 

also this fact that oil production has already passed its peak it can be easily concluded 

that even with this same tendency, natural gas will be the main source of energy that is 

going to power the world in the next few decades. Regarding this fact, the significance 

of developing tools for handling gas reservoirs is specified. A numerical simulation 

program is a tool which, when properly applied, can provide an estimation of reservoir 

performance under a variety of user specified conditions and constraints. 

  

1.1 Background 

Reservoir simulation is the art and science of using numerical techniques to solve the 

equations for mass flow in porous media, considering the appropriate initial and 

boundary conditions.2, 3 Thanks to different technical advances such as gridding, fluid 

modeling, numerical approximations, linear and nonlinear solvers, reservoir and geolog- 

 
This thesis follows the style and format of the Journal of SPE Reservoir Evaluation and 

Engineering.  
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ical modeling, etc. simulators are getting more accurate, realistic, robust and user- 

friendly. Simulation of three-dimensional flow of different phases in a reservoir requires 

solving the system of coupled, nonlinear partial differential equations. These equations 

arise from application of the conservation of mass principle to an oil-water-gas system. 
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Fig. 1.1- World supply and consumption of natural gas (from bp.com4) 

 

 

 

For most practical situations the flow equations can not be solved analytically. Instead, 

the partial differential equations are approximated by algebraic equations known as finite 

difference equations. The finite difference equations are obtained by replacing 

derivatives with approximations derived from truncated Taylor series expansions.5, 6In 

this study, we develop a numerical reservoir simulator that handles dry gas reservoirs 
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and we have validated this model by comparing the results with a commercially 

available reservoir simulator. 7The significance of the work is discussed in the following 

section. When we use “dry gas”, we are referring to a reservoir gas made up primarily of 

methane with some intermediate-weight hydrocarbon molecules. The dry-gas-phase 

diagram in Fig. 1.2 indicates that, because of this composition, dry gases do not undergo 

phase changes following a pressure reduction and therefore are solely gases in the 

reservoir and at the surface separator conditions. In this sense, “dry” does not refer to the 

absence of water but indicates that no liquid hydrocarbons form in the reservoir, 

wellbore or surface equipment during production.  

 

 

 

 

 
 

Fig. 1.2- Phase diagram for a dry gas reservoir (from McCain11)  
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Dry gas reservoirs are categorized into the following titles: 

1.  Dry gas volumetric reservoirs. 

2. Dry gas reservoirs with water influx. 

 3.   Dry gas volumetric geopressured reservoirs.10 

 

     Volumetric dry gas reservoirs: A volumetric dry gas reservoir, as the name implies, 

is completely enclosed by low-permeability or completely impermeable barriers and 

does not receive pressure support from external sources, such as an encroaching aquifer. 

In addition, if the expansion of rock and the connate water are negligible, then the 

primary source of pressure maintenance is gas expansion resulting from gas production 

and the subsequent pressure reduction. In a volumetric dry gas reservoir the reservoir PV 

occupied by gas remains constant over the productive life of the reservoir. 

     Dry gas reservoirs with water influx: Many gas reservoirs are not completely 

closed but are subjected to some natural water influx from an aquifer. Water 

encroachment occurs when the pressure at the reservoir/aquifer boundary is reduced 

following gas production from the reservoir. In gas reservoirs with water influx, pore 

volume decreases by an amount equal to the net volume of water entering the reservoir 

and the remaining unproduced.  

     Dry gas volumetric geopressured reservoirs: In deep, geopressured gas reservoirs 

the compressibility of the gas is much smaller than that of volumetric reservoirs and 

does not totally dominate production performance. In geopressured systems the 

compressibility of the rock and water may be just as large as the gas. Some investigators 

have postulated that water will be released from shales as the reservoir compacts during 

depletion. 11This would result in an internal water drive similar to aquifer influx. 

Because the reservoir rock is usually highly compressible and undercompacted, the 

decrease in pore volume during depletion may be very non-linear. Along with the rock 

compressibility, the absolute permeability may also decrease with declining pressure.  

The creation of an abnormally pressured reservoir requires unusual geologic conditions. 

The reservoir is isolated from hydrostatic communication with the surface and is usually 
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geothermal as well. The isolation could result from shale totally surrounding the sand or 

from faulting, either of which would coplicate reservoir performance and analysis. 

     For abnormally or geopressured reservoirs, pressure gradients often approach values 

equal to the overburden pressure gradient (i.e., ~1.0 psi/ft). 8, 9 

     Among these types of dry gas reservoirs, in this study we will focus on volumetric 

reservoir. 

 

1.2 Research Methodology 

This research is primarily accomplished by developing a computer program. The 

program is a 1900-line-long VBA code that takes the input data from a Notepad format 

file. This program simulates dry gas volumetric reservoirs. The program handles the 

general case of a volumetric dry gas reservoir including but not limited to any 

combination of boundary conditions, wells, production/injection plans, reservoir 

dimensions, reservoir life, etc. The user can easily make any required changes both in 

input data and in some settings of the program in the input file and then run the program 

just like any commercial simulator. Once the run is complete, numeric results and values 

are all stored in another Notepad file that can immediately be retrieved by the user. All 

graphic results are plotted and/or tabulated in the MS Excel file which is attached to the 

Visual Basic module. Different attributes of the code are discussed in detail in the next 

chapter.  

     The developed simulator is then validated by comparing the results with CMG 

software for some different simulation schemes. 8  

     The comparisons showed that in worse cases the difference of the code results from 

CMG results is equal to or less than 0.8 percent, 0.9 percent, 0.5 percent, 0.4 percent and 

0.4 percent for gq , wq , wfp , pG  and pW  respectively. Therefore the simulator can be 

used when dealing with dry gas reservoirs with confidence. This code, afterwards, can 

be included in a more robust reservoir simulator as the part that handles dry gas cases. 

Because it provides reliable results for what it has been designed for.  
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The main significance of developing simulation programs is that this activity provides 

better understanding of what a commercially available simulator. Developing simulation 

codes helps a reservoir engineer analyze the results of a simulation case more reasonably 

and consequentially, this permits the reservoir engineer to make more realistic decisions. 

Some reservoir engineers view simulation software as a “black box”. 5, 13, 14 Developing 

a simulation code helps the reservoir engineer to understand reservoir simulator is an 

engineering tool and must be applied with appropriate engineering judgment.15  

 

     In this report the study has been divided into chapters. In Chapter II, we provide a 

detailed description of the code and pertinent input and output files. Chapter III consists 

of the derivation diffusivity equation, the gas material balance equations, and the final 

IMPES flow equation that is applied in the coding. Chapter IV discusses and analyzes 

the results of the developed simulator we came up with for a few schemes and also 

comparison of them with results of the same sets of cases in CMG. The conclusions will 

follow this chapter. A listing of the Visual Basic code is included in the appendix. 
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CHAPTER II 

 

IMPES FORMULATION FOR TWO-PHASE FLOW 

 

In this chapter we will first derive the diffusivity equation from basic reservoir 

engineering relationships. The manipulation of the material balance equations in order to 

derive the final IMPES flow equations will follow. The averaging of flow equation 

parameters will be discussed as well. 

 

2.1 Diffusivity Equation 

In order to use differential; equation for predicting the behavior of a reservoir it is 

necessary to solve these relations subject to the appropriate boundary conditions. Only 

for the simplest cases involving homogeneous reservoirs and very regular boundaries 

(such as a circular boundary around a single well) can solutions be obtained by the 

classic methods of mathematical physics.5 The set of the difference equations that are 

amenable to solution by computers constitute a numerical model.  

     The three basic reservoir engineering relationships that initiate the manipulation that 

leads us to gas flow equations are: 15, 16 

 

1. Darcy’s law 

 
dx
dp

B
kAcq

igi
xg µ

=         (Differential form for linear gas flow) ..................... (2.1)           

            

 2. Mass Continuity Equation 

 
t

 - = ug ∂
∂

•∇
)()( φρρ r  ……………………………………………......………. (2.2) 
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3. Equation of State 

    ρ = f(p)    (Isothermal) …………………..…………………………….. (2.3) 

The derivation of diffusivity equation is based on incorporating these three relationships.  

For isothermal condition, fluid compressibility is defined as:   
  
 

        c =  -  1
V

dV
dp

 =  1 d
dpρ
ρ

……………………………………………….……… (2.4) 

 
and the rock compressibility is 
 

        fc  =  
1 d

dpφ
φ

 ………………………………….....……………………...........…... (2.5) 

The derivation of the diffusivity equation for gas flow starts by substituting Darcy’s law 

into the continuity equation which yields the generalized density form of the diffusivity 

equation: 16 

t
  =k

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
•∇

)(φρ
µ
ρ  ………………………................……………………...... (2.6) 

Recalling the definition of gas density, we have 

 
zRT
pM

g =ρ .........................................................................................................(2.7)

Substituting Eq. 2.7 into Eq. 2.6, and eliminating the 
RT
M terms, we obtain  

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

z
p

t
p

z
pk φ

µ
.................................................................................(2.8) 

If we assume that the effective permeability, k, is constant which is a very reasonable 

assumption for gas reservoirs and we expand the righthand-side term using the product 

rule, then Eq. 2.8 becomes: 

 ⎥
⎦
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⎣
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⎤
⎢
⎣

⎡
∇•∇

z
p

ttz
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kz
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tk
p

z
p φφφ

µ
11 ...........................................(2.9) 

Expanding the time derivative terms using the chain rule yields 
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 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
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∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∇•∇

t
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z
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p

z
p φφ

µ
1 ...................................................(2.10) 

Factoring out the porosity, we have 

 ⎥
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1 ...................................................(2.11) 

Recalling the definition of pore-volume compressibility, fc , we have 

 
p

c f ∂
∂

=
φ

φ
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Substituting Eq. 2.12 into Eq. 2.11, we obtain 
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.......................................................(2.13) 

Recalling the definition of isothermal gas compressibility, gc , we have 

 
T

g p
z

zp
c ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−=
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The alternative form of the definition of gas compressibility is (again for isothermal 

conditions, but dropping the T subscript) 

 ⎥⎦
⎤

⎢⎣
⎡

∂
∂

=
z
p

pp
zcg ................................................................................................(2.15) 

Rearranging Eq. 2.15, we have 

 gc
z
p

z
p

p
=⎥⎦

⎤
⎢⎣
⎡

∂
∂ ................................................................................................(2.16) 

Substituting Eq. 2.16 into Eq. 2.17, we obtain 

 ⎥⎦
⎤

⎢⎣
⎡

∂
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+
∂
∂

=⎥
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µ
...........................................................(2.17) 

Recalling the definition of total compressibility, fgt ccc += , and substituting this 

identity into Eq. 2.17 gives us 
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φ
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................................................................................(2.18) 
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Eq. 2.18 is the generalaized diffusivity equation for gas flow. 16 

     In order to solve problems which involve this equation, the finite difference method 

can be used.  This equation is discretized into the following finite difference form: 

 

           
t

p -p
k 
c =

x
p +p -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

)(
2

……………………………………….. (2.19) 

 
The n superscript indicates the old time level.  All of the unknowns have already been 

solved at the nth time level.  The n+1 superscript indicates the new time level.  We want 

to solve for these unknown values at the new time level. 

     Eq. 2.19 is called an implicit finite difference equation since it involves more than 

one unknown.  Three unknowns, pi-1
n+1, pi

n+1, and pi+1
n+1 occur because we chose the 

n+1 time level to discretize the left-hand side of the equation.   A template of this finite 

difference equation is shown in Fig. 2.1. 

 

 

 

 
Fig. 2.1- Finite difference template used in the finite difference equation. 

 
 
 
 

We know the value of p at the n-time level and we are trying to determine the values of p 

at the n+1 time level.            
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2.2 Flow Equations 

By replacing the differential equations with difference equations, the partial differential 

equations that describe fluid flow in reservoirs can be solved numerically. Discretization 

of differential equations subdivides distance and time into definite, specified increments. 

In this section we will manipulate the differential equations to treat the reservoir as if it 

were composed of discrete volume elements.15, 17 The discrete approach we are going to 

use amounts to discretizing the continuity equation. Each gridblock has a definite boundary 

and the pressure represents the average pressure in the gridblock for material balance 

purposes. For simplicity the derivation of the finite difference equations for 1-D gas flow 

(two phases) are shown here in this section. When deriving IMPES flow equations for the 

code the 3-D case will be handled.   
     Discretization starts with developing a finite difference equation for the flow of gas and 

water in a grid system. This finite difference equation conserves mass, so it is called the 

material balance equation for gridblock. Beginning with a statement of the continuity, 

material balance equation would be: 

 Net rate of Flow in (scf/D) = Rate of Accumulation (scf/D) 

If the system is defined as having constant density at standard conditions, the units of this 

equation will be in standard cubic feet, scf, rather than working with mass.  
The pore volume of the gridblock i is: 

 Vp = φyhx∆∆  …………………………………………………….……………………..……… (2.20) 

The gas-in-place can be calculated as: 

 
g

gp

B
SV

GIP =  …………………………………………………………….… (2.21) 

where 

 GIP =   standard (stock tank) gas in place, scf 

 Vp =   pore volume of the gridblock, rcf 

 Sg =   average gas saturation of the gridblock, fraction 

 Bg =   formation volume factor at the average gridblock pressure, rcf/scf 

 φ =   average porosity of the gridblock, fraction 
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The rate of accumulation of gas including the production terms during the timestep is: 

 =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝
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⎠

⎞
⎜
⎜
⎝

⎛

∆

+ n

g

gp

n

g

gp

B
SV-

B
SV

t
1 

1

+qg ………………………..………………………………. (2.22) 

The quantities Vp, Sg, and Bg are evaluated at the time indicated by the superscripts, before 

and after the time step. The quantity in brackets is the accumulation of oil in the gridblock 

during the timestep. Dividing by ∆t puts the right-hand side on the rate basis. The left side 

of the continuity equation deals with flow rates. It can be stated as:  

 Net rate of flow in = rightleft qq +  ………………………………………….…………. (2.23) 

Where positive q is flow into the gridblock, negative flow is out of the gridblock. Usually 

fluid is flowing through the gridblock, so one term is positive and the other is negative. Our 

material balance equation can now be given as: 
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Now, we need an expression for flowrate. We use Darcy's law for flow between the centers 

of the gridblocks. The flow distance, ∆x, is the distance between the centers of the 

gridblocks. The gridblock pressures are taken to be at the center of the gridblocks.  

Flow from the right, from gridblock i+1 to gridblock i, is 

    

           
B

Au = scf/Dq
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rht )( …………………………………………………….…..…. (2.25)  
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The first factor is constant with time. It also applies to both phases. This is called 

"transmissibility" and is saved separately in the computations. 

Now we define: 

 

 
x
ykh = T 1/2+i ∆

∆00633.0 ………………………..……………….....................… (2.27) 

 

The subscript i+1/2 indicates that the coefficient applies between gridblocks i and i+1. We 

will replace i+1/2 with E, for the "east" direction. The notation for transmissibility can be 

represented as follows:  

 

x
y0.00633kh=T E ∆

∆ ……………………………………..…………..………. (2.28) 

 

For a 3-D flow, we will use the following directional notation: 

 i+1/2= E 

 i-1/2 =W 

 j+1/2=N 

 j-1/2  =S 

 k+1/2=Bk-1/2 =T  

 

The next factor in Eq. 2.23 is called mobility, λ . Its value changes with time and is defined 

as: 
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…………………………..………………. (2.29) 

 

where:  
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     (Bg)E   =  (Bg i  +  Bg i+1)/2 

     (µg)E   =  (µgi + µgi+1)/2 

     (krg)E  =  upstream krg 

 

 

2.3 Averaging of Flow Equation Terms 

The following elements of the diffusivity equation need to be averaged: 
 
 
1. Absolute permeability 

2. Relative permeability of both phases 

3. Viscosity of both phases 

4. Porosity3  

 

There is no unique way to choose the values of 2/12/1 , ++ ii kλ  etc. In general the values are 

averaged in such a way that they give the most accurate values possible for the flow rate 

and accumulation terms. In this case, from literature the properties are averaged as given 

in Table 2.1. The methodology of averaging is presented in Aziz and Settari’s book. 

 

 

 

Table 2.1-Averaging of parameters. 

Averaged Parameter Method of Averaging Units 
Absolute Permeability Harmonic Averaging md 
Relative Permeability Upstream Weighting - 

Porosity Arithmetic Averaging - 
Viscosity Arithmetic Averaging cp 

Formation Volume Factor Arithmetic Averaging rcf/scf – STB/scf 
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Fig. 2.2- Harmonic averaging of permeability 

 

 

 

In case of a single fluid flow, by summing the flow rate from grid center i to block 

boundary i+1/2 to the flow rate from block boundary i+1/2 to block center i+1 and then 

comparing the result with the flow rate from i to i+1 (Fig. 2.3), one can see that the 

averaged equation for permeability term in east direction will look like this3: 

 

 
1

1
2/1

2

+

+
+ +

=
ii

ii
i kk

kk
k ………………………………………………..…….…….. (2.30) 

 

But for relative permeabilities upstream weighting is applied which is a consequence of 

the hyperbolic nature of the problem. Raithby showed that the upstream weighting leads 

to an accurate solution. The upstream weighting is defined as follows3, 17: 

 )( girgrg Skk = if flow is from i to i+1. 

 And rgk = )( 1+girg Sk if flow is from i+1 to i. 

This method of weighting takes effect when interpolating for gas and water relative 

permeabilities. 

     The pressure dependent properties, viscosities and formation volume factors are 

assumed to be arithmetically averaged since these properties are not variable in our case. 

A simple arithmetic average is also used for porosity.    

i i+1

iδ  1+iδ  

i+1/2 
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2.4 Material Balance Equation 

Our material balance equation now has the following form: 
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We now consolidate the notation by defining the gas symmetrical flow coefficient as 

follows (for the east direction for instance): 

 

TB
k = a E

gE
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……………………………………………………………. (2.32) 

 
The Gas Material Balance Equation now has a simpler form. The resulting 3-D finite 

difference equation is: 
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The equation can be simplified further by defining a general difference operator as follows: 

 

…….…….…………..…. (2.31) 
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       ∆ag∆p  =   agE(pi + 1 - pijk) 

         +   agW(pi - 1 - pijk) 

             +   agN(pj + 1 - pijk) 

             +   agS(pj - 1 - pijk) 

             +   agB(pk + 1 - pijk) 

            +   agT(pk - 1 - pijk) ……………………………………………………..(2.34) 

 
The general Gas Material Balance Equation can then be written as: 

 

 
………………………………. (2.35) 

 

The general Water Material Balance Equation may also similarly be derived as: 

 

................................................. (2.36) 

 

 

2.5 IMPES Formulation 

The choice of the method for solving the flow equations in a reservoir simulator will 

control the ease of use, accuracy, and to some degree the cost of the simulator. Therefore 

choosing the right method has to be done with extensive insight. 

     Several options exist for picking the dependent variables in multi-phase problems. In 

two-phase problems, the most common option is to solve for one phase pressure ( gp  

here in this case) and two saturations. Different studies of formulations lead us to the 

Implicit Pressure, Explicit Saturation (IMPES) procedure which involves solving first 

implicitly (as required for stability) for the gas pressure at each point and then solving 

explicitly for the saturations. IMPES is the most commonly used sequential approach 

among other manipulation techniques. In sequential methods the equation are 
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manipulated to separate the solution of the pressure equation from that of the saturation 

equation. Its appeal is a result of greatly reduced computing requirements, because it 

avoids the simultaneous implicit solution for several unknowns at each gridpint.12, 18, 19 

So IMPES method is chosen to derive the final flow equations that are to be discretized 

for coding in this research. 

     For the flow of a gas in a dry gas reservoir (in the absence of any condensate or oil), 

fluid compression and viscous forces control fluid movement. So gravity and capillary 

forces are not pertinent and besides capillary pressure may not be applied in this case 

since there is no oil or condensate.20, 21 Since there is going to be no gravity terms or 

cp in the equations, IMPES approach will have less stability limitations and can 

definitely be used more efficiently and this another motivation that makes us feel even 

more confident about using IMPES for this code.   

     For our case, the following main assumption for IMPES method will be taken into 

account. 

1. 2 phase model (gas and water) 

2. A plus and a minus sign refer to production and injection cases respectively.  

3. No gravity terms 

4. No water influx from an aquifer  

The steps for the IMPES method are: 

Step 1.  Calculate coefficients to the pressure equation 

Step 2.  Matrix solution of the pressure equation for all pn+1 

Step 3.  Explicit (point-by-point) solution of 1+n
gS , 1+n

wS  

     In this procedure, the saturations are eliminated by adding the individual phase material 

balance equations. The resultant equation has only one unknown, a phase pressure which 

is obtained by simultaneous solution of a set of equations. Then saturations are 

determined explicitly by solving material balance equations.  

     For the 3-d system, rearranging the two finite difference equations we came up with 

yields these saturation equations: 
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Total saturation must be equal to unity,  
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Eliminating unknown saturation terms using the recent equation, we’ll have: 
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Expanding this equation, we obtain 
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Gas and water compressibilities are respectively: 
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  Rearranging these equations yields 
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Formation compressibility is defined as: 
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By substituting the compressibility equations into the pore volume equation we obtain: 
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By Simplifying Right Hand Side of this equation and substituting it into previous 

equation, we obtain: 
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Total compressibility is defined as n
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n
wwft ScSccc ++= …………….………….. (2.50) 

So, we’ll have: 
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If the total rate is defined as g
n
gw

n
wt qBqBq 11 ++ += , then recent relationship can be 

rearranged to obtain the final form which is as follows: 
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The elements of A matrix and B matrix that are to be discretized in two separate 

subroutines in the code can be shown as: 
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Pore volume and Chord slope relationships that are used in above derivations are 

respectively: 
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CHAPTER III 

 

PROGRAM CHARACTERISTICS AND PROPERTIES 

 
In this chapter the main attributes of the developed simulator as well as the input and 

output units are discussed. The simulator is a VBA code which is coupled to the 

pertinent Excel file. It evaluates/forecasts the declining regime of volumetric dry gas 

reservoirs for two-phase (gas and water), 3-D models over the productive life of them.  

 
3.1 VBA Code Algorithm 

The 3-D, two-phase code that is developed is an IMPES manipulation of gas and water 

flow equations. The code is a convoluted structure of different subroutines that are all 

embodied by a main subroutine called Main that controls the order of the run of the 

subroutines and loops them over each timestep until the last timestep is reached. Each of 

these subroutines does a specific task when it is reached in the order it is placed within 

the main loop or when it is called by another subroutine. Some subroutines may be 

called more than once. Some basic tasks such as interpolations and averagings are 

accomplished in functions instead of subroutines. Fig. 3.1 exhibits the flowchart of the 

code. This diagram is the basic algorithm of the code and does not represent all of the 

subroutines. We will go through the code algorithm within one single timestep following 

above flowchart.  

     Read Data: Once the program starts running the first subroutine in the time loop runs 

which takes care of reading reservoir, wells, PVT, relative permeabilities and all data 

required for the program to run from the input file. This subroutine is written in such a 

way that it is capable of accepting either uniform or irregular grids. Gridblocks can be of 

different dimensions in either of x, y or z directions or any combination of them. The use 

of irregular grid spacing is essential in models.  
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  Fig. 3.1- Flowchart of the 3-D, 2-phase code 
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In many practical problems it is necessary to refine the grid in certain parts of the 

reservoir in order to obtain desired accuracy. For example, local refinement is often 

necessary around the wellbore. On the other hand it is often possible to use coarser grid 

over area where pressure and saturation change slowly. Irregular grid is also 

advantageous in cross-sectional and 3-D simulation of stratified reservoirs where the 

vertical gridblocks are chosen according to reservoir stratification. In practice we always 

want to keep the grid as coarse as possible (especially in 3-D simulations).3 

     In order for the code to be able to handle different gridblock sizes in a particular 

direction, the method of grid construction is point-distributed (as shown in Fig. 3.2) in  

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2- Point-distributed system of gridding accounts for irregular grids (from Aziz 

and Settari3) 
 

 

 

which the grid points are selected first and the block boundaries are placed half-way 

between the grid points: 

 

               2/)( 2/1++ ∆= ii Xδ …………………………………………………………. (3.1) 
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Unlike many commercial simulators, the code can handle models of any sizes. All the 

user has to do to define the size of a problem is to enter the number of gridblocks in each 

direction if the model is supposed to be uniform in that particular direction. But if the 

model has to be non-uniform in a particular direction the user must enter the sizes of all 

gridblocks in that direction.   

     Porosity and permeabilities can also be configured differently in different directions. 

In most cases permeability in z direction is considerably less than what it is in other 

directions. 

     The PVT table used for interpolation PVT properties of a given reservoir’s gas and 

water can handle pressures starting from standard conditions up to 4,000 psi and the 

units for this table are tabulated in Table 3.1. 

 

 

 

Table 3.1- Units for the PVT properties used in the input file 

Pressure wB  wµ  wC  gB  gµ  gC  

psi rcf/scf cp 1/psi rcf/scf cp 1/psi 

 

 

 

Allocate Memory: The next thing after reading the input set of data is allocating 

required memory for each variable. 

 

3.1.1 Initial Conditions  

To complete the mathematical description of a reservoir (following Eq. 2.49 in chapter 

II), it is necessary to specify initial conditions.12 Initialize subroutine is the place for 
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basing the initial conditions to begin the timestep sequence. For the initial conditions, 

n=0, a value is specified for pressure, gas saturation and water saturation and then these 

parameters have to be initialized in every node by assigning the values to three-

dimensional arrays through a 333 ××  spatial loop. Pore volumes are calculated for each 

gridblock and the summation of all of them is stored as the initial reservoir pore volume. 

Formation volume factors, viscosities and compressibility values are located by 

interpolation. Total compressibility is calculated using the existing saturations and phase 

compressibilities according to the following formula from the previous chapter: 

 

 n
gg

n
wwft ScSccc ++= ……………………………………………………... (2.47) 

 

Initialize is also where total fluids in place are calculated. Relative permeability to each 

phase is calculated by interpolation with recent saturations.  

 

Begin Time Stepping: Now, the calculations are ready to get started with the time loop. 

The time loop is a do loop which repeats the following steps until it reaches the last 

timestep. 

     Replace Old Parameters With the New Ones: At this stage the new pressures 

calculated at the end of the previous timestep are designated as old values at the 

beginning of the new timestep. The same procedure is also applied for pore volumes, 

saturations and formation volume factors. The existing pressures are used to update 

viscosity, compressibility, total compressibility and relative permeabilites. Here 

viscosity, compressibility and relative permeabilites are interpolated. Using the 
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interpolated values of relative permeability, FVF and viscosity, the mobilities are 

evaluated. Also transmissibilities need to be evaluated for all directions (west, east, 

south, north, top and bottom) at this same stage, because they are going to be used in the  

A matrix. 

 

3.1.2 Well Rates and Pressures 

The well equations use pressures at the center of the gridblocks.  These pressures represent 

material balance average pressures in the gridblock.  However, if a well is located in the 

center of a gridblock, the gridblock pressure, pi,j is not the wellbore flowing pressure, pwf.  

These equations compute the gas flow from gridblock to gridblock. So if a well is located 

in a cell, we need additional equations to relate the well performance to the cell variables.  

Steady state flow occurs within a cell and uses Peaceman’s equations15: 
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The fluid and rock properties are the same as for the cells. We now have 2 equations with 

3 unknowns: qw, qg and pwf.   This means that the user must specify one of these unknowns    

which is going to be the condition under which the well will produce. For example, if the 

user specifies qg, then qw and pwf are calculated. Similarly if we specify pwf, then we can 

calculate qw and qg from the above equations.  

     In Peaceman’s equations Jmodel is called “productivity index” or “well index” and is 

defined as follows: 

 

  
s + r/rln 
kh (0.00633) 2 = J

wo
model

π …………………………..…………………………. (3.5) 
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Where ro is calculated using the following equations: 

 

1) When ∆x = ∆y, kx = ky, 

  

 ro= X∆2.0 . ................................................................................................................(3.6) 

 

2) Otherwise, 

 
( ) ( )[ ]

)k/k( + )(

  +   0.28
 = r 4/1

yx
4/1

22 2/1

o
k/k

yk/kxk/k

xy

yxxy ∆∆
. .......................................................(3.7) 

 

There are essentially two methods for representing a well in a simulator: by rate constraint 

or by pressure constraint.5, 22 Both constraint methods are contained in the code and are 

summarized below. 

     Well BHP and Rates for Constant Rate Constraint: In this representation rates may 

be specified for injectors or producers. If the rate of any one phase is specified then the 

rate of the other phases can be calculated with obtaining the bottomhole pressure first as 

follows:  

 

 
β

β

λJ
q

pp iwf −= . ………………………………………..………… ...... (3.8) 

 

 )( wfi ppJq −= αα λ …………………………………………………… .... (3.9) 

 

where β  is the phase whose rate is known and α  is the phase whose rate is unknown. 

 

     Well Rates for Constant Bottomhole Pressure Constraint: If the bottomhole 

pressure and well productivity index are known then the rate of any phase can be 
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obtained as in Eq. 3.10. This calculation is done in a different subroutine from the 

subroutine for the previous constraint: 

 

 )( wfi ppJq −= αα λ . ………………..…………………………………..  (3.10) 

 
3.1.3 Boundary Conditions 

For our 3-D case, at the left and right boundaries, we need to specify equations other 

than the discretized form of the diffusivity equation derived in chapter II, i.e. Eq. 2.16: 

 
t

p -p
k 
c =

)x(
p +p2 -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

. ………….………………………….. .  (2.16) 

The usual boundary condition is called a “no-flow” boundary condition or the Neumann 

condition.8In other words, no fluid flows across the outer boundaries. A frequent 

assumption in reservoir simulation is that the reservoir lies within some closed boundary 

across which there is no flow, and that fluid injection and production takes place at wells 

located at points within the interior of the reservoir.12, 23 This condition quite fits the main 

assumption of developing this simulator which is handling volumetric dry gas reservoirs. 

Because in this type of reservoirs there is no flow or pressure communication between the 

reservoir and the adjacent media.  

     We should note that at each well, either the pressure or the flow rate for a phase is 

specified and this specification is, in fact, the most important part of the boundary 

conditions12 which was detailed in the previous section. The boundary condition relations 

that apply in the discretized form of the final flow equation will come in the following 

section. 

 

3.1.4 Matrices A and B 

We now can state all the equations that are to be solved simultaneously for each 

timestep.  

     Recalling the discretized form of the diffusivity equation we derived in chapter II, we 

have: 
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t

p -p
k 
c =

)x(
p +p2 -p n

i
1+n

i
2

1+n
1+i

1+n
i

1+n
1-i

∆∆
φµ

………….…………….……………... (2.16) 

 

For our 3-D system, according to the directions defined in Fig. 3.3, this equation can be 

expanded as follows: 

 

 aw(w, g) . (Pi-1,j,k – Pi,j,k) + ae(w, g) . (Pi+1,j,k – Pi,j,k) + as(w, g) . (Pi,j-1,k – Pj,j,k) + 

    

 an(w, g) . (Pi,j+1,k – Pj,j,k) + ab(w, g) . (Pi,j,k-1 – Pj,j,k) + at(w, g) . (Pi,j,k+1 – Pj,j,k) = 

 

 n
pV  Ct(Pi,j,k

n+1 – Pi,j,k
n)/∆t ………………………………………………….. (3.11) 

 

 

  

 aw(w, g) Pi-1,j,k – aw(w, g) Pi,j,k + ae(w, g) Pi+1,j,k – ae(w, g) Pi,j,k + as(w, g)Pi,j-1,k –  

 

 as(w, g) Pi,j,k + an(w, g) Pi,j+1,k – an(w, g) Pi,j,k + ab(w, g) Pi,j,k-1 – ab(w,g) Pi,j,k +  

 

 at(w, g) Pi,j,k+1 – at(w, g) Pi,j,k - n
pV CtPi,j,k

n+1/∆t = n
pV tC Pi,j,k

n/∆t …...……. (3.12) 

 

From this point forward we change the notation from aw(w, g) simply to Wa and ae(w, g) 

to Ea and etc. Now we define Ca  for central gridblocks as follows: 

 
t
CV

aaaaaaa t
n

p
BTNSEWC ∆

−+++++−= )( …………..……..……..… (3.13) 
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Fig. 3.3- Spatial definition of directions for expanding the diffusivity equation  

 

 

Therefore Eq. 3.12 is simplified to the following format: 

 

 Wa Pi-1,j,k + Ea  Pi+1,j,k + Sa Pi,j-1,k + Na  Pi,j+1,k + Ba  Pi,j,k-1 + Ta  Pi,j,k+1 + Ca  Pi,j,k  = 

  

 n
pV tC n

kjiP ,, /∆t ……………….……..…………………………..………… (3.14) 

 

Recent equation makes up a system of simultaneous linear equations with respect to the 

unknown pressures. The number of unknowns and equations is defined by the user is the 

number of gridblocks in a given model. For ease of the equations, let us define α  as the 

following: 

 

 tCV t
n

p ∆= /β ……………………………………………………………… (3.15) 

 

For example if there are 14 gridblocks in a model, the equations will look like the 

following: 
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1 β−=++ +++  ………………….…………..……….. (3.16) 
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 nn
E

n
C

n
W

n
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B PPaPaPaPaPa 13

1
14

1
13

1
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!
10

1
7 β−=++++ +++++ ……….………. (3.19) 

 nn
C

n
W

n
S

n
B PPaPaPaPa 14

1
14

1
13

1
11

1
8 β−=+++ ++++ ………….……..………... (3.20) 

 

Therefore, for this 14-gridblock model, we have 14 equations and 14 unknowns. The 

first and last equations in this set are the governing equations for boundary conditions. 

This set of equations can be represented by a matrix equation, which can simply be 

written as: 

 BpA
rr

= …………………………………………………………………….. (3.21) 

where A is the coefficient matrix and pr and B
r

are column vectors. Therefore, the set of 

equations can be shown as Fig. 3.4. B
r

consists of the right hand side terms of the 

equations which are all known. In this matrix presentation a C represents a central flow 

coefficient; a W represents a west flow coefficient and etc. 

     Now that we made up our matrix presentation of the flow equations, we need to see 

what each coefficient is. For our IMPES formulation all of the coefficients in the left 

hand side matrix are Eqs.  2.50 through 2.56 in chapter II. The values in the B matrix for 

the IMPES formulation for the perforated blocks are computed using Eq. 2.57 in chapter 

II which has the total flow rate term in addition to β  here. 

     In the subroutines of matrices A and B in the code, required average values for 

formation volume factors and viscosities are calculated. The direction of flow is 

determined to take the upstream relative permeabilites. For the constant bottomhole 

pressure case, B vector will have the part of the total rate, which has the old pressure 

vector as a multiplier. But the one which has the new pressure vector as a multiplier will 

go into A matrix to the central flow coefficient. 
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Fig. 3.4- The matrix of equations for a 14-gridblock sample model 

 

 

 

3.1.5 Matrix Solver 

Once matrices A and B are built, the next task the time loop does is to solve the matrices 

by calling the matrix solver subroutine. Solver gets the flow coefficients from the A 

matrix and the known values of right hand side from B vector and returns the new 

pressure values.  

     The solution of the pressure equation can either be very simple or very difficult, depend-

ing on the physical problem. Almost all 3-D problems are considered relatively difficult to 

difficult and the effort required to solve the pressure equation becomes very significant in 

relation to the rest of the reservoir simulation problem.  It is not unusual for the computing 

cost of solving Eq. 3.21 to be as high as 80% to 90% of the total reservoir simulation cost.  

The rest of the reservoir simulation solution, other than the solution of equation, is 

relatively constant in the computation time and effort required.  This means that the overall 
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cost of reservoir simulation is often directly dependent on the ease with which we can solve 

Eq. 3.21.15  

     Solution methods are either iterative or direct. The basis of an iterative method is the 

development of an “approximate” solution to the system of equations. The 

approximation is replaced systematically until the answers converge to “the correct” 

answer. In a direct method, as the name implies, the algorithm that is used “solves” the 

equations exactly and will give a correct answer in a fixed number of answers.12 

     Because of the drastic increase in computational effort as the grid size increases in 3-

D problems, there exists a grid size, such that for any grid size larger than this, an 

iterative method would have a computational advantage over a direct method. More 

importantly, perhaps, is the fact that direct methods require large amounts of storage for 

the coefficient matrix A. Iterative methods, on the other hand, are particularly well suited 

for large, spare systems of equations.5 

     According to Vinsome (1976), the most commonly used procedure among iterative 

methods, is Orthomin. This method is a minimization process conceptually based on the 

conjugate-gradient numerical method and converges faster than any other iterative 

method and also it is insensitive to the number of equations. Another great advantage of 

Orthomin approach is that it is applicable to non-symmetric sparse matrices. The method 

is so called because it uses both orthogonalizations, and minimization to achieve a high 

rate of convergence.24 

     Update PVT Data, Rates and Saturations: Rate for each phase is updated using the 

new pressure for constant bottomhole pressure case. For this rate, update elJ mod  and 

mobility terms are kept the same. Formation volume factors and pore volumes are 

updated using chord slopes and they are named as “new”. Notice that these new values 

will still be named as “new” at the beginning of the new time step and the values, which 

are named as old, will be calculated by interpolation. Saturations are updated as the last 

stage just before the timestep-cut procedure. 
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3.1.6 Timestep-Cut 

In order to assure the IMPES formulation will converge for whatever input data a user 

might enter, there is a need for a timestep-cut procedure.25 Once the new values of 

pressures are obtained and the rates and saturations are updated the main time loop goes 

through a timestep-cut inner loop to evaluate whether the timestep has to be decreased or 

not. Timestep, however, is not the only entry that can be changed to control the 

convergence of the solution. There is also another entry in the input file called ncuts and 

the user has the option of establishing some value for it before a run. The default value 

for the ncuts in this code is 3. In most commercially available simulators this value is 4. 

ncuts helps the timestep-cut procedure control the number of required reductions in the 

timestep (if any). Furthermore, it controls how much reduction is required for the 

timestep size to get the fastest possible convergence with the largest timestep each time 

there is a need for a reduction. The circumstance of the timestep-cut procedure is 

exhibited in Fig. 3.5. In this algorithm, counter is a variable initially set to zero for 

comparing with ncuts in the first if condition (algorithm in Fig. 3.5). This variable is first 

set to zero each time before the start of the timestep-cut loop. 

     Check Well Constraints: Once the timestep size is fixed (if required) in the 

timestep-cut inner loop, the main loop makes the simulator proceed into calculating the 

cumulative production of gas and water. Meanwhile, for wells with constant rate 

constraint, if the calculated bottomhole pressure turns out to be less than the minimum 

allowable BHP determined in the input file, the code changes the constraint from 

constant rate to constant pressure and then from this point forward will go through this 

constraint for calculating the rates.  

     Write Results: At this stage all of the results for this particular timestep are 

calculated and stored in memory and are ready to be written in both the pertinent Excel 

file and in the output Notepad file. So while the simulator proceeds in running, the 

results are being either written or plotted in the output units.  
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Fig. 3.5- Algorithm for the timestep-cut loop within the main time loop 

 

 

 

Proceed with Timestepping: At this stage if the last timestep has not been reached yet, 

the code goes back to the beginning of the time loop where the old parameters are 

replaced with new ones until the required simulation time is reached. 
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3.2 Output Units 

Once the run is complete all graphical results for different timesteps and/or wellbores are 

plotted in the pertinent Excel file. These graphical results include well gas rate, water 

rate and bottomhole pressure, average reservoir pressure, cumulative production, 

schematic of the grid model, reservoir cell pressures and saturations. Initial gas and 

water in place are also given in this Excel file. Well constraint, reservoir pressure, gas 

saturation, water saturation and total saturation for all timesteps are tabulated in separate 

worksheets and the user can make any desirable projection of them for either the 

analysis of reservoir performance or comparison purposes. The user can both view the 

existing plots and make new combination of desirable plots upon their need. 

The code also generates a Notepad file as another output unit. This file contains all 

numeric results such as cell pressures, gas and water saturations, for all timesteps and all 

layers, fluids in place, cumulative production and also well entries from the input file.  
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CHAPTER IV 

 

VALIDATION AND ANALYSIS OF RESULTS 

 

The goal of any numerical-model study is the analysis and/or prediction of reservoir 

performance in more detail and with more accuracy than is possible with simple 

techniques such as extrapolation.12 Therefore, in this chapter we will go through the 

results of two distinct simulation cases done by both the 3-D, 2-phase code and CMG in 

order to make comparisons between the two simulators. Comparing the runs of a newly-

developed simulator with a commercially available simulator is usually the best way to 

confirm the validity of estimates. For validation of this code, CMG software is used 

which is a well-recognized simulator package in the oil and gas industry. In general 

having matches of fluid movement parameters including gas rates, water rates, 

cumulative productions and water/gas ratios (WGR’s), between the two simulators is the 

strongest verification of the validity of techniques, formulations and assumptions 

concerning the newly-developed simulator. In this chapter, in addition to these 

parameters, the results of bottomhole and average reservoir pressures at times for both 

simulators are shown. The analysis of the results pertaining original fluids in place is 

also included in this chapter. 

 

4.1 Simulation Schemes 

In order to show the reliability of the code, two different schemes are considered to run. 

The first case is a production plan including three producer wells, with three different 

constraints. The second one is a simple injection-production plan with one injector and 

one producer well. Both plans have the same number of gridblocks and gridblock size. 

The model dimensions are 102020 ×× . Fig. 4.1 shows the model configuration and also 

the location of wells for the first simulation scheme. 
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Fig. 4.1–Grid system and locations of production wells for case one 

 

 

 

Table 4.1–Wells entries for case one 

Well ID X Y Z Well Type Constraint 
Constraint 

Value 
Min. BHP

W-1 10 10 3 Producer Const. Gas Rate 10,000 Mscf 1,000 psia 

W-2 5 5 5 Producer Const. BHP 2,500 psia 1,000 psia 

W-3 15 15 8 Producer Const. Water Rate 40 STB 1,000 psia 
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The constraints and other entries of wells for case one (three producer wells) are 

tabulated in Table 4.1. Also all reservoir and model data are tabulated in Table 4.2.  

 

 

 

Table 4.2–Reservoir input data 

DX  DY  
Gridblock 

thickness 
φ  xk  yk  Vertical 

permeability 
ip  wiS  T gγ

600 

ft 

600 

ft 
50 ft 0.25

30 

md 

30 

md 
5 md 

3,000 

psia 
0.25 210˚F 0.7

 

 

 

Table 4.3 shows the relative permeability data selected for running both cases. These 

sets of data for water and gas are demonstrated in Figs. 4.2 and 4.3 respectively.  

 

 

  

Table 4.3–Relative permeability data 

Sw Krw Sg krg 

0.1 0 0 0 

0.3 0.024 0.1 0 

0.4 0.056 0.3 0.04 

0.5 0.116 0.4 0.072 

0.6 0.192 0.55 0.144 

0.83 0.488 0.65 0.248 

1 1 0.85 0.532 

  1 1 
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Fig. 4.2–Water relative permeability used      Fig. 4.3–Gas relative permeability used   

in cases 1 and 2        in cases 1 and 2  

 

 

 

4.2 Validation of Plan 1: Three-Producer Case 

Plots of different fluid movement parameters as well as, wfP , p and GWR versus time  
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Fig. 4.4– Individual well gas rates 
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are made and incorporated to the same plots simulated by CMG package in order to 

show the validity of the results of the code.  

     Under the specified constraints and deliverability conditions for the three wells in 

plan one, the general depletion behavior of the assumed reservoir can be seen from Fig. 

4.4 for the gas rates from the code. Fig. 4.5 is CMG’s gas rate plot for well W-2 

(constant Pwf well) shown as a sample of plots made by CMG. For the rest of the results, 

comparisons are made by putting the plot generated by the code together with one 

generated by CMG to show the matches in more detail.  

 

 

 

 
Fig. 4.5– Gas rate plot for well W-2 generated by CMG 
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The first match can be observed from Fig. 4.6 which shows the satisfactory match of gas 

production rate for the constant bottomhole pressure well (W-2), simulated by both the 

code and CMG.  
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Fig. 4.6– Gas rate plots for well W-2 generated by both the code and CMG 

 

 

 

Fig. 4.7 shows the same sets of graphs for the well with constant water rate (W-3). The 

slight difference seen at the beginning of the two plots is probably caused by different 

timestep sizing at initial timesteps between the two simulators as the dotted line for 

CMG shows that it has taken very small timesteps at the beginning of the run to 

converge. The timestep size in the 3-D, 2-phase code is 100 days for all of the shown 

plots in this section. Since the code is equipped with the timestep-cut procedure, it can 

be concluded that there has been no need for a cut in timestep size in this particular run, 

because if there has, the code would have taken smaller timesteps.  
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Fig. 4.7– Gas rate plots for well W-3 

  
 
 
 
 

 
 

Fig. 4.8–Water rate plots for wells W-1 and W-2 
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Fig. 4.8 demonstrates the water rates for the two wells with constant Pwf and qg. Well W-

2 shows an almost linear decline in water production rate while the well with constant 

gas rate (W-1) increases water production from 41 STB/Day to 66 STB/Day within the 

simulated  life of the reservoir. Since the other well produces under constant water 

constraint, the water production well is not included in this graph. 

 

 

 

 
Fig. 4.9– Bottomhole pressure plots for wells W-1 and W-3 

 

 

 

Fig. 4.9 shows the Pwf for wells W-1 and W-3. Since the first well has constantly 

produced more gas than the third well (10,000 Mscf/Day), the bottomhole pressure for 

this well has depleted faster than well W-3. Fig. 4.10 illustrates the cumulative gas and 

water produced for the well with constant BHP constraint over the life of the reservoir. 

Cumulative gas and water amounts produced in the whole reservoir are shown in Figs. 

4.11 and 4.12 respectively. 
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Fig. 4.10– Gp and Wp plots for well W-2 
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Fig. 4.11– Cumulative gas produced in the field 
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Fig. 4.12– Cumulative water produced in the field 
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Fig. 4.13– Average reservoir pressure 
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Cumulative rates are among the most reliable parameters to compare with a 

commercially available simulator to validate the results and as can be seen from Figs. 

4.11 and 4.12 the results of the code match almost perfectly with those of CMG. Fig. 

4.13 exhibits the declining regime of the average reservoir pressure which has a good 

match with CMG.  
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Fig. 4.14– Water/Gas ratio for the field 

 

 

 

Fig. 4.14 shows the match of water/gas ratio, WGR, for the whole reservoir. All of 

above plots illustrate that the results of the code for different parameters are within an 

acceptable range compared to the same set of results generated by CMG for the same set 

of reservoir and fluid input data. 
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4.3 Validation of Plan 2: Injector-Producer Case 

In order to assure the developed program is capable of running reliably for all cases it 

has been designed for; another simulation scheme is run and tested with CMG results. In 

this case all model and fluid data are similar to those of the first case, but instead of three 

producer wells, there are one injector and one producer in the model. The constraints and 

other entries of wells for case one (three producer wells) are tabulated in Table 4.4. 

  

 

 

Table 4.4–Wells entries for case 2: Injector-Producer 

Well ID X Y Z 
Well 

Type 
Constraint 

Constraint 

Value 

Min. 

BHP 

W-1 10 10 3 Injector 
Const. 

BHP 
2,500 psia 

1,000 

psia 

W-2 15 15 8 Producer 
Const. 

Water Rate 
40 STB 

1,000 

psia 

 

 

 

Fig. 4.15 demonstrates the comparison of the water injection rate between the two 

simulators which shows an almost linear behavior over the life of the reservoir. Since the 

producer well produces with constant water rate constraint of 40 STB/Day, the water 

rate plot is not made for that. From the other hand, since the injector well injects with 

constant bottomhole pressure constraint of 2,500 psia, the match of Pwf plot with CMG is 

shown for the producer well along with the gas production rate match on one single 

graph in Fig. 4.16.  
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Fig. 4.15– Water injection rate 

 

 

 

 
Fig. 4.16– qg and pwf for the producer 
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4.4 Gas Volumes and Material Balance Calculations 

An estimate of the original gas in place (OGIP or Gi) for volumetric gas reservoirs with 

mobile water can be obtained from volumetric gas material balance considerations by 

equating the reservoir pore volume occupied by the gas at initial conditions to that 

occupied by the gas at some later conditions following gas and water production and the 

associated pressure reduction. Referring to the tank type model in Fig. 4.17, we write the 

material balance equation as8,26: 

 

 wpgpgi BWBGGGB −−= )( . ....………………………….……..………….. (4.1) 

 

 

 

   

 

 

   GBgi      (G-Gp)Bg  

 
   Initial Conditions (p = pi) Initial Conditions (p < pi) 

 

Fig. 4.17– Tank type model for a volumetric dry gas reservoir with water production 

 

 

 

 wpgpggi BWBGGBGB −−= ............................................................................(4.2) 
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If we substitute the ratio of the gas formation volume factor evaluated at initial and later 

conditions, we can write Eq. 4.3 as: 

Gp, Wp 
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This linear relationship is the expression of a constant volume reservoir and assumes that 

rock and water expansion are negligible and that there is no net movement of gas into or 

out of the reservoir volume of interest26, 27 so the reservoir pore volume occupied by gas 

remains constant over the reservoir’s productive life.8 A material balance plot of p/z vs. 

GP for a volumetric, depletion drive gas reservoir with mobile water generates a line of 

slope )//(1 wpii BWpGz −− with an intercept of )//( wpii BWpGzG − for GP =0. 

Extrapolation of the straight line to the GP axis yields the OGIP. Fig. 4.18 shows this 

plot for the first simulation case simulating by the code. Extrapolating the linear relation 

of suggests p/z vs. GP by 1.33280253.0/ +−= PGzp suggests that the original gas in the 

reservoir is 131.5 Bscf.  

     This same set of results simulated by CMG is plotted in Fig. 4.19 and extrapolating 

P/Z vs. GP suggests the OGIP is 136.1 Bscf which is within an acceptable range from the 

code’s result.  

     In the real-gas law, in order to solve for the initial volume of gas at standard 

conditions, we can equate the number of moles of gas at initial conditions to the number 

of moles at standard conditions and rearrange them12: 
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sc

scsc

i

gii

p
Tz

Tz
Vp

G = . …………………………. ……..………………………… (4.8) 

 

Assuming the pore volume occupied by the gas is constant during the producing life of 

the reservoir gives: 

 

 )1(56.43 wigi SAhV −= φ . …………………………………………………… (4.9) 

 

 

 

 

     
Fig. 4.18– p/z versus GP generated by the code 
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Substituting Eq. 4.3 into Eq. 4.2 yields 

 

 
Tzp

Tzp
SAHG

isc

scsci
wi )1(56.43 −= φ . ………………………….……….……. (4.10) 

 

If we express the reservoir PV in barrels, Eq. 4.4 becomes 

 

 

 

 

 

 
Fig. 4.19– p/z versus Gp generated by CMG 
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This equation is applied in subroutine Fluids in place in the code assigning three-

dimensional arrays for each parameter and yielded the value of 133.47 Bscf for the  

 

 

 

 

 

 
 

Fig. 4.20– Plots of total qg using two different timestep sizes  
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original gas in place which agrees with the values of 131.5 and 136.1 Bscf calculated 

using the extrapolation of p/z vs. GP for the code and CMG in Figs. 4.18 and 4.19 

respectively.    

 
 
 
4.5 Analysis of the Depletion Schemes  

In order to assure the solutions of the developed code converge to the same set of results 

using different timestep size, scheme one in previous parts, is run with a smaller time 

step size of 30 days instead of 100 days.  

     The outcome of this run showed all of the results match quite perfectly with those of 

the run with the bigger timestep size.  

     Fig. 4.20 shows the plots of the total gas rate and average reservoir pressure for the 

reservoir for the two different timestep sizes. As can be seen from this graph, both 

parameters follow the same trend which shows the material balance is perfectly satisfied 

in the code.  

     Another index to show the validity of the code’s results is to compare gas and water 

saturation maps of the code with those of CMG at a few timesteps. These comparisons 

are made for layer 3 which contains the well with constant gas rate constraint.  

     Fig. 4.21 represents the gas saturation maps of this layer generated by both the code 

and CMG at timesteps 2, 10, 20 and 30 using a 50-day timestep size.    
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Fig. 4.21– Gas saturation maps of layer 3 at timesteps 2, 10, 20 and 30 generated by both 

the code and CMG 
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Fig. 4.21– Continued 
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Fig. 4.21– Continued 
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Fig. 4.21– Continued 
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Fig. 4.22 represents the water saturation maps of layer 3 generated by both the code and 

CMG at timesteps 2, 10, 20 and 30 using a 50-day timestep size. 

 

 

 

1 3 5 7 9 11 13 15 17 19
S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

Timestep 2

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

0.25-0.25

 

 
Fig. 4.22– Water saturation maps of layer 3 at timesteps 2, 10, 20 and 30 generated by 

both the code and CMG 
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Fig. 4.22– Continued 
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Fig. 4.22– Continued 
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Fig. 4.22– Continued 
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Another analysis that is often made to evaluate validity of simulators is to test a case 

where a well undergoes a change in its constraint due to depletion. Such a case occurs 

when a well with constant gas or water rate constraint depletes Pwf up to the specified 

minimum bottomhole pressure. The well will produce with constant BHP constraint 

from that point forward.20 Fig. 4.23 shows gas rate and bottomhole pressure plots of 

such a case run by the developed code. In this scheme one producer well is producing 

with constant gas rate constraint of 10,000 Mscf/Day. After 800 days, since the BHP 

declines up to the specified minimum value of 2,300 psia, well continues to produce 

with constant BHP constraint. 

     Figs. 4.24 and 4.25 exhibit the cell pressures in layer 5 which contains the constant 

bottomhole pressure well for the first and the last timesteps. These projections represent 

the smooth depleting pressure of the reservoir around the wells in layer 5 and also the 

interference of the wells of other layers (layers 3 and 8) in the pressure depletion of layer 

5. 
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Fig. 4.23– Gas rate and pwf plots for a well with changing constraint 
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Fig. 4.24– Block pressure projection in layer 5 at the first timestep 
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Fig. 4.25– Block pressure projection in layer 5 at the last timestep 
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In a dry gas reservoir being drained by the same two wells producing at different 

constant bottomhole pressures, the drainage volumes of both wells will be continuously 

changing.20, 28 To illustrate such a case a model with reservoir and fluid properties 

similar to those of the plan one in previous sections, was run. In this scheme there two 

constant Pwf wells are producing with different bottomhole pressures of 2,200 and 2,800 

psia. The wells are located symmetrically in the grid. Fig. 4.26 exhibits the gas rates for 

these two wells and Fig. 4.27 shows the block pressure projection of layer 7 for the 10th 

timestep for this case. Layer 7 is where the well with higher Pwf  is located. The other  
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Fig. 4.26– Gas rates for the case of two wells with different pwf  

 

 

 

well is located in layer 4. As can be seen Fig. 4.27 the well with lower Pwf continuously 

captures the production of the well with higher Pwf and the latter will stop producing a  
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Fig. 4.27– Block pressure projection of layer 7 at the 10th timestep  

 

 

 

 

lot faster than the well with lower Pwf. 

     Fig. 4.28 demonstrates the ratio of the gas rates of the wells in this plan is decreasing 

because the drainage volume of well 1 (with lower Pwf) is increasing at the expense of 

well 2. Also Fig. 4.26 indicates well 2 has an accelerated decline as a result of shrinking 

drainage volume. 
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Fig. 4.28– Ratio of the gas rate of well 2 over that of well 1 
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CHAPTER V 

 

CONCLUSIONS 

 
The following conclusions can be derived from this study. 

• The main advantage of the developed 3-D, 2-phase code is that it is specifically 

designed for volumetric dry gas reservoirs and then when solving problems of 

these reservoirs, it can be reliably used without a need to deal with more 

expensive commercial simulators.  

•  Since there is no gravity or cp terms in this 2-phase formulation, IMPES 

approach shows less stability limitations. 

• The developed IMPES code is competitive with well-recognized commercially 

available simulators. The results are reliable for different simulation plans, 

reservoir and fluid data and well configurations. 

• The developed program can later be used as a part of a robust reservoir 

simulation. 

• In volumetric dry gas reservoirs with multiple wells flowing at different flowing 

bottomhole pressure, the drainage volume of the wells with lower bottomhole 

pressure increases at the expense of the wells with higher bottomhole pressure. 

The drainage boundaries of the wells are therefore continuously changing.   
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APPENDIX 

 

3-D, 2-PHASE VBA CODE LISTING 

 
'3-D 2-Phase Simulator For Volumetric Dry Gas Reservoirs 

'Simulation Units: Field Units 

'Water, Gas FVF: rcf/scf 

'Water Rate: STB/Day 

'Gas Rate: scf/Day 

Option Explicit 

Option Base 1 

Public nx As Integer, ny As Integer, nz As Integer          'Number of 

grid blocks and their sizes 

Public Xsize As Double, Ysize As Double, Zsize As Double 

Public xD() As Double, yD() As Double, zD() As Double, _ 

        dx() As Double, dy() As Double, dz() As Double          'Grid 

dimensions 

Public xThick() As Double, yThick() As Double, zThick() As Double 

'Rock properties 

Public poro() As Double, perm() As Double, permX() As Double, _ 

        permY() As Double, permZ() As Double, Cf As Double, _ 

        TW() As Double, TE() As Double, TN() As Double, TS() As Double, 

_ 

        TT() As Double, TB() As Double, PV() As Double, _ 

        PV1() As Double, PoreVol As Double, PoreVolTime() As Double 

'Well properties 

Public rw() As Double, Skin() As Double, Pwf() As Double, _ 

        ro() As Double, QW() As Double, QG() As Double, _ 

        QT() As Double, MinBHP() As Double, JMODEL() As Double, _ 

        nwell As Integer, Wellname() As String, XCoor() As Integer, _ 

        YCoor() As Integer, ZCoor() As Integer, TypeWell() As String, _ 

        WellConstraint() As String, TypeWell_read() As String, _ 

        rw_read() As Double, Skin_read() As Double, QT_read() As 

Double, _ 
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        QW_read() As Double, QG_read() As Double, _ 

        Pwf_read() As Double, MinBHP_read() As Double, _ 

        LambdaW() As Double, LambdaG() As Double, LambdaT() As Double 

Public BCW As Byte, BCE As Byte, BCN As Byte, BCS As Byte, _ 

        BCT As Byte, BCB As Byte                            'Boundary 

conditions 

Public npvt As Integer, nkr As Integer, nkrg As Integer    'Number of 

PVT/Kr input data 

'Fluid properties 

Public Ppvt() As Double, BW() As Double, _ 

        BG() As Double, UW() As Double, _ 

        UG() As Double, CW() As Double, _ 

        CG() As Double, CT As Double 

Public BWI() As Double, BGI() As Double, _ 

        UWI() As Double, UGI() As Double, _ 

        CWI() As Double, CGI() As Double, _ 

        CTOT() As Double, BWI1() As Double, _ 

        BGI1() As Double, dRdP As Double 

'Average properties for Matrix coefficients 

Public UWavw() As Double, UGavw() As Double, _ 

        BWavw() As Double, BGavw() As Double, _ 

        UWave() As Double, UGave() As Double, _ 

        BWave() As Double, BGave() As Double, _ 

        UWavs() As Double, UGavs() As Double, _ 

        BWavs() As Double, BGavs() As Double, _ 

        UWavn() As Double, UGavn() As Double, _ 

        BWavn() As Double, BGavn() As Double, _ 

        UWavb() As Double, UGavb() As Double, _ 

        BWavb() As Double, BGavb() As Double, _ 

        UWavt() As Double, UGavt() As Double, _ 

        BWavt() As Double, BGavt() As Double 

'Relative Permeabilities parameters 

Public SW() As Double, SG() As Double, SL() As Double, _ 

        KRW() As Double, KRG() As Double, _ 

        SWI() As Double, SGI() As Double, SLI() As Double, _ 

        KRWI() As Double, KRGI() As Double, _ 
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        KRWUPS As Double, KRGUPS As Double, _ 

        SWI1() As Double, SGI1() As Double, SLI1() As Double, SWC As 

Double 

        'KROG() As Double, KROW() As Double,KROWI() As Double,KROGI() 

As Double, KROI() As Double 

'Matrix Elements 

Public aW() As Double, aww() As Double, agw() As Double, _ 

        ac() As Double, awc() As Double, agc() As Double, _ 

        aE() As Double, awe() As Double, age() As Double, _ 

        aN() As Double, awn() As Double, agn() As Double, _ 

        aSt() As Double, aws() As Double, ags() As Double, _ 

        aT() As Double, awt() As Double, agt() As Double, _ 

        aB() As Double, awb() As Double, agb() As Double, _ 

        MB() As Double, betha() As Double 

Public press() As Double, p() As Double, pn() As Double      'Pressure 

terms 

Public Pinit As Double, PSum As Double                       'Initial 

conditions 

'To check stability and accuracy of solution and time step control 

Public Sat_diff() As Double, Satmax As Double, Check As Boolean, _ 

        Count As Byte, ncuts As Byte, dt1 As Double, dt As Double, _ 

        tmax As Double, time As Double 

'Fluids in place and cumulative production 

Public OWIP() As Double, OGIP() As Double, _ 

        TotalWIP As Double, TotalGIP As Double, _ 

        CumWater As Double, CumGas As Double 

'Matrix Solver Elements 

Public TOL As Double, II As Integer, JJ As Integer, KKK As Integer, _ 

        IJKM As Long, ITMAX As Double, QI() As Double, AQI() As Double, 

_ 

        AL3() As Double, AL2() As Double, AL1() As Double, _ 

        AD() As Double, AU1() As Double, AU2() As Double, _ 

        AU3() As Double, QN() As Double, AQN() As Double, RN() As 

Double, _ 

        DXN() As Double, ADX() As Double, Psim() As Double, IT As Long 

'Report variables 
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Public rc As Integer, MyCount As Integer 

 

 

Sub Main() 

    Call Read_data 

    Call MemAlloc 

    Call Wells 

    Call Initial 

    time = 0 

    rc = 0 

 Do 

        rc = rc + 1 

        Call Properties 

        Call Rates_con_rate 

        Count = 0 

        Do 

            Call MatrixB 

            Call MatrixA 

            Call Matrix_Solver 

            Call Rates_con_bhp 

            Call Saturations 

            If Count <= ncuts And Check = False Then 

                dt1 = dt1 / (2 + Count) 

                Count = Count + 1 

            Else 

                time = time + dt1 

                Call Cum_production 

                dt1 = dt 

                Exit Do 

            End If 

        Loop 

        Call Update 

        Call Report 

        Call SgUpdate 

Loop Until time >= tmax 

Close #2 
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End Sub 

 

Sub Initial() 

'Initial conditions for simulation 

Dim i As Integer, j As Integer, k As Integer 

With ThisWorkbook.Sheets("RESULTS"): .Cells.ClearContents: End With 

With ThisWorkbook.Sheets("Pressure"): .Cells.ClearContents: End With 

With ThisWorkbook.Sheets("Sw"): .Cells.ClearContents: End With 

With ThisWorkbook.Sheets("Sg"): .Cells.ClearContents: End With 

With ThisWorkbook.Sheets("Sw+Sg"): .Cells.ClearContents: End With 

With ThisWorkbook.Sheets("WELLS"): .Cells.ClearContents: End With 

 

PoreVol = 0 

CumWater = 0 

CumGas = 0 

 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            pn(i, j, k) = Pinit 

            SWI(i, j, k) = SWC 

            SGI(i, j, k) = 1 - SWC 

            SWI1(i, j, k) = SWI(i, j, k): SGI1(i, j, k) = SGI(i, j, k) 

            PV(i, j, k) = poro(i, j, k) * dx(i, j, k) * dy(i, j, k) * 

dz(i, j, k) 

             

        Next 

    Next 

Next 

 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

          PoreVol = PoreVol + PV(i, j, k) / 5615 

        Next 

    Next 
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Next 

           

Call InterpolaPVT 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            BWI1(i, j, k) = BWI(i, j, k) 

            BGI1(i, j, k) = BGI(i, j, k) 

            OWIP(i, j, k) = 0.1779685 * PV(i, j, k) * SWI(i, j, k) / 

BWI(i, j, k) 'Unit conversion of 2.294E-5 acre/ft^2 * coeffifient of 

7758 

            OGIP(i, j, k) = 0.1779685 * PV(i, j, k) * SGI(i, j, k) / 

BGI(i, j, k) 

        Next 

    Next 

Next 

Call Fluids_In_Place 

Call Matrix_Initial 

CumWater = 0#: CumGas = 0# 

dt1 = dt: Check = True 

End Sub 

 

 

Sub Properties() 

 

Call InterpolaPVT 

Call InterpolaKr 

Call Mobilities 

Call Comp_Total 

Call Trans 

Call Avg_PVT 

 

End Sub 

 

Sub Update() 

Dim i As Integer, j As Integer, k As Integer 
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'Update properties for the new time step 

PSum = 0 

 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            pn(i, j, k) = p(i, j, k) 

            SWI(i, j, k) = SWI1(i, j, k) 

            SGI(i, j, k) = SGI1(i, j, k) 

            PV(i, j, k) = PV1(i, j, k) 

            'PoreVol = PoreVol + PV(i, j, k) / 5615 

            PSum = PSum + pn(i, j, k) 

        Next 

    Next 

Next 

 

Call Check_WellConstraints 

End Sub 

 

 

Sub Wells() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

Call Calc_dxdydz2 

 

For m = 1 To nwell 

            For k = 1 To nz 

                If k = ZCoor(m) Then 

                    For j = 1 To ny 

                        If j = YCoor(m) Then 

                            For i = 1 To nx 

                                If i = XCoor(m) Then 

                                    TypeWell(i, j, k) = 

TypeWell_read(m) 

                                    rw(i, j, k) = rw_read(m) 

                                    Skin(i, j, k) = Skin_read(m) 

                                    QW(i, j, k) = QW_read(m) * 5.615 



 

 

83

                                    QG(i, j, k) = QG_read(m) * 1000 

                                    Pwf(i, j, k) = Pwf_read(m): 

MinBHP(i, j, k) = MinBHP_read(m) 

                                End If 

                            Next 

                        End If 

                    Next 

                End If 

            Next 

Next 

 

Call Identify_constraints 

 

For m = 1 To nwell 

            For k = 1 To nz 

                If k = ZCoor(m) Then 

                    For j = 1 To ny 

                        If j = YCoor(m) Then 

                            For i = 1 To nx 

                                If i = XCoor(m) Then 

                                    ro(i, j, k) = 0.28 * (((permY(i, j, 

k) / permX(i, j, k)) ^ 0.5 * dx(i, j, k) ^ 2 + _ 

                                                   (permX(i, j, k) / 

permY(i, j, k)) ^ 0.5 * dy(i, j, k) ^ 2) ^ 0.5) / _ 

                                                   ((permY(i, j, k) / 

permX(i, j, k)) ^ 0.25 + (permX(i, j, k) / permY(i, j, k)) ^ 0.25) 

                                     

                                    JMODEL(i, j, k) = 0.039772562 * 

(permX(i, j, k) * permY(i, j, k)) ^ 0.5 * dz(i, j, k) / _ 

                                                       (Log(ro(i, j, k) 

/ rw(i, j, k)) + Skin(i, j, k)) 

                                     

                                End If 

                            Next 

                        End If 

                    Next 
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                End If 

            Next 

Next 

 

End Sub 

 

 

Function Interpolation(x As Double, a() As Double, b() As Double) As 

Double 

'x, the value of reference for interpolation 

'A() the array of reference 

'B() the array of values for interpolation 

Dim i As Double 

Dim A1 As Double, A2 As Double, B1 As Double, B2 As Double 

'ReDim A(1 To n) As double, B(1 To n) As double 

If a(LBound(a)) > a(UBound(a)) Then 

    For i = LBound(a) To UBound(a) - 1 

        If x <= a(i) And x > a(i + 1) Then 

            A1 = a(i) 

            A2 = a(i + 1) 

            B1 = b(i) 

            B2 = b(i + 1) 

        End If 

        If x > a(LBound(a)) Then 

            A1 = a(LBound(a)) 

            A2 = a(LBound(a) + 1) 

            B1 = b(LBound(a)) 

            B2 = b(LBound(a) + 1) 

        End If 

        If x < a(UBound(a)) Then 

            A1 = a(UBound(a)) 

            A2 = a(UBound(a) - 1) 

            B1 = b(UBound(a)) 

            B2 = b(UBound(a) - 1) 

        End If 

    Next i 
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Else 

    For i = 1 To UBound(a) - 1 

        If x >= a(i) And x <= a(i + 1) Then 

            A1 = a(i) 

            A2 = a(i + 1) 

            B1 = b(i) 

            B2 = b(i + 1) 

        End If 

        If x < a(LBound(a)) Then 

            A1 = a(LBound(a)) 

            A2 = a(LBound(a) + 1) 

            B1 = b(LBound(a)) 

            B2 = b(LBound(a)) 

        End If 

        If x > a(UBound(a)) Then 

            A1 = a(UBound(a)) 

            A2 = a(UBound(a) - 1) 

            B1 = b(UBound(a)) 

            B2 = b(UBound(a)) 

        End If 

         

    Next i 

End If 

Interpolation = B1 + (B2 - B1) / (A2 - A1) * (x - A1) 

 

End Function 

 

 

Function MaxValue(a() As Double) As Double 

Dim i As Integer, j As Integer, k As Integer 

MaxValue = a(LBound(a, 1), LBound(a, 2), LBound(a, 3)) 

For k = LBound(a, 3) To UBound(a, 3) 

    For j = LBound(a, 2) To UBound(a, 2) 

        For i = LBound(a, 1) + 1 To UBound(a, 1) 

            If a(i, j, k) > MaxValue Then MaxValue = a(i, j, k) 

        Next 
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    Next 

Next 

End Function 

 

 

Function MinValue(a() As Double) As Double 

Dim i As Integer 

MinValue = a(UBound(a)) 

For i = LBound(a) + 1 To UBound(a) 

    If a(i) < MinValue Then MinValue = a(i) 

Next i 

End Function 

 

Function AritAvg(a As Double, b As Double) As Double 

AritAvg = (a + b) / 2# 

End Function 

 

Function HarmAvg(a As Double, b As Double) As Double 

HarmAvg = 2 * a * b / (a + b) 

End Function 

 

 

Sub Calc_dxdydz() 

Dim i As Integer, im As Integer, ip As Integer 

Dim j As Integer, jm As Integer, jp As Integer 

Dim k As Integer, km As Integer, kp As Integer 

 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            im = i - 1: ip = i + 1 

            jm = j - 1: jp = j + 1 

            km = k - 1: kp = k + 1 

            If i = 1 Then im = i 

            If i = nx Then ip = nx 
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            If j = 1 Then jm = j 

            If j = ny Then jp = ny 

             

            If k = 1 Then km = k 

            If k = nz Then kp = nz 

     

            dx(i, j, k) = (xD(i, j, k) - xD(im, j, k)) / 2 + (xD(ip, j, 

k) - xD(i, j, k)) / 2 

             

            If ny = 1 Then 

                dy(i, j, k) = yD(i, j, k) 

            Else 

                dy(i, j, k) = (yD(i, j, k) - yD(i, jm, k)) / 2 + (yD(i, 

jp, k) - yD(i, j, k)) / 2 

            End If 

             

            If nz = 1 Then 

                dz(i, j, k) = zD(i, j, k) 

            Else 

                dz(i, j, k) = (zD(i, j, k) - zD(i, j, km)) / 2 + (zD(i, 

j, kp) - zD(i, j, k)) / 2 

            End If 

        Next 

    Next 

Next 

 

End Sub 

 

 

Sub InterpolaPVT() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            BWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), BW()) 

            BGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), BG()) 
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            UWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), UW()) 

            UGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), UG()) 

            CWI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), CW()) 

            CGI(i, j, k) = Interpolation(pn(i, j, k), Ppvt(), CG()) 

        Next 

    Next 

Next 

End Sub 

 

 

Sub InterpolaKr() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            KRWI(i, j, k) = Interpolation(SWI(i, j, k), SW(), KRW()) 

            KRGI(i, j, k) = Interpolation(SGI(i, j, k), SG(), KRG()) 

        Next 

    Next 

Next 

End Sub 

 

 

Sub Chord_slope() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            PV1(i, j, k) = PV(i, j, k) * (1 + Cf * (p(i, j, k) - pn(i, 

j, k))) 

            BWI1(i, j, k) = BWI(i, j, k) * (1 - CWI(i, j, k) * (p(i, j, 

k) - pn(i, j, k))) 

            BGI1(i, j, k) = BGI(i, j, k) * (1 - CGI(i, j, k) * (p(i, j, 

k) - pn(i, j, k))) 

        Next 

    Next 
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Next 

End Sub 

 

 

Sub Saturations() 

Dim i As Integer, j As Integer, k As Integer 

Dim dp1() As Double, dp2() As Double, dp3() As Double, dp4() As Double, 

_ 

    dp5() As Double, dp6() As Double 

ReDim dp1(nx, ny, nz), dp2(nx, ny, nz), dp3(nx, ny, nz), dp4(nx, ny, 

nz), dp5(nx, ny, nz), dp6(nx, ny, nz) 

Call Chord_slope 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            If i <> 1 Then dp1(i, j, k) = p(i - 1, j, k) - p(i, j, k) 

            If i <> nx Then dp2(i, j, k) = p(i + 1, j, k) - p(i, j, k) 

            If j <> 1 Then dp3(i, j, k) = p(i, j - 1, k) - p(i, j, k) 

            If j <> ny Then dp4(i, j, k) = p(i, j + 1, k) - p(i, j, k) 

            If k <> 1 Then dp5(i, j, k) = p(i, j, k - 1) - p(i, j, k) 

            If k <> nz Then dp6(i, j, k) = p(i, j, k + 1) - p(i, j, k) 

             

            SWI1(i, j, k) = BWI1(i, j, k) / PV1(i, j, k) * (dt1 * 

(aww(i, j, k) * dp1(i, j, k) + _ 

                            awe(i, j, k) * dp2(i, j, k) + aws(i, j, k) 

* dp3(i, j, k) + awn(i, j, k) * dp4(i, j, k) + _ 

                            awt(i, j, k) * dp5(i, j, k) + awb(i, j, k) 

* dp6(i, j, k) - QW(i, j, k)) + PV(i, j, k) * SWI(i, j, k) / BWI(i, j, 

k)) 

             

            SGI1(i, j, k) = BGI1(i, j, k) / PV1(i, j, k) * (dt1 * 

(agw(i, j, k) * dp1(i, j, k) + _ 

                            age(i, j, k) * dp2(i, j, k) + ags(i, j, k) 

* dp3(i, j, k) + agn(i, j, k) * dp4(i, j, k) + _ 
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                            agt(i, j, k) * dp5(i, j, k) + agb(i, j, k) 

* dp6(i, j, k) - QG(i, j, k)) + PV(i, j, k) * SGI(i, j, k) / BGI(i, j, 

k)) 

                             

        Next 

    Next 

Next 

Call Saturations_check 

End Sub 

 

 

Sub Saturations_check() 

Dim i As Integer, j As Integer, k As Integer, maxdiff As Double 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            Sat_diff(i, j, k) = Abs(1 - SWI1(i, j, k) - SGI1(i, j, k)) 

        Next 

    Next 

Next 

maxdiff = MaxValue(Sat_diff()) 

If maxdiff >= Satmax Then 

    Check = False 

Else 

    Check = True 

End If 

 

End Sub 

 

 

Sub SgUpdate() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            SGI(i, j, k) = 1 - SWI(i, j, k) 
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        Next 

    Next 

Next 

End Sub 

 

 

Sub Comp_Total() 

'Calculate total compressibility 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            CTOT(i, j, k) = Cf + CWI(i, j, k) * SWI(i, j, k) + CGI(i, 

j, k) * SGI(i, j, k) 

        Next 

    Next 

Next 

End Sub 

 

 

Sub Mobilities() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            LambdaW(i, j, k) = KRWI(i, j, k) / (UWI(i, j, k) * BWI(i, 

j, k)) 

            LambdaG(i, j, k) = KRGI(i, j, k) / (UGI(i, j, k) * BGI(i, 

j, k)) 

            LambdaT(i, j, k) = LambdaW(i, j, k) * BWI1(i, j, k) + 

LambdaG(i, j, k) * BGI1(i, j, k) 

        Next 

    Next 

Next 

End Sub 
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Sub Kr_upstream(a As Integer, b As Integer, c As Integer, d As Integer, 

e As Integer, f As Integer) 

If pn(a, b, c) >= pn(d, e, f) Then 

    KRWUPS = KRWI(a, b, c): KRGUPS = KRGI(a, b, c) 

Else 

    KRWUPS = KRWI(d, e, f): KRGUPS = KRGI(d, e, f) 

End If 

End Sub 

 

 

Sub Rates_con_rate() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

For m = 1 To nwell 

    For k = 1 To nz 

     For j = 1 To ny 

        For i = 1 To nx 

                Select Case TypeWell(i, j, k) 

           

                    Case "PROD" 

                           Select Case WellConstraint(i, j, k) 

                                  Case "WRate" 

                                     QG(i, j, k) = QW(i, j, k) * 

LambdaG(i, j, k) / LambdaW(i, j, k)                 'SCF/d 

                                     QT(i, j, k) = QW(i, j, k) * 

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k)         'rcf/d 

                                  Case "GRate" 

                                     QW(i, j, k) = QG(i, j, k) * 

LambdaW(i, j, k) / LambdaG(i, j, k)                 'SCF/d 

                                     QT(i, j, k) = QW(i, j, k) * 

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k)         'rcf/d 

                                  Case "2Rate" 

                                     QT(i, j, k) = QW(i, j, k) * 

BWI1(i, j, k) + BGI1(i, j, k) * QG(i, j, k)         'rcf/d 

                           End Select 

                            

                    Case "WINJ" 
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                           Select Case WellConstraint(i, j, k) 

                                  Case "WRate" 

                                     QT(i, j, k) = QW(i, j, k) * 

BWI1(i, j, k)      'rcf/d 

                                  Case "GRate" 

                                     QT(i, j, k) = QG(i, j, k) * 

BGI1(i, j, k)      'rcf/d 

                           End Select 

                         

                End Select 

          Next 

      Next 

    Next 

Next 

 

End Sub 

 

 

Sub Rates_con_bhp() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            Select Case TypeWell(i, j, k) 

             

               Case "PROD" 

                   Select Case WellConstraint(i, j, k) 

                       Case "Pressure" 

                           QW(i, j, k) = JMODEL(i, j, k) * LambdaW(i, 

j, k) * (p(i, j, k) - Pwf(i, j, k)) 'SCF/day 

                           QG(i, j, k) = JMODEL(i, j, k) * LambdaG(i, 

j, k) * (p(i, j, k) - Pwf(i, j, k)) 'SCF/day 

                           QT(i, j, k) = QW(i, j, k) * BWI1(i, j, k) + 

BGI1(i, j, k) * QG(i, j, k)        'rcf/day 

                       Case "WRate", "GRate", "2Rate" 
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                           Pwf(i, j, k) = p(i, j, k) - QT(i, j, k) / 

(JMODEL(i, j, k) * LambdaT(i, j, k)) 

                   End Select 

                    

               Case "WINJ" 

                   Select Case WellConstraint(i, j, k) 

                       Case "Pressure" 

                           QW(i, j, k) = JMODEL(i, j, k) * LambdaW(i, 

j, k) * (p(i, j, k) - Pwf(i, j, k))   'SCF/day 

                           QT(i, j, k) = QW(i, j, k) * BWI1(i, j, k) 

                       Case "WRate" 

                           Pwf(i, j, k) = p(i, j, k) + QT(i, j, k) / 

(JMODEL(i, j, k) * LambdaT(i, j, k) * BWI1(i, j, k)) 

                   End Select 

                    

            End Select 

        Next 

    Next 

Next 

 

End Sub 

 

 

Sub Check_WellConstraints() 

'Check whether the minimum constraints are reached, if so change the 

constraints 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            Select Case WellConstraint(i, j, k) 

                Case "WRate", "GRate", "2Rate" 

                    If Pwf(i, j, k) <= MinBHP(i, j, k) Then 

                        WellConstraint(i, j, k) = "Pressure" 

                        Pwf(i, j, k) = MinBHP(i, j, k) 

                    End If 
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            End Select 

        Next 

    Next 

Next 

End Sub 

 

 

Sub Cum_production() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            CumWater = CumWater + QW(i, j, k) * dt1 

            CumGas = CumGas + QG(i, j, k) * dt1 

        Next 

    Next 

Next 

 

End Sub 

 

 

Sub Trans() 

'Calculates transmisibilities for each phase 

Dim i As Integer, j As Integer, k As Integer 

Dim kavw As Double, kave As Double 

Dim kavn As Double, kavs As Double 

Dim kavt As Double, kavb As Double 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            If i <> 1 Then 

                kavw = HarmAvg(permX(i, j, k), permX(i - 1, j, k)) 

                TW(i, j, k) = 0.00633 * kavw * dy(i, j, k) * dz(i, j, 

k) / (xD(i, j, k) - xD(i - 1, j, k)) 

            End If 

            If j <> 1 Then 
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                kavs = HarmAvg(permY(i, j, k), permY(i, j - 1, k)) 

                TS(i, j, k) = 0.00633 * kavs * dx(i, j, k) * dz(i, j, 

k) / (yD(i, j, k) - yD(i, j - 1, k)) 

                 

            End If 

            If k <> 1 Then 

                kavt = HarmAvg(permZ(i, j, k), permZ(i, j, k - 1)) 

                TT(i, j, k) = 0.00633 * kavt * dy(i, j, k) * dx(i, j, 

k) / (zD(i, j, k) - zD(i, j, k - 1)) 

            End If 

            If i <> nx Then 

                kave = HarmAvg(permX(i, j, k), permX(i + 1, j, k)) 

                TE(i, j, k) = 0.00633 * kave * dy(i, j, k) * dz(i, j, 

k) / (xD(i + 1, j, k) - xD(i, j, k)) 

            End If 

            If j <> ny Then 

                kavn = HarmAvg(permY(i, j, k), permY(i, j + 1, k)) 

                TN(i, j, k) = 0.00633 * kavn * dx(i, j, k) * dz(i, j, 

k) / (yD(i, j + 1, k) - yD(i, j, k)) 

            End If 

            If k <> nz Then 

                kavb = HarmAvg(permZ(i, j, k), permZ(i, j, k + 1)) 

                TB(i, j, k) = 0.00633 * kavb * dy(i, j, k) * dx(i, j, 

k) / (zD(i, j, k + 1) - zD(i, j, k)) 

            End If 

 

        Next 

    Next 

Next 

End Sub 

 

 

Sub Avg_PVT() 

Dim i As Integer, j As Integer, k As Integer 

 

For k = 1 To nz 
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    For j = 1 To ny 

        For i = 1 To nx 

            If i <> 1 Then 

                UWavw(i, j, k) = AritAvg(UWI(i, j, k), UWI(i - 1, j, 

k)) 

                UGavw(i, j, k) = AritAvg(UGI(i, j, k), UGI(i - 1, j, 

k)) 

                BWavw(i, j, k) = AritAvg(BWI(i, j, k), BWI(i - 1, j, 

k)) 

                BGavw(i, j, k) = AritAvg(BGI(i, j, k), BGI(i - 1, j, 

k)) 

            End If 

            If j <> 1 Then 

                UWavs(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j - 1, 

k)) 

                UGavs(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j - 1, 

k)) 

                BWavs(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j - 1, 

k)) 

                BGavs(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j - 1, 

k)) 

            End If 

            If k <> 1 Then 

                UWavt(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j, k - 

1)) 

                UGavt(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j, k - 

1)) 

                BWavt(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j, k - 

1)) 

                BGavt(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j, k - 

1)) 

            End If 

            If i <> nx Then 

                UWave(i, j, k) = AritAvg(UWI(i, j, k), UWI(i + 1, j, 

k)) 
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                UGave(i, j, k) = AritAvg(UGI(i, j, k), UGI(i + 1, j, 

k)) 

                BWave(i, j, k) = AritAvg(BWI(i, j, k), BWI(i + 1, j, 

k)) 

                BGave(i, j, k) = AritAvg(BGI(i, j, k), BGI(i + 1, j, 

k)) 

            End If 

            If j <> ny Then 

                UWavn(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j + 1, 

k)) 

                UGavn(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j + 1, 

k)) 

                BWavn(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j + 1, 

k)) 

                BGavn(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j + 1, 

k)) 

            End If 

            If k <> nz Then 

                UWavb(i, j, k) = AritAvg(UWI(i, j, k), UWI(i, j, k + 

1)) 

                UGavb(i, j, k) = AritAvg(UGI(i, j, k), UGI(i, j, k + 

1)) 

                BWavb(i, j, k) = AritAvg(BWI(i, j, k), BWI(i, j, k + 

1)) 

                BGavb(i, j, k) = AritAvg(BGI(i, j, k), BGI(i, j, k + 

1)) 

            End If 

        Next 

    Next 

Next 

 

End Sub 

 

 

Sub MatrixA() 

Dim i As Integer, j As Integer, k As Integer, MH As Integer 
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MH = 0# 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            MH = MH + 1 

     

            If i <> 1 Then 

                Call Kr_upstream(i, j, k, i - 1, j, k) 

                aww(i, j, k) = TW(i, j, k) * KRWUPS / (UWavw(i, j, k) * 

BWavw(i, j, k)) 

                agw(i, j, k) = TW(i, j, k) * KRGUPS / (UGavw(i, j, k) * 

BGavw(i, j, k)) 

                aW(MH) = aww(i, j, k) * BWI1(i, j, k) + agw(i, j, k) * 

BGI1(i, j, k) 

            End If 

            If j <> 1 Then 

                Call Kr_upstream(i, j, k, i, j - 1, k) 

                aws(i, j, k) = TS(i, j, k) * KRWUPS / (UWavs(i, j, k) * 

BWavs(i, j, k)) 

                ags(i, j, k) = TS(i, j, k) * KRGUPS / (UGavs(i, j, k) * 

BGavs(i, j, k)) 

                aSt(MH) = aws(i, j, k) * BWI1(i, j, k) + ags(i, j, k) * 

BGI1(i, j, k) 

            End If 

            If k <> 1 Then 

                Call Kr_upstream(i, j, k, i, j, k - 1) 

                awt(i, j, k) = TT(i, j, k) * KRWUPS / (UWavt(i, j, k) * 

BWavt(i, j, k)) 

                agt(i, j, k) = TT(i, j, k) * KRGUPS / (UGavt(i, j, k) * 

BGavt(i, j, k)) 

                aT(MH) = awt(i, j, k) * BWI1(i, j, k) + agt(i, j, k) * 

BGI1(i, j, k) 

            End If 

     

            If i <> nx Then 

                Call Kr_upstream(i, j, k, i + 1, j, k) 
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                awe(i, j, k) = TE(i, j, k) * KRWUPS / (UWave(i, j, k) * 

BWave(i, j, k)) 

                age(i, j, k) = TE(i, j, k) * KRGUPS / (UGave(i, j, k) * 

BGave(i, j, k)) 

                aE(MH) = awe(i, j, k) * BWI1(i, j, k) + age(i, j, k) * 

BGI1(i, j, k) 

            End If 

            If j <> ny Then 

                Call Kr_upstream(i, j, k, i, j + 1, k) 

                awn(i, j, k) = TN(i, j, k) * KRWUPS / (UWavn(i, j, k) * 

BWavn(i, j, k)) 

                agn(i, j, k) = TN(i, j, k) * KRGUPS / (UGavn(i, j, k) * 

BGavn(i, j, k)) 

                aN(MH) = awn(i, j, k) * BWI1(i, j, k) + agn(i, j, k) * 

BGI1(i, j, k) 

            End If 

            If k <> nz Then 

                Call Kr_upstream(i, j, k, i, j, k + 1) 

                awb(i, j, k) = TB(i, j, k) * KRWUPS / (UWavb(i, j, k) * 

BWavb(i, j, k)) 

                agb(i, j, k) = TB(i, j, k) * KRGUPS / (UGavb(i, j, k) * 

BGavb(i, j, k)) 

                aB(MH) = awb(i, j, k) * BWI1(i, j, k) + agb(i, j, k) * 

BGI1(i, j, k) 

            End If 

            

            Select Case WellConstraint(i, j, k) 

                Case "GRate", "WRate", "2Rate", "" 

                    ac(MH) = -aW(MH) - aSt(MH) - aB(MH) - aE(MH) - 

aN(MH) - aT(MH) - betha(i, j, k) 

                Case "Pressure" 

                    ac(MH) = -aW(MH) - aSt(MH) - aB(MH) - aE(MH) - 

aN(MH) - aT(MH) - betha(i, j, k) - JMODEL(i, j, k) * LambdaT(i, j, k) 

            End Select 

                      

If i = 1 Then 
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                Select Case BCW 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0 

                        awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0 

                        aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0 

                        awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0 

                        awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0 

                End Select 

            End If 

             

            If j = 1 Then 

                Select Case BCS 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0 

                        aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0 

                        awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0 

                        awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0 

                        awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0 

                End Select 

            End If 

             

            If k = 1 Then 

                Select Case BCT 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0 

                        aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0 
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                        awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0 

                        awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0 

                        aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0 

                End Select 

            End If 

             

            If i = nx Then 

                Select Case BCE 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0 

                        awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0 

                        aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0 

                        awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0 

                        awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0 

                End Select 

            End If 

            If j = ny Then 

                Select Case BCN 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0 

                        aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0 

                        awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0 

                        awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0 

                        awb(i, j, k) = 0: agb(i, j, k) = 0: aB(MH) = 0 

                End Select 

            End If 

             

            If k = nz Then 

                Select Case BCB 

                    Case 0 
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'                        Keep the same values 

                    Case 1 

                        ac(MH) = 1 

                        awt(i, j, k) = 0: agt(i, j, k) = 0: aT(MH) = 0 

                        aww(i, j, k) = 0: agw(i, j, k) = 0: aW(MH) = 0 

                        awe(i, j, k) = 0: age(i, j, k) = 0: aE(MH) = 0 

                        awn(i, j, k) = 0: agn(i, j, k) = 0: aN(MH) = 0 

                        aws(i, j, k) = 0: ags(i, j, k) = 0: aSt(MH) = 0 

                End Select 

            End If 

             

        Next i 

    Next j 

Next k 

             

End Sub 

 

 

Sub MatrixB() 

Dim i As Integer, j As Integer, k As Integer, MH As Integer 

MH = 0# 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            MH = MH + 1 

            betha(i, j, k) = PV(i, j, k) * CTOT(i, j, k) / dt1 

            'Well Constraints 

            Select Case WellConstraint(i, j, k) 

                Case "WRate", "GRate", "2rate" 

                    MB(MH) = -betha(i, j, k) * pn(i, j, k) + QT(i, j, 

k) 

                Case "Pressure" 

                    MB(MH) = -betha(i, j, k) * pn(i, j, k) - JMODEL(i, 

j, k) * LambdaT(i, j, k) * Pwf(i, j, k) 

                Case "" 

                    MB(MH) = -betha(i, j, k) * pn(i, j, k) 
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            End Select 

 

            'Boundary conditions 

            If i = 1 Then 

                Select Case BCW 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 

            If j = 1 Then 

                Select Case BCS 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 

            If k = 1 Then 

                Select Case BCT 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 

             

            If i = nx Then 

                Select Case BCE 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 
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            If j = ny Then 

                Select Case BCN 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 

            If k = nz Then 

                Select Case BCB 

                    Case 0 

'                        Keep the same values 

                    Case 1 

                        MB(MH) = Pinit 

                End Select 

            End If 

     

        Next 

    Next 

Next 

 

End Sub 

 

 

Sub MemAlloc() 

'Allocate memory for variables after reading data 

    ReDim p(nx, ny, nz), pn(nx, ny, nz) 

    ReDim BOI(nx, ny, nz), BWI(nx, ny, nz), BGI(nx, ny, nz), RSOI(nx, 

ny, nz), BOI1(nx, ny, nz), BWI1(nx, ny, nz), _ 

          BGI1(nx, ny, nz), RSOI1(nx, ny, nz) 

    ReDim UOI(nx, ny, nz), UWI(nx, ny, nz), UGI(nx, ny, nz) 

    ReDim COI(nx, ny, nz), CWI(nx, ny, nz), CGI(nx, ny, nz), CTOT(nx, 

ny, nz) 

    ReDim UOavw(nx, ny, nz), UWavw(nx, ny, nz), UGavw(nx, ny, nz), _ 

          UOavs(nx, ny, nz), UWavs(nx, ny, nz), UGavs(nx, ny, nz), _ 

          UOavb(nx, ny, nz), UWavb(nx, ny, nz), UGavb(nx, ny, nz) 
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    ReDim BOavw(nx, ny, nz), BWavw(nx, ny, nz), BGavw(nx, ny, nz), _ 

          BOavs(nx, ny, nz), BWavs(nx, ny, nz), BGavs(nx, ny, nz), _ 

          BOavb(nx, ny, nz), BWavb(nx, ny, nz), BGavb(nx, ny, nz) 

    ReDim UOave(nx, ny, nz), UWave(nx, ny, nz), UGave(nx, ny, nz), _ 

          UOavn(nx, ny, nz), UWavn(nx, ny, nz), UGavn(nx, ny, nz), _ 

          UOavt(nx, ny, nz), UWavt(nx, ny, nz), UGavt(nx, ny, nz) 

    ReDim BOave(nx, ny, nz), BWave(nx, ny, nz), BGave(nx, ny, nz), _ 

          BOavn(nx, ny, nz), BWavn(nx, ny, nz), BGavn(nx, ny, nz), _ 

          BOavt(nx, ny, nz), BWavt(nx, ny, nz), BGavt(nx, ny, nz) 

    ReDim RSOavw(nx, ny, nz), RSOave(nx, ny, nz), _ 

          RSOavs(nx, ny, nz), RSOavn(nx, ny, nz), _ 

          RSOavb(nx, ny, nz), RSOavt(nx, ny, nz) 

    ReDim KRWI(nx, ny, nz), KROWI(nx, ny, nz), KRGI(nx, ny, nz), 

KROGI(nx, ny, nz), KROI(nx, ny, nz) 

    ReDim SOI(nx, ny, nz), SWI(nx, ny, nz), SGI(nx, ny, nz), SLI(nx, 

ny, nz) 

    ReDim SOI1(nx, ny, nz), SWI1(nx, ny, nz), SGI1(nx, ny, nz), 

SLI1(nx, ny, nz) 

    ReDim PV(nx, ny, nz), PV1(nx, ny, nz), OOIP(nx, ny, nz), OWIP(nx, 

ny, nz), OGIP(nx, ny, nz) 

    ReDim TypeWell(nx, ny, nz), WellConstraint(nx, ny, nz), rw(nx, ny, 

nz), Skin(nx, ny, nz), Pwf(nx, ny, nz) 

    ReDim MinBHP(nx, ny, nz), QO(nx, ny, nz), QW(nx, ny, nz), QG(nx, 

ny, nz) 

    ReDim QT(nx, ny, nz), JMODEL(nx, ny, nz), ro(nx, ny, nz), dx(nx, 

ny, nz), dy(nx, ny, nz), dz(nx, ny, nz) 

    ReDim LambdaO(nx, ny, nz), LambdaW(nx, ny, nz), LambdaG(nx, ny, 

nz), LambdaT(nx, ny, nz) 

    ReDim TW(nx, ny, nz), TE(nx, ny, nz), TN(nx, ny, nz), TS(nx, ny, 

nz), TT(nx, ny, nz), TB(nx, ny, nz), _ 

          aow(nx, ny, nz), aww(nx, ny, nz), agw(nx, ny, nz), aoe(nx, 

ny, nz), awe(nx, ny, nz), age(nx, ny, nz), _ 

          aon(nx, ny, nz), awn(nx, ny, nz), agn(nx, ny, nz), aos(nx, 

ny, nz), aws(nx, ny, nz), ags(nx, ny, nz), _ 

          aot(nx, ny, nz), awt(nx, ny, nz), agt(nx, ny, nz), aob(nx, 

ny, nz), awb(nx, ny, nz), agb(nx, ny, nz) 
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    ReDim betha(nx, ny, nz) As Double 

    ReDim Sat_diff(nx, ny, nz) As Double 

 

End Sub 

 

 

Sub Matrix_Solver() 

Dim i As Integer, j As Integer, k As Integer, MH As Integer 

 

Call CMAT(aW(), aE(), aSt(), aN(), aT(), aB(), ac(), MB(), TOL, II, JJ, 

KKK, IJKM, ITMAX, QI(), AQI(), _ 

         AL3(), AL2(), AL1(), AD(), AU1(), AU2(), AU3(), QN(), AQN(), 

RN(), DXN(), ADX(), Psim(), IT) 

 

'Update pressure at i,j,k coordinates 

MH = 0 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            MH = MH + 1 

            p(i, j, k) = Psim(MH) 

        Next 

    Next 

Next 

End Sub 

Sub AllocateMemory_Matrix(ByVal IJKM As Long) 

ReDim aW(1 To IJKM) 

ReDim aE(1 To IJKM) 

ReDim aSt(1 To IJKM) 

ReDim aN(1 To IJKM) 

ReDim aT(1 To IJKM) 

ReDim aB(1 To IJKM) 

ReDim ac(1 To IJKM) 

ReDim MB(1 To IJKM) 

ReDim r(1 To IJKM) 

ReDim Psim(1 To IJKM) 
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ReDim AL3(1 To IJKM) 

ReDim AL2(1 To IJKM) 

ReDim AL1(1 To IJKM) 

ReDim AD(1 To IJKM) 

ReDim AU1(1 To IJKM) 

ReDim AU2(1 To IJKM) 

ReDim AU3(1 To IJKM) 

 

ReDim QI(1 To 15, 1 To IJKM) 

ReDim AQI(1 To 15, 1 To IJKM) 

ReDim QN(1 To IJKM) 

ReDim AQN(1 To IJKM) 

 

ReDim RN(1 To IJKM) 

ReDim DXN(1 To IJKM) 

ReDim ADX(1 To IJKM) 

 

End Sub 

 

 

Sub Matrix_Initial() 

'Orthomin Matrix Solver's Parameter 

   II = CInt(nx) 

   JJ = CInt(ny) 

   KKK = CInt(nz) 

 

   IJKM = CInt(II) 

   IJKM = IJKM * CInt(JJ) 

   IJKM = IJKM * CInt(KKK) 

   ITMAX = 50 

   Call AllocateMemory_Matrix(IJKM) 

   TOL = 0.000001 

End Sub 
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Sub CMAT(aW() As Double, aE() As Double, aSt() As Double, aN() As 

Double, _ 

         aT() As Double, aB() As Double, ac() As Double, MB() As 

Double, _ 

         TOL As Double, II As Integer, JJ As Integer, KKK As Integer, _ 

         IJKM As Long, ITMAX As Double, QI() As Double, AQI() As 

Double, _ 

         AL3() As Double, AL2() As Double, AL1() As Double, _ 

         AD() As Double, AU1() As Double, AU2() As Double, _ 

         AU3() As Double, QN() As Double, AQN() As Double, RN() As 

Double, _ 

         DXN() As Double, ADX() As Double, Psim() As Double, IT As 

Long) 

 

 

Dim INX As Integer 

Dim i As Integer, j As Integer, k As Integer 

Dim FAC As Double 

Dim TERM As Double 

Dim INXY As Integer 

Dim IB As Long 

 

'     ORTHOMIN SPARSE MATRIX SOLVER BASED ON PAPER BY P. K. W. VINSOME 

'     FOUTH SYMPOSIUM ON RESERVOIR SIMULATION 

'     LOS ANGELES, CALIFORNIA     FEBRUARY 19-20,1976 

       

      INX = II 

      INXY = II * JJ 

      IB = 0 

       For k = 1 To KKK 

        For j = 1 To JJ 

          For i = 1 To II 

            IB = IB + 1 

            FAC = 1# / ac(IB) 

            If i <> 1 Then AL1(IB) = FAC * aW(IB) 

            If i <> II Then AU1(IB) = FAC * aE(IB) 
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            If j <> 1 Then AL2(IB) = FAC * aSt(IB) 

            If j <> JJ Then AU2(IB) = FAC * aN(IB) 

            If k <> 1 Then AL3(IB) = FAC * aT(IB) 

            If k <> KKK Then AU3(IB) = FAC * aB(IB) 

            RN(IB) = FAC * MB(IB) 

         Next i 

       Next j 

      Next k 

 

'     APPROXIMATE LDU FACTORIZATION 

 

      AD(1) = 1# 

      For i = 2 To INX 

        TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1) 

        AD(i) = 1# / TERM 

      Next i 

       

      For i = INX + 1 To INXY 

        TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1) _ 

                  - AL2(i) * AD(i - INX) * AU2(i - INX) 

        AD(i) = 1# / TERM 

      Next i 

      For i = INXY + 1 To IJKM 

        TERM = 1# - AL1(i) * AD(i - 1) * AU1(i - 1) _ 

                  - AL2(i) * AD(i - INX) * AU2(i - INX) _ 

                  - AL3(i) * AD(i - INXY) * AU3(i - INXY) 

        AD(i) = 1# / TERM 

      Next 

      Call ORTH(AL3(), AL2(), AL1(), AD(), AU1(), AU2(), AU3(), TOL _ 

                , INX, INXY, IJKM, ITMAX, RN(), DXN(), ADX(), QI() _ 

                , AQI(), QN(), AQN(), Psim(), IT) 

 

      

 End Sub 
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Sub MVEC(AL3() As Double, AL2() As Double, AL1() As Double, AU1() As 

Double, AU2() As Double, AU3() As Double, r() As Double, _ 

         INX As Integer, INXY As Integer, IJKM As Long, c() As Double) 

          

Dim i As Long 

                  

      For i = 1 To IJKM 

        c(i) = r(i) 

      Next i 

       

      For i = 1 To IJKM - 1 

        c(i) = c(i) + AU1(i) * r(i + 1) 

      Next i 

      For i = 1 To IJKM - INX 

        c(i) = c(i) + AU2(i) * r(i + INX) 

      Next i 

      For i = 1 To IJKM - INXY 

        c(i) = c(i) + AU3(i) * r(i + INXY) 

      Next i 

      For i = 2 To IJKM 

        c(i) = c(i) + AL1(i) * r(i - 1) 

      Next i 

      For i = INX + 1 To IJKM 

        c(i) = c(i) + AL2(i) * r(i - INX) 

      Next i 

      For i = INXY + 1 To IJKM 

        c(i) = c(i) + AL3(i) * r(i - INXY) 

      Next i 

 

   End Sub 

    

 

Sub ORTH(AL3() As Double, AL2() As Double, AL1() As Double, _ 

         AD() As Double, AU1() As Double, AU2() As Double, _ 

         AU3() As Double, TOL, INX As Integer, INXY As Integer, _ 
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         IJKM As Long, ITMAX As Double, RN() As Double, DXN() As 

Double, _ 

         ADX() As Double, QI() As Double, AQI() As Double, _ 

         QN() As Double, AQN() As Double, DP() As Double, IT) 

 

Dim Rsq As Double 

Dim nmax As Long 

Dim N As Long 

Dim CONV As Double, CONV1 As Double 

Dim NM1 As Long 

Dim IB As Long 

Dim ITER As Long 

Dim i As Long 

Dim omega As Double 

Dim AI As Double 

 

 

Dim AQIAQI() As Double 

 

Dim AQIADX As Double 

Dim AQNAQN As Double 

Dim AQNRN As Double 

 

ReDim AQIAQI(IJKM) 

 

' ======== temp 

     nmax = 15 

' ======== temp 

 

      CONV1 = TOL * TOL 

      If CONV1 > 0.0001 Then CONV1 = 0.0001 

      Rsq = 0# 

      For IB = 1 To IJKM 

        DP(IB) = 0# 

        Rsq = Rsq + RN(IB) * RN(IB) 

      Next IB 
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      CONV = CONV1 * Rsq 

      N = 0 

      For ITER = 1 To ITMAX 

        IT = ITER 

        If N = nmax Then N = 0 

        N = N + 1 

        NM1 = N - 1 

 

        Call MSOLVE(AL3(), AL2(), AL1(), AD(), AU1(), AU2() _ 

                    , AU3(), RN(), INX, INXY, IJKM, DXN()) 

                     

        Call MVEC(AL3(), AL2(), AL1(), AU1(), AU2(), AU3(), DXN(), _ 

                  INX, INXY, IJKM, ADX()) 

         

        If N = 1 Then 

          For IB = 1 To IJKM 

            QN(IB) = DXN(IB) 

            AQN(IB) = ADX(IB) 

            QI(1, IB) = QN(IB) 

            AQI(1, IB) = AQN(IB) 

          Next IB 

        Else 

          For IB = 1 To IJKM 

            QN(IB) = DXN(IB) 

          Next IB 

          For i = 1 To NM1 

            AQIADX = 0# 

            For IB = 1 To IJKM 

              AQIADX = AQIADX + AQI(i, IB) * ADX(IB) 

            Next IB 

             

            

             

            AI = AQIADX / AQIAQI(i) 

            For IB = 1 To IJKM 

              QN(IB) = QN(IB) - AI * QI(i, IB) 
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            Next IB 

          Next i 

           

          Call MVEC(AL3(), AL2(), AL1(), AU1(), AU2(), _ 

                    AU3(), QN(), INX, INXY, IJKM, AQN()) 

                     

          For IB = 1 To IJKM 

            QI(N, IB) = QN(IB) 

            AQI(N, IB) = AQN(IB) 

          Next IB 

        End If 

        AQNAQN = 0# 

        AQNRN = 0# 

        For IB = 1 To IJKM 

          AQNAQN = AQNAQN + AQN(IB) * AQN(IB) 

          AQNRN = AQNRN + AQN(IB) * RN(IB) 

        Next IB 

         

        AQIAQI(N) = AQNAQN 

        omega = AQNRN / AQNAQN 

        Rsq = 0# 

        For IB = 1 To IJKM 

          DP(IB) = DP(IB) + omega * QN(IB) 

          RN(IB) = RN(IB) - omega * AQN(IB) 

          Rsq = Rsq + RN(IB) * RN(IB) 

        Next IB 

         If (Rsq <= CONV) Then GoTo line900 

   Next ITER 

    

'   MsgBox " ORTHOMIN DID NOT CONVERGE IN " & ITER & " ITERATIONS" 

    

line900: 

            

End Sub 
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Sub MSOLVE(AL3() As Double, AL2() As Double, AL1() As Double, _ 

           AD() As Double, AU1() As Double, AU2() As Double, _ 

           AU3() As Double, r() As Double, INX As Integer, _ 

           INXY As Integer, IJKM As Long, XX() As Double) 

 

Dim i As Long 

 

      XX(1) = AD(1) * r(1) 

      For i = 2 To INX 

        XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1)) 

      Next i 

      For i = INX + 1 To INXY 

        XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1) - AL2(i) * XX(i - 

INX)) 

      Next i 

      For i = INXY + 1 To IJKM 

        XX(i) = AD(i) * (r(i) - AL1(i) * XX(i - 1) - AL2(i) * XX(i - 

INX) _ 

               - AL3(i) * XX(i - INXY)) 

      Next i 

      For i = 1 To IJKM 

        XX(i) = XX(i) / AD(i) 

     Next i 

' 

'     BACK SUBSTITUTION 

' 

      For i = IJKM - 1 To IJKM - INX + 1 Step -1 

        XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1)) 

      Next i 

      For i = IJKM - INX To IJKM - INXY + 1 Step -1 

        XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1) - AU2(i) * XX(i + 

INX)) 

      Next i 

      For i = IJKM - INXY To 1 Step -1 

        XX(i) = AD(i) * (XX(i) - AU1(i) * XX(i + 1) - AU2(i) * XX(i + 

INX) _ 
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               - AU3(i) * XX(i + INXY)) 

      Next i 

 

End Sub 

 

 

Sub Read_data() 

Dim InputFile As String 

Dim OutputFile As String 

Dim Tablename As String, text As String, PR() As Double 

Dim i As Integer, j As Integer, k As Integer, convar As String 

InputFile = "C:\Documents and Settings\SAEED F\My Documents\My Academic 

Career\My Research\Mycodes\3D2PH_2.txt" 

OutputFile = "C:\Documents and Settings\SAEED F\Desktop\3D2PH_2.out" 

Open InputFile For Input As 1 

Open OutputFile For Output As 2 

Line Input #1, text 

Line Input #1, text 

Input #1, nx, ny, nz 

ReDim xD(nx, ny, nz), yD(nx, ny, nz), zD(nx, ny, nz), xThick(nx, ny, 

nz), yThick(nx, ny, nz), zThick(nx, ny, nz) 

ReDim poro(nx, ny, nz), permX(nx, ny, nz), permY(nx, ny, nz), permZ(nx, 

ny, nz) 

 

'GRID BLOCKS GENERATION 

 

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, Xsize 

        xD(1, 1, 1) = Xsize 

        For i = 2 To nx 

            xD(i, 1, 1) = xD(i - 1, 1, 1) + Xsize 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 
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                For i = 1 To nx 

                    xD(i, j, k) = xD(i, 1, 1) 

                Next 

            Next 

        Next 

     

    Case "IVARIABLE" 

        For i = 1 To nx 

            Input #1, xThick(i, 1, 1) 

        Next 

        xD(1, 1, 1) = xThick(1, 1, 1) 

        For i = 2 To nx 

            xD(i, 1, 1) = xD(i - 1, 1, 1) + xThick(i, 1, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    xD(i, j, k) = xD(i, 1, 1) 

                Next 

            Next 

        Next 

End Select 

 

     

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, Ysize 

        yD(1, 1, 1) = Ysize 

        For j = 2 To ny 

            yD(1, j, 1) = yD(1, j - 1, 1) + Ysize 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    yD(i, j, k) = yD(1, j, 1) 
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                Next 

            Next 

        Next 

         

    Case "JVARIABLE" 

        For j = 1 To ny 

            Input #1, yThick(1, j, 1) 

        Next 

        yD(1, 1, 1) = yThick(1, 1, 1) 

        For j = 2 To ny 

            yD(1, j, 1) = yD(1, j - 1, 1) + yThick(1, j, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    yD(i, j, k) = yD(1, j, 1) 

                Next 

            Next 

        Next 

End Select 

         

 

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, Zsize 

        zD(1, 1, 1) = Zsize 

        zThick(1, 1, 1) = Zsize               'This line is for 

printing purposes only 

        For k = 2 To nz 

            zD(1, 1, k) = zD(1, 1, k - 1) + Zsize 

            zThick(1, 1, k) = Zsize           'This line is for 

printing purposes only 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 
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                For i = 1 To nx 

                    zD(i, j, k) = zD(1, 1, k) 

                Next 

            Next 

        Next 

         

    Case "KVARIABLE" 

        For k = 1 To nz 

            Input #1, zThick(1, 1, k) 

        Next 

        zD(1, 1, 1) = zThick(1, 1, 1) 

        For k = 2 To nz 

            zD(1, 1, k) = zD(1, 1, k - 1) + zThick(1, 1, k) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    zD(i, j, k) = zD(1, 1, k) 

                Next 

            Next 

        Next 

End Select 

 

'POROSITY ENTRIES 

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, poro(1, 1, 1) 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    poro(i, j, k) = poro(1, 1, 1) 

                Next 

            Next 

        Next 

    Case "IVARIABLE" 
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        For i = 1 To nx 

            Input #1, poro(i, 1, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    poro(i, j, k) = poro(i, 1, 1) 

                Next 

            Next 

        Next 

         

    Case "JVARIABLE" 

        For j = 1 To ny 

            Input #1, poro(1, j, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    poro(i, j, k) = poro(1, j, 1) 

                Next 

            Next 

        Next 

    Case "KVARIABLE" 

        For k = 1 To nz 

            Input #1, poro(1, 1, k) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    poro(i, j, k) = poro(1, 1, k) 

                Next 

            Next 

        Next 

End Select 

     

'PERMEABILITY ENTRIES 
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'I DIRECTION PERMEABILITY 

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, permX(1, 1, 1) 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permX(i, j, k) = permX(1, 1, 1) 

                Next 

            Next 

        Next 

    Case "IVARIABLE" 

        For i = 1 To nx 

            Input #1, permX(i, 1, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permX(i, j, k) = permX(i, 1, 1) 

                Next 

            Next 

        Next 

         

    Case "JVARIABLE" 

        For j = 1 To ny 

            Input #1, permX(1, j, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permX(i, j, k) = permX(1, j, 1) 

                Next 

            Next 

        Next 
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    Case "KVARIABLE" 

        For k = 1 To nz 

            Input #1, permX(1, 1, k) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permX(i, j, k) = permX(1, 1, k) 

                Next 

            Next 

        Next 

End Select 

 

'J DIRECTION PERMEABILITY 

Input #1, text, convar 

Select Case convar 

    Case "CONST" 

        Input #1, permY(1, 1, 1) 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permY(i, j, k) = permY(1, 1, 1) 

                Next 

            Next 

        Next 

    Case "IVARIABLE" 

        For i = 1 To nx 

            Input #1, permY(i, 1, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permY(i, j, k) = permY(i, 1, 1) 

                Next 

            Next 

        Next 
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    Case "JVARIABLE" 

        For j = 1 To ny 

            Input #1, permY(1, j, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permY(i, j, k) = permY(1, j, 1) 

                Next 

            Next 

        Next 

     

    Case "KVARIABLE" 

        For k = 1 To nz 

            Input #1, permY(1, 1, k) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permY(i, j, k) = permY(1, 1, k) 

                Next 

            Next 

        Next 

    Case "EQUALI" 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permY(i, j, k) = permX(i, j, k) 

                Next 

            Next 

        Next 

End Select 

 

'K DIRECTION PERMEABIITY 

Input #1, text, convar 
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Select Case convar 

    Case "CONST" 

        Input #1, permZ(1, 1, 1) 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permZ(1, 1, 1) 

                Next 

            Next 

        Next 

    Case "IVARIABLE" 

        For i = 1 To nx 

            Input #1, permZ(i, 1, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permZ(i, 1, 1) 

                Next 

            Next 

        Next 

         

    Case "JVARIABLE" 

        For j = 1 To ny 

            Input #1, permZ(1, j, 1) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permZ(1, j, 1) 

                Next 

            Next 

        Next 

     

    Case "KVARIABLE" 

        For k = 1 To nz 
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            Input #1, permZ(1, 1, k) 

        Next 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permZ(1, 1, k) 

                Next 

            Next 

        Next 

    Case "EQUALI" 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permX(i, j, k) 

                Next 

            Next 

        Next 

    Case "EQUALJ" 

        For k = 1 To nz 

            For j = 1 To ny 

                For i = 1 To nx 

                    permZ(i, j, k) = permY(i, j, k) 

                Next 

            Next 

        Next 

End Select 

 

Line Input #1, text 

Input #1, Cf 

 

'PVT 

Line Input #1, Tablename 

Input #1, npvt 

Line Input #1, text 

ReDim Ppvt(npvt) As Double, BW(npvt) As Double, _ 

        UW(npvt) As Double, CW(npvt) As Double, BG(npvt) As Double, _ 
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        UG(npvt) As Double, CG(npvt) As Double 

For i = 1 To npvt 

    Input #1, Ppvt(i), BW(i), UW(i), CW(i), BG(i), UG(i), CG(i) 

Next i 

 

'RELATIVE PERM 

Line Input #1, text 

Line Input #1, text 

Input #1, nkr 

Line Input #1, text 

ReDim SW(nkr), KRW(nkr) 

For i = 1 To nkr 

    Input #1, SW(i), KRW(i) 

Next i 

Line Input #1, text 

Input #1, nkrg 

Line Input #1, text 

ReDim SG(nkrg), KRG(nkrg) 

For i = 1 To nkrg 

    Input #1, SG(i), KRG(i) 

Next 

Line Input #1, text 

Line Input #1, text 

Input #1, SWC 

Line Input #1, text 

Input #1, Pinit 

Line Input #1, text 

Line Input #1, text 

Input #1, BCW, BCE, BCS, BCN, BCB, BCT 

Line Input #1, text 

Input #1, dt, tmax, Satmax, ncuts 

Line Input #1, text 

Input #1, nwell 

If nwell <> 0 Then 

    ReDim Wellname(nwell), XCoor(nwell), YCoor(nwell), ZCoor(nwell), 

TypeWell_read(nwell), _ 
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            PR(nwell), rw_read(nwell), Skin_read(nwell), 

QT_read(nwell), _ 

            QW_read(nwell), QG_read(nwell), Pwf_read(nwell), 

MinBHP_read(nwell) 

    Line Input #1, text 

    For i = 1 To nwell 

        Input #1, Wellname(i), XCoor(i), YCoor(i), ZCoor(i), 

rw_read(i), Skin_read(i), TypeWell_read(i) 

    Next 

    Line Input #1, text 

    For i = 1 To nwell 

        Input #1, PR(i), QW_read(i), QG_read(i), Pwf_read(i), 

MinBHP_read(i) 

    Next 

End If 

Close #1 

Print #2, "Simulation Output Results" 

 

End Sub 

 

 

Sub Identify_constraints() 

Dim i As Integer, j As Integer, k As Integer 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            If QW(i, j, k) <> 0# Then WellConstraint(i, j, k) = "WRate" 

            If QG(i, j, k) <> 0# Then WellConstraint(i, j, k) = "GRate" 

            If QG(i, j, k) <> 0# And QW(i, j, k) <> 0# Then 

WellConstraint(i, j, k) = "2Rate" 

            If Pwf(i, j, k) <> 0# Then WellConstraint(i, j, k) = 

"Pressure" 

        Next 

    Next 

Next 

End Sub 
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Sub Fluids_In_Place() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

TotalWIP = 0#: TotalGIP = 0# 

For k = 1 To nz 

    For j = 1 To ny 

        For i = 1 To nx 

            TotalWIP = TotalWIP + OWIP(i, j, k) 

            TotalGIP = TotalGIP + OGIP(i, j, k) 

        Next 

    Next 

Next 

 

With ThisWorkbook.Sheets("RESULTS") 

    .Cells(1, 1) = "SIMULATION RESULTS" 

    .Cells(2, 1) = "Fluids in Place" 

    .Cells(4, 1) = "OWIP = " & Round(TotalWIP / (1000000 * 5.615), 1) & 

" MMSTB" 

    .Cells(5, 1) = "OGIP = " & Round(TotalGIP / 1000000, 1) & " MMSCF" 

End With 

 

Print #2, "" 

Print #2, "Fluids in place" 

Print #2, "OWIP = ", Round(TotalWIP / (1000000 * 5.615), 1) & " MMSTB" 

Print #2, "OGIP = ", Round(TotalGIP / 1000000, 1) & " MMSCF" 

 

End Sub 

 

 

Sub Report() 

Call Print_Report 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

 

With ThisWorkbook.Sheets("Pressure") 

    .Cells(1, 1) = "Pressure at every grid block" 
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    .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " & 

Round(time, 2) 

    For k = 1 To nz 

    .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) = 

"k = " & k 

        For j = 1 To ny 

            For i = 1 To nx 

           .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 

j + 2, i + 1) = Round(pn(i, j, k), 2) 

           Next 

       Next 

    Next 

End With 

 

With ThisWorkbook.Sheets("Sw") 

    .Cells(1, 1) = "Water Saturation at every grid block" 

    .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " & 

Round(time, 2) 

    For k = 1 To nz 

    .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) = 

"k = " & k 

        For j = 1 To ny 

            For i = 1 To nx 

            .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 

j + 2, i + 1) = Round(SWI(i, j, k), 6) 

            Next 

        Next 

    Next 

End With 

 

With ThisWorkbook.Sheets("Sg") 

    .Cells(1, 1) = "Gas Saturation at every grid block" 

    .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " & 

Round(time, 2) 

    For k = 1 To nz 
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    .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) = 

"k = " & k 

        For j = 1 To ny 

            For i = 1 To nx 

            .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 

j + 2, i + 1) = Round(SGI(i, j, k), 6) 

            Next 

        Next 

    Next 

End With 

 

With ThisWorkbook.Sheets("Sw+Sg") 

    .Cells(1, 1) = "Sum of Saturation at every grid block" 

    .Cells((rc - 1) * (ny * nz + nz + 1) + 2, 1) = "Time = " & 

Round(time, 2) 

    For k = 1 To nz 

    .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 3, 1) = 

"k = " & k 

        For j = 1 To ny 

            For i = 1 To nx 

            .Cells((rc - 1) * (ny * nz + nz + 1) + (ny + 1) * (k - 1) + 

j + 2, i + 1) = Round(SWI(i, j, k) + SGI(i, j, k), 6) 

            Next 

        Next 

    Next 

End With 

 

If nwell <> 0 Then 

    With ThisWorkbook.Sheets("WELLS") 

        .Cells(2, 1 + nwell) = "Water Rate, STB/D" 

        .Cells(2, 1 + nwell * 2) = "Cum. Water, MSTB" 

        .Cells(2, 2 + nwell * 3) = "Gas Rate, Mscf/D" 

        .Cells(2, 2 + nwell * 4) = "Cum. Gas, MMscf" 

        .Cells(2, 3 + nwell * 5) = "Pwf, psi" 

        .Cells(2, 4 + nwell * 6) = "Well Type" 

        .Cells(2, 2 + nwell * 8) = "Avg Rsr Prs" 
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        .Cells(2, 1) = "Time Step" 

        .Cells(3, 1) = "Days" 

        .Cells(rc + 4, 1) = Round(time, 2) 

     

    For m = 1 To nwell 

        Select Case WellConstraint(XCoor(m), YCoor(m), ZCoor(m)) 

            Case "GRate" 

                            .Cells(3, m + 1 + nwell * 3) = Wellname(m) 

& " layer " & ZCoor(m):                                    .Cells(3, m 

+ nwell) = Wellname(m) & " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 1 + nwell * 3) = 

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1):                

.Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m), ZCoor(m)) / 

5.615, 1) ' .Cells(rc + 4, m + nwell) = Round((QW(XCoor(m), YCoor(m), 

ZCoor(m)) - (-0.0002 * time ^ 2 + 0.0109 * time + 24)) / 5.615, 1) 

                             

                            .Cells(3, m + 1 + nwell * 4) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 1 + nwell * 4) = 

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1 

+ nwell * 4) 

                             

                            .Cells(3, m + nwell * 2) = Wellname(m) & " 

layer " & ZCoor(m) 

                            .Cells(rc + 4, m + nwell * 2) = (.Cells(rc 

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2) 

                             

                            .Cells(3, m + 2 + nwell * 5) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 2 + nwell * 5) = 

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1) 

                             

            Case "WRate" 

                            .Cells(3, m + nwell) = Wellname(m) & " 

layer " & ZCoor(m) 
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                            .Cells(rc + 4, m + nwell) = 

Round(QW(XCoor(m), YCoor(m), ZCoor(m)) / 5.615, 1) 

                             

                            .Cells(3, m + nwell * 2) = Wellname(m) & " 

layer " & ZCoor(m) 

                            .Cells(rc + 4, m + nwell * 2) = (.Cells(rc 

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2) 

                             

                            .Cells(3, m + 1 + nwell * 3) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 1 + nwell * 3) = 

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1) 

                             

                            .Cells(3, m + 1 + nwell * 4) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 1 + nwell * 4) = 

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1 

+ nwell * 4) 

                             

                            .Cells(3, m + 2 + nwell * 5) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 2 + nwell * 5) = 

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1) 

                             

            Case "Pressure" 

                            .Cells(3, m + 1 + nwell * 3) = Wellname(m) 

& " layer " & ZCoor(m):                                      .Cells(3, 

m + nwell) = Wellname(m) & " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 1 + nwell * 3) = 

Round(QG(XCoor(m), YCoor(m), ZCoor(m)) / 1000, 1):                  

.Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m), ZCoor(m)) / 

5.615, 1) ' .Cells(rc + 4, m + nwell) = Round(QW(XCoor(m), YCoor(m), 

ZCoor(m)) / 5.615 - (0.00016 * time ^ 2 - 0.17 * time + 16), 1) 

                             

                            .Cells(3, m + 1 + nwell * 4) = Wellname(m) 

& " layer " & ZCoor(m) 
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                            .Cells(rc + 4, m + 1 + nwell * 4) = 

(.Cells(rc + 4, m + 1 + nwell * 3) * dt1) / 1000 + .Cells(rc + 3, m + 1 

+ nwell * 4) 

                             

                            .Cells(3, m + nwell * 2) = Wellname(m) & " 

layer " & ZCoor(m) 

                            .Cells(rc + 4, m + nwell * 2) = (.Cells(rc 

+ 4, m + nwell) * dt1) / 1000 + .Cells(rc + 3, m + nwell * 2) 

                             

                            .Cells(3, m + 2 + nwell * 5) = Wellname(m) 

& " layer " & ZCoor(m) 

                            .Cells(rc + 4, m + 2 + nwell * 5) = 

Round(Pwf(XCoor(m), YCoor(m), ZCoor(m)), 1) 

        End Select 

    Next 

        

        

   'Print Well Type & Average Reservoir Pressure 

   For m = 1 To nwell 

                        .Cells(3, m + 3 + nwell * 6) = Wellname(m) & " 

layer " & ZCoor(m) 

                        .Cells(rc + 4, m + 3 + nwell * 6) = 

WellConstraint(XCoor(m), YCoor(m), ZCoor(m)) 

   Next 

    

   For m = 1 To 1 

                        .Cells(3, m + 4 + nwell * 7) = "psi" 

                        .Cells(rc + 4, m + 4 + nwell * 7) = Round(PSum) 

/ (nx * ny * nz) 

   Next 

End With 

 

With ThisWorkbook.Sheets("RESULTS") 

        .Cells(8, 1) = "Cumulative Water = " & Round(CumWater / 5615, 

2) & " MSTB" 



 

 

134

        .Cells(9, 1) = "Cumulative Gas = " & Round(CumGas / 1000000, 1) 

& " MMSCF" 

        .Cells(10, 1) = "Pore Volume = " & Round(PoreVol / 1000, 2) & " 

MMSTB" 

        .Cells(1, 6) = "X-->" 

        .Cells(2, 5) = "Z" 

         

        For k = 1 To nz 

            For i = 1 To nx 

                 .Cells(1 + k, 5 + i) = zThick(1, 1, k) 

            Next 

        Next 

End With 

 

End If 

 

End Sub 

 

 

Sub Print_Report() 

Dim i As Integer, j As Integer, k As Integer, m As Integer 

Print #2, "" 

Print #2, "Time step:", time 

Print #2, "" 

 

'Print pressure at grid blocks 

Print #2, "Pressure" 

For k = 1 To nz 

Print #2, "k= " & k 

    For j = 1 To ny 

    'Print #2, "" 

        For i = 1 To nx 

            Print #2, Round(pn(i, j, k), 2), 

        Next 

    Print #2, "" 

    Next 
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Next 

'Print Water saturation at every grid block 

Print #2, "" 

Print #2, "Water Saturation" 

For k = 1 To nz 

Print #2, "k= " & k 

    For j = 1 To ny 

        For i = 1 To nx 

            Print #2, Round(SWI1(i, j, k), 6), 

        Next 

    Print #2, "" 

    Next 

Next 

'Print Gas Saturation at every grid block 

Print #2, "" 

Print #2, "Gas Saturation" 

For k = 1 To nz 

Print #2, "k= " & k 

    For j = 1 To ny 

        For i = 1 To nx 

            Print #2, Round(SGI1(i, j, k), 6), 

        Next 

    Print #2, "" 

    Next 

Next 

'Print Sum Saturation Verification 

Print #2, "" 

Print #2, "Verification Sum Sat" 

For k = 1 To nz 

Print #2, "k= " & k 

    For j = 1 To ny 

        For i = 1 To nx 

            Print #2, Round((SWI1(i, j, k) + SGI1(i, j, k)), 6), 

        Next 

    Print #2, "" 

    Next 
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Next 

 

'Print production for wells, if any 

If nwell <> 0 Then 

Print #2, "" 

    Print #2, "Well Name", "Layer", "Qw STB/D", "Qg MSCF/D", "Pwf psi" 

    For m = 1 To nwell 

        For k = 1 To nz 

            If k = ZCoor(m) Then 

                For j = 1 To ny 

                    If j = YCoor(m) Then 

                        For i = 1 To nx 

                            If i = XCoor(m) Then 

                                Print #2, Wellname(m), ZCoor(m), 

Round(QW(i, j, k) / 5.615, 2), Round(QG(i, j, k) / 1000, 2), 

Round(Pwf(i, j, k), 2) 

                            End If 

                        Next 

                    End If 

                Next 

            End If 

        Next 

    Next 

Print #2, "" 

Print #2, "Cum Water Production (MSTB)   : ", Round(CumWater / 5615, 2) 

Print #2, "Cum Gas Production   (MMSCF)  : ", Round(CumGas / 1000000, 

2) 

Print #2, "" 

End If 

 

End Sub 
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