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ABSTRACT 

 
Estimating Uncertainties in Integrated Reservoir Studies. 

(December 2003) 

Guohong Zhang  

B.S., Jianghan Petroleum Institute 

M.S., Research Institute of Petroleum Exploration and Development 

Chair of Advisory Committee: Dr. Duane A. McVay 

 
To make sound investment decisions, decision makers need accurate estimates of the 

uncertainties present in forecasts of reservoir performance.  In this work I propose a 

method, the integrated mismatch method, that incorporates the misfit in the history 

match into the estimation of uncertainty in the prediction. I applied the integrated 

mismatch method, which overcomes some deficiencies of existing methods, to 

uncertainty estimation in two reservoir studies and compared results to estimations from 

existing methods. 

 

The integrated mismatch method tends to generate smaller ranges of uncertainty than 

many existing methods. When starting from nonoptimal reservoir models, in some cases 

the integrated mismatch method is able to bracket the true reserves value while other 

methods fail to bracket it. The results show that even starting from a nonoptimal 

reservoir model, but as long as the experimental designs encompass the true case 

parameters, the integrated mismatch method brackets the true reserves value.  If the 

experimental designs do not encompass all the true case parameters, but the true reserves 

value is covered by the experiments, the integrated mismatch method may still bracket 
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the true case. This applies if there is a strong correlation between mismatch and 

closeness to the true reserves value. The integrated mismatch method does not need a 

large number of simulation runs for the uncertainty analysis, while some other methods 

need hundreds of runs.  
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CHAPTER I 
 

INTRODUCTION 
 
 
In an integrated reservoir study, a multidisciplinary team of geophysicists, geologists, 

petrophysicists, and engineers works closely towards a common goal – better 

understanding of the reservoir and formation of an optimal reservoir development plan. 

In spite of modern technology advancements and the multidisciplinary team’s efforts to 

integrate people, data, technology, and tools, many uncertainties still exist for various 

reasons. The objectives of this work are to quantify uncertainties associated with 

integrated reservoir studies, enabling sound reservoir management decisions at different 

stages of reservoir development. 

 

1.1 Integrated Reservoir Study 

Traditionally, reservoir studies were not integrated. Each discipline worked on its own 

specialty separately; projects often followed a linear approach: geophysics, geology, and 

then reservoir engineering. People did not realize the interdependency of other groups’ 

results, even though they were working for a mutual objective. Sometimes geoscientists 

and engineers got different conclusions because they did not communicate effectively. 

Within the last two decades, the value of integrated reservoir studies has been 

recognized gradually. Different disciplines have realized that they depend on each other, 

and their goals can be accomplished with mutual support. Working as a team, they feel a 

sense of ownership for their jobs because they are committed to the goals they helped to 
This dissertation follows the style and format of SPE Reservoir Evaluation & Engineering 
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establish. They work more effectively and efficiently as teams than as individuals, and 

thus their synergy realizes a whole greater than the sum of its parts.   

 

With the recognition of the importance and advantages of integrated reservoir studies, 

people are employing them more and more.  The members of a multidisciplinary team 

formed for integrated reservoir study meet periodically to discuss the problem and the 

progress, fix possible disagreements as early as possible, and solve the problem in a 

timely, efficient manner, avoiding the inconsistent results reached by different 

disciplines. In the process of integrated reservoir study, the team members usually learn 

as they become familiar with each other’s expertise, which is definitely beneficial to the 

whole team and the project, and which is one purpose of integrated reservoir study. 

Usually, trust is established among the team members, and they can do a better job on 

the next project.  

 

Integrated reservoir study has been conducted for various purposes.  Juan Diego et al.1 

conducted an integrated reservoir study of a carbonate reservoir developed with 

waterflooding.  They developed a geological/petrophysical model, evaluated the past 

reservoir performance, predicted future performance for various operating plans, and 

made appropriate recommendations based upon technical and economic considerations.  

A large-scale integrated study2 was performed in the Bachaquero Intercampos field, 

Lake Maracaibo, Venezuela, with the aim of identifying new reserves and defining a 

new development plan.  In early 2000, LUKOil and PetroAlliance3 completed one of the 
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largest integrated reservoir studies in the western Siberian basin, which contains some of 

the largest oil fields in Russia and the former Soviet Union.  They used state-of-the-art 

technology to create a new 3D geological model of Vatyogan’s six major producing 

zones, which range in age from Upper Jurassic to Upper Cretaceous and cover a wide 

range of depositional environments.  With the new model, they estimated reserves and 

prepared a drilling program in the undeveloped areas, identified areas of by-passed oil, 

and developed an optimal infill drilling and enhanced recovery program to improve 

production in the developed areas.  Bouman et al.4 conducted an integrated reservoir 

study to solve the puzzle of the rapidly declining reservoir pressure in the Obaiyed Field.  

Cosentino et al.5 simulated the irregular water advance observed in part of the field as a 

consequence of peripheral water injection.   

 

1.2 Uncertainty Analysis 

What do we mean by uncertainty?  It means being less than 100% sure about something.  

In the petroleum industry, people are extremely concerned about quantities such as 

original hydrocarbon in place, reserves, and the time for the recovery process, which are 

all critical to the economic returns. Those quantities play a key role in making important 

decisions for both the oil producers and the investors at different phases of reservoir 

development.  But being certain of these quantities is usually impossible. 

 

In the past 10 to 15 years, probabilistic expressions of reserves estimates have been 

gradually accepted and adopted in the industry. The traditional method involves 
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specifying a deterministic value for the reserves estimate, which usually is calculated 

with a mathematical model. Unlike the probabilistic method, the traditional method does 

not consider the uncertainty associated with the reserves estimate; it simply takes for 

granted that the deterministic reserves value is the most likely value. As a matter of fact, 

when we talk about reserves prediction, we are never completely sure about its 

correctness: there is always some degree of uncertainty, big or small, associated with it. 

Therefore, a statistical approach or probabilistic approach is more appropriate for 

reserves prediction. When we talk about reserves prediction in this study, we mean a 

reserves distribution–a probability density function for reserves.    

 

All of the uncertainties among oilfield variables, such as geological characteristics, rock 

and fluid properties, oil price, capital expenditures, and operating costs, result in 

uncertainty in the expected profitability of the project.  Capital investment for 

hydrocarbon extraction increases as exploration and development extend to distant areas 

such as offshore and Alaska, compounding the economic uncertainty.  

 

Uncertainty comes from several sources6: measurement error, mathematical model error, 

and incomplete data sets. All field and laboratory measurements, such as production and 

PVT data, involve some degree of error or inaccuracy, which may result from poor tool 

calibration or even human error. This kind of error can be reduced to some extent by 

using more accurate tools or increased human effort, but it will never be eliminated.  

When geoscientists and engineers try to evaluate the values of reservoir parameters from 
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various mathematical models, uncertainty is incurred.  None of the mathematical models 

are perfect; they were built either by empirical methods or on the basis of assumptions 

that are not always applicable to the real situations. The development of a finite-

difference reservoir simulator involves some assumptions and numerical computational 

error. In real situations, we never have a complete data set for the study. Often, we lack 

some kind of data and we try to make a reasonable guess based on our knowledge and 

experience. The process, of course, introduces errors to the prediction.  

 

The paucity of available data in the appraisal stage of a field, or incomplete reservoir 

description even during the development stage, increases the risks associated with 

investment decisions. Quantification of these uncertainties and evaluation of the risks 

would improve decision making.7 However, estimating these uncertainties is 

complicated because it requires an understanding of both the reservoir’s static structure 

and dynamic behavior during production. Even a producing field can result in a financial 

loss,8,9 and even mature fields have uncertainties in the reservoir description. Uncertainty 

analysis methods provide new and comprehensive ways to evaluate and compare the 

degree of risk and uncertainty associated with each investment choice.  The result is that 

the decision-maker is given a clear and sharp insight into potential profitability and the 

likelihood of achieving various levels of profitability.  When we talk about uncertainty 

analysis for the reserves prediction in this study, we generally refer only to technological 

uncertainty. We do not convert the reserves distribution into monetary value distribution, 

which is usually done in a risk analysis.  However, the reserves distribution can be 
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converted into a net present value distribution once an oil and gas price prediction is 

made.  

 

Uncertainty analysis methods attempt to reduce the complexity and difficulty of 

quantifying uncertainty. Uncertainty analysis methods have some advantages9: 

• Uncertainty analysis forces a more explicit look at the possible outcomes that 

could occur if the decision-maker accepts a given development scheme.  

• Certain techniques of uncertainty analysis provide excellent ways to evaluate the 

sensitivity of various factors relating to overall worth.  

• Uncertainty analysis provides a means to compare the relative desirability of 

various candidate projects.  

• Uncertainty analysis is a convenient and unambiguous way to communicate 

judgments about risk and uncertainty. 

 

Exceedingly complex investment options can be analyzed using uncertainty analysis 

techniques.  To economically develop reservoirs and maximize the return, oil producers 

have to characterize and, if possible, manage to reduce the uncertainties.  

 

Usually people are interested in obtaining a reserves distribution at a specific time. The 

methods developed for uncertainty analysis in the petroleum industry use various 

techniques such as experimental design, response surface, multiple realization tree, and 

Monte Carlo simulation. However, they do not consider the mismatch between the 
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modeled and actual production history. This study introduces a method–the integrated 

mismatch method–that incorporates the quality of the history match into the reserves 

prediction in order to quantify its uncertainty. Although starting from non-optimal 

reservoir models that underpredict or overpredict the reserves, the method yields 

prediction ranges that cover the true reserves values. 
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CHAPTER II 
 

METHODOLOGIES OF UNCERTAINTY ANALYSIS 
 
 
Statistical methods of uncertainty analysis developed or introduced for the petroleum 

industry for many years have various assumptions and limitations associated with them.  

This chapter reviews those methods of quantifying uncertainties with production 

forecast: Monte Carlo, experimental design and response surface, multiple realization 

tree, relative variation method, and Bayesian rule methods. 

 

2.1 Monte Carlo Method 

Monte Carlo is a powerful statistical method that has been used for more than half a 

century. It has been applied extensively in the petroleum industry for decades. As early 

as 1969, it was used for pressure transient analysis.10 The Monte Carlo method has been 

used for various other purposes in the industry such as reserves estimation,11 material 

balance analysis,12 workover risk assessment,13 and producing property estimation.14 It is 

an alternative to both deterministic estimation and the scenario approach that presents 

pessimistic, most likely, and optimistic case scenarios.15  

 

The Monte Carlo method begins with a mathematical model in which a dependent 

variable is a function of the independent variables.  The dependent variable usually is the 

quantity of interest such as original hydrocarbons in place or cumulative oil production 

at a future time.  The independent variables are the reservoir parameters, such as 

porosity, permeability, and saturation.  Different independent variables might have 
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different statistical distributions, or they might have different parameters even though 

they are the same kind of distribution.  For example, two normal distributions can have 

different parameters: mean and standard deviation. After the mathematical model is 

built, many random numbers are generated for each independent variable based on their 

specific statistical distributions.  To generate random numbers for the independent 

variables, we need probability density functions for them. Thus, those probability 

density functions have to be determined before Monte Carlo method can be applied.   

 

 

f(φ)  

φ 

f(Ah) 

Ah 

f(Sw) 

Sw

f(OOIP) 

OOIP 

 

 

 

 

 

 

 

 

Fig. 2.1⎯Monte Carlo simulation schematic. 

Statistical distributions are characterized by different numbers of parameters.  A normal 

distribution has two character parameters: mean and variance. A triangular distribution 

has three parameters: low limit, most likely value, and high limit. A random number of 
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each independent variable is plugged into the mathematical model, and a dependent 

variable is calculated.  Thus, many values of the dependent variable are obtained by 

using those values of the independent variables. A distribution can be formed with the 

values of the dependent variable (Fig. 2.1). 

 

For the purposes of illustration, we use reserves estimation–by far the most frequent use 

of Monte Carlo as an example.16, 17  The original oil in place (OOIP) is given by Eq. 2-1.  

                                           
oi

w

B
AhS

OOIP
)1( −

=
φ

. .................................................. (2-1) 

Ah is the reservoir volume, Boi is the oil formation volume factor, Sw is the water 

saturation, and φ is formation porosity. In this example, Eq. 2-1 is the mathematical 

model for the original oil in place calculation. OOIP is the dependent variable; porosity, 

water saturation, and reservoir volume (we use a fixed value for oil formation factor 

here) are the independent variables. A random number generator in a computer program 

(like Microsoft Excel) generates random numbers for all the independent variables, 

porosity, water saturation, and reservoir volume, from their user-specified probability 

density functions. Then the original oil in place is calculated by the mathematical model 

(Eq. 2-1).  This process is repeated an arbitrarily large number of times (hundreds or 

thousands). We get a lot of values of original oil in place from the process above using 

the mathematical model. From those values, we can come up with the probability density 

function (PDF) and cumulative distribution function (CDF) for the original oil in place, 

from which summary statistics such as the mean and median can be calculated as well. 
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The probability density function and cumulative distribution function of the dependent 

variable depend directly on the input parameter distributions. Poor input parameter 

distributions will result in a low-quality estimation of the quantity of interest (like 

original oil in place). Given that the results are sensitive to the input parameter 

distributions, we need good-quality input parameter distributions. The commonly used 

distributions include normal, triangular, lognormal, and uniform.   

 

Selecting distributions and their character parameters is critical to the successful 

application of Monte Carlo method. Guidance for selecting input parameter distributions 

can be obtained from three sources16: fundamental principles, expert opinion, and 

historical data. According to statistical principles, products of variables tend to have 

lognormal distributions; sums of variables tend to have normal distributions. Monte 

Carlo simulation is much like a black box. Without any previous knowledge about the 

distributions or character parameters of independent variables, expert opinions might be 

quite useful at the early stage of Monte Carlo application for some projects. With time 

elapsing, more and more data become available. The available data can be used to 

investigate the distributions of the independent variables of interest. 

 

The Monte Carlo method can be quite computationally intensive.  If many independent 

variables are random and they all have large variabilities, a larger number of runs of the 

mathematical model may be needed to recognize the range of the dependent variable 
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response. An important point about the Monte Carlo method is that the outputted 

dependent-variable distribution is sensitive to the input parameter distributions.  

 

 

Monte Carlo Method f(OOIP)  

 
OOIP 

 

f(OOIP) 

OOIP 

Scenario Method 

Deterministic Method 

f(OOIP) 

 

 

 

 

 

 

OOIP  

Fig. 2.2⎯Monte Carlo method vs. discrete approaches. 

The Monte Carlo method has some advantages and disadvantages.  The results contain 

more information about possible outcomes than the deterministic and scenario approach 

(Fig. 2.2). Monte Carlo results are continuous distributions such as probability density 

and cumulative-distribution functions instead of discrete points as from the deterministic 

or scenario approach.  The Monte Carlo results give the users ideas about the probability 

of the most likely outcome, the pessimistic outcome, and the optimistic outcome. Thus, 

users can evaluate the kind of risks they are dealing with. The users can even obtain a 
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confidence interval for the predicted variable–how likely the predicted value will be 

located within an interval. However, the Monte Carlo method is a statistical method; 

therefore, some knowledge of statistics is prerequisite both for its correct application and 

for the interpretation of the results. This might be a barrier for its application in the 

industry. In addition, determining the input variable distributions and their character 

parameters involves some subjectivity. Despite its limitations, Monte Carlo simulation 

has been widely used in the petroleum industry for risk analysis,18, 19 project 

evaluation,20, 21 and even fracture-characteristic investigation.22

 

2.2 Experimental Design and Response Surface Method 

The experimental design and response surface method has been used in the medical and 

agricultural industry for many years.  It was first introduced in reservoir engineering in 

the early nineties.  The purpose is to obtain maximum information at the minimum 

experimental cost by varying all the uncertain parameters simultaneously.  Since then, 

the experimental design and response surface method have been used in petroleum 

industry for many purposes.23-36

 

Reservoir simulation differs from the experiments in medicine or agriculture in that it 

does not have random errors.  The same input file will result in the same output file.  

Thus we can use this method in uncertainty analysis in reservoir engineering to gather 

optimal information from the results of the simulation runs. We need to come up with 

the response surface for the variables of interest by regression after the experimental 
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design is finished. With the response surfaces regressed, we can obtain the final reserves 

distributions by Monte Carlo simulation. 

  

The experimental design and response surface method consists of the following steps:  

• Identify the most influential reservoir parameters by sensitivity analysis after history 

matching.  

• Use experimental design to come up with the simulation runs with different 

combinations of reservoir parameters.   

• Conduct the experiment, using reservoir simulation to calculate the reserves for the 

simulation runs.   

• Analyze the results of the experiments and establish a reserves response surface as a 

function of the reservoir parameters.  

• Predict the reserves distribution with the aid of Monte Carlo simulation.  

 

Sensitivity Analysis.  Usually a number of reservoir parameters affect the final reserves 

distribution. Some of the reservoir parameters are more important than others, so they 

should not be missed in the reserves uncertainty analysis. However, we cannot afford to 

include too many reservoir parameters in the experimental design method. The number 

of reservoir simulation runs increases rapidly with the increase of the number of 

reservoir parameters included in the experimental design. A large number of simulation 

runs may be very expensive because of the time-consuming nature of reservoir 

simulation. Including many reservoir parameters in an experimental design might not 
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give a good result. Including nonsensitive reservoir parameters can deteriorate the 

response surfaces to the point that there is no response surface. Therefore, the first step 

of experimental design is to identify the influential reservoir parameters.  To construct 

the reserves tornado diagram for n reservoir parameters, we need 2n+1 reservoir 

simulation runs: one run for all the reservoir parameters at their most likely value–the 

history-matched model–plus two runs for each parameter–one at the pessimist value and 

the other at the optimistic value for each parameter.  For every reservoir parameter that 

affects the final reserves, geoscientists and engineers work together to determine the 

most-likely, pessimistic, and optimistic values. The most-likely, pessimistic, and 

optimistic reserves values are then calculated with the corresponding reservoir parameter 

value. For example, for reservoir porosity, the optimistic reserves is calculated with the 

optimistic porosity value; the most likely reserves is calculated with the most likely 

porosity value; the pessimistic reserves value is calculated with the pessimistic value. 

Finally, a reserves range is obtained from the pessimistic and optimistic reserves values.  

A reserves tornado diagram (Fig. 2.3) is formed and the influential reservoir parameters 

can be determined from the diagram. 

 

Designs. Factorial and composite designs are the most commonly used designs in the 

petroleum industry. Factorial designs have been popular in experimental design for some 

time.  Fig. 2.4 illustrates the application of a 2n factorial design with two parameters.  If 

we have n parameters with two levels of change (the pessimistic and the optimistic 

value), 2n experiments need to be conducted.  Usually, each parameter has three levels of  
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Fig. 2.3—Tornado diagram. 

change (the pessimistic, the most likely, and the optimistic value); in this situation, we 

conduct 3n experiments.  Even for a modest set of five variables, the total number of  
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Fig. 2.4—The 2n factorial design. 
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experiments is 243.  In many situations, conducting this many experiments is too time-

consuming or expensive.  A compromise is to use the so-called Composite Designs (Fig. 

2.5).  These consist of 2n factorial designs augmented by 2n star points: one variable 

 

Experiment# P1 P2 P3 P4
1 1 1 1 1
2 1 1 1 -1
3 1 1 -1 1
4 1 1 -1 -
5 1 -1 1 1
6 1 -1 1 -
7 1 -1 -1 1
8 1 -1 -1 -1
9 -1 1 1 1
10 -1 1 1 -1
11 -1 1 -1 1
12 -1 1 -1 -1
13 -1 -1 1 1
14 -1 -1 1 -1
15 -1 -1 -1 1
16 -1 -1 -1 -1
17 1 0 0 0
18 -1 0 0 0
19 0 1 0 0
20 0 -1 0 0
21 0 0 1 0
22 0 0 -1 0
23 0 0 0 1
24 0 0 0 -1
25 0 0 0 0

1

1

 

Fig. 2.5—Composite design. 

at its pessimistic or optimistic value and all other variables at their most likely values.  

The central point has all the variables at their most likely values.  There are four 

parameters in the composite design in Fig. 2.5 (i.e, n=4). Thus it has 24 = 16 factorial 

designs, 2×4 = 8 star points, and 1 central point. The total number of designs is 25.  In 
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the table, –1 represents the pessimistic value; 0 represents the most-likely value; 1 

represents the optimistic value. 

 
Conduct Experiments. After the design is finished, the next step is to conduct the 

experiments. This is done by reservoir simulation runs. One experiment needs one 

reservoir simulation run. The composite design in Fig. 2.5 needs 25 reservoir simulation 

runs. 

 

Response Surface. Once the designs are done and the simulations finished, the results 

must be interpreted with tools provided by the response surface33, 36 technique, the aim 

of which is to approximate a process by a simple regression model that fits the true 

response surface well.  A response surface model is an empirical fit of experimental or 

computed responses. The responses are measured from the experimental designs. The 

response surface is a function of the most influential parameters in the experimental 

design (Eq. 2-2).  The response surface model is usually a polynomial fit with linear 

regression. Some examples will be given in Chapters IV and V. 

                                                  ε+= )(xfS r . ........................................................ (2-2) 

The residual–the difference between the so-called observed and the predicted value–is 

one important criterion for the quality of the response surface. If the residual does not 

change much with the predicted values, and appears to be randomly distributed, the 

quality of the regression usually will be adequate. Otherwise, there might be problems 

with the regressed model; thus the response surface model is in question. The problems 

might result from inappropriate selection of the regressors, not correctly considering the 
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interactions between the regressors, powers of the regressors set too low, or nonexistent 

response surfaces for the given regressors.  It is entirely possible that no good response 

surface exists for a given set of regressors. 

Reserves Distribution.  After the response surface is formed, we can obtain the reserves 

distribution by Monte Carlo simulation. For every parameter in the response surface 

function, we generate a set of random numbers from a statistical distribution, and then 

plug the random numbers into the response surface function to get a set of numbers for 

the reserves. The final results we get are the reserves distribution.  We can conduct 

statistical analysis of the reserves distributions.   The statistics parameters, such as mean 

and standard deviation, can be estimated from those distributions.  On the basis of the 

results analysis, we will have some ideas of the probability that the reserves will be over 

a certain value.  The results will be very helpful in the decision making process. 

 

2.3 Multiple Realization Tree Method  

The multiple realization tree method30,35,36 has been used in the petroleum industry to 

estimate ultimate recovery and field reserves.  This method is a powerful method that 

helps decision making.   

 

The general procedure of this method includes:  

• Construct tornado diagrams to identify the key uncertainties from the reservoir 

parameters to simplify the multiple realization trees after history matching.  

• Create multiple realization trees to define the reserves.  
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• Assign probabilities to the branches of the multiple realization trees based on 

discretisation of the continuous probability functions.  

• Analyze simulation runs to form the probability distribution function of the reserves.   

Fig. 2.6 is a schematic of the procedure described above. 

 

The first step is the same as the experimental design and response surface method. The 

recovery or reserves is the root of the multiple realization tree; the most influential 

parameter is located at the first level, and all the other key parameters are located at 

different levels based on their importance from the tornado diagram. Fig. 2.7 shows the 

multiple realization trees. The parameter porosity here is the most important one for 

reserves; therefore, it is the first level. Permeability and skin factor are located at the 

second and third level. In this example, we have three important parameters.  

 

The probabilities for each branch – the pessimistic, the most likely, and the optimistic 

value – are assigned on the basis of the best knowledge of the integrated reservoir study.   

If we have n reservoir parameters in the multiple realization tree, the tree will have n 

levels (not including the root “reserves”), and 3n leaves (three probabilities for each 

reservoir parameter). Fig. 2.7 shows three levels: porosity, permeability, and skin factor, 

and 33 = 27 leaves, which are located at the very bottom of the tree. The probability for 

each leaf is the product of the probabilities of all its ancestors.  For example, the 

probability of the left-most leaf is the product of the probabilities of pessimistic porosity, 

pessimistic permeability, and pessimistic skin factor. For each leaf, we have to conduct 
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one simulation run to get the reserves or recovery.  After the reservoir simulation runs 

are finished and the probability for each leaf is calculated, we can get the reserves 

distribution (Fig. 2.8).  

 

2.4 Relative Variation Factor Method 

The relative variation factor method7 consists of three steps:  

• Quantify the sources of uncertainties concerning the reservoir volume (original 

oil/gas in place);  

• Quantify the factors affecting the oil recovery factor; 

• Quantify the uncertainty range of the recoverable volume. 

 

Hydrocarbon Volume 

In the first step, the most influential reservoir parameters for hydrocarbon volume are 

selected from all the reservoir parameters. These most influential parameters are kept at 

their most likely values from the existing data/tests and the most likely hydrocarbon 

volume is calculated from these values.   The resultant hydrocarbon volume is called a 

base case or reference value.  After the most influential reservoir parameters are 

determined by integrated reservoir study and the reference hydrocarbon volume is 

calculated with these reservoir parameters at their most likely values, the probability 

density functions of hydrocarbon volume are obtained.  To determine the probability 

density function of hydrocarbon volume, we select one parameter from the most 

influential parameters for the hydrocarbon volume at a time and keep all the other 
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Fig. 2.6—Multiple realization tree procedure. 
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Fig. 2.8—Reserves CDF. 

 

parameters at their base or reference values.  To calculate the hydrocarbon volume of the 

reservoir, we do not need to conduct reservoir simulation runs.  After the reservoir 

simulation model is constructed from the available data set and inputted into the 

computer, the hydrocarbon volume can be outputted whenever a reservoir parameter is 

changed.  If we have n most influential reservoir parameters, we will have to calculate 

the hydrocarbon volume 2n+1 times, including the base case in which every reservoir 

parameter is set to its most likely value.  Each of the most influential reservoir 

parameters for hydrocarbon volume is set to the pessimistic and optimistic value (all the 

other parameters are kept at their most likely values), and the hydrocarbon volume is 

calculated; we have n parameters, so we get 2n calculations.  If we include the base case, 

there are 2n+1 calculations in total. 
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Then, we calculate the hydrocarbon volumes at three levels of the selected parameter: 

the pessimistic value, the most likely, and the optimistic value.  After that, dividing the 

resultant three hydrocarbon volumes by the base case hydrocarbon volume results in 

three values: a real number less than 1, 1, and a real number greater than 1.  At this 

point, we can construct a triangular distribution–relative variation factor–with these three 

numbers, which is the probability density function for the selected parameter.  The 

probability density functions for other most influential parameters for hydrocarbon 

volume can be obtained likewise.   The probability density function of hydrocarbon 

volume is the product of the reference hydrocarbon volume and the probability density 

functions of the most influential reservoir parameters for hydrocarbon volume.  This is 

done with Monte Carlo simulation. Random numbers are generated for the relative 

variation factors, and a set of resultant hydrocarbon volumes is calculated. Finally, a 

hydrocarbon volume distribution is formed. The hydrocarbon volume of the reservoir 

can be calculated by the following equation: 

                                           nREFNN ∆××∆×∆×= L21 . ...................................... (2-3) 

N is the distribution of the hydrocarbon volume; NREF is the value of the hydrocarbon 

volume for the base/reference case; ∆ is the distribution of the variation factors for the 

influential reservoir parameters that affect the hydrocarbon value. An example is 

available in Chapter IV. 

 

The reservoir parameters that affect the hydrocarbon volume include porosity, oil 

saturation, porous thickness, depositional boundaries, faults, and contacts between 
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reservoir fluids (oil, gas, and water).  Those parameters usually are obtained by indirect 

means.  Porosity is obtained by log interpretation, core analysis, or correlations.  Core 

analysis and log interpretation are the main means to get saturations.  Seismic 

interpretation is used to determine the depositional boundaries and the fault locations.   

Log interpretation is the main method to obtain the contact locations between reservoir 

fluids.   Most of the methods above are interpretation processes, which are not precise, 

and very easy to input errors to the final results.  Even for the direct measurements like 

core analysis, errors can be involved because of systematic or measurement errors, not to 

mention that usually the reservoirs are not homogeneous and the cores are not 

necessarily good representations of the whole reservoirs.  The quality and availability of 

seismic data, core samples, and tests also have a significant effect on the uncertainties 

for the reservoir parameters.  Clearly, there are a lot of uncertainties with those reservoir 

parameters. 

 

Integrated reservoir study is an excellent method to determine the possible ranges for 

those reservoir parameters.  The engineers and the geoscientists work closely as a team 

to investigate the possible errors and the range for those reservoir parameters, and to 

come up with the most likely value, the pessimistic value, and the optimistic value for 

every reservoir parameter.    

 

When we calculate the hydrocarbon volume distribution with Eq. 2-3 by Monte Carlo 

simulation, we need a random number generator for the variation factors of the 
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influential reservoir parameters that affect the hydrocarbon volume.   Microsoft Excel 

can be used to generate the random numbers for regular statistics distribution such as 

normal distribution.   However, we assume that the distributions for the parameters in 

Eq. 2-3 are triangular distributions, which are not regular distributions, and cannot be 

generated by Excel.  In this situation, we need to generate random numbers with 

triangular distributions.   

 

The triangular distribution is defined by a range (a,b) and a point p where the 

distribution has its mode (Fig. 2.9).  Give a standard uniform random variate U, a 

random variate T from such a triangular distribution is obtained by the following 

formula. If                              )/()( abapU −−< ,  

                                            then UapabaT ))(( −−+= ; 

                                             else )1)()(( UpbabbT −−−−= . ........................... (2-4)   

Random numbers for Monte Carlo simulation can be generated by Eq. 2-4. 

 P(x) 

x 
p b a 

 

 

 

 

 

Fig. 2.9—Triangular distribution. 
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Recovery Factor 

The reservoir parameters that affect recovery factor include horizontal permeability, 

vertical permeability, relative permeability between the phases, fault transmissibility, 

fluid viscosities, reservoir heterogeneity, and the productivity of the wells.  Just like the 

reservoir parameters that affect hydrocarbon volume, those parameters have multiple 

uncertainties.  The main challenge is how to study all of these parameters at the same 

time, and how to determine the probability density functions for them without many 

simulation runs. 

 

As discussed before, the approach comprises the following procedure: starting from a 

base case, in which all the parameters are assigned with the most likely values, perform 

two additional simulation runs (the pessimistic and the optimistic cases), to estimate the 

influence of each considered variable, and suppose a fixed distribution of its effect on 

the oil recovery.  With an equation similar to the calculation of the hydrocarbon volume, 

calculate the recovery factor with Eq. 2-5: 

                                         nREFRFRF ∆××∆×∆×= L21 . ...................................... (2-5) 

RF is the distribution of the recovery factor. An example is available in Chapter IV. 

Alternatively, the distribution of the recovery factor may be calculated with Monte-Carlo 

simulation. 

 

When we try to get the probability density function of the recovery factor, we need to 

resort to reservoir simulation.   As discussed before, if we have n most influential 
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reservoir parameters for recovery factor, we will have to conduct 2n+1 reservoir 

simulation runs.  We should not have any problem with this because of the number of 

the simulation runs.  Usually the number of the most influential parameters is less than 

8; thus, the maximum number of simulation runs is 17.  This number is much lower than 

for the experimental design and response surface method. 

 

Recoverable Hydrocarbon 

The third step of this method is to calculate the reserves distribution.  Now that we have 

the hydrocarbon volume and the recovery factor distributions, the recoverable 

hydrocarbons (reserves) can be obtained with the following straightforward equation: 

                                                     RFNR ×= . ....................................................... (2-6) 

Given the distributions of oil/gas volume and recovery factor, final reserves are obtained 

by Monte Carlo simulation.  The hydrocarbon volume and recovery factor probability 

density functions can be displayed with histograms of the numbers calculated by Eq. 2-4 

and 2-5.   A set of random numbers is generated for the hydrocarbon volume and the 

recovery factor; with Eq. 2-6, many values of the reserves are obtained; the final 

reserves distribution is formed with these values. An example is available in Chapter IV. 

 

2.5 Bayesian Method 

The Bayesian approach37,38 has been applied in uncertainty analysis in the petroleum 

industry for some years. Bayes’ theorem relates the a posterior probability distribution 

function to an a prior probability distribution function and likelihood function. The prior 
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model characterizes the uncertainty before the production data are considered. The prior 

model is used to build the initial reservoir model. The posterior model characterizes the 

uncertainty after the production data are honored. The likelihood function measures the 

probability that the actual production data would have observed for any given model of 

the reservoir. 

 

In the importance sampling method, many reservoir models are generated from the prior 

model and reservoir simulation is conducted for each model; then the objective function 

value is calculated. The contribution of each model to the posterior distribution for 

reserves is weighted by its likelihood function. If the prior model is good enough that 

many initial reservoir models match the production data very well, no history match 

process is needed. On the other hand, a large number of reservoir models might be 

needed before a good model that matches the production data is obtained. This is a 

limitation of this method. 

 

In the pilot-point method, many reservoir models are generated from the prior model. 

Each model is then history matched. During the history match process, values at certain 

points in the reservoir are changed, and the changes are propagated to the rest of the 

reservoir model by Kriging.  The process continues until each is matched. One problem 

with this method is that the values at the pilot-points of the reservoir might become 

extreme during the history match process. There are some variations to this method. 
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CHAPTER III 
 

INTEGRATED MISMATCH METHOD 
 
 
In Chapter II, I reviewed some existing methods for quantifying uncertainties with 

reserves: relative variation method, multiple realization tree method, and experimental 

design and response surface method.   In some of those methods, estimates of reservoir 

uncertainty are attempted, after the history match is completed, by making extra runs of 

the simulator. These runs are made by systematically varying the reservoir description 

from the base case (history-matched model) and are called "sensitivity analysis" runs.  

Then, a response surface function is obtained by multivariate regression based on the 

reservoir description parameters.  Probability distributions are assigned to the reservoir 

description parameters, and are input into the response surface function, and finally 

Monte Carlo simulation is conducted for many input parameter realizations.   

 

When “sensitivity analysis” runs are made by perturbing from a calibrated model, these 

extra runs will not match the historical data as well because of the change in parameters; 

thus, the runs upon which the response surface function is based are not equiprobable.  

This is an inherent weakness of existing techniques.  Another problem with existing 

methods is that probability distributions for reservoir parameters are not usually obtained 

by scientific methods; they are assumed and, thus, subjective.  A method that 

incorporates the mismatch of the sensitivity analysis runs in the estimation of 

uncertainties in performance predictions to eliminate both of these deficiencies is 

proposed in this chapter. 
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3.1 Quantifying Mismatch 

To measure the extent to which a reservoir model is conditioned to the available 

historical data, we must define a measure to quantify the mismatch between the 

simulated response of the reservoir model and the historical data.  We call this an 

objective function, or mismatch function.  The purpose of the history match is to 

minimize the mismatch function.  The mismatch between the simulated production data 

and the observed production data can be quantified by using a sum of squares.  For each 

parameter, like bottomhole pressure (BHP), gas/oil ratio (GOR), and water cut (WCT), 

at each time when the observed data are available, the sum of the square of the product 

of the weight factors and the differences between the observed and the simulated values 

divided by the standard deviation is calculated.   
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In Eq. 3-1, M is the mismatch value. It is a dimensionless quantity because it is a 

normalized value; the difference and the standard deviation of one parameter have the 

same units.  The mismatch quantifies the distance between the reservoir simulation 

model and the true reservoir model.  The smaller the mismatch value, the closer the 

reservoir simulation model is to the true reservoir model. A mismatch value of 0 gives a 

perfect reservoir model conditioned to all the production data; a mismatch value of 1 

means that the match is within the measurement error, on average. The purpose of 

history matching is to obtain a mismatch value as small as possible for the given 

production data. The weight factor in the mismatch function gives more flexibility for 
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weight control of observed data type in the mismatch function. Different weight factors 

can be given to different observed data types or different data points for the same data 

type.  Given the accuracy or relative importance of different data types or different data 

points, bottom hole pressure may appear to be more important to match than oil 

production rate; in that case, greater weight can be assigned to bottomhole pressure.  

 

3.2 Model Probabilities 

Usually, after the reservoir simulation model is built based on the integrated reservoir 

study, we try to reproduce the production history; this process is called history matching, 

or conditioning to the historical data.  As shown in Fig. 3.1, we have different  
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Fig. 3.1—Pressure mismatch quantification. 
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simulation runs during the history matching process.   It is desirable that we find a model 

that can perfectly match the production history (Simulated Pressure 1 in Fig. 3.1).  The 

mismatch we defined should be zero for this perfect model; however, we seldom find a 

perfect reservoir model.  In practice, the history matching process will be complete when 

a model is found that can closely match the production history, because it is neither 

economic nor feasible to find the perfect model.  For the deterministic method, when the 

history matching process is finished, the resultant reservoir model is used to make 

predictions for different scenarios as desired.    

 

In Fig. 3.1, we can see that the reservoir models have different “distances” from the 

production history. Reservoir model 1 (“Simulated Pressure 1”) overlies all the observed 

data; thus its “distance” is 0 from the production history. The next closer reservoir model 

to production history is Reservoir Model 2; Reservoir Model 3 has the largest “distance” 

from the production history. It is intuitive that the smaller “distance” from the 

production history a reservoir model has, the more likely it is to represent the true 

reservoir description. In Fig. 3.1, the probability of Reservoir Model 1 is the largest; the 

probability of reservoir model 3 is the smallest. When a reservoir model’s distance from 

the production is bigger, the mismatch is bigger; its probability is smaller. The proposed 

method incorporates this in the probability assignment for different simulation runs. 
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3.3 Weighting Function 

As different reservoir models give different mismatch values to a given production 

history, their probabilities are not the same in the final distribution. The probability of a 

reservoir model is inversely related to its mismatch value. A useful weighting function38 

for the probability of a reservoir model is given in Eq. 3-2:  

                                           ⎥⎦
⎤

⎢⎣
⎡−= 2

2
exp MNcL . .................................................... (3-2) 

where L is the likelihood and c is normalization constant such that the probabilities of all 

the possible reservoir models sum up to unity. M is the mismatch value and N is the total 

number of observed data points. Eq. 3-2 is an exponential function, which gives sharp 

differences for reservoir models with different mismatch values; reservoir models with 

small differences in mismatch values can have large differences in their probabilities in 

the final reserves distribution. By using a weighting function, reservoir models with 

smaller mismatch values are given more weight in their contributions to the final 

reserves distribution.   

 
The procedure of this proposed method includes the following steps. 

1. Conduct history matching. 

2. Perform sensitivity analysis of hydrocarbon reserves for the reservoir description 

parameters to obtain the most influential parameters. 

3. Apply experimental design to come up with an optimal design to cover as much 

information as possible with the least number of experiments.  
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4. Conduct the experiments with a reservoir simulator to get reserves and the mismatch 

in the history match for different combinations of the most influential reservoir 

description parameters.  

5. Use multivariate regression to obtain the regression coefficients for the response 

surface functions for the reserves and history mismatch.  

6. Sample the parameter space with different step sizes to calculate reserves and history 

mismatch with the response surface functions.  

7. Calculate the likelihood (Eq. 3-2) to assign the probabilities for different parameter 

combinations (reservoir models) according to the mismatch.   

8. Obtain the reserves distribution from the results of step 7.   

 

3.4 Sampling the parameter space 

After experimental design of the reservoir simulation is finished and response surfaces 

of reserves and mismatch are obtained from the simulation runs, we need to sample the 

possible reservoir parameter ranges to get the final reserves distribution. Traditionally, 

stochastic methods sample the sample space by a random number generator. Fig. 3.2 

shows this kind of sampling for a domain that has only two reservoir parameters: 

porosity and permeability. We can clearly see that this kind of sampling does not 

completely cover the whole sample space with a limited number of samples. Usually, it 

is not affordable to use a large number of samples because each sample needs a reservoir 

simulation run that is time consuming and sometimes expensive.  
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For the integrated mismatch method, we sample the response surfaces, which are much 

less expensive. Thus, the sampling completely sweeps the whole sample space by setting 

a range and a step size for each reservoir parameter, using multiple loops to sweep 

through all the possible combinations of all the reservoir parameters. Fig. 3.3 is a 

schematic for a domain that has only two reservoir parameters: porosity and 

permeability. Every dot represents a reservoir model including a porosity value and a 

permeability value. Compared with Fig. 3.2, we can easily see that this sampling is more 

complete. 

 

Porosity

Permeability

 
Fig. 3.2—Sample the sample space–stochastic method. 
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Porosity 

Permeability 

 

Fig. 3.3—Sample the sample space–the integrated mismatch method. 

 

3.5 Reserves Distribution 

On completion of sampling the sample space, we get a reserves value and an associated 

probability for every reservoir model. We can develop a reserves distribution with all the 

reservoir models and their reserves and probability values. Because we use a 

normalization constant in the weighting function, the probabilities of all the reservoir 

models from the sample space sums to unity. Now we order all the reservoir models by 

reserves values from high to low, then get a specific percentage for the reserves. If we 

wish to get a 90% range for reserves, we can read the high 5% and the low 5% of the 

reserves distribution.  
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CHAPTER IV 
 

EXAMPLE APPLICATION 1: PABST FIELD 
 
 
In the previous chapters, we have reviewed the importance of integrated reservoir study, 

and some methods of uncertainty analysis.  Also we proposed a new method, the 

integrated mismatch method.  In this chapter, we will illustrate the applications of all the 

methods of uncertainty analysis with a real field–Pabst Field, Gulf of Mexico.  

Comparisons will be made with the methods for the field. 

 

4.1 Introduction 

Development of deepwater Gulf of Mexico fields is an expensive undertaking that 

involves considerable analysis and evaluation of both engineering and geologic data. In 

this context, failure to recognize reservoir compartmentalization can add significantly to 

field development capital and result in less-than-optimal reservoir management and 

profitability. For all of these reasons, early recognition of reservoir 

compartmentalization is advantageous. Over the past 10 years, a number of case studies 

employed geochemistry to recognize reservoir compartmentalization.  In other cases, 

production performance was used to investigate the compartments of reservoirs. 

However, geochemistry and production are not enough for identifying reservoir 

compartmentalization in many situations. Many cases have illustrated the application of 

integrated reservoir studies for reservoir management in the past. By using integrated 

reservoir study, we modeled the sealing capacity of two major faults at Pabst field, Gulf 

of Mexico. Pabst field is located in Main Pass 259 Block Gulf of Mexico, offshore 
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Louisiana (Fig.  4.1). It was discovered in 1990.  There are 24 wells in total; 13 are in 

production. Production is from 7,700 ft to 11,500 ft.  The field produces mostly gas and 

some condensate. Nearby fields include Petronius, Tahoe, and Ram-Powell.  

 

4.2 Research Objectives 

The objectives of this project include determining the sealing capacity of two major 

faults, delineating the reservoir compartments, evaluating the potential of a new well, 

and finally characterizing the uncertainties of the reserves. 

. 

 

Fig. 4.1—Location of Pabst field. 
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4.3 Reservoir Simulation Model 

There are several reservoirs in this field: Texas W1, Texas W2, Texas W6, 7,700-ft 

Sand, 10,000-ft Sand, 10,150-ft Sand, and 10,300-ft Sand.  Our investigation focused on 

the 10,300-ft Sand.  The operator wanted to investigate the sealing capacity of two major 

faults in the field; and on the basis of the results, they would consider drilling more wells 

to optimally develop the reservoir.  Based on the reports from the former operator, the 

depositional environment of this reservoir is a slope fan.  Some channels might exist, but 

they are not believed to be in communication with each other.   

 

For this reservoir, we had 3D seismic data, well logs for some wells, sidewall core 

analysis for some wells, pressure transient tests for some wells, and pressure data and 

production data for all the wells under development through July 2000.  Fig. 4.2 is the 

structure map of  the10,300-ft Sand from the seismic interpretation. 

 
 

We clearly see the two large NW-SE trending faults.  Fig. 4.3 is the net gas isopach map 

of  the 10,300-ft Sand.  Well A4 is separated from wells A7, A2, and A9 by the two 

major faults. The reservoir produces mostly gas and some condensate.  Very little water 

is produced, so for simplicity, we treated the reservoir as a dry-gas reservoir.  Well logs, 

sidewall core analysis, and pressure-transient test interpretation were used to determine 

porosity.  Fig. 4.4 is the sidewall core analysis. Fig. 4.5 is the results of a pressure 

transient test.  The initial reservoir pressure was around 5,000 psi.  Four wells are 

currently producing from this reservoir. 
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Fig. 4.2—Structure map of 10,300-ft sand. 

 

For this project, we employed a multidisciplinary approach.  Geologists, geophysicists, 

geochemists, and petroleum engineers worked closely together to achieve the single 

goal. Geoscientists interpreted the seismic data, well logs, and core data.  Petroleum 

engineers interpreted the pressure transient test data and carried out reservoir simulation.  

We built a reservoir simulation model by integrating geophysical, petrophysical, 

production and well test data, and modeled the sealing capacities of faults by modifying 

the transmissibility between grid blocks along the fault traces. 
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Fig. 4.3—10,300-ft sand net-gas isopach map. 
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Fig. 4.4—Sidewall core analysis. 
 

 

 

Fig. 4.5—Pressure-transient test results. 
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The reservoir was modeled (Fig. 4.6) with one layer, and the grid was 30×15×1. The size 

of the grid was set with ∆x = 779 ft and ∆y = 779 ft; ∆z was sampled from the net-gas 

isopach map.  Individual well pressures were matched by adjusting reservoir porosity 

and permeability.  

 

 

Fig. 4.6—Simulation grid. 

 

In addition, to determine the sealing capacities of the two major faults, the sealing 

capacities of faults were varied by modifying the transmissibilities between grid blocks 

along the fault traces.  A very good pressure history match was reached (Fig. 4.7, Fig. 

4.8 and Fig. 4.9). 
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Fig. 4.7—Well A2 pressure history match. 
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Fig. 4.8—Well A4 pressure history match. 
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Fig. 4.9—Well A9 pressure history match. 

From the simulation studies, the reservoir properties and continuity are as follows: 

porosity about 0.25, permeability 75 md; Well A2, A4, and A9 are separate; Well A2 

and A7 are in communication; the two major faults are sealing.  The gas in place for 

different compartments is listed in Table 4.1.  

Table 4.1—Gas in Place After History Matching. 

Compartment Gas in place (Bcf) 

Well A4 28.36 

Well A2 and A7 25.87 

Well A9 30.67 

 

From the simulation studies, an untapped area with an extimated 9.7 Bcf gas in place 

was determined to be separated from other wells by the two major sealing faults.  Well 
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A2 penetrates three sands: TEX W1, TEX W2, and the10,300-ft Sand.  At present, it has 

stopped producing from the TEX W1 (March 1995) and TEX W2 (March 1997).  At the 

current rate, its BHP in the 10,300-ft Sand will decrease to an abandonment pressure of 

700 psi in 500 days.  Therefore, we recommend sidetracking from Well A2 to the 

untapped area after its pressure in the 10,300-ft Sand decreases to the abandonment 

pressure.  Simulation results indicate Well A2 will produce 7.2 Bcf gas from the new 

untapped area within 600 days, assuming a target rate of 8MMscf/day and a minimum 

BHP of 700 psi. Final recovery for the untapped area is predicted to be around 74% of 

the original gas in place. 

 

4.4 Uncertainty Analysis 

In this section, I show the reserves uncertainty for the untapped area as determined by 

the methods we presented or proposed in Chapters II and III; the best estimates of the 

reservoir parameters for the untapped area after history matching are listed in Table 4.2. 

 

Table 4.2—Reservoir Parameters After History Matching. 

Reservoir Parameter Value 

Porosity 0.204 

Permeability 50 md 

Fault Transmissibility 0 

Skin Factor 5 

Thickness 35 ft 
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4.4.1 Experimental Design and Response Surface Method 

There are only four parameters in our study: porosity, permeability, fault 

transmissibility, and skin factor. Compared to other parameters, the permeability is not 

sensitive; thus, the other three parameters are used in the experimental design. The 

pessimistic, most likely, and optimistic values are determined from integrated reservoir 

study and are listed in Table 4.3. The fault transmissibility cannot be negative,  and our 

most likely value is 0; therefore, we do not have a pessimistic value for it. We have three 

parameters, one of which has two levels. The factorial design needs 3×3×2 = 18 

simulation runs, which is affordable. The experimental design is shown in Table 4.4. 

 
Table 4.3—Reservoir Parameters and Their Distributions. 

 Pessimistic value 

(-1) 

Most likely value 

(0) 

Optimistic value 

(-1) 

Porosity 0.18 0.204 0.27 

Fault Transmissibility 

Multiplier 

1 0 N/A 

Skin Factor 20 5 0 

 

After the 18 simulation runs were finished and the reserves for each one was obtained, a 

reserves response surface was formed by regression. Fig. 4.10 shows the regressed 

reserves vs. experimental reserves. Almost all the points fall into a 45° straight line that 

passes through the origin. That means that almost all the regressed reserves values equal 

the experimental reserves values, which is what the response surface model tries to 
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achieve. We want to find a response surface that is a close representative of the 

experimental values, which we achieved in this case. 

 

Table 4.4—Three Parameter Factorial Design. 

Experiment # Fault Trans Porosity Skin Reserves 
(Bcf) 

1 0 1 1 10.633 
2 0 1 0 10.537 
3 0 1 -1 10.253 
4 0 0 1 8.026 
5 0 0 0 7.945 
6 0 0 -1 7.744 
7 0 -1 1 7.078 
8 0 -1 0 7.013 
9 0 -1 -1 6.824 

10 -1 1 1 8.921 
11 -1 1 0 8.463 
12 -1 1 -1 7.322 
13 -1 0 1 7.437 
14 -1 0 0 6.992 
15 -1 0 -1 5.95 
16 -1 -1 1 6.891 
17 -1 -1 0 6.46 
18 -1 -1 -1 5.455 

 

 

With a good response surface model for the reserves, we used Monte-Carlo simulation to 

obtain the final reserves distribution. We assumed a triangular distribution for porosity, 

fault transmissibility, and skin factor.  Figs. 4.11, 4.12, and 4.13 show the probability 

density functions for those three parameters. The modes of the triangles are the most 

likely values of the three parameters. The two ends are the pessimistic and optimistic 

values for the three parameters. 
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Fig. 4.10—Regressed reserves vs. reserves from simulator. 
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Fig. 4.11—Probability distribution of porosity. 
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Fig. 4.12—Probability distribution of skin factor. 
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Fig. 4.13—Probability distribution of fault transmissibility. 

 

One thousand random numbers were generated from the probability density function for 

each of three parameters, and then they were plugged into the response surface function 
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to get the final reserves distribution. A histogram of the reserves distribution is shown in 

Fig. 4.14. The reserves cumulative distribution function is shown in Fig. 4.15. 
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Fig. 4.14—Reserves distribution of experimental design method. 
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Fig. 4.15—Reserves cumulative distribution function of experimental design method. 
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4.4.2 Multiple Realization Tree Method 

The influential parameters were determined by the same method as the experimental 

design and response surface method. The influential parameters and their pessimistic, 

most likely, and optimistic values are listed in Table 4.2. The root of the tree is the 

reserves; since porosity is the most important parameter, it is located at the second level. 

Fault transmissibility is the second most important parameter; it is located at the third 

level. Skin factor is the third most important parameter; thus, it is located at the fourth 

level. The probabilities for the pessimistic, most likely, and optimistic values of the 

parameters are determined by integrated reservoir study and listed in Table 4.5. 

 

Table 4.5—Reservoir Parameters and Their Distributions. 

 Pessimistic 

probability 

Most likely 

probability 

Optimistic 

probability 

Porosity 25% 50% 25% 

Fault Transmissibility 20% 80%  

Skin Factor 25% 50% 25% 

 

The total number of leaves is 3×2×3 = 18; their probabilities are listed in Table 4.6, 

which sums to unity. The realization tree is shown in Fig. 4.16. 

 

After the reserves value for every leaf is calculated by a reservoir simulator (Table 4.3), 

the final reserves CDF is formed (Fig. 4.17).  
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Table 4.6—Decision Tree Leaf Probabilities. 

Porosity Fault 
Trans 

Skin Probability 

1 0 1 0.05 
1 0 0 0.1 
1 0 -1 0.05 
0 0 1 0.1 
0 0 0 0.2 
0 0 -1 0.1 
-1 0 1 0.05 
-1 0 0 0.1 
-1 0 -1 0.05 
1 -1 1 0.0125 
1 -1 0 0.025 
1 -1 -1 0.0125 
0 -1 1 0.025 
0 -1 0 0.05 
0 -1 -1 0.025 
-1 -1 1 0.0125 
-1 -1 0 0.025 
-1 -1 -1 0.0125 
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Fig. 4.17—Reserves distribution. 
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4.4.3 Relative Variation Factor Method 

After integrated reservoir study, the pessimistic, most likely, and optimistic values of the 

most influential parameters were determined. 

 

A net-gas isopach map was used in the study; thus, the gas saturation is 1.  The base case 

hydrocarbon volume was 9.69 Bcf. Porosity and thickness were chosen as the 

parameters that most affect the hydrocarbon volume of the Pabst field.  The possible 

value ranges for those parameters are listed in Table 4.7. After dividing by the most 

likely values, we get the triangular distributions for porosity and thickness factors (Table 

4.8). 

Table 4.7—Parameters That Affect the Hydrocarbon Volume. 

Parameter Pessimist Value Most Likely Value Optimist Value 

Porosity 0.18 0.204 0.27 

Thickness (ft) 30  35 40 

 

Table 4.8—Triangular Distributions for Porosity and Thickness Factor. 

Parameter Pessimist Value Most Likely Value Optimist Value 

Porosity (∆1) 0.88 1 1.32 

Thickness (∆2) 0.86 1 1.14 

 

The probability density functions of porosity factor and thickness factor are shown in 

Figs. 4.18 and 4.19. Now the reference hydrocarbon volume and the probability density 
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functions for all the factors that affect hydrocarbon volume are available. One thousand 

random numbers are generated and plugged into Eq. 2-3.  The distribution of 

hydrocarbon in place is shown in Fig. 4.20 as a histogram. 

 

0

1

2

3

4

5

0.8 0.9 1 1.1 1.2 1.3 1.4

Porosity Factor

Pr
ob

ab
ili

ty

 

Fig. 4.18—Probability density function of porosity factor. 
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Fig. 4.19—Probability density function of thickness variation factor. 
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Fig. 4.20—Hydrocarbon volume distribution of relative variation method. 

 

The parameters that affect the recovery factor of the Pabst field include permeability, 

skin factor, and fault transmissibility.  The possible value ranges for those parameters are 

listed in Table 4.9. After dividing by the most likely values, we obtain triangular 

distributions for permeability, skin factor and fault transmissibility factors (Table 4.10). 

The probability density functions of permeability, skin factor, and fault transmissibility 

factors are shown in Figs. 4.21 4.22, and 4.23.  
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Table 4.9— Influential Parameters for the Recovery Factor. 

Parameter Pessimist Value Most Likely Value Optimist Value 

Permeability (md) 30 50 80 

Skin Factor 20  5 0 

Fault Transmissibility 1 0 N/A 

 

Table 4.10—Triangular Distributions for Permeability, Skin and Fault Transmissibility 

Factor. 

Parameter Pessimist Value Most Likely Value Optimist Value 

Permeability (∆1) 0.9953 1 1.0047 

Skin Factor (∆2) 0.9947 1 1.0102 

Fault Transmissibility (∆3) 0.88 1  
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Fig. 4.21—Probability density function of permeability factor. 
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Fig. 4.22—Probability density function of the factor of skin factor. 
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Fig. 4.23—Probability density function of fault transmissibility factor. 
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Monte Carlo simulation was used to get the recovery factor and final reserves 

distribution. One thousand random numbers for each factor were generated and plugged 

into Eq. 2-5 to obtain the recovery factor distribution (Fig. 4.24).  Likewise, the final 

reserves distribution (Fig. 4.25) is obtained from Eq. 2-6, i.e., a set of random numbers 

for hydrocarbon volume multiplied by a set of random numbers for recovery factor.  Fig. 

4.26 shows the cumulative distribution function of the reserves. 
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Fig. 4.24—Probability distribution of recovery factor. 
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Fig. 4.25—Probability distribution of reserves. 
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Fig. 4.26—Cumulative distribution function of reserves. 
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4.4.4 Integrated Mismatch Method 

The parameters used in this analysis are fault transmissibility multiplier, porosity, and 

permeability.  For porosity and permeability, we use three levels–the pessimistic, the 

most likely, and the optimistic values–for the uncertainty analysis; for the fault 

transmissibility multiplier, we use two levels–the most likely and the pessimistic values–

for the uncertainty analysis.  Table 4.11 shows the values for the most influential 

reservoir parameters for this method.   

 

Table 4.11—Reservoir Parameters and Their Distributions. 

 Pessimist value Most likely value Optimist value 

Porosity 0.18 0.204 0.27 

Permeability (md) 30 50 80 

Fault Transmissibility 1 0  

 

After the most influential reservoir parameters and their ranges are determined, we use 

factorial design for these three parameters because the total number of simulation runs is 

18.  Table 4.12 is the factorial design for the three reservoir parameters.  

 

The reservoir simulation runs are conducted after the experimental design is finished.  

Then, the mismatch is calculated for different simulation runs.  We have only pressure 

data (no GOR or WCT available), so the mismatch is only from the pressure.  The 

weight for every pressure difference at the time when the observed pressures are 
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available is set to 1. The mismatch and reserves values for all the reservoir simulation 

runs are listed in Table 4.12. 

Table 4.12—Factorial Design for the Three Reservoir Parameters. 

Experiment # Fault Trans Porosity Permeability Reserves (bcf) Mismatch
1 0 1 1 10.660 10.41 
2 0 1 0 10.634 9.85 
3 0 1 -1 10.596 8.87 
4 0 0 1 8.069 1.76 
5 0 0 0 8.026 1.89 
6 0 0 -1 7.983 2.56 
7 0 -1 1 7.116 5.14 
8 0 -1 0 7.078 5.78 
9 0 -1 -1 7.045 6.94 

10 -1 1 1 13.010 18.18 
11 -1 1 0 12.828 17.78 
12 -1 1 -1 12.470 17.08 
13 -1 0 1 7.596 10.40 
14 -1 0 0 7.437 9.99 
15 -1 0 -1 7.167 9.26 
16 -1 -1 1 5.597 6.82 
17 -1 -1 0 5.456 6.40 
18 -1 -1 -1 5.245 5.68 

 

The response surface for the mismatch is built from the selected reservoir parameters 

with a second-order polynomial (Fig. 4.27).  Please see Eq. 4-1 for the mismatch 

response surface and Table 4.13 for the coefficients. We can see that this response 

surface is only fair. Likewise, the reserves response surface is regressed with the same 

set of reservoir parameters (Fig. 4.28).  Please see Eq. 4-1 for the reserves response 

surface and Table 4.14 for the coefficients.  We see that the reserves response surface 

fits the simulation data very well. 
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Fig. 4.27—Mismatch response surface. 
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Fig. 4.28—Reserves response surface. 
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Table 4.13—Mismatch Coefficients. 

a0 -0.05796 a8 -0.01128 
a1 1.026052 a9 0.291103 
a2 3.132839 a10 -0.04281 
a3 0.139095 a11 0.051684 
a4 0.10236 a12 -0.02808 
a5 -0.37867 a13 -0.07144 
a6 -0.96962 a14 0.006094 
a7 -0.0107  

 

 

Table 4.14—Reserves Coefficients. 

a0 -0.05796 a8 -0.01128 
a1 1.026052 a9 0.291103 
a2 3.132839 a10 -0.04281 
a3 0.139095 a11 0.051684 
a4 0.10236 a12 -0.02808 
a5 -0.37867 a13 -0.07144 
a6 -0.96962 a14 0.006094 
a7 -0.0107  

 

 

Following the steps of the proposed method, we finally get the reserves cumulative 

distribution function for the untapped area (Fig. 4.29). This curve is not very smooth, 

and the biggest changes in reserves occur between 7 and 9 Bcf. The most likely reserves 

value is 8.026 Bcf. The reason the curve is not smooth is that the quality of the mismatch 
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response surface is not very good.  The reserves contribution of a reservoir model is 

weighted by its mismatch. 
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Fig. 4.29—Reserves cumulative distribution function of integrated mismatch method. 

 

4.4.5 Multiple Method Comparisons 

The cumulative distribution functions of reserves for the four methods—relative 

variation factor method, experimental design, multiple realization tree, and integrated 

mismatch method—are plotted together in Fig. 4.30. Although there are some 

differences between the four cumulative distribution functions, they are essentially close 

and centered at the most likely reserves value of 8.03 Bcf. The CDFs of the relative 

variation factor and experimental design method are smooth while the CDFs of the 

multiple realization tree and the integrated mismatch methods are not.  The greatest 

change in the CDF for integrated mismatch occurs between 7 and 9 Bcf, which is 
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narrower than for other methods.  Narrower ranges mean more certainty, which is 

usually what people want to have. The narrow ranges occur because the integrated 

mismatch method gives more weight to the reservoir models that have small mismatch. 
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Fig. 4.30—Multiple method reserves comparisons. 

 
4.4.6 Limitations 

One important point needs to be made: all the studies were based on one geological 

model. Since there is also uncertainty in the geological model, failure to incorporate 

geological uncertainty will result in an overestimation in the certainty of reserves 

estimates. 
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Subsequent to these analyses, a new well was drilled in the untapped area. This well was 

a dry hole. The sand was wet, indicating the assumed geological model was incorrect. 

None of the methods suggested the possibility of a dry hole, because geological 

uncertainty was not considered. This indicates that identification of the most influential 

parameters is a critical step in uncertainty analysis. Failure to consider all possible 

sources of uncertainty may lead to results that are quite incorrect and misleading. 
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CHAPTER V 
 

EXAMPLE APPLICATION 2: PUNQ-S3 PROJECT 
 
 
We introduced our proposed method–the integrated mismatch method–in Chapter III.  In 

this chapter, we will apply the integrated mismatch method to the PUNQ-S3 problem.37-

39  PUNQ is an acronym for Production forecasting with UNcertainty Quantification.  

The project involved 10 universities, research institutes, and oil companies.  The 

approaches employed by the project participants are mainly based on Bayesian methods.  

We will compare our result with others, and illustrate the advantages of ours. 

 

5.1 Introduction 

The PUNQ-S3 case is a synthetic reservoir model taken from a reservoir engineering 

study on a real field operated by Elf Exploration Production.37-39   It was characterized as 

a small-size industrial reservoir engineering model.  The reservoir model contains 

19×28×5 grid blocks, of which 1,761 blocks are active.  This field is bounded to the east 

and south by a fault, and links to the north and west to a fairly strong aquifer.  A small 

gas cap is located in the center of the dome-shaped structure. The field initially contains 

six production wells located around the gas oil contact.  Due to the strong aquifer, no 

injection wells are present.  The geometry of the field has been modeled using corner-

point geometry.39 The porosity/permeability fields were regenerated to have more 

control over the underlying geological/geostatistical model.  A geostatistical model 

based on Gaussian random fields was used to generate the porosity and permeability 

fields. Geostatistical parameters, such as means and variograms, were chosen to be as 
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consistent as possible with the geological model. Through the use of collocated 

cosimulation, the porosity and permeability fields have been correlated statistically. This 

has resulted in correlated fields for porosity and horizontal and vertical permeability in 

each of the five layers. 

 

The reservoir engineering model was completed with the PVT and aquifer data from the 

original model. There is no capillary pressure in the model. The production scheduling 

was inspired by the original model; i.e., a first year of extended well testing, followed by 

a three-year shut-in period, before field production commences. The well-testing year 

consists of four three-month production periods, each with a different production rate. 

During field production, two weeks of each year are used to do a shut-in test to collect 

shut-in pressure data for each well. The wells operate under constant-rate production 

constraints. After falling below a limiting bottomhole pressure, they will switch to a 

BHP-constraint. Fig. 5.139 shows typical production data for a well.  Using this reservoir 

engineering model, a synthetic history was generated using the reservoir simulator 

ECLIPSE. The total simulation period is 16.5 years. Pressure, water-cut, and gas/oil ratio 

curves have been generated for each of the wells.  Random errors are introduced into the 

data to reflect the inaccuracy of measurements.  

 

5.2 Research Objectives 

Each of the partners in the project was given the synthetic production history of the first 

8 years.  Note that this history includes 1 year of well testing, 3 years of field shut-in, 

 



 
 

73

and 4 years of actual field production. The synthetic production data consisted of the 

BHP, WCT, and GOR for each of the six wells. All partners were asked to forecast the 

total oil production after 16.5 years, including uncertainty estimates. The purpose was to 

compare various techniques for quantification of uncertainty in future oil production 

when historical production data are available.  Thus, the reservoir needs to be 

conditioned to both static and dynamic well data when used to quantify the uncertainty 

in future oil production.   

 

 

Fig. 5.1—Typical production data for a well.39
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5.3 Reservoir Simulation Model 

Fig. 5.2 shows the 3D reservoir model for the PUNQ-S3 project (color represents 

porosity).  The reservoir contains six production wells: PRO-1, PRO-4, PRO-5, PRO-11, 

PRO-12, and PRO-15.   Figs. 5.3 through Fig. 5.6 show the production data for Well 

PRO-1. 

 

 

Fig. 5.2—PUNQ-S3 3D reservoir model. 
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Fig. 5.3—Well PRO-1 oil-production rate. 

 
 
 
 
 

 

Fig. 5.4—Well PRO-1 bottomhole pressure. 
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Fig. 5.5—Well PRO-1 gas/oil ratio. 

 

 

Fig. 5.6—Well PRO-1 water cut. 
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5.4 Uncertainty Analysis 

In this part, we analyze the production forecasts after 16.5 years with our proposed 

method: the integrated mismatch method.  As described in Chapter III, our method starts 

from a history-matched reservoir model.   I used the true reservoir model as the history-

matched model in my work. We will show in this section that the integrated mismatch 

method still gives good results when starting from nonoptimal reservoir models.   

 

The participants of the PUNQ-S3 project were required to analyze the reserves 

uncertainty.  Here, the purpose is to determine how well the proposed method works and 

how well the results compare with other methods.  To start from nonoptimal reservoir 

models, I changed the porosity and permeability values of the true reservoir model by 

applying a random multiplier to different layers of the reservoir.  In the following 

section, I apply the proposed method to six cases, each starting from different history-

matched models of varying quality.  

 

5.4.1 Integrated Mismatch Method 

Case 1. In Case 1, I cut the porosity of the whole reservoir to half of the true value so 

that the reservoir model was far from the true model.  The purpose was to determine if 

the new method would still cover the true case when starting from a nonoptimal history-

matched reservoir model. In practice, the reservoir simulation engineer usually does not 

know if the history-matched model is close to true or not. The reason is that the result of 

a history match is not unique. Multiple reservoir models can give the same or 
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approximate quality of history match even though only one true model exists, and these 

history-matched models might not include the true one at all. Therefore, starting from a 

nonoptimal model is common. Fig. 5.7 shows the results of the true model for the 

bottomhole pressure of well PRO-11. The simulation does not match the observation 

data exactly because some random noise has been introduced into the data. Fig. 5.8 is the 

bottomhole pressure of well PRO-11 for the case where the porosity is cut to half of the 

true case.  We can clearly see that the bottomhole pressure match is not good at all.   

 

The cumulative oil production of the whole field is 3.87×106 Sm3 after 16.5 years for the 

true reservoir model. The cumulative oil production for this starting model is 3.18×106 

Sm3, which is about 18% smaller than for the true case. Thus, this starting model 

significantly underpredicts the true reserves. 

 

Fig. 5.7—Well PRO-11 bottomhole pressure true case. 
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Fig. 5.8—Well PRO-11 bottomhole pressure half-porosity nonoptimal case. 

 

As stated in Chapter III, the second step of the integrated mismatch method is 

experimental design.  From the starting non-optimal model we obtained by changing the 

true case porosity, we identify the key variables for this reservoir study. Usually the 

variables include porosity, horizontal permeability, vertical permeability, relative 

permeability, the location of the faults, fault transmissibility, the locations of the 

oil/water contact and gas/oil contact, the reservoir boundaries, reservoir 

compartmentalization, and oil formation volume factor.   For the PUNQ-S3 project, all 

the data including PVT, reservoir structure, boundary, faults, and aquifer, except the 

porosity and permeability, are given.  Thus, the porosity and permeability are the only 

uncertain variables in this problem.  From the geological description, we know that 

Layers 1, 3-5 have similar reservoir quality, while Layer 2 has poor reservoir quality.  
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We are interested in the cumulative oil production after 16.5 years for the whole 

reservoir, given the 8 years’ production history.  After some sensitivity runs, I decided to 

use four key variables: (1) porosity of Layers 1, 3-5, (2) porosity of Layer 2, (3) 

permeability of Layers 1, 3-5, and (4) permeability of Layer 2. I could have used more 

key variables by dividing the whole reservoir into different regions according to the 

geological description, and using porosity and permeability for each region.  The 

problem is that using too many key variables requires a large number of simulation runs, 

and it will be harder to find a good response surface for all the variables and the 

production forecast.  Selecting the right key variables is a very important step in the 

integrated mismatch method. 

 

With these four key variables, three-level factorial design requires 34=81 simulation 

runs. Although that is still affordable, we used a composite design, which saves some 

simulation runs.  The composite design is shown in Table 5.1.  Note that the table lists 

the permeability and porosity multipliers for Layers 1, 3-5 and Layer 2.  All the 

simulation runs were conducted with GeoQuest’s simulator–Eclipse.  The cumulative oil 

production after 16.5 years and the mismatch for each run were obtained from the 

simulation results (Table 5.1).   

 

The reserves response surface was built using multiple variable regression (Eq. 5-1).  

The coefficients are listed in Table 5.2. A very good response surface was found with a 

quadratic polynomial. 
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Table 5.1—Four-Factor Experimental Design, Case 1. 

Permeability 
Factor 

Layers 1, 3-5 

Porosity 
Factor 

Layers 1, 3-5 

Permeability 
Factor 
Layer 2 

Porosity 
Factor 
Layer 2 

Reserves 
(106 Sm3) 

Mismatch 
(dimensionless) 

1.5 1.5 1.5 1.5 3.906 2.390

1.5 1.5 1.5 0.5 3.869 2.621

1.5 1.5 0.5 1.5 3.889 2.584

1.5 1.5 0.5 0.5 3.854 2.832

1.5 0.5 1.5 1.5 2.454 26.597

1.5 0.5 1.5 0.5 2.299 28.150

1.5 0.5 0.5 1.5 2.403 27.105

1.5 0.5 0.5 0.5 2.256 28.633

0.5 1.5 1.5 1.5 3.220 5.562

0.5 1.5 1.5 0.5 3.189 5.829

0.5 1.5 0.5 1.5 3.156 5.840

0.5 1.5 0.5 0.5 3.130 6.113

0.5 0.5 1.5 1.5 2.012 25.329

0.5 0.5 1.5 0.5 1.952 26.050

0.5 0.5 0.5 1.5 1.921 26.242

0.5 0.5 0.5 0.5 1.869 27.034

1.5 1 1 1 3.403 11.311

0.5 1 1 1 2.765 11.968

1 1.5 1 1 3.647 2.648

1 0.5 1 1 2.226 27.340

1 1 1.5 1 3.203 11.334

1 1 0.5 1 3.150 11.709

1 1 1 1.5 3.203 11.268

1 1 1 0.5 3.149 11.775

1 1 1 1 3.177 11.505
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Table 5.2—Reserves Coefficients (Case 1). 

a0 -0.05796 a8 -0.01128 
a1 1.026052 a9 0.291103 
a2 3.132839 a10 -0.04281 
a3 0.139095 a11 0.051684 
a4 0.10236 a12 -0.02808 
a5 -0.37867 a13 -0.07144 
a6 -0.96962 a14 0.006094 
a7 -0.0107  

 

Fig. 5.9 is the plot of predicted reserves vs. the simulated reserves. The figure shows that 

the predicted value with the regressed model and the observed value (from  
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Fig. 5.9—Predicted vs. observed reserves (Case 1). 
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simulation) almost fall on the 45° line passing through the origin.  That means that the 

model is an excellent one. We have high confidence that the response surface will 

correctly give the reserves value. The residual of reserves is plotted vs. the predicted 

reserves in Fig. 5.10. We can see that the residuals are randomly distributed and do not 

change with the predicted reserves, indicating a good quality response surface. 
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Fig. 5.10—Reserves response surface residual analysis (Case 1). 

 

Likewise, I built the mismatch response surface based on the reservoir simulations from 

the experimental design.  Eq.5-2 gives the mismatch response surface for this study, 

while Table 5.3 lists the coefficients. 
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Table 5.3—Mismatch Coefficients (Case 1). 

b0 49.5228 b8 0.565446 
b1 1.867535 b9 -4.68643 
b2 -48.5072 b10 0.265155 
b3 -2.36072 b11 -0.37702 
b4 -2.34382 b12 0.480572 
b5 1.035171 b13 0.893924 
b6 14.46184 b14 0.016289 
b7 0.564411  

 

The predicted mismatch vs. the regressed mismatch is plotted in Fig. 5.11.  Only one 

point is a bit off the 45° straightline; all the others seem to fall on the line.  Thus, this is 

still a fairly good model.   
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Fig. 5.11—Predicted vs. observed mismatch (Case 1). 
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The residual plot for mismatch (Fig. 5.12) shows that two residuals are bigger than 

others.  Those two outliers, while of concern, do not severely affect the overall 

regression quality.  If there are quite a few outliers for a regression model, the quality of 

the regression will be affected.  Except for those two outliers, the residuals seem to be 

randomly distributed.      
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Fig. 5.12—Mismatch response surface residual analysis (Case 1). 

 

With good reserves and mismatch response surface models, the next step is to sample the 

parameter space and quantify the uncertainty in reserves.  As described in Chapter III, 

we set a step size for each key variable, use multiple loops to sweep all the possible 

combinations of all the key variables, and calculate the reserves and mismatch.  The 

probability for each run–a combination of a set of key variables–will be assigned by the 

 



 
 

86

weighting function (Eq. 3-2).  According to the weighting function, the bigger the 

mismatch, the smaller the probability.  A small difference in the mismatch might lead to 

a big difference in the probability between runs, because the weighting function (Eq. 3-

2) is very sensitive to the mismatch.  The step size and the ranges for the key variables 

are listed in Table 5.4. 

Table 5.4—Key Variable Range and Step Size. 

Variable 
Multiplier 

Low Value High Value Step Size 

Permeability  
Layers 1, 3-5 

0.5 1.5 0.1 

Porosity  
Layers 1, 3-5 

0.5 1.5 0.1 

Permeability 
Layer 2 

0.5 1.5 0.25 

Porosity 
Layer 2 

0.5 1.5 0.25 

 

Note that the ranges for the key variables are arbitrary and can be determined by 

integrated reservoir study.  All the available data need to be considered when engineers 

and geoscientists work together to determine a range for each key variable.  As for the 

step size for each key variable, smaller sizes need to be set for more sensitive key 

variables.  The reason is that a small change in a sensitive variable can cause a big 

change in the response.  Sampling the sample space more completely requires smaller 

sizes for the more sensitive key variables.  In our case, permeability and porosity of 

Layers 1, 3-5, which have good reservoir quality, are the more sensitive (i.e., changing 

the variable has a greater effect on the reserves value) key variables in our study, while 

the permeability and porosity of Layer 2, which has poor reservoir quality, are not very 
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sensitive key variables.  Therefore, the step size of the former key variables is set to 0.1, 

and the latter is set to 0.25. If the step size of one key variable is cut to half and all the 

other step sizes stay the same, the calculation will be doubled.  Therefore, small step size 

will incur much more calculation.  Fortunately, because we have a statistical model 

(response surface) to take the place of a reservoir simulator, we can afford an extremely 

large number of “simulation runs” with our regressed models. In practice, we can test the 

sensitivity of the step size for each key variable.  If decreasing the step size of a key 

variable will not affect the final reserves distribution, the step size for that level is not 

very sensitive. Thus we do not need to decrease its step size at that level. 

 

Table 5.5—Regressed Model Runs and Probability Calculation. 

Permeability 
Factor Layer 

1, 3-5 

Porosity 
Factor 

Layer 1, 3-5 

Permeability 
Factor 
Layer 2 

Porosity 
Factor 
Layer 2 

Mismatch 
 

Reserve
s 
 

(106m3)

Normalized 
Probability 

0.5 0.5 0.5 0.5 27.1555 1.85128 2.13E-161
0.5 0.5 0.5 0.75 26.8129 1.87164 2.20E-157
0.5 0.5 0.5 1 26.541 1.89059 3.12E-154
0.5 0.5 0.5 1.25 26.3398 1.90813 6.38E-152
0.5 0.5 0.5 1.5 26.2092 1.92426 1.97E-150
0.5 0.5 0.75 0.5 26.837 1.87461 1.16E-157
0.5 0.5 0.75 0.75 26.4954 1.89535 1.04E-153
0.5 0.5 0.75 1 26.2245 1.91468 1.32E-150
0.5 0.5 0.5 0.5 27.1555 1.85128 2.47E-148

… … … … … … …
 
 

Table 5.5 gives a partial list of the final regressed model runs and the probability 

calculations.  In this case, there are 3,025 samples (different combinations) of the key 

 



 
 

88

variables. The probability for each of the runs is normalized so that the sum of all the 

runs is unity.  The reserves of all the samples are ordered from high to low.  Each 

reserves value is associated with a probability value. Then the 90%, 50%, and 10% 

probabilities of the reserves are recorded, and they are considered as high, median, and 

low for the final reserves distribution (Fig. 5.23).  The resultant reserves values are as 

follows: 90%=3.91×106 Sm3, 50%=3.87×106 Sm3, and 10%=3.78×106 Sm3.  The true 

case reserves value is 3.87×106 Sm3, which is exactly the same as our median value.  In 

this example, our results range is very narrow, but still correctly covers the true value.  

The point here is that although the integrated mismatch method starts from a nonoptimal 

case, it still gives a narrow range for the reserves prediction and it does cover the correct 

result–the true case.   

 

In this example, the maximum porosity in the experimental design is 1.5×0.5=0.75 of the 

true case porosity; the true case porosity was not bracketed by the designs. However, the 

true reserves value was bracketed in the predicted reserves range. The reason is that the 

greater permeability compensated for the smaller porosity. Fig. 5.13 is the crossplot of 

the reserves and mismatch for the designed simulation runs. We can clearly see that 

when the mismatches are smaller, the reserves are closer to the true case. Because the 

starting model underpredicted the reserves, the model with the greatest porosity and 

permeability (the first model in Table 5.1, i.e., all the porosities and permeabilities were 

multiplied by 1.5) gives the greatest reserves and the smallest mismatch. Although that 
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model’s porosity is 0.75 of the true case, its permeability is 1.5 times that of the true 

case. Thus, the greater permeability compensates the smaller porosity.   
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Fig. 5.13—Mismatch-reserves crossplot (Case 1). 

 

 

Case 2. In Case 1, I multiplied the porosity of the entire true reservoir model by 0.5 to 

get a nonoptimal model. The result showed that the predicted range of reserves did cover 

the true case.  In this Case 2, I not only changed the porosity but also the permeability of 

the true reservoir model. I multiplied the porosity and permeability for each of the five 

layers by 0.7, and then tested to see if the integrated mismatch method still bracketed the 

true case.  By making this transformation from the true case, I got another nonoptimal 

case to test the proposed method. The cumulative oil production of the whole field is 

3.87×106 Sm3 for the true reservoir model. The cumulative oil production for this 
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starting model is 3.32×106 Sm3, which is smaller than the true case. Thus, this starting 

model underpredicts the actual reserves as well. I used the same experimental design 

(Table 5.6) as Case 1.   

Table 5.6—Four-Factor Experimental Design, Case 2. 

Permeability 
Layer 1, 3-5 

Porosity 
Layer 1, 3-5 

Permeability 
Layer 2 

Porosity 
Layer 2 

Reserves 
(106 Sm3) 

Mismatch 
(dimensionless) 

1.5 1.5 1.5 1.5 3.931 1.028

1.5 1.5 1.5 0.5 3.907 0.924

1.5 1.5 0.5 1.5 3.918 1.015

1.5 1.5 0.5 0.5 3.894 0.903

1.5 0.5 1.5 1.5 2.791 18.937

1.5 0.5 1.5 0.5 2.683 20.060

1.5 0.5 0.5 1.5 2.743 19.238

1.5 0.5 0.5 0.5 2.640 20.363

0.5 1.5 1.5 1.5 3.197 6.820

0.5 1.5 1.5 0.5 3.159 7.059

0.5 1.5 0.5 1.5 3.148 6.937

0.5 1.5 0.5 0.5 3.113 7.189

0.5 0.5 1.5 1.5 2.189 17.081

0.5 0.5 1.5 0.5 2.134 17.908

0.5 0.5 0.5 1.5 2.106 17.806

0.5 0.5 0.5 0.5 2.056 18.600

1.5 1 1 1 3.615 4.032

0.5 1 1 1 2.804 8.334

1 1.5 1 1 3.681 2.065

1 0.5 1 1 2.499 19.659

1 1 1.5 1 3.344 4.648

1 1 0.5 1 3.298 4.908

1 1 1 1.5 3.338 4.543

1 1 1 0.5 3.307 5.013

1 1 1 1 3.322 4.757

 

After conducting 25 reservoir simulation runs with Eclipse, I modeled the reserves and 

calculated the mismatches with Eq.3-1.  After regressions, the response surfaces for 
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reserves and mismatch take the same form as Eq. 5-1 and Eq. 5-2, but the regression 

coefficients have changed, as given in Tables 5.7 and 5.8. 

Table 5.7—Reserves Coefficients (Case 2). 

a0 0.096272 a8 -0.001 
a1 1.440739 a9 0.165556 
a2 2.899187 a10 -0.03446 
a3 0.120653 a11 0.020464 
a4 0.078946 a12 -0.03278 
a5 -0.45085 a13 -0.04875 
a6 -0.93003 a14 0.003633 
a7 -0.00522  

 

Table 5.8—Mismatch Coefficients (Case 2). 

b0 42.46294 b8 -1.13748 
b1 -3.78077 b9 -7.83428 
b2 -55.0096 b10 0.273095 
b3 1.278239 b11 0.01923 
b4 0.851253 b12 0.452353 
b5 4.481781 b13 0.899032 
b6 23.20655 b14 -0.00734 
b7 -1.13665  

 

The predicted reserves (also called the regressed reserves) is plotted vs. the observed 

values (the values calculated with the reservoir simulator) in Fig. 5.14.  We can clearly 

see that the regression quality is excellent. All the points fall on the 45° line that passes 

through the origin. This means that the predicted and the observed values are almost the 

same. The residuals vs. predicted reserves values are plotted in Fig. 5.15.  We can see 

from this plot that the residuals are randomly distributed, indicating a good quality 

regression.   
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Fig. 5.14—Predicted vs. observed reserves (Case 2). 
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Fig. 5.15—Reserves response surface residual analysis (Case 2). 
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The predicted mismatch (also called the regressed mismatch) is plotted against observed 

mismatch (the values calculated from the reservoir simulation runs) in Fig. 5.16.  The 

regression model is not as good; some of the points are off the 45° line that passes 

through the origin. However, we still regard this model as acceptable. 

 

The residuals are plotted against the predicted mismatch values in Fig. 5.17.  We can see 

from this plot that one point has a large residual; overall, the residuals seem randomly 

distributed.  Thus, we can consider the regression model to be valid. 

 

Following the same procedures as in Case 1, the reserves distribution after 16.5 years is 

90%=3.91×106 Sm3, 50%=3.82×106 Sm3, and 10%=3.67×106 Sm3.  The true case 

reserves value is 3.87×106 Sm3, which is included within the 90% to 10% range.  The 

porosity and permeability of the starting model is 0.7 of the true case; 1.5×0.7=1.05>1, 

thus the experimental design brackets the true case. In this example, our results 

mismatch (Case 2) range is greater than Case 1, but it still covers the true case (Fig. 

5.23).  This again illustrates that even when the integrated mismatch method starts from 

a nonoptimal case, it still gives a range for the reserves prediction that covers the correct 

result – the true case.  
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Fig. 5.16—Predicted vs. observed mismatch (Case 2). 
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Fig. 5.17—Mismatch response surface residual analysis (Case 2). 
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Case 3. In Case 1, I multiplied the porosity of the whole reservoir by 0.5 and kept the 

permeability the same as the true case, and started to quantify reserves uncertainty from 

that model.  The parameters ranged from 0.5 to 1.5 in the experimental design. Because 

0.5×1.5 = 0.75<1, the biggest value of porosity in Case 1 was 0.75 of the true case.  

However, the predicted range of future oil production covers the true reserves value. In 

Case 2, I multiplied the porosity and permeability for each of the five layers by 0.7. 

Because 0.7×1.5 = 1.05>1, the parameter ranges also include the true case.  Case 3 tests 

whether the integrated mismatch method will still bracket the true reserves value when 

both the permeability and porosity ranges in the experimental design do not cover the 

true case. In this case, I multiplied all the porosities and permeabilities of the five layers 

by 0.6, and used the same experimental design and the same ranges in the designs (0.5 – 

1.5). Because 0.6×1.5 = 0.9<1, none of the possible combinations of porosity and 

permeability for the reservoir cover the true case. The cumulative oil production for this 

starting model is 3.05×106 Sm3, which is smaller than the true case (3.87×106 Sm3). This 

case appears to be far enough from the true case that the ranges of parameter values in 

the experiments do not encompass the actual model. The experimental design, the 

reserves and the mismatch values are listed in Table 5.9. 

 

From Fig. 5.18 and Table 5.9 we can see that when the reserves values are bigger, the 

mismatch values are smaller. That is because that the starting model underpredicts the 

reserves, and multiplying a number greater than 1 makes the model closer to the true 

case. The four experiments with porosity and permeability of Layers 1, 3-5 multiplied by 
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1.5 give the smallest mismatch values. The biggest reserves value in the table is 

3.728×106 Sm3, which is smaller than the true reserves value (3.87×106 Sm3). The 

smallest reserves value in the table is 1.794×106 Sm3.  

 
Table 5.9—Four-Factor Experimental Design, Case 3. 

Permeability 
Layer 1, 3-5 

Porosity 
Layer 1, 3-5 

Permeability 
Layer 2 

Porosity 
Layer 2 

Reserves 
(106 Sm3) 

Mismatch 
(dimensionless) 

1.5 1.5 1.5 1.5 3.728 1.162

1.5 1.5 1.5 0.5 3.702 1.375

1.5 1.5 0.5 1.5 3.705 1.249

1.5 1.5 0.5 0.5 3.679 1.468

1.5 0.5 1.5 1.5 2.474 22.505

1.5 0.5 1.5 0.5 2.378 23.524

1.5 0.5 0.5 1.5 2.427 22.834

1.5 0.5 0.5 0.5 2.336 23.838

0.5 1.5 1.5 1.5 2.891 8.229

0.5 1.5 1.5 0.5 2.852 8.485

0.5 1.5 0.5 1.5 2.843 8.354

0.5 1.5 0.5 0.5 2.809 8.553

0.5 0.5 1.5 1.5 1.912 19.526

0.5 0.5 1.5 0.5 1.864 20.299

0.5 0.5 0.5 1.5 1.837 20.270

0.5 0.5 0.5 0.5 1.794 21.021

1.5 1 1 1 3.323 7.551

0.5 1 1 1 2.504 9.820

1 1.5 1 1 3.449 3.539

1 0.5 1 1 2.206 22.991

1 1 1.5 1 3.071 7.916

1 1 0.5 1 3.019 8.211

1 1 1 1.5 3.061 7.859

1 1 1 0.5 3.028 8.394

1 1 1 1 3.046 8.089
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Following the same procedures as in Cases 1 and 2 resulted in the following for the 

reserves distribution after 16.5 years: 90%=3.73×106 Sm3, 50%=3.68 ×106 Sm3, and 

10%=3.60×106 Sm3.  The true case reserves value is 3.87×106 Sm3, which is not 

included in the above 90% and 10% range. These results indicate that the predicted 

reserves distribution will not encompass the true value if the results from the 

experiments in the design do not bracket the true value. Therefore, when we design the 

experiments, we need to keep this in mind. The limitations of this method will be 

covered in a later chapter, and suggestions will be given as well. 
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Fig. 5.18—Mismatch-reserves crossplot (Case 3). 

 

Case 4. In Cases 1, 2 and 3, the starting models all underpredicted the reserves value. 

The application of the integrated mismatch method in Cases 1 and 2 bracketed the true 

case, but Case 3 did not because neither the permeability nor porosity range in the 
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experimental design bracketed the true case. Neither of them could compensate each 

other.  As a result, the true case reserves was not bracketed by experiments in the design. 

In Case 4, I wanted to check whether the integrated mismatch method would still bracket 

the true case for a starting model that overpredicts the reserves. In this case, I multiplied 

the porosity and permeability of the five layers by a random number between 0.5 and 1.5 

(Table 5.10).  This transformation from the true case produced another nonoptimal case 

to test our proposed method. The cumulative oil production for this starting model is 

3.90×106 Sm3, which is slightly greater than the true case. Thus, this starting model 

overpredicts the true reserves as well. 

 

Table 5.10—Random Permeability and Porosity Multipliers for Case 4. 

Multiplier Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 
Porosity 1.06 0.98 0.78 0.86 1.16 
Permeability 0.92 1.06 0.96 1.18 0.88 

 

I used the same experimental design (Table 5.11) as all the other cases.  After 

conducting 25 reservoir simulation runs with Eclipse, I recorded the reserves and 

calculated the mismatches with Eq. 3-1.   

 

After regressions, the response surfaces for reserves and mismatch take the same form as 

Eq. 5-1 and Eq. 5-2, but the regression coefficients have changed (Table 5.12 and 5.13).  

The predicted reserves (also called the regressed reserves) are plotted against the 

observed values (the values calculated with the reservoir simulator) in Fig. 5.19.  We can 
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clearly see that the regression quality is excellent. All the points fall on the 45° line that 

passes through the origin. That means that the predicted and the observed values are 

almost the same. The  residuals vs. predicted reserves are plotted in Fig. 5.20.   

 

Table 5.11—Four-Factor Experimental Design, Case 4. 

Permeability 
Layer 1, 3-5 

Porosity 
Layer 1, 3-5 

Permeability 
Layer 2 

Porosity 
Layer 2 

Reserves 
(106 Sm3) 

Mismatch 
(dimensionless) 

1.5 1.5 1.5 1.5 4.201 2.777
1.5 1.5 1.5 0.5 4.197 2.547
1.5 1.5 0.5 1.5 4.200 2.785
1.5 1.5 0.5 0.5 4.196 2.557
1.5 0.5 1.5 1.5 3.499 8.299
1.5 0.5 1.5 0.5 3.356 9.350
1.5 0.5 0.5 1.5 3.457 8.620
1.5 0.5 0.5 0.5 3.316 9.709
0.5 1.5 1.5 1.5 3.885 3.411
0.5 1.5 1.5 0.5 3.839 3.552
0.5 1.5 0.5 1.5 3.844 3.477
0.5 1.5 0.5 0.5 3.806 3.645
0.5 0.5 1.5 1.5 2.902 9.286
0.5 0.5 1.5 0.5 2.802 10.181
0.5 0.5 0.5 1.5 2.801 9.999
0.5 0.5 0.5 0.5 2.714 10.896
1.5 1 1 1 4.095 1.740
0.5 1 1 1 3.534 4.518
1 1.5 1 1 4.117 1.550
1 0.5 1 1 3.199 9.216
1 1 1.5 1 3.914 0.878
1 1 0.5 1 3.892 0.901
1 1 1 1.5 3.919 0.844
1 1 1 0.5 3.882 0.964
1 1 1 1 3.904 0.884
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We can see from Fig. 5.19 that, although there are two points whose absolute values are 

a little bit higher than other points, the fit is reasonable.   

Table 5.12—Reserves Coefficients (Case 4). 

a0 0.096272 a8 -0.001 
a1 1.440739 a9 0.165556 
a2 2.899187 a10 -0.03446 
a3 0.120653 a11 0.020464 
a4 0.078946 a12 -0.03278 
a5 -0.45085 a13 -0.04875 
a6 -0.93003 a14 0.003633 
a7 -0.00522  

 

Table 5.13—Mismatch Coefficients (Case 4). 

b0 42.46294 b8 -1.13748 
b1 -3.78077 b9 -7.83428 
b2 -55.0096 b10 0.273095 
b3 1.278239 b11 0.01923 
b4 0.851253 b12 0.452353 
b5 4.481781 b13 0.899032 
b6 23.20655 b14 -0.00734 
b7 -1.13665  

 

The predicted mismatch (also called the regressed mismatch) is plotted against the 

observed values (the values calculated from the reservoir simulation runs) in Fig. 5.21.  

The regression model is not excellent this time; some of the points are off the 45° line 

that passes through the origin. The residuals vs. predicted mismatch are plotted in Fig. 

5.22.  We can see from this plot that, although four points have larger residuals, overall 

the residuals seem to be randomly distributed.  Thus, we consider the regression model 

to be acceptable.  
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Fig. 5.19—Predicted vs. observed reserves (Case 4). 
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Fig. 5.20—Reserves response surface residual analysis (Case 4). 
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Fig. 5.21—Predicted vs. observed mismatch (Case 4). 
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Fig. 5.22—Mismatch response surface residual analysis (Case 4). 
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Following the same procedure as in other cases produced the following results for the 

reserves distribution after 16.5 years: 90%=4.18×106 Sm3, 50%=4.06×106 Sm3, and 

10%=3.86×106 Sm3.  The true case reserves value is 3.87×106 Sm3, which is included 

within the 90% to 10% range (Fig. 5.23).  In this case, our starting model slightly 

overpredicts the true reserves value, but with the integrated mismatch method it covers 

the true case.  This again illustrates that although the integrated mismatch method starts 

from a nonoptimal case, it still gives a range for the reserves prediction that brackets the 

correct result–the true case. 

 

Case 5.  In this case, I multiplied the porosity and permeability for each of the layers by 

2.1. Because 2.1×0.5 = 1.05>1, the parameter ranges do not bracket the true case for 

either porosity or permeability. The cumulative oil production for this starting model is 

4.20×106 Sm3, which is significantly greater than the true case (3.87×106 Sm3). The 

experimental design, the reserves and the mismatch values are listed in Table 5.14. 

 

The table shows that 23 of the 25 reserves values are 4.20×106 Sm3, which is the largest 

value. This means that the reserves values are not very sensitive to the key variables. 

Experimental design will not work well in this kind of situation. The minimum reserves 

value is 3.93×106 Sm3, which is greater than the true reserves (3.87×106 Sm3).  We know 

that the predicted reserves will be within the range of reserves from the experiments, but 

that range does not include the true reserves value. Following the same procedure as in 
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Table 5.14—Four-Factor Experimental Design, Case 5. 

Permeability 
Layer 1, 3-5 

Porosity 
Layer 1, 3-5 

Permeability 
Layer 2 

Porosity 
Layer 2 

Reserves 
(106 Sm3) 

Mismatch 
(dimensionless) 

1.5 1.5 1.5 1.5 4.202 5.364

1.5 1.5 1.5 0.5 4.202 5.254

1.5 1.5 0.5 1.5 4.202 5.354

1.5 1.5 0.5 0.5 4.202 5.248

1.5 0.5 1.5 1.5 4.202 3.897

1.5 0.5 1.5 0.5 4.202 3.530

1.5 0.5 0.5 1.5 4.202 3.898

1.5 0.5 0.5 0.5 4.202 3.518

0.5 1.5 1.5 1.5 4.202 3.806

0.5 1.5 1.5 0.5 4.202 3.603

0.5 1.5 0.5 1.5 4.202 3.824

0.5 1.5 0.5 0.5 4.202 3.608

0.5 0.5 1.5 1.5 4.025 1.563

0.5 0.5 1.5 0.5 3.963 1.123

0.5 0.5 0.5 1.5 3.991 1.576

0.5 0.5 0.5 0.5 3.931 1.028

1.5 1 1 1 4.202 4.755

0.5 1 1 1 4.202 2.887

1 1.5 1 1 4.202 4.895

1 0.5 1 1 4.202 3.095

1 1 1.5 1 4.202 4.225

1 1 0.5 1 4.202 4.240

1 1 1 1.5 4.202 4.354

1 1 1 0.5 4.202 4.098

1 1 1 1 4.202 4.233

 

other cases gave the following results for the reserves distribution after 16.5 years: 

90%=4.12×106 Sm3, 50%=4.05 ×106 Sm3, and 10%=4.00×106 Sm3.  The true case 

reserves value is 3.87×106 Sm3, which is not included in the 90% to 10% range above. 

This case again illustrated that the integrated mismatch method will not work if the true 

case reserves is not covered by its experiments.  
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Case 6. In Case 6, I started from the true case without changing any of the parameter 

values. Following the same procedure as in other cases gave the following results for the 

reserves distribution after 16.5 years: 90%=4.17×106 Sm3, 50%=3.98 ×106 Sm3, and 

10%=3.74×106 Sm3.  As we expected, the true reserves value of 3.87×106 Sm3 is 

bracketed by the predicted reserves range.  

  

5.4.2 Multiple Method Comparisons 

The experimental design and response surface method, the relative variation method, and 

the multiple realization tree method were applied to several of the cases for comparison. 

The results are shown in Fig. 5.23. 

 

Starting from the true reservoir model (Case 6), all four methods bracket the true 

reserves value; the relative variation method gives the largest uncertainty range while the 

integrated mismatch method gives the smallest range.  When starting from a nonoptimal 

reservoir model (Case 1) that cuts the porosity to half of the true case, only the integrated 

mismatch method brackets the true case while all the other three methods do not.  The 

reason is that the other methods do not incorporate model mismatch (and thus 

likelihood) into the reserves uncertainty analysis.  For Case 2, again the experimental 

design and response surface method does not bracket the true case while the integrated 

mismatch method does.  
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Fig. 5.23—Multiple case comparisons. 

 

Fig. 5.2437 compares our results to results of other methods from various institutions. 

Some of the methods bracket the true reserves value, and others do not.  

 

When starting from nonoptimal reservoir models, the integrated mismatch method will 

bracket the true reserves value if the experimental designs encompass the true case 

parameters. If the experimental designs do not encompass all the true case parameters, 

but the true reserves is covered by the experiments, the integrated mismatch method may 

still bracket the true case. This applies if there is a strong correlation between mismatch 
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and closeness to the true reserves value. However, a strong correlation is not guaranteed 

to exist in all reservoir problems.  

 

This method does not need a large number of simulation runs for the uncertainty analysis 

(25 in this case), while some other methods need hundreds of runs. This is another 

advantage of the integrated mismatch method. 
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Fig. 5.24—Multiple method comparisons from different participants. 
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CHAPTER VI 
 

LIMITATIONS AND FUTURE WORK 
 
 
The integrated mismatch method has the following limitations: 

(1) It depends critically upon the choice of parameters. If key influential parameters are 

left out, uncertainty may be underestimated significantly, as in the Pabst field. If the 

user includes too many influential parameters, it will need a large number of 

reservoir simulation runs that will be time-consuming and expensive. More 

influential parameters in the model are not necessarily good for the prediction; 

sometimes more parameters, especially the nonsensitive ones, can deteriorate the 

prediction. When selecting the parameters, the team should try to select the most 

influential parameters and not include too many parameters. 

(2) Accuracy of the method is a function of an arbitrary choice of parameter ranges in 

the experimental design. The integrated reservoir study team decides the ranges of 

the parameters. If they use narrower ranges, the experiments might not cover the true 

reservoir model; thus the predicted reserves will not cover the true reserves value. 

When the team decides the ranges of the parameters, if they are not sure about the 

range of a parameter, choosing a larger range will be better than a small one. 

(3) Like most methods for estimating uncertainty, it is impossible to verify the accuracy 

of only one prediction from the integrated mismatch method. It is only by calibrating 

uncertainty estimates over many trials that we can determine their reliabilities.8 
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On the basis of the above limitations of the integrated mismatch method, we recommend 

the following be investigated in future work: 

(1) Choice of parameter ranges should be investigated further. 

(2) Future studies should apply the integrated mismatch method to more field examples.  

(3) We also note that the integrated mismatch method appears to yield smaller ranges 

than for other methods. This may appear to be desirable at first glance. However, it is 

our impression that the general feeling within the industry is that most uncertainty 

estimates are too narrow (the certainty is overestimated). Thus, methods that result in 

smaller uncertainty estimates may not be better even if they are more precise. We 

expect this has to do more with the choice of parameterization than the method itself. 

This warrants further investigation along with the other limitations mentioned. 

(4) Calibration of uncertainty estimates should be investigated as a means of improving 

uncertainty estimation methods. 
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CHAPTER VII 
 

CONCLUSIONS 
 
 
On the basis of this research on uncertainty analysis methods, we have reached the 

following conclusions: 

(1) The integrated mismatch method tends to generate smaller uncertainty ranges than 

the other methods investigated in this study. When starting from nonoptimal 

reservoir models, in some cases the integrated mismatch method is able to bracket 

the true reserves value while methods fail to bracket it. 

(2) The integrated mismatch method incorporates the quality of the history match into 

the reserves prediction. Although starting from nonoptimal reservoir models that 

underpredict or overpredict the reserves, as long as the experimental designs 

encompass the true case parameters, the method predicts ranges that bracket the true 

reserves value. 

(3) When none of the parameters for the true case is bracketed in the experimental 

design, the integrated mismatch method does not predict a range that brackets the 

true reserves value. This would suggest that larger parameter ranges are better than 

smaller ranges when applying the integrated mismatch method. 

(4) When only some of the parameters for the true case are bracketed in the 

experimental design, the integrated mismatch method may still be able to bracket the 

true reserves value. This appears to apply when results of the experiments bracket 

the true reserves value and there is a correlation between mismatch and closeness to 

the true reserves value. 

 



 
 

111

(5) The experimental design and response surface method does not take the quality of 

the history match into account; thus, it will likely give poor uncertainty 

quantification when the starting models are not close to the true case. 

(6) The experimental design and response surface method requires input parameter 

probability distributions, such as triangular distributions, which are subjective. The 

integrated mismatch method does not have this requirement; parameter probabilities 

are derived from the mismatch between model results and observed performance 

data. 
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NOMENCLATURE 

 
Variables 
 

φ   =  porosity 

AH    = reservoir volume.ft3

Sw  = water saturation 

x  =  random variable 

S  =  response surface function 

P(x)  =  probability density function of x 

xr   =  reservoir parameter vector 

ε  =  model error 

M  =  mismatch, dimensionless 

Ns  =  number of observed production data time series  

Ntj  =  number of observations in jth time series 

w  =  weighting factor, dimensionless 

ycal  =  calculated production data 

yobs  =  observed production data 

σ   =  standard deviation of measure error 

c    = normalization constant 

L   = weighting function 

N  = original hydrocarbon in place, bbl 

NREF   =  reference hydrocarbon in place, bbl
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∆   =  relative variation around the reference value 3 

RF  = recovery factor 

RFREF   =  reference recovery factor

R  =  reserves, STB. 

a    = low boundary of a triangular distribution 

b   = high boundary of a triangular distribution 

p    = mode of triangular distribution 

U   = standard uniform random number generator 

T   = random variate 

x1  =  permeability multiplier of  Layers 1, 3-5 

x2  =  porosity multiplier of  Layers 1, 3-5 

x3  =  permeability multiplier of  Layer 2 

x4  =  porosity multiplier of  Layer 2 
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APPENDIX A 
  

PUNQ-S3 ECLIPSE DATA FILE 
 
-- *------------------------------------------* 
-- *                                          * 
-- * base grid model with input parameters    * 
-- *                                          * 
-- *------------------------------------------* 
RUNSPEC 
 PUNQ-S3 MODEL 
= NDIVIX NDIVIY NDIVIZ 
   19    28      5 / 
= OIL WAT GAS DISGAS VAPOIL QAPITR QWATTR QGASTR NOTRAC NWTRAC NGTRAC 
   T   T   T     T      F      F      F      F      0      0      0   / 
= UNIT CONVENTION 
     'METRIC'                                  / 
=  NRPVT  NPPVT  NTPVT NTROCC QROCKC QRCREV 
    30     30      1      1      F      F      / 
= NSSFUN NTSFUN QDIRK QREVK QVEOP QHYST QSCAL QSDIR QSREV NSEND NTEND 
    35      1      F     T     F     F     F     F     T     1     1   / 
= NDRXVD NTEQUL NDPRVD QUIESC QTHPRS QREVTH QMOBIL NTTRVD NSTRVD 
    5       1    100      T      F      T      F      1      1         / 
=  NTFIP QGRAID QPAIR QTDISP NTFRG QTDSK NRFRG NMFPR NETRC MHISTM NMHISTR 
    5   F   F   F   0   F   0   0   0  / 
= NWMAXZ NCWMAX NGMAXZ NWGMAX  NLGRMAX  NMAXCL 
     20     40      2    20        0      0    / 
= QIMCOL NWCOLC NUPCOL 
     F      0      3                           / 
= MXMFLO MXMTHP MXMWFR MXMGFR MXMALQ NMMVFT 
    10      10     10     10     1      1      / 
= MXSFLO MXSTHP NMSVFT 
    10      10      1                          / 
= NANAQU NCAMAX NIFTBL NRIFTB 
     2     120     0      0                    / 
=   DAY   MONTH  YEAR 
    01    'JAN'  1967                          / 
= QSOLVE NSTACK QFMTOU QFMTIN QUNOUT QUNINP NGDISK IDYNAM 
     T     25      F      F    T      T        / 
 
MESSAGES 
8* 10000 / 
 
NOECHO 
 
GRID 
INIT 
 
-- put in your PORO, PERMX and PERMZ 
INCLUDE 
  'PUNQS3.PRP' 
/ 
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COPY 
 'PERMX'  'PERMY'  / 
/ 
 
-- get corner point geometry 
INCLUDE 
  'PUNQS3.GEO' 
/ 
 
PROPS    =============================================================== 
 
-- RELATIVE PERMEABILITY AND CAPPILARY PRESSURE CURVES 
SWFN 
0.2  0.0      0.0 
0.3  0.00024  0.0 
0.4  0.0039   0.0 
0.5  0.02     0.0 
0.6  0.062    0.0 
0.7  0.152    0.0 
0.8  0.316    0.0 
0.9  0.585    0.0 
1.0  1.0      0.0 
/ 
 
SOF3 
0.1  0.0   0.0 
0.2  0.018 0.0 
0.3  0.073 0.025 
0.4  0.165 0.1 
0.5  0.294 0.225 
0.6  0.459 0.4 
0.7  0.661 0.625 
0.8  0.9   0.9 
/ 
 
SGFN 
0.0  0.0        0.0 
0.1  0.00000077 0.0 
0.2  0.000049   0.0 
0.3  0.00056    0.0 
0.4  0.0032     0.0 
0.5  0.012      0.0 
0.6  0.036      0.0 
0.7  0.091      0.0 
0.8  0.2        0.0 
/ 
 
-- PVT DATA 
PVTO             
11.460    40.000   1.064   4.338   / 
17.890    60.000   1.078   3.878   / 
24.320    80.000   1.092   3.467   / 
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30.760   100.000   1.106   3.100   / 
37.190   120.000   1.120   2.771   / 
43.620   140.000   1.134   2.478   / 
46.840   150.000   1.141   2.343   / 
50.050   160.000   1.148   2.215   / 
53.270   170.000   1.155   2.095   / 
56.490   180.000   1.162   1.981   / 
59.700   190.000   1.169   1.873   / 
62.920   200.000   1.176   1.771   / 
66.130   210.000   1.183   1.674   / 
69.350   220.000   1.190   1.583   / 
72.570   230.000   1.197   1.497   / 
74.000   234.460   1.200   1.460    
         250.000   1.198   1.541    
         300.000   1.194   1.787   / 
80.000   245.000   1.220   1.400    
         300.000   1.215   1.700   / 
/             
PVDG             
 40.00   0.02908   0.00880       
 60.00   0.01886   0.00920       
 80.00   0.01387   0.00960       
100.00   0.01093   0.01000       
120.00   0.00899   0.01040       
140.00   0.00763   0.01090       
150.00   0.00709   0.01110       
160.00   0.00662   0.01140       
170.00   0.00620   0.01160       
180.00   0.00583   0.01190          
190.00   0.00551   0.01210          
200.00   0.00521   0.01240          
210.00   0.00495   0.01260          
220.00   0.00471   0.01290          
230.00   0.00449   0.01320          
234.46   0.00440   0.01330          
/                
DENSITY                
912.0   1000.0   0.8266          
/                
PVTW                
234.46   1.0042   5.43E-05   0.5   1.11E-04   / 
 
 
-- ROCK COMPRESSIBILITY 
-- 
--    REF. PRES   COMPRESSIBILITY 
ROCK 
         235           0.00045   / 
 
-- SWITCH OFF OUTPUT OF ALL PROPS DATA 
 
STONE1 
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REGIONS  =============================================================== 
 
ENDBOX 
 
SOLUTION =============================================================== 
 
AQUCT                            
 1 2355 234  137.5 0.2125  3.5E-05 3000 19.6 95 1  1  / 
 2 2355 234  137.5 0.2125  3.5E-05 3200  6.0 95 1  1  / 
                          
AQUANCON                                                       
1   14   14    4    4   5   5   'I-'   1180.7   / 
1   15   15    4    4   5   5   'J-'   1186.7   / 
1   16   16    4    4   5   5   'J-'   1189.7   / 
1   17   17    4    4   5   5   'J-'   1197.7   / 
1   18   18    4    4   5   5   'I-'   1204.3   / 
1   12   12    5    5   5   5   'I+'   1094.6   / 
1   13   13    5    5   5   5   'I-'   1115.7   / 
1   11   11    6    6   5   5   'J-'   1031.0   / 
1   10   10    7    7   5   5   'I-'    999.6   / 
1    9    9    8    8   5   5   'I-'    983.6   / 
1    8    8    9    9   5   5   'I-'    987.8   / 
1    7    7   10   10   5   5   'I-'   1001.5   / 
1    6    6   11   11   5   5   'I-'   1005.3   / 
1    6    6   12   12   5   5   'I-'    966.6   / 
1    5    5   13   13   5   5   'I-'    911.7   / 
1    5    5   14   14   5   5   'I-'    877.4   / 
1    4    4   15   15   5   5   'I-'    835.6   / 
1    4    4   16   16   5   5   'I-'    819.1   / 
1    3    3   17   17   5   5   'I-'    755.5   / 
1    3    3   18   18   5   5   'I-'    720.2   / 
1    3    3   19   19   5   5   'I-'    673.3   / 
1    3    3   20   20   5   5   'I-'    633.9   / 
1    3    3   21   21   5   5   'I-'    596.0   / 
1    3    3   22   22   5   5   'I-'    607.8   / 
1    3    3   23   23   5   5   'I-'    614.3   / 
1    3    3   24   24   5   5   'I-'    598.3   / 
1    3    3   25   25   5   5   'I-'    460.6   / 
1    4    4   26   26   5   5   'I-'    153.2   / 
1    5    5   26   26   5   5   'J+'    256.8   / 
1    6    6   27   27   5   5   'I-'    251.4   / 
1    7    7   27   27   5   5   'J+'    255.2   / 
1    8    8   27   27   5   5   'J+'    247.2   / 
1    9    9   27   27   5   5   'J+'    232.8   / 
1   10   10   27   27   5   5   'J+'    227.4   / 
1   11   11   27   27   5   5   'J+'    222.8   / 
1   12   12   27   27   5   5   'I+'    223.2   / 
 
1   14   14    4    4   4   4   'I-'   1180.7   / 
1   15   15    4    4   4   4   'J-'   1186.7   / 
1   16   16    4    4   4   4   'J-'   1189.7   / 
1   17   17    4    4   4   4   'J-'   1197.7   / 
1   18   18    4    4   4   4   'I-'   1204.3   / 
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1   12   12    5    5   4   4   'I+'   1094.6   / 
1   13   13    5    5   4   4   'I-'   1115.7   / 
1   11   11    6    6   4   4   'J-'   1031.0   / 
1   10   10    7    7   4   4   'I-'    999.6   / 
1    9    9    8    8   4   4   'I-'    983.6   / 
1    8    8    9    9   4   4   'I-'    987.8   / 
1    7    7   10   10   4   4   'I-'   1001.5   / 
1    6    6   11   11   4   4   'I-'   1005.3   / 
1    6    6   12   12   4   4   'I-'    966.6   / 
1    5    5   13   13   4   4   'I-'    911.7   / 
1    5    5   14   14   4   4   'I-'    877.4   / 
1    4    4   15   15   4   4   'I-'    835.6   / 
1    4    4   16   16   4   4   'I-'    819.1   / 
1    3    3   17   17   4   4   'I-'    755.5   / 
1    3    3   18   18   4   4   'I-'    720.2   / 
1    3    3   19   19   4   4   'I-'    673.3   / 
1    3    3   20   20   4   4   'I-'    633.9   / 
1    3    3   21   21   4   4   'I-'    596.0   / 
1    3    3   22   22   4   4   'I-'    607.8   / 
1    3    3   23   23   4   4   'I-'    614.3   / 
1    3    3   24   24   4   4   'I-'    598.3   / 
1    3    3   25   25   4   4   'I-'    733.9   / 
1    4    4   26   26   4   4   'I-'    303.9   / 
1    5    5   26   26   4   4   'J+'    256.8   / 
1    6    6   27   27   4   4   'I-'    251.4   / 
1    7    7   27   27   4   4   'J+'    255.2   / 
1    8    8   27   27   4   4   'J+'    247.2   / 
1    9    9   27   27   4   4   'J+'    232.8   / 
1   10   10   27   27   4   4   'J+'    227.4   / 
1   11   11   27   27   4   4   'J+'    222.8   / 
1   12   12   27   27   4   4   'I+'    223.2   / 
 
1   14   14    4    4   3   3   'I-'   1180.7   / 
1   15   15    4    4   3   3   'J-'   1186.7   / 
1   16   16    4    4   3   3   'J-'   1189.7   / 
1   17   17    4    4   3   3   'J-'   1197.7   / 
1   18   18    4    4   3   3   'I-'   1204.3   / 
1   12   12    5    5   3   3   'I+'   1094.6   / 
1   13   13    5    5   3   3   'I-'   1115.7   / 
1   11   11    6    6   3   3   'J-'   1031.0   / 
1   10   10    7    7   3   3   'I-'    999.6   / 
1    9    9    8    8   3   3   'I-'    983.6   / 
1    8    8    9    9   3   3   'I-'    987.8   / 
1    7    7   10   10   3   3   'I-'   1001.5   / 
1    6    6   11   11   3   3   'I-'   1005.3   / 
1    6    6   12   12   3   3   'I-'    966.6   / 
1    5    5   13   13   3   3   'I-'    911.7   / 
1    5    5   14   14   3   3   'I-'    877.4   / 
1    4    4   15   15   3   3   'I-'    835.6   / 
1    4    4   16   16   3   3   'I-'    819.1   / 
1    3    3   17   17   3   3   'I-'    755.5   / 
1    3    3   18   18   3   3   'I-'    720.2   / 
1    3    3   19   19   3   3   'I-'    673.3   / 
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1    3    3   20   20   3   3   'I-'    633.9   / 
1    3    3   21   21   3   3   'I-'    596.0   / 
1    3    3   22   22   3   3   'I-'    607.8   / 
1    3    3   23   23   3   3   'I-'    614.3   / 
1    3    3   24   24   3   3   'I-'    598.3   / 
1    3    3   25   25   3   3   'I-'    733.9   / 
1    4    4   26   26   3   3   'I-'    303.9   / 
1    5    5   26   26   3   3   'J+'    256.8   / 
1    6    6   27   27   3   3   'I-'    251.4   / 
1    7    7   27   27   3   3   'J+'    255.2   / 
1    8    8   27   27   3   3   'J+'    247.2   / 
1    9    9   27   27   3   3   'J+'    232.8   / 
1   10   10   27   27   3   3   'J+'    227.4   / 
1   11   11   27   27   3   3   'J+'    222.8   / 
1   12   12   27   27   3   3   'I+'    223.2   / 
 
2   15   15    1    1   2   2   'I-'    979.0   / 
2   16   16    1    1   2   2   'J-'    963.7   / 
2   17   17    1    1   2   2   'J-'    940.0   / 
2   18   18    1    1   2   2   'I+'    904.5   / 
2   14   14    2    2   2   2   'I-'    860.9   / 
2   11   11    3    3   2   2   'I-'    665.4   / 
2   12   12    3    3   2   2   'J-'    657.5   / 
2   13   13    3    3   2   2   'J-'    652.0   / 
2   10   10    4    4   2   2   'I-'    586.0   / 
2    9    9    5    5   2   2   'I-'    620.4   / 
2    8    8    6    6   2   2   'I-'    743.0   / 
2    7    7    7    7   2   2   'I-'    213.5   / 
2    6    6    8    8   2   2   'I-'    284.7   / 
2    6    6    9    9   2   2   'I-'    366.6   / 
2    5    5   10   10   2   2   'I-'    395.4   / 
2    5    5   11   11   2   2   'I-'    464.4   / 
2    5    5   12   12   2   2   'I-'    504.3   / 
2    4    4   13   13   2   2   'I-'    553.3   / 
2    4    4   14   14   2   2   'I-'    595.7   / 
2    3    3   15   15   2   2   'I-'    716.9   / 
2    2    2   16   16   2   2   'I-'    583.6   / 
2    2    2   17   17   2   2   'I-'    576.6   / 
2    2    2   18   18   2   2   'I-'    518.7   / 
2    1    1   23   23   2   2   'I-'    750.1   / 
2    1    1   24   24   2   2   'I-'    767.4   / 
2    1    1   25   25   2   2   'I-'    698.9   / 
2    2    2   26   26   2   2   'I-'    721.1   / 
2    3    3   27   27   2   2   'I-'    666.0   / 
2    4    4   28   28   2   2   'I-'    644.2   / 
2    5    5   28   28   2   2   'J+'    743.7   /  
 
2   15   15    1    1   1   1   'I-'   1958.0   / 
2   16   16    1    1   1   1   'J-'   1927.4   / 
2   17   17    1    1   1   1   'J-'   1880.5   / 
2   18   18    1    1   1   1   'I+'   1809.0   / 
2   14   14    2    2   1   1   'I-'   1721.9   / 
2   11   11    3    3   1   1   'I-'   1330.8   / 
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2   12   12    3    3   1   1   'J-'   1315.0   / 
2   13   13    3    3   1   1   'J-'   1303.9   / 
2   10   10    4    4   1   1   'I-'   1172.1   / 
2    9    9    5    5   1   1   'I-'   1240.8   / 
2    8    8    6    6   1   1   'I-'   1486.0   / 
2    7    7    7    7   1   1   'I-'   1222.1   / 
2    6    6    8    8   1   1   'I-'   1242.7   / 
2    6    6    9    9   1   1   'I-'   1171.9   / 
2    5    5   10   10   1   1   'I-'    988.7   / 
2    5    5   11   11   1   1   'I-'    961.8   / 
2    5    5   12   12   1   1   'I-'   1022.0   / 
2    4    4   13   13   1   1   'I-'   1110.6   / 
2    4    4   14   14   1   1   'I-'   1189.5   / 
2    3    3   15   15   1   1   'I-'   1131.3   / 
2    2    2   16   16   1   1   'I-'   1350.2   / 
2    2    2   17   17   1   1   'I-'   1491.5   / 
2    2    2   18   18   1   1   'I-'   1442.2   / 
2    1    1   23   23   1   1   'I-'   1167.1   / 
2    1    1   24   24   1   1   'I-'   1253.7   / 
2    1    1   25   25   1   1   'I-'   1306.9   / 
2    2    2   26   26   1   1   'I-'   1183.3   / 
2    3    3   27   27   1   1   'I-'   1070.9   / 
2    4    4   28   28   1   1   'I-'   1179.4   / 
2    5    5   28   28   1   1   'J+'   1260.5   / 
/                                                       
 
--    DATUM  DATUM   OWC    OWC    GOC    GOC    RSVD   RVVD   SOLN 
--    DEPTH  PRESS  DEPTH   PCOW  DEPTH   PCOG  TABLE  TABLE   METH 
EQUIL 
     2355.00 234.46 2395.0 0.00  2355.0 0.000     1     1*      0  / 
 
RSVD 
 2175  74.00 
 2496  74.00 / 
 
 
SUMMARY ================================================================ 
 
RUNSUM 
SEPARATE 
 
RPTONLY 
 
FOPT 
FGPT 
FWPT 
 
WOPR 
  'PRO-1' 
  'PRO-4' 
  'PRO-5' 
  'PRO-11' 
  'PRO-12' 
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  'PRO-15' 
  'PRO-23' 
--  'PRO-24' 
--  'PRO-29' 
--  'PRO-50' 
/ 
 
WBHP 
  'PRO-1' 
  'PRO-4' 
  'PRO-5' 
  'PRO-11' 
  'PRO-12' 
  'PRO-15' 
--  'PRO-23' 
--  'PRO-24' 
--  'PRO-29' 
--  'PRO-50' 
/ 
 
WGOR 
  'PRO-1' 
  'PRO-4' 
  'PRO-5' 
  'PRO-11' 
  'PRO-12' 
  'PRO-15' 
--  'PRO-23' 
--  'PRO-24' 
--  'PRO-29' 
--  'PRO-50' 
/ 
 
WWCT 
  'PRO-1' 
  'PRO-4' 
  'PRO-5' 
  'PRO-11' 
  'PRO-12' 
  'PRO-15' 
--  'PRO-23' 
--  'PRO-24' 
--  'PRO-29' 
--  'PRO-50' 
/ 
 
SCHEDULE 
 
--RPTSCHED 
--  'SGAS' 'SWAT' 'RESTART' / 
  
--   1   1   1   1   1   0   2   3   5   0   0   0   1   1   0   0   0 
--   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
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--   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   / 
 
-- SET 'NO RESOLUTION' OPTION 
DRSDT 
      0  / 
 
------------------- WELL SPECIFICATION DATA -------------------------- 
WELSPECS 
'PRO-1'    'G1'   10   22   2362.2   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-4'    'G1'    9   17   2373.0   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-5'    'G1'   17   11   2381.7   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-11'   'G1'   11   24   2386.0   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-12'   'G1'   15   12   2380.5   'OIL'   1*   'STD'   3*   'SEG'   / 
'PRO-15'   'G1'   17   22   2381.0   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-23'   'G1'    5   23   2380.7   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-24'   'G1'    7   14   2382.5   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-29'   'G1'   15    7   2376.7   'OIL'   1*   'STD'   3*   'SEG'   / 
--'PRO-50'   'G1'   12   12   2362.2   'OIL'   1*   'STD'   3*   'SEG'   / 
/ 
COMPDAT 
--                                        RADIUS    SKIN 
'PRO-1'    10   22   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-1'    10   22   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-4'     9   17   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-4'     9   17   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-5'    17   11   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-5'    17   11   3   3   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-11'   11   24   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-11'   11   24   3   3   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-12'   15   12   5   5   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-12'   15   12   4   4   'OPEN'   2*  0.15  1*  5.0 / 
'PRO-15'   17   22   4   4   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-23'    5   23   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-23'    5   23   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-24'    7   14   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-24'    7   14   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-29'   15    7   2   2   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-29'   15    7   1   1   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-50'   12   12   3   3   'OPEN'   2*  0.15  1*  5.0 / 
--'PRO-50'   12   12   2   2   'OPEN'   2*  0.15  1*  5.0 / 
/ 
 
WCONPROD 
'PRO*'  'SHUT'  6* 120.0 / 
/ 
 
WCUTBACK 
'PRO*' 1* 200.0 2* 0.75 'OIL' 120.0 / 
/ 
 
--------------------- PRODUCTION SCHEDULE ---------------------------- 
TSTEP 
0.01 
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/ 
 
WELOPEN                 
  'PRO-1'   'OPEN'  /             
  'PRO-4'   'OPEN'  /           
  'PRO-5'   'OPEN'  /           
  'PRO-11'  'OPEN'  /           
  'PRO-12'  'OPEN'  /           
  'PRO-15'  'OPEN'  /           
/               
WELTARG 
  'PRO-1'   'ORAT'  100.0 / 
  'PRO-4'   'ORAT'  100.0 / 
  'PRO-5'   'ORAT'  100.0 / 
  'PRO-11'  'ORAT'  100.0 / 
  'PRO-12'  'ORAT'  100.0 / 
  'PRO-15'  'ORAT'  100.0 / 
/ 
 
TSTEP 
  1 / 
 
DATES               
1  'FEB'  1967  /         
/ 
 
DATES               
1  'MAR'  1967  /         
/ 
 
DATES               
1  'APR'  1967  /         
/ 
 
WELTARG               
  'PRO-1'   'ORAT'  200.0 /   
  'PRO-4'   'ORAT'  200.0 /   
  'PRO-5'   'ORAT'  200.0 /   
  'PRO-11'  'ORAT'  200.0 /   
  'PRO-12'  'ORAT'  200.0 /   
  'PRO-15'  'ORAT'  200.0 /   
/               
 
TSTEP 
  1 / 
 
DATES               
1  'MAY'  1967  /         
/ 
 
DATES               
1  'JUN'  1967  /         
/ 
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DATES               
1  'JUL'  1967  /         
/ 
 
WELTARG               
  'PRO-1'   'ORAT'  100.0 /   
  'PRO-4'   'ORAT'  100.0 /   
  'PRO-5'   'ORAT'  100.0 /   
  'PRO-11'  'ORAT'  100.0 /   
  'PRO-12'  'ORAT'  100.0 /   
  'PRO-15'  'ORAT'  100.0 /   
/               
 
TSTEP 
  1 / 
 
DATES               
1  'AUG'  1967  /         
/ 
 
DATES               
1  'SEP'  1967  /         
/ 
 
DATES               
1  'OCT'  1967  /         
/               
 
WELTARG               
  'PRO-1'   'ORAT'  50.0 /   
  'PRO-4'   'ORAT'  50.0 /   
  'PRO-5'   'ORAT'  50.0 /   
  'PRO-11'  'ORAT'  50.0 /   
  'PRO-12'  'ORAT'  50.0 /   
  'PRO-15'  'ORAT'  50.0 /   
/               
 
TSTEP 
  1 /               
 
DATES               
1  'NOV'  1967  /         
/               
 
DATES               
1  'DEC'  1967  /         
/               
 
DATES               
1  'JAN'  1968  /         
/               
               

 



 
 

130

-- End for test purposes 
 
WELTARG               
  'PRO-1'   'ORAT'   0.0 /   
  'PRO-4'   'ORAT'   0.0 /   
  'PRO-5'   'ORAT'   0.0 /   
  'PRO-11'  'ORAT'   0.0 /   
  'PRO-12'  'ORAT'   0.0 /   
  'PRO-15'  'ORAT'   0.0 /   
/               
 
TSTEP 
  1 / 
 
-- Just to include shut-in 
 
DATES               
1  'JAN'  1969  /         
/               
DATES               
1  'JAN'  1970  /         
/ 
DATES               
1  'JAN'  1971  /         
/ 
 
-- End for buildup-test purposes 
 
WELTARG               
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 /   
  'PRO-5'   'ORAT'   150.0 /   
  'PRO-11'  'ORAT'   150.0 /   
  'PRO-12'  'ORAT'   150.0 /   
  'PRO-15'  'ORAT'   150.0 /   
/               
 
TSTEP 
  1 / 
 
DATES 
1  'JUL' 1971  / 
/ 
 
-- work over -- 
  
DATES               
1  'JAN'  1972  /         
/ 
 
WELTARG               
  'PRO-1'   'ORAT'   0.0 /   
  'PRO-4'   'ORAT'   0.0 /   
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  'PRO-5'   'ORAT'   0.0 /   
  'PRO-11'  'ORAT'   0.0 /   
  'PRO-12'  'ORAT'   0.0 /   
  'PRO-15'  'ORAT'   0.0 /   
/               
 
TSTEP 
  1 / 
 
DATES               
15  'JAN'  1972  /         
/ 
 
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
 
TSTEP 
  1 / 
 
DATES               
1  'JUL'  1972  /         
/ 
DATES               
1  'JAN'  1973  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1973  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
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  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1973  /         
/ 
DATES               
1  'JAN'  1974  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1974  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1974  /         
/ 
DATES               
1  'JAN'  1975  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
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  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1975  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1975  /         
/ 
DATES               
1  'JAN'  1976  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1976  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
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  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1976  /         
/ 
DATES               
1  'JAN'  1977  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1977  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1977  /         
/ 
DATES               
1  'JAN'  1978  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
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  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1978  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1978  /         
/ 
DATES               
1  'JAN'  1979  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1979  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
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/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1979  /         
/ 
DATES               
1  'JAN'  1980  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1980  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1980  /         
/ 
DATES               
1  'JAN'  1981  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
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  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1981  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1981  /         
/ 
DATES               
1  'JAN'  1982  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1982  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
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TSTEP 
  1 / 
  
DATES               
1  'JUL'  1982  /         
/ 
DATES               
1  'JAN'  1983  /         
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   0.0 / 
  'PRO-4'   'ORAT'   0.0 / 
  'PRO-5'   'ORAT'   0.0 / 
  'PRO-11'  'ORAT'   0.0 / 
  'PRO-12'  'ORAT'   0.0 / 
  'PRO-15'  'ORAT'   0.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES 
15  'JAN'  1983  / 
/ 
  
WELTARG 
  'PRO-1'   'ORAT'   150.0 / 
  'PRO-4'   'ORAT'   150.0 / 
  'PRO-5'   'ORAT'   150.0 / 
  'PRO-11'  'ORAT'   150.0 / 
  'PRO-12'  'ORAT'   150.0 / 
  'PRO-15'  'ORAT'   150.0 / 
/ 
  
TSTEP 
  1 / 
  
DATES               
1  'JUL'  1983  /         
/ 
 
END 
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