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ABSTRACT

Generalized Models and Benchmarks

for Channel Coordination. (August 2003)

Ayşegül Toptal, B.S., Bilkent University, Turkey;

M.S., Bilkent University, Turkey

Chair of Advisory Committee: Dr. Sıla Çetinkaya

This dissertation takes into account the latest industrial trends in integrated

logistical management and focuses on recent supply chain initiatives enabling the co-

ordination of supply chain entities. The specific initiatives of interest rely on carefully

designed transportation and supply contracts such as Vendor Managed Inventory ap-

plications. With such new initiatives, substantial savings are realizable by carefully

coordinating the operational decisions, such as procurement, transportation, inven-

tory, and production decisions, for different cooperating entities in the supply chain.

The impact is particularly tangible when coordinated policies address channel coor-

dination issues between these entities.

This dissertation first provides a critical review and comparative analysis of the

literature on buyer-vendor coordination problems. Recognizing a need for analytical

research in the field, the dissertation then develops and solves centralized and decen-

tralized models for complex buyer-vendor coordination problems with applications in

supply/replenishment and transportation/delivery contract design. The two specific

classes of problems considered include i) buyer-vendor coordination under generalized

replenishment costs, and ii) buyer-vendor coordination under depreciating economic

value of items. Under these considerations, the dissertation also develops efficient

coordination algorithms and new mechanisms for effective channel coordination.
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CHAPTER I

INTRODUCTION

The buyer-vendor coordination problem is one of the classical research areas in the

multi-echelon inventory literature. Within the large spectrum of existing work in

this area, centralized and decentralized models can be considered as the two extremes.

Classical multi-echelon inventory theory suggests integrating and modeling the de-

cision problems of the vendor and the buyer together. This strategy qualifies as

centralized modeling of the problem and, without any doubt, provides the best result

in terms of total system cost (i.e., the global optimum). However, it requires that

both the vendor and the buyer make their data available to the other party. In ap-

plication, this may not be desirable unless both parties represent components of the

same company. Furthermore, in real life, there is often a superior/subordinate rela-

tionship inherent in the situation where the dominant party prefers her/his priorities

to lead the solution. As a result, decentralized modeling of the problem may be nec-

essary. In a decentralized model, the parties solve their subproblems independently of

each other with very limited sharing of information. As a consequence, the superior

party’s priorities lead the solution. In most retail applications, the superior party

is the buyer whereas in manufacturing applications the superior party is usually the

manufacturer, i.e., vendor.

While classical buyer-vendor coordination models can generally be characterized

as falling into one of the two extreme modeling approaches (i.e. centralized vs. de-

centralized), the current trend in supply chain research is towards investigating ways

to apply decentralized models without sacrificing too many of the cost saving benefits

This dissertation follows the style and format of Management Science.
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that result from centralized models. For this purpose, channel coordination tries to

identify the inefficiencies in decentralized solutions and to align the individual incen-

tives for both parties with those of the centralized solutions. The output of channel

coordination, i.e., the so-called coordinated solution, combines the benefits of the two

extremes, i.e., centralized and decentralized solutions. However, the pure central-

ized and the pure decentralized modeling approaches are still important techniques

for practical applications because the former sets a benchmark for cost minimization

whereas the latter helps to identify opportunities for coordination.

In a buyer-vendor setting, a centralized solution is particularly useful for Vendor

Managed Inventory (VMI) practices (Çetinkaya and Lee 2000, 2002). VMI is a supply

chain initiative where the vendor is authorized to manage inventories of agreed-upon

stock-keeping units at downstream locations, e.g., retailers. In particular, after using

advanced data retrieval and information sharing systems to review the inventory at

the retailer, the vendor makes decisions regarding the timing and quantity of deliv-

ery for re-supply. Not surprisingly, VMI has gained more attention as information

technology has advanced and the cost of information sharing has decreased. In some

VMI applications, the vendor not only manages the inventory at the retailer but also

owns it; Proctor & Gamble and WalMart, for example, use this practice. Information

sharing and centralized modeling approaches for buyer-vendor coordination in such

settings are crucially important for the performance of the system as a whole. While

the benefits of a centralized modeling approach are inherent in the motivations of

strategic alliances such as VMI, supply chain entities are not always linked by col-

laborative relationships. Enhanced by businesses on the internet, these entities often

act in a decentralized and competitive manner to increase their profits.

Because both centralized and decentralized models have important practical ap-

plications, an important question is how the solutions of the two models differ from
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each other and under what circumstances their implications are similar. Although

similar questions have been studied in the production and inventory literature since

the early 1970’s (e.g., Goyal 1976, Lee and Rosenblatt 1986, Schwarz 1973), the

answers to these questions have recently become more important for obtaining coor-

dinated solutions and formalizing these solutions in contractual agreements, e.g., a

VMI contract or a transportation/delivery contract.

In keeping with the recent trends in supply chain practice, the goals of this

dissertation are:

• To identify optimal coordinated policies for integrated transportation and in-

ventory decisions in buyer-vendor systems.

• To develop a modeling framework and theoretical understanding of channel co-

ordination issues in the context of new initiatives in supply chain management.

• To address the question of under what conditions coordination works and to

render insights into contract design and operational level decision making.

Ultimately, we hope to demonstrate how centralized solutions can either be used

by supply chain entities who fully coordinate their operational planning or as bench-

marks to identify the inefficiencies in decentralized solutions and thereby obtain so-

lutions for effective channel coordination.

I.1. Scope of the Dissertation

In order to achieve these goals, this dissertation will analyze both deterministic and

stochastic demand problems with the following primary objectives:

• Provide a critical review and comparative analysis of the literature on buyer-

vendor coordination problems.
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• Develop and solve centralized and decentralized models for complex buyer-

vendor coordination problems with applications in supply/replenishment and

transportation/delivery contract design, and

• Develop practical coordinated solutions for these problems for effective channel

coordination.

More specifically, we investigate the following problems.

I.1.1. Buyer-Vendor Problem with Generalized Replenishment Costs

As we discuss in detail in Chapter II, the existing literature in buyer-vendor coordina-

tion generally overlooks important transportation considerations. In particular, the

impact of cargo capacity constraints and generalized inbound/outbound transporta-

tion cost functions are rarely taken into account in previous work. However, we know

that substantial system-wide cost efficiencies may be achievable by carefully incorpo-

rating such transportation considerations with inventory replenishment decisions in

buyer-vendor systems. With this motivation, in Chapters III, IV, V and VI, we

consider a replenishment cost structure of the form

C(Q) = K + dQ/P eR (1.1)

where the first term (i.e. K) is a fixed cost and the second term is the total truck

cost in proportion to the number of trucks used. Here P is the truck capacity; R is

the per truck cost; and Q is the replenishment quantity. Under the assumptions of

this generalized replenishment cost structure, we study the buyer-vendor coordination

problem in four different settings as we discuss next.
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I.1.1.1. Integrated Pure Inventory Problem with Deterministic and Con-

stant Demand

We generalize the deterministic demand buyer-vendor coordination problem to con-

sider cargo capacity constraints and general inbound/outbound transportation costs,

simultaneously. That is, we analyze the effects of the generalized cost structure C(Q)

given by Equation (1.1) on the inventory decisions of a buyer and his/her vendor

using a centralized approach. Modeling the interaction between the two parties in

this manner is particularly important in VMI systems. In these systems, typically,

it is the vendor who incurs the transportation costs as well as the inventory holding

costs both at the upper and lower echelons, i.e., vendor’s and buyer’s warehouses,

respectively.

First, we consider the case where no production occurs at the vendor, and this

is why we call this model the “Pure Inventory Model.” The vendor orders in bulk

and dispatches to the buyer in smaller quantities. Hence, the number of buyer re-

plenishments within one replenishment cycle of the vendor is an integer variable. Due

to the stepwise structure of the replenishment cost function and the integer decision

variables, it is theoretically challenging to minimize total cost functions in these types

of systems.

Under the above assumptions, in Chapter III we study two specific problems

using the centralized modeling approach. The dissertation first develops and solves

the simpler problem where the general replenishment cost structure is modeled for

the vendor only. Then the model is extended to the case where both the vendor

and the buyer are subject to this replenishment cost structure. Hence, in the second

model, the inbound transportation costs/constraints are modeled explicitly both for

the buyer and the vendor. For each case, heuristic algorithms with error bound
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analyses are provided. Using the costs of these heuristics as upper bounds, finite-

time exact solution procedures are also developed.

I.1.1.2. Channel Coordination for the Pure Inventory Problem with De-

terministic and Constant Demand

The centralized solutions of the class of buyer-vendor problems studied in Chapter

III can be used in two ways: 1) For coordinating the operational planning activities

of the buyer-vendor pair under full cooperation. 2) As a benchmark to identify in-

efficiencies in the decentralized solutions of the buyer and the vendor individually in

order to obtain solutions for effective channel coordination. Hence, in Chapter IV,

we utilize these centralized solutions as benchmarks in the following way. First, we

discuss how to compute the decentralized solutions for the buyer and the vendor indi-

vidually. Then, on a large set of problem instances, we compare the cost efficiency of

decentralized and centralized modeling. We report the parameter values and problem

characteristics under which the solutions of the two modeling approaches are close to,

or far apart from, each other. We then propose ways for the vendor and the buyer

to coordinate their decentralized decisions to obtain improved solutions in terms of

costs.

I.1.1.3. Integrated Production-Inventory Problems with Deterministic and

Constant Demand

While some of the recent literature investigates channel coordination issues in buyer-

vendor systems, another stream of research concentrates on centralized production-

inventory optimization problems in complex settings. In keeping with these research

trends, we also study the case where the vendor is a manufacturer and has a finite

production rate. Hence, we refer to such models as “Production-Inventory Models.”
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In the integrated production-inventory problem, the pattern of the vendor’s dis-

patch policy to the buyer significantly effects the profits of the system. In Chapter

V, we discuss seven major dispatch policies that have been proposed in the previous

literature. Some of these policies exhibit easily implementable structures; others are

more cost effective but have very complex structures. We propose a unified model

for the integrated buyer-vendor production-inventory problem that can be reduced

to the previously developed models for the seven major dispatch policies identified in

the literature. Using this unified model, the seven policies are tested against the op-

timal policy through a careful numerical study. As a result of this study, we propose

insights for a buyer and a vendor to use in selecting the dispatch policy that best fits

their system in terms of structure, robustness and costs.

As a final task in this area, in Chapter V we incorporate the general replenishment

cost structure C(Q), given by Expression (1.1), into the integrated buyer-vendor

production-inventory problem under different dispatch policies. It turns out that

for some of the dispatch policies, the corresponding problems are solvable using the

algorithms we developed in Chapter III.

I.1.1.4. Single Period Stochastic Demand Channel Coordination Problem

with Generalized Replenishment Costs

In Chapter VI, we consider the buyer-vendor problem where the buyer operates in a

Newsboy environment. More specifically, we consider the case where the buyer faces

a single-period stochastic demand, and the problem is to compute the centralized

and decentralized order quantities under the generalized replenishment cost structure

given by C(Q) in Expression (1.1). We also address channel coordination issues in

this context.

The Newsboy setting is important for two reasons. First, it is widely applicable
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for items with short product life cycles, such as consumer electronics, software prod-

ucts, fashion goods, etc. Secondly, solving the Newsboy Problem provides the solution

for the last period of the corresponding multi-period stochastic problem. There are

also some interesting properties of the Newsboy setting that are different from the in-

finite horizon setting we consider in Chapters III, IV, V. Specifically, the motivation

to order more products, so that economies of scale can be achieved, is restricted to

a single period. That is, in contrast to the EOQ-type models with infinite planning

horizons, increasing the quantity of goods purchased or produced does not result in

savings from fixed costs in future periods.

We first model and solve the Newsboy setting problem with generalized replen-

ishment costs under the single-period expected profit maximization objective using

centralized and decentralized approaches. We present several interesting properties

of the expected profit functions which simplify the solution methodology. We then

propose novel coordination mechanisms by which the buyer and the vendor can co-

ordinate their decentralized decisions.

A common result of the coordination problems in Chapter IV and Chapter VI is

that, contrary to common belief in the literature, it is not always better to motivate

the buyer to order more in order to coordinate the channel. When the vendor has a

replenishment cost structure of the form C(Q), there are opportunities for the vendor

and the buyer to take advantage of full truck loads to share the benefits. In certain

cases, this can make smaller order quantities from the buyer more advantageous. The

coordination mechanisms proposed take these cases into account.

I.1.2. Buyer-Vendor Problem under Depreciating Economic Value of Items

The current literature on buyer-vendor coordination assumes that the retail price, that

is the selling price of items at the buyer, is a constant or is a function of the order
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quantity. However, especially with items that have short product life cycles, a natural

decline occurs in their economic value over time. For example, most retail stores

selling seasonal items successively discount their prices during the season because of

this depreciation in economic value. These kinds of markdowns are referred to as

“permanent markdowns” in the marketing literature. In Chapter VII, we consider

two specific problem groups that involve permanent markdowns as summarized below.

I.1.2.1. Single Period, Single Replenishment Model with Time Depen-

dent Retail Price

In our first model, we analyze a single period stochastic buyer-vendor problem where

the buyer successively decreases his/her selling price during the planning horizon. We

assume that this decrease in selling price is due to permanent markdowns and that

there is no prior advertisement. Therefore, customers come to the store at normal

rates. We also assume that customers have different preferences in their willingness

to pay. That is, some customers prefer to buy the item earlier in the season even if

it is expensive while others buy it towards the end of the season when it is cheaper.

As a result, the demand arrival process is modeled as a pure Poisson Process. In

Chapter VII, we consider the profit maximization problem for this setting using

both decentralized and centralized modeling approaches. Based on a comparative

analysis of these approaches, we illustrate that time is an important component of

the pricing strategy and that an efficient coordination mechanism should take the

length of the planning horizon into consideration.
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I.1.2.2. Single Period, Single Replenishment Model with Time Depen-

dent Demand and Retail Price

In our second model, we consider the case where demand depends on the retail price.

In this case, we assume that demand arrivals form a pure Non-homogenous Poisson

Process where the rate is a function of the selling price which itself depends on time.

We present centralized and decentralized models for this problem in Section VII.2.

I.2. Organization of the Dissertation

The dissertation is organized as follows. Chapter II provides a review of the cur-

rent literature on the buyer-vendor coordination problem. In Chapter III, we study

centralized inventory/transportation models with infinite horizon, deterministic and

constant demand assumptions. In Chapter IV, we address the issue of channel coor-

dination for the problems in Chapter III. The production models and their extensions

are analyzed in Chapter V. Chapter VI presents an analysis of single period stochastic

demand problems with generalized transportation costs. This is followed by Chapter

VII which discusses coordination in cases where items have depreciating economic

value.
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CHAPTER II

LITERATURE REVIEW

In this chapter, we present a critical review of the buyer-vendor coordination litera-

ture that emphasizes transportation, production/inventory and channel coordination

issues. The buyer-vendor coordination problem forms the basis of multi-echelon in-

ventory theory since it considers only two stock-keeping locations. On the other hand,

early works in the multi-echelon inventory literature, such as Clark and Scarf’s (1960)

seminal paper on serial systems with stochastic demand, concentrate on more gen-

eral systems . These authors develop a periodic review inventory control model and

derive the optimal ordering policy for a single-product, serial system facing indepen-

dent, identically distributed demand. Using Clark and Scarf’s (1960) work as a base,

many of the researchers that followed them study the problem of finding the optimal

timing for, and the optimal quantity of, material flows in serial systems (e.g., Feder-

gruen and Zipkin 1984a, 1984b, Debodt and Graves 1985, Rosling 1989). Federgruen

(1993) provides a review of these studies. Starting in the early 90’s, interest in multi-

echelon inventory theory grew as a result of new industry practices that improved

coordination between different stock-keeping locations, as well as various theoretical

challenges, to form the basis for what we now call supply chain management.

Our definition of supply chain management is a broad one that includes all of

multi-echelon inventory theory and more. Classical works in multi-echelon inventory

theory assume that the entities (i.e., stock-keeping locations) cooperate and hence

solve their problems using a centralized approach. As discussed in Chapter I, this is

a valid assumption if the entities belong to the same company or operate under long-

term agreements such as VMI systems. Supply chain management, on the other hand,

considers both logistical and informational issues as well as dominance relationships
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between the entities. Consequently, supply chain studies focus on more than just the

system-wide optimization of inventory problems.

Current research in inventory management places an increased emphasis on the

integration/coordination of different functional specialties within a firm as well as

throughout a supply-chain. Rather than using classical centralized modeling to coor-

dinate these entities, the focus of most recent studies is on channel coordination. In

this dissertation, we present both centralized and decentralized models for complex

supply/replenishment, transportation/delivery problems with the goal of obtaining

coordinated decentralized solutions for these problems. Therefore, we will limit this

review to work that is closely related to the theme of this dissertation. For an excellent

discussion of the fundamental results that emerged from the 60’s through the 90’s, we

suggest Muckstadt and Roundy’s (1993) review of multistage production/inventory

models.

In our review, we will summarize the related buyer-vendor coordination literature

under three main headings: 1) Transportation Considerations in the Buyer-Vendor

Coordination Literature, 2) Production/Inventory Models, and 3) Channel Coordina-

tion Models. Before going into the details of our analysis, we provide a more technical

description of channel coordination and a discussion of the importance of transporta-

tion costs for channel coordination which we believe will help to better relate our

work to the literature and to highlight its contributions. That is, we discuss the

basics of channel coordination in Section II.1. Next, in Section II.2, we provide a

summary of Goyal’s (1976) buyer-vendor coordination problem, which is referred to

as the classical problem or model throughout the dissertation. We proceed with a

discussion of the literature in Section II.3 and conclude with a summary in Section

II.4.
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II.1. Channel Coordination

“Channel coordination” is a phrase coined in the marketing literature that applies to

improving the total expected system profits in a decentralized model and to bringing

them closer to those of a centralized model (see Tsay et al. 2000). Letting the opti-

mum values of the total expected system profits in the centralized and decentralized

models be πc and πd, respectively, their values can be found using the solutions to

the following two problems:

CM : Centralized Model

max E[(BUY ER′s PROFITS + V ENDOR′s PROFITS)]

s.t. Buyer′s constraints

V endor′s constraints

DM : Decentralized Model

1) BP : max E[(BUY ER′s PROFITS)]

s.t. Buyer′s constraints

2) VP : max E[(V ENDOR′s PROFITS)]

s.t. Buyer′s solution output

V endor′s constraints

The objective function value of the first problem gives the value of πc. Further-

more, we define πc
b and πc

v as the expected values of the buyer and the vendor profits

resulting from the solution of the CM. Accordingly, πc = πc
b + πc

v.

In the decentralized problem, the subproblems are solved sequentially. Whether

the buyer or the vendor solves his/her subproblem first depends on which party

dominates the system. The formulation given in DM belongs to a “buyer driven

channel” where it is the buyer who has greater dominance. The first subproblem (i.e.
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BP) is executed by the buyer, and its solution gives the expected value of the buyer’s

profits in the decentralized model (i.e. πd
b ). Similarly, the objective function value of

the second subproblem (i.e. VP) is the vendor’s expected profits in the decentralized

model (i.e. πd
v). It follows that πd = πd

b + πd
v .

Since the centralized model maximizes the expected system profits, its objective

function value is an upper bound on the total expected profits of the buyer-vendor

system. Hence, in any system, πd ≤ πc. In this sense, the centralized model can

be used as a benchmark, and the gap between πd and πc can be considered as an

inducement to improve the decentralized solution. In the following list, we summarize

some important observations from our analysis of the models introduced above.

• πd ≤ πc : The decentralized solution is inferior to the centralized solution as far

as system profits are concerned.

• πd
b ≥ πc

b : The buyer’s expected profits in the decentralized solution are at least

as great as those in the centralized solution.

• πc
v ≥ πd

v : The vendor’s expected profits in the centralized solution are at least

as great as those in the decentralized solution.

• πc
v − πd

v ≥ πd
b − πc

b : The vendor’s gain from the centralized solution is no less

than the buyer’s loss from the decentralized solution.

We note that the above observations are based on the decentralized model for-

mulation we presented above. If a “vendor driven channel” is assumed (i.e. vendor

solves his/her subproblem first), then the second and third inequalities are true for

the vendor and the buyer, respectively; and the fourth inequality changes direction.

Under the “buyer driven channel” assumption, the second observation follows because

in the decentralized model, the buyer’s feasible region for his/her decision variables
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attains its maximum. The first and second observations, together with the fact that

πc = πc
b + πc

v and πd = πd
b + πd

v , imply the third and fourth observations.

The fourth observation is the key to the idea of channel coordination because it

suggests that one party’s gain from the centralized solution is greater than the other

party’s loss. That is, the vendor’s gain from using the centralized solution can be

used to compensate the buyer’s relative losses under the centralized solution as well

as to increase the vendor’s profits under the decentralized solution. This requires

that the decentralized solution be coordinated in such a way that it results in the

same outcome for the decision variables as does the centralized solution and also a

mutually agreeable way of sharing the resulting profits. The sharing can be done by

means of fixed payments between the parties, quantity discounts, rebates, etc., or a

combination of these. It can be negotiable between the parties or implicity forced

by one party to influence the behavior of the other. All of these ways for achieving

centralized profits using a decentralized approach are called coordination mechanisms.

Now consider a buyer-vendor system where the decision variable is the buyer’s

order quantity. As will be discussed in more detail in subsequent parts of the current

chapter, the major theme of the classical literature is that it is always better for

the vendor to encourage the buyer to increase his/her order quantity. The following

proposition generalizes this idea to any setting where the vendor’s expected profits in

the optimization problem can be written in terms of the buyer’s order quantity.

PROPOSITION 1 When the vendor’s expected profits are an increasing function

of the buyer’s order quantity, the buyer’s optimal order quantity in the centralized

model is no less than his/her optimal order quantity in the decentralized model.

Proof: Let Πv(Q) be the vendor’s expected profit function in terms of the buyer’s

order quantity. Similarly let Πb(Q) be the buyer’s expected profits resulting from an
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order quantity of Q units. Denote the optimum levels of the buyer’s order quantity as

an outcome of the centralized and decentralized solutions by Q∗c and Q∗d. Therefore,

πc
b = Πb(Q

∗
c), π

c
v = Πv(Q

∗
c), π

d
b = Πb(Q

∗
d) and πd

v = Πv(Q
∗
d). We have πd≤πc, and,

therefore, πd
b + πd

v ≤ πc
b + πc

v. Since πd
b≥πc

b, it follows that πc
v − πd

v ≥ 0 and hence

Πv(Q
∗
c)≥Πv(Q

∗
d). When the vendor’s expected profits are an increasing function of

the buyer’s order quantity, this implies that Q∗c ≥ Q∗d. �

Although the above proposition sounds fairly comprehensive, there are many

practical cases where the vendor’s expected profits do not increase with the buyer’s

order quantity. One such practical situation is when the vendor has a generalized

replenishment cost structure such as in Expression (1.1). We show in Chapters IV

and VI that with this cost structure for the vendor, there are cases where Q∗c < Q∗d,

and we propose new coordination mechanisms that consider this case.

To this end, it is important to note that although “channel coordination” is a

new term for the operations research literature, the concept is not a new one. The

benefits of centralized modeling over decentralized modeling in terms of system costs

was first illustrated by Goyal (1976). Based on this idea, Monahan (1984) was the first

to use discounts as a means for the vendor to encourage the buyer to order more and,

hence, to increase his/her own profits without changing the buyer’s cost. Although

the term “channel coordination” was not used in this early literature, we believe that

the ideas and the models proposed became the basis for subsequent studies in the area.

Therefore, we review them in Section II.3.3 on channel coordination models. Goyal

and Gupta (1989) provide an excellent survey of this early literature on buyer-vendor

coordination.

Goyal’s (1976) work is also the foundation for many of the models in this dis-

sertation. In the later sections, we refer to his case as the “classical buyer-vendor

problem” which we describe next.
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II.2. The Classical Buyer-Vendor Problem

Goyal considers a relatively simple situation where the demand rate at the buyer is

a known constant, D. Both the vendor and the buyer operate in a classical EOQ-like

setting. That is, the vendor replenishes his/her inventory from an outside supplier

with ample supply and sends replenishments to the buyer as needed. Both the ven-

dor and the buyer replenishments are delivered instantaneously, and each incurs fixed

costs. The time between two successive random vendor replenishments is called the

vendor replenishment cycle whereas the time between two successive buyer replenish-

ments is called the buyer replenishment cycle. Since the vendor orders in bulk and

replenishes the buyer periodically in smaller, equal-sized dispatches during an infinite

planning horizon, we have Qv = nQb where Qv denotes the vendor’s replenishment

quantity; n is the number of buyer replenishments in a vendor replenishment cycle

and Qb denotes the buyer’s replenishment quantity. The problem is to find the op-

timal values of Qv and Qb in order to meet the cost minimization objective, where

fixed replenishment as well as inventory holding costs for both the vendor and buyer,

are considered explicitly. Using the above relationships, this problem is equivalent to

computing the optimal values of Qv and n.

Figure 1 provides an illustration of the inventory load profiles of the buyer

and the vendor when n = 4. Here Tv and Tb represent the vendor’s and buyer’s

replenishment cycle lengths, respectively. Since demand is a known constant, in

order to avoid lost-sales or backorders, we have Qb = DTb and Qv = DTv so that

Qv = DnTb.

The original paper by Goyal (1976) models the problem using both centralized

and decentralized approaches. However, it is the centralized approach that is visited

as the basic deterministic model in multi-echelon inventory systems in many of the
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books on inventory theory (e.g., Silver et al. 1998, pages 477–481). The total system-

wide costs per unit time in the centralized approach is given by

DKb

Qb

+
hbQb

2
+
KvD

nQb

+
hv(n− 1)Qb

2

where Kb and Kv are the buyer’s and the vendor’s fixed replenishment costs, and hb

and hv are their inventory holding costs/unit/time, respectively. The first two terms

of the above expression are the buyer’s total costs per unit time, and the last two

terms are the vendor’s total costs per unit time. The solutions of the centralized and

decentralized models of this problem are further discussed in Chapter IV.

Figure 1 Inventory Load Profiles in the Classical Buyer-Vendor Problem

Tb 2Tb 3Tb 4Tb

3Qv/4

Vendor's inventory level

time
Tv
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time
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II.3. A Detailed Analysis of the Literature

II.3.1. Transportation Considerations in Buyer-Vendor Coordination Lit-

erature

In examining the previous work in buyer-vendor coordination, we found that, with the

exception of a few papers (Chan et al. 2002, Hoque and Goyal 2000, Çetinkaya and

Lee 2002), the previous work in buyer-vendor coordination ignores practical trans-

portation considerations when developing optimization models. Therefore, analyzing

the impact of generalized transportation costs on buyer-vendor coordination problems

is one of the main contributions of this dissertation.

Chan et al. (2002) model a single-warehouse multi-retailer problem, and they

incorporate piece-wise linear cost structures representing common-carrier transporta-

tion charges. They analyze the case where the warehouse does not hold any inventory,

i.e., acts as a cross docking point. On the other hand, Hoque and Goyal (2000) model

a single-vendor single-buyer problem where the vendor’s replenishment/production

rate is finite. Their model incorporates a capacity constraint limiting the replenish-

ment quantities of the buyer. This capacity constraint may be interpreted as the

cargo capacity of the outbound transport device, e.g., truck or cargo capacity, and

the underlying formulation implicitly assumes that a single transportation source,

e.g., a single truck, is available. In another study by Çetinkaya and Lee (2002), the

authors again model and solve a single-vendor single buyer, deterministic demand

problem where the replenishment cost structure C(Q) in Expression (1.1), is consid-

ered only for the outbound transportation of the vendor and the buyer does not hold

any inventory. One common characteristic of these three earlier works is that they

concentrate on the case of deterministic demand where the vendor replenishes from

an outside supplier (i.e., the vendor has an infinite replenishment rate). The scope of
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this dissertation is more general than these previous papers in the following sense:

• We concentrate on the case of a single vendor, single buyer (a.k.a the one-

warehouse one-retailer problem), but we allow inventory at both locations, i.e.,

we explicitly consider the case of two stock-keeping locations.

• We study the case where, if necessary, more than one truck can be utilized

both for inbound and outbound transportation, and we model a generalized

cost structure representing this opportunity.

• We analyze both deterministic and stochastic demand problems. For the case

of deterministic demand, we study both infinite and finite replenishment rate

problems.

It is worth noting that the impact of practical transportation considerations,

and, in particular, general transportation cost structures, has been investigated in the

context of single-echelon inventory lot-sizing models. This body of research is closely

related to our work since it provides a foundation for lot-size optimization in a simpler

setting. For previous work addressing single echelon lot-sizing models with general

transportation assumptions, the reader is referred to Aucamp (1982), Lee (1986), Lee

(1989), Russell and Krajewski (1991). Aucamp (1982) treats a modification of the

standard economic order quantity (EOQ) model in which the total inbound freight

cost is partially determined by the integer number of carloads/trucks required to fill

the order. Russell and Krajewski (1991) also consider the standard EOQ problem, and

they model a transportation cost structure for less-than-truckload (LTL) shipments

reflecting reductions in freight rates when the replenishment quantity exceeds one of

the nominal rate breakpoints. Lee (1986, 1989) extends Aucamp’s work (Aucamp

1982) to consider a more general freight cost structure with quantity discounts and
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dynamic demands, respectively. In fact, the optimization technique developed by Lee

(1986) for the single echelon model provides a foundation for the buyer-vendor system

considered in Chapter III of this dissertation.

It is important to note that the existing work with transportation considerations

(e.g., Chan et al. 2002, Hoque and Goyal 2000, Çetinkaya and Lee 2002) use the

centralized modeling approach. The channel coordination problem in the context of

transportation costs has not yet been investigated. Another observation is that, no

study considers both the inbound and outbound transportation capacities and costs

for the vendor or their effects on the replenishment decisions of the buyer and the

vendor.

As discussed earlier, the issue of centralized vs. decentralized modeling ap-

proaches was first raised by Goyal (1976). After that, many other researchers worked

on the same problem under different settings and even proposed some simple ways

to coordinate the channel (e.g., Monahan 1984, Banerjee 1986b, Lee and Rosenblatt

1986). In the meantime, another stream of research developed on buyer-vendor coor-

dination problems. A group of researchers worked on the problem of finding the best

dispatching policy for minimizing the total replenishment and inventory related costs

in a buyer-vendor system where the vendor is a manufacturer with a finite production

rate. In the next section, we summarize these studies.

II.3.2. Production/Inventory Models

An important generalization of the classical buyer-vendor problem is when the vendor

is a manufacturer and has a finite production rate. We can conclude from the existing

literature that the type of the dispatch policy used to deliver buyer replenishments

is particularly important in this setting. This is because production at the vendor

may continue while the buyer is being replenished, and according to the type of the
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dispatch policy, this may result in very complex inventory load profiles for both the

buyer and the vendor. This in turn effects the inventory holding costs.

The optimal dispatch policy for this problem was identified by Hill (1999), and

it has a very complex structure that may be difficult to implement in practice. On

the other hand, there are some simpler policies proposed in the literature, but they

are not always optimal. The earliest and the simplest of these policies is the “Lot-

for-Lot” (LFL) Policy (Banerjee 1986b). With this policy, the vendor’s production

lot size and the buyer’s order size are equal and the same from cycle to cycle (see

Figure 2). Banerjee (1986b) also compares individual decision making and joint

optimization and proposes a method for sharing the benefits of the latter by making

price adjustments. Goyal (1988) extends this study by changing the replenishment

policy. That is, the vendor is allowed to produce one large lot to supply an integer

number of orders of the purchaser. If this integer is one, the cost is identical to that

in Banerjee (1986). One restriction of this study is that the vendor is assumed to

finish production of the whole batch before releasing the first shipment to the buyer.

Another dispatch policy proposed in the literature is the “Identical Delivery

Quantity,” (IDQ) Policy (Banerjee and Burton 1994, Lu 1995). With this policy,

equal-sized dispatches are made to the buyer as in the Lot-for-Lot Policy, but the

production lot size of the vendor and the dispatch sizes are not necessarily equal.

Figure 3 shows the inventory load profiles of a single buyer and a single vendor in

the case of the IDQ Policy.

The IDQ Policy was first introduced by Banerjee and Burton (1994) who consider

a single vendor and multiple buyers. They first model the problem using the decen-

tralized approach. They assume that the vendor’s inventory depletes at a constant

rate, which is the sum of the demand rates of the buyers. Each buyer individually

optimizes his/her costs using the EOQ assumptions. Then the vendor’s total cost
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Figure 2 Inventory Load Profiles for the Lot-for-Lot Policy
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is represented in terms of the buyers’ optimal order sizes and is optimized for the

vendor’s replenishment lot size. The authors also test their model to see the effects of

discrete inventory depletions using simulation. Then, they model the same problem

using a centralized approach. In order to coordinate the independent buyers, and for

the sake of analytic tractability, they assume that the vendor’s replenishment cycle

time is an integer (K) multiple of the buyers’ ordering cycle time which is common to

all buyers. For a set of numerical examples, the authors illustrate that the proposed

centralized model results in lower system costs than the decentralized model.

Note that both Goyal (1988) and Banerjee and Burton (1994) assume that the

production lot size for the vendor is an integer multiple of the ordering lot size of

the purchaser. In this sense, the single buyer case for Banerjee and Burton (1994)
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Figure 3 Inventory Load Profiles for the IDQ Policy
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is similar to Goyal (1998). However, in Goyal (1988), the vendor does not replenish

the buyer unless he finishes the production of the whole lot whereas in Banerjee and

Burton (1994), the vendor is allowed to replenish the buyers during production, i.e.,

before the lot is completed.

The IDQ Policy is also studied in a paper by Lu (1995) for a single vendor, multi-

buyer setting. The author proposes a decentralized model where the vendor decides

on the replenishment quantities by minimizing his/her total average cost, subject to

the maximum percentage that each buyer can deviate from his/her optimal cost. The

ordering cycle times of the buyers are given by KiT where T is the replenishment

cycle time of the vendor and Ki ∈ {1, 2, 3, . . . } ∪ {1/2, 1/3, . . . }. Unlike in Banerjee

and Burton (1994), where the ordering cycle times of all the buyers are the same,
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here the buyers’ cycle times are different. But again, for a single buyer, the policy

can be characterized as IDQ. A heuristic approach is provided for the multi-buyer

case, and the problem is solved optimally for the single buyer. Note that, in the

single buyer problem, if the constraint regarding the maximum cost that the buyer

can incur is ignored, then Lu’s model (Lu 1995) reduces to the one in Banerjee and

Burton (1994).

It is worth noting that in the studies mentioned until now, none of the authors fo-

cus on improving the system costs by changing the dispatch policy. Banerjee (1986b)

and Banerjee and Burton (1994) aim to analyze the impact of centralized and decen-

tralized decision making on the individual and joint costs. Lu (1995) argues that, by

putting constraints on the buyers’ maximum costs, a vendor can pass some of his/her

savings on to the buyers in order to decide on replenishment quantities agreeable

by all parties in a vendor driven channel. While the earlier literature on produc-

tion/inventory models can be characterized in this way, later the attention of the

researchers diverts to finding the optimal dispatching policy in this kind of a setting.

One of the policies that has been proposed in an effort to improve total system costs

is the “Deliver What is Produced” (DWP) Policy (Goyal 1995). Figure 4 shows the

inventory load profiles of a buyer and a vendor in a case of the DWP Policy.

The DWP Policy was introduced into the literature by Goyal (1995). The studies

summarized above all assume that the replenishment quantity for any buyer is the

same in each dispatch. However, Goyal (1995) relaxes this assumption for the single

vendor and single buyer case. He assumes that qi+1 = (ϑ/D)qi where qi is the size of

the ith shipment to the buyer and ϑ and D are the vendor’s production rate and the

buyer’s demand rate, respectively. The system cost in this policy can be represented

as a function of the size of the first shipment to the buyer and an integer, denoted by

n, representing the number of buyer replenishments within a production cycle of the
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Figure 4 Inventory Load Profiles for the DWP Policy
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vendor. A solution procedure that evaluates all possible n and compares the optimal

costs for different values of n is proposed. However, this solution procedure is not

necessarily finite.

A study by Viswanathan (1998) compares the DWP policy with the IDQ policy

for the single vendor, single buyer problem. After an extensive numerical analysis,

Viswanathan (1998) concludes that no policy is better than the other for all parameter

values. As the buyer’s unit inventory holding cost increases, IDQ becomes a better

policy, and as the demand rate increases with respect to production rate, DWP is

superior to IDQ.

The idea of different sized shipment quantities to the buyer is also adapted by

Hill (1997), who proposes a more generalized model for Goyal’s problem (Goyal 1995).
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He assumes that the size of the (i + 1)st shipment can differ from the size of the ith

shipment by a factor of λ which can take any value in the range [1, ϑ/D]. In the

later parts of the dissertation, we refer to this policy as the “Factor-λ” (Fλ) Policy

(see Figure 5 for the inventory load profiles). The total cost as a result of this

policy is represented as a function of the increase factor (λ), the number of buyer

replenishments within a production cycle of the vendor (n) and the size of the first

shipment to the buyer (q1). The solution procedure proposed by Hill (1997) makes a

full search over λ within [1, ϑ/D] and n. A range of values that limits the possible

values of n is also proposed based on a numerical analysis. However, this range

does not necessarily include the optimal solution. Later, Goyal (2000) improves the

policy proposed by Hill (1997) by modifying the shipment quantities. We refer to the

resulting dispatch policy in Goyal (2000) as the “Improved-Factor-λ” (IFλ) Policy.

Another policy for the single vendor, single buyer production/inventory problem

is proposed by Goyal and Nebebe (2000). In this policy, the last n − 1 shipments

to the buyer are of equal size, given by ϑ/D times the initial shipment size (see

Figure 6). Therefore, we call this policy the “1-unequal” Policy. The average annual

system cost can be written as a function of the first shipment size and the number

of dispatches within one vendor production cycle (i.e., n). An analytical solution is

provided for the optimum values of the decision variables. Some problem instances

are also noted where the current policy performs better than Goyal (1995), Lu (1995),

and Hill (1997).

In a recent study, Hoque and Goyal (2000) generalize the 1-unequal Policy by

assuming that the first e shipments to the buyer are of unequal size and increase by

a factor of ϑ/D after which they stay constant for the remaining n − e shipments.

Unlike in the previous models, Hoque and Goyal (2000) also incorporate a capacity

constraint which sets an upper limit on the maximum allowable dispatch size. If
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Figure 5 Inventory Load Profiles for the Factor-λ Policy
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this maximum value is large enough so that the constraint is not binding, then the

model proposed solves the integrated inventory replenishment problem of the buyer

and vendor under a new dispatch policy. We refer to this policy as the “e-unequal”

Policy. Figure 7 shows the inventory load profiles of a buyer and a vendor under this

policy.

All the production/inventory models that have been covered so far assume a

certain dispatch policy and then find the optimum parameter values for that policy.

The global optimum for the single buyer, single vendor production problem has been

found by Hill (1999). It turns out that the structure of the optimal sequence of ship-

ments varies according to problem parameters and contains all of the above patterns

as special cases. However, one common property is that the first period’s shipment
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Figure 6 Inventory Load Profiles for the 1-unequal Policy
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quantity is the least and the others are nondecreasing. For example; one possible

solution for the sequence of shipments may be q, λq, λq, . . . , λq. This is similar to the

structure that Goyal and Nebebe (2000) assume except that λ is not necessarily equal

to ϑ/D. If λ = 1, this results in equal sized shipments as in Banerjee and Burton

(1994) and Lu (1995). As another possibility, the sequence of shipments may fol-

low the pattern: q1, (ϑ/D)q1, (ϑ/D)2q1, ., (ϑ/D)m−1q1, qm+1 = qm+2 = · · · = qn. This

structure is similar to that assumed by Hoque and Goyal (2000), except for the fact

that the equal shipment sizes are not necessarily equal to the size of the last unequal

shipment. As a final possibility, it may turn out that qi+1 = (ϑ/D)qi as is the case in

Goyal (1995).

In Table I, we summarize the production/inventory models for two-echelon sys-
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Figure 7 Inventory Load Profiles for the e-unequal Policy
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tems. The fourth column in Table I states the modeling approach used in each paper.

For those papers that model their problem using a decentralized approach, we also

state whether they assume a buyer-driven or vendor-driven channel, as discussed in

Section II.1. Note that for the centralized modeling approach, this attribute is not

applicable.

Another stream of research considers multiple production stages where the prob-

lem is to find optimal production lot sizes and transfer batch sizes from one stage to

the next. The production lot size is assumed to be uniform across all stages, and only

a single set-up cost is allowed for uninterrupted production at each stage. However,

the number of transfer batch sizes at each stage may differ. Under these assump-

tions, Goyal and Szendrovits (1986) model the problem for equal and unequal sized
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Table I Summary of Literature on Production/Inventory Models

Author No. of Items Replenishment Focus Buyer vs. Vendor
Policy Driven Channel

Banerjee Single Lot-for-Lot Centralized vs. Buyer
(1986b) Decentralized

Banerjee and Multi IDQ Centralized vs. Buyer
Burton (1994) Decentralized

Lu (1995) Multi IDQ Decentralized Vendor
Goyal Single DWP Centralized NA
(1995)

Viswanathan Single IDQ and Centralized NA
(1998) DWP IDQ vs. DWP
Hill Single Factor-λ Centralized NA

(1997)
Goyal Single Improved-Factor-λ Centralized NA
(2000)

Goyal and Single 1-unequal Centralized NA
Nebebe (2000)

Hoque and Single e-unequal Centralized NA
Goyal (2000)

NA: Not Applicable

batch shipments between production stages. The size of the largest unequal batch is

taken as the batch size for equal shipments. A heuristic algorithm is provided, but

its performance is not adequately tested (i.e., it is not compared with the optimal

solution).

For the same problem, Hoque and Kingsman (1995) provide an exact optimiza-

tion method. In a recent study, Bogaschewsky et al. (2001) solve the problem assum-

ing unequal transfer batches. These authors report cases that outperform the results

of Goyal and Szendrovitz (1986).

II.3.3. Channel Coordination Models

As discussed earlier, the channel coordination concept was first introduced in the

marketing literature. Although the specific term was coined later, the idea of chan-

nel coordination was captured earlier by many researchers who proposed quantity

discounts as a mechanism to influence the buyer’s ordering pattern. Dolan (1987),
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in his survey paper, lists another function of quantity discounts as the achievement

of price discrimination against a single customer or a set of heterogenous customers

(i.e., customers with different cost and revenue parameters). Since price discounts

are commonly used as a mechanism for channel coordination, we review below some

price schedules that include different forms of quantity discounts.

In a uniform price schedule, there is a linear, through the origin, relationship

between the quantity and the total price (see Figure 8.a). Another class of price

schedules is the nonlinear price schedule which has three forms: 1) Two-part tariff

schedule, 2) Two-block tariff schedule (or Incremental discount schedule), 3) All units

discount schedule. A two-part tariff schedule imposes a fixed charge for any goods

purchased and a uniform price for each unit (see Figure 8.b). In a two-block tariff,

a.k.a. incremental discount schedule, a per unit price p1 is charged for any unit, up to

quantity x, at which point the per-unit price changes to p2 for all units greater than

x (see Figure 8.c). Another common price schedule is the all units discount in which

a lowered price applies to all units if a certain quantity level is exceeded (see Figure

8.d). These are the price schedules that appear most commonly in the literature. A

detailed discussion of different price schedules, with examples from real life cases, is

provided in Dolan (1987).

Another commonly cited work from the marketing literature is by Jeuland and

Shugan (1983). The authors propose joint ownership, simple contracts, implicit un-

derstandings, profit sharing and quantity discounts as mechanisms for achieving chan-

nel coordination. In their models, they assume that the demand at the buyer is a

decreasing function of retail price. They propose price schedules for channel coordi-

nation in a single buyer, single vendor system as well as in a single vendor, multiple

buyers system. However, as they also specify in the paper, the price schedule they

propose for the multiple buyers case violates the Robinson Patman Act. This act de-
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Figure 8 Price Schedule Illustrations
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clares it illegal for a vendor to give different terms to different buyers. In fact, in the

case of multiple heterogenous buyers, coordinating the channel in compliance with

the Robinson Patman Act is a challenging research problem. As will be discussed in

the sequel, some later researchers have worked on this problem (Lal and Staelin 1984,

Hoffman 2000).

While the marketing literature studies by Dolan (1987) and Jeuland and Shugan

(1983) are good examples of the state of the work done in the channel coordination

area in the early 1980’s, we cite Monahan (1984) and Lal and Staelin (1984) as the

two pioneering papers in the operations research literature.

Monahan (1984) studies a single vendor, single buyer problem where the vendor’s

replenishment lot size is equal to the buyer’s order quantity per cycle. The buyer’s
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replenishment problem is modeled using the EOQ Model; however, the inventory

holding costs of the vendor are not incorporated into the model. The author addresses

the case where the vendor may ask the buyer to increase his/her ordering size by a

factor (i.e., k). The paper does not assume any ordering relationship between the

magnitudes of the buyer’s and the vendor’s fixed replenishment costs. It turns out

that the optimal value of k (i.e., k∗), under the assumptions of the Monahan’s paper,

is given by
√

1 +Kv/Kb, where Kv and Kb are the fixed replenishment costs of the

vendor and the buyer, respectively. This implies that, regardless of the values of the

setup costs, k∗ is always greater than one. Hence, the vendor is always better off

encouraging the buyer to increase his/her order size. In fact, one can conclude this

result directly by using Proposition 1, which we proved in Section II.1. Changing

his/her ordering behavior results in increased costs for the buyer. However, Monahan

(1984) proposes an all-units discount schedule with one break point through which

the parties can share the benefits of coordination. As a result of the specific price

schedule proposed, the buyer changes his/her order quantity while staying in a “no

worse profit” situation.

In a later study, Banerjee (1986a) modifies the model of Monahan (1984) to

incorporate the inventory holding costs of the vendor. The vendor in this study is a

manufacturer with a finite production rate. The author shows that, in this setting,

there may be cases where smaller order quantities from the buyer are better for

increasing channel profits. However, it is pointed out that this theoretical result is

rare in practice. Nevertheless, the optimal value of the k factor found by Banerjee

(1986a) does not only depend on the ratios of ordering costs but also on the unit

inventory holding costs.

Another generalization of Monahan (1984) is further examined by Lee and Rosen-

blatt (1986). They point out that Monahan (1984) does not put any constraint on
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the maximum amount of the discount. Hence, in some cases Monahan’s result could

imply that the discount amount exceeds the vendor’s unit price for the item. Con-

sidering a unit profit margin (i.e., the minimum amount of profit that the vendor

aims for per item) the authors incorporate a constraint on the model that limits the

maximum value of the unit discount. They also assume that the replenishment lot

size of the vendor is an integer multiple of the replenishment lot size of the buyer.

They follow the exact methodology of Monahan (1984); however they take k ≥ 1,

apriori. Recall that Monahan (1984) does not include this condition in his model,

but it is a logical extension of his assumptions. Goyal (1987) improves the solution

procedure developed by Lee and Rosenblatt.

As we stated earlier, Lal and Staelin (1984) published one of the major studies

in the early operations research literature on channel coordination. In this study, the

authors investigate the channel coordination problem for the single vendor, multiple

buyers case. They first analyze the problem assuming that the buyers are homogenous

(i.e. they have the same cost and revenue parameters). This problem is equivalent to

the single buyer, single vendor case. This is because the price schedule that is optimal

for one buyer applies to all the others. In subsequent parts of the paper, they also

analyze the heterogenous buyers’ case. In both cases, they propose a price schedule

that is continuous but changes at certain intervals. For example, for a system with

homogenous buyers, the unit price is constant up to the centralized order quantity;

then it decreases exponentially. For an optimal price schedule, they find the parame-

ters of this exponential decrease analytically, and it guarantees that the buyer stays

in a “no worse” situation. In the heterogenous buyers case, they again restrict the

pricing strategy so as to be continuous. The optimal price schedule is computed via

an algorithmic approach, and the resulting price schedule does not violate the Robin-

son Patman Act. However, it only guarantees that the buyers order their individual
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optimal quantities (i.e., decentralized order quantities). This approach does not nec-

essarily put all of the buyers in a “no worse” situation. Sometimes the vendor may

have to give more incentives to some of the buyers to discourage them from taking

advantage of the price regions in the price schedule that are specifically designed for

other buyers.

The channel coordination problem for a system with heterogenous buyers is also

studied by Hoffman (2000). However, unlike Lal and Staelin (1984), he restricts

the price schedule to an all-units discount schedule with multiple breakpoints and

considers discounted cash flow as the performance measure of the buyers and the

vendor. Neither the vendor nor the buyers have inventory holding costs; they just

incur fixed replenishment costs. The parameters of an optimal price schedule is again

found using an algorithmic approach. However, as in Lal and Staelin (1984), in the

resulting price schedule, the vendor may be required to give more discounts to some

buyers than those required in order to put them in a “no worse” situation.

An interesting generalization of the deterministic fixed demand rate problem is

the case where the demand rate is a function of the selling price at the buyer. It is

demonstrated by Weng (1995) that in this case (i.e., demand is a decreasing function

of selling price), channel coordination cannot be guaranteed by quantity discounts

alone. This is because the unit selling price at the buyer is a decision variable under

the control of the buyer, and the buyer may choose a unit selling price that maximizes

his profits. Thus, a fixed payment (franchise fee) paid by the buyer to the supplier

may also be required.

The studies that we have reviewed so far assume that demand is deterministic.

The deterministic models help us to gain insights into the dynamics of the problem.

Also, their solutions can be used as approximations for time-varying and stochastic

demand problems. However, stochastic models provide better representations of real
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life applications. On the other hand, the number of studies on channel coordination

that investigate the stochastic nature of the problem is very limited. One such study

was conducted by Parlar and Weng (1997). The authors analyze the coordination

problem between the manufacturing and the supply departments of a firm. The

setting is similar to that of the Newsboy Problem with the exception that if demand

is not met with the production quantity of the first run, then a second cycle is

initiated. Since the costs associated with this second run are higher, the supply

department orders an additional quantity of the material as a precaution against

excess demand. However, as demand is random, a stockout situation can still occur.

The authors analyze both the integrated and the independent decision making models

of the buyer and the vendor. They provide conditions for which the former model is

significantly better than the other. However, they do not provide any mechanisms

for channel coordination.

In two recent studies, Lau and Lau (2003), and Ertek and Griffin (2002) inves-

tigate different aspects of the channel coordination problem. In the first study, the

authors show that specific results on channel coordination under the price dependent

demand assumption cannot be generalized. Utilizing different demand curves as func-

tions of retail price, they illustrate the effects of price-demand relationships on chan-

nel coordination. In a second study, Ertek and Griffin (2002) compare vendor-driven

versus buyer-driven channels as a solution to the decentralized problem. Although

these authors analyze a very simple setting, the impact of the power structure is an

interesting issue. To our best knowledge, the whole literature on channel coordina-

tion assumes a buyer-driven channel. Therefore, we believe this paper provides the

groundwork for designing vendor-driven channels.

In Table II, we provide a summary of literature on channel coordination.
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II.4. Summary

In this chapter, we have reviewed the literature on buyer-vendor coordination studies

that emphasizes transportation models, production/inventory models and channel

coordination models. As we stated in the introduction to this chapter, the classical

multi-echelon inventory models can also be considered as part of the buyer-vendor

literature under the condition that the parties fully cooperate. However, since there

is a vast body of literature on multi-echelon systems, we have only reviewed some

representative papers in this area. It is important to note that the case with multiple

buyers (see Roundy 1985, 1986) is an important generalization of the single buyer,

single vendor problem within the context of multi-echelon inventory theory.

Another notable generalization of the problem is when demand is dynamically

changing or stochastic. To our best knowledge, there is no study in the literature that

considers the channel coordination problem under a dynamically changing demand

assumption. However, we cite Arkin et al. (1989), Chan (2002), Diaby and Martel

(1993), Joneja (1990) for dynamic demand problems in multi-echelon inventory the-

ory. It is also worthwhile to note that the existing research on the dynamic demand

case concentrates on the computational challenges associated with the development of

cost efficient replenishment policies. Although the multi-echelon inventory literature

contains many studies based on the stochastic demand assumption, such studies are

very limited in the channel coordination literature (Parlar and Weng 1997, Lee et al.

2000).

Based on the general characteristics of the existing literature discussed above,

we list some further observations:

• While there are many studies that expand on Monahan (1984), several impor-

tant generalizations, such as the deterministic multi-item problem and deter-
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ministic problems with general transportation and supply/replenishment costs,

are still open research areas.

• As mentioned earlier, in contrast to the classical models, Weng (1995) considers

the case where the selling price at the buyer is a decision variable and the

demand rate is deterministic but is a function of the selling price. The stochastic

demand version of this problem is an open research area.

• It appears from the current literature that the more complex channel coordina-

tion problems in stochastic environments are largely untreated. These include

– stochastic demand problems with general transportation and supply/ re-

plenishment costs,

– stochastic demand problems with procurement cost/price dependent de-

mand, and

– multi-item stochastic demand problems.

To achieve channel coordination, the buyer-vendor pair can ideally come together and

decide between themselves to operate at the centralized order quantity. However, this

is less feasible in practice. In reality, the determination of how they split the benefits

depends on the relative bargaining power of the parties. Another alternative is for

the vendor to send the buyer a price schedule that is a function of order quantity.

This way, he/she can use prior information about the buyer’s reactions to develop a

price schedule that will influence the buyer’s ordering behavior. We believe that this

is a more practical way of coordinating the channel, and, therefore, in the later parts

of the dissertation, we adopt this strategy.
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CHAPTER III

INTEGRATED PURE INVENTORY PROBLEM WITH DETERMINISTIC AND

CONSTANT DEMAND

In this chapter, we extend the earlier work in buyer-vendor coordination with deter-

ministic and constant demand in order to consider: i) the cargo capacity constraints

for both inbound and outbound transport equipment, and ii) the general transporta-

tion cost structure C(Q) that may represent a fleet of vehicles, rather than a single

truck, explicitly.

The assumptions of the problem considered here are essentially the same as those

for the classical buyer-vendor coordination model (Goyal 1976), with the exception

that our case takes into account a general replenishment cost structure, which includes

a fixed replenishment/delivery cost as well as a stepwise truck/cargo cost for both

the vendor and the buyer. The vendor’s replenishment cost is

Cv(Qv) = Kv +

⌈
Qv

P

⌉
R, (3.1)

where Qv denotes the vendor’s replenishment quantity; Kv denotes the fixed replen-

ishment cost; P denotes the truck/cargo capacity; and R denotes the truck/cargo

cost. As a result, the vendor’s replenishment cost includes both a fixed portion Kv

and a freight cost that is proportional to the number of trucks/cargoes used. A cost of

R per truck/cargo is incurred whether it is fully loaded or partially loaded. Similarly,

the buyer’s replenishment cost is given by

Cb(Qb) = Kb +

⌈
Qb

P

⌉
R, (3.2)

where Qb denotes the buyer’s replenishment quantity, andKb denotes the fixed replen-

ishment cost at the buyer. Note that cost functions Cv(·) and Cb(·) include the vendor’s
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inbound and outbound cargo costs represented by the stepwise terms dQv/P eR and

dQb/P eR, respectively. We consider the case where the vendor or vendor’s transporta-

tion contractor, such as a third party logistics company, manages both the inbound

and outbound transportation. Hence, the same type of transportation equipment is

used with a similar truck/cargo cost R and capacity P . We also take into account

the inventory holding costs per-unit per-unit-time at the vendor, denoted by hv, and

at the buyer, denoted by hb. The echelon holding cost is denoted by h
′
= hb−hv ≥ 0.

We develop two models. Model I is a special case where the inbound cargo

costs are modeled explicitly but the outbound cargo costs are ignored. Model II is

a generalization of Model I, and it considers both the inbound and outbound cargo

costs.

A summary of the notation and mathematical formulations for Models I and II

are given in the next section. Model I is analyzed in Section III.2 whereas Model II is

analyzed in Section III.3. For both models, we develop heuristic solution procedures

with error bound analysis. The costs of the heuristic solutions are used as upper

bounds in obtaining finite time exact solution procedures. The chapter concludes

with a summary in Section III.4.

III.1. Notation and Problem Formulation

Considering the case where the vendor replenishes from a supplier with ample supply

and the demand rate at the buyer is a known constant, denoted by D, the problem is

to compute the order quantities for the vendor and the buyer so that the total cost of

the entire system is minimized. In this context, the vendor’s order quantity, denoted

by Qv, represents the size of an inbound shipment to the vendor, whereas the buyer’s

order quantity, denoted by Qb, represents the size of an outbound shipment from the
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vendor. A summary of the notation used is given next.

Kv: Fixed replenishment cost of the vendor.

hv: Holding cost per-unit per-unit-time for the vendor.

Kb: Fixed replenishment cost of the buyer.

hb: Holding cost per-unit per-unit-time for the buyer.

h
′
: Echelon holding cost (h

′
= hb − hv > 0).

R: Fixed cost per truck/cargo.

P : Truck/cargo capacity.

D: Buyer’s demand rate.

Qv: Vendor replenishment quantity, i.e., inbound shipment size.

Qb: Buyer replenishment quantity, i.e., outbound shipment size.

Tv: Vendor replenishment cycle length.

Tb: Buyer replenishment cycle length.

n: Number of buyer replenishments within a vendor replenishment

cycle (Tv = nTb, and thus Qb = Qv/n).

The replenishment costs, and hence the inbound/outbound transportation costs,

exhibit economies of scale. The vendor replenishes itself and the buyer periodically

so that transportation scale economies can be achieved. The time between two suc-

cessive vendor replenishments represents the vendor replenishment cycle whereas the

time between two successive buyer replenishments represents the buyer replenish-

ment cycle. Hence, the buyer’s replenishment cycle length, denoted by Tb, is given by

Qb/D. The vendor’s replenishment cycle length, denoted by Tv, is given by Tv = nTb

where n is a positive integer denoting the number of buyer replenishments within a

replenishment cycle of the vendor. Under these assumptions, inventory profiles of the

vendor and buyer are illustrated in Figure 9.
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Figure 9 Inventory Load Profiles of the Vendor and the Buyer (n = 4)
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It is easy to show that the average annual total costs for Models I and II, denoted

by G(n,Qv) and Ĝ(n,Qv), respectively, are given by

Model I: G(n,Qv) = Cv(Qv)
D

Qv

+
hv(n− 1)Qv

2n
+
nKbD

Qv

+
hbQv

2n
,

Model II: Ĝ(n,Qv) = Cv(Qv)
D

Qv

+
hv(n− 1)Qv

2n
+ nCb(Qv/n)

D

Qv

+
hbQv

2n
,

where Cv(Qv) and Cb(Qb) are as expressed in (3.1) and (3.2), respectively. Hence,

Model I incorporates the general replenishment cost function and the truck/cargo

capacity constraints for inbound transportation only, whereas Model II incorporates

these for inbound and outbound transportation, simultaneously. Noting that D/Qv

gives the number of replenishments per year, the first terms in the above cost expres-

sions are the annual replenishment cost and the truck/cargo costs used for inbound

transportation. The second terms of these expressions give the annual inventory
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holding costs at the vendor. The third and fourth terms are the retailer’s annual

replenishment/truck and inventory holding costs, respectively.

Rewriting the average annual cost functions for Models I and II, we have

Model I: G(n,Qv) =
KvD

Qv

+

⌈
Qv

P

⌉
RD

Qv

+
hvQv

2
+
nKbD

Qv

+
h
′
Qv

2n
,

Model II: Ĝ(n,Qv) =
KvD

Qv

+

⌈
Qv

P

⌉
RD

Qv

+
hvQv

2
+
nKbD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

+
h
′
Qv

2n
.

The problems under consideration are then given by:

Model I

min G(n,Qv)

s.t. Qv ≥ 0

n : a positive integer.

Model II

min Ĝ(n,Qv)

s.t. Qv ≥ 0

n : a positive integer.

Next, we develop heuristic and exact optimization procedures for Models 1 and

2 in Sections III.2 and III.3, respectively.

III.2. Model I: A Model with Explicit Inbound Costs

We begin by presenting a basic algorithm that can be used to solve the classical EOQ

problem where the replenishment cost is given by Equation (3.1). This basic algorithm

is based on a previous paper by Lee (1986) who provides a solution technique for the

EOQ problem involving a replenishment cost function of the form C(Q). As we

discuss below, a special case of Lee’s algorithm (Lee 1986) can be used as a building

block for solving the problems of interest in this paper.

Now, consider the classical EOQ problem with an annual demand D, per-unit,

per-unit-time holding cost h, and a general replenishment cost given by K+dQ/P eR,



46

where Q is the order quantity. Hence, the average annual total cost, denoted F (Q),

is given by

F (Q) =
KD

Q
+
hQ

2
+

⌈
Q

P

⌉
RD

Q
. (3.3)

A graphical illustration of F (Q) is given in Figure 10. Obviously, the sum of the

first two terms of F (Q), denoted by H(Q), is an EOQ-type convex function of Q

with a minimizer at qeoq =
√

2KD/h. The third term of (3.3) represents the annual

cargo cost with a minimum value, equal to R(D/P ), at Q = kP for all positive

integers k. Also, for each fixed k, this term is a decreasing convex function of Q over

(k − 1)P < Q ≤ kP . Knowing these characteristics of F (Q), it is straightforward to

verify that the following properties are satisfied.

Figure 10 An Illustration of F (Q).

F(Q)

KD/Q+hQ/2
hQ/2

KD/Q
RD/P

qeoqiP(i-1)P Q

PROPERTY 1 Over (k − 1)P < Q ≤ kP, k = 1, 2, . . . , function F (Q) in (3.3)

reduces to

F (Q) =
KD

Q
+
kRD

Q
+
hQ

2
,
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and hence it is an EOQ-type function with a stationary point at

Qk =
√

2(K + kR)D/h.

We say that Qk is realizable if (k − 1)P < Qk ≤ kP or dQk/P e = k.

PROPERTY 2 Let i denote the integer such that iP < qeoq ≤ (i + 1)P . For all

k ≤ i, F (Q) in (3.3) is decreasing over (k − 1)P < Q ≤ kP . Hence, if k ≤ i, then Qk

is not realizable and F (Q) ≥ F (kP ) over Q ≤ kP .

PROPERTY 3 If k ≥ i+ 1, then F (Q) ≥ F (kP ) over Q ≥ kP .

PROPERTY 4 If Qi+1 ≥ (i + 1)P , then F (Q) in (3.3) is decreasing over iP <

Q ≤ (i + 1)P . On the other hand, if Qi+1 < (i + 1)P , then F (Q) is decreasing over

iP < Q ≤ Qi+1 and increasing over Qi+1 ≤ Q ≤ (i+ 1)P .

The following algorithm, a simplified version of Lee (1986), builds on Proper-

ties 1–4, and it can be used to find the optimal Q minimizing F (Q) in (3.3). A

detailed proof of the optimality of this algorithm is provided in Lee (1986).

ALGORITHM 1 – A Modification of Lee’s Algorithm in Lee (1986)

Step 1. Compute qeoq =
√

2KD/h.

Step 2. Let i denote the integer such that iP < qeoq ≤ (i+ 1)P . Compute

Qi+1 =

√
2[K + (i+ 1)R]D

h
.

If Qi+1 ≥ (i+ 1)P , then go to Step 3. Otherwise go to Step 4.

Step 3. Compute the cost for Q = iP and Q = (i+ 1)P .

Select the one that yields the minimum cost as the optimal Q and stop.
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Step 4. Compute the cost for Q = iP and Q = Qi+1.

Select the one that yields the minimum cost as the optimal Q and stop.

Observe that the optimal solution produced by this algorithm is either equal to

Qi+1 or iP or (i+ 1)P where i is as defined in Step 2 above. That is, the minimizer

of F (Q) in (3.3) is given by

arg min {F (Qi+1), F (iP ), F ((i+ 1)P )} .

In fact, if we combine the result stated in the above expression with the results stated

in Properties 1–4, we conclude that

arg min {F (min {Qi+1, (i+ 1)P}) , F (iP )} . (3.4)

For future reference, let us also revisit the classical EOQ problem where we

minimize

H(Q) =
KD

Q
+
hQ

2
,

and find that qeoq =
√

2KD/h is the optimal solution. It is easy to show that

H(Q)

H(qeoq)
=

H(Q)√
2KDh

=
1

2

(
Q

qeoq

+
qeoq

Q

)
. (3.5)

Now, suppose that qeoq ≥ P . Then either one of the following two cases is true:

PROPERTY 5

• Part i) iP ≤ qeoq ≤
√
i(i+ 1)P . In this case, using an EOQ value of iP implies

the following error:

H(iP )

H(qeoq)
=

1

2

(
qeoq

iP
+

iP

qeoq

)
.

Since the above function is increasing in qeoq in this range, its highest value is
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attained when Q =
√
i(i+ 1)P . Therefore,

H(iP )

H(qeoq)
=

1

2

(
qeoq

iP
+

iP

qeoq

)
≤ 1

2

(√
i

i+ 1
+

√
i+ 1

i

)
≤ 1

2

(
1√
2

+
√

2

)
≤ 1.06.

(3.6)

• Part ii)
√
i(i+ 1)P ≤ qeoq ≤ (i + 1)P . In this case, using an EOQ value of

(i+ 1)P implies the following error:

H((i+ 1)P )

H(qeoq)
=

1

2

(
qeoq

(i+ 1)P
+

(i+ 1)P

qeoq

)
.

Since the above function is decreasing in qeoq in the range considered, its highest

value is attained when qeoq =
√
i(i+ 1)P . Therefore,

H((i+ 1)P )

H(qeoq)
=

1

2

(
qeoq

(i+ 1)P
+

(i+ 1)P

qeoq

)
≤ 1

2

(√
i

i+ 1
+

√
i+ 1

i

)
≤ 1.06.

Having developed the fundamental Properties 2 through 5 that will be used in

the remaining portion of this chapter, let us revisit the objective function of Model

I. We define

An = Kv + nKb, Bn = hv + h
′
/n, n = 1, 2, . . . , (3.7)

so that G(n,Qv) =
AnD

Qv

+
BnQv

2
+

⌈
Qv

P

⌉
RD

Qv

. (3.8)

Observe that, for a fixed n, the above function has the same characteristics as the

function F (·) defined earlier. Hence, given n, the minimizer of (3.8) can be computed

using Algorithm 1 by letting K = An, h = Bn, and Q = Qv. As a result, if we can

find an upper bound, denoted nmax, on the optimal value of n, then we can find the

optimal solution of Model I in a finite number of steps by computing the minimizers

of G(n,Qv) for n = 1, 2, . . . , nmax using Algorithm 1. Hence, in the following section,

we first develop a heuristic solution procedure for Model I. Later, we use the cost of

the heuristic solution and develop a technique for computing nmax. As we prove in
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the following subsection, the error bound of the heuristic method is 6%. Thus, it can

effectively replace the exact optimal solution.

III.2.1. Heuristic Approach for Model I

Recalling the objective function G(n,Qv) of Model I, we define

FI(Qv) =
KvD

Qv

+

⌈
Qv

P

⌉
RD

Qv

+
hvQv

2
, and HI(Qb) =

KbD

Qb

+
h
′
Qb

2
,

where Qb = Qv/n. For the sake of convenience, let us treat n as a continuous variable

for the moment. It follows that

G(n,Qv) = FI(Qv) +HI(Qv/n)

which is equivalent to our original cost function. Now, observe that function FI(Qv)

can be minimized over Qv ≥ 0 using Algorithm 1 by letting K = Kv, h = hv, and

Q = Qv. Let QI denote the resulting minimizer of FI(Qv). Recalling Expression

(3.4), we can write

QI = arg min {FI (min {Qi+1, (i+ 1)P}) , FI(iP )} . (3.9)

where i is the integer satisfying

iP <

√
2KvD

hv

≤ (i+ 1)P.

Also, note that HI(Qb) is an EOQ-type function. Its minimizer, denoted qI , is

given by

qI =

√
2KbD

h′
, so that HI(QI) =

√
2Kbh

′D.

It follows that

HI(Qb) ≥
√

2Kbh
′D, ∀Qb ≥ 0.
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As a consequence, FI(QI) +
√

2Kbh
′D is a lower bound on the cost function of our

problem, i.e.,

min
n,Qv

G(n,Qv) ≥ FI(QI) +
√

2Kbh
′D. (3.10)

Now, we are ready to state our heuristic algorithm.

ALGORITHM 2 – A Heuristic Algorithm for Model I

Find the QI that minimizes FI(Qv) using Algorithm 1 where K = Kv and h = hv.

Case 1: If QI > qI , then let m denote the integer that satisfies

√
m(m− 1) <

QI

qI
≤
√
m(m+ 1).

Compute G(m,Qv) by substituting n = m in Expressions (3.7) and (3.8).

Minimize G(m,Qv) using Algorithm 1 where K = Am = Kv + mKb and

h = Bm = hv + h
′
/m, and obtain the heuristic solution for Qv.

Case 2: If QI ≤ qI , then set n = 1 in Expressions (3.7) and (3.8). Minimize

the resulting G(1, Qv) using Algorithm 1 where K = A1 = Kv + Kb and h =

B1 = hv + h
′
, and find the heuristic solution for Qv.

THEOREM 1 ḠI/G
∗ < 1.06 where ḠI is the cost of the heuristic solution obtained

by using Algorithm 2 and G∗ is the optimal cost for Model I.

Proof:

Case 1: QI > qI.

The suggested heuristic solution is given by minQv G(m,Qv), and, as a conse-

quence, we have minQv G(m,Qv) ≤ G(m,QI). In order to complete the proof, we will

show that

G(m,QI) ≤ 1.06
(
FI(QI) +

√
2Kbh

′D
)
.
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However, since G(m,QI) = FI(QI) +HI(QI/m), it is sufficient to show HI(QI/m) ≤

1.06
√

2Kbh
′D. Recalling Property 5, observe that

HI(QI/m)√
2KbDh

′ =

KbmD
QI

+ h
′
QI

2m√
2KbDh

′ =
m

QI

√
KbD

2h′
+
QI

2m

√
h′

2KbD
=

1

2

(
m

QI/qI
+
QI/qI
m

)
.

By definition
√
m(m− 1) < QI/qI ≤

√
m(m+ 1), and thus there may be two possi-

bilities:

Case 1.1:
√
m(m− 1) < QI/qI ≤ m.

In this case, the highest value thatHI(QI/m)/
√

2KbDh
′ can attain is atQI/qI =√

m(m− 1). However, since QI > qI , we have

HI(QI/m)√
2KbDh

′ =
1

2

(
m

QI/qI
+
QI/qI
m

)
≤ 1

2

(√
m− 1

m
+

√
m

m− 1

)

≤ 1

2

(√
2 +

1√
2

)
≈ 1.06. (3.11)

Case 1.2: m < QI/qI ≤
√
m(m+ 1).

In this case, the highest value thatHI(QI/m)/
√

2KbDh
′ can attain is atQI/qI =√

m(m+ 1). Hence,

HI(QI/m)√
2KbDh

′ =
1

2

(
m

QI/qI
+
QI/qI
m

)
≤ 1

2

(√
m+ 1

m
+

√
m

m+ 1

)

≤ 1

2

(√
2 +

1√
2

)
≈ 1.06. (3.12)

Our analysis for Case 1.1 and Case 1.2 leads to

G(m,QI) ≤ 1.06
(
FI(QI) +

√
2Kbh

′D
)

so that

ḠI = min
Qv

G(m,Qv) ≤ G(m,QI) ≤ 1.06G∗.
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Case 2: QI ≤ qI.

Note that for a given value of Qv, function G(n,Qv) is convex in n. Also, the

first order conditions for optimality dictate that ∂G(n,Qv)/∂n = 0, which requires

any solution (n,Qv) to satisfy

n(Qv) =
Qv√
2KbD

h′

=
Qv

qI
. (3.13)

Considering the integer requirements on n and noting that the proposed heuristic

value of n is 1, we analyze the objective function over two regions:

First, we consider those Qv such that Qv ≤ qI . Over this region, the minimum

of our objective function is achieved at n = 1. This is because HI(·) is convex with

a unique minimizer at qI so that

G(1, Qv) = FI(Qv) +HI(Qv) ≤ G(n,Qv) = FI(Qv) +HI(Qv/n), ∀n > 1, Qv ≤ qI .

Therefore,

GI(1, Qv) ≤ G(n,Qv), ∀n and ∀Qv ≤ qI . (3.14)

Next, we consider those Qv such that Qv > qI , and we define i as the integer

satisfying iP < qI ≤ (i + 1)P . Again, we have two possibilities. Namely, i ≥ 1 or

i = 0:

Case 2.1: Qv > qI, iP < qI ≤ (i+ 1)P , i ≥ 1.

In this case, either one of the following is true:

• Case 2.1.1: iP < qI ≤
√
i(i+ 1)P so that HI(iP ) ≤ HI((i+ 1)P ).

Similar to Equation (3.6), we can show that

HI(iP ) ≤ 1.06HI(qI) = 1.06
√

2Kbh
′D.
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First, suppose we also have QI ≤ iP . Then we have qI > iP ≥ QI , and thus

FI(Qv) > FI(iP ), for all Qv ≥ iP . Hence,

G(1, iP ) ≤ FI(QI) + 1.06
√

2Kbh
′D, ; ∀Qv > qI . (3.15)

Now, suppose QI > iP so that we have iP < QI ≤ qI ≤
√
i(i+ 1)P where

i ≥ 1. For this particular case, we have

QI = Qi+1 =

√
(Kv + (i+ 1)R)D

hv

, and hence, FI(QI) = FI(Qi+1).

Defining

F i+1
I (Qv) = Kv

D

Qv

+ (i+ 1)
RD

Qv

+
hv

2
Qv.

we can write F i+1
I (iP ) ≤ 1.06FI(Qi+1). Also, note that

FI(iP ) < F i+1
I (iP ) ≤ 1.06FI(Qi+1) = 1.06FI(QI).

Thus, if QI > iP then

G(1, iP ) ≤ 1.06
(
FI(QI) +

√
2Kbh

′D
)
. (3.16)

• Case 2.1.2:
√
i(i+ 1)P < qI ≤ (i+ 1)P so that HI(iP ) > HI((i+ 1)P ).

In this case, recalling the second part of Property 5, we can write

HI((i+ 1)P ) ≤ 1.06
√

2Kbh
′D.

Since QI < qI , we also have QI < (i+ 1)P . Let us consider those Qv such that

Qv ≤ (i + 1)P , and hence
√
i(i+ 1)P < qI < Qv ≤ (i + 1)P . Under these

conditions, we have

HI(Qv) ≤ HI(iP ) ≤ HI

(
Qv

n

)
,
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so that ∀qI < Qv ≤ (i+ 1)P , we can write

G(1, Qv) = FI(Qv) +HI(Qv) ≤ FI(Qv) +HI

(
Qv

n

)
= G(n,Qv), (3.17)

Next, let us consider those Qv such that Qv ≥ (i + 1)P . In this case, we have

QI < qI ≤ (i+ 1)P ≤ Qv. It follows by Property 3 that FI(Qv) ≥ FI((i+ 1)P ),

for all Qv ≥ (i+ 1)P , and, therefore,

G(1, (i+ 1)P ) ≤ FI(Qv) + 1.06
√

2Kbh
′D, ∀Qv ≥ (i+ 1)P. (3.18)

Case 2.2: Qv > qI, iP < qI ≤ (i+ 1)P , i = 0.

In this case, we have QI < qI ≤ P . Let us first consider those values of Qv

such that Qv ≤ P , and thus QI < qI ≤ Qv ≤ P . Observe that, for all Qv within this

region FI(qI) < FI(Qv). It follows that under the assumptions of this case, if we also

have Qv ≤ P

G(1, qI) = FI(qI) +HI(qI) = FI(qI) +
√

2Kbh
′D ≤ FI(Qv) +

√
2Kbh

′D, (3.19)

∀Qv s.t. qI ≤ Qv ≤ P.

Finally, consider those values of Qv such that Qv > P so that we can analyze

the case where QI < qI ≤ P < Qv. For this specific case, by Properties 3 and 4, we

have FI(P ) ≤ FI(Qv) and FI(qI) ≤ FI(P ). Consequently,

G(1, qI) = FI(qI) +HI(qI) ≤ FI(Qv) +
√

2Kbh
′D, ∀Qv > P. (3.20)

Combining our results given in (3.14)–(3.20), we conclude that minQv G(1, Qv)

is less than, or equal to, the cost of any feasible solution under the assumptions of

Case 2. �

COROLLARY 1 FI(QI) +
√

2Kbh
′D ≤ G∗ ≤ ḠI ≤ 1.06

(
FI(QI) +

√
2Kbh

′D
)
.
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Proof: The corollary follows from Theorem 1 and Expression (3.10). �

REMARK 1 Theorem 1 states that the coordinated replenishment policy obtained

using Algorithm 2 has a cost that is at most 1.06 times the lower bound. This, in turn,

implies that the suggested heuristic is very efficient for all practical purposes. There

are other efficient heuristic procedures, with similarly promising error bounds, in the

existing literature for inventory coordination problems with deterministic constant

demand but without cargo capacities and costs. These include the heuristic solu-

tions for the one-warehouse multi-retailer problem (Bramel and Simchi-Levi 1997,

pp. 158–162) and the joint replenishment problem (Zipkin 2000, pp. 149–152). It is

worthwhile to note that the error bound analyses of these existing heuristics resemble

the error bound analysis of Algorithm 2. This is simply because, for problems with-

out or with cargo capacities and costs, both approaches rely on the neat analytical

properties, such as those given in Property 5, of EOQ-type cost functions. Although

the corresponding total cost function, G(n,Qv), for the problem with cargo capacities

and costs is discontinuous, each piece of this function is of the EOQ-type. Hence, the

error bound analysis presented in the proof of Theorem 1 relies heavily on Property 5.

�

III.2.2. Exact Solution for Model I

In this section, we provide an upper bound, denoted nmax, on the optimal value of

n, and develop a finite time exact algorithm for Model I. To this end, we utilize

Corollary 1 which provides an upper bound on the optimal cost of our problem.

Let us define g(n,Qv) as follows:

g(n,Qv) =
(Kv + nKb)D

Qv

+

(
hv +

h
′

n

)
Qv

2
+
RD

P
.
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Recalling the objective function of Model I, observe that

G(n,Qv) =
(Kv + nKb)D

Qv

+
hvQv

2
+

⌈
Qv

P

⌉
RD

Qv

+
h
′
Qv

2n
≥ g(n,Qv), ∀n,Qv. (3.21)

That is, function g(n,Qv) is, in fact, a lower bound on the objective function of our

problem. Let g∗ = minn,Qv g(n,Qv), i.e., g∗ denotes the minimum value that g(n,Qv)

can take. It follows from Corollary 1 and Expression (3.21) that

g∗ ≤ G∗ ≤ 1.06
(
FI(QI) +

√
2Kbh

′D
)
. (3.22)

Observe that, for a given n, function g(n,Qv) is convex in Qv with a minimizer

at q∗(n) =
√

2(Kv + nKb)D/(hv + h′/n). Thus, for any given n,

g (n, q∗(n)) =
√

2(Kv + nKb)(hv + h′/n)D +
DR

P
≤ g(n,Qv), ∀Qv. (3.23)

Also, it can be easily shown that g (n, q∗(n)) is decreasing over n ≤ bn0c and increasing

over n > dn0e where n0 =
√
Kvh

′/Kbhv so that Lemma 1 follows.

LEMMA 1 The optimal n for Model I lies over [nmin, nmax] where

nmin = max

{⌊
N −

√
N2 − 4KvKbhvh

′

2Kbhv

⌋
, 1

}
,

nmax =

⌈
N +

√
N2 − 4KvKbhvh

′

2Kbhv

⌉
, and

N =

[
1.06

(
FI(QI) +

√
2Kbh

′D
)
−RD/P

]2
2D

−Kvhv −Kbh
′
.

Proof: Combining Expressions (3.22) and (3.23), we conclude that the optimal n

satisfies

g (n, q∗(n)) ≤ 1.06
(
FI(QI) +

√
2Kbh

′D
)
. (3.24)

A graphical illustration of this argument is given in Figure 11.
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Figure 11 An Illustration of the Idea Behind Algorithm 3

1.06 ( FI(QI) +    2Kbh'D )

G(n, q*(n))

g(n, q*(n))

nmin nmax

Setting the expression of g (n, q∗(n)) equal to 1.06
(
FI(QI) +

√
2Kbh

′D
)

and solv-

ing for n, we obtain the expressions of nmin and nmax given in Lemma 1. Also, since

N2 ≥ 4KvKbhvh
′

it can be easily verified that nmin ≤ n0 ≤ nmax. Recalling that

g(n, q∗(n)) is decreasing over n ≤ bn0c and increasing over n > dn0e, we conclude

that Expression (3.24) holds over [nmin, nmax]. �

ALGORITHM 3 – Optimal Algorithm for Model I

For n = nmin, nmin + 1, ..., nmax, compute G(n,Qv) using Expression (3.8) where An

and Bn are given by (3.7). For each G(n,Qv), execute Algorithm 1 and obtain the

value of Qv minimizing G(n,Qv). The optimal solution for Model I is the (n,Qv) pair

corresponding to min {minQv≥0G(n,Qv) : n = nmin, . . . , nmax} .

COROLLARY 2 Both nmin and nmax are finite positive integers, and it follows that

Algorithm 3 is a finite time exact algorithm for Model I.
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III.3. Model II: A Model with Explicit Inbound and Outbound Costs

Building on our results in Section III.2, we now analyze Model II. Let us rewrite the

objective function of Model II as follows:

Ĝ(n,Qv) =
(Kv + nKb)D

Qv

+

(
hv +

h
′

n

)
Qv

2
+

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

. (3.25)

Let Ĝn(Qv) denote function (3.25) for a given value of n = 1, 2, . . . . The following

algorithm can be used to optimize Ĝn(Qv) over Qv ≥ 0.

ALGORITHM 4 – An Extension of Algorithm 1

Step 1. Given n, compute Q0 =
√

2(Kv+nKb)D

hv+h′/n
.

Step 2. Let i denote the integer satisfying iP < Q0 ≤ (i+1)P, and let j =
⌈

i+1
n

⌉
.

For k = i+ 1, . . . nj, compute

Qk =

√
2[Kv + nKb + (k + nj)R]D

hv + h′/n
.

Step 3. Compute Ĝn(Qv), for Qv = n(j − 1)P, iP, (i + 1)P, . . . , njP, and for

those Qk, k = i + 1, . . . nj, such that (k − 1)P < Qk ≤ kP , i.e., for realizable

Qk values. Among these alternative values of Qv, select the one that yields the

minimum cost as the minimizer (Note that if j − 1 = 0, then there is no need

to calculate the cost for Qv = n(j − 1)P . Similarly, if i = 0, then there is no

need to calculate the cost for Qv = iP ).

THEOREM 2 For a given n, Algorithm 4 finds the minimizer of Ĝn(Qv).

Proof: The proof is based on the following properties (i.e. Properties 6, 7 and 8) of

Ĝn(Qv).
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In order to show that Properties 6–8 are true, let us recall Expression (3.25) and

define

Ĥ(Qv) =
(Kv + nKb)D

Qv

+

(
hv +

h
′

n

)
Qv

2
,

so that

Ĝn(Qv) = Ĥ(Qv) +

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

. (3.26)

Observe that Ĥ(Qv) is an EOQ-type convex function with a unique minimizer at Q0

where Q0 is as defined in Step 1. Also, observe that the second term of (3.26) is

minimized at Qv = kP for some positive integer k and its minimum value is RD/P .

Similarly, the third term of (3.26) is minimized at Qv = knP for some positive integer

k and its minimum value is again RD/P . It follows that⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

≥ 2RD

P
, ∀Qv ≥ 0. (3.27)

PROPERTY 6 Ĝn(Qv) ≥ Ĝn(n(j − 1)P ), ∀Qv ≤ n(j − 1)P .

Proof: Now, consider those Qv such that Qv ≤ n(j − 1)P . Recall that by definition

n(j − 1)P is the least multiple of nP less than Q0. Hence, Qv ≤ n(j − 1)P < Q0.

This in turn implies that if Qv ≤ n(j − 1)P , then Ĥ(n(j − 1)P ) ≤ Ĥ(Qv). Since

n(j − 1)P is an integer multiple of both P and nP ,⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

is minimized at Qv = n(j − 1)P . Therefore, if Qv ≤ n(j − 1)P then

Ĝn(Qv) = Ĥ(Qv)+

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

≥ Ĝn(n(j−1)P ) = Ĥ(n(j−1)P )+
2RD

P
.

It follows that Property 6 is true, and thus the global minimizer of Ĝn(Qv) cannot

be over Qv < n(j − 1)P . �

PROPERTY 7 Ĝn(Qv) ≥ Ĝn(njP ), ∀Qv ≥ njP .
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Proof: Next, we consider those Qv such that Qv ≥ njP . By definition njP is the

greatest multiple of nP greater than or equal to Q0. Therefore, Qv ≥ njP implies

that Qv ≥ njP ≥ Q0, and by the convexity of Ĥ(Qv), we can write Ĥ(Qv) ≥ Ĥ(njP )

for all Qv ≥ njP ≥ Q0. Using this inequality and (3.27) leads to

Ĥ(Qv) +

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

≥ Ĥ(njP ) +
2RD

P
, ∀Qv ≥ njP ≥ Q0.

It follows that Ĝn(Qv) ≥ Ĝn(njP ) for all Qv ≥ njP , and thus there is no need to

search for a global minimizer of Ĝn(Qv) over Qv > njP . �

PROPERTY 8 Ĝn(Qv) ≥ Ĝn(iP ), ∀n(j − 1)P < Qv ≤ iP .

Proof: Let us consider those Qv such that n(j−1)P < Qv ≤ iP . Since, by definition,

iP < Q0, we have n(j − 1)P < Qv ≤ iP < Q0. Using the fact that Ĥ(Qv) is convex

and Q0 is its minimizer, we also have

Ĥ(Qv) ≥ Ĥ(iP ), ∀Qv s.t. n(j − 1)P < Qv ≤ iP < Q0. (3.28)

Considering the third term in (3.26), we can show that⌈
Qv

nP

⌉
nRD

Qv

=
njRD

Qv

, if n(j − 1)P < Qv < iP.

For Qv = iP , since n(j − 1)P < Qv ≤ iP < njP , this term is given by⌈
Qv

nP

⌉
nRD

Qv

=
njRD

iP
.

We also have

njRD

Qv

≤ njRD

iP
, ∀Qv s.t. n(j − 1)P < Qv ≤ iP. (3.29)
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Now, considering the second term in (3.26), we can show that this term realizes its

minimum at Qv = iP . Hence,⌈
Qv

P

⌉
RD

Qv

≥ RD

P
, ∀Qv s.t. n(j − 1)P < Qv ≤ iP. (3.30)

Combining Expressions (3.28), (3.29), and (3.30), we have

Ĥ(Qv) +
njRD

Qv

+

⌈
Qv

P

⌉
RD

Qv

≥ Ĥ(iP ) +
njRD

iP
+
RD

P
,

∀Qv s.t. n(j − 1)P < Qv ≤ iP.

Thus, Gn(Qv) ≥ Gn(iP ), for all Qv such that n(j − 1)P < Qv ≤ iP . �

Hence, for computing its minimizer, we only need to evaluate Ĝn(Qv) over iP ≤

Qv ≤ njP and at Qv = n(j − 1)P . Observe that the following property also holds.

PROPERTY 9 Over (k − 1)P < Qv ≤ kP, k = i + 1, . . . , nj, function Ĝn(Qv) is

given by

Ĝn(Qv) =
[Kv + nKb + (k + nj)R]D

Qv

+

(
hv +

h
′

n

)
Qv

2
.

It follows that Ĝn(Qv) is an EOQ-type function with a stationary point at Qk where

Qk is defined as in Step 2 of Algorithm 4.

Consequently, the minimizer of Ĝn(Qv) is either at one of the realizable Qk values or

one of the breakpoints over [n(j − 1)P, njP ]. This completes the proof. �

III.3.1. Heuristic Approach for Model II

In this section we develop a heuristic approach for solving Model II. For this purpose,

let us recall the objective function Ĝ(n,Qv) of Model II, given by Expression (3.25),

and define

FII(Qv) =

(
Kv +

⌈
Qv

P

⌉
R

)
D

Qv

+
hvQv

2
,
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and

h(n,Qv) =

(
Kb +

⌈
Qv

nP

⌉
R

)
nD

Qv

+
h
′
Qv

2n
.

It follows that

Ĝ(n,Qv) = FII(Qv) + h(n,Qv)

which is equivalent to our original cost function. Now, observe that function FII(Qv)

can be minimized over Qv ≥ 0 using Algorithm 1. Let QII denote the resulting

minimizer of FII(Qv). We also define

HII(Qb) =

(
Kb +

⌈
Qb

P

⌉
R

)
D

Qb

+
h
′
Qb

2
, (3.31)

and let qII denote the minimizer of HII(Qb) over Qb ≥ 0. This minimizer can also be

computed using Algorithm 1. Observe that

min
Qb

HII(Qb) = HII(qII) ≤ min
n,Qv

h(n,Qv).

As a consequence, FII(QII) + HII(qII) is a lower bound on the cost function of our

problem, i.e.,

min
n,Qv

G(n,Qv) ≥ FII(QII) +HII(qII). (3.32)

Now, we are ready to state our heuristic algorithm.

ALGORITHM 5 – A Heuristic Algorithm for Model II

Compute QII and qII using Algorithm 1.

• Case 1: If qII < QII and qII < P , then let m =
⌈

QII

qII

⌉
.

Compute minQv Ĝm(Qv) using Algorithm 4.

The heuristic solution is given by n = m and the resulting Qv value.

• Case 2: If qII < QII and qII ≥ P , then let m =
⌊

QII

iP

⌋
where i denotes the

integer satisfying
√
i(i− 1)P < qII ≤

√
i(i+ 1)P .
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Compute minQv Ĝm(Qv) using Algorithm 4.

The heuristic solution is given by n = m and the resulting Qv value.

• Case 3: If QII ≤ qII , then set n = 1 in Expression (3.25).

Compute minQv Ĝ(1, Qv) using Algorithm 1.

In this case, the heuristic solution is given by n = 1 and the resulting Qv value.

THEOREM 3 ḠII/Ĝ
∗ < 1.25 where ḠII is the cost of the heuristic solution ob-

tained by using Algorithm 5, and Ĝ∗ is the optimal cost for Model II.

Proof:

Case 1: qII < QII and qII < P .

In this case, the total cost of the heuristic solution is not greater than the cost

of the solution given by (m,QII) where

m =

⌈
QII

qII

⌉
so that m ≥ QII

qII

, and thus
QII

m
≤ qII . (3.33)

Under the assumptions of this case, we also have

2 ≤ m =

⌈
QII

qII

⌉
<
QII

qII

+ 1 so that qII <
QII

m
+
qII

m
.

However, for m ≥ 2, the above inequality leads to

QII

m
> qII −

qII

m
≥ qII −

qII

2
=
qII

2
.

Combining the above inequality with (3.33), and recalling that qII < P , leads to

qII

2
<
QII

m
≤ qII < P. (3.34)

Expression (3.32) implies that the proof can be completed if we can show

Ĝ(m,QII) ≤ 1.25 [FII(QII) +HII(qII)] .
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However, for this purpose, it is sufficient to prove HII(QII/m) ≤ 1.25HII(qII). Recall

Equation (3.31) which provides an expression for HII(Qb). Also, recall that under the

assumptions of this case, the global minimizer of HII(Qb), denoted qII , is achieved

when qII < P . Then, similarly to Equation (3.5), we can write

HII(Qb)

HII(qII)
=

1

2

(
Qb

qII

+
qII

Qb

)
, ∀Qb s.t 0 ≤ Qb < P.

Using the above equation and (3.34), we can write

HII(QII/m)

HII(qII)
=

1

2

(
QII/m

qII

+
qII

QII/m

)
≤ 1

2

(
1

2
+

2

1

)
= 1.25,

and this completes the proof for Case 1.

Case 2: qII < QII and qII ≥ P .

Again, the total cost of the heuristic solution is not greater than the cost of the

solution given by (m,QII). For this particular case, it is also easy to show that the

cost of our heuristic solution is not greater than the cost of the solution given by

(m,miP ).

Let us first analyze the solution given by (m,miP ). By definition, kP ≤ QII <

(k+1)P , and thus k/i ≤ QII/iP < (k+1)/i. This in turn implies bQII/iP c < (k+1)/i

so that

miP < (k + 1)P ≤ 2kP ≤ 2

√
2KvD

hv

.

Since QII ≥ kP ≥ iP ≥ P , we have

miP =

⌊
QII

iP

⌋
iP ≥ QII

2
>

1

2

√
2KvD

hv

.

It follows that

1

2

√
2KvD

hv

< miP ≤ 2

√
2KvD

hv

. (3.35)



66

As a result, h(m,miP ) = HII(iP ) ≤ 1.06HII (qII). Also, note that

KvD

miP
+
hvmiP

2
=

1

2

(
miP√

2KvD/hv

+

√
2KvD/hv

miP

)√
2KvDhv.

Then, considering (3.35), we can write

FII(miP ) ≤ 1

2

(
1

2
+

2

1

)√
2KvDhv +

RD

P

≤ 1.25

(√
2KvDhv +

RD

P

)
≤ 1.25FII(QII).

Thus,

Ĝm(miP ) ≤ 1.25FII(miP ) + 1.06HII(qII) ≤ 1.25FII (QII) + 1.06HII (qII) ≤ 1.25Ĝ∗,

and this completes the proof for Case 2.

Case 3: QII ≤ qII.

We investigate the objective function over two regions. Namely, Qv < qII . and

Qv ≥ qII .

Case 3.1: Qv < qII .

Over this region, we will show that Ĝ(1, Qv) ≤ Ĝ(n,Qv), for all integer n ≥ 2.

We have

Ĝ(1, Qv) = FII(Qv) + h(1, Qv) = FII(Qv) +HII(Qv),

and

Ĝ(n,Qv) = FII(Qv) +HII(Qv/n).
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In turn, for our purposes, it suffices to show that HII(Qv) ≤ HII(Qv/n). That is,

recalling Expression (3.31), it suffices to show that

KbD

Qv

+
h
′
Qv

2
+

⌈
Qv

P

⌉
RD

Qv

≤ KbD

Qv/n
+
h
′
Qv/n

2
+

⌈
Qv

nP

⌉
nRD

Qv

.

Observe that ⌈
Qv

P

⌉
RD

Qv

≤
⌈
Qv

nP

⌉
nRD

Qv

.

If we consider Qv ≤
√

2KbD/h
′ then

KbD

Qv

+
h
′
Qv

2
≤ KbD

Qv/n
+
h
′
Qv/n

2
,

and hence HII(Qv) ≤ HII(Qv/n) for all Qv ≤
√

2KbD/h
′ .

Now, consider Qv >
√

2KbD/h
′ . That is, we are considering those Qv such that√

2KbD/h
′ < Qv < qII . In this case, it is impossible to have qII = kP because there

does not exist a nonnegative integer k such that kP <
√

2KbD/h
′ ≤ (k + 1)P and

qII > Qv. It follows that

• qII =
√

2[Kb + (k + 1)R]D/h′ , or

• qII = (k + 1)P .

First, suppose that k = 0. That is, qII =
√

2(Kb +R)D/h′ , or qII = P . In both

cases, we are considering those Qv such that Qv/n ≤ Qv < qII ≤ P . Note that

HII(Qv) is an EOQ-type function over this range. If qII =
√

2(Kb +R)D/h′, then

HII(Qv/n) ≥ HII(Qv) as HII(Qv) is convex over (0, P ] and
√

2[Kb + (k + 1)R]D/h′

is its unique minimizer. If qII = P , then the point
√

2[Kb +R]D/h′ is not realizable,

i.e.,
√

2[Kb +R]D/h′ > P . Again, using the EOQ-type properties of HII(Qv), we

conclude that HII(Qv/n) ≥ HII(Qv). Now, suppose that k ≥ 1. It follows that

(k+1)/k ≤ 2. Thus, over the region Qv < qII , Qv/(kP ) ≤ 2 so that Qv/n ≤ kP for all

n ≥ 2. Under these assumptions, it follows from Property 4 that HII(Qv) ≥ HII(kP )



68

where Qv ≤ kP , and thus HII(Qv/n) ≥ HII(Qv) ≥ HII(kP ) for all n ≥ 2 and

qII > Qv >
√

2KbD/h
′ . As a result, we have

Ĝ(1, Qv) ≤ Ĝn(n,Qv)∀n ≥ 2, ∀Qv < qII .

and this completes the proof of Case 3.1.

Case 3.2: Qv ≥ qII and qII < P .

Over Qv ≥ qII , we first consider the case where qII < P . Then, recalling the

original assumptions of Case 3, we have QII ≤ qII < P . It follows from Properties 2

and 4 that FII(Qv) ≥ FII(qII) for all Qv > P . Furthermore, since qII < P , it follows

from Algorithm 1 that qII =
√

2(Kb +R)D/h′ . However, this qII value is also the

minimizer of h(n,Qv), as well as HII(·), over the region Qv < P . Treating n as

continuous variable and using the convexity of h(n,Qv) over Qv < P , the first order

conditions suggest an n value of

Qv

√
h′

2(Kb +R)D
.

Substituting Qv =
√

2(Kb +R)D/h′ in the above, we have n = 1. As a result, if

Qv ≥ qII and qII < P then Ĝ(1, qII) = FII(qII)+h(1, qII) ≤ FII(Qv)+h(n,Qv), ∀n ≥

2, Thus, if qII < P then

min
Qv≥qII

Ĝ(1, Qv) = min
Qv≥qII

Ĝ1(Qv) ≤ Ĝ(1, qII) ≤ min
Qv≥qII

Ĝ(n,Qv)

Case 3.3: Qv ≥ qII and qII ≥ P .

Suppose that qII = kP for some integer k. Then, h(1, kP ) = HII(qII). Fur-

thermore, since we are considering Qv ≥ qII , we have Qv ≥ qII = kP > QII .

Over this region, FII(kP ) ≤ FII(Qv) by Property 3. It follows that Ĝ(1, kP ) =
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FII(kP ) + h(1, kP ) ≤ FII(Qv) + h(n,Qv) ≤ Ĝ(n,Qv), ∀n,Qv.

Now suppose qII is not an integer multiple of P . Then it follows from Algorithm 1

that

qII =

√
2[Kb + (k + 1)R]D

h′
,

where kP <
√

2KbD/h
′
< (k + 1)P . Hence, we have

1

2

√
2KbD

h′
<

(k + 1)P

2
≤ kP so that kP < 2

√
2KbD

h′
.

Recalling (3.31), we have

h(1, kP ) = HII(kP ) =
KbD

kP
+
h
′
kP

2
+

⌈
kP

P

⌉
RD

kP
.

Now, considering the first two terms of the above expression, we analyze the error for

replacing the minimizer of these two terms with kP . Observe that

KbD

kP
+
h
′
kP

2
=

1

2

 kP√
2KbD

h′

+

√
2KbD

h′

kP

√2KbDh
′ .

Observe that the RHS of the above is increasing for kP >
√

2KbD/h
′ and decreasing

for kP ≤
√

2KbD/h
′ . Therefore, the minimum of the RHS is achieved at either

kP = 2
√

2KbD/h
′ or kP = (1/2)

√
2KbD/h

′ . In both cases, kP√
2KbD

h′

+

√
2KbD

h
′

kP

 ≤ 2.5 which implies that
KbD

kP
+
h
′
kP

2
= 1.25

√
2KbDh

′ .

As a result, we have

h(1, kP ) = HII(kP ) =
KbD

kP
+
h
′
kP

2
+

⌈
kP

P

⌉
RD

kP
= 1.25

√
2KbDh

′ +
RD

P
.

As for QII , we have two possibilities: QII ≤ kP or QII > kP . If QII ≤ kP

then qII > kP ≥ QII . Since we are considering Qv ≥ qII , by Property 3, we have
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FII(kP ) ≤ FII(Qv) for all Qv over the region of interest. On the other hand, if

QII > kP , then kP < QII ≤ qII < (k + 1)P . In this case, Algorithm 1 implies

that function FII(Qv) is an EOQ-type convex function over kP < Qv ≤ (k + 1)P

with a realizable minimizer given by QII . Let us consider a point, say kP + δ where

kP < kP + δ ≤ (k + 1)P and analyze

FII(kP + δ)

FII(QII)
=

1

2

(
kP + δ

QII

+
QII

kP + δ

)
.

Observe that the above ratio is increasing for kP + δ > QII and decreasing for

kP + δ ≤ QII . Therefore, it is minimized at either (k + 1)P or limδ→0(kP + δ). In

either case, since (k + 1)/k ≤ 2, we have (kP + δ)/QII ≤ 2. It follows that

FII(kP + δ)

FII(QII)
≤ 1.25FII(Qv),

and we can write

Ĝ(1, kP ) = FII(kP ) + hII(1, kP ) ≤ 1.25 (FII(Qv) + hII(n,Qv)) = Ĝ(n,Qv).

Therefore,

minQvĜ(1, Qv) = min
Qv

Ĝ1(Qv) ≤ 1.25 min
Qv

Ĝ(n,Qv), ∀n.

and this completes the proof. �

COROLLARY 3 FII(QII) +HII(qII) ≤ Ĝ∗ ≤ ḠII ≤ 1.25 [FII(QII) +HII(qII)] .

Proof: The corollary follows from Theorem 3 and Expression (3.32). �

III.3.2. Exact Solution for Model II

In this section, we provide an upper bound, denoted n̂max, on the optimal value of

n for Model II, and develop a finite time exact algorithm. To this end, we utilize
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Corollary 3 which gives an upper bound on the optimal cost of Model II.

Let us define ĝ(n,Qv) as follows:

ĝ(n,Qv) =
(Kv + nKb)D

Qv

+

(
hv +

h
′

n

)
Qv

2
+

2RD

P
.

Recalling Equation (3.25), observe that

Ĝ(n,Qv) ≥ ĝ(n,Qv), ∀n,Qv. (3.36)

That is, function ĝ(n,Qv) is, in fact, a lower bound on the objective function of Model

II. Let ĝ∗ = minn,Qv ĝ(n,Qv), i.e., ĝ∗ denotes the minimum value that ĝ(n,Qv) can

take. It follows from Corollary 3 and Expression (3.36) that

ĝ∗ ≤ Ĝ∗ ≤ 1.25 [FII(QII) +HII(qII)] . (3.37)

Observe that, for a given n, function ĝ(n,Qv) is convex in Qv with a minimizer

at

q̂∗(n) =

√
2(Kv + nKb)D

hv + h′/n
.

Thus, for any given n,

ĝ (n, q̂∗(n)) =
√

2(Kv + nKb)(hv + h′/n)D +
2DR

P
≤ g(n,Qv), ∀Qv. (3.38)

Also, it can be easily shown that ĝ (n, q̂∗(n)) is decreasing over n ≤ bn0c and increasing

over n > dn0e where we again have n0 =
√
Kvh

′/Kbhv so that Lemma 2 follows.
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LEMMA 2 The optimal n for Model II lies over [n̂min, n̂max] where

n̂min = max

{⌊
N̂ −

√
N̂2 − 4KvKbhvh

′

2Kbhv

⌋
, 1

}
,

n̂max =

⌈
N̂ +

√
N̂2 − 4KvKbhvh

′

2Kbhv

⌉
, and

N̂ =
(1.25 [FII(QII) +HII(qII)]− 2RD/P )2

2D
−Kvhv −Kbh

′
.

Proof: Combining Expressions (3.37) and (3.38), we conclude that the optimal n lies

where

ĝ (n, q̂∗(n)) ≤ 1.25 [FI(QI) +HII(qII)] .

Setting the expression of ĝ (n, q̂∗(n)), given by (3.38), equal to 1.25 [FI(QI) +HII(qII)]

and solving for n, we can easily complete the proof in a similar fashion to the proof

of Lemma 1. �

ALGORITHM 6 – Optimal Algorithm for Model II

For n = n̂min, n̂min + 1, ..., n̂max, compute Ĝn(Qv) using Expression (3.25). For each

Ĝn(Qv), execute Algorithm 4. The (n,Qv) pair corresponding to

min

{
min
Qv≥0

Ĝ(n,Qv) : n = n̂min, . . . , n̂max

}
is the optimal solution for Model II.

COROLLARY 4 Both n̂min and n̂max are finite positive integers, and it follows that

Algorithm 6 is a finite time exact algorithm for Model II.

III.3.3. Numerical Study for Model II

In Theorem 3, the theoretical error bound of the heuristic developed for Model 2

was shown to be 25%. However, the actual performance of the heuristic is, in fact,
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better than this worst case error bound. To test the practical performance of the

heuristic, we conducted a computational study including 2187 problem instances.

These problems were generated using 3 different settings for each parameter (i.e. Kv,

Kb, hv, hb, R, P and D). These settings are Kv = 175, 350, 700; Kb = 50, 100,

150; R = 60, 120, 240; P = 5, 10, 20; D = 2, 4, 8; hv = 0.5, 1, 2; hb = 4, 8,

16. Consequently, the echelon inventory holding cost for the retailer takes 9 different

values corresponding to each (hv, hb) pair and these values are 3.5, 7.5, 15.5, 3, 7, 15,

2, 6, 14. Based on the above listed parameter values, we developed a factorial design

corresponding to the 2187 parameter settings.

Both the heuristic and the optimal algorithms were coded, and the programs

were run on a unix-based system. The running times of both the heuristic and the

exact algorithms were on the order of seconds. The upper bound (n̂max)to calculate

the optimum solution, which was obtained using the results of the heuristic, achieved

reasonable values. On average, this upper bound was less than 56, and, in 85% of

the test instances, it was less than 100. The maximum value it took was 422 which

occured in only one problem instance.

Analyzing the results for the 2187 problems generated as described above, we

observed that the actual error of the heuristic was significantly less than its theoretical

upper bound. The average actual error and the maximum actual error obtained were

0.215% and 8.092%, respectively. The heuristic algorithm gave the exact optimal

solution in 1443 problem instances. The number of problems that resulted in an error

percentage bounded in the intervals (0, 1], (1, 2], (2, 3], (3, 4], (5, 6], (6, 7] and (7, 8]

were 601, 112, 22, 5, 2,1 and 1, respectively.

This computational study demonstrated that the actual error of the heuristic

algorithm can be much less than 25% in practical instances. Also, this heuristic can

be used to obtain an effective upper bound on n which can be used to solve the
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problem optimally in a reasonable amount of time.

III.4. Summary

This chapter extends the classical buyer-vendor coordination model to consider gen-

eral replenishment cost structures via incorporating inbound and outbound trans-

portation costs for the vendor. The applications of this problem arise where trans-

portation arrangements to and from the vendor call for full-truck-load (FTL) ship-

ments. Another transportation option is to use a common-carrier, such as UPS

or FedEx. Common-carrier transportation is a cost effective alternative for less-

than-truckload (LTL) shipments, and this option also offers substantial reductions in

freight rates when the replenishment quantity exceeds one of the nominal rate break-

points. The buyer-vendor coordination problem under common-carriage transporta-

tion charges remains an area for future research. Since a typical common-carriage

cost function is neither concave nor convex, the optimization problem underlying this

generalization is challenging.

The models developed in this chapter account for truck/cargo capacities by con-

sidering a cost structure with a fixed cost and a finite capacity per truck/cargo.

However, it is worthwhile to emphasize that the analyses here assume an unlimited

availability of trucks/cargoes, i.e., no “true” capacity constraints are incorporated.

Such capacity constraints have the form⌈
Qv

P

⌉
≤ Cv and

⌈
Qv

nP

⌉
≤ Cb,

where Cv and Cb denote the number of trucks/cargoes available for vendor’s and

buyer’s replenishments, respectively. Obviously, the above constraints introduce ad-

ditional nonlinearities and challenges to the problem. However, these can linearized
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in the following fashion:

Qv ≤ CvP and Qv ≤ nCbP.

With these linear constraints, one can use the exact solution of the unconstrained

problem, given by Algorithm 6, as a lower bound to compute the solution of the

constrained problem. Extensions with “true” capacity constraints remain an open

problem. However, the results of the current chapter provide a foundation for future

work in this area.

Another notable generalization is the case where the vendor has multiple options

in choosing the transportation mode, e.g., different kinds of transportation equipment

or different choices of transportation providers with different costs and cargo capac-

ities. Naturally, further important generalizations also include multi-item, multi-

buyer, and multi-vendor problems with different transportation considerations.

Several recent papers investigate the buyer-vendor coordination problem where

the vendor’s inventory replenishment/production rate is finite (e.g., Goyal 2000, Goyal

and Nebebe 2000, Hill 1997, Hill 1999, Hoque and Goyal 2000, Viswanathan 1998).

However, the current literature in this area does not consider the general replen-

ishment cost functions modeled here. In this context, the inbound costs considered

in this chapter may also represent capacitated production setups at the vendor. In

Chapter 5, we analyze such buyer-vendor production models.

Last, but not least, a practical extension of the buyer-vendor problem with gen-

eral transportation considerations analyzes the case where the vendor offers quantity

discounts as in Banerjee (1986a), Joglekar (1988), Lee and Rosenblatt (1986), Mon-

ahan (1984), and the question is how to allocate the cost savings achieved through

coordination between the buyer and the vendor. This problem is particularly impor-

tant in the context of VMI contract design, and it is addressed in the next chapter.
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CHAPTER IV

CHANNEL COORDINATION FOR THE BUYER-VENDOR PURE INVENTORY

PROBLEM WITH DETERMINISTIC AND CONSTANT DEMAND

In this chapter, we study the channel coordination problem for the two models in

Chapter III. As we have discussed earlier, these models are based on the classical

buyer-vendor coordination problem introduced by Goyal (1976). Model I in Chapter

III generalizes Goyal’s problem so that the vendor has a stepwise replenishment cost

structure, Cv(Q), given by Expression (1.1) which includes setup and cargo cost com-

ponents. Model II considers the same problem when both the vendor and the buyer

have such replenishment cost structures given by Cv(Q) and Cb(Q) in Expressions

(3.1) and (3.2).

In his paper, Goyal applies both centralized and decentralized approaches with-

out consideration of cargo costs. He also proposes a judicious method for allocating

the savings from the centralized model to the buyer and the vendor. However, he does

not compare the optimal values of the decision variables in the centralized and decen-

tralized models. In Section IV.1 of this chapter, we first revisit Goyal’s problem and

provide a comparative analysis of his results. We then develop decentralized solutions

for Models I and II introduced in Chapter III. We also compare the decentralized

and centralized solutions for the two models on a large set of problems. We illustrate

that the results of the analysis done in Section IV.1 do not necessarily hold when

Goyal’s problem is generalized to incorporate cargo costs and capacity.

As a final task in this chapter, we propose ways to coordinate the channel for

Models I and II. It is important to note that the method proposed in Goyal (1976) to

allocate the savings from the centralized approach is based on the assumption that the

vendor and the buyer fully corporate. However, our detailed analysis of the optimal



77

centralized and decentralized approaches provides insights for designing coordination

mechanisms that work for the competitive environment as well.

In the current chapter, we will use the same notation as in Chapter III. In

order to differentiate our notation for the decentralized and centralized analysis, we

introduce the following additional notation:

Gb(Qb): Buyer’s cost function in Model I.

Ĝb(Qb): Buyer’s cost function in Model II.

Gv(Qb, n): Vendor’s cost function.

Q∗d,1: Buyer’s optimum order quantity in decentralized Model I.

Q∗c,1: Buyer’s optimum order quantity in centralized Model I.

Q∗d,2: Buyer’s optimum order quantity in decentralized Model II.

Q∗c,2: Buyer’s optimum order quantity in centralized Model II.

Q̄∗d: Buyer’s optimum order quantity in the decentralized model without

transportation capacity (i.e., decentralized quantity in Goyal (1976)).

Q̄∗c : Buyer’s optimum order quantity in the centralized model without

transportation capacity (i.e., centralized quantity in Goyal (1976)).

n∗d,1: Optimum value of n in decentralized Model I.

n∗d,2: Optimum value of n in decentralized Model II.

n∗c,1: Optimum value of n in centralized Model I.

n∗c,2: Optimum value of n in centralized Model II.

n̄∗d: Optimum value of n in decentralized model of Goyal (1976).

n̄∗c : Optimum value of n in centralized model of Goyal (1976).

G∗d: Optimum total costs in decentralized Model I.

Ĝ∗d: Optimum total costs in decentralized Model II.
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IV.1. A Comparative Analysis of Centralized and Decentralized Models

in Goyal (1976)

The decentralized solution for Goyal’s problem (Goyal 1976) is given by

n̄∗d(n̄
∗
d − 1) ≤ Kvhb

Kbhv

≤ n̄∗d(n̄
∗
d + 1), and (4.1)

Q̄∗d =

√
2KbD

hb

(4.2)

whereas the centralized solution is given by

n̄∗c(n̄
∗
c − 1) ≤ Kvh

′

Kbhv

≤ n̄∗c(n̄
∗
c + 1) (4.3)

Q̄∗c =

√
2D(Kb +Kv/n̄∗c)

n̄∗chv + h′
. (4.4)

PROPOSITION 2 n̄∗d ≥ n̄∗c .

Proof: Assume that n̄∗d < n̄∗c . Since n̄∗d and n̄∗c are both positive integers, (n̄∗c − n̄∗d) ≥

1. Multiplying both sides of this inequality by n̄∗c+n̄
∗
d, we obtain (n̄∗c)

2−(n̄∗d)
2 ≥ n̄∗c+n̄

∗
d

which can also be written as n̄∗c(n̄
∗
c − 1) ≥ n̄∗d(n̄

∗
d +1). From Expression (4.1) we have

n̄∗d(n̄
∗
d + 1)Kbhv

Kv
≥ hb. Therefore,

n̄∗c(n̄
∗
c − 1)

Kbhv

Kv

≥ n̄∗d(n̄
∗
d + 1)

Kbhv

Kv

≥ hb. (4.5)

By definition, hb > h
′
so that n̄∗c(n̄

∗
c − 1)Kbhv

Kv
> h

′
which can be rewritten as n̄∗c(n̄

∗
c −

1) > Kvh
′

Kbhv
. However, this contradicts Expression (4.3). Therefore, n̄∗d ≥ n̄∗c . �

PROPOSITION 3 Q̄∗c ≥ Q̄∗d.
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Proof: Assume that there exists a problem instance for which Q̄∗c < Q̄∗d. Then using

Expressions (4.2) and(4.4),√
2D(Kb +Kv/n̄∗c)

n̄∗chv + h′
<

√
2KbD

hb

. (4.6)

Note that in the above inequality n̄∗c is the optimum value of n corresponding to Q̄∗c

in the centralized model. Expression (4.6) implies the following:

Kbhb +
Kvhb

n̄∗c
< n̄∗cKbhv +Kbh

′
.

Substituting hb − hv for h
′
in the above expression, we obtain:

n̄∗cKbhv −
Kvhb

n̄∗c
> Kbhv

which reduces to

n̄∗c(n̄
∗
c − 1) >

Kvhb

Kbhv

. (4.7)

The above expression combined with the fact that hb > h
′
implies that n̄∗c(n̄

∗
c − 1) >

Kvh
′

Kbhv
. This again contradicts Expression (4.3). Therefore, Q̄∗c ≥ Q̄∗d. �

The above proposition implies that in Goyal’s problem (i.e., when cargo costs

and capacity are ignored), the vendor should always encourage the buyer to order

more to coordinate the channel. Therefore, the traditional literature concentrates on

coordination mechanisms that discourage the buyer from ordering small quantities.

However, as we will show in this chapter and Chapter VI, when transportation capac-

ity and costs are incorporated, there are cases where small order quantities are better

for coordinating the channel. Therefore, coordination mechanisms that will discour-

age the buyer from ordering more are needed. Moreover, Proposition 2 indicates that

the buyer’s decentralized order quantity results in more frequent dispatches from the

vendor. However, in subsequent parts of this chapter, we show that when transporta-
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tion costs are incorporated into the model, this result also does not necessarily hold.

Since the number of dispatches within one vendor replenishment cycle only effects the

vendor’s order quantity (i.e., Qv = nQb), this result does not have implications for the

coordination mechanism. However, it is still an important issue for understanding the

behavioral differences of the two modelling approaches. A final note on Propositions

2 and 3 is that they are independent of Kv and Kb. This enables us to make a clear

comparison of the two cases where transportation costs and capacity are modeled vs.

not modeled and to analyze the effect of truck capacities.

IV.2. Decentralized Solutions for Model I and Model II

We assume a buyer driven channel, and, therefore, in the decentralized approach, the

buyer solves his/her subproblem first. Once the buyer decides on the optimum level of

his/her order quantity Qb, the vendor’s decision problem is to determine the number

of dispatches n. The vendor’s resulting replenishment quantity per cycle can be found

by the relationship Qv = nQb. The vendor’s optimization problem in Models I and II

are the same. Therefore, we will first present a proposition that is useful for solving

the vendor’s subproblem.

Consider the following function ψ(n) where n is a positive integer and K, R, P ,

h and Q are positive real numbers.

ψ(n) =
KD

nQ
+

⌈
nQ
P

⌉
RD

nQ
+
h(n− 1)Q

2
(4.8)

The following proposition gives lower and upper bounds on the optimal value of

n which minimizes ψ(n), (i.e., n∗).
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PROPOSITION 4 Define B = (K+R)D
Q

+ hQ
2

. Let

nmin = max

(
1,

⌊
B −

√
B2 − 2KDh

hQ

⌋)
(4.9)

and

nmax =

⌈
B +

√
B2 − 2KDh

hQ

⌉
(4.10)

Then nmin ≤ n∗ ≤ nmax.

Proof: Observe that

ψ(n) ≥ φ(n) =
KD

nQ
+

nQ
P
RD

nQ
+
h(n− 1)Q

2
, ∀n ≥ 1

Treating n as a continuous variable, it is easy to show that φ(n) is a strictly convex

function of n. Denoting the continuous minimizer of φ(n) by no, we simply have

no = 1
Q

√
2KD

h
.

Defining n∗ as the minimizer of ψ(n), we also have ψ(1) ≥ ψ(n∗). Note that

ψ(1) = KD
Q

+
dQ

P eRD

Q
. Since

⌈
Q
P

⌉
<
(

Q
P

+ 1
)
, it follows from ψ(1) ≥ ψ(n∗) that

(K+R)D
Q

+ RD
P
> ψ(1) ≥ ψ(n∗). Let A = (K+R)D

Q
+ RD

P
. We have A > ψ(n∗) > φ(n∗).

Since A > ψ(n∗) > φ(n∗) and φ(n) is a strictly convex function of n, φ(n) = A has

two roots leading to Expressions (4.9)and (4.10) so that nmin ≤ n∗ ≤ nmax. �

Next, we apply decentralized analysis to Models I and II.

IV.2.1. Model I

IV.2.1.1. Buyer’s Subproblem

In Model I, the buyer does not have transportation costs or capacity considerations.

Therefore,

Gb(Qb) =
DKb

Qb

+
hbQb

2
(4.11)
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leading to Q∗d,1 =
√

2KbD/hb.

IV.2.1.2. Vendor’s Subproblem

For a given value of the buyer’s order quantity, the vendor’s decision problem is to

find the optimal number of dispatches within one vendor replenishment cycle, i.e.,

the optimum value of n. Therefore, the vendor minimizes the following function

Gv(Q
∗
d,1, n) =

(
Kv +

⌈
nQ∗

d,1

P

⌉
R
)
D

nQ∗d,1

+
hv(n− 1)Q∗d,1

2
(4.12)

over n ∈ Z+. The function given in Expression (4.12) is a piecewise function. There-

fore, it is not differentiable. However, it can be minimized by a finite enumeration

algorithm on n that is based on Proposition 4. By setting K = Kv, Q = Q∗d,1

and h = hv, the optimum value of n is then given by arg min{Gv(Q
∗
d,1, n) : n =

nmin, . . . , nmax}.

IV.2.2. Model II

IV.2.2.1. Buyer’s Subproblem

In Model II, the buyer incurs a cost of $R for each cargo with capacity P . Therefore,

the buyer’s costs, as a function of his/her order quantity in Model II, is given by

Ĝb(Qb) =
DKb

Qb

+
hbQb

2
+
D
⌈

Qb

P

⌉
R

Qb

. (4.13)

This function can be minimized using Algorithm 1 in Chapter III.

IV.2.2.2. Vendor’s Subproblem

For a given value of the buyer’s optimum order quantity, the vendor’s subproblem in

Model II is the same as in Model I. That is the vendor’s total cost function in Model



83

II is given by

Gv(Q
∗
d,2, n) =

(
Kv +

⌈
nQ∗

d,2

P

⌉
R
)
D

nQ∗d,2

+
hv(n− 1)Q∗d,2

2
. (4.14)

By setting K = Kv, Q = Q∗d,2 and h = hv, we again have n∗d,2 = arg min{Gv(Q
∗
d,2, n) :

n = nmin, . . . , nmax}. The vendor’s optimal replenishment quantity in Model II is

then equal to Q∗d,2n
∗
d,2.

IV.3. Experimental Analysis

In order to see the impact of the centralized solution on the cost savings and to char-

acterize the cases for channel coordination, we made an extensive numerical analysis.

By using the same set of problems described in Chapter III, we solved the central-

ized and decentralized solutions for Model I and Model II. Based on this sample of

problems, we observed improvement as high as 13% in total system costs by coor-

dinating the channel. Furthermore, in contrast to the problem in Goyal’s paper, we

have obtained results where the following may occur:

1. Q∗c,j ≥ Q∗d,j, n
∗
c,j ≤ n∗d,j: This is the same case as in Goyal’s problem.

2. Q∗c,j < Q∗d,j, n
∗
c,j < n∗d,j: Since Q∗c,j < Q∗d,j, this contradicts Proposition 3.

3. Q∗c,j < Q∗d,j, n
∗
c,j > n∗d,j: This contradicts both Proposition 3 and Proposition

2.

4. Q∗c,j > Q∗d,j, n
∗
c,j > n∗d,j: Since n∗c,j > n∗d,j, this contradicts Proposition 2.

Here, j = 1 for Model I and j = 2 for Model II. Now we will illustrate these cases

with some numerical examples.

Example 1 Kv = 175, Kb = 50, hv = 2, hr = 4, R = 240, P = 20 and D = 2. In
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this instance, we have Q∗d,1 = 7.071, n∗d,1 = 5, Q∗c,1 = 10, n∗c,1 = 2 (illustrates the first

case).

Example 2 Kv = 350, Kb = 150, hv = 0.5, hr = 4, R = 240, P = 20 and D = 2.

In this instance, we have Q∗d,1 = 12.247, n∗d,1 = 6, Q∗c,1 = 12, n∗c,1 = 5 (illustrates the

second case).

Example 3 Kv = 350, Kb = 150, hv = 0.5, hr = 4, R = 60, P = 20 and D = 2.

In this instance, we have Q∗d,1 = 12.247, n∗d,1 = 4, Q∗c,1 = 12, n∗c,1 = 5 (illustrates the

third case).

Example 4 Kv = 700, Kb = 150, hv = 0.5, hr = 8, R = 120, P = 10 and D = 2.

In this instance, we have Q∗d,1 = 8.66, n∗d,1 = 8, Q∗c,1 = 8.889, n∗c,1 = 9 (illustrates the

fourth case).

IV.4. Channel Coordination for Model I and Model II

IV.4.1. Coordinated Solution for Model I

In order to develop a coordinated solution for Model I, we consider two cases: Q∗d,1 >

Q∗c,1 and Q∗c,1 > Q∗d,1. Unlike in Goyal’s problem (Goyal 1976), there may be some

problem instances where Q∗d,1 > Q∗c,1. However, as a result of our experimental

analysis, we have observed that this is not very common in deterministic infinite

horizon models.

PROPOSITION 5 The following mechanisms coordinate the channel for Model I:

• If Q∗d,1 < Q∗c,1, a unit discount of
Gb(Q

∗
c,1)−Gb(Q

∗
d,1)

Q∗
c,1

is offered by the vendor for

order sizes greater than or equal to Q∗c,1
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• If Q∗d,1 > Q∗c,1, a unit discount of
Gb(Q

∗
c,1)−Gb(Q

∗
d,1)

Q∗
c,1

is offered by the vendor for

order sizes less than or equal to Q∗c,1

Proof: Note that, in both cases, if the buyer orders Q∗c,1 units, his/her cost is no

higher than under the uncoordinated decentralized solution, because his/her costs

decrease by Gb(Q
∗
c,1) − Gb(Q

∗
d,1). Next, we will show that under the new pricing

scheme, the buyer’s costs are no less than Gb(Q
∗
d,1).

Since the buyer’s cost function is a convex function with a minimizer at Q∗d,1,

Gb(Q) is strictly increasing for order sizes larger than Q∗d,1. In addition, Q∗d,1 is

independent of the wholesale price. Therefore, if Q∗d,1 < Q∗c,1, under the new pricing

scheme, the buyer’s cost function attains its minimum at Q∗d,1 for order sizes less than

Q∗c,1. For Q ≥ Q∗c,1, because of the strict convexity of the cost function, Q∗c,1 gives the

minimum cost.

For the second part of the proposition (i.e., Q∗d,1 > Q∗c,1), we will again use

the strict convexity of Gb(Q) and the fact that Q∗d,1 is its minimizer. For the reasons

given, Gb(Q) is strictly decreasing for order sizes of less thanQ∗d,1. Again the convexity

properties of the cost function before Q∗c,1 do not change when the wholesale price

changes. Hence Q∗c,1 is the minimizer among the order sizes less than or equal to Q∗c,1.

�

IV.4.2. Coordinated Solution for Model II

PROPOSITION 6 The following mechanisms coordinate the channel for Model II:

Define l1 =
⌊

Q∗
c,2

P

⌋
, l2 =

⌈
Q∗

c,2

P

⌉
and Ql2 =

√
2(Kb+l2R)D

hb
. That is, Ql2 is the

economic order quantity when l2 trucks are used and l2 is the number of trucks

needed by Q∗c,2 units.

• If Q∗d,2 < Q∗c,2
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– If Q∗c,2 ≥ Ql2 , a fixed payment of Ĝb(Q
∗
c,2)− Ĝb(Q

∗
d,2) is paid by the vendor

to the buyer for order sizes larger than or equal to Q∗c,2

– If Q∗c,2 < Ql2 , a fixed payment of Ĝb(Q
∗
c,2)− Ĝb(Q

∗
d,2) is paid by the vendor

to the buyer for order sizes in the range (l1P,Q
∗
c,2]

• If Q∗d,2 > Q∗c,2, a fixed payment of Ĝb(Q
∗
c,2)− Ĝb(Q

∗
d,2) is paid by the vendor to

the buyer for order sizes in the range (l1P,Q
∗
c,2]

Proof: Since the buyer’s costs are reduced by Ĝb(Q
∗
c,2) − Ĝb(Q

∗
d,2) if he/she orders

Q∗c,2 units, he/she stays in a “no worse” situation by ordering this amount. Next, we

show that in each case the buyer’s costs are no less than Ĝb(Q
∗
d,2).

If Q∗d,2 < Q∗c,2 and Q∗c,2 ≥ Ql2 , we have Ĝb(l2P ) ≥ Ĝb(Q
∗
c,2). This is because Ql2 is

the economic order quantity when l2 trucks are used and Q∗c,2 ≥ Ql2 . From Property

3 in Chapter III, ∀Q > l2P we know that Ĝb(Q) > Ĝb(l2P ). Therefore ∀Q > Q∗c,2,

Ĝb(Q) > Ĝb(Q
∗
c,2).

If Q∗d,2 < Q∗c,2 and Q∗c,2 < Ql2 , we know that Ĝb(Q) is decreasing in the range

(l1P,Q
∗
c,2]. Since the change in wholesale price does not effect this property, for this

region, Q∗c,2 gives the minimum cost. This is also true when Q∗d,2 > Q∗c,2. �

IV.5. Summary

In this chapter, we studied the channel coordination problem for the two models

discussed in Chapter III. In order to illustrate the importance of generalized trans-

portation cost C(Q), we first discussed some of the properties of Goyal’s model (Goyal

1976), which our two models are based on. Although this is a well-known paper in

the literature, to our best knowledge, no other study makes a comparative analysis

of the optimum values of the decision variables in the decentralized and centralized

models for this problem. We showed that the decentralized model for Goyal’s problem
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always results in more frequent dispatches to the buyer and smaller order sizes from

the buyer than the centralized model.

We next presented decentralized models for the two problems studied in Chap-

ter III. Based on an extensive numerical analysis, we showed that the results of the

comparative analysis of Goyal’s model (Goyal 1976) do not necessarily hold for these

two models. An important implication of this is that, contrary to the common belief

in the literature, it is not always best to encourage the buyer to order more to coor-

dinate the channel. For both Model I and Model II, we proposed two coordination

mechanisms which rely on these results.

Another generalization of the problems considered in Chapter III and this chap-

ter is the case of stochastic demand, which we consider in Chapter VI.
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CHAPTER V

INTEGRATED BUYER-VENDOR PRODUCTION MODELS WITH

DETERMINISTIC AND CONSTANT DEMAND

In Section II.3.2 of Chapter II, we provided a review of the existing production/inventory

models for buyer-vendor coordination, where the problem is to find the centralized

replenishment/dispatch quantities of a buyer-vendor system with a finite production

(i.e., replenishment) rate at the vendor. In this chapter, we revisit this class of prob-

lems and present a unified centralized model which takes into account the generalized

replenishment cost structure of interest in the dissertation. We show that this gen-

eral formulation can be reduced to the previously studied models for buyer-vendor

coordination that suggest various dispatch policies for the vendor. The particular dis-

patch policies include LFL, IDQ, DWP, F-λ, IF-λ, 1-unequal, and e-unequal Policies.

Using this new formulation, we also prove some optimality properties of the finite

production rate problem considering the general replenishment cost structure C(Q)

given by Expression (1.1). Finally, we report the results of an extensive numerical

study where we compare these dispatch policies using different problem parameters.

Before presenting the general formulation, we introduce the following additional

notation where we define a “production cycle” as the time between two successive

production initiations at the vendor.

ϑ: Vendor’s annual production rate.

qi: Size of the ith buyer replenishment/dispatch in a production cycle.

~Qb: ~Qb = (q1, q2, ..., qn).

r: Retail price of a unit item.

D(r): Annual demand rate (deterministic, price-sensitive demand).
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cT ( ~Qb, D(r)): Total annual wholesale payment collected by the vendor.

pT (Qv, D(r)): Vendor’s total annual material/purchasing cost.

Jb( ~Qb, n): Buyer’s replenishment cost per production cycle.

Jv(Qv): Vendor’s replenishment cost per production cycle.

α: Total echelon inventory in the buyer-vendor system when the

production of a batch starts.

Hv(Qv, ~Qb, n, α): Vendor’s annual inventory holding cost.

Hb(Qv, ~Qb, n): Buyer’s annual inventory holding cost.

V P (Qv, ~Qb, n, α): Vendor’s annual profit.

BP (Qv, ~Qb, n): Buyer’s annual profit.

Figure 12 shows the cost and quantity flows in a general buyer-vendor system.

Figure 12 Illustration of the Cost and Material Flows

Vendor Buyer$Jv(Qv) / cycle

Qv Qb D(r) / year

$Jb(Qb,n) / cycle

$pT(Qv, D(r)) / year $cT(Qb,D(r)) / year $r / unit

: Costs : Material

V.1. A Unified Centralized Model

By considering an infinite horizon setting, the following centralized model maximizes

the total annual system profits.
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max V P (Qv, ~Qb, n, α) +BP (Qv, ~Qb, n)

s.to Qv =
∑n

i=1 qi

1
D(r)

(
α+

∑i
j=1 qj

)
≥ 1

ϑ

∑i+1
j=1 qj i = 0...n− 1

Qv ≥ 0, n ∈ Z+, α ≥ 0

qi ≥ 0 i = 1...n

where

V P (Qv, ~Qb, n, α) = cT ( ~Qb, D(r))−Hv(Qv, ~Qb, n, α)− Jv(Qv)D(r)

Qv

− pT (Qv, D(r))

(5.1)

and

BP (Qv, ~Qb, n) = rD(r)−Hb(Qv, ~Qb, n)− Jb( ~Qb, n)D(r)

Qv

− cT ( ~Qb, D(r)). (5.2)

The above model allows complex pricing schedules for both the vendor’s and the

buyer’s purchasing costs. Representing the total annual purchasing costs as functions

of the order quantities and the demand rate, allows us to model situations where the

unit purchase price at the buyer, or the material cost for the vendor, depends on the

order quantity (e.g., all-unit quantity discounts, incremental quantity discounts). As

another generalization, we model demand as a function of retail price. Although we

have not considered this situation in our models up to now, in practice, demand is

usually a decreasing function of retail price (i.e., r) which can be treated as a decision

variable.

We also represent the replenishment costs per production cycle as functions of the
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replenishment/dispatch quantities. This allows the incorporation of transportation

costs and capacities, or set-up costs due to batch-production, as we explain further in

the next section. Finally, we express the annual inventory holding costs as functions

of the order quantities. Using this generalization, one can model the complex cases

where the unit inventory holding cost depends on the unit purchase price which in

turn depends on the order quantity.

As a final explanation about the above model, we note that the second constraint

implies the following: In order to be able to deliver the (i+ 1)st dispatch in time, the

time to consume α plus the first i dispatches at rate D should be at least as great as

the time to produce the first (i+ 1) dispacthes at rate ϑ (Hill 1999).

V.2. Generalized Production/Inventory Models

Recall that Hill (1999) solves the finite production rate problem for buyer-vendor co-

ordination without assuming any specific dispatch policy, and, therefore, he develops

the optimal policy. In this section, we incorporate the generalized replenishment cost

structure C(Q), given by Expression (1.1), into the formulation in Hill (1999). We

accomplish this by setting

D(r) = D, c(q,D(r)) = cD, pT (Qv, D(r)) = pD,

Hv(Qv, ~Qb, n, α) = hv

[(
α+

(ϑ−D)Qv

2ϑ

)
−

n∑
i=1

qi
2

2Qv

]
,

Hb(Qv, ~Qb, n) = hb

n∑
i=1

qi
2

2Qv

,

Fb( ~Qb, n) = nKb +

⌈
q1
Pb

⌉
Rb +

⌈
q2
Pb

⌉
Rb + . . .+

⌈
qn
Pb

⌉
Rb,

Fv(Qv) = Kv +

⌈
Qv

Pv

⌉
Rv
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in our unified model formulation.

Note that, in the above, c and p represent the unit wholesale price and the unit

material/purchasing cost of the vendor, respectively. Although we use them for truck

capacities of the buyer and the vendor, Pb and Pv can represent the batch sizes in

production. In this case, Rb and Rv represent the set-up costs incurred per batch by

the buyer and the vendor, respectively.

It turns out that, in this case, the maximization problem in our unified model is

equivalent to minimizing

(Kv + nKb)D

Qv

+hv

(
α+

(ϑ−D)Qv

2ϑ

)
+(hb−hv)

n∑
i=1

qi
2

2Qv

+
n∑

i=1

⌈
qi
Pb

⌉
RbD

Qv

+

⌈
Qv

Pv

⌉
RvD

Qv

(5.3)

subject to

Qv =
n∑

i=1

qi (5.4)

1

D

(
α+

i∑
j=1

qj

)
≥ 1

ϑ

i+1∑
j=1

qj, i = 0...n− 1. (5.5)

Qv ≥ 0, n ∈ Z+, α ≥ 0, qi ≥ 0, i = 1...n (5.6)

Note that the formulation provided by Hill (1999) is very similar to the above

except that he does not have the last two terms in Expression (5.3). For his problem,

Hill (1999) shows that the optimal value of α, denoted by α∗, is given by q1D/ϑ.

Next, we prove that when transportation costs and capacities are included, the result

is still valid.

PROPOSITION 7 In the generalized finite production rate model, given by Ex-

pressions (5.3)–(5.6), α∗ = q1D/ϑ regardless of the dispatch policy.

Proof: For the time being, we fix the production lot-size, Qv, and the number of

shipments per production run, n. We focus on determining a pattern of dispatches
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for buyer replenishments that minimizes the cumulative holding cost. Without loss

of generality, we assume that successive shipments are non-decreasing in size. This

is because, the ordering of the shipments affects the total cost only through α. In

Expression (5.3), qi’s only appear in the third and fourth terms and notice that

changing the order of qi’s does not affect these sums. However, α value in the second

term of Expression (5.3), is affected through qn. This is because the echelon inventory

in the system at the beginning of a new production cycle is determined by how much

inventory is left from the previous cycle. Notice also that α cannot be decreased by

switching larger dispatches with earlier smaller dispatches.

Expression (5.5) implies that

α ≥ D

ϑ

i+1∑
j=1

qj −
i∑

j=1

qj, i = 0...n− 1. (5.7)

Also, observe that α should be as small as possible to minimize Expression (5.3).

Therefore, in the minimum cost solution, the following should be satisfied.

α = max
0≤i≤n−1

{
D

ϑ

i+1∑
j=1

qj −
i∑

j=1

qj

}

We will show that α∗ is given by i = 0 and hence α∗ = q1D/ϑ. Suppose this is

not true, so that

max
0≤i≤n−1

{
D

ϑ

i+1∑
j=1

qj −
i∑

j=1

qj

}
=
D

ϑ

l+1∑
j=1

qj −
l∑

j=1

qj

for some l > 0. Therefore, ∃b > 0 such that

D

ϑ

l+1∑
j=1

qj −
l∑

j=1

qj =
Dq1
ϑ

+
Db

ϑ
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which is equivalent to

ql+1 =

(
ϑ

D
− 1

) l∑
j=1

qj + b+ q1.

Letting y =
(

ϑ
D
− 1
)∑l

j=1 qj + b, the above equation leads to ql+1 = y + q1 where

y > 0.

Next, we analyze four cases, and using perturbation arguments, we show in each

case that α∗ = q1D/ϑ.

Case 1: Both ql+1 and q1 are full truck loads.

Since ql+1 > Pb, increasing q1 by Pb and decreasing ql+1 by Pb does not change n.

The truck costs for the buyer’s replenishment do not also change. This is because,

increasing q1 by Pb and decreasing ql+1 by Pb results in one more truck in the 1st

shipment and one less than truck in the (l+1)st shipment. However, the corresponding

inventory holding costs decrease by

hb − hv

2Qv

{
q2
1 + q2

l+1 − (q1 + Pb)
2 − (ql+1 − Pb)

2
}

=
hb − hv

2Qv

{
2Pb(ql+1 − q1)− 2P 2

b

}
.

Since ql+1 and q1 are both full truck loads and ql+1 > q1, we have ql+1 − q1 ≥ Pb.

Hence, the above equation is at least zero.

Case 2: ql+1 is full truck load and q1 is not full truck load.

Define ξ =
⌈

q1

Pb

⌉
Pb−q1. In words, ξ is the quantity necessary to increase the size of the

first dispatch to a full truck load. Since ql+1 = y+q1, we can write k1Pb = y+k2Pv−ξ

where k1 =
⌈

ql+1

Pb

⌉
and k2 =

⌈
q1

Pb

⌉
. Noting y > 0, we have k1 ≥ k2. This implies

y = (k1 − k2)Pb + ξ ≥ ξ so that ql+1 − q1 ≥ ξ. Now, we increase q1 by ξ and decrease

ql+1 by ξ. Since ql+1 − ξ ≥ q1 > 0, decreasing ql+1 by ξ does not lower it to 0, and,
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hence, we still have n dispatches. Note also that the number of trucks used in the 1st

and (l+1)st shipments do not increase. However, the inventory holding costs decrease

by

hb − hv

2Qv

{
q2
1 + q2

l+1 − (q1 + ξ)2 − (ql+1 − ξ)2
}

=
hb − hv

2Qv

{
2ξ(ql+1 − q1)− 2ξ2

}
.

Since ql+1 − q1 ≥ ξ, the above decrease is at least zero.

Case 3: ql+1 is not full truck load and q1 is full truck load.

Define ξ = ql+1 −
⌊

ql+1

Pb

⌋
Pb. In words, ξ is the quantity necessary to decrease the size

of the (l + 1)st dispatch to a full truck load. Since ql+1 > q1 and q1 is already a full

truck load, we know that ξ > 0. Since
⌊

ql+1

Pb

⌋
Pb ≥ q1, we have ql+1 − q1 ≥ ξ. Now,

we shall increase q1 by ξ and decrease ql+1 by ξ. Note that since ql+1 − ξ > 0, the

number of dispatches remains the same. The total truck costs also do not change.

This is because the number of trucks used in the (i+ 1)st shipment decreases by one

and the number of trucks used in the 1st shipment increases by one. The decrease in

the inventory holding costs is given by

hb − hv

2Qv

{
2ξ(ql+1 − q1)− 2ξ2

}
. (5.8)

Since ql+1 − q1 ≥ ξ, the above expression is at least zero.

Case 4: Neither ql+1, nor q1 is a full truck load.

Define ξ1 =
⌈

q1

Pb

⌉
Pb − q1 and ξ2 = ql+1 −

⌊
ql+1

Pb

⌋
Pb. Let ξ = min{ξ1, ξ2, y/2} where

ql+1 = y + q1. Again, increasing q1 by ξ and decreasing ql+1 by ξ does not change

any costs other than inventory holding costs. The decrease is once again given by

Expression (5.8). Since ql+1 − q1 > ξ, in this case, Expression (5.8) is greater than

zero.
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In all of the above cases, we have shown that by making appropriate modifications

in dispatch sizes, we can improve the solution if α∗ is implied by l > 0. Therefore,

i = 0 and this completes the proof. �

Next, we show that the generalized finite production rate model, and, hence, the

unified model, can be easily reduced to the previously studied models for buyer-vendor

coordination that suggest various dispatch policies. We summarize the objective

functions of these previous models in Table III. Recall that the dispatch policies

assumed in these models are discussed in Chapter II, and they include the following:

• LFL (Banerjee 1986b),

• IDQ (Banerjee and Burton 1994, Lu 1995),

• DWP (Goyal 1995),

• F-λ (Hill 1997),

• IFλ (Goyal 2000),

• 1-unequal (Goyal and Nebebe 2000),

• e-unequal (Hoque and Goyal 2000).

These cost functions can be obtained by substituting the following in our generalized

finite production rate problem formulation:

• LFL: n = 1, Qv = q1, Pb = ∞, Pv = ∞,

• IDQ: q1 = q2 = · · · = qn = Qv/n, Pb = ∞, Pv = ∞,

• DWP: qi+1 = (ϑ/D)qi, Qv = q1(
(ϑ/D)n−1

ϑ/D−1
), Pb = ∞, Pv = ∞,

• F-λ: qi+1 = λqi; Qv = q1(
λn−1
λ−1

), Pb = ∞, Pv = ∞,
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Table III Total Cost Functions for All the Policies

LFL D(Kv+Kb)
Qv

+ Qv

2
(hb + hvD

ϑ
)

IDQ D(nKb+Kv)
Qv

+ hvQv

2n

[
D
ϑ
(2− n) + (n− 1)

]
+ hbQv

2n

DWP D(nKb+Kv)(ϑ/D−1)
q1((ϑ/D)n−1)

+ q1

2
(hvD/ϑ+ hb)

(
1+(ϑ/D)n

1+ϑ/D

)
F-λ D(nKb+Kv)(λ−1)

q1(λn−1)
+ hv

[
Dq1

ϑ
+ (ϑ−D)q1(λn−1)

2ϑ(λ−1)

]
+ (hb − hv)

q1(λn+1)
2(λ+1)

1-uneq D(nKb+Kv)
q1(1+(n−1)ϑ/D)

+ q1

2

[
hv

2D+(ϑ−D)(1+(n−1)ϑ/D)
ϑ

]
+ q1

2

[
(hb − hv)

1+(n−1)(ϑ/D)2

1+(n−1)(ϑ/D)

]
e-uneq D(nKb+Kv)

Qv
+Qv

(
Dhv

ϑf(n,e)
+ (ϑ−D)hv

2ϑ
+ hb−hv

2

(ϑ/D)2e−1

(ϑ/D)2−1
+(n−e)(ϑ/D)2e−2

[ (ϑ/D)e−1
(ϑ/D)−1

+(n−e)(ϑ/D)e−1]
2

)

f(n, e) = (ϑ/D)e−1
ϑ/D−1 + (n− e)(ϑ/D)e−1

• 1-unequal: q1, q2 = · · · = qn = (ϑ/D)q1, Qv = q1(1 + (n − 1)ϑ/D), Pb = ∞,

Pv = ∞,

• e-unequal : q1, q2 = (ϑ/D)q1, . . . , qe = (ϑ/D)e−1q1, qe+1 = (ϑ/D)e−1q1, . . . , qn =

(ϑ/D)e−1q1; Qv = (ϑ/D)e−1
ϑ/D−1

q1 + (n− e)(ϑ/D)e−1q1, Pb = ∞, Pv = ∞.

Note that all of the constraints of the formulation are already satisfied when a certain

policy is assumed. We do not show the IFλ Policy in the above list, because it is a

policy that results from an algorithmic approach that Goyal (2000) uses to update

the solution of the F-λ Policy (Hill 1997).

It is worth noting that, the LFL Policy is a special case of all of these policies.

Therefore, if it is optimal in general, then all of the algorithms result in this solution.

Similarly, the 1-unequal Policy is included in the e-unequal Policy. Both of them

assume that the size of the equal shipment is ϑ/D times the size of the last unequal

shipment. Using the same idea, the F-λ (Hill 1997) is a more general policy than the

IDQ and DWP.

Obviously, generalized transportation cost structure C(Q) can be easily incorpo-
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rated by substituting the finite values of Pb and Pv, and the regarding truck costs Rb

and Rv. Below, we present two production/inventory models with such replenishment

cost structures. Note that, from Proposition 7, we already know that α∗ = q1D/ϑ

in these models.

Example 5 Consider the LFL Policy where Pb = Pv = P and Rb = Rv = R. The

total cost per unit time is then given by

D(Kv +Kb)

Qv

+
Qv

2
(hb +

hvD

ϑ
) + 2

⌈
Qv

P

⌉
RD

Qv

.

Note that we already have the total cost expression for each policy in Table III

under the assumption that Pb = ∞ and Pb = ∞. These expressions are obtained by

taking α = q1D/ϑ which is still valid in case of transportation capacities and costs.

The third term in the above expression is the total truck costs when Pb = Pv = P ,

Rb = Rv = R, n = 1 and Qv = q1. Letting K̄ = (Kv + Kb), h̄ = (hb + hvD
ϑ

), and

R̄ = 2R, this expression can be rewritten as

DK̄

Qv

+
Qv

2
h̄+

⌈
Qv

P

⌉
R̄D

Qv

which is the same as Expression (3.3) and hence can be minimized using Algorithm

1.

Example 6 Consider the IDQ Policy where Pb = Pv = P and Rb = Rv = R. The

total cost per unit time is then given by

D(nKb +Kv)

Qv

+
hvQv

2n

[
D

ϑ
(2− n) + (n− 1)

]
+
hbQv

2n
+

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

.

After some algebraic manipulations, the above expression can be rewritten as

D(nKb +Kv)

Qv

+
Qv

2

[
hv −

hvD

ϑ
+

1

n

(
hb +

2hvD

ϑ
− hv

)]
+

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv
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which, in turn, is equal to

D(nKb +Kv)

Qv

+
Qv

2

(
h̄+

h̄′

n

)
+

⌈
Qv

P

⌉
RD

Qv

+

⌈
Qv

nP

⌉
nRD

Qv

(5.9)

where

h̄ = hv −
hvD

ϑ

and

h̄′ = hb +
2hvD

ϑ
− hv.

Note that Expression (5.9) is the same as Expression (3.25) and can be minimized

using Algorithm 6.

Example 7 Consider the DWP Policy where Pb = Pv = P and Rb = Rv = R. The

total cost per unit time is then given by

D(nKb +Kv)(ϑ/D − 1)

q1((ϑ/D)n − 1)
+
q1
2

(hvD/ϑ+ hb)

(
1 + (ϑ/D)n

1 + ϑ/D

)
+

k=n∑
k=1

⌈
q1(ϑ/D)k−1

P

⌉
RD(ϑ/D − 1)

q1((ϑ/D)n − 1)
+

⌈
q1

ϑ/Dn−1
ϑ/D−1

P

⌉
RD(ϑ/D − 1)

q1((ϑ/D)n − 1)

which, in turn, is equal to

DK

q1
+
hq1
2

+

⌈
q1
P1

⌉
R̄D

q1
+

⌈
q1
P2

⌉
R̄D

q1
+ . . .+

⌈
q1
Pn

⌉
R̄D

q1
+

⌈
q1
Pn+1

⌉
R̄D

q1
(5.10)

where

K =
(nKb +Kv)(ϑ/D − 1)

((ϑ/D)n − 1)
,

h = (hvD/ϑ+ hb)

(
1 + (ϑ/D)n

1 + ϑ/D

)
,

R̄ =
R(ϑ/D − 1)

((ϑ/D)n − 1)
,

and

Pi = P

(
D

ϑ

)i−1

i = 1, . . . , n, Pn+1 =
P (ϑ/D − 1)

((ϑ/D)n − 1)
.
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For fixed n, the sum of the first three terms of Expression (5.10) looks like Expression

(3.3). However, Expression (5.10) contains some additional n terms. Therefore,

this is a more general cost expression than those we have considered in Chapter III.

Considering P1, P2, . . . , Pn+1 as the capacities of n + 1 different types of trucks with

the same cost R̄, minimizing Expression (5.10) for fixed n is equivalent to finding

the optimum order quantity in an EOQ setting where the replenishment is made

with n + 1 equal sized dispatches using different types of trucks in each dispatch. A

generalized version of Algorithm 1 is required to solve this problem for fixed n. Then

the optimum value of n can again be found by enumerating Expression (5.10) for all

possible values of n. In order for this enumeration procedure to be finite, a bound on

n is required.

Example 8 Consider the F-λ Policy where Pb = Pv = P and Rb = Rv = R. The

total cost per unit time is then given by

D(nKb +Kv)(λ− 1)

q1(λn − 1)
+ hv

[
Dq1
ϑ

+
(ϑ−D)q1(λ

n − 1)

2ϑ(λ− 1)

]
+ (hb − hv)

q1(λ
n + 1)

2(λ+ 1)
+

k=n∑
k=1

⌈
q1λ

k−1

P

⌉
RD(λ− 1)

q1(λn − 1)
+

⌈
q1

λn−1
λ−1

P

⌉
RD(λ− 1)

q1(λn − 1)

which can also be expressed by Expression (5.10) where

K =
(nKb +Kv)(λ− 1)

(λn − 1)
,

h = 2

[
D

ϑ
+

(ϑ−D)(λn − 1)

2ϑ(λ− 1)

]
+ (hb − hv)

(λn + 1)

(λ+ 1)

R̄ =
R(λ− 1)

(λn − 1)
,

and

Pi = P

(
1

λ

)i−1

i = 1, . . . , n, Pn+1 =
P (λ− 1)

(λn − 1)
.
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As in Example 7, solving this problem for fixed n is equivalent to finding the opti-

mum order quantity in an EOQ setting where the replenishment is made with n+ 1

equal sized dispatches using different types of trucks in each dispatch. Again an up-

per bound for optimum value of n is needed to develop a finite time enumeration

algorithm.

Example 9 Consider the 1-uneq Policy where Pb = Pv = P and Rb = Rv = R. The

total cost per unit time is then given by

D(nKb +Kv)

q1(1 + (n− 1)ϑ/D)
+
q1
2

[
hv

2D + (ϑ−D)(1 + (n− 1)ϑ/D)

ϑ

]
+

q1
2

[
(hb − hv)

1 + (n− 1)(ϑ/D)2

1 + (n− 1)(ϑ/D)

]
+

(⌈
q1

P

⌉
+ (n− 1)

⌈
ϑ/Dq1

P

⌉)
RD

q1(1 + (n− 1)ϑ/D)
+⌈

q1(1 + (n− 1)ϑ/D)

P

⌉
RD

q1(1 + (n− 1)ϑ/D)

which, in turn, is equal to

KD

q1
+
hq1
2

+

⌈
q1
P1

⌉
R̄D

q1
+ (n− 1)

⌈
q1
P2

⌉
R̄D

q1
+

⌈
q1
P3

⌉
R̄D

q1
(5.11)

where

K =
(nKb +Kv)

(1 + (n− 1)ϑ/D)
,

h =

[
hv

2D + (ϑ−D)(1 + (n− 1)ϑ/D)

ϑ

]
+

[
(hb − hv)

1 + (n− 1)(ϑ/D)2

1 + (n− 1)(ϑ/D)

]
,

R̄ =
R

q1(1 + (n− 1)ϑ/D)
,

P1 = P, P2 =
PD

ϑ
, and P3 =

P

(1 + (n− 1)ϑ/D)
.

Minimizing Expression (5.11) is equivalent to finding the optimum order quantity in

an EOQ setting where the replenishment is made with n + 1 equal sized dispatches

using three types of trucks with same costs. The first type of truck has a capacity of
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P1 units and is used in the first batch, the second type of truck has a capacity of P2

units and is used in the next n− 1 batches, and the last type of truck has a capacity

of P3 units and is used in the last batch.

Example 10 Consider the e-uneq Policy where Pb = Pv = P and Rb = Rv = R.

The total cost per unit time is then given by

D(nKb +Kv)

q1f(n, e)
+

⌈
q1f(n, e)

P

⌉
RD

q1f(n, e)

+
q1
2

2Dhv

ϑ
+

(ϑ−D)f(n, e)hv

ϑ
+
hb − hv

2

(ϑ/D)2e−1
(ϑ/D)2−1

+ (n− e)(ϑ/D)2e−2

f 2(n, e)


+

k=e∑
k=1

⌈
q1(ϑ/D)k−1

P

⌉
RD

q1f(n, e)
+ (n− e)

⌈
q1(ϑ/D)e−1

P

⌉
RD

q1f(n, e)

which, in turn, is equal to

KD

q1
+
hq1
2

+
k=e∑
k=1

⌈
q1
Pk

⌉
R̄D

q1
+ (n− e)

⌈
q1
Pe+1

⌉
R̄D

q1
+

⌈
q1
Pe+2

⌉
R̄D

q1
(5.12)

where

K =
(nKb +Kv)

f(n, e)
, R̄ =

R

f(n, e)
,

h =
2Dhv

ϑ
+

(ϑ−D)f(n, e)hv

ϑ
+
hb − hv

2

(ϑ/D)2e−1
(ϑ/D)2−1

+ (n− e)(ϑ/D)2e−2

f 2(n, e)
,

Pk = P

(
D

ϑ

)k−1

k = 1, . . . , e, Pe+1 = P

(
D

ϑ

)e−1

, and Pe+2 =
P

f(n, e)
.

Minimizing Expression (5.12) for fixed n is equivalent to finding the optimum order

quantity in an EOQ setting where the replenishment is made with n+ 1 equal sized

dispatches using (e + 2) types of trucks with same costs. The optimum value of n

can again be found by enumerating Expression (5.12) for all possible values of n. In

order for this enumeration procedure to be finite, an upper bound on n is required.
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V.3. Experimental Analysis

In this section, we switch our attention to the previously studied models for buyer-

vendor coordination that suggest various dispatch policies for a vendor with a finite

replenishment rate. In particular, we compare these dispatch policies on a number

of problem instances under their original modeling assumptions. However, some con-

straints specific to some models (e.g. maximum cost a buyer can incur (Lu 1995),

capacity constraints on buyer shipments (Hoque and Goyal 2000)) are relaxed to

compare all policies on the same basis.

We have generated 140 problems that satisfy the Kb/Kv, hb/hv and ϑ/D ratios

used in an earlier numerical study by Viswanathan (1998). Note that Viswanathan

(1998) compares the IDQ and DWP Policies on a set of numerical examples and tabu-

lates the (cost of the best IDQ Policy)/(cost of the best DWP Policy) for varying

combinations of Kb/Kv, hb/hv and ϑ/D ratios. To be consistent with the earlier

work, we have modified the following example in such a way that the same data set

is used: ϑ = 3200, D = 1000, hb = 5, hv = 4, Kv = 400, Kb = 25. This base case

is studied in various previously published papers (e.g., Goyal 1988, 1995). Since the

entire buyer-vendor literature assumes that hb > hv (because of added value to items

as they are carried through the supply chain), we have omitted the ratio hb/hv = 1

in Viswanathan (1998). The experimental factors that we have considered in our

analysis are given in Table IV.

We say that a policy is robust if the corresponding cost function is insensitive

to deviations from Q∗v (the optimal value of the vendor’s production quantity) and

n∗ (the optimal value of the number of buyer replenishments). For all policies, we

decreased and increased first Qv and then n by 5% and 25%, respectively, around

their optimal values, and we recalculated the optimal values of other parameters.
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Table IV Experimental Factors Considered in the Analysis

hb/hv 1.25 1.5 1.75 2 3 5 values

Kb/Kv 0.01 0.05 0.1 0.2 0.5 1 2 7 values

D/ϑ 0.2 0.4 0.6 0.8 4 values

Total number of combinations 140

Using the problems generated according to the experimental factors presented

in Table IV, we coded each policy (including the optimal solution) using C and ran

them in Unix environment. Although the running times of all algorithms are on the

order of seconds, we note that Hill’s (1997) algorithm, which performs a search over

λ, takes a longer time than the others.

In order to compare the policies in terms of their deviation from optimality and

to analyze their behaviors under different scenarios, we define the following measure:

% deviation = 100
(cost of the current policy)-(cost of the optimal solution)

cost of the optimal solution

The % deviation’s of the seven policies are summarized in Tables V–VIII.

We note the following observations based on these tables.

1. For all of the policies, as the D/ϑ ratio increases, the deviation from the optimal

solution increases.

2. Out of the 140 problems, the IDQ is better than the DWP in 43 instances. As

hb/hv increases, the IDQ outperforms the DWP. As D/ϑ increases, the DWP

is superior to the IDQ.

3. Our results for (cost of the best IDQ Policy)/(cost of the best DWP Policy)
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Table V % deviation Values for All the Policies when D/ϑ = 0.2

hb/hv Kb/Kv LFL IDQ DWP F-λ IF-λ 1-uneq e-uneq
1.25 0.01 26.98 2.31 5.38 1.04 0.25 0.2 0.01
1.25 0.05 18.9 3.56 2.41 1.25 0.1 0.1 0.1
1.25 0.1 14.19 3.94 1.36 1.15 0.05 0.04 0.04
1.25 0.2 9.06 3.76 0.11 0.11 0.11 0.11 0.11
1.25 0.5 2.01 2.01 0.11 0.11 0.11 0.11 0.11
1.25 1 0 0 0 0 0 0 0
1.25 2 0 0 0 0 0 0 0
1.5 0.01 34.71 1.71 11.79 1 0.12 0.08 0.06
1.5 0.05 23.72 2.49 6.56 1.30 0.04 0.03 0.03
1.5 0.1 17.23 2.52 4.06 0.98 0.03 0.02 0.02
1.5 0.2 10.37 2.22 1.31 0.58 1.31 0.02 0.02
1.5 0.5 2.65 1.64 0.73 0 0.73 0.73 0.73
1.5 1 0 0 0 0 0 0 0
1.5 2 0 0 0 0 0 0 0
1.75 0.01 42.05 1.39 17.88 0.93 0.1 0.05 0.05
1.75 0.05 28.58 1.96 10.76 1.13 0.01 0.01 0.01
1.75 0.1 20.94 1.89 7.35 0.97 0.01 0.01 0.01
1.75 0.2 12.88 1.54 3.62 0.53 0.21 0.2 0.2
1.75 0.5 4.15 0.98 2.2 0 2.22 2.2 0.98
1.75 1 0 0 0 0 0 0 0
1.75 2 0 0 0 0 0 0 0
2 0.01 48.92 1.18 23.58 0.84 0.05 0.03 0.03
2 0.05 33.19 1.57 14.72 0.99 0.01 0 0
2 0.1 24.23 1.33 10.27 0.65 0.09 0.08 0.08
2 0.2 15.35 1.07 5.89 0.35 0.72 0.72 0.72
2 0.5 5.59 0.67 3.61 0 3.68 3.07 0.67
2 1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0
3 0.01 72.73 0.76 43.25 0.62 0.01 0.01 0.01
3 0.05 48.90 0.81 28.26 0.57 0.01 0.01 0.01
3 0.1 36.35 0.7 21.03 0.42 0.59 0.2 0.2
3 0.2 24.11 0.54 13.92 0.24 1.22 1.21 0.54
3 0.5 10 0.42 7.95 0.12 2.92 2.88 0.42
3 1 3.54 0.25 3.54 0 8.07 6.07 0.25
3 2 0 0 0 0 0 0 0
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Table VI % deviation Values for All the Policies when D/ϑ = 0.4

hb/hv Kb/Kv LFL IDQ DWP F-λ IF-λ 1-uneq e-uneq
1.25 0.01 54.36 4.88 3.95 1.56 0.51 1.99 0.1
1.25 0.05 41.16 7.64 1.35 1.34 0.07 2.19 0.23
1.25 0.1 33.76 9.1 1.35 1.34 1.03 2.58 0.61
1.25 0.2 24.09 8.72 0.01 0.01 0.01 1.44 0.01
1.25 0.5 12.57 7.33 0 0 0 0 0
1.25 1 6.13 6.13 0 0 0 0 0
1.25 2 0.69 0.69 0 0 0 0 0
1.5 0.01 61.75 3.76 8.93 1.68 0.78 1.23 0.01
1.5 0.05 45.52 6.11 4.48 2.23 0.78 1.58 0.27
1.5 0.1 35.34 6.32 2.54 1.54 0.15 0.96 0.06
1.5 0.2 24.93 6.38 0.69 0.67 0.38 0.42 0.32
1.5 0.5 14.34 7.09 1.57 1.57 1.57 1.57 1.57
1.5 1 7.8 7.09 1.57 1.57 1.57 1.57 1.57
1.5 2 2.27 2.27 1.57 1.57 1.57 1.57 1.57
1.75 0.01 69.06 3.15 13.85 1.67 0.91 0.92 0
1.75 0.05 49.53 4.8 7.37 2.15 0.92 0.98 0.07
1.75 0.1 38.37 5.12 4.85 1.9 0.52 0.63 0.06
1.75 0.2 26.76 5.22 2.17 1.56 0.41 0.4 0.4
1.75 0.5 12.93 4.28 0.32 0.32 0.32 0.15 0.15
1.75 1 6.31 4.12 0.16 0.16 0.16 0.16 0.16
1.75 2 0.85 0.85 0.16 0.16 0.16 0.16 0.16
2 0.01 76.04 2.75 18.54 1.61 0.77 0.76 0.03
2 0.05 53.65 4.02 10.32 2.01 0.62 0.61 0
2 0.1 41.30 4.36 7.07 1.87 0.36 0.35 0.18
2 0.2 28.85 4.38 3.85 1.68 0.20 0.19 0.19
2 0.5 14.76 4.76 1.95 1.87 0.69 0.68 0.68
2 1 6.15 2.78 0.01 0.00 0.01 0.01 0.01
2 2 0.7 0.7 0.01 0.00 0.01 0.01 0.01
3 0.01 100.5 1.93 35.04 1.39 0.48 0.47 0.06
3 0.05 68.64 2.55 21.09 1.64 0.22 0.21 0.09
3 0.1 52.30 2.68 15.40 1.62 0.13 0.12 0.12
3 0.2 36.43 2.88 9.96 1.69 0.30 0.30 0.30
3 0.5 17.40 1.79 4.29 0.58 0.11 0.11 0.11
3 1 7.54 1.02 1.32 0.00 1.33 0.45 0.45
3 2 2.02 1.02 1.32 0.00 1.33 1.32 1.02



107

Table VII % deviation Values for All the Policies when D/ϑ = 0.6

hb/hv Kb/Kv LFL IDQ DWP F-λ IF-λ 1-uneq e-uneq
1.25 0.01 95.68 7.78 2.67 1.75 0.37 4.79 0.16
1.25 0.05 73.22 12.10 0.97 0.98 0.97 6.66 0.41
1.25 0.1 60.90 14.29 1.56 1.56 1.56 7.72 1.43
1.25 0.2 46.29 15.02 2.05 2.06 2.06 7.40 2.05
1.25 0.5 30.84 16.72 5.19 5.19 5.19 8.57 5.19
1.25 1 19.44 14.08 5.19 5.19 5.19 6.62 5.19
1.25 2 10.58 10.58 4.05 4.06 4.05 4.05 4.05
1.5 0.01 102.8 6.21 6.39 2.15 0.67 3.57 0.04
1.5 0.05 76.5 9.83 2.89 2.39 0.73 5.10 0.45
1.5 0.1 60.99 10.73 1.61 1.61 1.60 4.99 0.57
1.5 0.2 46.90 12.58 2.48 2.48 2.48 6.05 1.99
1.5 0.5 27.22 11.43 2.27 2.27 2.27 4.58 2.27
1.5 1 14.48 8.17 0.81 0.82 0.82 2.19 0.81
1.5 2 6.27 5.85 0.00 0.00 0.00 0.00 0.00
1.75 0.01 110.3 5.41 10.36 2.38 1.07 3.03 0.11
1.75 0.05 80.13 8.33 5.00 2.90 0.96 4.11 0.47
1.75 0.1 62.95 8.85 2.85 2.24 0.51 3.89 0.38
1.75 0.2 47.39 10.33 2.82 2.76 1.69 4.67 1.62
1.75 0.5 25.51 8.31 0.90 0.90 0.90 2.41 0.88
1.75 1 17.49 10.07 3.46 3.47 3.46 4.88 3.46
1.75 2 11.46 10.07 4.88 4.88 4.88 4.88 4.88
2 0.01 117.5 4.81 14.13 2.41 1.22 2.61 0.13
2 0.05 83.44 7.07 6.94 2.84 0.98 3.25 0.30
2 0.1 65.93 8.12 4.74 2.99 1.08 3.54 0.68
2 0.2 47.80 8.46 3.11 2.57 1.04 3.34 1.20
2 0.5 25.40 6.89 0.81 0.81 0.81 1.70 0.21
2 1 14.59 6.60 0.91 0.92 0.91 1.80 0.91
2 2 8.71 6.60 2.29 2.30 2.29 2.29 2.29
3 0.01 142.8 3.30 27.38 2.09 1.33 1.61 0.01
3 0.05 96.97 4.61 14.82 2.55 1.34 1.79 0.06
3 0.1 74.69 5.18 10.24 2.79 1.47 1.94 0.51
3 0.2 52.00 4.79 6.04 2.08 0.75 1.20 0.13
3 0.5 30.01 6.15 4.51 3.25 2.15 2.48 2.24
3 1 14.28 4.96 2.40 2.16 1.50 1.64 1.64
3 2 7.04 3.00 0.72 0.72 0.72 0.72 0.72



108

Table VIII % deviation Values for All the Policies when D/ϑ = 0.8

hb/hv Kb/Kv LFL IDQ DWP F-λ IF-λ 1-uneq e-uneq
1.25 0.01 176.9 12.25 1.59 1.58 1.06 9.95 0.44
1.25 0.05 130.4 17.99 1.55 1.55 1.55 13.97 1.49
1.25 0.1 105.1 19.84 2.67 2.67 2.67 15.03 2.67
1.25 0.2 78.75 20.30 3.89 3.89 3.89 14.97 3.89
1.25 0.5 51.73 21.99 8.02 8.02 8.02 16.08 8.02
1.25 1 35.72 21.14 10.11 10.11 10.11 15.42 10.11
1.25 2 23.89 18.48 10.52 10.52 10.52 13.79 10.52
1.5 0.01 183.5 10.14 4.00 2.65 0.66 8.06 0.37
1.5 0.05 132.2 15.26 2.36 2.36 2.36 1.68 1.63
1.5 0.1 105.4 16.91 2.81 2.81 2.81 12.67 2.64
1.5 0.2 77.73 17.19 3.30 3.30 3.30 12.41 3.30
1.5 0.5 48.64 17.88 5.82 5.82 5.82 12.77 5.82
1.5 1 31.08 15.96 6.35 6.35 6.35 11.06 6.35
1.5 2 21.09 15.24 8.02 8.02 8.02 10.81 8.02
1.75 0.01 190.8 8.83 6.69 3.09 1.02 6.92 0.36
1.75 0.05 133.5 12.76 2.95 2.91 1.91 9.54 1.14
1.75 0.1 105.5 14.35 2.87 2.87 2.87 10.54 2.17
1.75 0.2 76.80 14.51 2.76 2.76 2.76 10.26 2.62
1.75 0.5 48.97 16.65 6.06 6.06 6.06 12.00 6.06
1.75 1 33.25 17.02 8.11 8.11 8.11 12.41 8.11
1.75 2 21.64 15.31 8.51 8.51 8.51 10.98 8.51
2 0.01 197.8 7.75 9.25 3.14 1.18 5.98 0.23
2 0.05 136.7 11.49 4.31 3.67 1.45 8.53 1.29
2 0.1 106.8 12.82 3.55 3.54 3.07 9.33 2.19
2 0.2 76.92 12.76 2.83 2.83 2.83 8.90 2.39
2 0.5 44.45 11.89 2.84 2.84 2.84 7.78 2.84
2 1 28.41 11.86 4.18 4.18 4.18 7.77 4.18
2 2 19.32 12.50 6.45 6.45 6.45 8.59 6.45
3 0.01 224.8 5.63 19.17 3.17 1.78 4.22 0.27
3 0.05 147.5 7.98 9.09 4.02 2.06 5.73 1.07
3 0.1 112.2 8.69 6.22 4.11 2.11 6.08 1.59
3 0.2 78.29 8.22 3.63 3.14 1.51 5.35 1.33
3 0.5 45.47 8.99 3.56 3.56 3.56 5.95 2.91
3 1 26.54 7.64 2.66 2.66 2.66 4.72 2.51
3 2 17.15 8.62 4.51 4.51 4.51 5.89 4.51
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ratios are consistent with those of Viswanathan (1998). Furthermore, we observe

that in problems where this ratio is 1, the optimal policy is the LFL. As discussed

by Viswanathan (1998), by knowing only the hb/hv, D/ϑ and Kb/Kv values, one

can calculate (cost of the best IDQ Policy)/(cost of the best DWP Policy).

Therefore, without solving the problem, one can check whether or not this ratio

is 1 in order to determine if the LFL is the optimal policy for a problem instance.

4. The superior one of all the policies is the e-unequal Policy introduced by Hoque

and Goyal (2000). Out of 140 problems, the cost provided by this policy is

the closest to that of the optimal policy in 127 instances. In the remaining 13

problems, either the Factor-λ (Hill 1997) or the IF-λ (Goyal 2000) performs

better than the e-unequal Policy.

5. The IDQ Policy and the 1-unequal Policy are simpler to implement than the

other policies. However, as pointed out in 2) above, the DWP’s performance

in general is superior to the IDQ. When we compare these three policies, i.e.,

1-unequal, DWP and IDQ, they are the absolute winners in 55, 52 and 6 cases,

respectively. In 18 problem instances, the DWP and the 1-unequal tie, and,

for the rest of the problems, all three policies result in the same percentage

deviation from the optimal. Note that at first glance the IDQ Policy may seem

a special case of the 1-unequal Policy, but as the results indicate, it is not (i.e. in

6 cases the IDQ is better than the 1-unequal). The reason is that the 1-unequal

Policy assumes a strictly smaller shipment size q1, followed by shipment sizes

given by (ϑ/D)q1. Hence, the 1-unequal Policy is in general better than the

IDQ. Sending an initial smaller shipment can be thought of as updating the

IDQ.

6. The increase in % deviation for the 1-unequal Policy, with respect to the D/ϑ
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ratio, is much steeper for larger values of D/ϑ than in the other policies. Espe-

cially when D/ϑ = 0.8, this policy proves inferior. The reason is that as D/ϑ

increases (i.e., ϑ/D decreases), the size of the first shipment increases drasti-

cally, and this quantity is critical in this policy. Such an increase in the size

of first shipment results in higher inventory holding costs for the buyer, and,

hence higher total costs.

7. In some cases, the IF-λ (Goyal 2000) results in higher costs than F-λ (Hill 1997).

One example is the case where hb/hv = 1.5, Kb/Kv = 0.2, D/ϑ = 0.2.

8. When D/ϑ = 0.2 and Kb/Kv = 2, the LFL is the superior policy. Except for

the case when hb/hv = 3, the LFL is also an optimal solution for D/ϑ = 0.2 and

Kb/Kv = 1. This is because, if the buyer’s replenishment cost increases, for a

fixed production batch size at the vendor, it is better to make larger shipments

(smaller number of replenishments) to the buyer. However this may result an

increase in inventory holding costs for the buyer. This tradeoff is one reason

why the LFL is not optimal. On the other hand, for larger values of D/ϑ, the

frequency of optimality with the LFL diminishes. This is due to the fact that as

D/ϑ increases, the production rate decreases with respect to the demand rate.

However, no backordering is allowed in any case. Therefore, satisfying demand

while waiting for large quantities to accumulate (as in Lot-for-Lot) becomes

more difficult. Hence Lot-for-Lot may not be optimal in these cases.

V.4. Summary

In this chapter, we presented a unified model for deterministic, infinite horizon prob-

lems. This general model can be used to incorporate the following issues discussed in

the literature and within this dissertation: demand and retail price dependency, order
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quantity and wholesale price dependency, and transportation capacities and costs. We

proved a very important property which is essential in modeling and solving central-

ized production/inventory problems with generalized replenishment costs. By using

this property, we illustrated that the algorithms we developed to solve Models I and II

in Chapter III can also serve as the basis for solving generalized production/inventory

models. We also compared the performances of different dispatch policies using an

extensive numerical analysis.

This is the final chapter in which we consider deterministic demand, infinite

horizon buyer-vendor coordination problems. In the following parts of the disserta-

tion, we analyze the coordination problem under the stochastic demand assumption

in different settings.
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CHAPTER VI

SINGLE PERIOD STOCHASTIC DEMAND PROBLEM WITH GENERALIZED

REPLENISHMENT COSTS

In this chapter, we study the effects of the generalized replenishment cost struc-

ture C(Q), given by Equation (1.1) on page 4, on the coordination problem of a

buyer-vendor pair operating in a Newsboy setting. That is, the buyer faces stochas-

tic demand for a single period, and before the period begins, he/she has a single

opportunity to replenish from an outside supplier, i.e. vendor. In computing the

buyer’s replenishment quantity, we should consider the stochastic nature of the de-

mand (whose distribution is known and density function is denoted by f(x)), the

possible costs associated with stockouts and excess inventory once the period is over,

and the generalized replenishment costs associated with receiving the replenishment

order. Since the problem is nonrecurring, we consider the case where the vendor’s

inbound replenishment quantity is equal to its outbound shipment quantity, which

is specified by the buyer’s replenishment quantity. Thus, in computing this common

replenishment quantity, we also should take into account the vendor’s generalized

replenishment costs. This chapter develops centralized and decentralized models for

computing the replenishment quantity and addresses channel coordination issues in

this context.

More specifically, we show that vendor’s profit is not always an increasing func-

tion of buyer’s order quantity and that there are cases where the vendor, in fact,

desires a smaller order quantity from the buyer. In these cases, unit discounts are

still a valid negotiation mechanism for channel coordination except they play a differ-

ent role. That is, rather than acting as a motivation for the buyer to increase his/her

order quantity, unit discounts aim to compensate the buyer for his losses as a result
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of increasing or decreasing his/her order quantity.

As in Chapter III, we develop two models. Model 1 is a special case where the

generalized replenishment cost structure is incorporated into the vendor’s costs only.

Model 2 is a generalization of Model 1, which considers the generalized replenishment

cost structure for both the vendor and the buyer. Before going into details of these

models, we provide a more detailed discussion of the operational characteristics of

the system in our models in this chapter as well as the notation used.

VI.1. Problem Definition

Depending on the available supply (replenishment quantity) at the buyer, either one

of the following cases arise. If demand during the period exceeds the supply, then the

buyer is out of stock and additional demand is lost with a $b/unit lost sale cost. On

the other hand, if demand during the period is less than the available supply at the

buyer, then there are excess items at the buyer which can be sold at a salvage value

of $v/unit. The retail price at the buyer is fixed at $r/unit.

The vendor simply orders or produces the buyer’s required order quantity. It is

worthwhile to note that the general replenishment cost structure of the vendor can

also be considered as a capacitated set-up cost due to production at the vendor’s site

in response to the buyer’s order. Therefore, the results presented here are potentially

applicable to the case where the vendor is a make-to-order manufacturer (i.e., lot-

for-lot manufacturer). The vendor incurs a $p/unit production, or purchase cost,

and charges a unit wholesale price of $c/unit (v < p < c < r). As in Chapter

III, in addition to a fixed replenishment cost denoted by Kv, the vendor incurs a

transportation cost, given by dQ/PveRv for an order quantity of Q units, where Pv

is the truck capacity and Rv is the per truck cost. As we noted earlier, in Model II
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we model the generalized replenishment cost structure for the buyer as well as the

vendor. We denote the buyer’s truck capacity and cost by Pb and Rb, respectively.

The buyer’s fixed cost of replenishment is denoted by $Kb in both models.

Note that the notation used in this chapter is based on the notation used in

Chapters III and IV with some modifications. In the models studied here, the ven-

dor’s and buyer’s replenishment quantities are the same. Therefore, we do not use a

separate decision variable for the vendor’s order quantity. Additionally, we consider

the more general case where the two parties may have different per truck costs and

capacities. We index these parameters to make this distinction.

Next, we provide a summary of the additional notation introduced so far as well

as a list of some new notation that will be used throughout the chapter.

Q: Number of items ordered by the buyer.

X: Random variable showing total demand at the buyer.

F (.): Distribution function of demand.

p: Vendor’s procurement cost/unit.

v: Salvage value/unit at the buyer.

c: Wholesale price.

r: Retail price.

Π̄b(Q): Buyer’s expected profit function excluding truck costs.

Π̄v(Q): Vendor’s expected profit function excluding truck costs.

Π̄c(Q): Expected system profit function excluding truck costs

(i.e., Π̄c(Q) = Π̄v(Q) + Π̄b(Q)).

Πb(Q): Buyer’s expected profit function with truck costs.

Πv(Q): Vendor’s expected profit function with truck costs.
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ΠI
c(Q): Expected system profit function for Model I

(i.e., ΠI
c(Q) = Πv(Q) + Π̄b(Q)).

ΠII
c (Q): Expected system profit function for Model II

(i.e., ΠII
c (Q) = Πv(Q) + Πb(Q)).

f(·): Probability density function of demand.

F (·): Probability distribution function of demand.

Rb: Buyer’s cost per truck.

Rv: Vendor’s cost per truck.

Pb: Truck capacity in buyer’s replenishment.

Pv: Truck capacity in vendor’s replenishment.

The buyer’s expected profit function, without truck costs (Π̄b(Q)), can be found

in the Newsboy Problem section of any production and inventory control book. For

an extensive discussion of this problem, we suggest Silver et al. (1998, pp. 385–392).

Using the notation defined above, Π̄b(Q) is given by

Π̄b(Q) = (−c+ v)Q−Kb + (r − v)

∫ ∞

0

xf(x)dx+

−(r − v + b)

∫ ∞

Q

(x−Q)f(x)dx (6.1)

Π̄b(Q) is a strictly concave function of Q with a maximizer that satisfies the following

equation.

F (Q̄∗d) =
r + b− c

r + b− v
(6.2)

Here, Q̄∗d is the optimal value of the buyer’s order quantity in the decentralized system

if truck costs for the buyer are ignored. Note that the total cost associated with each

demand that cannot be met is r + b − c, and, hence, the underage cost cu is equal

to r + b− c. Similarly c− v is the cost of each item that is not sold. Therefore, the
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overage cost, co, is given by c − v. By this interpretation, Expression (6.2) can be

rewritten in terms of cu and co as follows:

F (Q̄∗d) =
cu

co + cu
.

When truck costs are excluded, the vendor’s profits as a function of the buyer’s order

quantity (i.e. Π̄v(Q)) is (c− p)Q−Kv. It follows that

Π̄c(Q) = (−p+ v)Q−Kb −Kv + (r − v)

∫ ∞

0

xf(x)dx+

−(r − v + b)

∫ ∞

Q

(x−Q)f(x)dx. (6.3)

The above function has the same form as Π̄b(Q), given by Expression (6.1), and,

therefore, its unique maximizer Q̄∗c satisfies

F (Q̄∗c) =
r + b− p

r + b− v
. (6.4)

LEMMA 3 The buyer’s optimal order quantity, in the centralized model without

truck costs, is at least as large as that in the corresponding decentralized model. That

is Q̄∗c ≥ Q̄∗d.

Proof: Follows from Equations (6.2) and (6.4) and the fact that p < c.

Recall that in both Model I and Model II, the vendor has a generalized replen-

ishment cost structure. Therefore, in both models, the vendor’s profits amount to

Πv(Q) = Π̄v(Q)−
⌈

Q
Pv

⌉
Rv which in turn leads to

Πv(Q) = (c− p)Q−Kv − dQ/PveRv. (6.5)

The buyer’s subproblems in Model I and Model II are different. Since truck capacity

and costs are ignored for the buyer in Model I, the buyer’s subproblem in this model

is to maximize Expression (6.1). In Model II, however, the buyer wishes to maximize
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Πb(Q) = Π̄b(Q)−
⌈

Q
Pb

⌉
Rb.

Under these assumptions, the problem is to decide on the replenishment quantity

for the buyer-vendor system under consideration. Next, we discuss how to compute

this quantity using the decentralized and centralized modeling approaches. Knowing

the properties of the profit expressions in the buyer’s and vendor’s decentralized

subproblems, it is easier to solve the centralized problem where the sum of these

two profit functions is maximized. Hence, first we concentrate on the decentralized

approach.

VI.2. Decentralized and Centralized Analysis of the Problem

We begin by presenting some structural properties of the underlying cost and profit

functions that are common to both decentralized and centralized models of the prob-

lem. For this purpose, let us first consider the following function.

h(Q) = g(Q) +

⌈
Q

P

⌉
R (6.6)

where g(Q) is a strictly convex function of Q with a minimizer at q. The second term

of h(Q) is a stepwise function. Denoting the minimizer of h(Q) by Q∗, let us discuss

how to find Q∗ over Q > 0. Hence, the initial feasible region, A, for Q∗ is given by

A = {Q : Q > 0}.

The minimization procedure for h(Q) will soon be used in optimizing the decen-

tralized and centralized objective functions for Models I and II. Next, we present some

properties of h(Q) that allow us to reduce A, simplifying the minimization problem.

PROPERTY 10 Let Q2 > Q1 > q. Then h(Q2) > h(Q1). That is, h(Q) is increas-

ing after q.
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Proof: Since g(Q) is a strictly convex function of Q and q is its minimizer, g(Q) is

increasing ∀ Q > q. dQ/P eR is a nondecreasing function ∀ Q > q. The sum of an

increasing and a nondecreasing function is increasing. Therefore, h(Q) is increasing

∀ Q > q. �

Property 10 reduces A to A1 = {Q : 0 < Q ≤ q}.

PROPERTY 11 Let Q1 and Q2 be such that (k− 1)P < Q1 < Q2 ≤ kP ≤ q where

k ≥ 1 or (l − 1)P < Q1 < Q2 ≤ q where l = dq/P e. Then h(Q1) > h(Q2). In other

words, for Q ≤ q, h(Q) is piece-wise decreasing.

Proof: Since g(Q) is strictly convex with a unique minimizer q, g(Q1) > g(Q2),

∀ Q1, Q2 s.t. Q1 < Q2 ≤ q. If (k − 1)P < Q1 < Q2 ≤ kP , we have dQ1/P e =

dQ2/P e = k. Therefore, g(Q1) + dQ1/P eR > g(Q2) + dQ2/P eR, and hence h(Q1) >

h(Q2). If (l − 1)P < Q1 < Q2 ≤ q then dQ1/P e = dQ2/P e = l. Therefore,

g(Q1) + dQ1/P eR > g(Q2) + dQ2/P eR. It follows that h(Q1) > h(Q2). �

Property 11 with Property 10 reduces the set within which we should look for

the minimizer of h(Q) to integer multiples of P that are less than q and q. Therefore,

Q∗ ∈ A2 = {q, Q s.t. Q = kP < q where k ∈ Z+}. The next property reduces this

set further.

PROPERTY 12 Let us define

F = {k ∈ Z+ : g(kP )− g((k + 1)P ) < R, (k + 1)P ≤ q}.

If F 6= ∅, let i = min{k s.t. k ∈ F}. If F = ∅, let i = 0. It follows that, if i 6= 0,

then h((j + 1)P ) > h(jP ) ∀ j s.t. j≥i and (j + 1)P≤q.

Proof: If i 6= 0, then g(iP )−g((i+1)P ) < R. Since g(Q) is a strictly convex function,

g(jP )−g((j+1)P ) < R ∀ j≥i s.t. (j+1)P≤q. Since h(jP )−h((j+1)P ) = g(jP )−
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g((j+1)P )−R and g(jP )−g((j+1)P ) < R, it follows that h(jP )−h((j+1)P ) < 0.

�

Property 12 implies that if i 6= 0, we do not need to consider integer multiples of P

that are greater than iP . We also eliminate integer multiples P that are less than iP .

This is because, if g(kP )−g((k+1)P ) < R, then g(kP )+kR < g((k+1)P )+(k+1)R

and visa versa. This last expression (i.e., g(kP ) + kR < g((k + 1)P ) + (k + 1)R) is

equivalent to h(kP ) < h((k + 1)P ). By definition, if i 6= 0, then i is the first integer

k s.t. g(kP )− g((k + 1)P ) < R which in turn implies that i is the first integer k s.t.

h(kP ) < h((k + 1)P ). Hence, h(iP ) < h(jP ) ∀ j < i.

As a result, Properties 10, 11 and 12 imply that

Q∗ ∈ A3 =

 {q, iP} if i 6= 0,

A2 if i = 0.
(6.7)

PROPERTY 13 Let l = dq/P e. If i = 0, then either (l − 1)P or q is optimal.

Proof: If i = 0, then g(kP ) − g((k + 1)P ) > R ∀ k s.t. (k + 1)P≤q. Therefore,

h((l − 1)P ) < h(jP ) ∀ j < (l − 1). This implies that we can eliminate all integer

multiples of P that are less than (l− 1)P from set A2 in Expression (6.7). Therefore,

either (l − 1)P or q is optimal. �

Note that if g((l − 1)P ) − g(q) > R, then g((l − 1)P ) + (l − 1)R > g(q) + lR

which leads to h((l− 1)P ) > h(q) and hence q is optimal. If g((l− 1)P )− g(q) < R,

then g((l − 1)P ) + (l − 1)R < g(q) + lR which leads to h((l − 1)P ) < h(q). In this

case, (l − 1)P is optimal.

As a result of Property 13, A3 reduces to

A4 =

 {q, iP} if i 6= 0,

{q,
(⌈

q
P

⌉
− 1
)
P} if i = 0.
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PROPERTY 14 If i 6= 0, then h(q) > h(iP ) and hence iP is the minimizer of h(Q).

Proof: If i 6= 0, there exists at least one integer k s.t. iP < kP ≤ q. Suppose that

h(q) ≤ h(iP ). Letting l = dq/P e, this is equivalent to g(q) + lR ≤ g(iP ) + iR and

hence g(iP )− g(q) ≥ (l− i)R. However, we know from Property 12 that if i 6= 0 then

g(iP )− g((i+1)P ) < R, g((i+1)P )− g((i+2)P ) < R, , . . . , g((l−1)P )− g(q) < R.

Therefore, g(iP )−g(q) < (l−i)R. This contradicts g(iP )−g(q) ≥ (l−i)R. Therefore,

if i 6= 0, then h(q) > h(iP ). �

With this final property

Q∗ ∈ A5 =

 {iP} if i 6= 0,

{q,
(⌈

q
P

⌉
− 1
)
P} if i = 0.

COROLLARY 5 The minimizer of h(Q), Q∗, can take the following values.

Q∗ =

 iP if F 6= ∅,

arg min{h(q), h
((⌈

q
P

⌉
− 1
)
P
)
} if F = ∅.

(6.8)

where F = {k ∈ Z+ : g(kP ) − g((k + 1)P ) < R, (k + 1)P ≤ q} and i =

min{k s.t. k ∈ F} when F 6= ∅.

Proof: The proof follows from Properties 10–14. �

VI.2.1. Vendor’s Subproblem

Recall Equation (6.5) which gives an expression of the vendor’s profit function Πv(Q).

Figure 13 provides an illustration of Πv(Q) based on the following properties of this

function.

PROPERTY 15 Πv(Q2) > Πv(Q1) ∀ Q1 and Q2 s.t. (k − 1)Pv < Q1 < Q2 ≤ kPv

and k∈Z+.
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Figure 13 Illustration of Πv(Q) when (c− p)Pv > Rv

(k-1)Pv kPv (k+1)PvKv+kRv
c-p

k[(c-p)Pv-Rv]-Kv-Rv

k[(c-p)Pv-Rv]-Kv

(k+1)[(c-p)Pv-Rv]-Kv-Rv

(k+1)[(c-p)Pv-Rv]-Kv

Q

Proof: For (k − 1)Pv < Q ≤ kPv, we have

Πv(Q) = (c− p)Q−Kv − kRv,

dΠv(Q)/dQ > 0

Therefore, the function is piecewise increasing over this region, and this completes

the proof. �

PROPOSITION 8 If (c− p)Pv ≤ Rv, then Πv(Q) < 0, ∀ Q > 0, i.e., the vendor is

at loss for any Q (see Figure 14). If (c− p)Pv > Rv, ∃ Q > 0 s.t. Πv(Q) > 0.

Proof: It follows from Property 15 that Πv(kPv) > Πv(Q) ∀ Q s.t. (k − 1)Pv <

Q≤kPv where k∈Z+. From Expression (6.5) we also have Πv(kPv) = k[(c − p)Pv −

Rv] −Kv. If (c − p)Pv≤Rv then Πv(kPv) < 0 ∀k∈Z+. Since Πv(kPv) > Πv(Q) ∀ Q

s.t. (k − 1)Pv < Q≤kPv and k∈Z+, it turns out that Πv(Q) < 0 ∀ Q > 0.



122

For the second part of the proposition, consider Q = kPv where

k = dKv/((c− p)Pv −Rv)e .

Since (c− p)Pv > Rv, we have k∈Z+. Therefore,

Πv(kPv) = dKv/((c− p)Pv −Rv)e[(c− p)Pv −Rv]−Kv

≥ (Kv/((c− p)Pv −Rv)) [(c− p)Pv −Rv]−Kv = 0.

�

PROPERTY 16 If (c− p)Pv > Rv, then Πv((k + 1)Pv) > Πv(kPv) ∀k ∈ Z+. That

is, if (c− p)Pv > Rv, the vendor’s profits at integer multiples of Pv are increasing.

Proof: From Expression (6.5), we have Πv((k+1)Pv)−Πv(kPv) = (c−p)(k+1)Pv−

Kv − (k + 1)Rv − (c− p)kPv +Kv + kRv = (c− p)Pv −Rv. Since (c− p)Pv > Rv, it

follows that (c− p)Pv −Rv > 0 and, hence, Πv((k + 1)Pv)− Πv(kPv) > 0. �

PROPERTY 17 If (c − p)Pv > Rv, then Πv(kPv) = Πv(kPv + Rv

c−p
) > Πv(Q) ∀Q

s.t. kPv < Q < kPv + Rv

c−p
, k∈Z+.

Proof: Since Q < kPv + Rv

c−p
, we have (c − p)Q < (c − p)kPv + Rv. This in turn

implies that (c − p)Q − (k + 1)Rv < (c − p)kPv − kRv. Subtracting Kv from both

sides of this inequality leads to (c− p)Q−Kv − (k + 1)Rv < (c− p)kPv −Kv − kRv.

By assumption, kPv < Q < kPv + Rv

c−p
and (c− p)Pv > Rv (i.e. Rv

c−p
< Pv), so that we

also have
⌈

Q
Pv

⌉
= k+1. Therefore, (c− p)Q−Kv −

⌈
Q
Pv

⌉
Rv < (c− p)kPv −Kv − kRv

which implies that

Πv(kPv) > Πv(Q) ∀Q s.t. kPv < Q < kPv +
Rv

c− p
.
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Note that if Q = kPv + Rv

c−p
, then

Πv(Q) = (c− p)kPv +Rv −Kv − (k + 1)Rv = (c− p)kPv −Kv − kRv = Πv(kPv).

�

Figure 14 Different illustrations of Πv(Q)

-Kv

-Kv-Rv

Pv 2Pv 3Pv

a. (c-p)Pv=Rv

Pv 2Pv 3Pv
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-Kv-Rv
(c-p)Pv-Kv-2Rv

b. (c-p)Pv<Rv

VI.2.2. Decentralized and Centralized Decision Problems for Model I

As described in Section VI.1, the buyer’s decentralized decision problem for Model I

is to find the value of Q that maximizes Π̄b(Q) given by Expression (6.1). Let Q∗d,1

denote the optimal solution of this problem. Obviously Q∗d,1 = Q̄∗d.

The objective function to be maximized in the centralized model is the sum of

the expected vendor profits and expected buyer profits which in turn is given by

ΠI
c(Q) = Πv(Q) + Π̄b(Q). (6.9)

Noting that Πv(Q) = Π̄v(Q)−
⌈

Q
Pv

⌉
Rv, this function can be expressed as

ΠI
c(Q) = Π̄b(Q) + Π̄v(Q)−

⌈
Q

Pv

⌉
Rv (6.10)
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Using the fact that Π̄c(Q) = Π̄v(Q) + Π̄b(Q), the above expression reduces to

ΠI
c(Q) = Π̄c(Q)−

⌈
Q

Pv

⌉
Rv (6.11)

Recall from Section VI.1 that Π̄c(Q), given by Expression (6.3), is the expected

system profits of the buyer-vendor system without truck capacity and costs. This is a

strictly concave function whose maximizer Q̄∗c is given by Expression (6.4). Denoting

the optimum level of the buyer’s order quantity in the centralized solution of Model

I by Q∗c,1, we have the following property

PROPERTY 18 The following are true for the objective function values of Model

I with and without truck costs:

1. ΠI
c(Q

∗
c,1) < Π̄c(Q̄

∗
c).

2. If Π̄c(Q̄
∗
c) < R then ΠI

c(Q
∗
c,1) < 0.

Proof:

1. Expression (6.11) implies that ΠI
c(Q) < Π̄c(Q) ∀Q > 0. As a result,

maxQ>0Π
I
c(Q) = ΠI

c(Q
∗
c,1) < Π̄c(Q

∗
c,1) ≤ maxQ>0Π̄c(Q) = Π̄c(Q̄

∗
c).

2. Again, using Equation (6.11) we have

maxQ>0Π
I
c(Q) = maxQ>0

{
Π̄c(Q)−

⌈
Q

P

⌉
R

}
which satisfies

maxQ>0

{
Π̄c(Q)−

⌈
Q

P

⌉
R

}
≤ maxQ>0Π̄c(Q)−minQ>0

⌈
Q

P

⌉
R.

Since over Q > 0, min
⌈

Q
P

⌉
R = R, the above inequality leads to ΠI

c(Q
∗
c,1) ≤

Π̄c(Q̄
∗
c)−R. Consequently, if Π̄c(Q̄

∗
c) < R then ΠI

c(Q
∗
c,1) < 0. �
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Note that maximizing ΠI
c(Q), given by (6.11), is equivalent to minimizing −Π̄c(Q) +⌈

Q
Pv

⌉
Rv. This sum consists of a strictly convex function (i.e. −Π̄c(Q)) and a stepwise

cost function as h(Q) in Expression (6.6). Therefore, the minimizer can be computed

using Expression (6.8) by substituting g(Q) = −Π̄c(Q) and q = Q̄∗c so that h(Q) =

−ΠI
c(Q). As a result,

Q∗c,1 =

 iPv if F 6= ∅,

arg max
{

ΠI
c(Q̄

∗
c),Π

I
c

((⌈
Q̄∗

c

Pv

⌉
− 1
)
Pv

)}
if F = ∅.

(6.12)

where F = {k ∈ Z+ : − Π̄c(kPv) + Π̄c((k + 1)Pv) < Rv, (k + 1)Pv ≤ Q̄∗c} and

i = min{k s.t. k ∈ F} when F 6= ∅.

REMARK 2 It follows from Expression (6.12) that Q∗c,1 ≤ Q̄∗c . That is, the central-

ized order quantity of the system considering truck capacity and costs for the vendor,

is at most as great as that of the system without considering truck capacity and costs.

THEOREM 4 Let Fo = {k : − Π̄c(kPv) + Π̄c((k+ 1)Pv) < Rv}, then ∀k ∈ Fo we

have the following inequality.

F ((k + 1)Pv) >
(r − p+ b)Pv −Rv + (r − v + b)

∫ (k+1)Pv

kPv
(x− kPv)f(x)dx

(r − v + b)Pv

(6.13)

where F (·) and f(·) denote the distribution and density functions of demand, respec-

tively.

Proof:

Recalling Expression (6.3), we can write

−Π̄c(kPv) + Π̄c((k + 1)Pv) = (v − p)Pv + (r − v + b)

∫ (k+1)Pv

kPv

(x− kPv)f(x)dx+

+(r − v + b)Pv [1− F ((k + 1)Pv)] .
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If k ∈ Fo, then −Π̄c(kPv)+Π̄c((k+1)Pv) < Rv. Combining the above two expressions

and rearranging the terms leads to (6.13). �

Note that in Inequality (6.13), the expression in the numerator can be considered

the system’s cost associated with not ordering another full truck load in addition to

k full trucks. This is similar to the underage cost of each unit demand that cannot be

met. Similarly, (p−v)Pv +Rv−(r−v+b)
∫ (k+1)Pv

kPv
(x−kPv)f(x)dx can be interpreted

as the cost associated with ordering an additional full truck load in excess of k full

trucks. Hence, the denominator of Inequality (6.13) can be interpreted as the sum

of overage and underage system costs associated with a truck load in addition to k

trucks.

Based on the vendor’s cost parameters and the properties described in Section

VI.2.1, there are some special cases where Expression (6.12) can be simplified further.

Theorem 5 and Propositions 9 and 10 discuss such cases.

THEOREM 5 Suppose (c− p)Pv≥Rv.

• If Q∗d,1 6=
⌈

Q∗
d,1

Pv

⌉
Pv (i.e., Q∗d,1 is not a full truck load), then Q∗c,1≥

(⌈
Q∗

d,1

Pv

⌉
− 1
)
Pv.

• If Q∗d,1 =
⌈

Q∗
d,1

Pv

⌉
Pv, then Q∗c,1≥Q∗d,1.

Proof: Using Expression ( 6.10) and the fact that Π̄v(Q) = (c− p)Q−Kv, we have

ΠI
c(Q) = Π̄b(Q) + (c− p)Q−Kv − dQ/PveRv (6.14)

Recall that Π̄b(Q) is a strictly concave function with a maximizer at Q̄∗d. Since truck

capacity and costs are ignored for the buyer in Model I, Q∗d,1 = Q̄∗d.

• For the first part of the proof, we will show that ∀ m ∈ Z+ and m < j − 1,

ΠI
c(mPv) < ΠI

c((j − 1)Pv) where j =
⌈

Q∗
d,1

Pv

⌉
. Let’s consider ΠI

c((j − 1)P ) −

ΠI
c(mP ) = Π̄b((j − 1)Pv) − Π̄b(mPv) + [(c − p)Pv − Rv](j − 1 − m). Since
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Q∗d,1 is the maximizer of Π̄b(Q) and Π̄b(Q) is a strictly concave function of Q,

Π̄b((j − 1)Pv) − Π̄b(mPv) > 0. When (c − p)Pv > Rv, it is also true that

[(c− p)Pv −Rv] (j − 1 − m) > 0. Therefore, ΠI
c((j − 1)Pv) − ΠI

c(mPv) > 0.

Hence, Q∗c,1 ≥ (j − 1)Pv.

• For the second part of the proof, we will show that ∀ m ∈ Z+ and m < j,

ΠI
c(mPv) < ΠI

c(jPv). For this purpose, let’s consider the difference ΠI
c(jPv) −

ΠI
c(mPv) = Π̄b(jPv)−Π̄b(mPv)+[(c− p)Pv −Rv] (j−m). Using the concavity of

Π̄b(Q) and the fact that mPv < jPv = Q∗d,1, we have that Π̄b(jPv)− Π̄b(mPv) >

0. When (c − p)Pv > Rv, [(c − p)Pv − Rv](j −m) > 0. Therefore, ΠI
c(jPv) −

ΠI
c(mPv) > 0 and, hence, if Q∗d,1 =

⌈
Q∗

d

Pv

⌉
Pv, then Q∗c,1 ≥ Q∗d,1.

�

The above theorem simplifies the computation of Q∗c,1 given by (6.12) in the

following way. When (c − p)Pv≥Rv, we do not need to consider certain values for i.

That is, we computeQ∗d,1, and ifQ∗d,1 6=
⌈

Q∗
d,1

Pv

⌉
Pv, then we construct F by checking the

conditions −Π̄c(kPv)+ Π̄c((k+1)Pv) < Rv and (k+1)Pv ≤ Q̄∗c for k ≥
(⌈

Q∗
d,1

Pv

⌉
− 1
)
.

On the other hand, if Q∗d,1 =
⌈

Q∗
d,1

Pv

⌉
Pv, then we do the same for k ≥

⌈
Q∗

d,1

Pv

⌉
.

COROLLARY 6 If (c− p)Pv ≥ Rv, the only possible value of Q∗c,1 that is less than

Q∗d,1 is
(⌈

Q∗
d,1

Pv

⌉
− 1
)
Pv.

Proof: Proof follows from Expression (6.12) and Theorem 5. �

PROPOSITION 9 When (c − p)Pv > Rv and Q∗d,1 ≥
(⌈

Q∗
d,1

Pv

⌉
− 1
)
Pv + Rv

c−p
, then

Q∗c,1 ≥ Q∗d,1.

Proof: As stated in Corollary 6, when (c−p)Pv ≥ Rv, the only possible value of Q∗c,1

that is less than Q∗d,1 is
(⌈

Q∗
d,1

Pv

⌉
− 1
)
Pv. Since (c− p)Pv > Rv, from Property 17, we
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have

Πv(Q) ≥ Πv

((⌈
Q∗d,1

Pv

⌉
− 1

)
Pv

)
∀Q s.t.

⌈
Q∗

d,1

Pv

⌉
Pv ≥ Q >

(⌈
Q∗

d,1

Pv

⌉
− 1
)
Pv + Rv

c−p
.

Therefore, Πv(Q
∗
d,1) ≥ Πv

((⌈
Q∗

d,1

Pv

⌉
− 1
)
Pv

)
. Since Q∗d,1 is the maximizer of

Π̄b(Q), we also have

Π̄b(Q
∗
d,1) > Π̄b

((⌈
Q∗d,1

Pv

⌉
− 1

)
Pv

)
.

Hence from Expression (6.9), we conclude that

ΠI
c(Q

∗
d,1) > ΠI

c

((⌈
Q∗d,1

Pv

⌉
− 1

)
Pv

)
.

�

PROPOSITION 10 When (c− p)Pv = Rv,

• If Q∗d,1 6=
⌈

Q∗
d,1

Pv

⌉
Pv, then

⌈
Q∗

d,1

Pv

⌉
Pv ≥ Q∗c,1 ≥

(⌈
Q∗

d,1

Pv

⌉
− 1
)
Pv.

• If Q∗d,1 =
⌈

Q∗
d,1

Pv

⌉
Pv, then Q∗c,1 = Q∗d,1.

Proof:

• As illustrated in 14.a, if (c − p)Pv = Rv, then Πv(kPv) ≥ Πv(Q), ∀Q and

∀k ∈ Z+. Therefore, Πv(Q) is maximized at both Q =
⌈

Q∗
d,1

Pv

⌉
Pv and Q =(⌈

Q∗
d,1

Pv

⌉
− 1
)
Pv. Hence, ∀Q > 0 we have

Πv

(⌈
Q∗d,1

Pv

⌉
Pv

)
≥ Πv(Q) (6.15)

and

Πv

((⌈
Q∗d,1

Pv

⌉
− 1

)
Pv

)
≥ Πv(Q). (6.16)
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Let’s first consider Q >
⌈

Q∗
d,1

Pv

⌉
Pv. Since Π̄b(Q) is a strictly concave function

with a maximizer at Q∗d,1 and Q∗d,1 ≤
⌈

Q∗
d,1

Pv

⌉
Pv < Q, we have

Π̄b

(⌈
Q∗d,1

Pv

⌉
Pv

)
> Π̄b(Q). (6.17)

Using Expressions (6.9), (6.15) and (6.17), we conclude that

ΠI
c

(⌈
Q∗d,1

Pv

⌉
Pv

)
> ΠI

c(Q), ∀Q >

⌈
Q∗d,1

Pv

⌉
Pv.

With a similar argument, it can also be shown that

ΠI
c

((⌈
Q∗d,1

Pv

⌉
− 1

)
Pv

)
> ΠI

c(Q), ∀Q <

(⌈
Q∗d,1

Pv

⌉
− 1

)
Pv.

Therefore,
⌈

Q∗
d,1

Pv

⌉
Pv≥Q∗c,1≥

(⌈
Q∗

d,1

Pv

⌉
− 1
)
Pv.

• If Q∗d,1 =
⌈

Q∗
d,1

Pv

⌉
Pv, since both Π̄b(Q) and Πv(Q) are maximized at Q = Q∗d,1,

ΠI
c(Q) is also maximized at this value. Therefore, Q∗c,1 = Q∗d,1.

�

For some special demand densities, the solution to the centralized model can be

further reduced. We next analyze the solution procedure for exponential and uniform

demand distributions.

Exponential Demand Distribution:

Assume that f(x) = λe−λx if x ≥ 0. The buyer’s expected profit function can be

obtained using Expression ( 6.1) as

Π̄b(Q) = (−c+ v)Q−Kb +
r − v

λ
− (r − v + b)

e−λQ

λ
(6.18)



130

Expected system profit is then given by

ΠI
c(Q) = (v − p)Q−Kb −Kv +

r − v

λ
− (r − v + b)

e−λQ

λ
−
⌈
Q

Pv

⌉
Rv (6.19)

Recall that Q∗d,1 = Q̄∗d; therefore, Q∗d,1 can be derived using Expression ( 6.2). This

leads to

Q∗d,1 = −1

λ
ln

(
c− v

r + b− v

)
(6.20)

The expression for Q̄∗c can be evaluated from Equality (6.4) and is given by

Q̄∗c = −1

λ
ln

(
p− v

r + b− v

)
(6.21)

PROPOSITION 11 Letting n̂ = max
{

1,
⌈
− 1

λP
ln
(

λ(Rv+(p−v)Pv)
(1−e−λP )(r−v+b)

)⌉}
,

Q∗c,1 =

 n̂Pv if (n̂+ 1)Pv ≤ Q̄∗c ,

arg max
{

ΠI
c(Q̄

∗
c),Π

I
c

((⌈
Q̄∗

c

Pv

⌉
− 1
)
Pv

)}
o.w.

(6.22)

Proof: Using Theorem 4, it can be shown that k ∈ Fo where Fo = {k : − Π̄c(kPv)+

Π̄c((k + 1)Pv) < Rv} satisfies the following inequality

k > − 1

λPv

ln

(
λ (Rv + (p− v)Pv)

(1− e−λPv)(r − v + b)

)
If the right hand side of the above inequality is less than zero, then it is satisfied by

all positive integer values of k. However, we need to find the smallest positive such

integer. In this case, n̂ = 1. When the right hand side is greater than zero, then n̂ is

given by the smallest integer that is greater than this value. Additionally, if n̂+ 1 is

less than or equal to Q̄∗c , then n̂ satisfies Q∗c,1 = n̂Pv. �
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Uniform Demand Distribution:

Assume that demand is uniformly distributed over the interval (d1, d2). That is,

f(x) = 1/(d2 − d1) for d1 < x < d2. Again Q∗d,1 and Q̄∗c can be derived using

Expressions (6.2) and (6.4) as

Q∗d,1 =
r + b− c

r + b− v
(d2 − d1) + d1,

and

Q̄∗c =
r + b− p

r + b− v
(d2 − d1) + d1. (6.23)

Using Expressions (6.1) and (6.9), it can easily be shown that

Π̄b(Q) =


(r + b− c)Q− bd1+d2

2
−Kb, if Q ≤ d1,

(−c+ v)Q−Kb + (r−v)(d1+d2)
2

− (r−v+b)
2(d2−d1)

(d2 −Q)2, if d1 < Q < d2

(−c+ v)Q−Kb + (r − v)d1+d2

2
, if Q ≥ d2

(6.24)

and

ΠI
c(Q) =



(r + b− p)Q− bd1+d2

2
−
⌈

Q
Pv

⌉
Rv −Kb −Kv, if Q ≤ d1,

(v − p)Q+ (r−v)(d1+d2)
2

− (r−v+b)
2(d2−d1)

(d2 −Q)2 −
⌈

Q
Pv

⌉
Rv

−Kb −Kv, if d1 < Q < d2

(v − p)Q+ (r − v)d1+d2

2
−
⌈

Q
Pv

⌉
Rv −Kb −Kv, if Q ≥ d2

(6.25)

For the case of uniform demand, Expression (6.12) can be simplified as we discuss

below.

PROPOSITION 12 Let Fo = {k : − Π̄c(kPv) + Π̄c((k + 1)Pv) < Rv}. If demand

is uniformly distributed over (d1, d2), then the following are true.

1. If kPv < (k + 1)Pv ≤ d1, k /∈ Fo unless (r − p+ b)Pv < Rv.
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2. If kPv ≤ d1 < (k + 1)Pv ≤ Q̄∗c ≤ d2, k /∈ Fo unless

AP 2
v k

2

2
+ A(P 2

v − Pvd1)k +B > 0 (6.26)

where A = r−v+b
d2−d1

and B = (p− v)Pv +Rv + r−v+b
d2−d1

[
P 2

v

2
− Pvd2 +

d2
1

2

]
.

3. If d1 < kPv < (k + 1)Pv ≤ Q̄∗c ≤ d2, k /∈ Fo unless

k >
2d2 − Pv

2Pv

− (d2 − d1)[Rv + (p− v)Pv]

(r − v + b)P 2
v

. (6.27)

Proof: Proof follows from Theorem 4. �

PROPOSITION 13 The following algorithm can be used to maximize ΠI
c(Q) when

demand is uniformly distributed over the interval (d1, d2).

1. Compute Q̄∗c using (6.23).

2. If 2Pv > Q̄∗c , go to Step 6; otherwise go to Step 3.

3. If (r − p+ b)Pv < Rv continue; otherwise go to Step 5.

4. Let n̂ = max
{

1,
⌈

2d2−Pv

2Pv
− (d2−d1)[Rv+(p−v)Pv ]

(r−v+b)P 2
v

⌉}
. If d1 < Pv < 2d1 continue;

otherwise set Q∗c,1 = Pv and stop.

(a) If (n̂+ 1) ≤ Q̄∗c , set Q∗c,1 = n̂Pv and stop.

(b) If (n̂+ 1) > Q̄∗c , go to Step 6.

5. If Pv ≤ d1, go to Step 5.a; otherwise go to Step 5.b.

(a) Let m =
⌊

d1

Pv

⌋
. Note that m ≥ 1. If (m+ 1)Pv > Q̄∗c , go to Step 6. Other-

wise, if m satisfies Inequality (6.26), set Q∗c,1 = mPv and stop. Otherwise

continue.

(b) Let m =
⌈

d1

Pv

⌉
and define n̂ = max

{
m,
⌈

2d2−Pv

2Pv
− (d2−d1)[Rv+(p−v)Pv ]

(r−v+b)P 2
v

⌉}
. If

(n̂+ 1)Pv > Q̄∗c , go to Step 6. Otherwise set Q∗c,1 = mPv and stop.
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6. Set Q∗c,1 either to Q̄∗c or
(⌈

Q̄∗
c

Pv

⌉
− 1
)
Pv whichever gives the maximum profit.

Proof: Step 2 follows directly from Expression (6.8). Steps 3 and 4 are executed only

if (r − p + b)Pv < Rv and Step 5 is executed only if (r − p + b)Pv ≥ Rv. Therefore,

we will analyze these two cases separately. Note that at this point we should have

2Pv ≤ Q̄∗c .

Case 1, (r − p+ b)Pv < Rv: Here we have the following subcases. Note that, since

Q̄∗c ≤ d2 and 2Pv ≤ Q̄∗c we also have 2Pv ≤ d2.

1. 2Pv ≤ d1: From Item 1) of Proposition 12, k = 1 satisfies the condition that

−Π̄c(kPv) + Π̄c((k + 1)Pv) < Rv. Since d1 < Q̄∗c , we have 2Pv < Q̄∗c . Therefore,

k = 1 is the minimum element of the set F in Expression (6.12). Hence, i = 1

which implies Q∗c,1 = Pv.

2. Pv ≤ d1 < 2Pv: If this condition is satisfied, then Q∗c,1 = Pv. In proving this,

we will use Item 2) of Proposition 12. The left side of the Inequality (6.26) is

a convex function k because A > 0. Its minimum value is −A2(P 2
v−Pvd1)2

2AP 2
v

+ B.

If (r + b − p)Pv < Rv, then this value is greater than zero. Therefore, the

function is positive everywhere. This implies that Inequality (6.26) is satisfied

by all values of k. However, we need the minimum integer k and the natural

candidate is k = 1. Since k = 1 also satisfies the condition that (k+1)Pv ≤ Q̄∗c ,

we have i = 1 and Q∗c,1 = Pv.

3. Pv ≥ 2d1: If this condition is satisfied, then Q∗c,1 = Pv. In proving this, we will

use Item 3) of Proposition 12. If Pv ≥ 2d1 in addition to (r+b−p)Pv < Rv, it can

be shown that the right hand side of Inequality (6.27) is negative. Therefore, it’s

satisfied by all positive real numbers k. However, we need the smallest integer

value and again the natural candidate is k = 1. Since k = 1 also satisfies the
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condition that (k + 1)Pv ≤ Q̄∗c , we have i = 1 and Q∗c,1 = Pv.

4. d1 < Pv < 2d1: Since Pv > d1, we will again use Item 3) of Proposition 12.

However, now we cannot conclude anything about whether the right hand side

of Inequality (6.27) is negative or positive. If it’s negative, then n̂ = 1 and

Q∗c,1 = Pv. If it’s positive, then we should also check if (n̂ + 1) ≤ Q̄∗c . If this

condition is also satisfied, then i = n̂. Otherwise Step 6 is executed and this

follows from Expression (6.8).

Case 2, (r − p+ b)Pv ≥ Rv: We will again use Proposition 12. Since (r − p+ b)Pv ≥

Rv, Item 1) does not hold. Therefore, the candidate values of k for which −Π̄c(kPv)+

Π̄c((k + 1)Pv) < Rv is satisfied are implied by Item 2) or Item 3) of Proposition 12.

We have two cases: Pv ≤ d1 and Pv > d1.

If Pv ≤ d1, the only possible value that is implied by Item 2 is m =
⌊

d1

Pv

⌋
. If

(m+ 1)Pv > Q̄∗c , then we have (k+ 1)Pv > Q̄∗c ∀k > m. Therefore, we do not need to

check Item 3). If (m + 1)Pv ≤ Q̄∗c and m satisfies Inequality (6.26), then i = m. On

the other hand, if m does not satisfy Inequality (6.26), we still need to check integer

values that are greater than m. Note that −Π̄c(kPv) + Π̄c((k + 1)Pv) < Rv can be

satisfied by these values only if Item 3) of Proposition 12 holds. If Pv > d1, we again

use the same condition. But we need the smallest integer k that is implied by Item

3). This is given by n̂ = max
{
m,
⌈

2d2−Pv

2Pv
− (d2−d1)[Rv+(p−v)Pv ]

(r−v+b)P 2
v

⌉}
. If (n̂+ 1)Pv ≤ Q̄∗c ,

we have i = m and Q∗c,1 = mPv. Otherwise, Step 6 follows from Expression (6.8). �

VI.2.3. Coordinated Solution for Model I

In this section, we propose two coordination mechanisms by which the buyer or-

ders the centralized order quantity while achieving the expected profits in his/her

decentralized solution. Propositions 15 and 16 describe the structure of the first co-
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ordination mechanism. Proposition 14 is useful in proving why such coordination

mechanisms work. To this end, with a slight change of notation, we use Π̄b(Q, c)

for the expected buyer profit function. This is because the wholesale price c will be

specified by the vendor in such a way that ordering the centralized order quantity

does not decrease the buyer’s profits relative to his/her decentralized ordering policy.

Therefore, we treat c as a decision variable, and we let Q̄∗d(·) represent the optimal

decentralized order quantity in Model I for a given value of the wholesale price. In

the remainder of the text, we let, as before, Q̄∗d(c) = Q̄∗d.

PROPOSITION 14 Let v < cl < co < ch where cl and ch represent lower and

higher price values in comparison to co. Then Π̄b(Q̄
∗
d(cl), cl) > Π̄b(Q̄

∗
d(c

o), co) and

Π̄b(Q̄
∗
d(ch), ch) < Π̄b(Q̄

∗
d(c

o), co).

Proof: Π̄b(Q̄
∗
d(cl), cl) > Π̄b(Q̄

∗
d(c

o), cl) because by definition Q̄∗d(cl) maximizes Π̄b(Q, cl).

For a fixed value of Q, Π̄b(Q, c) is decreasing in c. Therefore, Π̄b(Q̄
∗
d(c

o), cl) >

Π̄b(Q̄
∗
d(c

o), co) and hence

Π̄b(Q̄
∗
d(cl), cl) > Π̄b(Q̄

∗
d(c

o), cl) > Π̄b(Q̄
∗
d(c

o), co).

Similarly, Π̄b(Q̄
∗
d(c

o), co) > Π̄b(Q̄
∗
d(ch), c

o), because by definition Q̄∗d(c
o) maximizes

Π̄b(Q, c
o). Since ch > co, we also have Π̄b(Q̄

∗
d(ch), c

o) > Π̄b(Q̄
∗
d(ch), ch). It follows that

Π̄b(Q̄
∗
d(c

o), co) > Π̄b(Q̄
∗
d(ch), c

o) > Π̄b(Q̄
∗
d(ch), ch).

�

PROPOSITION 15 Let ∆1 = (r + b − v)
[
F (Q∗c,1)− F (Q̄∗d)

]
and c1 = c − ∆1. If

Q∗c,1 > Q̄∗d, under a unit discount of ∆1 offered by the vendor to the buyer and a

franchise fee of Π̄b(Q
∗
c,1, c1) − Π̄b(Q̄

∗
d, c) paid by the buyer to the vendor, the buyer

stays in a “no worse” situation by ordering Q∗c,1 units.
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Proof: By assumption, demand (i.e. X) is a continuous nonnegative random variable.

We define α1 = inf{x : f(x) > 0} and α2 = sup{x : f(x) > 0}. Therefore, f(x) > 0

where α1 < x < α2. Under the classical Newsboy assumptions, it is true that α1 <

Q̄∗d < α2 and α1 < Q̄∗c < α2. From Remark 2, we know that Q∗c,1 ≤ Q̄∗c . Therefore,

Q̄∗d < Q∗c,1 ≤ Q̄∗c which implies α1 < Q∗c,1 < α2. Hence, F (Q∗c,1) 6= 0 or F (Q∗c,1) 6= 1.

Since Q∗c,1 ≤ Q̄∗c , we have F (Q∗c,1) ≤ F (Q̄∗c). Under the new pricing of the vendor,

the unit price is c1 = c − (r + b − v)
[
F (Q∗c,1)− F (Q̄∗d)

]
. Substituting r+b−c

r+b−v
for the

value of F (Q̄∗d), we obtain c1 = r+ b− (r+ b− v)F (Q∗c,1). Since F (Q∗c,1) ≤ F (Q̄∗c), we

have c1 > r + b− (r + b− v)F (Q̄∗c). Recall from Equation (6.4) that F (Q̄∗c) = r+b−p
r+b−v

.

Therefore, c1 > p and, hence, c1 > v (If c < v in the Newsboy Problem, the buyer

will want to buy an infinite amount). Under the unit price c1, it can be shown from

Equation (6.2) that Q̄∗d(c1) = Q∗c,1. Therefore, the buyer is motivated to order Q∗c,1

units.

From Proposition 14, we have that Π̄b(Q
∗
c,1, c1) > Π̄b(Q̄

∗
d, c). If the buyer is

asked to pay a franchise fee of Π̄b(Q
∗
c,1, c1) − Π̄b(Q̄

∗
d, c), his/her total expected profit

is Π̄b(Q
∗
c,1, c1)− Π̄b(Q

∗
c,1, c1) + Π̄b(Q̄

∗
d, c) = Π̄b(Q̄

∗
d, c). �

We call the above coordination mechanism the “two-part tariff schedule with

fixed cost.” Figure 15 illustrates the effects of the discounted price on the buyer’s

expected profits with, and without, the franchise fee. The dashed curve represents

Π̄b(Q) under the discounted price. As seen from the figure, the maximizer of this

curve is Q∗c,1. Therefore, the discount encourages the buyer to order the centralized

quantity. However, as formally stated in Proposition 14, the buyer’s expected profit

under the discounted price is more than that in the decentralized solution under the

original price. Therefore, the profit maximizing vendor, who wants to keep the buyer

in a “no worse” situation, charges him/her a fixed payment that results in the dark

curve in Figure 15. Note that this kind of a schedule exhibits a decreasing marginal
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price.

Figure 15 First Coordination Mechanism when Q∗c,1 > Q̄∗d

Qd Qc,1
 b (Q,c)

 b  (Q,c1) with franchise fee

without franchise fee b (Q,c1)

original price schedule
new price schedule

PROPOSITION 16 Let ∆2 = (r + b − v)
[
F (Q̄∗d)− F (Q∗c,1)

]
and c2 = c + ∆2. If

Q∗c,1 < Q̄∗d and Q∗c,1 > α1, under a unit price increase of ∆2 and a franchise fee of

Π̄b(Q̄
∗
d, c) − Π̄b(Q

∗
c,1, c2) paid by the vendor to the buyer, the buyer stays in a “no

worse” situation by ordering Q∗c,1 units.

Proof: Noting that c2 = c+(r+b−v)
[
F (Q̄∗d)− F (Q∗c,1)

]
, and using Expression (6.2),

we obtain c2 = r + b− (r + b− v)F (Q∗c,1). Again using Equation (6.2), we conclude

that the buyer can be motivated to order Q∗c,1 units under this new price schedule if

the vendor pays the buyer a franchise fee of Π̄b(Q̄
∗
d, c) − Π̄b(Q

∗
c,1, c2). This is simply

because, from Proposition 14, we have Π̄b(Q̄
∗
d, c) > Π̄b(Q

∗
c,1, c2) so the buyer’s resulting

expected total profit amounts to Π̄b(Q̄
∗
d, c) − Π̄b(Q

∗
c,1, c2) + Π̄b(Q

∗
c,1, c2) = Π̄b(Q̄

∗
d, c).

�

Since the buyer is rewarded for his/her increased expenses, we call the coordina-

tion mechanism stated in Proposition 16 and illustrated in Figure 16 the “two-part

tariff schedule with fixed reward.” Note that this schedule exhibits an increasing

marginal price.
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Figure 16 First Coordination Mechanism when Q∗c,1 < Q̄∗d

QdQc,1
 b (Q,c)

 b  (Q,c2) with franchise fee

without franchise fee b (Q,c2)

original price schedule
new price schedule

The pricing schedules given in Propositions 15 and 16 coordinate the system in

such a way that the buyer orders the centralized order quantity and his/her expected

profits are no worse than he/she would otherwise earn. Although this structure of

a pricing schedule that coordinates the channel is very simple, the required discount

amount may be undesirably large for the vendor. Additionally, if the vendor expects

a minimum revenue from the sale of each item, then the maximum discount that can

be offered to the buyer is limited. In order to avoid these pitfalls, we next propose

a different coordination mechanism in Proposition 17 and 18. In contrast to the

previous coordination mechanism, the discount amount needed here to influence the

order size of the buyer is smaller.

PROPOSITION 17 Let ∆3 =
Π̄b(Q̄

∗
d,c)−Π̄b(Q

∗
c,1,c)

Q∗
c,1

and c3 = c−∆3. IfQ∗c,1 > Q̄∗d, under

a unit discount of ∆3 for order sizes greater than or equal to Q∗c,1, Q
∗
c,1 maximizes the

buyer’s expected profit function. Furthermore, Π̄b(Q
∗
c,1, c3) = Π̄b(Q̄

∗
d, c).

Proof: The discounted unit wholesale price is c3 = c − Π̄b(Q̄
∗
d,c)−Π̄b(Q

∗
c,1,c)

Q∗
c,1

. First, we

will show that Π̄b(Q
∗
c,1, c3) = Π̄b(Q̄

∗
d, c). Recall that Π̄b(Q, c) is given by the following
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expression.

Π̄b(Q, c) = (−c+ v)Q−Kb + (r − v)E[X]− (r − v + b)

∫ ∞

Q

(x−Q)f(x)dx

As a consequence, we can write

Π̄b(Q
∗
c,1, c3) =

(
−c+

Π̄b(Q̄
∗
d, c)− Π̄b(Q

∗
c,1, c)

Q∗c,1
+ v

)
Q∗c,1 −Kb + (r − v)E[X]

−(r − v + b)

∫ ∞

Q∗
c,1

(x−Q∗c,1)f(x)dx

which in turn leads to

Π̄b(Q
∗
c,1, c3) = Π̄b(Q̄

∗
d, c)− Π̄b(Q

∗
c,1, c) + (−c+ v)Q∗c,1 −Kb + (r − v)E[X]

−(r − v + b)

∫ ∞

Q∗
c,1

(x−Q∗c,1)f(x)dx

Substituting the expression of Π̄b(Q
∗
c,1, c), the above equation reduces to Π̄b(Q

∗
c,1, c3) =

Π̄b(Q̄
∗
d, c).

In order to prove that Q∗c,1 maximizes the buyer’s expected profit function, first

we will show that Q̄∗d < Q̄∗d(c3) < Q∗c,1. Since c3 < c, it follows from Expression (6.2)

that Q̄∗d < Q̄∗d(c3). Note that Π̄b(Q̄
∗
d, c3) > Π̄b(Q̄

∗
d, c) because c3 < c and Π̄b(Q, c)

is decreasing in c for fixed values of Q. Since Π̄b(Q
∗
c,1, c3) = Π̄b(Q̄

∗
d, c), we also have

Π̄b(Q̄
∗
d, c3) > Π̄b(Q

∗
c,1, c3). Recall that for a fixed value of c, Π̄b(Q, c) is a strictly

concave function of Q. Therefore, if Q∗c,1 > Q̄∗d and Q̄∗d < Q̄∗d(c3), Π̄b(Q̄
∗
d, c3) >

Π̄b(Q
∗
c,1, c3) is true only if Q̄∗d < Q̄∗d(c3) < Q∗c,1. This implies that ∀Q > Q∗c,1 we

have Π̄b(Q, c3) < Π̄b(Q
∗
c,1, c3). Since Q̄∗d maximizes Π̄b(Q, c), we have Π̄b(Q, c) <

Π̄b(Q̄
∗
d, c) = Π̄b(Q

∗
c,1, c3), ∀Q < Q∗c,1, and Q 6= Q̄∗d. Therefore, Q∗c,1 maximizes the

expected profit function Π̄b(Q, c3) under the new pricing schedule. �

The above coordination mechanism changes the price only after Q∗c,1. Therefore,

the expected profit of the buyer at Q̄∗d stays the same. This implies that the buyer is
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indifferent to a choice between Q∗c,1 and Q̄∗d. However, by slightly increasing the price

for order sizes less than Q∗c,1, the vendor can change the behavior of the buyer so that

the buyer orders Q∗c,1 units. The dashed curve in Figure 17 shows how Π̄b(Q) would

appear under the discounted price without any price breaks. However, as seen in

Figure 17, in this case, the buyer’s expected profits would be maximized at a quantity

between Q̄∗d and Q∗c,1. The price breakpoint that the vendor offers, encourages the

buyer not to order this quantity. The dark continuous line in Figure 17 shows the

buyer’s expected profits after a slightly increased unit price before Q∗c,1 and a discount

after Q∗c,1. Since the discount is valid on all items for order sizes greater than or equal

to Q∗c,1, we call this pricing schedule the “all-unit quantity pricing with economies of

scale.”

Figure 17 Second Coordination Mechanism when Q∗c,1 > Q̄∗d

Qd Qc,1

 b (Q,c)

 b  (Q,c) under new price schedule

under original price schedule

original price schedule
new price schedule

Qc,1

PROPOSITION 18 Let ∆4 =
Π̄b(Q̄

∗
d,c)−Π̄b(Q

∗
c,1,c)

Q∗
c,1

and c4 = c − ∆4. If Q∗c,1 < Q̄∗d,

under a unit discount of ∆4 for order sizes less than Q∗c,1, Q
∗
c,1 maximizes the buyer’s

expected profit function. Furthermore, Π̄b(Q
∗
c,1, c4) = Π̄b(Q̄

∗
d, c).

Proof: The discounted unit wholesale price is c4 = c − Π̄b(Q̄
∗
d,c)−Π̄b(Q

∗
c,1,c)

Q∗
c,1

. Similarly

to the proof of Proposition 17, it can be shown that Π̄b(Q
∗
c,1, c4) = Π̄b(Q̄

∗
d, c). Since
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c4 < c, it follows from Expression (6.2) that Q̄∗d < Q̄∗d(c4). Since Q∗c,1 < Q̄∗d, we have

Q̄∗d(c4) > Q̄∗d > Q∗c,1. Recall that Π̄b(Q, c4) is a strictly concave function of Q and

Q̄∗d(c4) is its unique maximizer. It follows that Π̄b(Q
∗
c,1, c4) > Π̄b(Q, c4), ∀Q < Q∗c,1.

For Q > Q∗c,1 and Q 6= Q̄∗d, we have Π̄b(Q
∗
c,1, c4) = Π̄b(Q̄

∗
d, c) > Π̄b(Q, c). Therefore,

Q∗c,1 maximizes the expected profit function Π̄b(Q, c4) under the new pricing schedule.

�

After this coordination mechanism, the buyer is again indifferent to a choice

between Q∗c,1 and Q̄∗d. However, by slightly increasing the unit price for order sizes

greater than Q∗c,1, the vendor can again influence the behavior of the buyer so that

he/she orders Q∗c,1 units (see Figure 18). We call this coordination mechanism the

“all-unit quantity pricing with diseconomies of scale.”

Figure 18 Second Coordination Mechanism when Q∗c,1 < Q̄∗d

QdQc,1

original price schedule
new price schedule

 b (Q,c)

 b  (Q,c) under new price schedule

under original price schedule

Qc,1

VI.2.4. Decentralized and Centralized Decision Problems for Model II

In the second model, we consider the generalized replenishment cost structure for the

buyer as well. The buyer’s subproblem is to maximize Πb(Q) = Π̄b(Q) −
⌈

Q
Pb

⌉
Rb

over all Q > 0. As described in Section VI.1, Π̄b(Q) is a strictly concave function
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of Q with a maximizer at Q̄∗d. Note that maximizing Πb(Q) = Π̄b(Q) −
⌈

Q
Pb

⌉
Rb is

equivalent to minimizing −Πb(Q) = −Π̄b(Q) +
⌈

Q
Pb

⌉
Rb. Expression (6.8) can again

be used to minimize this function by taking g(Q) = −Π̄b(Q) and q = Q̄∗d. Hence,

Q∗d,2 =

 iPb if F 6= ∅,

arg max
{

Πb(Q̄
∗
d),Πb

((⌈
Q̄∗

d

Pb

⌉
− 1
)
Pb

)}
if F = ∅.

(6.28)

where F = {k ∈ Z+ : − Π̄b(kPb) + Π̄b((k + 1)Pb) < Rb, (k + 1)Pb ≤ Q̄∗d} and

i = min{k s.t. k ∈ F} when F 6= ∅.

In the centralized solution, we maximize ΠII
c (Q) = Πv(Q) + Πb(Q). Note that

Πv(Q) = Π̄v(Q)−
⌈

Q
Pv

⌉
Rv and Πb(Q) = Π̄b(Q)−

⌈
Q
Pb

⌉
Rb. Therefore, ΠII

c (Q) can be

rewritten as

ΠII
c (Q) = Π̄v(Q) + Π̄b(Q)−

⌈
Q

Pv

⌉
Rv −

⌈
Q

Pb

⌉
Rb

Note also that Π̄v(Q) + Π̄b(Q) = Π̄c(Q). This leads to

ΠII
c (Q) = Π̄c(Q)−

⌈
Q

Pv

⌉
Rv −

⌈
Q

Pb

⌉
Rb (6.29)

Recall that Π̄c(Q) is the expected system profits of the centralized solution when no

truck costs or capacity are included. It is a concave function of Q with a maximizer

at Q̄∗c .

Based on the following properties of ΠII
c (Q), we provide a finite time exact solu-

tion procedure for its maximization.

PROPERTY 19 Let Q2 > Q1 > Q̄∗c . Then ΠII
c (Q2) < ΠII

c (Q1). That is, ΠII
c (Q) is

decreasing after Q̄∗c .

Proof: Since Π̄c(Q) is a strictly concave function of Q and Q̄∗c is its maximizer,

Π̄c(Q) is decreasing ∀ Q > Q̄∗c . Observe that (−dQ/PveRv) and (−dQ/PbeRb) are
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nonincreasing functions. The sum of a decreasing and a nonincreasing function is

decreasing. Therefore, ΠII
c (Q) is decreasing ∀ Q > Q̄∗c . �

PROPERTY 20 Let Q1 and Q2 be such that (k1 − 1)Pb < Q1 < Q2 ≤ k1Pb ≤

Q̄∗c and (k2 − 1)Pv < Q1 < Q2 ≤ k2Pv ≤ Q̄∗c where k1 ∈ Z+ and k2 ∈ Z+.Then

ΠII
c (Q1) < ΠII

c (Q2). In other words for Q ≤ Q̄∗c , ΠII
c (Q) is piece-wise increasing.

Proof: Since Π̄c(Q) is concave with a maximizer at Q̄∗c , Π̄c(Q1) < Π̄c(Q2) ∀ Q1, Q2

such that Q1 < Q2≤Q̄∗c . When (k1 − 1)Pb < Q1 < Q2 ≤ k1Pb, we have dQ1/Pbe =

dQ2/Pbe = k1. Similarly, when (k2 − 1)Pv < Q1 < Q2 ≤ k2Pv, we have dQ1/Pve =

dQ2/Pve = k2. Therefore, Π̄c(Q1)−dQ1/PveRv−dQ1/PbeRb < Π̄c(Q2)−dQ2/PveRv−

dQ2/PbeRb so that ΠII
c (Q1) < ΠII

c (Q2). �

Therefore, in computing ΠII
c (Q2), we need to consider Q̄∗c and the integer multi-

ples of Pb and Pv that are less than or equal to Q̄∗c .

VI.2.5. Coordinated Solution for Model II

PROPOSITION 19 If Q∗c,2 > Q∗d,2, the following coordination mechanism maxi-

mizes the buyer’s expected profit function with a maximum function value of Πb(Q
∗
d,2)

at Q∗c,2.

• If Q∗c,2 > Q̄∗d, the vendor pays the buyer a fixed franchise fee of Πb(Q
∗
d,2) −

Πb(Q
∗
c,2) for orders larger than or equal to Q∗c,2.

• If Q∗c,2 < Q̄∗d, the vendor pays the buyer a fixed franchise fee of Πb(Q
∗
d,2) −

Πb(Q
∗
c,2) for order sizes in the range

((
dQ∗c,2/Pbe − 1

)
Pb, Q

∗
c,2

]
Proof: Note that in both cases the buyer is compensated with a fixed payment of

Πb(Q
∗
d,2) − Πb(Q

∗
c,2). Therefore, if he/she orders Q∗c,2, then he/she stays at a “no

worse” expected profit value which is Πb(Q
∗
d,2)−Πb(Q

∗
c,2) + Πb(Q

∗
c,2) = Πb(Q

∗
d,2). We
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next show that in each case the maximum attainable expected profit value for the

buyer is not greater than Πb(Q
∗
d,2).

For the first part (i.e., Q∗c,2 > Q̄∗d), we use Proposition 10 which implies that

Πb(Q) is decreasing after Q̄∗d. That is, Πb(Q2) < Πb(Q1) for all Q1 and Q2 such

that Q̄∗d ≤ Q1 < Q2. Adding a fixed value of Πb(Q
∗
d,2)−Πb(Q

∗
c,2) to both sides of this

inequality results in Πb(Q2)+Πb(Q
∗
d,2)−Πb(Q

∗
c,2) < Πb(Q1)+Πb(Q

∗
d,2)−Πb(Q

∗
c,2) which

implies that the buyer’s expected profit function is still decreasing after Q̄∗d under the

new pricing strategy. Therefore, the maximum value of the buyer’s expected profit

in this region is realized at the smallest value of Q which is Q∗c,2.

For the second part (i.e. Q∗c,2 < Q̄∗d), we use Proposition 11 which implies that to

the left of Q̄∗d, Πb(Q) is piecewise increasing. Adding a fixed value to each piece does

not change the fact that Πb(Q) is increasing in
((
dQ∗c,2/Pbe − 1

)
Pb, Q

∗
c,2

]
. Therefore,

under the new pricing strategy, Q∗c,2 maximizes the buyer’s expected profit. �

PROPOSITION 20 If Q∗c,2 < Q∗d,2, the following coordination mechanism maxi-

mizes the buyer’s expected profit function with a maximum function value of Πb(Q
∗
d,2)

at Q∗c,2.

• If Q∗c,2 = kPb for some positive integer k, then the vendor pays the buyer a

franchise fee of Πb(Q
∗
d,2)− Πb(Q

∗
c,2) for order sizes less than or equal to Q∗c,2.

• If Q∗c,2 = kPv, the vendor pays the buyer a fixed franchise fee of Πb(Q
∗
d,2) −

Πb(Q
∗
c,2) for order sizes in the range

((
dQ∗c,2/Pbe − 1

)
Pb, Q

∗
c,2

]
.

Proof: From Expression (6.28), we have Q∗d,2 ≤ Q̄∗d. We also know from Equations

(6.2) and (6.4) that Q̄∗d ≤ Q̄∗c . Therefore, Q∗d,2 ≤ Q̄∗d ≤ Q̄∗c which implies that Q∗c,2 <

Q̄∗d and Q∗c,2 < Q̄∗c . As a result, Q∗c,2 can either be an integer multiple of Pb or Pv. In

both cases, if the buyer is compensated with a fixed payment of Πb(Q
∗
d,2)− Πb(Q

∗
c,2)
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and orders Q∗c,2 units, then he/she again stays at a “no worse” than expected profit

level which is Πb(Q
∗
d,2)−Πb(Q

∗
c,2)+Πb(Q

∗
c,2) = Πb(Q

∗
d,2). However, in order to complete

the proof, we need to show that the maximum attainable expected profit value for

the buyer is not greater than Πb(Q
∗
d,2).

From Property 11, we know that for Q < Q̄∗d, Πb(Q) is piecewise increasing.

Since Q∗c,2 < Q∗d,2, we can also conclude that before Q∗c,2, Πb(Q) is increasing at integer

multiples of Pb. Otherwise, from Property 12, Q∗d,2 would take a value that is less

than Q∗c,2. Therefore, for the first part of the proposition, we show that the buyer’s

expected profit function in the given region (i.e. (−∞, Q∗c,2]) takes its maximum at

Q∗c,2. The second part of the proof follows from the fact that Πb(Q) is piecewise

increasing. �

VI.3. Summary

In this chapter, we considered the channel coordination problem in the Newsboy

setting. As discussed in Chapter II, no existing study in the literature appears to

investigate the channel coordination problem with transportation costs and capacity

incorporated. Although there are a few studies that consider stochasticity of demand

in channel coordination problems, this again is an issue that needs further attention.

We believe that one of the contributions of this chapter is the consideration of these

two issues.

Similar to the results in Chapter IV, we again showed that when the vendor has

a generalized replenishment cost structure, there may be cases where it is better for

him/her to arrange for smaller order quantities from the buyer. We characterized the

conditions under which this situation occurs. We also observed that for single period

problems, this case is more common than for infinite horizon problems, specifically
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the ones we considered in Chapters III and IV. We believe the reason for this is

that, due to the recurrent nature of infinite horizon models, there is an opportunity to

reduce the truck costs by increasing the order sizes and hence take advantage of full

truck loads. In this way, additional savings from less than full truck loads in future

periods can be achieved. On the other hand, in single period models, this opportunity

is limited, and there is no opportunity to save from future period costs by ordering

more. Therefore, we believe that transportation costs and capacities have more effect

on channel coordination issues in single period problems. In this chapter, we also

introduced four efficient new mechanisms for channel coordination into the literature.
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CHAPTER VII

BUYER-VENDOR PROBLEM UNDER DEPRECIATING
ECONOMIC VALUE OF ITEMS

In Chapters III, IV, V and VI of the dissertation, we focused mainly on coordina-

tion issues with transportation capacity and cost considerations. We showed various

interesting results pertaining to theory and practice for the buyer-vendor coordination

problem. Our models in Chapters III, IV and V assumed deterministic demand,

whereas the ones in Chapter VI assumed random demand. As we pointed out earlier

in Chapter II, stochastic channel coordination studies are very limited in the litera-

ture. Also, stochastic models are better representations of real life. In this chapter,

we investigate the channel coordination problem in another setting that takes into

account the stochastic nature of demand. In fact, we not only consider this practical

situation, but unlike in the other chapters, we take retail price as a decreasing func-

tion of time. This is a common situation in the retail industry, especially for items

with short product life cycles such as consumer electronics or fashion items. There-

fore, as in Chapter VI, we investigate the problem in the Newsboy setting, which

considers the replenishment decisions in a single period representing the life-cycle of

the product.

The importance of this kind of a retail price structure for channel coordination

is that, since the buyer’s marginal profit from a unit item decreases over time, fixed

discounts proposed by the vendor may not be an efficient coordination mechanism.

In fact, we show here that the discount value for coordinating the channel depends on

the life-cycle length of the product. We propose effective coordination mechanisms

which consider life-cycle length of the product as part of the negotiation mechanism

or as a decision variable.
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In Section VII.1, we consider the simpler case where demand is not affected by

the retail price. That is, customers come to the store according to a fixed rate at all

times. More specifically, we model the demand arrival process as a pure Poisson Pro-

cess. In Section VII.2, we consider the case where more customers are willing to buy

the item when it is cheaper; that is, the demand depends on the retail price. In order

to model this situation, we take the demand arrival process as a Non-homogenous

Poisson Process where the arrival rate is a function of retail price, which itself depends

on time.

The notation we use in this chapter is essentially the same as in Chapter VI.

However, here we also have a per unit, per unit time inventory holding cost (hb) at the

buyer. It is important to note that most single period stochastic demand problems

do not model inventory holding costs. This is because, either they assume that the

period is so short that these costs can be ignored, or they charge the inventory holding

costs to the end-of-period items (i.e. unsold items) by modifying the salvage value.

In this sense, our analysis is more exact, because we charge an inventory holding cost

for each time unit that an item stays in the inventory.

We introduce the following additional notation.

T : Period length.

α: Selling price of the item at time 0.

β: Rate of depreciation in the economical value of an item (α− βT > 0).

Si: Arrival time of the ith demand.

N(T ): Number of demand arrivals during [0, T ].

We believe that the models we present in this chapter can be extended to consider

the length of the life-cycle, i.e., planning horizon, as a decision variable. Hence, we

explicitly use T to represent it.
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VII.1. Single Period, Single Replenishment Model with Time Dependent

Retail Price

In addition to the classical assumptions of the Newsboy Model at the buyer, we

assume that the demand arrival process is a pure Poisson Process with rate λ. We

consider the case where the retail price of an item depends on the time it is sold.

That is, r(t) = α− βt. We first model and solve the problem using the decentralized

approach.

VII.1.1. Decentralized Model

Buyer’s Subproblem

The buyer’s income consists of his/her revenue from regular sales and the salvage

value of any remaining items at the end of period T . The expenses that the buyer

incurs are inventory holding cost, lost sale cost, purchase cost and replenishment

cost. Therefore, the expected value of the buyer’s profits as a function of his/her

order quantity is given by:

Πb(Q) = E[Revenue] + E[Salvage Value]

−E[Holding cost]− E[Lost sale cost]

−E[Purchase cost]− E[Replenishment cost] (7.1)

In calculating the terms of the above expression, some properties of order statis-

tics will be used. These properties will be presented below in Theorems 6, 7 and

Proposition 21. But, we first provide the following formal definition of order statis-

tics.

DEFINITION 1 Let {X1, X2, . . . , Xn} be an independent set of identically dis-
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tributed continuous random variables with common density and distribution functions

f(t) and F (t), respectively. Let Y1 = min{X1, X2, . . . , Xn}, Yn = max{X1, X2, . . . , Xn},

and in general, Yk (1 ≤ k ≤ n) be the kth smallest value in {X1, X2, . . . , Xn}. Then,

Yk is called the kth order statistic, and the set {Y1, Y2, . . . , Yn} is said to consist of the

order statistics of {X1, X2, . . . , Xn} (see Ghahramani (2000), page 345).

THEOREM 6 Let {Y1, Y2, . . . , Yn} be the order statistics of the independent iden-

tically distributed continuous random variables X1, X2, . . . , Xn with the common

probability distribution and probability density functions F (t) and f(t), respectively.

Then FYk
(t) and fYk

(t), the probability distribution and probability density functions

of Yk, respectively, are given by

FYk
(t) =

n∑
i=k

 n

i

 [F (t)]i[1− F (t)]n−i, −∞ < t <∞,

and

fYk
(t) =

n!

(k − 1)!(n− k)!
F (t)k−1f(t)(1− F (t))(n−k), −∞ < t <∞. (7.2)

Proof: See Ghahramani (2000), page 346.

THEOREM 7 Let {N(T ), t≥0} be a Poisson Process with rate parameter λ, and

let Sn be the nthevent time. Given N(T ) = n

(S1, S2, . . . , Sn)
d
= (Ū1, Ū2, . . . , Ūn)

where Ū1, Ū2, . . . , Ūn are the order statistics of n i.i.d. random variables U1, U2, . . . , Un

distributed uniformly over [0, t] and
d
= denotes in distribution.

Proof: See Kulkarni (1995), page 209.
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PROPOSITION 21 Let U1, U2, . . . , Un be i.i.d. random variables uniformly dis-

tributed over [0, t] and let Ū1, Ū2, . . . , Ūn be the order statistics of U1, U2, . . . , Un.

Then,

E(Ūk) =
kt

n+ 1
, 1 ≤ k ≤ n.

Proof:

Utilizing Expression (7.2), we have the density function for the kth order statistics

of n uniformly distributed random variables over [0, t] as follows:

fŪk
(u) =

n!

(k − 1)!(n− k)!

(u
t

)k−1 1

t

(
1− u

t

)n−k

.

Since U1, U2, . . . , Un are uniformly distributed over [0, t]; Ū1, Ū2, . . . , Ūn also take

values within [0, t]. This leads to

E[Ūk] =

∫ t

0

u
n!

(k − 1)!(n− k)!

(u
t

)k−1 1

t

(
1− u

t

)n−k

du.

Taking the constant terms out of the integral, the above expression can be written as

E[Ūk] =
n!

(k − 1)!(n− k)!

∫ t

0

(u
t

)k (
1− u

t

)n−k

du.

Letting x = u
t
, we have du = tdx. By making a change in variables, the above

expression can be rewritten as

E[Ūk] =
n!

(k − 1)!(n− k)!

∫ 1

0

xk(1− x)n−ktdx.

From standard probability laws, we know that∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α+ β)

where Γ(α) is the so called Gamma function (see Larson (1982), page 206). Note that

Γ(r) = (r−1)! where r is a positive integer (see Larson (1982), page 199). Expressing
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E[Ūk] in terms of the Gamma function leads to

E[Ūk] =
n!t

(k − 1)!(n− k!)

Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)
.

Since n and k are positive integers such that 1≤k≤n, we have

E[Ūk] =
n!t

(k − 1)!(n− k)!

k!(n− k)!

(n+ 1)!
=

kt

n+ 1
.

�

Returning to Expression (7.1), we next evaluate each component of this expres-

sion. The buyer’s revenue from the sale of regular items, the earnings from the salvage

value of unsold items, the inventory holding cost and the lost sale cost are all func-

tions of the number of items demanded during a horizon of T (i.e. N(T )), which

is a random variable. Therefore, all of these terms are also random variables whose

expectations can be computed using conditional expectation.

Expected Revenue of the Buyer:

E[Revenue] = E[E[Revenue|N(T )]]

=
∞∑

n=0

E[Revenue|N(T ) = n]P{N(T ) = n}

= E[Revenue|N(T ) = 0]P{N(T ) = 0}+
Q∑

n=1

E[Revenue|N(t) = n]P{N(T ) = n}+

∞∑
n=Q+1

E[Revenue|N(t) = n]P{N(T ) = n}. (7.3)

Note that E[Revenue|N(T ) = 0] = 0.

For 1 ≤ n ≤ Q,

E[Revenue|N(T ) = n] = E

N(T )∑
i=1

(α− βSi)|N(T ) = n

 .
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By using Theorem (7) and the independence of N(T ) and Si, we can further write

E

N(T )∑
i=1

(α− βSi)|N(T ) = n

 = E

[
n∑

i=1

(α− βŪi)

]
.

Observe that E
[∑n

1 Ūi

]
= E [

∑n
1 Ui] because the sum of n random variables, whether

they are ordered or unordered, is the same. This implies that for 1 ≤ n ≤ Q

E

[
n∑

i=1

(α− βŪi)

]
= αn− βE

[
n∑

i=1

Ui

]
= αn− βnT/2.

Therefore, for 1 ≤ n ≤ Q

E [Revenue|N(T ) = n] = αn− βnT/2. (7.4)

For Q < n <∞,

E [Revenue|N(T ) = n] = E

[
Q∑

i=1

(α− βSi)|N(T ) = n

]

Again, using a similar argument, we can write

E

[
Q∑

i=1

(α− βSi)|N(T ) = n

]
= αQ− βE

[
Q∑

i=1

Ūi

]
.

Using Proposition 21 we have

E

[
Q∑

i=1

Ūi

]
=

Q∑
i=1

E
[
Ūi

]
=

Q∑
i=1

iT

n+ 1
=
Q(Q+ 1)T

2(n+ 1)
.

Therefore, for Q < n <∞

E [Revenue|N(T ) = n] = αQ− βE

[
Q∑

i=1

Ūi

]
= αQ− β

Q(Q+ 1)T

2(n+ 1)
. (7.5)
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By utilizing Expressions (7.4) and (7.5) and the fact that

E[Revenue|N(T ) = 0] = 0,

the expected revenue of the buyer as expressed in (7.3) can be written as

E[Revenue] =

Q∑
n=1

{
αn− βnT

2

}
P{N(T ) = n}+

∞∑
n=Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)

}
P{N(T = n)}. (7.6)

Expected Inventory Holding Cost of the Buyer:

The buyer’s expected inventory holding cost during the period [0, T ] is again

calculated by conditioning on N(T ).

E[Holding cost] = E[E[Holding cost|N(T )]]

=
∞∑

n=0

E[Holding cost|N(T ) = n]P{N(T ) = n}

= E[Holding cost|N(T ) = 0]P{N(T ) = 0}+
Q∑

n=1

E[Holding cost|N(T ) = n]P{N(T ) = n}+

∞∑
n=Q+1

E[Holding cost|N(T ) = n]P{N(T ) = n}. (7.7)

When the total demand during [0, T ] is 0, all of the Q items purchased at the

beginning of the period incur a per unit inventory holding cost of $hb for T units of

time. Therefore,

E[Holding cost|N(T ) = 0] = QhbT.

For 1 ≤ n ≤ Q, an item sold at time Si (Si≤T ) incurs a total of $Sihb hold-

ing cost, and each of the end-of-period items incurs a total of $hbT holding cost.



155

Accordingly,

E[Holding cost|N(T ) = n] = E


N(T )∑
i=1

Sihb + (Q−N(T ))hbT

 |N(T ) = n


= E

[
n∑

i=1

Ūihb + (Q− n)hbT

]

=
hbnT

2
+ (Q− n)hbT = QhbT −

hbnt

2
. (7.8)

For Q < n <∞, since all items are demanded during [0, T ], each of them incurs

a total of $Sihb inventory holding cost. Therefore,

E[Holding cost|N(T ) = n] = E

[
Q∑

i=1

Sihb|N(T ) = n

]

= hbE

[
Q∑

i=1

Ūi

]

= hb
Q(Q+ 1)T

2(n+ 1)
. (7.9)

Using Expressions (7.8) and (7.9) and the fact that E[Holding cost|N(T ) = 0] =

QhbT , Expression (7.7) can be rewritten as

E[Holding cost] = QhbTP{N(T ) = 0}+
Q∑

n=1

{
QhbT −

hbnT

2

}
P{N(T ) = n}+

∞∑
n=Q+1

hbQ(Q+ 1)T

2(n+ 1)
P{N(T ) = n}. (7.10)

Expected Salvage Value of Unsold Items at the Buyer:

Items unsold at the end of the period are salvaged with a per unit earning of $v.
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Thus,

E[Salvage Value] = E[E[Salvage Value|N(T )]]

=

Q∑
n=0

v(Q− n)P{N(T ) = n}. (7.11)

Expected Lost Sale Cost of the Buyer:

Each demand that arrives after the first Q units is lost. The buyer incurs a

penalty of $b/unit for these items. Therefore,

E[Lost sale cost] = E[E[Lost sale cost|N(T )]]

=
∞∑

n=Q+1

b(n−Q)P{N(T ) = n}. (7.12)

Expected Sum of Purchase and Replenishment Costs of the Buyer:

At the beginning of the period, the buyer orders Q units and pays a total of $cQ

for purchase costs. Additionally, there is a fixed replenishment cost of $Kb. Therefore,

E[Purchase cost + Replenishment cost] = cQ+Kb. (7.13)

We have now calculated all of the terms of Expression (7.1). Using Expressions (7.6),

(7.10), (7.11), (7.12) and (7.13), Πb(Q) can explicitly be written as

Πb(Q) =

Q∑
n=1

{
αn− βnT

2

}
P{N(T ) = n}

+
∞∑

n=Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)

}
P{N(T ) = n}

+

Q∑
n=0

v(Q− n)P{N(T ) = n} −QhbTP{N(T ) = 0}

−
Q∑

n=1

{
QhbT −

hbnT

2

}
P{N(T ) = n}
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−
∞∑

n=Q+1

hbQ(Q+ 1)T

2(n+ 1)
P{N(T ) = n}

−
∞∑

n=Q+1

(n−Q)bP{N(T ) = n} − cQ−Kb.

Rearranging the terms of the above expression, we obtain

Πb(Q) = −cQ−Kb +Q(v − hbT )P{N(T ) = 0}+
Q∑

n=1

{
αn− βnT

2
+
hbnT

2
−QhbT + (Q− n)v

}
P{N(T ) = n}+

∞∑
n=Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)
− hbQ(Q+ 1)T

2(n+ 1)
− (n−Q)b

}
P{N(T = n)}.

(7.14)

Next, we analyze the properties of the Πb(Q) function.

PROPOSITION 22 Πb(Q) in Expression (7.14) is a concave function of Q.

Proof:

Let ∆Πb(Q) = Πb(Q+ 1)− Πb(Q). Using (7.14), we have

∆Πb(Q) =

−c(Q+ 1) + (Q+ 1)(v − hbT )P{N(T ) = 0}

+

Q+1∑
n=1

{
αn− βnT

2
+
hbnT

2
− (Q+ 1)hbT + (Q+ 1− n)v

}
P{N(T ) = n}

+
∞∑

n=Q+2

{
α(Q+ 1)− β(Q+ 1)(Q+ 2)T

2(n+ 1)
− hb(Q+ 1)(Q+ 2)T

2(n+ 1)

−(n−Q− 1)b

}
P{N(T ) = n}+ cQ−Q(v − hbT )P{N(T ) = 0}

−
Q∑

n=1

{
αn− βnT

2
+
hbnT

2
−QhbT + (Q− n)v

}
P{N(T ) = n}

−
∞∑

Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)
− hbQ(Q+ 1)T

2(n+ 1)
− (n−Q)b

}
P{N(T ) = n}.
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After some cancellation and rearrangement of terms, the above expression can

be written as

∆Πb(Q) =

−c+ (v − hbT )P{N(T ) = 0}+

Q∑
n=1

{−hbT + v}P{N(T ) = n}

+

{
α(Q+ 1)− β(Q+ 1)T

2
+
hb(Q+ 1)T

2
− (Q+ 1)hbT

}
P{N(T ) = Q+ 1}

+
∞∑

n=Q+2

{
α− β(Q+ 1)T

(n+ 1)
− hb(Q+ 1)T

(n+ 1)
+ b

}
P{N(T ) = n}

−
{
αQ− βQ(Q+ 1)T

2(Q+ 2)
− hbQ(Q+ 1)

2(Q+ 2)
− b

}
P{N(T ) = Q+ 1}.

Further rearrangement of the terms leads to

∆Πb(Q) = −c+

Q∑
n=0

{v − hbT}P{N(T ) = n}

+

{
α− β(Q+ 1)

Q+ 2
− hb(Q+ 1)

Q+ 2
+ b

}
P{N(T ) = Q+ 1}

+
∞∑

n=Q+2

{
α− β(Q+ 1)T

n+ 1
− hb(Q+ 1)T

n+ 1
+ b

}
P{N(T ) = n},

and hence

∆Πb(Q) =

−c+

Q∑
n=0

{v − hbT}P{N(T ) = n}

+
∞∑

Q+1

{
α− β(Q+ 1)T

n+ 1
− hb(Q+ 1)T

n+ 1
+ b

}
P{N(T ) = n}. (7.15)
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Let ∆2Πb(Q) = ∆Πb(Q+ 1)−∆Πb(Q). Thus,

∆2Πb(Q) =

Q+1∑
n=0

{v − hbT}P{N(T ) = n}

+
∞∑

Q+2

{
α− β(Q+ 2)T

n+ 1
− hb(Q+ 2)T

n+ 1
+ b

}
P{N(T ) = n}

−
Q∑

n=0

{v − hbT}P{N(T ) = n}

−
∞∑

n=Q+1

{
α− β(Q+ 1)T

n+ 1
− hb(Q+ 1)T

n+ 1
+ b

}
P{N(T ) = n},

which can further be reduced to

∆2Πb(Q) = {v − hbT}P{N(T ) = Q+ 1}

+
∞∑

n=Q+2

{
− βT

n+ 1
− hbT

n+ 1

}
P{N(T ) = n}

−
{
α− β(Q+ 1)T

Q+ 2
− hb(Q+ 1)T

Q+ 2
+ b

}
P{N(T ) = Q+ 1}.

It follows that

∆2Πb(Q) =

{
v − b− α+

β(Q+ 1)T

Q+ 2
− hbT

Q+ 2

}
P{N(T ) = Q+ 1}

−
∑∞

n=Q+2

{
βT

n+ 1
+

hbT

n+ 1

}
P{N(T ) = n}.

Since v < b we have v − b < 0. A condition of α and β is that α − βT≥0.

Therefore, −α+ βT≤0, which in turn implies that

−α+
β(Q+ 1)T

Q+ 2
≤0.

As a result, ∆2Πb(Q) < 0, and hence Πb(Q) is a strictly concave function of Q. �

Since Πb(Q) is a strictly concave function of Q, it has a unique maximizer of this
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function. Let Q∗d be the maximizer of Πb(Q), then it should satisfy:

Πb(Q
∗
d + 1)− Πb(Q

∗
d) < 0, (7.16)

and

Πb(Q
∗
d − 1)− Πb(Q

∗
d) < 0. (7.17)

The above system of inequalities is equivalent to saying that Q∗d is the smallest

Q satisfying Πb(Q+ 1)− Πb(Q) < 0. That is,

Q∗d = inf{Q : Πb(Q+ 1)− Πb(Q) < 0, Q positive int.}. (7.18)

Now, we reduce Expression (7.15) and provide different forms of it to write the

solution as described by the system of inequalities (7.16)–(7.17).

observe that Expression (7.15) can be rewritten as

∆Πb(Q) = −c+ (v − hbT )P{N(T )≤Q}

+
∞∑

n=Q+1

{
α− (β + hb)T (Q+ 1)

n+ 1
+ b

}
P{N(T ) = n}

After substituting

P{N(T ) = n} =
e−λT (λT )n

n!

in the above expression, we have

∆Πb(Q) = −c+ (v − hbT )P{N(T )≤Q}

+(α+ b)(1− P{N(T )≤Q})

−(β + hb)(Q+ 1)T

λT

∞∑
n=Q+1

e−λT (λT )(n+1)

(n+ 1)!
,
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which leads to

∆Πb(Q) = −c+ α+ b+ (v − hbT − α− b)P{N(T )≤Q}

−(β + hb)(Q+ 1)

λ

∞∑
n=Q+2

e−λT (λT )n

n!
.

As a result,

∆Πb(Q) = −c+ α+ b+ (v − hbT − α− b)P{N(T )≤Q}

−(β + hb)(Q+ 1)

λ
P{N(T )≥Q+ 2}. (7.19)

Observe that Expression (7.19) implies

Πb(Q− 1)− Πb(Q) = c− α− b− (v − hbT − α− b)P{N(T )≤(Q− 1)}
(β + hb)Q

λ
P{N(T )≥Q+ 1}. (7.20)

Therefore, Q∗d should satisfy the following system of inequalities.

Πb(Q
∗
d + 1)− Πb(Q

∗
d) = −c+ α+ b+ (v − hbT − α− b)P{N(T )≤Q∗d}

−(β + hb)(Q
∗
d + 1)

λ
P{N(T )≥Q∗d + 2} < 0, (7.21)

and

Πb(Q
∗
d − 1)− Πb(Q

∗
d) = c− α− b− (v − hbT − α− b)P{N(T )≤(Q∗d − 1)}

(β + hb)Q
∗
d

λ
P{N(T )≥Q∗d + 1} < 0. (7.22)

Next, we analyze the vendor’s subproblem.

Vendor’s Subproblem

In this setting, the vendor simply ships the required number of items to the buyer

while incurring a fixed replenishment cost. Thus, for a given value of Q, the vendor’s
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profit is

Πv(Q) = (c− p)Q−Kv. (7.23)

That is, the vendor has no decision variable in its decentralized model.

VII.1.2. Centralized Model

Let Πc(Q) be the expected system profits,. That is, Πc(Q) denotes the sum of the

buyer’s and the vendor’s expected profits, as a function of the buyer’s order quantity.

Therefore,

Πc(Q) = Πb(Q) + Πv(Q). (7.24)

Utilizing Expressions (7.14) and (7.23) in the above equation, we obtain

Πc(Q) = −cQ−Kb +Q(v − hbT )P{N(T ) = 0}+
Q∑

n=1

{
αn− βnT

2
+
hbnT

2
−QhbT + (Q− n)v

}
P{N(T ) = n}+

∞∑
n=Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)
− hbQ(Q+ 1)T

2(n+ 1)
− (n−Q)b

}
P{N(T = n)}

+(c− p)Q−Kv.

which can be reduced to

Πc(Q) = −pQ−Kb −Kv +Q(v − hbT )P{N(T ) = 0}+
Q∑

n=1

{
αn− βnT

2
+
hbnT

2
−QhbT + (Q− n)v

}
P{N(T ) = n}+

∞∑
n=Q+1

{
αQ− βQ(Q+ 1)T

2(n+ 1)
− hbQ(Q+ 1)T

2(n+ 1)
− (n−Q)b

}
P{N(T = n)}.

(7.25)

The above equation is essentially the same as (7.14) except that c and Kb in (7.14)

are replaced by p and Kb +Kv, respectively. Therefore, the properties of (7.14) and
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(7.25) are similar. In fact, concavity of Πc(Q) can be proved by replacing c and Kb

by p and Kb + Kv, respectively, in Expressions (7.15) through (7.20). As a result,

the optimal value of Q in the centralized model, denoted by Q∗c , should satisfy the

following system of inequalities:

Πc(Q
∗
c + 1)− Πc(Q

∗
c) = −p+ α+ b+ (v − hbT − α− b)P{N(T )≤Q∗c}

−(β + hb)(Q
∗
c + 1)

λ
P{N(T )≥Q∗c + 2} < 0, (7.26)

Πc(Q
∗
c − 1)− Πc(Q

∗
c) = p− α− b− (v − hbT − α− b)P{N(T )≤(Q∗c − 1)}

(β + hb)Q
∗
c

λ
P{N(T )≥Q∗c + 1} < 0. (7.27)

Equivalently,

Q∗c = inf{Q : Πc(Q+ 1)− Πc(Q) < 0, Q positive int.} (7.28)

Observe that (7.26) and (7.27) are similar to (7.21) and (7.22), respectively.

VII.1.3. Channel Coordination

Before addressing channel coordination issues for the problem of interest, we present

the following proposition that compares the optimal solutions of the decentralized

and centralized models.

PROPOSITION 23 In the Buyer-Vendor Problem with Time Dependent Selling

Price, Q∗c ≥ Q∗d.

Proof:



164

Recalling Expression (7.18), it can be easily shown that Q∗d is the smallest value

of Q that satisfies

−c+ α+ b+ (v − hbT − α− b)P{N(T )≤Q}

−(β + hb)(Q+ 1)

λ
P{N(T )≥Q+ 2} < 0. (7.29)

Similarly, recalling Expression (7.28), it can be easily shown that Q∗c is the smallest

value of Q that satisfies

−p+ α+ b+ (v − hbT − α− b)P{N(T )≤Q}

−(β + hb)(Q+ 1)

λ
P{N(T )≥Q+ 2} < 0. (7.30)

Suppose that Q∗c < Q∗d, and let

h(Q) = (v − hbT − α− b)P{N(T )≤Q} − (β + hb)(Q+ 1)

λ
P{N(T )≥Q+ 2}.

It follows from (7.29) that Q∗d is the smallest Q for which −c + α + b + h(Q) < 0.

This implies that if Q∗c < Q∗d, then −c+α+ b+ h(Q∗c) ≥ 0. However, since p ≤ c, we

have −p+ α+ b≥− c+ α+ b so that −p+ α+ b+ h(Q∗c)≥− c+ α+ b+ h(Q∗c) ≥ 0

which contradicts (7.30). Hence, Q∗c≥Q∗d. �

The above proposition implies that, it is always advantageous for the vendor

to receive larger orders from the buyer to achieve channel coordination. An all-unit

discount schedule that offers a unit discount for order sizes larger than or equal to

Q∗c , can be used by the vendor to influence the ordering behavior of the buyer.

PROPOSITION 24 Let ∆ =
Πb(Q

∗
d,c)−Πb(Q

∗
c ,c)

Q∗
c

and c′ = c − ∆. Under a unit dis-

count of ∆ for order sizes greater than or equal to Q∗c , Q
∗
c maximizes the buyer’s

expected profit function. Furthermore, Πb(Q
∗
c , c

′) = Πb(Q̄
∗
d, c) where Πb(Q, c) denotes

the buyer’s expected profits for an order quantity of Q units under the unit price c.
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Proof: The proof of this proposition is the same as that of Proposition 17 in Chapter

VI and follows by replacing Expression (7.14) for the buyer’s expected profit function.

�

As a result of the above discount scheme the buyer is indifferent between ordering

Q∗d and Q∗c . The vendor can force the buyer to order Q∗c by slightly increasing the

unit price for order sizes less than Q∗c . The resulting price schedule is illustrated in

Figure 19.

Figure 19 Proposed Coordination Mechanism

Qd

 b (Q)

 b  (Q) under new price schedule

under original price schedule

original price schedule
new price schedule

Qc

Qc

However, as we illustrate next, more efficient coordination mechanisms can be

designed if T is also considered as a negotiable term between the buyer and the

vendor. We will illustrate this idea on the following example.

Example 11 Consider a buyer-vendor system with the following parameter values:

c = 10, p = 6, v = 5, b = 6, hb = 0.5, λ = 10, α = 20, β = 2, Kb = 20, Kv = 25 and

T = 1.

First row of Table IX compares the objective function values in the decentralized

and centralized models for the above example . The last column of Table IX shows the

unit discount necessary to coordinate the system using an all-unit discount schedule.
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Table IX Profit Comparison Under Different Negotiable Terms

T Q∗
d Q∗

c Πc(Q∗
d) Πc(Q∗

c) Πb(Q∗
d) Πb(Q∗

c) Πc(Q∗
c)−Πc(Q∗

d) Discount

1 12 15 69.087 73.556 46.088 38.556 4.469 0.502
2 22 25 163.825 169.437 100.825 94.437 5.612 0.256
3 31 35 232.822 241.077 133.823 126.077 8.256 0.221
4 40 45 279.946 288.908 144.846 133.908 8.961 0.245
5 48 53 306.8 325.157 139.8 138.157 18.361 0.031
6 55 62 305.602 324.392 110.602 98.713 18.789 0.192
7 61 69 290.337 315.797 71.337 64.8 25.46 0.095
8 63 75 250.28 288.341 23.28 13.34 38.061 0.133

In the other rows of Table IX, the same problem is solved by changing T in

Example 11. We note that the expected profits of the centralized and decentralized

models are dependent on T . Furthermore, the difference of the optimal system profits

in the two modeling approaches (i.e. Πc(Q
∗
c) − Πc(Q

∗
d)) increases as T increases.

Therefore, we think that more efficient coordination mechanisms can be designed

where T is also considered as a negotiable term between the buyer and the vendor.

In our example, considering both the order quantity and the length of the planning

horizon as negotiable terms, the buyer would want to order 40 units and to be in the

market for T = 4 units of time. In this case, he/she would maximize his/her own

profits (i.e. Πb(Q
∗
d) = 144.846. However, the system profits would be maximized at

T = 5 and Q∗d = 48, in which case, the buyer would lose 5.046, but the system would

gain 36.242. The cost savings from the centralized solution (i.e., 36.242) can be used

to compensate the buyer as well as to increase the expected profits of the parties.
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VII.2. Single Period, Single Replenishment Model with Time Dependent

Demand and Retail Price

Now, let us consider the case where the demand arrival process is a Nonhomogenous

Poisson Process (NPP). Our goal is to model the case where demand increases in

time while retail price decreases. Note that one common demand function with this

property in the economics literature (see Mas-Colell et al., page 386), is given by

a− yr where r is the retail price and a and y are positive real constants. Using this

relationship between demand and retail price, and noting that we also consider the

case r(t) = α− βt, we have

a− yr(t) = a− yα + yβt = λ0 + λ1t.

Since we assume random demand, we let the rate function be λ(t) = λ0 + λ1t

where λ0 ≥ 0 and λ1 > 0.

Before going into the details of the models, we present some preliminary infor-

mation about NPPs that will be used later in this chapter.

For an NPP with intensity function λ(t), if we let

m(t) =

∫ t

0

λ(s)ds, (7.31)

then,

P{N(t+ s)−N(t) = k} =
e−m(t+s)+m(t) (m(t+ s)−m(t))k

k!
(7.32)

That is, N(t+ s)−N(t) is Poisson distributed with mean m(t+ s)−m(t) (see Ross

(1996), pp. 78–79).

PROPERTY 21 Let t ≥ 0 be fixed, and U1, U2, . . . , Un denote n i.i.d. random
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variables with common distribution

P{Ui ≤ u} =
m(u)

m(t)
0 ≤ u ≤ t. (7.33)

Also, let Ū1, Ū2, . . . , Ūn denote the order statistics of U1, U2, . . . , Un, and S1, S2, . . . ,

Sn be the event times in a NPP(λ(·)). Then, given N(t) = n, (S1, S2, . . . , Sn)
d
=

(U1, U2, . . . , Un) (see Kulkarni (1995), pp. 227–228).

Now, we are ready to present the decentralized and centralized models for this

problem.

VII.2.1. Decentralized and Centralized Models

The buyer’s expected profits in the decentralized model and the total expected system

profits can again be computed using conditioning arguments as in Section VII.1. For

these calculations we need the expected value of the kth order statistics of U1, U2, . . . ,

Un defined in Property 21 (i.e., E
[
Ūk

]
). However, as we show below, the expression

for E
[
Ūk

]
does not simplify as in the case of Poisson demand arrivals.

Calculation of E
[
Ūk

]
:

In order to calculate E
[
Ūk

]
, we use the density function of the kth order statistics of

U1, U2, . . . , Un. Recalling Theorem 6, this density function is given by

fŪk
(t) =

n!

(k − 1)!(n− k)!
FU(t)k−1fU(t)(1− FU(t))(n−k). (7.34)

FU(t) and fU(t) denote the distribution and density functions of Ui defined in Property

21. Using Expressions (7.31) and (7.33), we have

FU(t) =
m(t)

m(T )
=

∫ t

0
(λ0 + λ1s)ds∫ T

0
(λ0 + λ1s)ds

=
t(λ0 + λ1t/2)

T (λ0 + λ1T/2)
, (7.35)
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and

fU(t) =
λ0 + λ1t

T (λ0 + λ1T/2)
. (7.36)

Substituting Expressions (7.35) and (7.36) in Expression (7.34) leads to

fŪk
(t) =

n!

(k − 1)!(n− k)!

[
t(λ0 + λ1t/2)

T (λ0 + λ1T/2)

]k−1
λ0 + λ1t

T (λ0 + λ1T/2)

[
1− t(λ0 + λ1t/2)

T (λ0 + λ1T/2)

]n−k

,

and hence E
[
Ūk

]
is given by

n!

(k − 1)!(n− k)!

∫ T

0

{
λ0 + λ1t

λ0 + λ1t/2

[
t(λ0 + λ1t/2)

T (λ0 + λ1T/2)

]k [
1− t(λ0 + λ1t/2)

T (λ0 + λ1T/2)

]n−k
}
dt.

(7.37)

In order to simplify the above integral, we define

x =
t(λ0 + λ1t/2)

T (λ0 + λ1T/2)
, (7.38)

which leads to

λ1t
2

2
+ λ0t− T (λ0 + λ1T/2)x = 0.

The two real roots of the above expression are given by

t1,2 =
−λ0 ∓

√
λ2

0 + 2λ1T (λ0 + λ1T/2)x

λ1

.

Since we are interested in t > 0, we should have

t =
−λ0 +

√
λ2

0 + 2λ1T (λ0 + λ1T/2)x

λ1

,

and hence

λ0 + λ1t/2 =
λ0 +

√
λ2

0 + 2λ1T (λ0 + λ1T/2)x

2
.

From Expression (7.38), we have the following results:

• If t = 0, then x = 0,
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• If t = T , then x = 1,

• (λ0 + λ1t)dt = T (λ0 + λ1T/2)dx.

Therefore, Expression (7.37) simplifies to

E[Ūk] =
n

(k − 1)!(n− k)!
2(λ0 + λ1T/2)T

∫ 1

0

xk(1− x)k

λ0 +
√
λ2

0 + 2λ1T (λ0 + λ1T/2)x
dx.

(7.39)

However, the above integral cannot be computed analytically. Therefore, it should

be calculated numerically.

Expected Revenue of the Buyer:

Note that we can again use Equation (7.3) as a general expression for the buyer’s

expected revenue. As in the Poisson Process case, we have E[Revenue|N(T ) = 0] = 0.

For 1 ≤ n ≤ Q,

E[Revenue|N(T ) = n] = E

N(T )∑
i=1

(α− βSi)|N(T ) = n

 .
From Property 21 and under the independence assumption of N(T ) and Si, we have

E

N(T )∑
i=1

(α− βSi)|N(T ) = n

 = E

[
n∑

i=1

(α− βŪi)

]

where Ūi is the ith order statistics of n i.i.d. random variables U1, U2, . . . , Un with

common distribution P{Ui ≤ u} = m(u)
m(T )

. For 1 ≤ n ≤ Q, we again have

E

N(T )∑
i=1

(α− βSi)|N(T ) = n

 = αn− βE

[
i=n∑
i=1

Ui

]
= αn− βnE [Ui] .

Using the density function of Ui given in Expression (7.36), it can be easily shown

that

E [Ui] =
(3λo + 2λ1T )T

(2λo + λ1T )3
.
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Therefore, for 1 ≤ n ≤ Q

E[Revenue|N(T ) = n] = n

[
α− β

(3λo + 2λ1T )T

(2λo + λ1T )3

]
.

For Q < n <∞,

E [Revenue|N(T ) = n] = E

[
Q∑

i=1

(α− βSi)|N(T ) = n

]

Again, using a similar argument, we can write

E

[
Q∑

i=1

(α− βSi)|N(T ) = n

]
= αQ− βE

[
Q∑

i=1

Ūi

]
= αQ− β

Q∑
i=1

E
[
Ūi

]
.

Therefore, E[Revenue] of the buyer is given by

E[Revenue] =

[
α− β

(3λo + 2λ1T )T

(2λo + λ1T )3

] Q∑
n=1

nP{N(T ) = n}

∞∑
n=Q+1

{
αQ− β

Q∑
i=1

E
[
Ūi

]}
P{N(T ) = n} (7.40)

where E
[
Ūi

]
can be found using Expression (7.39).

Expected Inventory Holding Cost of the Buyer:

The buyer’s expected inventory holding cost during the period [0, T ] can again

be calculated using Expression (7.7). We analyze the following cases.

For N(T ) = n = 0, we have

E[Holding cost|N(T ) = 0] = QhbT.
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For 1 ≤ n ≤ Q, using a similar argument as in Section VII.1 we have

E[Holding cost|N(T ) = n] = E


N(T )∑
i=1

Sihb + (Q−N(T ))hbT

 |N(T ) = n


= E

[
n∑

i=1

Ūihb + (Q− n)hbT

]
= nhbE[Ui] + (Q− n)hbT

= nhb
(3λo + 2λ1T )T

(2λo + λ1T )3
+ (Q− n)hbT

= QhbT −
nThb(λ1T + 3λo)

3(2λo + λ1T )
. (7.41)

For Q < n < ∞, E[Holding cost|N(T ) = n] should be computed using Expres-

sion (7.39) and is given by

E[Holding cost|N(T ) = n] = E

[
Q∑

i=1

Sihb|N(T ) = n

]

= hb

Q∑
i=1

E
[
Ūi

]
. (7.42)

Using Expressions (7.41) and (7.42) and the fact that E[Holding cost|N(T ) =

0] = QhbT , buyer’s expected inventory holding costs can be written as

E[Holding cost] = QhbTP{N(T ) = 0}+
Q∑

n=1

{
QhbT −

nThb(3λo + λ1T )

3(2λo + λ1T )

}
P{N(T ) = n}+

∞∑
n=Q+1

hb

Q∑
i=1

E
[
Ūi

]
P{N(T ) = n} (7.43)

where E
[
Ūi

]
is given by Expression (7.39).

Buyer’s expected profits can be computed using Expression (7.1). The first and

third terms of this expression are given by (7.40) and (7.43), respectively. Expected

salvage value, expected lost sale cost, and expected sum of purchase and replenishment
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cost expressions are again calculated using Expressions (7.11), (7.12) and (7.13). In

order to obtain an expression for the expected system profits, c and Kb in these

expressions should be replaced by p and Kb +Kv, respectively.

VII.2.2. Channel Coordination

Although the analysis for the demand arrival process in the case of NPP does not

simplify as does the pure Poisson Process, we can still prove the following proposition:

PROPOSITION 25 In the Buyer-Vendor Problem with Time Dependent Demand

and Retail Price, Q∗c ≥ Q∗d.

Proof: From Expression (7.23) we have that dΠv(Q)/dQ = (c − p) > 0. Therefore,

vendor’s expected profits are increasing in buyer’s order quantity. Hence it follows

from Proposition 1 that Q∗c ≥ Q∗d. �

The above proposition is important in characterizing the general properties of

a mechanism to coordinate the channel. The most efficient coordination mechanism

for a problem depends on its characteristics and practical constraints. Again, T can

be treated as a negotiable term between the buyer and the vendor. Since demand is

dependent on retail price which in turn depends on time, time dependent incentives

can be offered by the vendor to change the ordering behavior of the buyer. For

example, a time varying rebate value offered by the vendor to the buyer for each item

that is sold, can increase the order quantity of the buyer.

VII.3. Summary

This chapter studies two single-period stochastic demand problems with decreasing

retail price in time. In the first problem, demand is independent of the retail price

and in the second problem, demand decreases as retail price increases. The channel
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coordination problem in these settings is important because different coordination

mechanisms that also take into consideration the length of the planning horizon, can

be designed between the parties. For example, in case of consumer electronics or soft-

ware products, the time until a new version of the product is driven into the market

can be a negotiable term. In the second problem, another alternative may be time

varying rebate amounts offered by the vendor for each product sold at the buyer. In

this case, computing the rebate amount and characterizing its explicit dependency

on time, is a research challenge. However, as illustrated in Section VII.2.1, it is

not possible to analyze this problem analytically. One way is to study each problem

instance by doing the calculations numerically. Another alternative would be to com-

pare different coordination mechanisms using simulation. In this case a dominating

coordination mechanism can be determined. An extension of the problems analyzed

in this chapter would be the multi-period stochastic demand versions.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This dissertation investigates the buyer-vendor coordination problem with an empha-

sis on transportation and supply/replenishment issues in the context of recent supply

chain initiatives. The goals of the dissertation are to develop a theoretical understand-

ing and a modeling framework for channel coordination under these considerations

and to address the question of under what conditions channel coordination works.

As discussed in Chapter II, the early literature in buyer-vendor coordination

assumes that the parties fully cooperate and solve their problems using a centralized

approach. However, this may not be a practical modeling approach unless the parties

are owned by the same company. Therefore, the current trend in the area focuses

on a decentralized modeling approach and investigates the mechanisms by which

the independently made decisions of the vendor and the buyer can be coordinated

(i.e. channel coordination). Some of the coordination mechanisms that are proposed

in the literature include quantity discounts and fixed payments. From our analysis

of the literature, we conclude that the complexity and design of these coordination

mechanisms change with respect to different factors, such as inventory holding cost

at the vendor (i.e., whether or not the vendor holds any inventory), demand and

retail price dependency, dispatch policy from vendor to buyer, and stochasticity of

demand. However, an important practical issue that is generally ignored in the current

literature is transportation capacity and costs. It is important to note also that

although a few studies do exist for the stochastic demand setting, we believe this

area also needs further attention.

Given the above observations, in Chapter III we solve the centralized pure inven-

tory problem with deterministic and constant demand by incorporating transporta-
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tion capacity and costs. We believe that the centralized model is important for two

reasons. First, it can be used as a direct solution to the inventory replenishment prob-

lem in cases of full cooperation between the vendor and buyer (e.g., VMI systems).

Secondly, it can be used as a benchmark to improve the decentralized model. Hence,

in Chapter IV, we investigate the channel coordination issue for the centralized

models described in Chapter III. We show that under conditions that involve trans-

portation capacities and costs, the previously proposed coordination mechanisms are

not sufficient for achieving channel coordination. Therefore, we introduce some new

coordination mechanisms by which the decentralized model costs can be decreased to

equal those of the centralized model.

Chapter V extends our study to consider a finite production rate at the vendor.

In this case, the dispatch policy from the vendor to the buyer has an important

effect on the system costs. The current literature in this area focuses on developing

different dispatch policies to improve the system costs in a centralized model. Solving

this model can be very challenging when the structural complexity of the dispatch

policy increases. In Chapter V, we first propose a unified model that can be reduced

to the different dispatch policies in common use and that takes into account various

issues such as transportation capacities and costs, different pricing strategies, etc. We

then illustrate that the algorithms we propose in Chapter III, can be the basis for

solving centralized models that include transportation costs and capacities in finite

production rate problems. Finally, we compare the different dispatch policies under

their original modeling assumptions, for an extensive set of problem instances.

Chapter VI models the transportation capacities and costs in the single period

stochastic demand problem. Centralized and decentralized models are developed;

their solutions are compared; and some efficient mechanisms are proposed for channel

coordination. As a result of our analysis in this and earlier chapters, we conclude that
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channel coordination becomes more important when demand is stochastic.

Finally, in Chapter VII, we consider another practical situation where the retail

price of items decreases over time. We show that this again is a case where the existing

coordination mechanisms are insufficient. We illustrate that an efficient coordination

mechanism should take the length of the planning horizon into account.

We believe that apart from its practical contributions, this dissertation makes

several theoretical contributions in modeling and algorithmic development. To sup-

port this claim, we cite Chapters III, IV, and VI for contributions in algorithmic

development and Chapters V and VII for contributions in modeling.

An important generalization of the problems considered within this dissertation

is the case of multiple decision makers. When more than one entity is assumed in

either the upper or lower echelon, the level of lateral competition becomes another

significant factor. In such cases, not only do the centralized models become more

challenging, but more sophisticated analytical tools such as game theory become

necessary in order to reach efficient solutions.
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