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ABSTRACT 
 

Estimating the Expected Latency to Failure Due to Manufacturing Defects. 

(December 2003) 

David Michael Dorsey, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. M. Ray Mercer 

 

Manufacturers of digital circuits test their products to find defective parts so 

they are not sold to customers.  Despite extensive testing, some of their products that 

are defective pass the testing process.  To combat this problem, manufacturers have 

developed a metric called defective part level.  This metric measures the percentage of 

parts that passed the testing that are actually defective.  While this is useful for the 

manufacturer, the customer would like to know how long it will take for a 

manufacturing defect to affect circuit operation.  In order for a defect to be detected 

during circuit operation, it must be excited and observed at the same time.  This 

research shows the correlation between defect detection during automatic test pattern 

generation (ATPG) testing and normal operation for both combinational and sequential 

circuits.  This information is then used to formulate a mathematical model to predict 

the expected latency to failure due to manufacturing defects. 
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INTRODUCTION 

Manufacturers of integrated circuits (IC) spend a great deal of time testing their 

products to ensure that their products are defect free.  Manufacturers would ideally test 

every possible input combination and compare the observed result to the expected 

result.  Practically, this is impossible.  A circuit with thirty inputs would have over one 

billion possible input combinations.  Unfortunately, the tests patterns that are applied 

during testing do not detect every possible defect that could be in the circuit.  

Consequently, some defective parts will pass the testing process and be considered 

non-defective.  The percentage of parts that contain defects but considered defect-free 

is called defective part level.  Defective part level is an important industry metric 

because it gives the manufacturer and the consumer an estimate of the probability that 

the integrated circuit contains a manufacturing defect.  Obviously, a lower defective 

part level is preferable to a high defective part level, but obtaining a defective part level 

of zero is impractical.  The question that remains is how low a defective part level is 

low enough? 

This work is the beginning of the answer to that question.  We attempt to 

answer that question by finding the expected latency to failure due to manufacturing 

defects (ELF-MD) for a defective IC given that it was tested with a test pattern set that 

produced a defective part level.  If the expected latency is very large – on the order of 

the life of the product or longer, then additional testing is probably unnecessary.  

Software errors or normal “wear and tear” will probably lead to errors before the 

____________ 
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manufacturing defect.  Accordingly, if the expected latency is relatively small, then 

additional testing is necessary to filter out the defective parts. 

We start the answer by determining what information is needed to estimate the 

ELF-MD.  We test different circuits with automatic test pattern generation (ATPG) and 

then with random patterns.  Random patterns are used to simulate the circuit in normal 

operation.  First we determine how often each site in the circuit is observed during 

ATPG testing and during “normal operation.”  Then, under each operating condition, 

we determine how quickly different defects are detected.  In essence, we determine 

how “easy” it is to detect a defect under each operating mode.  We then use that 

information to develop an initial model that will predict ELF-MD. 

The next section of this thesis describes the work that has been done in the area 

of defective part level prediction.  Then the concept of scan based testing is discussed.  

Then the correlation between how “easy” it is to detect a defect in “normal operation” 

and with ATPG patterns is presented.  Following that, a model that predicts ELF-MD 

is introduced.  Finally, this thesis discusses future work to be done in this area and the 

conclusions that can be drawn from this research. 
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PREVIOUS WORK 

At one time, the amount of logic contained in an integrated circuit was small 

enough to allow it to be tested with every possible input pattern.  Using this test set 

gave the manufacturer a great deal of confidence that all parts that passed the tests were 

non-defective.  As the industry advanced, this quickly became impractical because the 

number of possible test patterns grows exponentially with the number of inputs to the 

circuit.  Consequently, the test patterns applied during testing are only a small subset of 

all possible test patterns.  The question is how to determine in a cost-effective way 

whether the device in question was manufactured correctly [1]. 

In 1959, R. D. Eldred realized that because defects are physical entities that 

occur in the circuit’s structure, test patterns can be created that attempt to detect the 

defects occurring at different circuit locations.  This is done by targeting “faults”, 

which predict the effect of modeled defects on the logic operation of the circuit.  For 

this purpose he proposed the single stuck-at fault model [2].  In this model, a site in the 

circuit is either “stuck” at logic one, “stuck” at logic zero, or non-defective.  If a site is 

“stuck” at logic one, that site will be considered a logic one even if the logic value at 

that site should be zero.  The single stuck-at fault model also assumes that any 

defective circuit will only have one fault present.  If all stuck-at faults were considered, 

there would be 3N faults, where N is the number of sites in the circuit, because each site 

could be stuck-at one, stuck-at zero, or non-defective.  Since simulating every defect 

would be impractical, the industry uses the single stuck-at fault model [1]. 

The number of possible stuck-at faults only grows linearly with circuit size 

unlike the number of possible input combinations, which grows exponentially.  In 
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addition, a single test pattern that is generated to detect a specific stuck-at fault will 

often fortuitously detect many other single stuck-at faults as well.  Therefore, the 

number of test patterns required to detect all stuck-at faults in the circuit is generally 

significantly smaller than the number of possible stuck-at faults. 

The single stuck-at fault coverage of a test set has been used as a metric of test 

set quality.  A test set that achieves 99% stuck-at fault coverage is considered better to 

one that achieves only 95% stuck-at fault coverage.  While this is a useful metric, the 

actual goal of testing is to identify all of the defective parts and reduce the defective 

part level, not increase the stuck-at fault coverage.  Therefore, an accurate defective 

part level predictor would be a better metric for comparing the effectiveness of test 

pattern sets.  One of the most famous and widely used defective part level models is the 

Williams Brown model, which was published in 1981 [3]. 

The Williams Brown model uses fault coverage and the initial yield before test 

patterns have been applied to predict the final defective part level according to 

following formula. 

FCYDL −−= 11                                                     (1) 

Here, Y is the manufacturing yield and FC is the fault coverage of the test pattern set 

applied.  This is usually the stuck-at fault coverage.  In most defective part level 

models, the predicted value of the DL is a fraction which is then converted to parts per 

million by multiplying by 106. 

However, the single stuck-at fault model, or any single fault model in fact, 

cannot represent the effects of all possible defects.  Thus, stuck-at fault test sets may 

not detect an adequate number of the untargeted defects [4], [5], [6], [7], [8].  This is 
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true even though the Williams Brown model predicts that at 100% fault coverage the 

defective part level will be zero.  In fact, as fault coverage approaches 100%, the test 

patterns targeted at the remaining stuck-at faults are biased in favor of detecting those 

faults at the expense of the remaining defects [9], [10], [11].  Furthermore, different 

test pattern sets with identical fault coverages may have very different defect coverages 

and thus produce very different defective part levels [12], [13], [14].  In fact, as fault 

coverage approaches 100%, the standard deviation of the defect coverage of the test 

sets increases—making fault coverage an inaccurate metric for predicting defect 

coverage and defect level [14]. 

However, while stuck-at faults do not capture the behavior of all possible 

defects, there is a common requirement for detecting any defect, regardless of type: the 

site where the defect occurs must be observed at an output.  In other words, the 

incorrect value at the site where the defect occurs must be propagated through the 

circuit logic to a primary output.  The excitation requirements vary from one defect 

type to another.  Excitation refers to the need to create a difference in the expected 

logic value and the observed logic value at the defect site.  Both excitation and 

observation must occur simultaneously for the defect to be detected. 

Consider two circuits, each of which are composed of a single two-input OR 

gate as shown in Figure 1.  However the second OR gate has a defect corresponding to 

a stuck-at 0 fault at site A’.  If both circuits are assigned values as shown in Figure 1, 

the defect is not excited because there is no difference in the value caused by the fault 

and the expected value at that point.  Also, the defect site is not observed because the 

logic one at sites B and B’ cause the output of the OR gate to be a logic one regardless 
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of the logic value at sites A and A’.  So this input pattern satisifies none of the 

requirements to detect a defect. 

 

 
Figure 1.  Test Pattern That Does Not Detect Defect 

 

If the input pattern is as shown in Figure 2, the defect is not detected but it is excited.  

The logic value at site A’ is remains zero despite inputting a logic one because of the 

stuck-at fault.  However, the defect is not observed because the output is a logic one 

regardless of the values at A and A' because of the logic ones on B and B'. 

 

 
Figure 2.  Test Pattern That Excites Defect But Does Not Observe the Defect 
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However, if the input pattern is the one shown in Figure 3, the defect is observed and 

excited and therefore detected.  This is demonstrated by the difference in the values at 

C and C’.  The logic values at sites B and B’ do not control the output of their 

respective OR gates allowing the values at sites A and A’ to influence the output.  

Since the defect at A’ is also excited, the incorrect logic value is propagated to the 

output. 

 

 
Figure 3.   Test Pattern That Detects Defect 

 

Just as stuck-at faults may be fortuitously detected by test patterns targeting 

other stuck-at faults, a defect not well-modeled by a stuck-at fault may be fortuitously 

detected by a test pattern that targets that fault if the site where the defect occurs is 

observed and the defect happens to be excited.  In fact, it has been found that as a site 

is observed more times, the probability of an undetected defect never having been 

simultaneously excited decreases significantly.  

This analysis of the commonality and differences among excitation and 

observation requirements of defects lead to the Deterministic Observation, Random 

Excitation, and MPG-D Defective Part Level Estimation (DO-RE-ME) test pattern 
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generation method [15].  When the DO-RE-ME method is used, emphasis is placed on 

observing every circuit site, especially those that are difficult to observe, as many times 

as possible while randomly exciting whatever defects may occur at those sites.  In 

addition, the MPG-D defective part level model is used to predict the defective part 

level of the resulting test set and to choose among possible subsets if too many vectors 

are initially generated to fit in the tester memory.  Unlike defective part level models 

that predict the defective part level based upon simple fault coverage, the MPG-D 

model predicts the defective part level based upon the number of observations of 

different circuit sites or faults and has been shown to be more accurate, especially at 

very high fault coverages [16].   

The observation data required for the MPG-D defective part level model can be 

obtained from a fault dictionary.  Initially, all circuit sites are assigned a contribution to 

the overall defective part level.  This contribution is usually equal for each circuit site.  

Thus, the defect level contribution of site i before any test patterns have been applied is 

shown in equation 2. 

sitesof#
1)0( YieldDLi
−

=                                                    (2) 

The defect level contribution of each site then changes as patterns are applied based 

upon observation counts of those sites.  The probability of exciting an undetected 

defect at a site given that that site is observed has been studied [17] and shown to be a 

decaying exponential function of the number of times that site has been observed 

previously and a time constant τ, as described in equation 3. 

τ
i

i

obs

obsexcite eP
#

|

−
=                                                   (3) 
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This makes intuitive sense.  Consider Figure 4.  Here the boxes represent all 

test patterns (input combinations) that will observe a given site i.  Each oval within the 

boxes represents the test patterns that will detect a corresponding undetected defect.  In 

other words, those test patterns will excite that defect while it is observed.  The left 

rectangle represents the test spaces for undetected defects before a test pattern has been 

applied.  A large portion of the box is covered, indicating that the simultaneous 

excitation of at least one undetected defect given that this site is observed is highly 

likely the first time it is observed. 

 

 
Figure 4.  Test Spaces of Undetected Defects Given Before and After the Test Pattern Is Applied 

 

Now assume that the first test pattern to observe this site is located at the point 

indicated by the star.  If this test pattern is chosen, then several of the defects will be 

detected and therefore do not appear in the box on the right.  The probability of 

exciting at least one undetected defect given that the site is observed is now 

considerably lower. 

before after

Test pattern 
applied 
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This information is used to calculate the change in defective part level 

contribution of each site as a result of whether or not it has been observed by a pattern 

according to the following formula: 









 −

=∆

otherwise ,0

pattern by  observed  was site if   

),*(*)1( |

ni

PAnDL

site

iobsexcitei

i                           (4) 

Here, the constant A represents the fraction of defective part level contribution 

that will be removed from the site given that at least one undetected defect is excited 

and observed. 

Other equations are used to calculate additional changes in defective part level 

contribution due to the sharing of defects among circuit sites, giving a resulting value 

of ∆sharei.  Then a new value for each site’s defective part level contribution after 

pattern n has been applied is calculated according to the following equation: 

iiii sharesitenDLnDL ∆−∆−−= )1()(                                (5) 

The overall defective part level is calculated by summing the defective part level 

contributions of every site. 

∑
=

=
 sitesof #

i
i nDLnDLTotal

1

)()(_                                           (6) 

However, while the defective part level obtained by a given test pattern set is very 

valuable information for both the integrated circuit manufacturer and the customer, 

another valuable metric to consider would be the expected latency to failure due to 

manufacturing defects.  This is important because it gives an estimate of how soon the 

defect will affect the operation of a circuit.  It allows for a quantitative analysis of 
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whether defective part levels obtained with current test sets are low enough for a given 

application.  In addition, it allows the probability that the first error that occurs during 

circuit operation will be due to a manufacturing defect to be compared to the 

probability that the first error will be due to either a software error or early-life failure.   
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SCAN BASED TESTING 

Scan based testing is used to test sequential circuits.  Sequential circuits are 

circuits that contain memory.  Their outputs depend on the current input and previous 

inputs.  Therefore, a defect that is excited during one clock cycle may be observed in 

the current clock cycle or future clock cycles.  Figure 5 shows a schematic diagram of a 

sequential circuit. 

 

 
Figure 5.  Huffman Model of a Sequential Circuit 

 

Testing sequential circuits is difficult because controlling the internal state of 

the memory elements is a difficult task.  Controlling the outputs of the memory 

elements is important because of the need to excite defects that might exist near the 

memory elements. 



 13

To overcome this difficulty, many companies developed scan based testing.  

Transforming a sequential circuit into a combinational circuit is important because 

combinational circuits are easier to test than sequential circuits.  Also, the testing of 

combinational circuits is a well understood problem and many techniques have been 

developed to test combinational circuits.  In scan based testing, the D flip-flops in the 

circuit can operate in two modes.  In the normal mode, the D flip-flop acts like it would 

normally – at the specified clock edge, the value at the input is transferred to the 

output.  In scan mode, instead of the input being from the circuit, the input is from an 

input into the circuit.  The D flip-flops are hooked in series connected to the next D 

flip-flop’s scan input.  In essence, the D flip-flops in the scan chain behave like a shift 

register [1].  Figure 6 shows a scan chain that has three D flip flops.   

 

 
 

Figure 6.  A Three D Flip-Flop Scan Chain 
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The values for the D flip-flops are shifted into the scan chain serially.  Once all 

the values are inputted, the circuit is put into normal operation.  Then the circuit is 

clocked to get the result of the circuit.  Then the circuit is put back into scan mode and 

the results are outputted serially through the scan output.  The output results can then 

be compared the expected values at that point [1]. 

 Scan based testing is an important industry tool to test sequential circuits.  It 

increases the controllability and observability of points in the circuit.  This research 

uses scan based testing to test sequential circuits during ATPG testing. 
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ELF-MD:  WHAT INFORMATION DO WE NEED? 

Before we can extend MPG-D to determine ELF-MD, we need to know what 

we need to know in order to determine ELF-MD.  To that end, we ran tests on four of 

the ISCAS85 [18] benchmark circuits and two of the ISCAS89 [19] benchmark 

circuits.  Specifically, we tested circuits C432, C499, C880, and C2670 from the 

ISCAS85 benchmark circuits and circuits S27 and S344 from the ISCAS89 benchmark 

circuits.  Using Verilog, we inserted high impedance faults, stuck-at 1 faults, stuck-at 0 

faults into each input wire and each internal wire of the circuit such that only a single 

surrogate was inserted for any instantiation of the circuit.  We also identified the non-

feedback AND bridges in circuit C432 and modeled a subset of those surrogates.  We 

applied ATPG patterns to the circuits to determine when the surrogates would be 

detected during the testing process.  To simulate “normal operation”, we applied 

random patterns to the circuit.  Since random patterns are not predictable, we tested the 

circuit one thousands times and took the average to find the cycle number the circuit 

failed on.  Taking the inverse of this number gave us the probability of detecting the 

surrogate during “normal operation”.  We then compared this probability to the 

probability of find the surrogate during ATPG testing. 

We discovered that the correlation between detecting a defect during ATPG 

testing and during “normal operation” depends greatly on how often you observe the 

defect site of the circuit.  Another important factor we discovered is whether the circuit 

is combinational or sequential. 

The first piece of information we wanted was how often each site is observable 

for each circuit.  We used high impedance faults to determine the observability of the 
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sites in each circuit.  In our simulations, high impedance points are always excited 

because they simulate a disconnected wire in the circuit.  The value at that point is lost 

and an unknown value propagates towards the output instead.  If the unknown value 

affects a primary output, a don’t care value will appear on that output during 

simulation.  It is possible to detect don’t care values during simulation, so whenever 

the site is observed the surrogate will be detected. 

 

Observability of Sites for Circuit C432

y = 1.4182x - 0.6719
R2 = 0.7164

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Observability of Sites During ATPG Testing

O
bs

er
va

bi
lit

y 
of

 S
ite

s 
D

ur
in

g 
"N

or
m

al
 O

pe
ra

tio
n"

 
Figure 7.  Observability of Sites during ATPG Testing and "Normal Operation" for C432 

 

Figure 7 shows that there is a correlation between observing sites during ATPG 

testing and during normal operation for circuit C432.    It also shows that, in general, it 

less likely to observe a site during “normal operation” than during ATPG testing.  This 
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makes intuitive sense because the DO-RE-ME method attempts to observe each site as 

many times as possible while “normal operation” does not. 

 Figure 8 shows that there is also a correlation between observing sites during 

ATPG testing and during normal operation for circuit C499.  The correlation in this 

circuit is much stronger than in circuit C432.  Observing a point during “normal 

operation” is just as likely as during ATPG testing. 

 

Observability of Sites for Circuit C499
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Figure 8.  Observability of Sites during ATPG Testing and "Normal Operation" for C499 

 

Figure 9 shows that there is also a correlation between observing sites during 

ATPG testing and during normal operation for circuit C880.  The correlation in this 

circuit is stronger than in circuit C432, but not as strong as it is in circuit C499.  
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Observing a point during “normal operation” is less likely than observing a point 

during ATPG testing. 

Observability of Sites for Circuit C880
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Figure 9.  Observability of Sites during ATPG Testing and "Normal Operation" for C880 

 
Figure 10 shows that there is also a correlation between observing sites during 

ATPG testing and during normal operation for circuit C2670.  The correlation in this 

circuit is weaker than the correlation in the other circuits.  However, unlike the other 

circuits, observing a point during “normal operation” is far less likely than observing a 

point during ATPG testing.  In fact, some points that are observable over 68 percent of 

the time during ATPG testing are observable less than 0.001 percent of the times 

during “normal operation”. 
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Observability of Sites for Circuit C2670
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Figure 10.  Observability of Sites during ATPG Testing and "Normal Operation" for C2670 

 

Based solely on combinational circuits, there would seem to be a decent 

correlation between observing points during ATPG testing and during “normal 

operation”.  However, when we tested sequential circuits we found that this was not 

true at all. 

Figure 11 shows the observability of every site for the sequential circuit S27.  

As you can see, there is no apparent correlation between observing a site during ATPG 

testing and during “normal operation”.  In fact, two of the points that were observed 

100 percent of the time during ATPG testing were only observed 15 percent of the time 

during “normal operation”. 
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Observability of Sites for Circuit S27
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Figure 11.  Observability of Sites during ATPG Testing and "Normal Operation" for S27 

 

These two points were inputs to two of the D flip-flops in the circuit.  They 

were observed every time during ATPG testing because they were tested using scan 

based testing techniques describe in the previous section.  In scan based testing, the 

inputs to D flip-flops become pseudo-outputs of the circuit.  In sequential operation, 

these points lead back into the circuit, giving the logic value there a chance to be 

blocked. 

We tested another sequential circuit, S344, to verify that this result was not 

limited to circuit S27.  Figure 12 shows the observability of every point in S344.  As 

expected, there is no apparent correlation between observing a site during ATPG 

testing and during “normal operation”.  In fact most, points were observed less than 40 

percent of the time during “normal operation”. 
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Observability of Sites for Circuit S344
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Figure 12.  Observability of Sites during ATPG Testing and "Normal Operation" for S344 

 

Based on these results, we can conclude that there is a correlation between 

observing a site during ATPG testing and during “normal operation” for combinational 

circuits, but not for sequential circuits.  Any predictor of ELF-MD should contain 

information about “normal” circuit operation. 

Another useful piece of information to know is how likely it is to detect a defect 

during ATPG testing compared to “normal operation.”  Determining that the likelihood 

of detection during “normal operation” is lower than ATPG testing would be ideal 

because that would extend the value of ELF-MD.  Unfortunately, this may not always 

be the case because it is possible for the detection requirements for many of the 

particular faults targeted during ATPG to conflict with the detection requirements for a 

specific defect. 
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Figure 13 shows stuck-at 0 surrogate detection in each operating mode for 

circuit C432.  Figure 14 shows stuck-at 1 surrogate detection in each operating mode 

for circuit C432.  Neither simulation shows a strong correlation between defect 

detection during ATPG testing and “normal operation.”  However, both figures show 

that is more likely to detect a surrogate during ATPG testing than in “normal 

operation.” 
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Figure 13.  Stuck-at 0 Defect Detection during ATPG Testing and "Normal Operation" for C432 
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Stuck-at 1 Defect Detection for Circuit C432
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Figure 14.  Stuck-at 1 Defect Detection during ATPG Testing and "Normal Operation" for C432 

 

Figure 15 shows stuck-at 0 surrogate detection during ATPG testing and 

“normal operation” for circuit C499.  Figure 16 shows stuck-at 1 surrogate detection in 

each operating mode for circuit C499.  When C499 was modeled with stuck-at 0 faults, 

there was some correlation between defect detection during ATPG testing and “normal 

operation.”  When C499 was modeled with stuck-at 1 faults, there was a strong 

correlation between the operating modes.  In addition, both figures show that, in 

general, it is more likely to detect a surrogate during ATPG testing than in “normal 

operation.” 
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Stuck-At 0 Detection for C499
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Figure 15.  Stuck-at 0 Defect Detection during ATPG Testing and "Normal Operation" for C499 

Stuck-at 1 Detection for C499
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Figure 16.  Stuck-at 1 Defect Detection during ATPG Testing and "Normal Operation" for C499 
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The final surrogate model we simulated for combinational circuits was non-

feedback AND bridges in circuit C432.  We chose our bridging faults to be non-

feedback because feedback bridges can lead to unstable circuit operation.  Figure 17 

shows the results from our simulations of a subset of all possible AND bridges.  While 

many of the AND bridges were detected more often during ATPG testing, there are a 

significant number of AND bridges that were detected more often during “normal 

operation.”  The variations in the probability occur at low probability of detection 

during ATPG testing.  Also, the correlation between the two modes is weak at best.  

This may mean that the correlation between the two operating modes diminishes with 

more complex surrogate models. 
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Figure 17.  AND Bridge Detection during ATPG Testing and "Normal Operation" for C432 
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We also tested sequential circuits to see how often we detect surrogates in each 

operating mode.  There is no correlation between detecting a defect in the sequential 

circuits S27 during ATPG testing and “normal operation.”  Also, the percentage of 

time that the surrogate is detected in ATPG testing does not give us any insight into 

how many often the surrogate is detected in “normal operation.”  This can be attributed 

to what we discovered earlier – that the observability of sites during ATPG testing and 

during “normal operation” have no relationship. 
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Figure 18.  Stuck-at 0 Defect Detection during ATPG Testing and "Normal Operation" for S27 
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Stuck-at 1 Detection for Circuit s27
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Figure 19.  Stuck-at 1 Defect Detection during ATPG Testing and "Normal Operation" for S27 

 

Figures 18 and 19 are evidence that there is no correlation for defect detection 

between the two operating modes.  Figures 20 and 21 show the same lack of 

correlation for circuit S344.  The probability of detecting defects during normal 

operation bears little resemblance to the probability of detecting defects during ATPG 

testing. 
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Stuck-at 0 Defect Detection for Circuit S344
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Figure 20.  Stuck-at 0 Defect Detection during ATPG Testing and "Normal Operation" for S344 
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Figure 21.  Stuck-at 1 Defect Detection during ATPG Testing and "Normal Operation" for S344 
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However, both Figure 20 and Figure 21 show sites that were detected all the 

time during “normal operation” but not during ATPG testing.  Obviously, these sites do 

not fit the pattern of detecting a defect more often during ATPG testing than “normal 

operation.”  After investigating these points in more detail, the reason for there 

existence is due to their proximity to the outputs of D flip-flops.  The circuit is 

initialized by a reset signal that sets the output of the D flip-flops to 0.  This causes 

some of the sites close to the D flip flop not to be affected by the primary inputs of the 

circuits for the first clock.  However, in ATGP testing, the outputs of the D flip-flops 

are primary inputs and thus can be varied much easier.  For example, if there is a stuck-

at 1 fault at the output of a D flip-flop, that defect will always be excited when the 

circuit leaves reset.  But in ATPG testing, since that site is now a primary input, there 

is a greater chance that the input will also be a 1, which would not excite the defect. 

From this data, we can conclude that a simple mapping between defective part 

level using MPG-D and ELF-MD is not adequate.  The MPG-D model emphasizes 

observing every site as many times as possible.  However, we have shown that for 

sequential circuits the probability of observing the defect sites during normal operation 

appears to no relation to the probability of detecting defects during ATPG testing.   

This indicates that an accurate estimator of ELF-MD will need to include information 

on the probability of observation of different circuit sites during normal operation in 

addition to the likelihood that each of those sites are likely to still contain defects.  

Fortunately, data collected while calculating the defective part level using the MPG-D 

model introduced earlier may prove useful in predicting ELF-MD. 
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EXTENDING MPG-D TO PREDICT ELF-MD 

 The requirements for detecting a defect during testing are identical to the 

requirements that must be met for a defect to cause incorrect behavior during normal 

operation.  Specifically, the defect must be both excited and observed for this to occur.   

 Recall that the probability of exciting an undetected defect given that a site is 

observed is modeled as a decaying exponential in MPG-D.  Therefore, after test 

patterns have been applied, many of the circuits containing “easy-to-detect” defects 

have already been identified and removed from consideration.  The remaining defective 

parts are most likely to contain those defects that are harder to excite and consequently 

detect.  It is how quickly these defects cause observed errors during normal operation 

that will determine our value of ELF-MD. 

 Ideally, when calculating ELF-MD, we would assume that only one defect 

occurs on any given defective chip and would consider the weighted average of the test 

set sizes for each of the remaining potential defects (as depicted in Figure 1) based 

upon probability of occurrence of that defect while calculating the probability of 

exciting a defect while observing the site.  However, detailed information of the 

remaining defect types and their corresponding test spaces is unknown.  Accordingly, 

we propose to use the probability of exciting an undetected defect given that the site is 

observed calculated according to the MPG-D formula: 

τ
i

i

obs

obsexcite eP
#

|

−
=                                                      (7) 

where #obsi is equal to the number of times that site was observed during ATPG, as an 

upper bound on the probability of exciting an undetected defect at a site given that that 
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site is observed during normal operation.  This is possible because most defects were 

detected more often during ATPG testing.  Since ATPG testing has a better chance of 

detecting most defects, the probability of exciting a defect given to us by the MPG-D 

formula can serve as an upper bound.  We will use this value in our ELF-MD 

calculations. 

 The other requirement that must be satisfied is observation of the site where the 

defect occurs.  As suggested by the data in the previous section, the observation 

probability used should be the observation probability of each site under the conditions 

of normal operation.  In the absence of application data, probability of observation data 

for random vectors may be used.  The probability that the value of a circuit site in a 

single clock cycle (when the defect was excited) would affect the outputs in either that 

clock cycle or in a subsequent clock cycle would need to be determined.  If it generally 

takes many clock cycles for that value to affect the output, then the average number of 

clock cycles needed should also be collected so that this can be factored into ELF-MD 

calculations.  In either case, some sort of simulation will likely need to be done to 

collect this data. 

 Once the probability of observation under normal operating conditions and the 

probability of excitation of an undetected defect given that the site is observed and 

given that it was observed for a certain number of times in testing have been obtained 

for every site, we multiply the two values together.  This will give us the probability of 

detection of an undetected defect at each circuit site given that that site is where the 

defect occurs.  This gives us: 

( )( )
ii obsexcobsi PPP |operation normal|=                                               (8) 
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 Therefore, the probability of detecting a defect that occurs at site i for the first 

time with the first pattern is Pi.  Similarly, if independence between patterns is 

assumed, the probability of detecting a defect that occurs at site i for the first time with 

the second pattern is: 

( )ii PP −1                                                            (9) 

 If we extend this, then the probability of detecting a defect that occurs at site i 

for the first time with the nth pattern is: 

( ) 11 −− n
ii PP                                                        (10) 

 We can use this to find the average number of patterns that will be applied 

(number of clock cycles) before the defect at site i causes an error in normal circuit 

operation 

( )
i

n
i

n
i P

PnP 11 1

1
=− −

∞

=
∑                                               (11) 

Thus, as expected, the average number of clock cycles that we can expect to pass 

before the defect at site i is detected is inversely proportional to the probability of that 

defect being detected.  If many additional cycles are expected to be needed before an 

error will appear at an output, these can be added to our expected value at this point. 

However, each site is not equally likely to be the site where the defect occurs.  

Sites that were observed many times during testing are much less likely to contain the 

undetected defect than sites that were observed few times, if at all.  Thus, when we find 

the average patterns to detection for the entire circuit, we will need to take a weighted 

average where the weights are based upon each site’s likelihood of containing the 

defect.  For this, we can use the DL contribution of every site calculated by MPG-D. 
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iiii sharesitenDLnDL ∆−∆−−= )1()(                                  (12) 

where n is equal to the number of test patterns applied during ATPG testing. 

 We can calculate the expected number of clock cycles before failure for a 

circuit given that the circuit is defective and has been tested with a manufacturing test 

pattern set of given characteristics as: 

i

 sitesof number

1i

i

PDL
DL 1∑

=

                                                  (13) 

Obviously, we can convert this to time and thus ELF-MD using the clock speed.  We 

may also find that we want to take sites with incredibly low DL contributions and 

remove them from consideration if we are fairly confident that no defects could 

reasonably occur there.  This could reduce the simulation time required for determining 

the probability of observation values during normal operation.   
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FUTURE WORK 

To better understand the correlation between the defective part level and ELF-

MD, more simulations should be conducted to collect data on larger circuits.  OR-

bridge surrogates should be modeled for simulation as well.  Even more complicated 

surrogates in sequential circuits, such as delays and coupling effects, should be 

considered for future investigation.  These simulations will be useful because the 

AND-bridge surrogates had a weak correlation between the circuit in “normal 

operation” and being tested with ATPG patterns.  Further investigation will reveal if 

this was only for that circuit model or if the correlation does diminish with more 

complex surrogate models.  Also, these simulations can be done much faster than they 

were done throughout most of this work.  Recently, techniques have been developed to 

test many defect sites in parallel.  This drastically reduces the amount of time needed to 

simulate the entire circuit. 

In addition to the extra simulations, extensive testing of the model we 

developed needs to be done.  This work does not include an analysis of the 

effectiveness of the developed model.  Also, data should be collected to quantify the 

uncertainty in the ELF-MD predictions.  Intuitively, as the probability of detecting a 

defect decreases, precisely when that defect can be expected to be detected becomes 

less certain.  Future work should contain a more detailed analysis of the precision with 

which ELF-MD can be predicted. 

In addition to testing the benchmark circuits, simulations should also be done 

on “real world” circuits.  This should be done because random patterns may not 

accurately simulate “normal operation” on a “real world” circuit.  A hardware design 
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follows certain specifications and applying random patterns may violate the 

specifications.  This leads to unpredictable results and may uncover defects that would 

otherwise be masked forever.  Understanding what the hardware does may lead to a 

better simulation of “normal operation” and this in turn may lead to more accurate 

results when trying to determine ELF-MD. 

Unfortunately, while software simulation data is very useful, it is far from 

perfect.  Its main limitation is that it is time consuming to collect simulation data.  

Even with the techniques mentioned earlier to reduce simulation time, collecting the 

data is still time consuming.  This limits the number of clock cycles that can be 

simulated and the complexity of the simulated circuit.  Highly complex circuits are 

extremely time consuming to simulate and gathering data on hard-to-observe locations 

is difficult.  Simulations for certain defect sites in circuit C2670 took as long as five 

days.  Software simulation also restricts the defect types studied to those that are 

modeled as surrogates in the simulation.  An even better understanding of ELF-MD 

can be accomplished if experiments are done using actual manufactured integrated 

circuits in hardware.  Several hours worth of software simulation can be accomplished 

in only a few microseconds of hardware testing.  Also, an actual manufactured IC 

would not be limited by our surrogate models.  A manufactured IC could contain any 

type of defect.  A hardware experiment would contain more meaningful data because it 

uses “real world” hardware and testing procedures. 

A hardware experiment would consist of testing parts that were identified as 

defective during manufacturer testing.  These defective parts are tested in parallel with 

a series of “gold standard” chips that have been thoroughly tested and are assumed to 
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be non-defective.  By comparing the outputs of the defective and “gold standard” 

chips, we can obtain actual field detection of manufacturing defects results.  These 

results can be compared with what our developed model predicts.  This information 

can help us further refine and expand our model while possibly triggering more 

interesting questions to be investigated. 
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CONCLUSIONS 

 This research investigated what information is needed to predict the expected 

latency to failure due to manufacturing defects.  ELF-MD could evaluate the quality of 

ICs and the test pattern sets that were used to test them.  If test pattern set A produces a 

higher ELF-MD than test pattern set B, then test pattern set A could be considered 

better than test pattern set B.  A model for predicting ELF-MD based on MPG-D was 

also introduced. 

It was shown that the probability of observing a site and consequently detecting 

a defect during ATPG testing does not give enough information to predict ELF-MD for 

sequential circuits and AND-bridge defects.  We can conclude from this that any ELF-

MD predictor must include information about the circuit in “normal operation.” 

 For that reason, this research presented a preliminary model which attempts to 

relate the following to ELF-MD. 

1. The observability of circuit sites during normal circuit operation 

2. The probability of exciting an undetected defect at one of those circuit sites 

given that it is observed and given that a certain number of observations of that 

site occurred during manufacture testing, and  

3. The probability that a defect remains at that site 

However, this model needs to be tested and further evaluated using both surrogate 

simulation and hardware experiments using actual defective circuits. 

 Developing a model to predict ELF-MD is not a simple task.  The problem is quite 

complicated and there are still many aspects that have yet to be explored.  However, 

the preliminary results presented collected by this research has given valuable 
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information and direction in formulating an initial model.  Additional experimentation 

should lead to even more valuable insights. 

Despite the complexities involved with predicting ELF-MD, the ability to 

predict the ELF-MD would be valuable to both manufacturers and customers.  

Manufacturers could adjust their maximum allowable defective part level for each 

product and use their testing resources better.  If a company knew the estimated ELF-

MD for their product, they could adjust their warranty period or to relax their defective 

part level requirement.  This would turn products that were unnecessarily eliminated 

into profitable products. 
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