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ABSTRACT 
 
 

A Hierarchical Heuristic Approach for Machine Loading Problems  

in a Partially Grouped Environment. (December 2003) 

Jong Hwan Lee, B.S., Dongguk University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. César O. Malavé 

 

The loading problem in a Flexible Manufacturing System (FMS) lies in the 

allocation of operations and associated cutting tools to machines for a given set of parts 

subject to capacity constraints. This dissertation proposes a hierarchical approach to the 

machine loading problem when the workload and tool magazine capacity of each 

machine are restrained.  This hierarchical approach reduces the maximum workload of 

the machines by partially grouping them. This research deals with situations where 

different groups of machines performing the same operation require different processing 

times and this problem is formulated as an integer linear problem. 

This work proposes a solution that is comprised of two phases. In the first phase 

(Phase I), demand is divided into batches and then operations are allocated to groups of 

machines by using a heuristic constrained by the workload and tool magazine capacity of 

each group. The processing time of the operation is different for each machine group, 

which is composed of the same identical machines; however, these machines can 

perform different sets of operations if tooled differently. Each machine and each group 
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of machines has a limited time for completing an operation.  Operations are allocated to 

groups based on their respective workload limits. 

In the second phase (Phase II), demand is divided into batches again and 

operations are assigned to machines based on their workload and tool magazine capacity 

defined by Longest Processing Time (LPT) and Multifit algorithms. In Phase II, like 

Phase I, partial grouping is more effective in balancing the workload than total grouping. 

In partial grouping, each machine is tooled differently, but they can assist one another in 

processing each individual operation. 

Phase I demonstrates the efficiency of allocating operations to each group.  Phase 

II demonstrates the efficiency of allocating operations to each machine within each 

group. This two-phase solution enhances routing flexibility with the same or a smaller 

number of machines through partial grouping rather than through total grouping.  This 

partial grouping provides a balanced solution for problems involving a large number of 

machines.  Performance of the suggested loading heuristics is tested by means of 

randomly generated tests. 
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CHAPTER I 

INTRODUCTION 

1.1. MOTIVATION1 

Several production planning problems are inherent in Flexible Manufacturing 

Systems (FMS). Briefly, these problems are: (1) selecting compatible part types for 

simultaneous machining for the upcoming time period; (2) partitioning machines into 

machine groups, each of which can perform the same operations; (3) determining 

production ratios for each part type; (4) determining minimum inventory requirements 

(pallets and fixtures) for maintaining production ratios; (5) allocating operations and 

cutting tools to limited capacity tool magazines (Stecke 1983).  

This research focuses on machine grouping and loading problems for a given set 

of part types. After product items and their quantities to be manufactured are determined 

by production planning, the next problem to be solved in production management is that 

of allocating the workloads to the existing production facilities for manufacturing these 

products. In general, the capacities (including human power) of the facilities are not 

infinite. Therefore, in order to actually perform production activities according to the 

production plan established, it is essential to adjust the workload for each of the facilities 

and workers in every time period so they do not exceed the given capacity. This decision 

is called “machine loading”.   

                                                 
This dissertation follows the style and the format of the International Journal of 
Production Research. 
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The loading problem depends not only on the part type selection problem but 

also on the grouping problem in the sense that a solution of the grouping problem or the 

decisions made regarding machine grouping generate the environment for the loading 

problem. Such machine grouping decisions are related to the number of machine groups, 

the number of machines in each group and the way in which the machines are grouped.  

Grouping consists of tooling physically identical machines in order to allow them 

to process the same or different sets of operations. There are essentially three means for 

grouping: “no grouping”, “partial grouping” and “total grouping.” In “no grouping” 

configurations, each machine is tooled differently and each operation is assigned to only 

one machine. In “total grouping” configurations, machines are partitioned into groups in 

which all machines are identically tooled so that they can process the same set of 

operations (either individually or collaboratively).  In “partial grouping” configurations, 

individual machines are tooled differently, as in the case of “no grouping”; however, 

multiple machines can be assigned to each operation (i.e. each operation is allocated to 

one or more machines, Lee and Kim 2000). 

 When an operation is assigned to multiple machines, a set of tools required for 

that operation must be loaded onto each machine. This is one of the distinct 

characteristics of partial grouping. In other sorts of grouping, tools are loaded before 

operations are assigned, however, in partial grouping, necessary tools are loaded after 

operations allocated to each machine. It is this characteristic of partial grouping that 

makes each machine a “virtual cell”.  
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 In most cases in the field of production planning and scheduling, the processing 

time required to complete a specified operation is set as a constant. In most of the 

existing research about loading problems with respect to partial grouping, the machine 

loading models were constructed under the assumption that the processing time is a 

constant. In practical situations, however, it is possible to vary the processing times by 

actively changing manufacturing conditions, especially machining speeds. In these cases, 

some modifications must be made to production planning and scheduling models. To be 

useful, those models require a new type of heuristic that allows for variation in 

processing times. 

 This research is concerned with machine loading models that have variable 

processing times. Note that by solving the loading problem in a partial grouping 

environment, partial grouping may prove more flexible than total grouping with the 

same or a smaller number of machines. Furthermore, through the employment of 

clustering, we can deal with a large number of machine problems in a more balanced 

fashion. The performance of these suggested loading heuristics will be tested by means 

of randomly generated tests.  

1.2. PROBLEM DESCRIPTION 

The machine loading problem for FMS lies in the allocation of operations and 

associated cutting tools to machines for a given set of parts subject to capacity 

constraints. This dissertation proposes a hierarchical approach to the machine loading 

problem when the workload and tool magazine capacity of each machine are restrained.  

This hierarchical approach minimizes the maximum workload of the machines by 
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partially grouping them. This research deals with situations where different groups of 

machines performing the same operation require different processing times.  

The FMS considered in this dissertation consist of several identical machines, 

each with an automatic tool changer and a tool magazine of a limited capacity. These 

machines can perform different sets of operations if tooled differently. To perform an 

operation, one or more tools are required, and each tool requires one or more slots in the 

tool magazine. In addition, several operations may utilize the same tools (a tool may be 

used for two or more operations) in the system.  This is referred to as “tool sharing” or 

“tool commonality.” 

The system has to be reconfigured when a new set of part types is selected, that is, 

virtual cells may differ for different sets of selected part types. The number of duplicate 

tools required for an operation is equal to the number of machines to which the operation 

is assigned. More copies of certain tools may be required because of finite tool lives. In 

general, it is apparent that total grouping and no grouping are special forms of partial 

grouping.  

 This research assumes that a set of part types has been selected for simultaneous 

production during the upcoming production period, and production quantities for the 

parts have also been determined. This research also assumes that different machines 

involved in production require different processing times for the same operation. And we 

approach this research under the assumption that the machine grouping within each 

cluster is already finished. Given these assumptions, this research will attempt to assign 

to each machine the operations required for the production of the selected part types.  
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The fact that different machines require different processing times for the same 

operation makes this all the more challenging.  

1.3. OBJECTIVES AND CONTRIBUTIONS 

 The objectives of this dissertation are to investigate the formulation of the 

loading problem as an integer programming problem, to develop a solution algorithm 

based on the formulation of the problem and to test solution methodologies. Eventually, 

these procedures will minimize the maximum workload for each machine. 

The most significant contributions of the research described in this dissertation 

are (1) the development of a good heuristic in a loading problem with variable 

processing time for each cluster; (2) the decomposition of this problem into two sub-

problems: Phase I assigns the operations into clusters. Phase II allocates operations to 

machines within each cluster; (3) the implementation of different heuristics, according to 

phase. In Phase I, operations are assigned to clusters while each cluster has a different 

processing time. In Phase II, operations are allocated to machines within each cluster 

while every machine within the clusters has the same processing time; (4) the attempt to 

address the loading problem with respect to each machine’s capacity and workload limit, 

which impact loading problem performance. 

1.4. ORGANIZATION OF DISSERTATION 

 The remainder of this dissertation is organized as follows: CHAPTER II provides 

an overview of related past work on grouping and loading problems and of the 

mathematical tools used in this dissertation. CHAPTER III presents the mathematical 
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formulation of the problem and the overall approach. In CHAPTER IV, heuristic 

methods are developed, presented and analyzed for computational efficiency. For each 

sub-problem, a heuristic is either extended or developed based on previous documented 

viable approaches. CHAPTER V presents results based on randomly generated data 

(data generated by uniform distribution in order to show the efficiency of the heuristics). 

CHAPTER VI provides the conclusion of the work and some proposal for future 

research. 
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CHAPTER II 

LITERATURE REVIEW 

There is extensive literature on assembly line and workload balancing in job 

shops and FMS. Balancing is appropriate for flexible assembly systems as well as 

automated transfer lines. Stecke and Solberg (1981) employed loading and control 

policies for a flexible manufacturing system and defined loading and control methods 

that significantly improve system production rates. Stecke (1986) considered various 

operation assignment objectives appropriate in FMS and presented a hierarchical 

framework for considering these objectives. Berrada and Stecke (1986) applied a branch 

and bound algorithm to solve the workload balancing problem for all machines when 

each machine’s processing time is different. Kim and Yanco (1994) developed a new 

branch and bound algorithm, based on the work of Berrada and Stecke (1986).  This new 

algorithm was developed to maximize the expected production rate (throughput) of the 

system and to ensure that actual workload allocation is commensurate with the 

continuous workload allocation that maximizes throughput.  

Stecke and Morin (1985) have shown that if each operation is assigned to only 

one machine, balancing the workload of each machine maximizes expected production 

by using symmetric mathematical programming. Stecke and Solberg (1985) showed that 

if functionally similar machines are pooled into machine groups of equal size, then 

balancing workloads again maximizes expected production by deploying a closed 

queueing network. 
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Shanthikumar and Stecke (1986) showed that maintaining balanced workloads on 

each machine over time stochastically minimizes work-in-process inventory 

requirements for FMS that contain only one machine in a group. Kumar et al. (1990) 

employed the combined grouping and loading problem as a multistage multiobjective 

optimization model and also employed the “min-max” approach to multiobjective 

optimization in order to obtain a compromise solution.  

Chen and Askin (1990) performed heuristics, based on the separate evaluation of 

five objectives: workload balance, volume of inter-machine part movement, routing 

flexibility, tool investment and maximum machine utilization. With respect to balancing 

machine utilization, the Machine Balance Assignment (MBA) heuristic dominated other 

heuristics. (Due to the apparent utility of the MBA heuristic in balancing workloads, a 

modified version of it is used in Phase I of this dissertation.)  Chen and Askin concluded 

that the assignment of operations to machine types according to workload balance 

parameters is better than the assignment of operations to the most efficient machine type. 

Shanker, K. and Srinivasulu (1989) defined the loading problem as the selection 

of a subset of jobs from a job pool and the allocation of those jobs among machines.  

They then developed a two-stage branch and backtrack procedure in order to maximize 

the assigned workload. Later, Mukhopadhyay et al. (1992) suggested a more advanced 

and reliable heuristic procedure for loading problems that was meant to minimize system 

imbalances and thereby maximize the throughput originally provided by the procedures 

proposed by Shanker, K. and Srinivasulu (1989). Choi and Lee (1998) developed 

heuristic procedures with the two-part objective of minimizing workload imbalances and 
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maximizing system throughput.  Their solution hinged on the rejection factor and virtual 

total processing time. They demonstrated that they had obtained a better solution than 

Shanker, K. and Srinivasulu (1989) as well as Mukhopadhyay et al. (1992). 

Coffman et al. (1978) applied bin-packing to the multiprocessor scheduling 

problem. They described the well-known LPT (Longest Processing Time) algorithm and 

MUTIFIT algorithm in terms of bin-packing techniques. Kim (1993) reported that the 

minimization of the maximum workload is closely related with the minimization of 

makespan for a given set of part types. Kim and Yanco (1994) considered the loading 

problem in order to maximize the throughput for a specified steady-mix of orders. Since 

it is computationally difficult to find optimal solutions for problems with more than 20 

operations, faster heuristics algorithms were developed.  

The proposed heuristics in Kim and Yanco (1993) differ from earlier work in two 

ways. First, multi-pass rather than single-pass bin-packing approaches are used. Second, 

new assignment rules explicitly consider tool magazine capacity constraints.   Two-

dimensional bin-packing algorithms were also adapted to approach this problem. 

Rectangle widths denote the number of tool slots needed, and rectangle heights denote 

workloads. When balancing the workloads is the objective, LPT and Multifit algorithms 

are slightly better than the other algorithms. Due to their utility, these algorithms are 

applied in Phase II of this dissertation. 

There are various algorithms for the identical processor minimum-makespan 

scheduling problem, and for some of them the worst case performance ratios are known. 

The LPT algorithm has a worst case performance ratio of 4/3-1/3m, where m is the 
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number of processors (machines), and the Multifit algorithm has a worst case 

performance ratio of 1.2+(1/2)k, where k is the number of iterations in the algorithm. 

(Coffman et al. (1978), Friesen (1984) and Graham (1969) for details.) 

Stecke and Raman (1994) mentioned the problem of determining optimal 

machine workload in order to minimize mean part flow time with the objective of (un) 

balancing workloads for the “no grouping”, “total grouping”, and “partial grouping” 

configurations. They decompose this problem into the subproblems of first forming 

machine groups and next assigning operations to these groups.   They propose a heuristic 

approach which is a modification of the “first fit decreasing” heuristic for the bin-

packing problem.  

Lee and Kim (2000) implemented several loading algorithms for flexible-

manufacturing systems with partially grouped machines. They formulated the loading 

problem by means of integer programming and primarily utilized LPT and Multifit 

algorithms. They described two means of addressing this problem. One approach was 

direct, whereas the other decomposed the problem into the operation assignment 

problem and the workload allocation problem. Both approaches implemented LPT and 

Multifit algorithms, yet a comparison of the results demonstrated that decomposition 

methods are better that direct ones. Additionally, simulation experiments demonstrated 

that partial grouping loading plans yielded significantly better performance than total 

grouping loading plans.  

Sarin and Chen (1987) discussed the machine loading and tool allocation 

problems and developed mathematical models for achieving minimum overall 



 11

machining cost by determining the route of parts through machines as well as for 

allocating appropriate cutting tools to each machine. Bretthauer and Venkataramanan 

(1990) studied the assignment of operations to machines in flexible manufacturing 

systems and also studied the impact of alternate routes through these systems. By 

assigning each operation to more than one machine, alternatives for the parts being 

produced become available. They present a constrained network model of the machine 

loading problem and use surrogate and Lagrangian relaxation for solving large-scale 

problems. 

Ram et al. (1990) modeled the problem of machine loading planning and tool 

allocation in a FMS as a discrete generalized network with simple side constraints, and 

described an algorithm to yield a solution to this problem. An important aspect of this 

modeling process is its ease of application to other planning problems in FMS. Moreno 

and Ding (1993) studied FMS loading and part type selection problems in which each 

part is processed by a series of operations. They presented two heuristic methods for 

balancing workloads and meeting due dates. Their first goal was to achieve workload 

balance and their second was to reduce the number of late part types. The loading and 

part type selection had to satisfy tooling constraints. Computational results were 

encouraging and indicated significant improvement over existing methods. 

Tang et al. (1995) introduced a framework for a two-phase planning and 

scheduling model for selecting part types and for assigning required tools to machines 

for processing. Chen et al. (1995) presented an integer programming model for existing 

FMS users to select the most cost effective set of parts to run simultaneously on an FMS 
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during a specified production horizon. Two heuristic solution algorithms were developed 

by dividing the part-selection procedure into two stages.  

Kuhn (1995) formulated the loading problem as a linear mixed 0-1 program in 

order to minimize the greatest workload assigned to each machine. This involved a 

heuristic procedure in which operations were assigned to machine tools according to the 

solution of a parameterized generalized assignment problem with an objective function 

that approximates the use of tool slots required by the operations assigned to the 

machines. Rupe and Kuo (1997) provided improved solutions to the generalized tool 

loading problem by means of a unique solution involving job splitting. By additionally 

allowing concurrent job and tool changing, a new optimal tooling policy was obtained 

that proved useful with either the previously developed job scheduling heuristics, or the 

algorithm. 

Denizel and Sayin (1998) studied the part-type selection problem in a Flexible 

Manufacturing Environment. They formulated a problem in which the objectives were 

the maximization of the number of part-types selected and the minimization of the 

measure of total tardiness. Mukhopadhyay et al. (1998) considered the problem of FMS 

machine loading with the objective of minimizing system imbalances using a simulated 

annealing approach. New job sequences were generated with a proposed perturbation 

scheme named “the modified insertion scheme.” These sequences were used in the 

proposed simulated annealing algorithm in order to arrive at a near global optimum 

solution.  
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Nayak and Acharya (1998) proposed a three-stage approach to solving part type 

selection, machine loading and part type volume determination problems. In contrast to 

the usual approach of maximizing the part types in each batch, they attempted to 

maximize the routeing flexibility of the batches. Guerrero et al. (1999) presented a new 

approach to the loading problem in flexible manufacturing systems. It focused on the 

existence of alternative routes for each part type and directly determined the optimal 

number of copies of each tool type to be loaded into each tool magazine. The loading 

objective was that of balancing machine workloads by using decision variables of 

routing mix and tool allocation. 
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CHAPTER III 

MODEL DEVELOPMENT 

3.1. INTRODUCTION 

This chapter describes the development of the linear integer programming 

models for the loading problem. More specific assumptions used in modeling are 

provided and discussed. Finally, linear integer programming models of the problems are 

presented. 

3.2. ASSUMPTIONS 

1. The number of operations, the number of clusters and the number of machines 

within each cluster are given. 

2. Tool magazine capacity and workload limit for each machine are given. 

3. Demand, processing time for each cluster and processing time for each operation 

are generated by uniform distribution. 

4. The number of tools needed for each operation and the number of tool slots 

needed for each tool are generated by uniform distribution. 

5. Clustering is finished before loading is started. 

6. In each cluster, several identical machines, each with an automatic tool changer 

and a tool magazine, will be clustered; however, these machines can perform 

different sets of operations if tooled differently. 

7. Processing time is different on each cluster, but processing time is the same 

within each cluster. 
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8. If tool magazine capacity or workload limit is overloaded, then the system must 

be restarted. 

9. Setup time and slack time between loadings is ignored. 

10. A set of part types has been selected to be produced simultaneously during the 

upcoming production period. 

11. Operations that require different processing times are considered different 

operations even though they are of the same type.  

3.3. MODEL DEVELOPMENT 

The purpose of this problem is to assign each operation to machines. In order to 

assign operations to machines, those operations must be assigned to cluster first, and 

then they can be assigned to machines in each cluster. The machines used for these FMS 

have automatic tool changers and a tool magazine of a limited capacity and can work 

limited time for each day. To execute an operation, one or more tools are required, and 

each tool requires one or more slots in the tool magazine. Another significant feature of 

this system is tool sharing or tool commonality. In other words, several operations may 

share the same tools in the system. Operations require several tools: yet if different 

operations are allocated to the same cluster or different machines use the same tool, then 

duplicated tools are not assigned to the same cluster or machine.  

 If operations require different processing times, they are considered different 

operations even though they are the same type. For instance, drilling operations for 

different part types are treated as different operations if their processing times are 

different -- even though they require the same set of tools. The loading problem allocates 
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operations and associated tools to machines in order to minimize the maximum 

workload of the machines subject to tool magazine capacity and workload capacity 

constraints. An integer linear problem provides a clear description of this loading 

problem. The following notations are used in its formulation.  

3.3.1. INTEGER LINEAR PROGRAMMING  

 This formulation explains about entire process for assigning operations to 

machines. A small integer example problem for 3 clusters, 3 machines, and 5 operations 

was solved to test the integer programming formulation. Later this problem decomposed 

into two sub problems. We have used the following notations throughout the 

dissertations. Let: 

           index for operation, I; 

          index for machine, J;

           index for tools, T;

          index for machine type, ;

          index for machine cluster, c ;

        proc

i i

j j

t t

k k K

c C

pi

∈

∈

∈

∈

∈

essing time of operation ; 

      processing time of operation i for machine type ;

      capacity of a tool magazine of a machine  in cluster c;

       capacity of a tool magazine of a machin

i

p kki
C jcj

Cc e cluster c; 

      the workload for a machine j in the cluster c;

       the maximum workload allowed for a cluster c;

       demands of operation ;    

     demands of operation  in the clus

Wcj

Wc
D ii
D ici ter c;

        number of tool slots needed for tool ;S tt
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      batches for operation i that is assigned to machine  in the cluster c.

       batches for operation i that is assigned to machine cluster c.

J        number of machine in the cluster c;

G   

b jcij

bic

c

      number of cluster;
1 if operation i requires tool  in the cluster c,

     
0  otherwise. 

1 if operation i requires tool ,
       

0  otherwise.

1 if operation i is assigned to ma
     

t
acit

t
ait

xcij









chine  in the cluster c,
0  otherwise.

1 if operation i is assigned to machine cluster c,
      

0  otherwise.

1 if tool t is assigned to machine  in the cluster c,
    

0  otherwise.

1
     

j

xic

j
yctj

ytc













 if tool t is assigned to machine cluster c,
0  otherwise.





 

 

Problem (P) 

Minimize Z, 

subject to 

                       c,                                            (1)
k

                                  c,                                            (2)
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1                                  ,                                            (5)

1                               ,  ,                                        (6)

   

x G iicc G
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b D xic i ic
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∈

≤ ≤ ∀∑
∈
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                                   ,  , ,                                     (8)
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∀
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∈

                             ,                                            (9)

                                    ,  ,                                     (10)
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b D i ccij cij J

a x ytcit ic

∀

= ∀∑
∈

≤                          , ,  ,                                 (11)

                                    ,  , , ,                              (12)

s                      

i c t

a x y i j t ccit cij ctj

y Cct tct T

∀

≤ ∀

≤∑
∈

              ,                                        (13)

s                                   , ,                                     (14)

, , 0 and int eger,              ,

c

y C j ct ctj cjt T

p b b icij icki

∀

≤ ∀∑
∈

≥ ∀  ,  ,                                (15)

, , , {0,1}                      ,  ,  ,  .                          (16)

j c

x y x y i j c ttccij ctj ic ∈ ∀

 

 

 

In the formulation, constraint set (1) states that operations can be assigned to any 

machine cluster and workload for each cluster is restricted. The sum of all workloads of 

the machines in each cluster is defined in constraint set (2). Constraint set (3) and (4) 

also imply that any operation can be allocated to any machine and in constraint (3) leads 

to workload balancing, i.e., minimization of the maximum workload, which is 

represented by Zc. Constraint set (3) assures that the workload for each machine in each 
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cluster is bounded. Constraint set (5) denotes that the number of clusters allocated to 

each operation should not be greater than the total number of clusters, and constraint set 

(6) represents that the number of machines in the cluster allocated to each operation 

should not be greater that the total number of machine in the cluster. Constraint set (5) 

indicates that the batches of operation i can be allocated to cluster c (bic) only if xic=1, 

that is, the relationship between bic and xic. Constraint set (6) denotes that the batches of 

operation i can be assigned to machine j (bcij) only if xcij=1, that is, the relationship 

between bcij and xcij. Constraint set (9) ensures that the sum of all batches to be assigned 

to each cluster in each operation is the demand of each operation.  Constraint set (10) 

illustrates that the sum of all batches in each cluster to be assigned to each machine in 

the cluster in each operation is the demand of each operation. Constraint set (11) 

illustrates that the required tools for the operation to be loaded onto each cluster where 

the operation is allocated.  Constraint set (12) is in reference to the tools required for 

each operation in each cluster that are to be loaded onto each machine where the 

operations are assigned in each cluster. Constraint sets (13) and (14) bound the number 

of parts that can be processed on a cluster and a machine within a cluster.  

3.3.2. SOLUTION APPROACH 

 Figure 1 shows the overall conceptual approach of the proposed methodology. 

The proposed approach can be divided into two phases: In Phase I, operations will be 

allocated into clusters and in Phase II operations will be assigned into machines within 

each cluster. The solution of Phase I can effect the solution of Phase II. If workload is 
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well balanced between clusters, then there is a high possibility that workload will be 

minimized when we assign operations to machines within clusters. 

 
 
 

Generate All the Variables for the System
Initialize Tool Magazine Capacity and Workload Limit for Each Machine

Assign Operations to Clusters
Heuristics for Phase I

Assign Operations to Operations
Heuristics for Phase II

 

Figure 1   Overall conceptual approach. 
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3.3.3. INTEGER LINEAR PROGRAMMING FOR PHASE I  

The formulation above is decomposed into two formulations for Phase I and 

Phase II.  Phase I deals with the problem of assigning operations to clusters. The 

formulation for Phase I appear below.  Constraint (1) is changed to express the selection 

of Z, the maximum value between clusters. However, the objective is to minimize the 

maximum value of Z.  

Sub Problem I (S) 

Minimize Z, 

subject to 

 

                         c,                                            (17)
k

                                  c,                                             (18)

1

p b Zickii IK
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3.3.4. INTEGER LINEAR PROGRAMMING FOR PHASE II 

 In Phase II, operations are allocated to machines in the cluster (formulation 

appears below). The batches (bic in Phase I) assigned to each cluster will be Dci in each 

cluster. In the constraint (1), Z is the value of workload that will cover all of the 

machines workload and the objective is minimizing that value of Z. 

Sub Problem II (S) 

Minimize Z, 

subject to  

                                   , ,                                         (26)

                                , ,                                        (27)

1

p b Z j ci ciji I

p b W j ci cij cji I

xci

≤ ∀∑
∈

≤ ∀∑
∈

≤                              ,  ,                                        (28)

                                   ,  , ,                                     (29)

   

J i ccjj J

b D x i j ccij ci cij

b Dcij cij J

≤ ∀∑
∈

≤ ∀

=∑
∈

                                ,  ,                                       (30)

                                   ,  ,  , ,                                 (31)

s        

i c

a x y i j t ccit cij ctj

y Ct ctj cjt T
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∈

                          , ,                                        (32)

0 and int eger,                          ,  ,  ,                                    (33)

, {0,1}               

j c

b i j ccij

x ycij ctj

∀

≥ ∀

∈                   ,  ,  ,  .                              (34)i j c t∀  

3.4. SUMMARY 

This chapter presents the model development for the loading problem. Modeling 

variables, parameters and coefficients were defined. Then, relationships among variables 
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were presented. Next, an appropriate objective function was defined, one that was 

supportive of the overall objective. Last, the loading problem was concisely represented 

as a two-phase model. The next chapter examines detailed solution strategies for the 

models presented in this chapter. 
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CHAPTER IV 

SOLUTION METHODOLOGY 

4.1. INTRODUCTION 

This chapter develops solution procedures for the loading problem workload 

balancing models of both Phases. The overall conceptual approach is discussed and the 

heuristics proposed for Phase I are introduced. Next, an alternative heuristic for Phase I 

is presented. Then an LPT (Longest Processing Time) algorithm and a Multifit algorithm 

for Phase II are presented.  Finally, the proposed heuristics are analyzed for 

computational efficiency. 

4.2. OVERALL CONCEPTUAL APPROACH 

This work proposes a solution that is comprised of two phases.  In the first phase 

(Phase I), demand is divided into batches and then operations are allocated to groups of 

machines by using a heuristic constrained by the workload and tool magazine capacity of 

each group.  The processing time of the operation is different for each machine group 

composed of the same identical machines; however, these machines can perform 

different sets of operations if tooled differently. After obtaining batches for each cluster, 

batch workload will be obtained by multiplying the batch and processing times for each 

operation. Each machine and each group of machines has a limited time for completing 

an operation. Operations are allocated to groups based on their respective workload 

limits. Four heuristics and a Multifit algorithm for each heuristic will be implemented in 
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Phase I. These heuristics will be compared with each other using the relative 

performance ratio (the ratio of a solution to a lower bound) as an index.  

In the second phase (Phase II), demand, which was allocated in Phase I, is 

divided into batches again and operations are assigned to machines based on their 

workload and tool magazine capacity as defined by LPT algorithm and Multifit 

algorithms. In Phase II, just as in Phase I, partial grouping is applied again, because it 

proved more effective in workload balancing than total grouping. In partial grouping, 

each machine is tooled differently, but one or more machines can process each operation. 

4.3. DESCRIPTION OF PROPOSED APPROACH 

 A detailed description of the heuristics for Phase I and Phase II is provided along 

with some examples that help explain the procedure in practical terms. 

4.3.1. HEURISTIC APPROACH FOR PHASE I 

In Phase I, operations are assigned to machine clusters. The demand of an 

operation is divided into the same number of batches for all operations. Batches for each 

operation are divided by the number of clusters (to the nearest integer). This Phase is 

required only when operations can be performed on more than one machine type and 

processing time is different for each cluster. We utilize this latitude to equalize workload. 

Operations are ordered according to the number of different clusters to which they may 

be assigned. From the operations with the fewest choices, we select the longest operation 

(total batch processing time) and assign it to the machine cluster that will end up with 

nearly equal workloads on each machine cluster.  
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There are four Heuristics and four Multifit algorithms for each Heuristic in Phase 

I. The first Heuristic selects the maximum batch workload for each cluster, and then 

selects the minimum batch workload among them. The second Heuristic selects the 

minimum batch workload value for each cluster, and then selects the minimum batch 

workload value among them instead of selecting the maximum batch workload value of 

the minimum from the cluster types in Step 3. The third Heuristic selects the maximum 

batch workload value for each cluster and then selects the maximum batch workload 

value from among them. The fourth Heuristic selects the minimum batch workload value 

in each cluster and then chooses the maximum batch value among them. By means of 

these trials, we can determine which of the four Heuristics provides the best performance. 

The modified Multifit algorithm will be applied with each Heuristic. 

Wc and Cc are control parameters for the heuristic. When assigning operations, 

we use Wc and Cc to limit the operation aggregation process. As Wc increases, fewer but 

longer operations will be fed to the solution procedure. Material handling should decline 

but workload balancing may become more difficult in the cluster.  

We will use the term icτ∆ as a dynamic variable to indicate the number of 

machine tool slots that must be added to cluster type c to perform operation i. This term 

is dynamic in the sense that it depends on which tools have already been assigned to c. 

For example, if two operations use the same tool and the first operation is assigned to 

clusters, the second operation must then use additional tool slots. In other words, if the 

concept of tool sharing is used in Phase I, then in Phase II, when we allocate operations 

within clusters, we will confront the shortage of tool magazines in each machine.                 
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 And, the term icη∆  will be used as a dynamic variable for denoting the workload 

limit for each cluster. There is a workload limit for each machine and the total workload 

limit for the machines within each cluster is the workload limit for that cluster. This 

workload limit value is decreased as it is when assigning operations to clusters. If the 

workload limit for each cluster has the negative value, then the system is infeasible.  

The tool magazine capacity for each cluster defines the system in the same way. 

If the system is infeasible, then the system stopped and other variables are generated for 

it. If these problems happen repeatedly, then tool magazine capacities and workload 

limits for each machine must be considered. Flexible workload limits maximize the 

probability that all of the operations can be assigned to clusters; however, they also 

lower utilization. Figure 2 provides a flow chart for the Phase I Heuristic.     

4.3.1.1. PHASE I HEURISTIC 

 The main factor that we need to consider is the workload, because the objective 

is minimize the maximum workload so that we can minimize the lead time with these 

results. Figure 2 is the flow chart for Phase I Heuristic.     
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Figure 2   Flow chart of Heuristic I in Phase I. 
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General procedure for Heuristic I in Phase I 

Step 1. Initialize maximum workload and maximum tool capacity. 

Step 2. Make batches for each operation by dividing demands of an operation by the 

number of clusters (Batches must be integers, so if demand=10 and the number 

of machines is 3, then the batches are 3,3,4). 

Step 3. Initialize batch workload by multiplying batch and processing time for each  

operation. 

Step 4. In each cluster, select the minimum batch workload, and then select the  

maximum batch workload from those previously selected. 

Step 5. For the operations that have been selected, select operations that have the same 

batch number for each cluster.  

Step 6. For all selected operations for each cluster, select if maximum workload limit –  

selected batch workload ( icη∆ )> 0 and maximum tool capacity – the number of 

tool ( icτ∆ ) > 0.  

Step 7. Select maximum value of maximum workload limit – selected batch workload 

( icη∆ ). 

Step 8. Assign operation to the cluster that has the largest remaining workload capacity -

- if tools were assigned previously, then do not allocate again.  Update maximum 

workload limit and maximum tool capacity. 

Step 9. Repeat until all operations are allocated. 
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Example of Heuristic I in Phase I 

 The sample data below in the Table 1 and Table 2 will be used to illustrate the Heuristic 

procedures. 

 
 

Operation 

number 
Demand 

Processing 

time for 

cluster type

Workload in 

cluster A 

Workload in 

cluster B 

Workload in 

cluster C 

  A B C

Batches 

1 2 3 1 2 3 1 2 3 
1 9 3 2 4 3 3 3 9 9 9 6 6 6 12 12 12
2 10 2 6 3 3 3 4 6 6 8 18 18 24 9 9 12
3 7 4 2 8 2 2 3 8 8 12 4 4 6 16 16 24
4 6 7 3 4 2 2 2 14 14 14 6 6 6 8 8 8 
5 8 6 9 2 2 3 3 12 18 18 18 27 27 4 6 6 

Table 1   Loading data for small example to illustrate Heuristic. 

 

Operation 

number 

The number of tools 

needed for operation 

Tool number for 

each tool 

Tool 

Number 

The number of tool slot 

needed for each tool 

1 1 1 3 4, 7, 9 
2 2 
3 1 2 2 2, 5 
4 1 
5 1 3 5 1, 2, 5, 7, 8 
6 2 
7 3 4 7 2, 3, 4, 6, 8, 9, 

10
8 1 

9 1 5 4 3, 6, 7, 9 
10 1 

Table 2   Other parameters for small example to illustrate Heuristic. 
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Example procedure of Heuristic I in Phase I 

Step 0. Initialize the workload Limit as 500 and the tool magazine capacity as 100. 

Step 1. In each cluster, find the minimum workload. 

Step 2. Choose the maximum workload found in Step 1. 6 for cluster A, 4 for cluster B 

and 4 for cluster C. 

Step 3. Relate the batch value (found in Step 2, 3 in batches column). This batch can be 

allocated into cluster A, B, or C. 

Step 4. Workload for this batch in each cluster is 6, 18, and 9. Verify that the workload 

limit and tool capacity limit for each cluster is greater than 0 after assigning this 

batch to each cluster. 

Step 5. Determine whether workload limit and tool capacity limit are greater than 0. 

 For cluster A, 500-6=494, for cluster B, 500-18=482 and for cluster C, 500- 

9=491.  Tool capacity for each cluster is 100-3=97, since chosen batch is in  

operation 2. Operation 2 needs 2 tools and these tools need 3 slots. 

If a tool is already assigned to a cluster, do not allocate the same tool again. 

This is the concept of tool sharing. If workload limit and tool capacity limit  

are less than 0, then this system is infeasible. 

Step 6. Between the values chosen in Step 5, choose the one that has the maximum  

workload remaining value. Cluster A has a workload limit of 494. 

Step 7. Assign operations to the cluster that was selected (when an operation is allocated 

to a cluster, the tools associated with that operation are also allocated). By this 
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method, one can determine which tools are allocated to which clusters we well as 

determine how many tool slots are required (Table 2). 

Step 8. Update workload limit and tool capacity limit for chosen machine. 

Step 9. Repeat until all operations are allocated. 

4.3.1.2. ALTERNATIVE HEURISTICS OF PHASE I 

There is a flow chart for alternative Heuristics for Phase I in Figure 3. The first 

alternative selects the minimum workload value for each cluster, and then selects the 

minimum workload value among them instead of selecting the maximum workload 

value of the minimum from among cluster types as in Step 3. The second alternative 

selects the maximum workload value for each cluster and then selects the maximum 

value from among them. The third alternative selects the minimum workload value in 

each cluster and then chooses the maximum value from among them. The last alternative 

is a modified Multifit algorithm, which will be explained in more detail in Phase II. 

After implementing all of the Heuristics, a relative performance ratio, which is defined 

by h b h[(H  - H )] /  H ]  100× , will be shown in order to evaluate the results. 

When allocating operations to clusters, there are two choices. The first involves 

the allocation of operations to clusters, which provides the largest remaining workload 

capacity. The second involves the allocation of operations to the smallest remaining 

workload capacity. Therefore, for each Heuristic, two alternatives are pursued. The flow 

chart that appears below is an example of the first alternative. It allocates operations to 

the cluster with the largest remaining workload capacity.  
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Figure 3   Flow chart of alternative Heuristic II in Phase I. 
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General procedure of alternative Heuristic II in Phase I 

Step 1. Initialize maximum workload and maximum tool capacity. 

Step 2. Make batches for each operation by dividing operation demands by the 

number of clusters (Batches must be integers, so if demand=10 and the number 

of machines is 3, then the batches are 3, 3, 4). 

Step 3. Initialize batch workload by multiplying batch and processing time for each  

operation. 

Step 4. In each operation, select the minimum batch workload, and then select the  

minimum batch workload from among those previously selected. 

Step 5. For the operations that have been selected, select operations that have the same 

batch number for each cluster. 

Step 6. For all operations previously selected for each cluster, select if the maximum 

workload limit – selected batch workload ( icη∆ )> 0 and maximum tool capacity 

– the number of tools ( icτ∆ )> 0.  

Step 7. Select maximum value of maximum workload Limit – selected batch workload 

( icη∆ ). 

Step 8. Assign operations to the cluster that has the smallest remaining workload 

capacity – if tools were assigned previously, then do not allocate again.  Update 

maximum workload limit and maximum tool capacity. 

Step 9. Repeat until all operations are allocated. 
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Example of alternative Heuristic II for Phase I 

 The sample data below in the Table 3 will be used to illustrate the Heuristic procedures. 
 
 
 

Operation 

number 

Demand Processing time 

for cluster type 

Workload 

in cluster 

A 

Workload 

in cluster 

B 

Workload 

in cluster 

C 

  A B C 

Batches 

1 2 3 1 2 3 1 2 3
1 9 3 2 4 3 3 3 9 9 9 6 6 6 1 1 1
2 10 2 6 3 3 3 4 6 6 8 1 1 2 9 9 1
3 7 4 2 8 2 2 3 8 8 1 4 4 6 1 1 2
4 6 7 3 4 2 2 2 1 1 1 6 6 6 8 8 8
5 8 6 9 2 2 3 3 1 1 1 1 2 2 4 6 6

Table 3   Example to illustrate alternative Heuristic II in Phase I. 

 
 
Example procedure of alternative Heuristic II in Phase I 

Step 0. Initialize the workload limit as 500, and the tool magazine capacity as 100. 

Step 1. In each cluster, find the minimum workload. 

Step 2. Between workloads found in Step 1, choose the minimum. 8 for cluster  

A, 4 for cluster B and 16 for cluster C. 

Step 3. Relate the batch value (found in Step 2, 3 in batches column).This batch can be 

allocated to cluster A, B, or C.   

Step 4. Workload for the batch in each cluster is 8, 4, and 16. After assigning this batch 

to each cluster, verify that the workload limit and tool capacity limit for each 

cluster is greater than 0.  
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Step 5. Determine if the workload limit and the tool capacity limit are greater than 0. 

 For cluster A, 500-8=492, for cluster B, 500-4=496 and for cluster C, 500- 

16=484. The Tool Capacity for each cluster is 100-8=92, since the chosen batch 

is in operation 2. Operation 2 needs 2 tools and these tools need 8 slots. 

If a tool is already assigned to a cluster, then do not allocate that tool again.  

This is the concept of tool sharing. 

 If workload tool capacity limits are less than 0, then this system is  

infeasible. 

Step 6. Select the maximum workload remaining value from those selected in Step 5.  

Cluster B has the maximum workload limit (496). 

Step 7. Assign operations to the cluster that was selected (when an operation is allocated 

to a cluster, the tools associated with that operation are also allocated). By this 

method, one can determine which tools are allocated to which clusters we well as 

determine how many tool slots are required (Table 2). 

Step 8. Update workload and tool capacity limits for the machine selected. 

Step 9. Repeat until all operations are allocated. 

4.3.2. SET UP FOR EACH HEURISTICS 

 Table 4 presents all of the Heuristics. Four Heuristics are shown in the first 

column. The second column shows how to select between clusters. The third column 

describes the means for selecting operations in column two. The last column describes 

the means for allocating operations to each cluster. The Multifit algorithm will be 
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implemented for each Heuristic case. A detailed explanation of the Multifit algorithm 

will be presented in section 4.3.4.2. 

4.3.3. CONFIGURATIONS FOR EACH HEURISTICS 

 

Table 4   Selection rule for operation assignments. 

 
 

4.3.4. HEURISTIC APPROACH FOR PHASE II 

After all of the operations are allocated to each cluster, Phase II employs two 

Heuristics within each cluster. When allocating operations to machines, operations will 

be assigned to the machine with the largest remaining workload capacity.  

4.3.4.1. LPT (LONGEST PROCESSING TIME) ALOGRITHM 

In the first Heuristic, an operation’s processing requirement is divided into the 

same number of batches for all operations for each machine cluster. These batches are 

allocated to machines by an LPT algorithm. A flow chart is shown in Figure 4. 

Heuristics Between cluster Among 
selected ones

Assign operations to clusters 

Heuristic I Minimum 
workload 

Minimum 
workload 

Largest remaining cluster 

Heuristic II Minimum 
workload 

Minimum 
workload 

Largest remaining cluster 

Heuristic III Maximum 
workload 

Maximum 
workload 

Largest remaining cluster 

Heuristic IV Maximum 
workload 

Minimum 
workload 

Largest remaining cluster 
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Stop

Yes

No

Initialize Maximum Workload and Maximum Tool Capacity Limit for Each Machine

Initialize  Batches by Dividing Demand by the Number of Machines

Initialize Batch Workload by Multiplying Batch and Processing Time

Select Maximum Batch Workload

Maximum Workload Limit in Each Machine -
Selected Batch Workload > 0 ?

Select Machine,
Which Has the Maximum Value of Maximum Workload Limit - Selected Batch Workload

Assign Selected Operation to Selected Machine
IF Tool is Allocated Previously,

Then Do Not Assign the Same Tool Again
(TOOL SHARING)

Update Selected Maximum Workload Limit and Maximum Tool Capacity

Stop

Yes
No

Select Operations,
Maximum Workload Limit - Selected Batch Workload > 0 and

Maximum Tool Capacity - Selected Operations Tool > 0

Maximum Tool Capacity in Each Machine -
The Number of Selected Operations Tool > 0 ?

Repeat Until All Operations Allocated
 

Figure 4   Flow chart for LPT algorithm. 
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General procedure for LPT algorithm in Phase I 

Step 1. Initialize ,m cj m cjQ Cη τ= = .  

Step 2. Make batches for each operation by dividing demands of an operation by the 

number of machine. 

Step 3. Select the batches with the maximum workload (batch×processing time) among 

the set of batches not yet allocated to machine. 

Step 4. For each unassigned operation, determine the number of feasible machines.  

Machine m is feasible if and only if cj
m

Q
m

η ≥ and m
m m

ττ ∆≥ . 

Step 5. Assign the selected batch to a machine with the minimum workload allocated to  

it so far (ties are broken arbitrary).  

Step 6. If any operations are not assigned, go to Step 3. 
 

Table 5 is the data to illustrate example procedure for LPT algorithm in Phase II. 
 

Operation 
number 

Demand Processing time for cluster type Batches Workload

1 9 3 3 3 3 9 9 9 

2 10 2 3 3 4 6 6 8 

3 7 4 2 2 3 8 8 1

4 6 7 2 2 2 1 1 1

5 8 6 2 3 3 1 1 1

Table 5   Loading data for small example to illustrate LPT algorithm. 
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Example procedure for LPT algorithm in Phase II 

Step 0. Initialize the workload limit as 200 and the tool magazine capacity as 50. 

Step 1. In each machine, find the maximum workload that 18 in the workload column. 

Step 2. Determine if the workload tool capacity limits are greater than 0. 

 For machine A, 200-18=182, for machine B, 200-18=182 and for machine C,  

200-18=182.  Tool capacity for each machine is 50-7=43, since the selected 

batch is in operation 2. Operation 5 needs 4 tools and these tools need 7 slots. 

If a tool is already assigned to a machine, then do not allocate it again. This is the 

concept of tool sharing. If workload limit and tool capacity limit are less than 0, 

then this system is infeasible. 

Step 6. Select the maximum workload remaining value from Step 2. Cluster A has a 

workload limit of 182. 

Step 7. Assign operations to the machines that were selected (when an operation is 

allocated to a machine, the tools associated with that operation are also allocated). 

By this method, one can determine which tools are allocated to which machines 

we well as determine how many tool slots are required (Table 2). 

Step 8. Update the workload and tool capacity limits for the selected machines. 

Step 9. Repeat until all operations allocated. 
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4.3.4.2. MULTIFIT ALGORITHM 

A Multifit algorithm is implemented in Phase I, and the detailed procedure is 

explained here. In the second Heuristic, each batch is allocated to machines by a Multifit 

algorithm, which is a multi-pass algorithm for bin-packing problems. To find a near 

optimal solution, it makes repeated trials for batch assignments with different machine 

capacity values (processing time capacities). A bisection search method provides the 

smallest machine capacity that can accommodate the allocation of all the batches.  

Multifit algorithms are usually used in scheduling problems (Coffman et al. 

1978), where they tend to exhibit better performance than LPT algorithms. Multifit 

algorithms can be applied to a loading problem, when the loading problem is presented 

as a bin-packing problem (Kim and Yano 1993). As in the case of scheduling problems, 

Multifit algorithms also tend to exhibit better performance than LPT algorithms. In this 

algorithm, the First Fit Decreasing (FFD), and Best Fit Increasing (BFI) rules are used to 

assign operations to machines. 
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Best Fit Decreasing (BFD) rules are implemented for testing, but the results are 

unsatisfactory; therefore, we have decided to apply the BFI rule rather than the BFD rule. 

FFD and BFI sort all operations in a non-increasing order of workloads and allocate 

them to machines in that order. While FFD allocates each operation to the lowest-

indexed machine into which the operation can be allocated without violating the 

machine capacity, BFI allocates each operation to the machine that will have the largest 

remaining capacity after the operation is allocated to it. The Multifit algorithm will be 

stopped when the GAP is less than 0.01. A flow chart is shown in Figure 5. 

When applying the Multifit algorithm in Phase I, those assignment 

methodologies will be used instead of FFD and BFI rules. 

 

Upper Bound - Lower BoundGAP    100
Upper Bound

 = × 
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Figure 5   Flow chart for Multifit algorithm in Phase I. 
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General procedure for Multifit algorithm in Phase I 

Step 1. Initialize ,m cj m cjQ Cη τ= = . 

Step 2. Make batches for each operation by dividing an operation’s demands by the  

number of machines. 

Step 3. Initialize the upper and the lower bounds on the machine capacities. 

Step 4. If the difference of the lower and the upper bounds is close enough, stop.  

 Otherwise, set the machine capacities to be the midpoints of the bounds. 

Step 5. For each unassigned operation, determine the number of feasible machines.  

Machine m is feasible if and only if cj
m

Q
m

η ≥ and m
m m

ττ ∆≥ . 

Step 6. Allocate the batches to machines by the FFD (and BFI) rule. If all the batches  

can be assigned by these rules, let the current machine capacity be a new upper  

bound. Otherwise, let the current capacity be a new lower bound and go to Step 4. 

4.4. EFFECTIVENESS OF HEURISTIC METHODS 

To measure the effectiveness of each Heuristic, numerical experiments will be 

conducted for randomly generated data and the computational times recorded and the 

solution compared with the optimal solution; the results will be examined to determine 

which types of data instances result in favorable objective function values. 

4.5. SUMMARY 

This chapter presented heuristic procedures for the loading problem-assigning 

operations to clusters and allocating operations to machines within clusters. The 
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heuristics were analyzed for worst-case computational efficiency. In the next chapter, the 

heuristics will be tested in order to determine actual computational efficiency, system 

utilization as well as performance standards. 
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CHAPTER V 

DISCUSSION, NUMERICAL RESULTS, CONCLUSION AND 

RECOMMEDATIONS 

 

This chapter presents the results of the numerical experiments employed to test 

the heuristics developed in CHAPTER IV for the loading problems. 

 The following is an overview of the chapter. Loading problem data sets will be 

generated to demonstrate heuristic performance. It entails an explanation of the means in 

which performance ratios, relative performance ratios and utilization are obtained for 

clusters in Phase I and machines in Phase II.  A simulation test will determine how many 

times the program needs to be run.  

 The tool capacity will be defined by means of a simulation test, then a reasonable 

workload limit for clusters and for machines will be determined.  The number of 

operations to run will then be determined. Final configurations for running this program 

will then be made. 

Unfortunately, it is extremely difficult to obtain actual data for a wide variety of 

systems because most are proprietary. In order to overcome this limitation, test problems 

have been generated randomly to ensure that the resulting data represent real systems 

relatively well. In fact, the parameters for the problems were derived from the reference 

author’s experience at a manufacturing company. The resulting data reflects FMS within 

that company. 
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This data was generated by means of a discrete uniform distribution in the C 

programming language (appendix B). Non-uniform distributions require information 

about the mean and variance of the dataset.  Since we do not have any information about 

our dataset, uniform distribution (which assumes that data is evenly distributed over the 

range) is the most suitable distribution for this problem. 

Test case data was randomly generated using the parameters and test levels 

provided in Table 6 and Table 7. The heuristics were implemented in the C 

programming language (appendix B) on a Personal Computer. 

 When implementing these problems, the parameters are undefined. Accordingly, 

performance and utilization may vary. Good parameters yield good output, while bad 

parameters yield poor output.  Without predefined parameters, good and reasonable 

output must be determined by means of trial and error. We will discuss the means in 

which parameters are defined in section 5.2 PROCEDURE. 

 

Parameter Range of values 

Demand Between 5 and 30 

The processing time Between 1 and 30 

The number of tools for each operations Between 5 and 10 

The number of tool slots needed for each tool
1, with probability 0.7 

2, with probability 0.1 

3, with probability 0.2 
Total number of tools used in this tests 80 

Table 6   Generating loading problem data sets. 
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Table 7   Configurations for running loading problems. 

 
 

5.1. DISCUSSION 

The heuristics were implemented in the C programming language on a Personal 

Computer with a 2.40 GHz Intel Pentium 4 processor with 512 MB DDR SDRAM 

(appendix B).  

Performance ratio, relative performance ratio and utilization may vary according 

to generated numbers. Sometimes, there is no output whatsoever, because randomly 

generated number can exceed workload or tool capacity limit. In order to further reduce 

the tolerance, this program was run 150 times for each case. 

#of 

cluster 

The number 

of machine 

The number 

of operation

Tool capacity 

for cluster and 

machine 

Workload 

limit for the 

cluster 

Workload 

limit for the 

machine 

3 4 90 110, 140 9200 2300 

3 6 140 110, 140 13800 2300 

3 8 190 110, 140 18400 2300 

4 4 140 110, 140 9200 2300 

4 6 200 110, 140 13800 2300 

4 8 280 110, 140 18400 2300 

5 4 190 110, 140 9200 2300 

5 6 280 110, 140 13800 2300 

5 8 360 110, 140 18400 2300 
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Solutions from the algorithms are compared with each other using the 

performance ratio as an index; this is the ratio to a lower bound, i.e., ( ) /i i
i I

p D C
∈

×∑  for 

Phase I, and ( ) /i i
i I

p D J
∈

×∑  for Phase II. Furthermore, performance ratios are obtained 

in this way: (Output of Heuristic-Lower Bound)
Lower Bound

. Lastly, relative performance ration is 

obtained from this following procedure, first acquire the ratio of a solution to a lower 

bound and find a best ratio ( BH ), which was obtained form this problem. Then a relative 

performance ratio is defined as h B h[(H  - H )] /  H ]  100× , where BH  is the best 

performance ratio and hH is the performance ratio from the Heuristic. 

Utilizations for each clusters are obtained in this way by means of the 

Largest Value of Workload for clusters 
Cluster Workload Limit

, machine utilization in each cluster is can be 

obtained by: Largest Output Workload for each Machine in each cluster
Machine Worload Limit

. We must 

choose the largest output workload for each cluster and machine since the largest 

workload can cover all of the operations. If we choose the small output workload, then 

that workload cannot cover the largest one. 

 5.2. PROCEDURE 

To obtain optimum performance ratio and utilization, we need to know which 

parameter yield reasonable outputs. First, we need to know how many times to run the 

program. The means in which the data is generated determines the output value (and also 
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determines if there is any output). We will begin with the smallest possible number of 

repetitions, in order to conserve time. To determine this number, we run the program 

from 100 to 1000 times. We tried this in Heuristic I. The specific condition is defined in 

Table 8 shows that there is no significant difference between 100 and 1000. Since there 

are no significant difference between 100 and 1000, we will begin with 150. 

 

Table 8   Computation experience to test the number of running programs. 

 
 
 
Once the number of program repetitions has been decided for each case, the tool 

capacity can be defined. Tool capacity 100 and 170 case is infeasible. Table 9, describe 

how performance improves when tool capacity increase from 110 to 140. Tool capacities 

of 141 to 160 do not exhibit significant difference in performance, so they are, 

Number 

of run 

# of 

cluster 

# of 

machine 

# of 

operation 

# of tool 

capacity

Cluster 

workload

limit 

Machine 

workload

limit 

Cluster 

performance

Cluster 

utilization 

Machine 

performance 

Machine

utilization

100 3 4 90 140 9200 2300 0.3093 94.16 0.2978 93.32

150 3 4 90 140 9200 2300 0.3076 92.8 0.295 91.9

200 3 4 90 140 9200 2300 0.3017 93.67 0.2903 92.82

300 3 4 90 140 9200 2300 0.307 92.89 0.2958 92.07

400 3 4 90 140 9200 2300 0.3101 92.75 0.2991 91.95

500 3 4 90 140 9200 2300 0.308 93.71 0.2964 92.86

600 3 4 90 140 9200 2300 0.3082 92.96 0.2965 92.09

700 3 4 90 140 9200 2300 0.3072 93.19 0.2956 92.35

800 3 4 90 140 9200 2300 0.3043 93.39 0.293 92.56

900 3 4 90 140 9200 2300 0.3071 93.1 0.2955 92.25

1000 3 4 90 140 9200 2300 0.3062 93.27 0.2948 92.44
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effectively, a waste of tool capacity. Therefore, we will begin with a tool capacity of 110 

for the worst case, and 140 for the best case. 

 

Table 9   Computation experience to test the tool capacity. 

  

The next step is finding a reasonable workload limit for clusters and machines. 

After fixing tool capacity with 110 and 140, we test the workload from 8000 to 9200. 

Machine workload limit is cluster workload limit divided by the number of machines. As 

seen in Table 10, in the below, there is no significant difference between the various 

numbers of workload limits. With these results, we can predict that workload limit does 

not effect to performance or relative performance ratio. Therefore, we need to check the 

utilization for each different workload limit. 

# of 

cluster 

# of 

machine 

# of 

operation 

# of tool 

capacity

Cluster 

workload

limit 

Machine 

workload

limit 

Cluster 

performance

Cluster

utilization

Machine 

performance 

Machine

utilization

3 4 80 110 8000 2300 0.3342 94.41 0.3177 93.23 

3 4 80 115 8000 2300 0.3245 94.61 0.3089 93.47 

3 4 80 120 8000 2300 0.3183 94.08 0.3026 92.94 

3 4 80 130 8000 2300 0.3110 94.39 0.2977 93.41 

3 4 80 140 8000 2300 0.3092 94.12 0.2961 93.16 

3 4 80 150 8000 2300 0.3102 94.17 0.2971 94.17 

3 4 80 160 8000 2300 0.3092 93.33 0.2970 92.44 
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Table 10   Computation experience to test the workload limit. 

  

To find out the number of operations, we have to run the program with varying 

numbers of operations. When there are 80 operations and the tool capacity is 110 and the 

cluster workload limit is 8000, utilization is over 90% -- a good number. However, if we 

continue to execute 80 operations and raise the tool capacity to 140 and the cluster 

workload limit to 9200, utilization decreases below 90%. Accordingly, when performing 

80 operations, a cluster workload limit was set at 8000. Many other cases were dealt 

with in a similar fashion. As a result of these trials, we found that more than 90 

operations are infeasible. Therefore a maximum limit of 90 operations and, in this case, a 

cluster workload limit of 9200 is reasonable for each tool capacity. This procedure is 

shown in Table 11. 

# of 

cluster 

# of 

machine 

# of 

operation 

# of tool 

capacity 

Cluster 

workload

limit 

Machine 

workload

limit 

Cluster 

performance

Cluster

utilization 

Machine 

performance 

Machine

utilization

3 4 80 110 8000 2000 0.3342 94.41 0.3177 93.23 

3 4 80 110 8400 2100 0.3414 92.69 0.3236 92.69 

3 4 80 110 8800 2200 0.3479 90.56 0.3275 89.19 

3 4 80 110 9200 2300 0.3544 87.51 0.3327 86.09 

3 4 80 140 8000 2000 0.3092 94.12 0.2961 93.16 

3 4 80 140 8400 2100 0.3083 91.58 0.2951 91.58 

3 4 80 140 8800 2200 0.3070 88.73 0.2939 87.83 

3 4 80 140 9200 2300 0.3050 85.43 0.2921 85.44 
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Table 11   Computation experience to test the number of operations. 

 

 Now that the number of operations, the tool capacity, the cluster workload limit 

and the machine workload limit have been defined, we can perform the test for each 

different cluster and machine case to get those numbers.  

5.3. RESULTS AND ANALYSIS 

The results of loading problem computational experiments are subsequently 

defined. On the tables below, machine workload limit is fixed at 2300 per machine. 

 Tables 12, 13, and 14 present the loading problem performance ratio for 8 

Heuristics in Phase I for each cluster. Heuristic II performs well in the cluster 3 case and 

Heuristic III performs well in cluster 4 and cluster 5 cases. Tables 15, 16, and 17 show 

the results of the loading problem performance ratio for 8 Heuristics in Phase II for each  

 

# of 

cluster 

# of 

machine 

# of 

operation 

# of tool 

capacity 

Cluster 

workload 

limit 

Machine 

workload 

limit 

Cluster 

performance

Cluster 

utilization 

Machine 

performance 

Machine

utilization

3 4 80 110 8000 2300 0.3342 94.41 0.3177 93.23

3 4 80 110 9200 2300 0.3544 87.51 0.3327 86.09

3 4 80 140 8000 2300 0.3092 94.12 0.2961 93.16

3 4 80 140 9200   2300 0.3050 85.43 0.2921 85.44

3 4 90 110 9200 2300 0.3384 94.7 0.3238 93.66

3 4 90 140 9200 2300 0.3106 93.81 0.2988 92.94

3 4 100 infeasible 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work- 
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.2426 0.2055 0.2182 0.2492 0.2459 0.2086 0.2210 0.2522
4 90 140 9200 0.2324 0.1970 0.2069 0.2303 0.2350 0.1997 0.2098 0.2331
6 140 110 13800 0.2326 0.2008 0.2150 0.2346 0.2356 0.2037 0.2174 0.2376
6 140 140 13800 0.2341 0.1919 0.2134 0.2325 0.2363 0.1947 0.2156 0.2352
8 190 110 18400 0.2294 0.2047 0.2174 0.2329 0.2318 0.2075 0.2201 0.2356
8 190 140 18400 0.2307 0.1963 0.2081 0.2293 0.2333 0.1986 0.2107 0.2320

Average 0.2363 0.1994 0.2131 0.2348 0.2336 0.2021 0.2158 0.2376

Table 12   Phase I performance in cluster 3. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.2931 0.2713 0.2721 0.2936 0.2956 0.2734 0.2747 0.2959 
4 90 140 9200 0.2878 0.2579 0.2639 0.2875 0.2901 0.2609 0.2664 0.2901 
6 140 110 13800 0.2957 0.2832 0.2804 0.2939 0.2978 0.2860 0.2831 0.2960 
6 140 140 13800 0.2839 0.2658 0.2690 0.2829 0.2860 0.2684 0.2712 0.2851 
8 190 110 18400 0.2854 0.2848 0.2749 0.2838 0.2878 0.2872 0.2774 0.2863 
8 190 140 18400 0.2845 0.2740 0.2704 0.2844 0.2868 0.2762 0.2729 0.2867 

Average 0.2884 0.2729 0.2718 0.2877 0.2907 0.2753 0.2743 0.2900 

Table 13   Phase I performance in cluster 4. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.3316 0.3253 0.3209 0.3278 0.3344 0.3276 0.3239 0.3305 
4 90 140 9200 0.3216 0.3173 0.3136 0.3269 0.3242 0.3199 0.3169 0.3298 
6 140 110 13800 0.3285 0.3343 0.3302 0.3319 0.3308 0.3368 0.3330 0.3348 
6 140 140 13800 0.3246 0.3317 0.3180 0.3285 0.3269 0.3339 0.3206 0.3313 
8 190 110 18400 0.3304 0.3455 0.3315 0.3320 0.3329 0.3482 0.3342 0.3346 
8 190 140 18400 0.3254 0.3428 0.3226 0.3238 0.3282 0.3454 0.3248 0.3264 

Average 0.3270 0.3328 0.3228 0.3285 0.3296 0.3353 0.3256 0.3312 

Table 14   Phase I performance in cluster 5. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.2343 0.1921 0.2156 0.2440 0.2364 0.1944 0.2178 0.2462 
4 90 140 9200 0.2257 0.1905 0.2059 0.2292 0.2280 0.1929 0.2081 0.2315 
6 140 110 13800 0.2284 0.1952 0.2142 0.2333 0.2304 0.1978 0.2167 0.2355 
6 140 140 13800 0.2292 0.1866 0.2130 0.2313 0.2316 0.1894 0.2154 0.2333 
8 190 110 18400 0.2264 0.2007 0.2171 0.2317 0.2287 0.2035 0.2193 0.2343 
8 190 140 18400 0.2276 0.1925 0.2078 0.2285 0.2301 0.1952 0.2104 0.2309 

Average 0.2286 0.1929 0.2123 0.2330 0.2309 0.1955 0.2146 0.2353 

Table 15   Phase II performance in cluster 3. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.2884 0.2628 0.2707 0.2918 0.2906 0.2650 0.2727 0.2938 
4 90 140 9200 0.2829 0.2528 0.2631 0.2859 0.2849 0.2550 0.2649 0.2881 
6 140 110 13800 0.2921 0.2783 0.2799 0.2929 0.2939 0.2802 0.2818 0.2946 
6 140 140 13800 0.2804 0.2619 0.2687 0.2819 0.2822 0.2638 0.2707 0.2840 
8 190 110 18400 0.2829 0.2820 0.2747 0.2830 0.2854 0.2842 0.2770 0.2857 
8 190 140 18400 0.2822 0.2716 0.2703 0.2838 0.2845 0.2740 0.2726 0.2862 

Average 0.2848 0.2682 0.2712 0.2866 0.2869 0.2704 0.2733 0.2887 

Table 16   Phase II performance in cluster 4. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.3280 0.3207 0.3202 0.3261 0.3301 0.3227 0.3222 0.3280 
4 90 140 9200 0.3183 0.3130 0.3129 0.3256 0.3204 0.3151 0.3150 0.3276 
6 140 110 13800 0.3262 0.3312 0.3298 0.3311 0.3280 0.3329 0.3313 0.3327 
6 140 140 13800 0.3220 0.3290 0.3176 0.3278 0.3238 0.3306 0.3193 0.3296 
8 190 110 18400 0.3286 0.3434 0.3311 0.3316 0.3307 0.3455 0.3332 0.3336 
8 190 140 18400 0.3236 0.3407 0.3225 0.3235 0.3259 0.3428 0.3247 0.3257 

Average 0.3245 0.3297 0.3223 0.3276 0.3265 0.3316 0.3243 0.3296 

Table 17   Phase II performance in cluster 5. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.1023 0.0584 0.0729 0.1102 0.1063 0.0621 0.0762 0.1137 
4 90 140 9200 0.0913 0.0494 0.0418 0.0889 0.0945 0.0527 0.0453 0.0922 
6 140 110 13800 0.1027 0.0654 0.0522 0.1049 0.1062 0.0688 0.0551 0.1085 
6 140 140 13800 0.1069 0.0577 0.0406 0.1051 0.1095 0.0610 0.0432 0.1083 
8 190 110 18400 0.0827 0.0533 0.0683 0.0868 0.0855 0.0566 0.0716 0.0900 
8 190 140 18400 0.0818 0.0399 0.0683 0.0802 0.0850 0.0427 0.0431 0.0834 

Average 0.0946 0.0540 0.0526 0.0960 0.0978 0.0573 0.0558 0.0994 

Table 18   Phase I relative performance in cluster 3. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.0788 0.0505 0.0515 0.0795 0.0821 0.0531 0.0549 0.0825 
4 90 140 9200 0.0852 0.0468 0.0348 0.0847 0.0882 0.0506 0.0382 0.0881 
6 140 110 13800 0.0730 0.0566 0.0447 0.0706 0.0757 0.0602 0.0482 0.0734 
6 140 140 13800 0.0694 0.0458 0.0500 0.0680 0.0721 0.0492 0.0528 0.0709 
8 190 110 18400 0.0418 0.0411 0.0257 0.0396 0.0451 0.0443 0.0292 0.0431 
8 190 140 18400 0.0512 0.0373 0.0325 0.0511 0.0543 0.0402 0.035 0.0542 

Average 0.0666 0.0464 0.0399 0.0656 0.0696 0.0496 0.0432 0.0687 

Table 19   Phase I relative performance in cluster 4. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.0692 0.0605 0.0543 0.0639 0.0731 0.0636 0.0585 0.0676 
4 90 140 9200 0.0576 0.0516 0.0385 0.0650 0.0612 0.0553 0.0432 0.0689 
6 140 110 13800 0.0450 0.0532 0.0474 0.0498 0.0483 0.0569 0.0515 0.0539 
6 140 140 13800 0.0417 0.0518 0.0324 0.0472 0.0450 0.0548 0.0360 0.0512 
8 190 110 18400 0.0470 0.0681 0.0486 0.0493 0.0506 0.0720 0.0524 0.0530 
8 190 140 18400 0.0396 0.0643 0.0308 0.0373 0.0435 0.0680 0.0340 0.0410 

Average 0.0464 0.0582 0.0420 0.0521 0.0496 0.0618 0.0459 0.0560 

Table 20   Phase I relative performance in cluster 5. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.1280 0.0799 0.0729 0.1390 0.1303 0.0825 0.0756 0.1416 
4 90 140 9200 0.0961 0.0550 0.0432 0.1002 0.0988 0.0578 0.0458 0.1029 
6 140 110 13800 0.1025 0.0640 0.0526 0.1082 0.1048 0.0670 0.0556 0.1108 
6 140 140 13800 0.1101 0.0608 0.0424 0.1125 0.1128 0.0641 0.0452 0.1148 
8 190 110 18400 0.0800 0.0494 0.0690 0.0864 0.0828 0.0527 0.0716 0.0894 
8 190 140 18400 0.0817 0.0400 0.0395 0.0827 0.0846 0.0431 0.0426 0.0856 

Average 0.0997 0.0582 0.0533 0.1048 0.1024 0.0612 0.0561 0.1075 

Table 21   Phase II relative performance in cluster 3. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.1003 0.0679 0.0513 0.1046 0.1031 0.0708 0.0540 0.1072 
4 90 140 9200 0.0881 0.0497 0.0382 0.0919 0.0906 0.0526 0.0405 0.0947 
6 140 110 13800 0.0779 0.0599 0.0451 0.0789 0.0802 0.0623 0.0477 0.0810 
6 140 140 13800 0.0654 0.0414 0.0501 0.0673 0.0677 0.0438 0.0527 0.0700 
8 190 110 18400 0.0385 0.0446 0.0278 0.0460 0.0419 0.0475 0.0309 0.0495 
8 190 140 18400 0.0525 0.0386 0.0333 0.0546 0.0556 0.0417 0.0364 0.0578 

Average 0.0704 0.0504 0.0410 0.0739 0.0732 0.0531 0.0437 0.0767 

Table 22   Phase II relative performance in cluster 4. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.0663 0.0561 0.0554 0.0635 0.0692 0.0589 0.0582 0.0663 
4 90 140 9200 0.0679 0.0606 0.0409 0.0779 0.0707 0.0634 0.0438 0.0806 
6 140 110 13800 0.0473 0.0506 0.0496 0.0542 0.0498 0.0530 0.0518 0.0564 
6 140 140 13800 0.0405 0.0505 0.0343 0.0487 0.0431 0.0527 0.0367 0.0514 
8 190 110 18400 0.0475 0.0690 0.0481 0.0517 0.0505 0.0721 0.0511 0.0547 
8 190 140 18400 0.0410 0.0652 0.0321 0.0408 0.0442 0.0682 0.0352 0.0439 

Average 0.0504 0.0587 0.0434 0.0561 0.0531 0.0614 0.0461 0.0589 

Table 23   Phase II relative performance in cluster 5. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9359 0.9076 0.9113 0.9430 0.9434 0.9112 0.9146 0.9467 
4 90 140 9200 0.9386 0.9020 0.9230 0.9316 0.9419 0.9051 0.9263 0.9350 
6 140 110 13800 0.9576 0.9403 0.9358 0.9630 0.9614 0.9437 0.9387 0.9669 
6 140 140 13800 0.9558 0.9292 0.9437 0.9485 0.9585 0.9324 0.9463 0.9519 
8 190 110 18400 0.9649 0.9515 0.9649 0.9646 0.9678 0.9549 0.9683 0.9680 
8 190 140 18400 0.9626 0.9425 0.9568 0.9707 0.9660 0.9452 0.9600 0.9741 

Average 0.9526 0.9289 0.9392 0.9536 0.9560 0.9321 0.9424 0.9571 

Table 24   Phase I utilization in cluster 3. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9620 0.9518 0.9564 0.9622 0.9655 0.9545 0.9598 0.9653 
4 90 140 9200 0.9615 0.9494 0.9349 0.9539 0.9646 0.9532 0.9381 0.9574 
6 140 110 13800 0.9538 0.9411 0.9362 0.9473 0.9566 0.9447 0.9397 0.9501 
6 140 140 13800 0.9444 0.9315 0.9353 0.9433 0.9472 0.9348 0.9380 0.9462 
8 190 110 18400 0.9724 0.9762 0.9591 0.9701 0.9758 0.9795 0.9625 0.9736 
8 190 140 18400 0.9735 0.9609 0.9608 0.9696 0.9766 0.9638 0.9642 0.9728 

Average 0.9613 0.9518 0.9471 0.9577 0.9644 0.9551 0.9504 0.9609 

Table 25   Phase I utilization in cluster 4. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

Heuristic 
II 

Heuristic 
III 

Heuristic 
IV 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9710 0.9678 0.9599 0.9675 0.9752 0.9711 0.9642 0.9714 
4 90 140 9200 0.9674 0.9729 0.9515 0.9655 0.9711 0.9767 0.9561 0.9695 
6 140 110 13800 0.9489 0.9549 0.9554 0.9487 0.9522 0.9586 0.9594 0.9528 
6 140 140 13800 0.9427 0.9562 0.9405 0.9451 0.9460 0.9593 0.9441 0.9491 
8 190 110 18400 0.9515 0.9692 0.9517 0.9528 0.9551 0.9733 0.9556 0.9565 
8 190 140 18400 0.9453 0.9640 0.9363 0.9497 0.9491 0.9678 0.9394 0.9534 

Average 0.9545 0.9642 0.9492 0.9549 0.9581 0.9678 0.9531 0.9588 

Table 26   Phase I utilization in cluster 5. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9256 0.8925 0.9080 0.9361 0.9281 0.8950 0.9106 0.9389 
4 90 140 9200 0.9305 0.8947 0.9216 0.9264 0.9333 0.8973 0.9242 0.9292 
6 140 110 13800 0.9521 0.9336 0.9346 0.9611 0.9547 0.9366 0.9376 0.9640 
6 140 140 13800 0.9496 0.9230 0.9431 0.9468 0.9525 0.9262 0.9458 0.9493 
8 190 110 18400 0.9608 0.9465 0.9644 0.9629 0.9637 0.9498 0.9671 0.9661 
8 190 140 18400 0.9586 0.9379 0.9563 0.9694 0.9617 0.9410 0.9594 0.9725 

Average 0.9462 0.9214 0.9380 0.9505 0.9490 0.9243 0.9408 0.9533 

Table 27   Phase II utilization in cluster 3. 
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# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9555 0.9406 0.9542 0.9595 0.9585 0.9435 0.9569 0.9623 
4 90 140 9200 0.9547 0.9427 0.9336 0.9516 0.9574 0.9456 0.9359 0.9546 
6 140 110 13800 0.9488 0.9345 0.9353 0.9457 0.9512 0.9368 0.9378 0.9479 
6 140 140 13800 0.9395 0.9264 0.9346 0.9418 0.9419 0.9288 0.9372 0.9445 
8 190 110 18400 0.9688 0.9721 0.9585 0.9689 0.9722 0.9751 0.9616 0.9725 
8 190 140 18400 0.9701 0.9575 0.9604 0.9685 0.9733 0.9606 0.9635 0.9717 

Average 0.9563 0.9456 0.9461 0.9560 0.9591 0.9484 0.9488 0.9589 

Table 28   Phase II utilization in cluster 4. 

 
 
 

# of 
machine

# of 
operation 

# of 
tools 

Cluster
work-
load 
limit 

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit 

Heuristic 
II 

Multifit 

Heuristic 
III 

Multifit

Heuristic 
IV 

Multifit

4 90 110 9200 0.9657 0.9610 0.9586 0.9648 0.9687 0.9638 0.9615 0.9676 
4 90 140 9200 0.9625 0.9666 0.9503 0.9634 0.9654 0.9695 0.9532 0.9662 
6 140 110 13800 0.9455 0.9502 0.9545 0.9473 0.9480 0.9526 0.9567 0.9496 
6 140 140 13800 0.9389 0.9521 0.9397 0.9438 0.9414 0.9543 0.9420 0.9464 
8 190 110 18400 0.9486 0.9658 0.9508 0.9519 0.9516 0.9690 0.9539 0.9549 
8 190 140 18400 0.9425 0.9607 0.9359 0.9489 0.9456 0.9637 0.9389 0.9521 

Average 0.9506 0.9594 0.9483 0.9533 0.9535 0.9622 0.9510 0.9561 

Table 29   Phase II utilization in cluster 5. 
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Phase # of 
cluster�

Heuristic 
I�

Heuristic 
II�

Heuristic 
III�

Heuristic 
IV�

Heuristic I 
Multifit�

Heuristic II
Multifit�

Heuristic III
Multifit�

Heuristic IV
Multifit�

I� 3� 0.2363� 0.1994� 0.2131� 0.2348� 0.2336� 0.2021� 0.2158� 0.2376�
I� 4� 0.2884� 0.2729� 0.2718� 0.2877� 0.2907� 0.2753� 0.2743� 0.2900�
I� 5� 0.3270� 0.3328� 0.3228� 0.3285� 0.3296� 0.3353� 0.3256� 0.3312�

Table 30   Performance of Phase I. 

 
 
 

Phase # of 
cluster�

Heuristic 
I�

Heuristic 
II�

Heuristic 
III�

Heuristic 
IV�

Heuristic I 
Multifit�

Heuristic II
Multifit�

Heuristic III
Multifit�

Heuristic IV
Multifit�

II� 3� 0.2286 0.1929 0.2123 0.2330 0.2336 0.2021 0.2158 0.2376 
II� 4� 0.2848 0.2682 0.2712 0.2866 0.2907 0.2753 0.2743 0.2900 
II� 5� 0.3245 0.3297 0.3223 0.3276 0.3296 0.3353 0.3256 0.3312 

Table 31   Performance of Phase II. 

 
 
 

Phase # of 
cluster�

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic I 
Multifit�

Heuristic II
Multifit�

Heuristic III
Multifit�

Heuristic IV
Multifit�

I� 3� 0.0946 0.0540 0.0526 0.0960 0.0978 0.0573 0.0558 0.0994 
I� 4� 0.0666 0.0464 0.0399 0.0656 0.0696 0.0496 0.0432 0.0687 
I� 5� 0.0464 0.0582 0.0420 0.0521 0.0496 0.0618 0.0459 0.0560 

Table 32   Relative performance of Phase I. 
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Phase # of 
cluster�

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic I 
Multifit�

Heuristic II
Multifit�

Heuristic III
Multifit�

Heuristic IV
Multifit�

II� 3� 0.0997 0.0582 0.0533 0.1048 0.1024 0.0612 0.0561 0.1075 
II� 4� 0.0704 0.0504 0.0410 0.0739 0.0732 0.0531 0.0437 0.0767 
II� 5� 0.0504 0.0587 0.0434 0.0561 0.0531 0.0614 0.0461 0.0589 

Table 33   Relative performance of Phase II. 

 
 
 

Phase # of 
Tool�

Heuristic 
I�

Heuristic 
II�

Heuristic 
III�

Heuristic 
IV�

Heuristic 
I 

Multifit�

Heuristic 
II 

Multifit�

Heuristic 
III 

Multifit�

Heuristic 
IV 

Multifit�
Average�

I� 110� 0.2855� 0.2728� 0.2734� 0.2866� 0.2881� 0.2754� 0.2761� 0.2893� 0.2809�
I� 140� 0.2806� 0.2639� 0.2651� 0.2807� 0.2830� 0.2664� 0.2677� 0.2833� 0.2738�

Table 34   Performance by the number of tools in Phase I. 

 
 
 

Phase # of 
Tool�

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit�

Heuristic 
II 

Multifit�

Heuristic 
III 

Multifit�

Heuristic 
IV 

Multifit�
Average

II 110 0.2817 0.2674 0.2726 0.2851 0.2838 0.2696 0.2747 0.2872 0.2777 
II 140 0.2769 0.2598 0.2646 0.2797 0.2790 0.2621 0.2668 0.2819 0.2714 

Table 35   Performance by the number of tools in Phase II. 
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Phase # of 
Tool�

Heuristic 
I�

Heuristic 
II�

Heuristic 
III�

Heuristic 
IV�

Heuristic 
I 

Multifit�

Heuristic 
II 

Multifit�

Heuristic 
III 

Multifit�

Heuristic 
IV 

Multifit�
Average�

I 110 0.0714 0.0563 0.0517 0.0727 0.0748 0.0597 0.0553 0.0762 0.0648 
I 140 0.0698 0.0496 0.0427 0.0700 0.0730 0.0530 0.0429 0.0734 0.0593 

Table 36   Relative performance by the number of tools in Phase I. 

 
 
 

Phase # of 
Tool�

Heuristic 
I 

LPT 

Heuristic 
II 

LPT 

Heuristic 
III 

LPT 

Heuristic 
IV 

LPT 

Heuristic 
I 

Multifit�

Heuristic 
II 

Multifit�

Heuristic 
III 

Multifit�

Heuristic 
IV 

Multifit�
Average

II 110 0.0765 0.0602 0.0524 0.0814 0.0792 0.0630 0.0552 0.0841 0.0690 
II 140 0.0715 0.0513 0.0393 0.0752 0.0742 0.0542 0.0421 0.0780 0.0607 

Table 37   Relative performance by the number of tools in Phase II. 

 
 
 

The number of tool Average run time 
110 0.3648 
140 0.2820 

Table 38   Average runtime by the number of tools. 
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The number of cluster Average run time 

3 0.1336 
4 0.3016 
5 0.5349 

Table 39   Average runtime by the number of clusters. 

 
 
 

Heuristics Run time 
Heuristic I 0.3175 
Heuristic II 0.3153 
Heuristic III 0.3319 
Heuristic IV 0.3289 

Table 40   Average runtime by Heuristics. 
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cluster. The application of the Heuristic II and the LPT algorithms performs well in the 

cluster 3 and cluster 4 case, while Heuristic III performs well in the cluster 5 case.  

Tables 18, 19, and 20 present the loading problem relative performance ratio for 

8 Heuristics in Phase I for each cluster. Heuristic III performs well in the cluster 3, 4 and 

5 cases. Tables 21, 22, and 23 show the loading problem relative performance ratio for 8 

Heuristics in Phase II for each cluster. The implementation of the Heuristic III and LPT 

algorithms performs better than the other Heuristics in all cluster cases.  

 Tables 24, 25, 26, 27, 28 and 29 show the utilization for all clusters and machines. 

As the number of operations increases, the utilization also increases. Therefore, we can 

maximize the utilization by increasing the number of operations. As the number of 

operations increase, workload also increases. So, we can increase the number of 

operations up to the cluster and machine workload limits. 

  Tables 30, 31, 32 and 33 present the average and relative performance for all 

configurations in each cluster. In regard to tool capacity, a large tool capacity provides 

better performance than a small tool capacity. This result has been demonstrated already 

in many previous papers. A loose tool capacity can be more freely allocated to clusters 

and machines in all cases. If tool capacity is bound too tightly, tool capacity bounds must 

be satisfied first and the application of algorithms becomes difficult.  

Tables 34, 35, 36 and 37 show the performance ratio and relative performance 

ratio according to the number of tools in each Phase. When the tool capacity is loose, the 

performance and relative performance ratios are better. Table 38 presents the run time 

according to tool capacity. When the tool capacity is loose, run time is short, because 
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operations can find machines easily. Table 39 shows the run time according to the 

number of clusters. As the number of clusters increase, run time also increases. Table 40 

presents the run time according to each Heuristic. Different Heuristics do not exhibit 

significantly different run times. 

  Given these results, one can infer that if performance in Phase I is good, then 

performance in Phase II will be similarly good. Accordingly, we can also infer that a 

Phase I solution can effect a Phase II solution. Many people have solved the Phase II 

problem in various ways, but this dissertation is the first known attempt to solve the 

Phase I problem.  In fact, Phase I performance can be further improved if a better 

heuristic can be determined.   

Although the loading problem may have to be solved several times in order to 

obtain a production and setup plan for a given set of orders, it is not likely that the 

problem will have to be solved very frequently or quickly for real time decisions in most 

real systems.  

We can get a heuristic output in a reasonably short run time, so we can apply this 

system in a real factory. We can control cluster and machine utilization by increasing or 

decreasing the number of operations.  Since we want to complete as many operations as 

possible, we need to choose the number of operations that maximizes utilization.  

Overall, Heuristic II and Heuristic III performed better than any other Heuristic. 

To reiterate, there are different loading problem environments that result from the three 

ways machines are grouped in FMS (i.e., no grouping, partial grouping, and total 

grouping). Different grouping methods generate different loading problem situations, 
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which affect the performance of loading plans in various ways. Therefore, we compared 

the algorithms suggested in this study with existing algorithms developed for the total 

grouping configuration via a series of simulation experiments. Since no grouping is 

known to be inferior to total grouping in system throughput, the no grouping 

configuration is not included in the comparison (Stecke and Solberg 1985).  

It has been shown that partial grouping performs better than other groupings (Lee 

and Kim 2000). This might be because partial grouping and corresponding loading plans 

help to cope with system disturbances (e.g. machine breakdowns) more easily by 

providing more routing flexibility.  

5.4. CONCLUSION AND EXTENTIONS 

This chapter summarizes the contributions of this dissertation and attempts to 

reveal more areas of future research. 

CHAPTER II presented a survey of the literature describing the problems 

inherent in the loading problem. CHAPTER III developed a formal model as well as 

integer linear programming formulations for the problems inherent in the loading 

problem. There are two integer linear programming formulations for the sub-problems. 

CHAPTER IV proposed a Heuristic for each formulation presented in CHAPTER III. 

CHAPTER V presented computational results from testing the Heuristics that were 

presented in CHAPTER IV. 

This research focused on the loading problem with 3, 4, and 5 clusters and 4, 6, 

and 8 machines within those clusters. The goal of this research was to obtain a balanced 

workload in order to minimize the maximum workload. We expect this result will reduce 
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lead times and operating costs.  Furthermore, such outputs may be obtained in a 

reasonable running time. In order to obtain this balanced workload, we introduced a 

partial grouping method. By applying this method, we can divide the demand into small 

batches so that demand can be distributed in small batches to the machines. Several good 

algorithms were suggested for the loading problem that results from distributing batches.  

To compare the suggested algorithms with an existing one, computational 

experiments were performed on randomly generated test problems. Research on the 

loading problem for the partial grouping configuration may be more important since the 

partial grouping configuration not only provides better performance than the total 

grouping configuration but it also provides a more practical or realistic alternative for 

obtaining pooling effects from a small to a large number of machines.  

In analyzing this loading problem, this research has made several contributions. 

The first was the identification and formal modeling of the loading problem. The integer 

linear programming models presented were extensions of known models for the loading 

problem. The main problem was initially formulated into an integer linear programming 

model and then it was decomposed into two sub-problems, which were also formulated 

into integer linear programming models. These two sub-problems were solved by means 

of a hierarchical approach. 

A second contribution was the ability to deal with different processing times in 

different clusters for the same operation.  This reflects the scenario in which an operation 

can be processed on machines of different types. In such a scenario, loading algorithms 
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based on bin packing algorithms could not be used. Therefore, a new algorithm had to be 

developed. 

A third contribution was the development of heuristic procedures for the loading 

problem. Since existing bin-packing procedures could not be used, a newly invented 

assignment algorithm was implemented. The heuristics were analyzed for theoretical 

worst-case performance. 

A fourth contribution was the implementation of a two-phase method that made 

large-scale loading problems possible. Previous loading problems were limited to small 

numbers of machine problems; however, a two-phase approach made it possible to solve 

a large number of machine problems. And we could know which Heuristic is performed 

better than the other Heuristics in each Phase by accomplishing relative performance 

ratio. 

 Finally, the heuristics procedures have been tested using randomly generated data. 

The heuristics were computationally efficient for problems of varying size and the 

results were interesting from a theoretical and practical perspective. However, the 

heuristics should be tested using actual case study data. 

This research can be extended in several ways. It would be interesting to 

combine the loading algorithm with those of other related problems such as the part type 

selection problem or the scheduling problem. Since the part type selection and loading 

problems are interrelated with each other, the two problems may have to be solved 

simultaneously. In which case, the loading algorithm suggested in this dissertation can 

be used as a sub-routine for an algorithm for part type selection.  
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Additional tooling costs, such as tool purchase costs and other tool-related costs, 

should also be considered in order to provide more flexibility in grouping. For example, 

determining the number of tool copies for each tool type is another important decision 

problem in operating FMS. Tradeoffs between the costs and the benefits of having more 

tools must be analyzed in order to solve such tool requirements planning or tool 

provisioning problems. 

A well-balanced workload system is the goal, and partial grouping is a critical 

means of obtaining that goal.  Partial grouping yields a more balanced workload because 

it entails the subdivision of demands into several batches. If we can divide demands into 

smaller batches and then allocate these batches to machines then we can get a more 

balanced workload. Accordingly, knowing the constitution of a batch can make a big 

difference. 

There are alternative means for selecting operations.  For example, at the first 

step of the Heuristic, we chose either the minimum or maximum workloads between 

clusters; however, selecting minimum or maximum workloads between operations might 

also be justified. These alternatives may or may not yield significantly different results. 

Nonetheless, the implementation of several alternatives may help illuminate the loading 

problem in FMS.  

In Phase I and Phase II, when implementing a MULTIFIT algorithm, operations 

may be assigned to the smallest remaining capacity clusters instead of to the largest 

remaining capacity clusters 
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APPENDIX A 
 

C COMPUTER LISTING FOR LOADING DATA GENERATION 

Programming Language: ANSI c 
Programming Environment: PC using Pentium 4 processor 2.40 Ghz 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
 
#define Z 10000         
#define Capa 80      // or 100 
#define oper_num 20  // or 30, 40 
#define max 500 
#define mach 4          // or 6, 8 
#define TOOL 80 
#define NEWTOOL 10 
 
void generating_number(); 
void run_terminate(); 
 
// # of operations: 20, 30, 40 
// # of machines: 4, 6, 8 
// Capacity of a tool magazine: 80 or 100 
// Processing time DU(1,10) 
// # of tools needed for each operation DU(5,10) 
// # of tool slots needed for each tool 1,2,3 with prob of 0.7, 0.1, 0.2 
 
int p_time[max]; 
int num_tools[max]; 
int demand[max]; 
int opertool[max][TOOL]; 
int ot[max][NEWTOOL]; 
int lslot[TOOL]; 
 
clock_t start, finish; 
 
FILE *ofp; 
 
void main(void) 
{ 
 ofp=fopen("output.out","w"); 
 
 generating_number(); 
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 start=clock(); 
  
 run_terminate(); 
} 
 
void generating_number() 
{   
 int i,j; 
 int otool; 
 int count; 
 int temp; 
 int ottemp[max]; 
 
 srand((unsigned)time(NULL)); 
 
 for (i=0;i<oper_num;i++) 
 { 
  p_time[i]=1+rand()%10 
 } 
 for (i=0;i<oper_num;i++) 
 { 
  demand[i]=5+rand()%26;      
  //generate demand by Uniform Dist. [5,30] 
 } 
 
 for (i=0;i<oper_num;i++) 
 { 
  ottemp[i]=5+rand()%6;    
 } 
 for (i=0;i<oper_num;i++) 
 { 
  count=0; 
  for (j=0;j<ottemp[i];j++) 
  { 
  otool=rand()%TOOL;        
 
  if(opertool[i][otool]==0)  
  { 
   opertool[i][otool]=1;       
   count++;        
  } 
  else j--; 
  } 
 } 
 for (i=0;i<oper_num;i++) 
 { 
  for (j=0;j<NEWTOOL;j++) 
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  { 
   ot[i][j]=-1; 
  } 
 } 
 for (i=0;i<oper_num;i++) 
 { 
  count=0; 
  for (j=0;j<TOOL;j++) 
  { 
   if (opertool[i][j]==1) 
   { 
    ot[i][count]=j;       
    count++;     
   } 
  } 
 } 
 for(i=0;i<TOOL;i++) 
 { 
  temp=rand()%100; 
 
  if(temp<70) lslot[i]=1;       
  else if(temp>=70&&temp<90) lslot[i]=3;    
  else lslot[i]=2;         
 } 
} 
void run_terminate() 
{ 
 double duration; 
 finish=clock(); 
 duration=(double)(finish-start)/CLOCKS_PER_SEC; 
 fprintf(ofp, "run time = % .10f second \n",duration); 
} 
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APPENDIX B 
 

C COMPUTER LISTING FOR HEURISTICS 

�
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�!��������	��"��#���$ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
       
#define cluster 5     
#define batches 5     
#define machine 6 
#define ops_num 280     
#define clus_capa 110    
#define machine_tool_capa 110 
#define cluster_work 13800   
#define machine_work_limit 2300 
 
#define max 1000 
#define max_num 1000000    
#define min_num 0     
#define TOOL 80 
#define NEWTOOL 10 
#define FOUND 1 
#define NOTFOUND 0 
#define whole_block ops_num*batches  
 
void run_terminate(); 
void const_batch(); 
void get_workload(); 
void min_cluster(); 
void max_cluster(); 
void assign_cluster(); 
void LPT(); 
int LPT_1(); 
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void machine_assign(int); 
void tool_check(int); 
void multifit(); 
 
int p_time[ops_num][cluster]; 
int demand[ops_num]; 
int min_ptime[ops_num]; 
int ottemp[ops_num]; 
int opertool[ops_num][TOOL]; 
int ot[ops_num][NEWTOOL]; 
int lslot[TOOL]; 
int batch[ops_num][cluster]; 
int quot[max]; 
int remain[max]; 
int clu_workload[ops_num][cluster][cluster]; 
int min_clus_work[cluster], min_oper[cluster], min_batch[cluster]; 
int max_clus_work, max_oper, max_batch, max_clus; 
int clus_work[cluster];        
int tool_capa[cluster];        
int final_workload[cluster];      
float utilization[cluster]; 
int end_batch[cluster][ops_num*batches]; 
int machine_batch[cluster][ops_num]; 
int num_whole_block[cluster]; 
int tool_name[cluster][TOOL];   
int num_tool_name[cluster];    
int clus_machine_batch[cluster][ops_num][machine]; 
int machine_batch_workload[cluster][ops_num][machine]; 
int max_machine; 
int m_work_limit[cluster][machine]; 
int m_tool_capa[cluster][machine]; 
int m_workload_judge[cluster][machine]; 
int m_tool_name[cluster][machine][TOOL]; 
int m_max_clus_work[cluster]; 
int m_max_oper[cluster]; 
int m_max_machine[cluster]; 
int condition; 
int total_tool_num; 
int m_total_tool_num; 
int machine_num; 
int same_tool; 
int temp_work_judge; 
int judge_tool_num; 
int m_temp_tool_slot[cluster][machine]; 
int m_num_tool_name[cluster][machine]; 
int m_tool_judge[cluster][machine]; 
int m_temp_work; 
int m_real_workload[cluster][machine]; 
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int m_answer_workload[cluster]; 
float m_performance[cluster]; 
float m_utilization[cluster]; 
float machine_work; 
int UB[cluster]; 
int LB[cluster]; 
int current_capa[cluster]; 
int max_LPT[cluster]; 
float multi_performance[cluster]; 
float multi_utilization[cluster]; 
 
struct STORE_DATA  
{ 
 int oper; 
 int batch; 
 int pre_cluster; 
}; 
 
 
struct STORE_DATA ALL_TOGETHER[cluster][whole_block]; 
 
clock_t start, finish; 
 
FILE *c_ofp, *m_ofp, *multi_ofp, *time_ofp; 
 
void main(void) 
{ 
 int i,j,k,answer_workload,LB, LB_cluster,LB_machine; 
 float performance,mean_utilization,sum_utilization; 
 
 c_ofp=fopen("c_output.out","a"); 
 m_ofp=fopen("m_output.out","a"); 
 multi_ofp=fopen("multi_output.out","a"); 
 time_ofp=fopen("time_output.out","a"); 
 
 start=clock(); 
 const_batch(); 
 
 get_workload(); 
 
 for (j=0; j<cluster;j++) 
 { 
  clus_work[j]=cluster_work;      
  num_whole_block[j]=-1; 
   
  tool_capa[j]=clus_capa; 
  num_tool_name[j]=0; 
  for(i=0;i<TOOL;i++){ 
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   tool_name[j][i]=-1; 
  } 
 } 
 
 for (j=0; j<cluster;j++) 
 { 
  for (i=0; i<ops_num; i++) 
  { 
   machine_batch[j][i]=-1; 
  } 
 } 
 
 for (j=0; j<ops_num*batches; j++){    
  min_cluster(); 
  max_cluster(); 
  assign_cluster(); 
 
 } 
 
 for(i=0;i<ops_num;i++){ 
  min_ptime[i]=max_num; 
  for(j=0;j<cluster;j++){       
   if(p_time[i][j]<min_ptime[i]){ 
    min_ptime[i]=p_time[i][j]; 
   } 
  } 
 } 
 
 LB=0; 
 for(i=0;i<ops_num;i++){ 
  LB=LB+(min_ptime[i]*demand[i]); 
 } 
 
     LB_cluster=LB/cluster; 
 LB_machine=LB / (cluster*machine); 
 
 for(j=0; j<cluster; j++){        
  final_workload[j]=cluster_work-clus_work[j];  
 } 
 
 sum_utilization=0; 
 for(j=0;j<cluster;j++){ 
  utilization[j]= (final_workload[j]/float(cluster_work))*100; 
  sum_utilization=sum_utilization+utilization[j]; 
 } 
  
 answer_workload=min_num;        
 for(j=0;j<cluster;j++){ 



 

 

89

  if(final_workload[j]>answer_workload){ 
   answer_workload=final_workload[j]; 
  } 
 } 
 
 mean_utilization=float (answer_workload)/cluster_work;     
 
 performance=(float(answer_workload)-LB_cluster) / LB_cluster; 
 
 LPT(); 
 
 for(j=0;j<cluster;j++){ 
  for(k=0;k<machine;k++){ 
   m_num_tool_name[j][k]=0; 
   for(i=0;i<TOOL;i++){ 
    m_tool_name[j][k][i]=-1; 
   } 
  } 
 } 
 
 for (i=0; i<ops_num*machine; i++){ 
  condition=LPT_1(); 
  if (condition==1) 
   break;         
 } 
 
 for(j=0;j<cluster;j++){ 
  for(k=0;k<machine;k++){ 
   m_real_workload[j][k]=machine_work_limit-m_work_limit[j][k]; 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  m_answer_workload[j]=min_num;      
 } 
 for(j=0;j<cluster;j++){ 
  for(k=0;k<machine;k++){ 
   if(m_real_workload[j][k]>m_answer_workload[j]){ 
    m_answer_workload[j]=m_real_workload[j][k]; 
   } 
  } 
 } 
 for(j=0;j<cluster;j++){ 
  machine_work = float(cluster_work) / machine; 
  m_utilization[j]=float(m_answer_workload[j]) / machine_work; 
 } 
 
 for(j=0;j<cluster;j++){ 
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  m_performance[j]=(float(m_answer_workload[j])-LB_machine) / LB_machine; 
 } 
 
 multifit(); 
 
 fprintf(c_ofp,"%f              %f\n", performance,mean_utilization); 
 for(j=0;j<cluster;j++){ 
  fprintf(m_ofp,"%f              %f\n", m_performance[j],m_utilization[j]); 
  fprintf(multi_ofp,"%f              %f\n", multi_performance[j],multi_utilization[j]); 
 } 
 
 run_terminate(); 
 exit(0); 
} 
 
void const_batch()          
{           
   
 int i,j; 
 for(i=0;i<ops_num;i++) 
 { 
  for(j=0;j<cluster;j++)  
  { 
   batch[i][j]=demand[i]/cluster;   
  } 
   quot[i]=demand[i]/cluster;     
   remain[i]=demand[i]-quot[i]*cluster;  
  for(j=0;j<remain[i];j++) 
  { 
   batch[i][j]=batch[i][j]+1;     
  } 
 } 
} 
void get_workload()     
{ 
 int i,j,k; 
 
 for (j=0;j<cluster;j++) 
 { 
  for (i=0;i<ops_num;i++) 
  { 
   for (k=0;k<batches;k++) 
   { 
    clu_workload[i][j][k]=batch[i][k]*p_time[i][j]; 
   } 
  } 
 } 
} 
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void min_cluster() 
{ 
 int i,j,k; 
 
 for (j=0;j<cluster;j++)      
 { 
  min_clus_work[j]=max_num;    
  min_oper[j]=-1;       
  min_batch[j]=-1;      
  for (i=0;i<ops_num;i++) 
  { 
   for (k=0;k<batches;k++) 
   {  
    if (clu_workload[i][j][k]!=-1){   
    if (clu_workload[i][j][k]<min_clus_work[j]){ 
     min_clus_work[j]=clu_workload[i][j][k]; 
  
     min_oper[j]=i; 
     min_batch[j]=k; 
     } 
    } 
   } 
  } 
 } 
} 
void max_cluster()       
{ 
 int j; 
  
 max_clus_work=min_num;    
 max_clus=-1;      
 max_oper=-1;      
 max_batch=-1;      
 
 for (j=0; j<cluster;j++)   
 {   
  if (min_clus_work[j]>max_clus_work){ 
   max_clus_work=min_clus_work[j]; 
   max_oper=min_oper[j]; 
   max_batch=min_batch[j]; 
   max_clus=j; 
  } 
 } 
} 
 
void assign_cluster() 
{ 
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 int i,j, k,temp_work, cluster_num; 
 int judge_work_num[cluster]; 
 int temp_work_judge,judge_tool_num; 
 int tool_judge[cluster]; 
 int temp_tool_slot[cluster]; 
 int same_tool; 
 
 static long int num_check = 0; 
 
 for (j=0;j<cluster;j++){ 
  judge_work_num[j]=-1; 
 } 
 temp_work_judge=0; 
 
 for (j=0;j<cluster;j++){ 
  if(clus_work[j]-clu_workload[max_oper][j][max_batch]>0){ 
   judge_work_num[j]++;     
   temp_work_judge++; 
  } 
 } 
 if (temp_work_judge==0){    
  printf("Out of All Cluster workload\n"); 
  exit(1); 
 } 
 judge_tool_num=0; 
 
 for (j=0;j<cluster;j++){ 
  if(judge_work_num[j]==0){ 
   temp_tool_slot[j]=0; 
   for (i=0; i<ottemp[max_oper]; i++){  
    temp_tool_slot[j]=temp_tool_slot[j]+lslot[ot[max_oper][i]];  
   } 
   for (i=0; i<ottemp[max_oper]; i++){ 
    for (k=0; k<TOOL; k++){ 
     if (tool_name[j][k]!=-1){ 
      if(ot[max_oper][i]==tool_name[j][k]){ 
       temp_tool_slot[j]=temp_tool_slot[j]-
lslot[ot[max_oper][i]];  
      } 
     } 
    } 
   } 
   tool_judge[j]=tool_capa[j]-temp_tool_slot[j];  
  } 
  else{ 
   tool_judge[j]=0; 
  } 
  if(tool_judge[j]>0){ 
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   judge_work_num[j]++; 
   judge_tool_num++; 
  } 
 } 
 
 if (judge_tool_num==0){ 
  printf("Out of Tool Capa even if Workload is available\n"); 
  exit(1); 
 } 
 j=0; 
 while(judge_work_num[j]<=0){ 
  j++; 
 } 
 temp_work=clus_work[j]-clu_workload[max_oper][j][max_batch];         
 cluster_num=j; 
 for(j=cluster_num+1;j<cluster;j++) 
 { 
  if(judge_work_num[j]==1){ 
   if(temp_work<clus_work[j]-clu_workload[max_oper][j][max_batch]){ 
   cluster_num=j; 
   temp_work=clus_work[j]-clu_workload[max_oper][j][max_batch]; 
   } 
  } 
 } 
 
 total_tool_num=0;         
 while(total_tool_num<TOOL){ 
  if(tool_name[cluster_num][total_tool_num]==-1){ 
   break; 
  } 
  else{ 
   total_tool_num++; 
  } 
 } 
 if(total_tool_num==TOOL+1){ 
  printf("ERROR out of tool space\n"); 
  exit(1); 
 } 
 for(j=0;j<ottemp[max_oper];j++){ 
  same_tool=NOTFOUND; 
  i=0; 
  while(i<total_tool_num){ 
   if(ot[max_oper][j]==tool_name[cluster_num][i]){ 
    same_tool=FOUND; 
    break; 
   } 
   else{ 
    i++; 
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   } 
  } 
  if(i==total_tool_num){ 
   tool_name[cluster_num][total_tool_num]=ot[max_oper][j]; 
   total_tool_num++; 
   if(total_tool_num==TOOL+1){ 
    printf("ERROR OVERFLOW\n"); 
    exit(1); 
   } 
  } 
 } 
 
 tool_capa[cluster_num]=tool_judge[cluster_num]; 
 
 clus_work[cluster_num]=temp_work; 
 
 for(j=0; j<cluster; j++){ 
  clu_workload[max_oper][j][max_batch]=-1; 
 } 
 
 if (machine_batch[cluster_num][max_oper]==-1){ 
  machine_batch[cluster_num][max_oper]=batch[max_oper][max_batch]; 
 } 
 else{ 
 
 machine_batch[cluster_num][max_oper]=machine_batch[cluster_num][max_oper]+batc
h[max_oper][max_batch]; 
 } 
 
 num_whole_block[cluster_num]++; 
 ALL_TOGETHER[cluster_num][num_whole_block[cluster_num]].batch=max_batch; 
 ALL_TOGETHER[cluster_num][num_whole_block[cluster_num]].oper=max_oper; 
 ALL_TOGETHER[cluster_num][num_whole_block[cluster_num]].pre_cluster=max_cl
us; 
 
 for(j=0; j<cluster; j++){ 
  for(i=0; i<num_whole_block[j]; i++){ 
   end_batch[j][i]=batch[ALL_TOGETHER[j][i].oper][max_clus]; 
  } 
 } 
} 
 
void LPT() 
{ 
 
 int i,j,k; 
 
 for(j=0;j<cluster;j++){ 
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  for(i=0;i<ops_num;i++){ 
   for(k=0;k<machine;k++){ 
    clus_machine_batch[j][i][k]=machine_batch[j][i]/machine; 
   } 
   quot[i]=machine_batch[j][i]/machine; 
   remain[i]=machine_batch[j][i]-quot[i]*machine; 
   for(k=0;k<remain[i];k++){ 
   clus_machine_batch[j][i][k]=clus_machine_batch[j][i][k]+1; 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  for(i=0;i<ops_num;i++){ 
   for(k=0;k<machine;k++){ 
   
 machine_batch_workload[j][i][k]=clus_machine_batch[j][i][k]*p_time[i][j]; 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  for(i=0;i<ops_num;i++){ 
   for(k=0;k<machine;k++){ 
    if(machine_batch_workload[j][i][k]==0){ 
     machine_batch_workload[j][i][k]=-1; 
    } 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  for(k=0;k<machine;k++){ 
   m_work_limit[j][k]=machine_work_limit; 
   m_tool_capa[j][k]=machine_tool_capa; 
  } 
 } 
} 
 
 
int LPT_1() 
{ 
 int i,j,k,temp; 
 
 for(j=0;j<cluster;j++){ 
  m_max_clus_work[j]=min_num; 
  m_max_oper[j]=-2; 
  m_max_machine[j]=-1; 
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 } 
 
 for(j=0;j<cluster;j++){ 
  for(i=0;i<ops_num;i++){ 
   for(k=0;k<machine;k++){ 
    if(machine_batch_workload[j][i][k]>m_max_clus_work[j]){ 
     
 m_max_clus_work[j]=machine_batch_workload[j][i][k]; 
      m_max_oper[j]=i; 
      m_max_machine[j]=k; 
    } 
   } 
  } 
 } 
 
 temp=0; 
 for(j=0;j<cluster;j++){ 
  if(m_max_clus_work[j]==-1){ 
   temp++; 
  } 
 } 
 if(temp==cluster){ 
  return 1;    
 } 
 
 for(j=0;j<cluster;j++){ 
  if(m_max_clus_work[j]>0){    
            
   machine_assign(j);      
          
 
  } 
 } 
 return 0;        
} 
 
void machine_assign(int j){ 
 
 int i,k,g; 
 
 for(k=0;k<machine;k++){ 
  m_workload_judge[j][k]=-1; 
 } 
 
 temp_work_judge=0; 
 
 for(k=0;k<machine;k++){ 
  if(m_work_limit[j][k]-m_max_clus_work[j]>0){ 
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   m_workload_judge[j][k]++; 
   temp_work_judge++; 
  } 
 } 
 
 if(temp_work_judge==0){ 
  printf("Out of All cluster workload in the machine\n"); 
  exit(4); 
 } 
 
 judge_tool_num=0; 
 
 for(k=0;k<machine;k++){ 
  if(m_workload_judge[j][k]==0){ 
   m_temp_tool_slot[j][k]=0; 
   for(i=0;i<ottemp[m_max_oper[j]];i++){ 
   
 m_temp_tool_slot[j][k]=m_temp_tool_slot[j][k]+lslot[ot[m_max_oper[j]][i]]; 
   } 
   for(i=0;i<ottemp[m_max_oper[j]];i++){ 
    for(g=0;g<TOOL;g++){ 
     if(m_tool_name[j][k][g]!=-1){ 
     
 if(ot[m_max_oper[j]][i]==m_tool_name[j][k][g]){ 
      
 m_temp_tool_slot[j][k]=m_temp_tool_slot[j][k]-lslot[ot[m_max_oper[j]][i]]; 
      } 
     } 
    } 
   } 
   m_tool_judge[j][k]=m_tool_capa[j][k]-m_temp_tool_slot[j][k]; 
  } 
  else{ 
   m_tool_judge[j][k]=0; 
  } 
  if(m_tool_judge[j][k]>0){ 
   m_workload_judge[j][k]++; 
   judge_tool_num++; 
  } 
 } 
 
 if(judge_tool_num==0){ 
  printf("Out of Tool Capacity in the machine even if workload is available\n"); 
  exit(5); 
 } 
 
 k=0; 
 while(m_workload_judge[j][k]<=0){ 
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  k++; 
 } 
   
 m_temp_work=m_work_limit[j][k]-m_max_clus_work[j]; 
 machine_num=k; 
  
 for(k=machine_num+1;k<machine;k++){ 
  if(m_workload_judge[j][k]==1){ 
   if(m_temp_work<m_work_limit[j][k]-m_max_clus_work[j]){ 
    machine_num=k; 
    m_temp_work=m_work_limit[j][k]-m_max_clus_work[j]; 
   } 
  } 
 } 
 
 tool_check(j);  
  
 m_tool_capa[j][machine_num]=m_tool_judge[j][machine_num]; 
 m_work_limit[j][machine_num]=m_temp_work; 
 machine_batch_workload[j][m_max_oper[j]][m_max_machine[j]]=-1; 
 
} 
 
void tool_check(int j){ 
 
 int i,k; 
 
 m_total_tool_num=0; 
 while(m_total_tool_num<TOOL){ 
  if(m_tool_name[j][machine_num][m_total_tool_num]==-1){ 
   break; 
  } 
  else{ 
   m_total_tool_num++; 
  } 
 } 
 
 if(m_total_tool_num>TOOL){ 
  printf("ERROR out of tool space in the machine\n"); 
  exit(3); 
 } 
 for(k=0;k<ottemp[m_max_oper[j]];k++){ 
  same_tool=NOTFOUND; 
  i=0; 
  while(i<m_total_tool_num){ 
   if(ot[m_max_oper[j]][k]==m_tool_name[j][machine_num][i]){ 
    same_tool=FOUND; 
    break; 
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   } 
   else{ 
    i++; 
   } 
  } 
  if(i==m_total_tool_num){ 
  
 m_tool_name[j][machine_num][m_total_tool_num]=ot[m_max_oper[j]][k]; 
   m_total_tool_num++; 
   if(m_total_tool_num>TOOL){ 
    printf("ERROR OVERFLOW in the machine\n"); 
    exit(5); 
   } 
  } 
 } 
} 
 
void multifit() 
{ 
 
 int i,j,k; 
 
 for(j=0;j<cluster;j++){ 
  UB[j]=0; 
  LB[j]=0; 
 } 
 
 for(j=0;j<cluster;j++){ 
  for(i=0;i<ops_num;i++){ 
   if(machine_batch[j][i]!=-1){ 
    UB[j]=UB[j]+machine_batch[j][i]*p_time[i][j]; 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  printf(" UB is %d \n", UB[j]); 
 
  LB[j]=UB[j]/machine; 
 
  printf(" LB is %d \n", LB[j]); 
 } 
 
 for(j=0;j<cluster;j++){ 
  current_capa[j]=(UB[j]+LB[j])/2; 
 } 
 
 for(j=0;j<cluster;j++){ 
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  for(k=0;k<machine;k++){ 
   m_real_workload[j][k]=machine_work_limit-m_work_limit[j][k]; 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
 
  max_LPT[j]=min_num; 
 } 
 
 for(j=0;j<cluster;j++){ 
  for(k=0;k<machine;k++){ 
   if(m_real_workload[j][k]>max_LPT[j]){ 
    max_LPT[j]=m_real_workload[j][k]; 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  while(UB[j]-LB[j]>710){ 
   current_capa[j]=(UB[j]+LB[j])/2; 
   if(LB[j]<=max_LPT[j] && max_LPT[j]<=current_capa[j]){ 
    UB[j]=current_capa[j]; 
   } 
   else{ 
    LB[j]=current_capa[j]; 
   } 
  } 
 } 
 
 for(j=0;j<cluster;j++){ 
  multi_performance[j]=  ( UB[j] - LB[j] ) / float (LB[j]); 
  multi_utilization[j]=float(LB[j]) / machine_work; 
 } 
} 
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