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ABSTRACT 

 

Distributed Real-Time Control via the Internet. (May 2003) 

Abhinav Srivastava, B.E., Motilal Nehru Regional Engineering College,  

Allahabad, India  

Chair of Advisory Committee: Dr. Won-jong Kim 

 

 The objective of this research is to demonstrate experimentally the feasibility of 

using the Internet for a Distributed Control System (DCS). An algorithm has been 

designed and implemented to ensure stability of the system in the presence of upper 

bounded time-varying delays. A single actuator magnetic ball levitation system has been 

used as a test bed to validate the proposed algorithm. Experiments were performed to 

obtain the round-trip time delay between the host PC and the client PC under varying 

network loads and at different times. A digital real-time lead- lag controller was 

implemented for the magnetic levitation system. Upper bounds for the artificial and 

experimental round-trip time delay that can be accommodated in the control loop for the 

maglev system were estimated. The artificial time delay was based on various 

probabilistic distributions and was generated through MATLAB. To accommodate 

sporadic surges in time delays that are more than these upper bounds, a timeout algorithm 

with sensor data prediction was developed. Experiments were performed to validate the 

satisfactory performance of this algorithm in the presence of the bonded sporadic 

excessive time delays. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Introduction 

 

During the last two decades of advancement in factory automation, the modern 

industry have grown tremendously in the size. Now a large number of processes run at 

various levels of operation. These processes interact with resources and provide the 

desired output. To control these processes, computers are used for the implementation of 

controller algorithms. With increase in industry size, geographic separation between these 

processes started increasing and their control became increasingly difficult. For 

convenient and cost effective control of the processes, the use of central controllers 

increased. These central controllers, located at convenient locations interacted with the 

distributed sensors and actuators. This mode of control required the industries to integrate 

communication and various aspects of controls into different levels of operation. Thus, 

computers communicated with the geographically distributed sensors and actuators via a 

communication network. Control system architecture communicating with geographically 

separated sensors, actuators and controllers via a communication network is called a 

distributed real-time control system.  

Distributed real-time control offers the ability to locate the controllers for various 

processes at convenient locations that are easily accessible. For example, in deep-sea 

exploration and in nuclear plants the controller can be placed in an easy to access office 

environment whereas the sensors and actuators can be placed at the required locations. In 

an event of malfunctioning of any control system, this architecture of control also allows 

the observer to take corrective measures almost instantaneously. However, the success of 

this control scheme depends on the ability of the communication network in transferring 

data with stringent timing constraint and reliability requirements. 

 
This thesis follows the style and format of IEEE Transactions on Automatic 

Control. 



  2 

 

1.2 The Internet  

 

The Internet being a free means of communication has gained a wide popularity 

over the last few years. It has virtually brought the whole world to our desktop. We can 

now access almost anything just at a mouse click, which was otherwise impossible in our 

home or office.  

The smallest unit on the Internet is the individual user. Each individual has a user 

id within the local organization, and all the computers within the organizations may be 

connected with Local Area Network (LAN). The LAN makes communication between 

the members of the same organization much easier. LANs are attached to special 

computers called routers. When we send a message anywhere outside our LAN, we send 

it to the router, which distributes the message to the rest of the Internet. Each LAN thus 

cooperates with other networks to direct the Internet traffic so that information can pass 

among them. The networks are connected in a variety of ways. Together, these networks 

and organizations make up the wired world of the Internet. A variety of leased lines 

connect regional and local networks. The leased lines that connect networks can be as 

simple as a single telephone line or as complex as a fiber-optic cable with microwave 

links and satellite transmission. 

Many researchers have tried to use the Internet for receiving and transmitting 

information over large distances. It is now possible to interact with people and participate 

in the events that are geographically separated by large distances. With the advances in 

the technology the above features can now be experienced in near real-time. 

 

1.3 Internet Protocols 

 

A very important aspect of communication via the Internet is the Internet Protocol 

(IP). The Internet Protocol determines the format of the data, known as the datagram, and 

the exact method by which data will be transmitted via the Internet. Most widely used 

protocols used for the Internet communication are: 

 

1. Transmission Control Protocol / Internet Protocol (TCP/IP) 
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2. User Datagram Protocol (UDP) 

 

TCP was specifically designed to provide a reliable end-to-end byte streams over 

an unreliable internetwork [1]. It is used because the Internet is a packet-switched 

network. In a packet-switched network, there is no single, unbroken connection between 

sender and receiver. Instead, the information is broken into small packets, sent over many 

different routes at the same time, and then reassembled at the receiving end. Each 

machine supporting TCP has a TCP transport entity, either a user process or a part of the 

kernel that manages TCP streams and interfaces to the IP layer. A TCP entity accepts 

user data streams from local processes, breaks them up into pieces not exceeding 64K 

bytes, and sends each piece as a separate IP datagram [2- 3]. When IP datagrams 

containing TCP data arrive at a machine, they are given to the TCP entity, which 

reconstructs the original byte streams.  

The TCP provides reliable transmission of data in an IP environment. Among the 

services TCP provides are stream data transfer, reliability, efficient flow control, full-

duplex operation, and multiplexing. TCP offers reliability by providing connection-

oriented and confirmation-based packet delivery through the Internet. TCP does this by 

sequencing bytes with a forwarding acknowledgment number that indicates to the 

destination the next byte the source expects to receive. Bytes not acknowledged within a 

specified time period are retransmitted. Due to this confirmation based nature there is no 

loss of data during communication via the Internet. If the protocol detects a loss of data in 

the communication channel, it requests retransmission.  

Thus, TCP/IP is the most reliable protocol for communication via the Internet. 

However, it also introduces additional amount of time delay in the Internet. So it becomes 

unsuitable for processes that are time critical. For a congested network the chances of 

losing the data are more and thus TCP has to initiate retransmission of the data 

frequently. Let us assume a time critical process uses this congested network with TCP 

protocol for communication. Due to frequent retransmission by TCP protocol there will 

be many vacant samplings. These vacant samplings will be detrimental to the stability of 

the system.  
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On the other hand UDP/IP is neither connection-oriented nor is confirmation 

based. UDP provides a way for applications to send encapsulated raw IP datagrams 

without having to establish a connection. Many client-server applications that have one 

request and one response use UDP [1]. A UDP segment consists of an 8-byte header 

followed by the data. The two ports serve the same function as they do in TCP. In other 

words the ports identify the end points within the source and destination machines. Thus, 

UDP is a connectionless protocol for applications that do not want TCP’s sequencing of 

flow control. This makes UDP much faster compared to TCP/IP but at the same time is 

not a reliable protocol for communication via the Internet for data critical systems. 

 

1.4 Real-Time Control via the Internet 

 

If we can use the present form of the Internet as a communication medium for 

distributed real-time control, we can greatly enhance the advantages of this control 

architecture. Integration of the Internet will reduce the cost and the time involved in 

setting up the distributed real-time control system in large industries. Software 

applications can be used extensively to remotely monitor and control of the processes via 

the Internet. The incorporation of the Internet in the process control industry will also 

give engineers the freedom to distribute the control tasks, the sensors, and the actuators to 

optimal locations. Thus, Engineers will be able to monitor applications running in harsh 

environments that offer limited accessibility. 

A real-time control system via the Internet may consist of various sensors, 

actuators and controllers connected with each other via the Internet. Controllers receive 

data from various sensors and send data to the actuators via the Internet. The two 

schemes of control system via the Internet, namely the supervisory control and the real-

time feedback control offer the ability to process data from various sensors and actuators 

in real- time. With the Internet it will be possible to set up all the sensors and actuators on 

the same communication network. This will eliminate the need to setup a dedicated 

communication network for different closed-loop control processes in the industry.  

For using the Internet as a communication medium for distributed real-time 

control, we have to adapt the system to stringent requirements for satisfactory 
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performance. Some of the key issues that need to be addressed for the satisfactory 

performance of a digital control implemented via the Internet as a communication 

medium include:  

 

(1) The effect of the inevitable time delay associated with the Internet on the stability of 

the system. Due to the transmission of data over large distances between the sensor 

and the controller/actuator node, data packets undergo transmission delays. These 

transmission delays become critical for the stability of the system if they are more 

than the upper bound for the time delay. 

(2) The unpredictability of the time delay associated with the Internet under different 

network protocols like TCP/IP and UDP. As discussed before, TCP/IP is the most 

widely used transport protocol over the Internet. It is the protocol used for 

applications that require reliable communication. TCP/IP is a confirmation-based 

protocol. In other words, it transmits the data and waits for the acknowledgement of 

the data receipt from the client before the next data are sent. This introduces more 

time delay in data transmission using TCP/IP. On the other hand, UDP is not a 

confirmation-based protocol. Thus, it eliminates the overhead of retransmission time. 

Since UDP is not confirmation based, data might get lost during the transmission. 

This fact affects the stability of data critical applications. 

(3) Identification of fault when there is data loss in the system. During data transmission 

through the Internet, it is possible for the data to be lost. This data loss might be 

because either sensor is defective or the time delay is far more than the sampling 

period of the system. This may cause the Internet to lose the data. Thus, it will be 

difficult for the engineers to identify the exact reason for this data loss. 

(4) The possibility of developing and implementing a novel control algorithm that can 

ensure satisfactory performance of the distributed real- time control via the Internet. 

Existing control algorithms will not be able to perform as desired in the presence of 

sporadic surge in the time delay that are more than the upper bound of the time delays 

that can be accommodated by the system. 
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1.5 Goal of the Thesis 

 
In view of the above issues involved in implementation of distributed real-time 

control system via the Internet certain key areas have been identified that will be 

addressed in this thesis. Following are the goals of the thesis. 

  

(1) Establishment of supervisory control of the test bed via the Internet. With this control 

scheme it will be possible to access the experimental test bed from anywhere with in 

the Texas A&M University campus. 

(2) Determination of the stability regions for the controller with various sampling 

frequencies and time varying delay. These time delay data were both modeled with 

various probabilistic models and also as the results obtained from the experiments 

conducted over our LAN. 

(3) Development of an algorithm that can guarantee stability of the test bed in the 

presence of time-varying delay with sporadic surge in the time delay. Thus, efforts 

will be made to stabilize the system for time delays that are little more than the upper 

bound of time delay for that system. The upper bound for the time-varying delay is 

the region in which the system stability is not compromised. 

 

1.6 Thesis Overview 

 

Chapter I deals with distributed real-time control via different communication 

medium. An introduction to a relatively new area of distributed real-time control via the 

Internet is also given. Various issues and advantages related to this field are discussed. 

Chapter II explains the previous work by other researchers in the area of 

traditional distributed real- time control via various dedicated communication networks. It 

also gives a detailed study of the existing experimental setup used as test bed.  

Chapter III gives a detailed description of the software architecture that I 

developed to achieve desired distributed real-time control via the Internet. It also explains 

various modes of distributed real-time control via the Internet. Various aspects of both 
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the modes are looked upon and schemes to achieve these kinds of architecture are 

discussed.  

Chapter IV introduces the various mathematical models of the Internet that have 

been used to model the data traffic via the Internet. Analysis of the performance of the 

lead-lag controller for feedback control via the Internet has also been presented. To 

perform this analysis artificial time delay was introduced in the control code. Round-trip 

time delay measurements were made between PCs connected to same LAN and between 

PCs connected to different LANs. 

 Chapter V explains the methodology used for the development of the lead- lag 

controller designed directly in digital domain that runs at a sampling frequency of 333.3 

Hz. It also deals with the development of the timeout algorithm with sensor data 

prediction that can ensure the stability of the test bed for the sporadic surges in the time 

delay. 

Chapter VI concludes this thesis with the various experimental and emulation 

results obtained to test the algorithm developed in Chapter V. It also suggests ongoing 

work that is being carried out in the area of distributed real-time control via the Internet. 
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CHAPTER II 

 

PRIOR WORK AND THE EXPERIMENTAL SETUP 

 

2.1 Introduction 

 

The main focus of this chapter is the study of previous work done by other 

researchers in the area of distributed real-time control using communication networks. 

Researchers have been working to make the distributed real-time control perform 

satisfactorily even in the presence of time-varying delay in the communication network. 

Most of the work has been developed for communication networks dedicated for 

distributed real-time control. 

A detailed study of the single actuator magnetic ball levitation system to be used 

as a test bed is presented. Stephen C. Paschall, II developed the magnetic levitation 

(maglev) system and its preliminary control as his senior honors thesis [4].  

 

2.2 Related Work 

 

Researchers have been working in the feedback control via communication 

networks for long time. It is in the last decade, with the advancement in industry 

automation, research started in distributed real-time control via commercial 

communication networks. Research has mainly been focusing on the stability of the 

system in the presence of time-delay present in the communication channel. 

Towards the end of the last decade, the Internet started to revolutionize the way of 

communication. New applications of the Internet in the areas of robotics, manufacturing, 

education, and so forth are currently hot topics for research. Research is also being 

carried out in the area of supervisory control of the telerobots.  

Mercury project, developed by Goldberg, et al. was the first successful 

experiment in this field [5]. Their experiments allowed the general public to excavate 

objects from a sandbox, and thus demonstrated the feasibility of the use of the Internet for 
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teleoperation. Since then, other researchers have also conducted more experiments in the 

field of supervisory control of telerobots via the Internet. In September 1994, an 

industrial robot was remotely operated and programmed by remote users through the 

World Wide Web [6]. It demonstrated remote operation of complex machinery using 

minimal bandwidth data transmission. This opened up the door for a wide spectrum of 

applications of Internet-based telerobotics.  

Backes, et al. used Web interface for telescience (WITS) an Internet-based tool 

for the Mars Pathfinder mission [7]. It enabled the scientists to collaboratively participate 

in planetary landing and rover missions. Along with the usual client/server architecture 

for the operation of the real spacecraft, it had a public system which the public could use 

for planning and simulating their own missions.  

In engineering education, true distance learning was made possible only after the 

advent of the Internet. Laboratory courses, which are a vital part of engineering 

education, were considered impractical for distance learning. One such system has been 

successfully tested and applied in remote robotic education system in China [8]. The goal 

of the virtual laboratory was to create an experimental environment, suitable for remote 

robotic teleoperation. The system was also developed using the client server architecture. 

It allowed the users to conduct training exercises and perform experiments involving 

supervisory control. 

Force feedback is another important topic in the area of teleoprations. In force 

feedback the user is provided with a feedback of the resistance to the task performed by 

the telerobot assigned by the user. With the help of force feedback, the task can be 

completed with much greater accuracy and speed compared to simple teleoperation. With 

the use of force feedback time delay is introduced that affects the stability of the system 

severely [9]. 

Munir showed that with the use of a predictor or an observer in the 

communication channel performance of the teleoperation system is greatly enhanced  

[10]. This is achieved in the presence of significant time delay and also variable time 

delays present over the Internet. The experimental set-up in the experiments of Munir, 

consisted of a two degree-of-freedom manipulator and a remote device that was a 

simulation of an identical manipulator. The two manipulators were connected via the 
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Internet connection between Atlanta, Georgia, USA and Tokyo, Japan. The problem of 

time delay present in the Internet for teleoperation was dealt with two different schemes. 

The first scheme used the wave variable approach and another approach used a time-

forward observer. He conc luded that the wave variable approach did not provide 

adequate performance results, but stability was guaranteed based on passivity for any 

amount of time delay.   

The Internet also found its applications in the manufacturing industry. As we 

discussed before, manufacturing is no longer confined in a small region. With the Internet 

it is now possible to acquire data from the processes running on the shop floor at any time 

and take corrective measures if need be. Cybercut developed at the University of 

California at Berkeley focuses on rapid prototyping with a 3-axis computer numerical 

control (CNC) Machining via the Internet [11]. To provide CAD (Computer aided 

design) designers with the ability to perform real time manipulation of the part in 

progress, Cybercut uses Java’s client side processing. This allows the designers to obtain 

structurally usable components with rapid turnaround times. Internet-based 

manufacturing was also researched by Renton, et al [12]. Center for Online 

Manufacturing Optimization (COMO) integrated advanced process simulation software, 

remote machine monitoring system and Internet technologies to realize virtual 

manufacturing. This was used to define, optimize, and execute a 3-axis milling operation.  

 

2.2.1 Feedback Control via Communication Networks  

 

Studies have been done to ensure the stability of the system in the presence of 

time-varying delay in the communication network. Several approaches have been 

suggested to deal with the issue. 

Luck, et al. suggested a methodology to convert time-varying system into a time-

invariant system with the use of buffers [13]. These buffers were introduced at the 

controller and actuator nodes. The proposed use of the buffers has been shown in the 

Fig.1. 
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Fig.1. Schematic representation of use of buffers in control system via communication 

medium. 

 

The nodes and the buffers were all time-driven and were synchronized in time. 

The buffers were used to store the data packets traveling through the communication 

channel. The buffers were made longer than the worst-case time delay present in the 

communication network. This allowed the data packets to be available at the controller 

and the actuator after fixed amounts of time making the system time invariant even in the 

presence of time-varying delay. Thus, the process was written as follows 

          
11 ∆−+=+ kBukAxkx                                                 (2-1) 

   kCxky =                                                                     (2-2)  

Where, A, B, C are system matrices, k denotes the particular kth time stamp and ? 1 

is the length in samples of the buffer at actuator node. The problem was then formulated 

as a standard time- invariant sampled data system. 

Liou, et al. proposed a time-driven sensor, a time-driven controller and an event-

driven actuator [14]. The controller and the sensor have a time skew in their operation 

and the control value is calculated without the knowledge of new sensor signal. Due to an 

Actuator Node Process Sensor Node 

Controller Node 
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event-driven actuator control signal is applied to the digital to analog (D/A) channel as 

soon as it arrives at the actuator node. These delayed signals were introduced in the 

discrete time augmented plant model.  Thus, the augmented plant model was given by 

               kukBkxkAkx +=+1                                                  (2-3)                           

where, Ak, Bk are stochastic matrices due to random communication delays. The 

augmented plant model was used to solve for (Linear Quadratic) LQ-optimal controller. 

They have also discussed construction of state estimator for the case when all the states 

are not measured. 

Ray et al. in 1994 extended the concept of time-driven actuator and stochastic 

state estimator [15]. The estimator was used to estimate the sates that were unobservable. 

The state estimator is designed to minimize the variance of the state prediction error. The 

combination of the LQ-controller and the minimum variance estimator was introduced as 

DCLQG (Delay Compensated Linear Quadratic Gaussian) controller.  

Krotolica et al. studied the random communication time delays [16]. The time 

delay from the sensor to the controller and from the controller to the actuator was 

modeled as being obtained from a Markov chain. All the nodes were assumed to be clock 

driven. Conditions necessary for the zero-state mean-square exponential stability were 

obtained.  

                    

                                Queue 

       yk 

 

 

 

                 wk 

 

 

Fig.2. Block diagram of portion between sensor node and controller node. 

 

Chan et al. studied the Ford SCP Multiplex Network hardware [17]. In this study 

a queue was placed at the sensor node and registers appended the controller node. The 

Single Register 

 
 

Communication 
 

Network 
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data packets sent from the sensor were appended with a time stamp and the queue size at 

that instant. With this method the controller node could reduce the uncertainty about the 

order of the sensor signal that was being used to generate the control input. The 

schematic arrangement proposed by Chan et al. is depicted in Fig.2. 

Nilsson addressed the problem of analysis and design of control systems when the 

communication delays vary in a random fashion [18]. The two delay models for the 

communication network were developed. The first model consisted of random delays that 

were independent from transfer to transfer. In the second model an underlying Markov 

chain was used to generate the probability distributions of the time delays.  

For the case of independent delays a linear controller was used to show that 

closed- loop control could be written as  

                       kekkzkkz )()(1 ττ Γ+Φ=+                                           (2-4) 

where, the stochastic properties of t k depend on the network model. The LQG-optimal 

controller was derived for the network where the time delays were independent from 

sample to sample. The controller thus derived used the knowledge of old time delays 

obtained by comparing the timestamps of the signals.  

 When the probability distributions of the delays are generated from a Markov 

chain the closed- loop system can be written as  

           kekrkkzkrkkz ),(),(1 ττ Γ+Φ=+                                 (2-5) 

where t k is the network delay and rk is the state in Markov chain. A Lyapunov recursion 

for evaluation of covariance of signal in the system was found. A stability criterion for 

mean square stability followed directly from the Lyapunov recursion. The LQG-problem 

was solved by splitting it into a state feedback problem and an optimal state estimation 

problem. 

 

2.2 Test Bed and Its Control 

 

The single–actuator magnetic ball levitation system was developed by Stephen C. 

Paschall, II as his senior honors project [4]. The aim of this maglev system is to levitate a 

steel ball at a predetermined steady-state equilibrium position with an electromagnet. The 
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electromagnet is used to produce magnetic forces using current passing through the 

electromagnetic coil to support the ball’s weight. Fig.3 depicts the maglev system.  

 

 

Fig.3. Single-actuator magnetic ball levitation system [4]. 

  

The system is subdivided into two main subsystems namely the force actuation 

subsystem and the position sensing subsystem. The force actuation subsystem consists of 

an electromagnet coil, a PWM (pulse-width modulation) amplifier and a 24-V DC power 

supply that supplies the power to the PWM amplifier. 

The position sensor subsystem consists of a CdS photocell, an incandescent light 

source, and a 15-V DC power supply that supplies power to the photocell based sensor 

and the incandescent light bulb. The photocell in conjunction with the incandescent light 

bulb is used for sensing the position of the levitated ball. The vertical movement of the 

steel ball is measured by the sensor arrangement through gradual shield and exposure of 

photocell to the light from the incandescent light bulb. The tube is completely closed to 

external light except for a vertical slit so that ambient light does not interfere with the 

light from the light bulb. Thus, the amount of light exposed to the photocell is a function 

of the ball position in front of the photocell. This variable light exposure of the photocell 

results in the change of the electrical resistance of the photocell. The voltage across a 

resistance placed in series with the CdS photocell is used as the sensor signal for 

calculation of the control input by the controller board. 
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2.2.1 Modeling of the Test bed 

 

 
Fig.4. Basic setup for the magnetic levitation system. 

 
 

Table I. Magnetic levitation theory nomenclature. 

 
i  Electrical current through the electromagnet [A] 

î   Perturbation current [A] 

I  Bias current at equilibrium [A] 

y  Vertical displacement of object from electromagnet [m] 

ŷ   Perturbation displacement [m] 

Y  Steady-state displacement at equilibrium [m] 

L  Electromagnet inductance [H] 

L0  Electromagnet inductance constant [H] 

L1  Electromagnet inductance constant [H] 

a  Geometric Constant [m] 

ef   Electromagnet force [N] 

  

 

The basic setup for the magnetic levitation system is depicted in Fig. 4.  The setup 

consists of an electromagnetic actuator that creates magnetic field when an electric 

i  

î

I

î

ŷ

 

 

Controller 

+ 

Position 
Sensor 

ŷ

Y y 

_ 
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current is passed through its wires. The position sensor detects the vertical position of the 

ball and passes the information to the controller board. The controller then adjusts the 

current to the electromagnet actuator based on the position of the ball. 

 The first step in creating the magnetic levitation system is to model the maglev 

plant. The following modeling process is by Woodson & Melcher [19]. For the test bed, 

the plant model yields the position of levitated ball as a function of the input current. The 

nomenclature used for the modeling is given in Table I. The electromagnetic force 

required to levitate the ball is given by the derivative of the coenergy. The coenergy  (W’) 

is defined as  

                                )(
2
1

),(' 2 yLiyiW =                                              (2-6) 

where, L(y) is given by 
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1                                                  (2-7)  

The substitution of electromagnetic inductance and coenergy into the force equation 

yields a relation for the electromagnetic force in terms of current and displacement. 
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 The forces acting on the ball along with their directions have been shown in Fig.5. 

  

Fig.5. External forces on the levitated ball. 

 

Thus the equation of motion is obtained as 

  efmgym +=&&                                                (2-9) 

m 

ef mg 
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From equations (2-8) and (2-9) at static equilibrium we obtain 
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which implies, the steady state current is given by 
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With the non- linear equation of motion determined by equation (2-9), a Taylor series 

expansion is carried out to create a linearized equation of motion. Using the perturbation 

quantities for steady state position and current, we obtain the simplified open loop system 

model as 
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which on simplification yields the transfer function as  
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where, 
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2.2.2 Modeling of the Plant 

 

 For the test bed the plant is the steel ball that is levitated using the 

electromagnetic coil. The steel ball used for the experiments is a 8.6 g ball with a 12.7 

mm diameter. The time domain model of the plant is  

     ymF &&=        (2-15) 

which after Laplace transform gives the transfer function as 
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2.2.3 Dynamics and Control of the Test Bed 

 

After the modeling of the test bed and the plant a controller in continuos time 

domain was developed by Steve C Paschall, II [4]. The controller designed in the 

continuous time domain is  

4907.700
10632.110564.233300

2

762

++
×−×−−

ss
ss

    (2-17) 

This controller maintained the following transient response requirements.  

Settling Time (ts)        = 1s 

Percentage Overshoot     = 50% 

The open- loop maglev system consisted of the power amplifier, electromagnet 

coil, and the steel ball. Analysis of the open- loop maglev system suggested it to be an 

unstable system. Thus, it was necessary to place the maglev system in a closed- loop 

control system. In the closed- loop system, the feedback from the position sensor in the 

form of voltage is used for the generation of control signal by the controller board. The 

control signal thus generated is continuously applied at the actuator thus making the 

maglev system stable at the equilibrium position. 

For the purpose of implementing digital control algorithms, a DSP (digital signal 

processor) Controller Board model (DS1104) from dSPACE, Inc. is used. This controller 

board has a Texas Instruments’ TMS320F240 DSP. One of the 16-bit analog-to-digital 

(A/D) converters of the controller board is used to read the optical sensor output. The 

voltage output signal from the 12 bit digital-to-analog (D/A) converter of the controller 

board is fed to the PWM amplifier (model 12A8K) manufactured by Advanced Motion 

Controls. 

The continuous-time domain lead- lag controller was converted into the discrete 

domain using pole-zero mapping. Following is the implemented lead- lag controller with 

the sampling frequency of 2 kHz. 
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CHAPTER III 

 

MODES OF CONTROL VIA THE INTERNET 

 

3.1 Introduction 

 

In the last chapter, prior work done by other researchers in the area of distributed 

real-time control was discussed. Also the experimental test bed developed by Stephen C. 

Paschall II was described. In this chapter, the software architecture that has been used in 

the research is presented. Also various modes of control of the test bed via the Internet is 

presented. The two modes of control of the test bed via the Internet, namely supervisory 

control and feedback control are discussed in detail. The necessary architecture to 

achieve these modes is presented.  

 
3.2 Software Architecture  

 

The programs written in C and MATLAB form the skeleton of the software used 

for control algorithm implementation. Experiments were also conducted for the time 

delay emulation and simulation in the control loop. The codes for the implementation of 

the lead- lag controller were written in C programming language.  

The compiler used for compilation and downloading of the control code on the 

DS1104 controller was provided by the dSPACE, Inc. The code test.c includes 

subroutines to initialize the analog to digital (A/D) and digital to analog (D/A) channels 

of DS1104 controller board. The test.c includes brtenv.h and io1104.h header files that 

are used for initializing the basic real-time environment and the input output for DS1104 

board. The code test.c is included in the Appendix A. The skeleton for the code has been 

shown in Fig. 6. 

For the generation of random time delays based on different probability 

distributions various commands of MATLAB were used. The commands of MATLAB 
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like poissrnd() and unidrnd() generated random numbers based on Poisson and Uniform 

distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Software architecture for controller algorithm. 

 

These random time delays were implemented in the control code for the simulation of 

time delay that the sensor data and control input will face while traveling through the 

communication network. 

The communication between the PC and the controller board was achieved with 

the help of C code control_clib.c. The control_clib.c includes clib32.h along with other 

header files that helps in communicating between the PC and the controller board in real-

time. This header file was provided by the dSPACE Inc.  

Defining the global variables

Start of main routine 

Background service 

End of main routine 

End 
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(controller algorithm) 
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For the implementation of the control via the Internet, Microsoft Visual Studio 

was used for development and compilation of the Common Gateway Interface (CGI) 

scripts. The CGI scripts are used for the communication between programs running on 

the host PC and the client requests coming via the Internet. These scripts are located on 

the host PC and are executed remotely by the client. This CGI script integrated with the 

finaltest.c program was used for the transfer of the commands via the Internet between 

the server PC and the client PC. The finaltest.c code is inc luded in Appendix B for 

reference. To write the CGI script in C, a CGIC library developed by Thomas Boutell 

was used [20]. Since the CGI script resides on the server PC, it is executed as soon as the 

data comes from the client PC using web browser. The web browser opens the HTML 

(hypertext markup language) code test1.html for the user to input commands. Test1.html 

is listed in Appendix C. This methodology for communication via the Internet is not 

efficient for continuous real-time data transfer.  

For the continuous transfer of data between the server PC and the client PC codes 

were written for the programming of sockets. Sockets are a way to communicate with 

other programs using standard file descriptors [21]. Socket programming can also be used 

to establish communication between the server PC and the client PC. The sockets present 

in host PC and client PC interact with each other using various protocols and thus provide 

continuous data transmission in real-time.  

With the help of socket programming, the communication of the data from the 

client computer to the controller board was achieved. The communication through the 

sockets ensured transfer of the sensor data and the control input. The codes client.c and 

server.c were used to run on the client PC and the server PC. The server PC was 

connected to the maglev system and the client PC consisted of the controller board. The 

client.c was communicating with the controller board and was at the same time 

transferring the data using TCP/IP to the server.c on server PC. The server.c and client.c 

codes are presented in Appendices D and E, respectively. 
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3.3 Supervisory Control via the Internet 

 

Supervisory control is a technique of remotely monitoring and enabling an outside 

computer to connect to an experiment and controlling it from a distance. With the 

supervisory control of the processes, the processes themselves adapt to changing 

circumstances and take corrective measures to retain the system stability. Such a 

methodology of control benefits engineers who need to monitor applications running in 

harsh conditions and offer limited access. 

The advances in the communication technology have been applied to supervisory 

control of the processes in the process control industry. The supervisory control via a 

communication network is based on the client/server architecture. In this mode of control 

only the user-defined commands are sent via the communication network.  

The control algorithm for the process runs on the controller board that is situated 

in the PC that controls the test bed. From the Fig. 7 it can be seen that the feedback loop 

is closed locally on the host side. The loop does not include time delay in the 

transmission of data between the sensor and the controller and between the controller and 

the actuator. The sensor data are sent to the controller and the controller generates the 

required control input after a finite computational time, ? c. This computational time is 

deterministic and constant in nature and is usually less than the sampling period for the 

closed- loop system. Thus, the controller has the latest sensor data available for the 

computation of the control input to be applied to the actuator. 

 

Desired Position       Actual Position 

    +        

      – 

  Feedback   

 ßClientà                                                               ß  Host PC  à 

 

Fig.7. Block diagram for supervisory control via the Internet. 

Internet Controller Plant 
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Supervisory control has been widely applied in the areas of telerobotics, under-sea 

environments hazardous environments and space programs. In these situations the 

controller is located along with the process to be controlled and the feedback loop is 

closed locally. Engineers can monitor these processes remotely and get feedback from the 

process in real time via the communication network. In an event of emergency where the 

controller is not performing efficiently or satisfactorily the engineers can take corrective 

measures. These corrective commands are transmitted via the communication network to 

the controller and are implemented in the next sampling cycle of the controller. The 

performance of the system due to these changes is sent through the communication 

channel from the process to the engineer in the same sampling cycle. 

With the widespread popularity of the Internet and its ease of communication 

real-time supervisory control of the processes can be implemented via the Internet. In 

supervisory control of the process via the Internet, the host PC connected with the test 

bed runs a web server that can serve web pages related to the test bed. These Web pages 

written in HTML have the necessary arrangements for the user to input their commands 

and get the feedback from the test bed. Once the commands have been submitted to the 

Web page, the Web page transfers these commands via the Internet to the Web server 

running on the host PC. The transmission of these commands usually takes place by the 

TCP/IP protocol. The Web server running on the host PC passes these commands to the 

CGI (Common Gateway Interface) script present in the CGI bin of the Web server. The 

CGI script is executed in the CGI bin as soon as the request from the client is received. 

This CGI script is used to convert the encrypted data from the client into a format that is 

understandable to the host PC.  

These commands from the CGI script are then transferred to the controller board 

in real time using C programs. The results of the performance of the test bed with user-

defined commands are then sent via the Internet in the opposite direction using the same 

methodology.  

For the implementation of supervisory control of the maglev system test bed, the 

test bed is connected to a Pentium IV PC that acts as host PC. The Pentium IV PC runs 

the Internet Information Services (IIS) 5.0 Web server on the Windows 2000 Professional 

operating system. The host PC interacts with the DS1104 controller board with the help 
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of C programs written using the CLIB header file clib32.h provided by dSPACE Inc. The 

header file gives the ability to transfer the commands from the PC to the controller board 

and from the controller board to the PC in real time. For the implementation of 

supervisory control of the maglev system via the Internet CGI script was integrated with 

the C code. The CGI script integrated with the C code control_clib.c provided the ability 

for directly capturing the incoming data from the user via the Internet and transferring it 

to the controller board in real time. The software architecture for the supervisory control 

of the maglev system via the Internet is depicted in the Fig. 8.  

     

    

                                                                           Client PC   

  Commands      Feedback    

 

                                                                           Communication Channel 

   Commands      Feedback 

  

         Host PC 

                      Commands      Feedback  

           Controller Board 

 

Fig.8. Software architecture for the supervisory control of the maglev system via the 

Internet. 

In supervisory control of the maglev system, stability of the system was not 

affected. This was due to fact that no data from the sensor to the controller or from 

controller to the actuator traveled through a communication network. The sensor data 

collected at the kth sampling period are applied to the controller at the kT s+ ? c instant. 

Where ? c, is the deterministic computational time taken by the controller board to 

generate control input using the sensor data. Thus the control input is applied to the 

actuator after every finite kTs + ? c time. In this mode of control ? c < Ts where, Ts is the 

sampling period for the maglev system.  

HTML 
Web-page 

CGI script 

C program 

Internet 
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The communication network delay was introduced only in the communication 

path for the user inputs from the client PC to the host PC. With the supervisory control of 

the maglev system via the Internet the user will have a delayed response of the system to 

its input commands. In addition to this delayed response, the user inputs applied to the 

maglev system will also be delayed. 

Thus, the success of the supervisory control of the maglev system via the Internet 

provides the freedom of accessing the maglev system from anywhere within Texas A&M 

University. The clients can now access the Web page of the maglev system by typing in 

the URL (uniform resource locator) of the maglev Web page in their Web browsers. A 

snapshot of the Web page for the maglev system has been shown in the Fig.9. 

 

 

Fig.9. HTML Web page of the maglev system for the user interface. 
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This maglev test bed Web page opens in the Web browser. The Web page has the 

provisions for the users to change gain parameter k, the controller constant, c and the step 

size y. The transfer function used with this mode of control is given as: 
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where, Ts is the sampling period of the controller and is 20 µs in this case.  

 

 

Fig.10. HTML output Web page of the maglev system. 

 

This Web page also has the provision for stopping the system when the 

experiment has been completed via the Internet. By checking the appropriate box the 

users can stop the experiment remotely using their Web browser. The feedback of the 

maglev system to the user input is collected by the CGI program final.c presented in 

Appendix B and sent via the Internet to the client. The results are thus displayed on the 

client PC in their Web browsers in the form of numerical data. This numerical data can 
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be used to plot the desired graph off- line, on the client PC and the user can analyze the 

system performance for the inputs provided. A snapshot of the output Web page for the 

maglev system has been shown in the Fig.10. The plot obtained from the data in output 

Web page is shown in Fig.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11. Maglev system response to a step input of 300 µm provided via the Internet. 

 

3.4 Feedback Control via the Internet 

 

Feedback control of processes has mostly been tested and implemented on 

dedicated communication networks. The defining feature of an NCS is that information  

(reference input, plant output, control input, etc.) is exchanged using a network among 

control system components (sensor, controller, actuator, etc.) [22]. Thus in NCS, real-

time sensor data and control inputs are transmitted through a communication network, 

and these sensor and actuator nodes have to work closely to achieve the desired objective.  
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Feedback control via a communication network is based on client/server 

architecture. This mode of control allows the clients to run their own control algorithm 

for the processes as opposed to the supervisory mode of control. The clients connect to 

the test bed using programs running in the client PC that can communicate via a 

communication network using the sockets. These codes called socket programs aid in 

communicating between different PCs connected through a communication network that 

uses various protocols like TCP/IP and UDP.  

With TCP/IP being a connection oriented and confirmation based protocol, the 

communication link between the host PC and the client PC remains active till one of the 

PCs terminates the session. This protocol ensures that the data being transferred between 

the two communicating PCs is transferred in a proper manner and there is no loss of data 

in the communication network. The actual sending and receiving of the data takes place 

between the sockets present in both the client and the server PC. Sockets are a 

combination of an IP address and a port. Each client has a unique port associated with it 

while a server can initiate multiple instances of sockets for a process. Thus, sockets act as 

the connection points between the communicating PCs. This strategy ensures that 

processes that take too much time in computation do not block other clients to connect to 

the server. These sockets collect the data from the process, and send them to the 

controller board or to the actuator node, with the help of socket program. The same 

socket on a client PC or on a server PC can be used for listening and sending data 

simultaneously. The schematic arrangement for the feedback control via the Internet has 

been shown in Fig. 12. 
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           _ 

 

                   Feedback 

 

Fig.12. Block diagram for feedback control via the Internet. 
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 The host PC connected to the test bed contains only the D/A (digital to analog) 

and A/D (analog to digital) channels. The D/A channel is used for the application of 

control inputs to the actuator whereas the A/D channel is used for collection of the data 

from the sensors. These channels operate once during each sampling period and thus 

control the process. The client PC has the controller board that collects the data from the 

sensor node of the host PC via the Internet. The Client PC then generates the control 

input using the sensor data and sends it to the D/A channel of the test bed via the Internet. 

Thus, the transfer of the data between the host PC and the client PC takes place 

continuously in real time via the Internet.  

 

         
      Controller board 

   Commands    Feedback 

 

        Client PC 

   Commands    Feedback 

        Communication network 

 

   Commands    Feedback 

                   Server PC 

   Commands    Feedback 

        A/D – D/A board  

 

Fig.13. Software architecture for feedback control via the Internet. 

 

For the implementation of feedback control of the maglev system, the test bed is 

connected to a Pentium IV PC that acts as the server PC. The server PC runs the server.c 

socket program on the Windows 2000 Professional operating system. The server.c code 

was written for handling data transfers between the sockets of the server PC and the 
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C program 

Internet 

Winsock 

C program 



  30 

 

client PC. A Celeron PC running on Windows NT 4.0 operating system was fitted with 

the DS1104 controller board and acted as the client PC. The client.c code was developed 

for data transfer between the sockets of the client PC and the server PC. The server.c and 

client.c codes have been presented in Appendices D and E, respectively. The software 

architecture for the feedback control via the Internet is depicted in Fig. 13. 

The server.c program was designed to collect the sensor data from the A/D 

channel of the test bed and sends it via the Internet using Windows Sockets (WinSocks). 

A WinSock augments the Berkeley socket implementation by adding Windows-specific 

extensions to support the message-driven nature of Windows operating system [21]. Till 

now the feedback control via the LAN has not been achieved. This might be due to the 

fact of improper time synchronization between the host PC and the DS1104 controller 

board. Also the sockets being used in Windows operating system might be buffering the 

data before sending it over the LAN and releasing it in a burst. Possible solutions to 

enable the feedback control via the LAN are: 

1. Integration of the socket program along with the controller algorithm running on the 

controller board. This implies ability to communicate with the client PC directly 

using the DS1104, thus removing host PC altogether. 

2. Proper usage of semaphores that can keep track of the time synchronization between 

the host PC and the DS1104 controller board. 

3. Use of another operating system, such as UNIX or Linux, for the purpose of testing 

proper functioning of the sockets. 
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CHAPTER IV 

 

ANALYSIS OF FEEDBACK CONTROL VIA THE INTERNET  

 

In the previous chapter, two different modes of control namely the supervisory 

control and the feedback control via the Internet were introduced. Due to the presence of 

time delay in the communication channel the stability of the system is affected in 

feedback control via the Internet. In this chapter, an analysis of the performance of a 

simple lead-lag controller in the presence of time-varying delay is presented. An estimate 

of the time-varying delay is obtained that can be accommodated in the control without 

losing the system stability. In the later part of this chapter measurements of round-trip 

time delay between PCs connected to same LAN and between PCs connected to different 

LANs have been presented.  

 

4.1 Introduction 

 

In distributed real- time control via the Internet, a feedback control loop is closed 

via the Internet that multiplexes data from the sensor to the controller and from the 

controller to the actuator along with other data transfers. Due to sharing of the 

communication channel for the feedback loop with other data transfers, time-varying 

delays are introduced in the control loop. This time-varying delay in the communication 

channel degrades the performance of the control system and is potential cause of 

instability.  

In the initial part of this chapter an upper bound for the time delay that does not 

affect the system stability is estimated. This upper bound has been established for various 

probabilistic distributions of delays. These delays were artificially generated and 

introduced in the actual control loop.  
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4.2 Modeling of the Data Traffic in the Internet  

 
 Modeling of the data traffic in the Internet is an important part of distributed real-

time control via the Internet.  These traffic models are employed in two fundamental 

ways: either as part of an analytical model, or to perform discrete-event simulation [23–

24]. The simplest form of traffic consists of the arrival of data packets at the 

corresponding node. This process consists of arrival instants T1, T2, T3…Tn… measured 

from the origin. By convention, the first time instant T0 is assigned value of zero, i.e. T0 = 

0. This type of process is also known as a point process. The point process can 

equivalently be described as counting process and inter arrival time process. 

 A counting process is a continuous-time, non-negative, integer-valued stochastic 

process {N(t)}, where N(t) is the number of data packet arrivals in (0, t ] and is given by 

N(t)  =  max { n : Tn  ≤  t }                                  (4.1) 

An inter-arrival time process is a non-negative random sequence {An} where An 

is the length of time interval separating the nth arrival from the previous one and is given 

by 

 An = Tn - Tn-1                                                   (4.2)                 

 The process in which An are independent, identically distributed (IID), and their 

distribution is allowed to be general, is known as a renewal process. Poisson process and 

Bernoulli process are important and special cases of renewal process. 

 Poisson models are the oldest traffic models dating back to the advent of 

telephony [22]. A Poisson process is characterized as a renewal process whose inter 

arrival times {An} are exponentially distributed with rate parameter λ [25]: 

                                                            P{An ≤ t} = 1 - exp(−λt)                                    (4.3) 

Equivalently this is a counting process that satisfies  

                                                            P{N(t) = n} = exp (−λt) (λt)n/n!                         (4.4) 

The number of arrivals in disjoint intervals is statically independent. Time-dependent 

Poisson process is obtained by letting the rate parameter λ depend on time. 

 The process in which An is constant was employed for the modeling of the time 

delay in the Internet [13]. This constant time delay depicts the use of a buffer that delays 

the sensor signal or the control input by an amount that is more than the worst case time 
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delay. This converts analysis of the system with the time-varying delay into an analysis 

of time- invariant system. For the stability of the system this buffer should delay the 

signals by an amount that is always less than one sampling period for the system [13]. 

  

4.3 Stability Analysis of Existing Controller with Delays  

 

The magnetic ball levitation system is open- loop unstable, and its closed- loop 

stability is lost with excessive time delay. To deal with the communication time delay 

that might be encountered in the Internet traffic, artificial time delays were incorporated 

in the control loop, and three sets of experiments were performed. The setup used for the 

experiments is shown in Fig.14. 

 

 

 

 

 

                         t ca                                                             t sc 

 

 

 

 

Fig.14. Digital control system with the induced delays. 

 

Where, t sc and t ca are the artificially generated delays. It has been assumed that 

the delays between the sensor and the controller and between the controller and the 

actuator are the same and follow the same probability distribution. Along with the 

network delays, the controller takes finite computational time, t c. As the delays have been 

artificially generated offline and incorporated in the control loop these time delays take 

computation time into consideration. This implies the effect of t c is embedded in either t sc 

or t ca. In the experimental setup the sensor node is a time-driven sensor whereas the 

controller node and the actuator node are event-driven. In other words, the sensor node 

Actuator node Test bed Sensor node 

Controller node 
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collects the sensor data at a fixed sampling period, whereas the controller and the actuator 

function as soon as the data arrives at their respective nodes.  

The first set of the experiments was performed with the introduction of a constant 

time delay. As discussed in Section 4.2 the constant time delay case represents the use of 

the buffer to make the system with time-varying delay appear time invariant. This time 

delay was accommodated on the simple lead- lag compensator designed in Chapter 2. The 

maximum amount of time delay for this model was obtained for various sampling 

frequencies. A plot between the maximum time delay and various sampling frequencies 

has been shown in Fig.15. 
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Fig.15. Maximum allowable constant time delay with respect to sampling frequencies. 

 

This figure shows a general trend that the maximum time delay that can be 

accommodated at a higher sampling frequency is less than that at a lower sampling 

frequency. As the sampling period is increased by decreasing the sampling frequency, 

more time is available in the real-time control routine without frame overruns. Thus, the 

maximum allowable time delay keeps increasing with lowering of the sampling 

frequency. However, at a very low sampling frequency again the maximum allowable 
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time delay decreases. This trend can be accounted for the poorer stability of the system at 

a low sampling frequency.  Thus, it can be concluded that there is an optimal sampling 

frequency for the system for which we can accommodate maximum allowable constant 

time-delay without affecting the system stability. 

The second set of experiments was performed to deal with the randomness of the 

time delay that will be encountered while the control loop is closed via the Internet. A 

uniform probability density function (PDF) for this time delay (in the range of zero to 8 

µs for 50-kHz sampling frequency) was used to model this random time delay in the 

control loop. The random time delays in the  chosen range were generated using a 

MATLAB function, unidrnd(). The results from this set of experiments are presented in 

Fig. 16.  
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Fig.16. Mean allowable random time delay based on a uniform PDF with respect to 

sampling frequencies. 

 

 From Fig. 16, it can be concluded that the mean time delay that can be 

accommodated for different sampling periods is much less than that in the constant time 
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delay case due to the random nature of the delays. Due to these random delays, actual 

measured position information may be missing in some sampling periods. These vacant 

samples severely affect the stability of a closed-loop control system. Fig. 16 also 

indicates that reducing the sampling frequency down to a threshold allows for 

accommodation of more time delay in the control loop. Once the threshold sampling 

frequency is reached, reducing sampling frequency reduces the amount of random delay 

that can be accommodated in the control loop. 

The third set of experiments used random delays following a Poisson PDF (with a 

mean of 8 µs was used for 50-kHz sampling frequency). These delays give more realistic 

characteristics of the random delays that might be encountered in the Internet. The results 

obtained for the third set of experiments have been presented in Fig. 17. 
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Fig.17. Mean allowable random time delay based on Poisson PDF with respect to 

sampling frequencies. 

 

From the figure it can be concluded that the mean allowable random time delay, 

based on the Poisson distribution, is more than that based on the uniform distribution for 
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low frequencies. This is due to the fact that the random time delays generated according 

to a Poisson distribution function have time delays clustered around its mean. 

 

4.3 Experimental Delay Measurement for LAN  

 

 The structure of a typical LAN consists of number of computers and network 

devices interconnected by a shared transmission medium, typically a cabling system. The 

cabling system is arranged in bus, ring or star topology and can use twisted-pair cable, 

coaxial cable, or optical fiber transmission media.  

 The computers and network devices are connected to the cabling system through a 

NIC (network interface card) or LAN adapter. The NIC card coordinates the transfer of 

information between the computer and the network. The NIC card transfers information 

in parallel format to and from main memory (RAM) in the computer. On the other hand, 

the NIC card transfers information in serial format to and from the network, so parallel-

to-serial conversion is one of the NIC’s function. Each NIC card is assigned a unique 

physical address that is burned into the ROM [26].  

The Ethernet is the most widely used local area network (LAN) technology. The 

original and most popular version of Ethernet supports a data transmission rate of 10 

Mb/s. Newer versions of the Ethernet called Fast Ethernet and Gigabit Ethernet support 

data rates of 100 Mb/s and 1Gb/s (1000Mb/s). An Ethernet LAN may use a coaxial cable, 

special grades of twisted pair wiring, or fiber optic cable. Bus and Star wiring 

configurations are supported. Ethernet devices compete for access to the network using a 

protocol called Carrier Sense Multiple Access with Collision Detection (CSMA/CD). In 

CSMA/CD a system with a frame to transmit waits until the channel is silent. When the 

channel goes silent, the station transmits but continues to listen for collisions that can 

occur if other stations also begin to transmit. If a collision occurs, the station aborts the 

transmission and schedules a later random time when it will reattempt to transmit its 

frame [26]. 

 Round-trip time delay measurements have been done for PCs connected over the 

same LAN and on different LANs. Round-trip time delay data over the LAN were 

collected using the packet Internet groper (PING) utility. PING utility was used to 
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measure the round-trip time over the LAN because we wanted to keep the network 

overhead due to probe packets small. In addition to it we wanted to avoid the possibility 

of flooding the network with probe packets. The PING utility available with Windows 

operating system is run in an MS-DOS session and provides accuracy in milliseconds. 

Since the delay measurements were to be made over the LANs PING utility had to be 

modified to provide accuracy in microseconds. The modified PING utility providing this 

was obtained as freeware [27].  

PING is a simple application used to determine whether a host is online and 

available. PING makes use of Internet Control Message Protocol (ICMP) messages. The 

purpose of ICMP is to inform sending hosts about errors encountered in IP datagram 

processing or other control information by destination hosts or by routers. ICMP is 

considered to be in the same layer as IP. ICMP has two advantages. First, there is no need 

to obtain an account on the hosts being pinged. Second, of the commonly available 

protocols, it places the least computational load on the hosts being pinged. PING sends 

one or more ICMP Echo messages to a specified host requesting a reply. PING is often 

used to measure the round-trip delay between two hosts [28–29].  

The round-trip delay data were collected on several distinct days of the week and 

at various times of the day. The host was pinged and the round-trip delay statistics was 

collected over a period of approximately 5 hours each time. The results of these 

experiments are presented in Tables II and III. 

 

Table II. Round-trip time delays between PCs on different LANs. 

 

No. Day Date 

M/D/Y 

Time  Round-Trip  

Time Delay (ms) 

No. of 

Packets 

    Min. Mean Max.  

1 Sat. 11/16/02 1:40 AM–2:40 AM 0.760 0.843 123.52 49985 

2 Sun. 11/17/02 3:00 PM–8:00 PM 0.768 1.234 188.77 20939 

3 Mon. 11/18/02 8:30 AM–1:00 PM 0.771 0.906 187.61 17814 

4 Wed. 11/20/02 10:30 PM–3:30 AM 0.761 0.884 79.73 34348 

5 Sun. 11/25/02 5:00 PM–2:40 AM 0.757 0.860 63.18 18293 
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Table II summarizes the measured round-trip times between the two PCs with IP 

addresses werc-dhcp-1825.tamu.edu and maglev7.tamu.edu. The two PCs were 

connected to different LANs. The minimum, maximum, mean and standard deviation of 

this time delay are also presented for each experiment. It can be observed that the 

maximum time delay was observed on Sunday Nov. 17, 2002, between 3:00 PM and 8:00 

PM. This sudden surge in time delay on Sunday Nov. 17, 2003 can be accounted to 

sporadic congestion occurring in the LANs. The minimum round-trip time delay was on 

Sunday Nov. 25, 2003, between 5:00 PM and 2:40 AM. Typically, the LANs have the 

maximum traffic on weekdays during the daytime and have the lowest traffic in nights of 

weekends.   

Table III summarizes the measured round-trip times between werc-dhcp-

1825.tamu.edu and maglev1.tamu.edu. Both the PCs were connected to the same LAN. 

The minimum, maximum, mean and standard deviation of this time delay have also been 

presented for each experiment. It can be observed that the maximum time delay was 

observed on Sunday Dec. 08, 2002, between 2:00 PM and 10:00 PM. The minimum 

round-trip time delay was on Wednesday Dec. 04, 2003, between 12:00 PM and 8:30 

PM.   

 

Table III. Round-trip time delays between PCs on the same LAN 

 

No. Day Date 

M/D/Y 

Time  Round-Trip  

Time Delay (ms) 

No. of 

Packets 

    Min. Mean Max.  

1 Sat. 11/30/02 7:00 PM–4:00 AM 0.387 0.444 1.977 34758 

2 Tue. 12/03/02 10:00 AM–4:00 PM 0.307 0.395 9.357 21340 

3 Wed. 12/04/02 12:00 PM–8:30 PM 0.294 0.383 16.674 30000 

4 Sat. 12/07/02 1:46 PM–7:40 PM 0.309 0.378 1.428 21212 

5 Sun. 12/08/02 2:00 PM–10:00 PM 0.303 0.403 17.97 30707 
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Details of some of the experiments are presented in Appendix F. In each figure, 

the probability distribution of round-trip times are plotted. The following section 

discusses about the observations made from these experiments. 

 

4.3.1 Observations and Discussions  

  

 In this section, some initial observations based on the experiments are presented. 

These are preliminary observations and the discussions reflect the current trend observed 

from the data. Following observations can be made from the experimental results 

obtained in the previous subsection. 

 

1. The round-trip time delay is fairly uniform except for some sporadic sharp rise in the 

time delays. These sharp rises are considered to occur due to sudden congestion of the 

network by other users. 

2. If we ignore the sporadic sharp rise in the time delays, our network is fairly smooth in 

the nights and over the weekends.  

3. Most of the sharp rises in round-trip time delay occur one at a time. However, there 

are also examples of consecutive rise in round-trip time delay.  

4. However, no loss of data packets was observed during the measurements. 

 

But these observations might vary if other protocols had been employed for the 

round-trip time delay estimate. From the Tables II and III and the experiments conducted 

in the previous section, it can be inferred that the mean round-trip time delay is more than 

the upper bound for the time delay in the control loop. This is true for PCs connected to 

the same LAN as well as PCs connected to different LANs. Thus, to close actual control 

loop between two PCs using the existing communication network a new controller has to 

be designed. This controller should be able to accommodate time delays that are at least 

of the order of mean time delay observed in Table III. It also requires designing an 

algorithm that can handle sporadic rise of the round-trip time delay as observed from the 

graphs included in Appendix F.  
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In the next section a new lead-lag controller is designed and upper bound of time 

delay for this controller has been obtained. An algorithm is developed that can handle 

bounded sporadic surges in the round-trip time delay. 
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CHAPTER V 

 

DIGITAL CONTROLLER DESIGN 

 

5.1 Introduction 

 

In the previous chapter, upper bound for the artificially generated time-varying 

delays were estimated for the existing controller. Experiments were also performed for 

the estimation of the time delay present between two PCs connected to the same LAN 

and between PCs connected to two different LANs. It was concluded that experimentally 

measured round-trip time delay to the same LAN and between two PCs connected to 

different LANs is more than the upper bound for the existing controller. This necessitated 

designing a new controller that could perform at a lower sampling frequency thus 

allowing more time in the sampling period. This helped in accommodating more time 

delay in the control- loop. For making the maglev system test bed to perform at lower 

sampling frequencies, a lead lag controller was designed directly in the digital domain.  

 

5.2 Designing the Digital Controller 

 

 The first step in designing controller directly in z-domain is to transform the plant 

model to a discrete system. The plant model is transformed into a discrete system using 

the transformation  
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This discrete model for the plant is obtained by placing a ZOH (zero-order hold) before 

the plant and an A/D after the plant, as shown in the Fig 18 [30]. 
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                             u(n)                                                                         y(n)     

 

                                                                                                      T 

 

                                                                    G(z) 

Fig.18. Discrete model of the plant. 

 

where, u(n) are the sampled signals from the computer and y(n) are the samples of the 

outputs from the plant. By digitization of the plant model instead of the controller model, 

the approximate nature of the plant is eliminated. This is because the presence of the 

ZOH before the plant has an exact discrete equivalent that includes the lagging effect of 

the hold. The controller design iterations to achieve the desired system specifications are 

carried out using the z-domain analysis tools. The D(z), thus found yields performance 

that are very close to the desired specifications for high and low sampling frequencies.  

 Thus, we find the discrete equivalent of the plant model for the maglev test bed. 

The discrete equivalent of the plant model developed by Steve C Paschall, II in Section 

2.2.2 for a sampling period of 3 ms is given by 
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5.2.1 Root Locus Design 

 

 In the root- locus design, a unity feedback system is used with a proportional gain 

as a controller. The value of the gain is varied from negative infinity to positive infinity 

and the locations of the closed- loop poles are observed in the locus. From Fig. 19, it can 

be clearly seen that the poles located at 1 and are on the edge of the unit disk. These poles 

move out of the unit disk when the gain of the controller varies from negative infinity to 

positive infinity. Any gain value in the negative range moves the two closed- loop poles 

just outside the unit disk. Hence, the control of the plant by merely changing the 

proportional gain will not be satisfactory and the use of the other design methods such as 

lead-lag compensation should be considered. 

ZOH G(s) 



  44 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.19. Root locus for feedback with a gain. 

 
  
5.2.2  Lead-Lag Compensation 

 
 Since a satisfactory design was not obtained by a gain adjustment alone, lead- lag 

compensation was designed for the system. The lead compensation acts mainly to modify 

the dynamic response to raise the bandwidth and lower the rise time and also to decrease 

the transient overshoot. The lag compensation is used to raise the low frequency gain and 

thus to improve the steady-state accuracy of the system. 

 Equation (5-3) shows such a lead- lag compensator. The lead compensator has its 

zero placed at z = 0.862, which is close to the plant poles and pole placed at z = –0.141. 

The lag compensator has its zero placed at z = 0.892 and pole at z = 0.923. 
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Fig.20. Modified root locus when the lead- lag compensator (5-3) is implemented. 

 

 Fig.20 shows the modified root locus, when the compensator (5-3) is 

implemented. The plant poles lying at the unit disk move towards the compensator zeros 

and thus make the whole system stable. It also provides with the scope of varying the 

compensator gain to achieve the desired performance of the system. The value of the gain 

at 41015.4 × gives satisfactory performance of the system as desired.  

Fig. 21 shows the transient response of the closed- loop system to a unit step input. 

It can be seen that the settling time for the system is about 45 ms and the percent 

overshoot is about 30%. The closed- loop bode plots is shown in Fig.22. The loop 

transmission figure shows the system crossover frequency to be approximately 28.3 Hz. 
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Fig.21. Closed- loop maglev system transient response for unit step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22. Maglev system closed-loop Bode plot. 
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5.2.3 Stability Analysis for the Digital Controller 

  

The digital controller design technique was used iteratively to find out the lowest 

sampling frequency at which the controller can be run without making the system 

unstable. From the experiments, it was observed that the minimum frequency at which 

the digital controller can control the single-actuator magnetic levitation system test bed is 

333.33 Hz.  

Another digital lead- lag controller was designed to control the test bed at a 

sampling frequency of 500 Hz. This controller provided 2-ms sampling period in the 

control loop. The digital controller running at 500 Hz sampling frequency is 

133.0761.0
7776.0762.1

1044.8)(
2
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×=
zz

zz
zD                                      (5.4) 

 To calculate the upper bound for the time delay that can be accommodate in the 

control- loop for these two controllers, experiments similar to section 4.3 were conducted. 

The first set of experiments was conducted for the estimation of maximum amount of 

constant time delay that can be accommodated in the control- loop. The results for this set 

of experiments have been presented in Table IV. 

 

Table IV. Maximum constant time delay for different sampling frequencies. 

 

Sampling frequency (Hz) Maximum constant delay in the control loop  

500 650 µs 

333.3 2 ms 

 

 From the Table IV, it can be observed that the maximum amount of constant 

delay that can be accommodated in the control loop is 2 ms for the 333.3 Hz sampling 

frequency. The maximum amount of round-trip time delay is more than the mean time 

delay that was observed in the experiments conducted in Section 4.3. The use of the 

constant round-trip time delay for calculating the upper bound of time delay suggests the 

use of buffers before the controller node and the D/A node.  
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 The second set of experiments was conducted with the artificially generated 

round-trip time delay that followed the uniform distribution. The delays ranged from zero 

to 1 ms for the 500 Hz sampling frequency and 1.52 ms for 333.3 Hz. These random 

delays were generated using the MATLAB. The results for these experiments are 

presented in Table V. From the Table V, it can be observed that mean time delay that can 

be accommodated in the control loop is of the order of mean time delay observed from 

Table III.  

 

Table V. Mean time delay based on a Uniform PDF with respect to sampling frequencies. 

 

Sampling frequency (Hz) Mean time delay in the control loop  

500 500 µs 

333.3 760 µs 

 

 The third set of experiments was conducted for estimation of upper bound for the 

round-trip time delays in the control- loop where the delays followed a Poisson 

probability distribution. These random round-trip time delays were generated using the 

MATLAB. The results of this set of experiments are presented in Table VI. From Table 

VI, it can be observed that mean time delay that can be accommodated in the control loop 

for 333.3 Hz sampling frequency is more than the mean time delay observed from Table 

II. 

      

Table VI. Mean time delay based on a Poisson PDF with respect to sampling frequencies. 

 

Sampling frequency (Hz) Mean time delay in the control loop  

500 600 µs 

333.3 1.84 ms 

                                                                                                                                                                                                                                         

 Experiments were also conducted to test the stability of the controller running at 

the sampling frequency of 333.3 Hz in the presence of measured time delay between 

werc-dhcp-1825.tamu.edu and maglev1.tamu.edu and between werc-dhcp-1825.tamu.edu 
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and maglev7.tamu.edu. For conducting these sets of experiments the round-trip time 

delay between the two PCs presented in Appendix F was used offline by converting it to 

an array. This array had 20000 delay values and was downloaded on the controller board 

along with the control code. The delays in the array were with in the upper bound of the 

artificial time delays for the digital controller running at 333.3 Hz. The assumptions made 

for performing these experiments are that the same amount of time delay is present both 

in the feedback loop and the forward loop and no sporadic excessive delays are present in 

the actual data. These sporadic excessive time delays were several times as large as the 

value of sampling period for the controller running at a sampling frequency of 333.33 Hz, 

and thus led to instability of the system.  

From the experiments we can conclude that if the network is free of the sporadic 

rise in the round-trip time delays, the digital controller running at the sampling frequency 

of 333.3 Hz is able to maintain the stability for the test bed. The round-trip time delay 

data that was used for these experiments inc luded data measured between PCs connected 

on the same LAN and between PCs connected to different LANs. The system becomes 

unstable with the time delays exceeding the upper bounds because the effect of 

application of control input at the actuator is not sensed in the next sampling period by 

the sensor. The actuator takes a finite amount of time for implementation of the control 

input applied to it. If the time delays exceed the sampling period for the system, no 

control input is applied to the D/A channel and thus we have cases of vacant sampling. 

During the vacant sampling, no control input is applied to the D/A channel and thus the 

system loses its stability.   

All the networks have a limited data carrying capacity. When the load is light, the 

round-trip time delay between the host PC and the client PC is almost uniform. Also the 

network load might have an important role in data transmission from the host PC using 

the sockets. When the network is congested the sockets might not be able to send the data 

and it gets stored in the buffer of the socket. When the network load again drops all the 

stored data in the socket might be released in a burst. This phenomenon is detrimental for 

the stability of the systems that are data critical. Some of the causes of the network 

congestion are: 
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1. Number of computers using the network capability for their usage. 

2. High demand from networked applications, such as groupware (for scheduling and 

appointments) and e-mail with large attached files. 

3. High demand from bandwidth- intensive applications, such as desktop publishing and 

multimedia. 

 

5.3 Sensor Data Estimation and Timeout  
 
 It can be observed from discussions in the previous sections and chapters that the 

upper bound for the time delay in the control- loop is less than the sampling period for the 

system. As seen from the experiments included in Appendix F the time delays in the 

network are not always less than the sampling period of the system. If such a situation 

arises available digital controller can not perform satisfactorily and the stability of the 

system is lost. Thus for the existing controller to maintain the system stable the time 

delay in the control loop should always be less than the sampling period of the system.    

 In this section, a methodology to maintain the system stability in the presence of 

sporadic time delays that are more than the upper bound of time delays has been 

suggested. This methodology uses the concept of timeout from a control perspective. The 

concept of timeout has also been studied by Nilsson [18].  

 

 

 

 

                                                                                                     

 

 

 

 

Fig.23. Setup for application of timeout methodology in control system with random time 

delays. 
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 The setup for the application of the timeout methodology in the presence of time 

varying delays in the control loop is shown in Fig.23. In this setup tk is a randomly 

varying delay which has a priori probability distribution. The timeout refers to the case 

where control input is calculated whenever a new sensor data arrives at the controller 

node with in the to time units for a given sampling period. Here, to is the amount of time 

for which the controller waits for the new data within a sampling period. With the 

experimental setup for the timeout methodology, selection of value of timeout is an 

important factor to ensure the stability of the system in the presence of sporadic high time 

delays. It can be observed from the results presented in Section 4.3, the timeout can be 

taken as the upper bound of the time delay for the test bed. If the new sensor data is not 

available till to time the control input is calculated based on the predicted sensor value for 

that sampling period.  

 Whenever the controller gets timeout, the controller generates control input based 

on an estimate of the sensor data at that instant. Thus, near accurate prediction of the 

sensor data is an important factor to guarantee the stability of the system during timeout 

cases. Various methodologies are available for the prediction of the data, having observed 

the previous values of the data. 

 

5.3.1 AR Model 
 

 An AR (autoregressive) model of order n is given by the following model of the 

signal {y(t)} [31]: 

                             )()(...)1()( 1 tvntyatyaty n =−++−+                                 (5-5) 

we assume that, {v(t)}is a white gaussian noise with zero mean values  in this thesis. The 

above model is obtained by assuming no input.  

In ARX (autoregressive exogeneous) model we consider a dynamical system with 

input signal {u(t)} and output signal {y(t)} sampled in discrete time t = 1, 2, 3…. We 

assume that these signals are related thorough a difference equation 

    )()(...)1()(...)1()( 11 tvmtubtubntyatyaty mn +−++−=−++−+            (5-6) 

For the sake of convenience, q-1 is chosen as the backward shift (or delay) operator 

implying: 
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      )1()(1 −=− tytyq                                          (5-7) 

Thus (5-6) can be rewritten as  

         )()()()()( 11 tvtuqBtyqA += −−                              (5-8) 

where, 
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1

1
1

1
1

1

                            (5-9) 

The dynamic relationship between the input and output signals is represented by (5-6) 

and (5-8) and is expressed in terms of the parameter as: 

       ?T = (a1… an   b1…bm)                               (5-10)  

thus, (5-6) can be expressed as 

        y(t) = ?T F (t) + v(t)                                  (5-11) 

The model thus derived describes the observed variable y(t) as an unknown linear 

combination of the components of the observed vector F(t) plus noise. The components 

of the F(t) are known as the regression variables and the model is called a linear 

regression model. 

 If the characteristic of the noise {v(t)} is unknown, a prediction of the value of 

y(t) having observed the previous values of y(k), u(k), where k = t–1, t–2,… is given  by 

                                                                      y(t|?) = ?T F (t)                                       (5-12) 

In (5-12) the predicted value of the output depends on the model parameters ?. if {v(t)}in 

(5-11) is a sequence of independent random variables with zero mean values y becomes a 

prediction of y [29].  

Thus, for the timeout cases the sensor data can be predicted using (5-12). The 

model parameters ? is estimated from the measurements of y(t), F (t) where t = 1,2,3…N. 

The least-square estimate methodology can be employed for the estimation of model 

parameters ?. 

 

5.3.2 ARMAX Model 
 

The model obtained by modeling the disturbance term v(t) of ARX model is 

known as the ARMAX model [29]. The modeling of the disturbance term in (5-8) is 

described as a moving average (MA) of the white noise sequence {v(t)}: 
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v(t) = C(q-1)e(t)                                                 (5-13) 

where, 

     C(q-1) = 1 + c1 q-1+…+crq-r                                     (5-14) 

Thus the resulting model becomes: 

             )()()()()()( 111 tvqCtuqBtyqA −−− +=                             (5-15) 

which, consists of  a combination of an autoregressive (AR) part A(q-1)y(t), a moving 

average (MA) part C(q-1)v(t) and a control part B(q-1)u(t). In this model the parameter 

vector is defined as: 

       ?T = (a1…an  b1…bm  c1…cr)                                (5-16) 

On rearranging the terms in (5-15) we obtain: 
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for some ?-dependent sequence {hk(0)} and {gk(0)} 
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                                 (5-18) 

These sequences will tend to zero exponentially if all the roots of the polynomial 

        r
rr czczzC +++= − ...)( 1

1
*                                  (5-19) 

are inside the unit circle. 

From (5-17) it can be observed that the right-hand side is known at time t–1, 

except for the term e(t). The term e(t) is independent of everything that has happened up 

to time t–1. Therefore the predictor is given as 
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−=θ                   (5-20) 

In (5-20) the predictor assumes that all the data from −∞=t  is known. Usually the data 

collection is initialized at time 0. This is resolved in (5-20) by summing only up to tk = . 

Since hk and gk decay exponentially, this approximation is reasonable, except possibly for 

small t. 

Thus we can organize the terms as  
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−=θ                  (5-21) 

which on further rearrangement gives 

)()()()]()([)|(ˆ)( 1111 tuqBtyqAqCtyqC −−−− +−=θ                (5-22) 

The above expression can be used for calculation of )|(ˆ θty .  

 If in (5-22) no input is available to the system then the model can be used as 

ARMA model. Thus the ARMA model is given by 

)()]()([)|(ˆ)( 111 tyqAqCtyqC −−− −=θ                         (5-23) 

This model can also be used to predict the output of the system at time t, when outputs till 

time t–1 are known to the system. 

 

5.3.3 Model Selection 

 

The different models explained earlier can be used for the estimation of sensor 

data in timeout cases. The estimated sensor data could be used by the controller to 

generate the control input whenever it does not receive the new data from the sensor node 

with in the specified time limit.  

Experiments were conducted to select the best model to be used for sensor data 

estimation. The two sets of experiments for parameter estimation for different models 

were done offline using the batch process. In batch process the sensor data were collected 

for sampling frequencies of 500 Hz and 333.3 Hz. The sensor data were then arranged in 

the ascending order of the timestamps associated with each sensor data. The arranged 

sensor data was used for the estimation of the model parameter vector for both the 

models. 

For the AR model experiments were conducted at sampling frequencies of 500 Hz 

and 333.3 Hz for the estimation of parameter vector for, where ? is given by  

                      ?T = (a1… an )       (5-24) 

Various MATLAB commands such as iddata() and rarx() were used for the estimation of 

parameter vector using the sensor data arranged in the ascending order based on delays 

faced by them. The command iddata()  is used for the creation of data objects that can be 
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used for identification techniques. The command rarx() is used to estimate the parameter 

vector iteratively.  

A fifth-order AR model was selected for the prediction of the sensor data. The 

order of the AR model was selected by using the MATLAB.  The AR models of the order 

of 10 and higher estimated sensor data with better accuracy as compared to lower order 

AR models. However, tenth order AR model or higher required the controller to maintain 

a large number of previous sensor data. Thus, an optimal fifth order AR model was 

chosen that estimated the sensor data with reasonable accuracy and required the 

controller to maintain lesser number of previous sensor data. The results of the 

experiments for the estimation of parameters for this model at sampling frequency of 

333.3 Hz are presented from Fig.24 through Fig.28.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.24. Plot between the value of a1 and the number of iterations. 
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Fig.25. Plot between the value of a2 and the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.26. Plot between the value of a3 and the number of iterations. 
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Fig.27. Plot between the value of a4 and the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.28. Plot between the value of a5 and the number of iterations. 
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 It can be observed that the values in the parameter model tend to be with 

in certain range even after approximately 26000 iterations. It can be observed from the 

experimental results presented in Fig. 29–33, the values tend to converge in a certain 

range. In these experiments the parameters were estimated using arbitrarily large initial 

values. It can be observed that the values of the parameters after certain number of 

iterations tend to converge to in a particular range. Thus, for building up the AR model 

for 333.3 Hz sampling period mean of these values can be taken as the coefficients in (5-

12). The resulting AR model used for prediction of the sensor data for the timeout case is 

given by 

)5(4064.0)4(1960.0)3(0622.0)2(0669.0)1(3195.0)|(ˆ −+−+−−−+−= tytytytytyty θ
             (5-25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.29. Plot between the value of a1 and the number of iterations with arbitrary initial 

values of the parameters for AR model. 
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Fig.30. Plot between the value of a2 and the number of iterations with arbitrary initial 

 values of the parameters for AR model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.31. Plot between the value of a3 and the number of iterations with arbitrary 

initial values of the parameters for AR model. 
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Fig.32. Plot between the value of a4 and the number of iterations with arbitrary 

initial values of the parameters for AR model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.33. Plot between the value of a5 and the number of iterations with arbitrary 

initial values of the parameters for AR model. 
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The model (5-25) was used for the prediction of the sensor data by the controller 

for the timeout case at sampling frequency of 333.3 Hz. In this model the controller uses 

the previous five values of the sensor data and computes the predicted sensor data. For 

this model it has been assumed that all the sensor data are time stamped and the controller 

is able to store the last 5 values of the sensor reading. It has also been assumed that there 

is no loss of data in the communication medium. The controller upgrades the predicted 

value of sensor reading with the actual reading whenever it is available before the next 

timeout occurs. 

 To verify the performance of this model, another set of sensor data was collected 

and was used for the validation purpose. A plot of the percentage error between the 

predicted sensor data and the actual sensor vs. the number of iterations is presented in 

Fig. 34.  

 It can be observed from Fig. 34 that the mean percentage error between the 

predicted value of sensor data using the AR model and the actual sensor data lies at 3 % 

approximately. Thus, the predicted value of the sensor data can be used for the 

calculation of control input in the event of timeouts.  

 The AR model given by (5-25) was implemented in the real-time control code 

running at 333.3 Hz sampling frequency and experiments were performed to find out the 

stability of the system for various artificial delays. The timeout for these experiments 

were taken as the upper bound of the delays at this sampling frequency using Tables V 

and VI. It was observed that with the use of the AR model and the timeout the mean of 

time delay based on uniform distribution was increased by approximately 10 %. With the 

time delay based on Poisson distribution the increase was not appreciable. This might be 

due to the limitation of using the predicted value of sensor data for frequent timeouts.  
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Fig.34. Plot between percentage error in using AR model for sampling frequency of 

333.3 Hz and number of iterations. 

 

Similar experiments were carried out with the AR model for the 500 Hz sampling 

frequency. A fifth-order AR model was selected for the 500 Hz sampling frequency. The 

values of the parameters for this model were also estimated iteratively using the same 

methodology for the AR model for the 333.3 Hz sampling frequency. They were 

estimated iteartively using the batch process. The sensor data were collected offline and 

arranged in the ascending order of the timestamps. The obtained AR model is given by:   

)5(1964.0)4(0604.0)3(0956.0)2(2169.0)1(4292.0)|(ˆ −+−+−+−+−= tytytytytyty θ
             (5-26) 

 To verify the performance of this model, another set of sensor data was collected 

and was used for the validation purpose. A plot between the error between the predicted 

sensor data and the actual sensor and the number of iterations is presented in Fig. 35.   
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Fig.35. Plot between percentage error in using AR model for sampling frequency of  

500 Hz and number of iterations. 

 

It can be observed from Fig. 35 that the mean percentage errors between the 

predicted value of sensor data using the AR model and the actual sensor data is at 2 % 

approximately. The obtained AR model for 500 Hz sampling frequency predicts the 

sensor data with more error as compared with the AR model for the sampling frequency 

of 333.3 Hz.  

The second set of experiments was conducted to estimate the parameter vector for 

the ARMA model. A [4, 1] order of the ARMA model was selected to predic t the sensor 

data in the timeout case for both the 333.3 Hz and 500 Hz sampling frequency. The 

parameter estimation was done using the off- line batch process. The sensor data was 

collected and then arranged in an ascending order with respect to its time stamp. This 

sensor data was used iteratively for the estimation of the parameters of the [4, 1] ARMA 

model.  

The results of the batch process for the sampling period of 333.3 Hz have been 

presented in Fig.36-40. 

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Number of iterations

Pe
rc

en
ta

ge
 E

rr
or



  64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.36. Plot between the value of a1 and the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.37. Plot between the value of a2 and the number of iterations. 
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Fig.38. Plot between the value of a3 and the number of iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.39. Plot between the value of a4 and the number of iterations. 
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Fig.40. Plot between the value of c1 and the number of iterations 

 

 It can be observed that the values in the parameter model tend to be within certain 

range after approximately 26000 iterations. This was confirmed by the experimental 

results for the estimation of parameters using arbitrary initial values. The results for this 

set of experiments are presented in Fig. 41-45. Thus for building up the ARMA model for 

333.3 Hz sampling period mean of these values can be taken as the coefficients in (5-23). 

The resulting ARMA model used for prediction of the sensor data for the timeout case is 

given by 

        )|1(ˆ0436.0)|(ˆ θθ −−= tyty                     

                    )4(5960.0)3(1315.0)2(6859.0)1(1777.1 −+−−−−−+ tytytyty        (5-27) 

In this model the controller uses the previous four values of the sensor data and 

previous estimated value of sensor data to predict the current sensor data. It is assumed 

that there is no loss of data in the communication medium.  
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Fig.41. Plot between the value of a1 and the number of iterations with arbitrary initial 

values of the parameters for ARMA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.42. Plot between the value of a2 and the number of iterations with arbitrary 

initial values of the parameters for ARMA model. 
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Fig.43. Plot between the value of a3 and the number of iterations with arbitrary initial 

values of the parameters for ARMA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.44. Plot between the value of a4 and the number of iterations with arbitrary initial 

values of the parameters for ARMA model. 
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Fig.45. Plot between the value of c1 and the number of iterations with arbitrary initial 

values of the parameters for ARMA model. 

 

ARMA model given by (5-27) was implemented in the real-time control code 
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data in the case of timeout. AR model is chose because the percentage error variation for 

this model is less than the percentage error variation for the ARMA model. 

  

5.4 Performance Evaluation of the Selected Algorithm 

 

 The AR model selected was tested against the real round-trip time delay measured 

between werc-dhcp-1825tamu.edu and www.tamu.edu using the PING utility. The host 

werc-dhcp-1825.tamu.edu and the client www.tamu.edu were on different LANs. The 

probability distribution of the round-trip time delay is plotted in Fig. 46. The round-trip 

time delay was observed on Wednesday, Feb. 26, 2003 from 10:00 PM to 7:00 AM. It 

can be observed that mean round-trip time delay between the host and the client is about 

851.8 µs. It can also be observed that there are sporadic rise in the round-trip time delay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.46. Probability distribution of round-trip time delay between werc-dhcp-

1825.tamu.edu and www.tamu.edu on Wednesday Feb.26, 2003 from  

10:00 PM to 7:00 AM. 
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 For testing the performance of the AR model and timeout at a sampling period of 

333.3 Hz, delays that were more than the sum of the sampling period and the timeout  

were removed from the actual data. The timeout for this experiment was taken as 1.3 ms. 

The modified data set was converted into an array and was downloaded on the controller 

board along with the control code. 

 The system was observed for its stability with the delays included in the control 

code. The test bed remained stable for approximately about 10 minutes. Thus, it can be 

concluded from the experiment that the sensor data estimation along with timeout can 

provide stability to the system under certain conditions. These conditions are: 

 

1. The sensor data arriving at the controller node is all time stamped. 

2. There is no loss of data in the network. 

3. The mean time delay present in the network should be less than the upper bound for 

the time delay for the system. 

 

The sensor data estimation technique for timeout cases maintains stability of the 

system for sporadic rise in the round-trip time delays. In addition to it the sporadic high 

time delays should always be less than the sum of one sampling period time and the 

timeout time. In other words the sensor data was unable to reach the controller node 

before the timeout should reach the controller node before the next time out occurs.  
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CHAPTER VI 

 

CONCLUSIONS  

 

6.1 Conclusions  

 

The objective of this research is to demonstrate experimentally the feasibility of 

using the Internet for real-time control with single-actuator magnetic levitation (maglev) 

test bed. Two modes of control for the test bed via the Internet, namely supervisory 

control and feedback control have been studied. The supervisory control of the test bed 

via the Internet was successfully developed. Experiments were also conducted to test the 

stability of the existing controller in the presence of time-varying delays. Upper bounds 

of artificial time-varying delays that followed different probability distributions were 

estimated for the controller. Two sets of experiments were conducted to measure the 

round-trip time delay between PCs connected to the same LAN and PCs connected to 

different LAN. It is observed that the mean time delay in the two sets of experiments 

exceeds the upper bound of the time delay for the existing lead- lag controller. Thus, a 

new digital lead lag controller is designed directly in the digital domain to increase the 

upper bound of the time delay that can be accommodated in the control- loop. The upper 

bound of the time delay is measured for the digital controller running at the sampling 

frequencies of 500 Hz and 333.3 Hz. It is observed that the mean round-trip time delay is  

within the upper bound for the artificially generated time delay for the new digital 

controller.  

However, the network had sporadic surges in round-trip time delay. These 

sporadic jitters in round-trip time delay are detrimental to the system stability. The 

system stability in this case was achieved by using a timeout for the controller. As soon 

as the timeout occurs for the controller, it predicts and uses the estimated sensor data to 

generate the control input. This control input is applied to the actuator within the same 

sampling period. The controller then uses the newest possible sensor data for the 

generation of the control input. This technique has been achieved using an AR model for 

the prediction of the sensor data for the timeout case. The estimation of the parameters of 
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the AR model for the sampling period is done using an off- line batch process. The sensor 

data are collected and arranged in the ascending order of their time stamp values. The 

data are then used iteratively for the estimation of the parameter vector for the AR model. 

It has been assumed that the sensor data arriving at the controller node are all time 

stamped. 

The technique of using the timeout and the sensor data estimation based on an AR 

model was tested against the actual round-trip time delay data between two PCs. These 

two PCs were connected to different LANs and had a mean time delay less than the upper 

bound for the new digital controller. However, there were many time delays that were 

more than the wait time for timeout in the new digital controller. For maintaining the 

system stability time delays that were more than the sum of one sampling period and the 

timeout were removed from the data. With the implementation of timeout and sensor data 

estimation based on the AR model the mean time delay that can be accommodated in the 

control- loop increased from 760 µs to 836 µs. It was also observed that for the digital 

controller running at the sampling frequency of 333.3 Hz the system was stable with 

sporadic time delays in the order of 4.42 ms.  

 

6.2 Ongoing Work 

 
 This methodology also assumes that there is no loss of data in the communication 

network when sensor data is traveling from the sensor node to the controller node. 

 Currently I am working on the software code to establish the real-time 

communication between the host PC and the client PC. It will help us verify the proposed 

methodology to accommodate sporadic surges in the round-trip time delay.  The main 

challenge is to ensure there is no latency in transfer of data through the sockets. We are 

also working on the development of a general algorithm that can be used to maintain the 

system stability in the presence of sporadic surges in the time delay.  
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APPENDIX A 

TEST.C 
 

/*********************************************************************** 

#include <Brtenv.h>   /* Basic Real Time Environment*/ 

#include <math.h> 

#include <io1104.h> 

 

#define DT 3.0e-3        /* Interupt to execute every 2.0 miliseconds(500Hz)*/ 

#define INPUTS 4 

 

   UInt16 scantable[4] = {1, 2, 3, 4}; 

   int i = 0; 

   double v_hat_act[INPUTS];  

   double y_hat_act = 0.0; /* From A/D convertor */ 

   double y_hat_desi = 0.0; /* user input (desired set point) */ 

   double v_hat_err = 0.0; 

   double k=0.098; 

   double v = 0.0; 

   double tempv = 0.975;    

  double u0 = 0.0;        /* Output from controller at time n */ 

  double u1 = 0.0;        /* Output from controller at time n-1 */ 

   double u2 = 0.0;        /* Output from controller at time n-2 */ 

   double er0 = 0.0;        /* Input to controller at time n */ 

   double er1 = 0.0;        /* Intput to controller at time n-1 */ 

   double er2 = 0.0;        /* Intput to controller at time n-2 */ 

   Float64 exec_time; /* Execution Time */ 

 

void solve() 

      { 

             er0 = y_hat_desi-y_hat_act;  /* Error Calculation */ 
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             er0=er0*k; 

              u0 = 0.782*u1+0.13*u2-41500.0*er0+41500.0*1.754*er1-41500.0*0.769*er2; 

   /* Calculation of output from controller*/  

        } 

 

void result()  

      { 

             u2 = u1; 

             u1 = u0; 

      er2 = er1; 

     er1 = er0; 

                       /* Book Keeping for next iteration */ 

        } 

 

void isr_srt(void)     /* Timer Interrupt Service Routine */ 

       {  

     RTLIB_SRT_ISR_BEGIN(); /*Overload Check has been removed*/  

     ds1104_adc_read_mux(scantable, 4, v_hat_act); 

      v_hat_act[0] = v_hat_act[0]*10;  

  y_hat_act = -0.0004653*v_hat_act[0]+0.002525; 

      solve(); 

  v_hat_err = u0 + v;        /* Vss= 1.018 */ 

  if(v_hat_err>10.0) 

   { 

      v_hat_err = 10.0; 

     } 

 if(v_hat_err<0.0) 

     { 

       v_hat_err = 0.0; 

      }   

              v_hat_err = v_hat_err*0.1; 
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  ds1104_dac_write(1, v_hat_err); /* set DACH1 to v_hat_err */ 

  result(); 

  ds1104_dac_strobe(); 

  RTLIB_SRT_ISR_END(); /*Overload Check has been removed */ 

       } 

 

void main(void) 

     { 

    init();                     /* DS1104 and RTLib 1104 initilization */ 

    ds1104_adc_mux(1); 

    ds1104_adc_delayed_start(DS1104_ADC1); 

ds1104_dac_init(DS1104_DACMODE_LATCHED);/* Init D/A in Latched mode 

*/ 

    RTLIB_SRT_START(DT, isr_srt); 

while(1) 

            { 

        RTLIB_BACKGROUND_SERVICE(); 

 v = tempv;  

             } 

} 
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APPENDIX B 

FINALTEST.C 
 

/*********************************************************************** 

#include <stdio.h> 

#include <stdlib.h> 

 

#include <cgic.h> 

#include <clib32.h>          

 

char board_name[DS_BOARD_NAME_LENGTH+1]; 

int cgiMain() { 

      int result = cgiFormStringNoNewlines("board_name", board_name, 81); 

   double        tempk, tempc, tempv; 

    int           error, state;  

             UInt32        value32; 

       unsigned int  board_index; 

   double        old_valuek64, new_valuek64, old_valueyha64; 

       double        old_valuec64, new_valuec64; 

   double        old_valuev64, new_valuev64; 

       UInt32    k_add, y_hat_act_add, c_add, v_add; 

   board_spec_tp board_spec; 

 

#if DEBUG  

 cgiReadEnvironment("/home/boutell/public_html/capcgi.dat"); 

#endif 

 cgiHeaderContentType("text/html"); 

 

fprintf(cgiOut, "<HTML><HEAD>\n"); 

fprintf(cgiOut, "<TITLE>Controller Board</TITLE></HEAD>\n"); 
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fprintf(cgiOut, "<BODY><H1>Calculations From The DS1104 Controller 

Board</H1>\n"); 

 

switch (result) { 

  case cgiFormSuccess: 

  fprintf(cgiOut, "Name fetched, result code: cgiFormSuccess<br>\n"); 

  break; 

  case cgiFormTruncated: 

  fprintf(cgiOut, "Name fetched, result code: cgiFormTruncated<br>\n"); 

  break; 

  case cgiFormEmpty: 

  fprintf(cgiOut, "Name fetched, result code: cgiFormEmpty<br>\n"); 

  break; 

  case cgiFormNotFound: 

  fprintf(cgiOut, "Name fetched, result code: cgiFormNotFound<br>\n"); 

  break; 

  case cgiFormMemory: 

  fprintf(cgiOut, "Name fetched, result code: cgiFormMemory<br>\n"); 

  break; 

  default: 

  fprintf(cgiOut, "Name fetched, unexpected result code: %s\n", result); 

  break; 

 }  

 

 fprintf(cgiOut, "Name: %s<BR>\n", board_name); 

cgiFormDoubleBounded("tempk", &tempk, 0.0, 100, 0.0); 

 fprintf(cgiOut, "New k value entered is %lf.<BR>\n", tempk); 

cgiFormDoubleBounded("tempc", &tempc, 0.0, 100, 0.0); 

 fprintf(cgiOut, "New c value entered is %lf.<BR>\n", tempc); 

cgiFormDoubleBounded("tempv", &tempv, 0.0, 100, 0.0); 

 fprintf(cgiOut, "New Vss value entered is %lf.<BR>\n", tempv);  
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/****************************************************************/ 

 error = DS_register_host_app("FINAL"); 

if(error != DS_NO_ERROR) 

     { 

          printf("DS_register_host_app: error = %d\n",error); 

          exit(1); 

     } 

error = DS_board_index(board_name, &board_index); 

if(error != DS_NO_ERROR) 

     { 

          printf("A board named %s is not registered with the" 

                " DSP Device Driver\n", board_name); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

 error = DS_board_spec(board_index, &board_spec); 

     if(error != DS_NO_ERROR) 

     { 

          printf("DS_board_spec: error = %d\n",error); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

printf("Board type = "); 

     switch(board_spec.board_type) 

     { 

          case TYPE_DS1003: 

              printf("DS1003<BR>\n"); 

              break; 

          case TYPE_DS1005: 

              printf("DS1005<BR>\n"); 

              break; 
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          case TYPE_DS1102: 

              printf("DS1102<BR>\n"); 

              break; 

          case TYPE_DS1103: 

              printf("DS1103<BR>\n"); 

               break; 

          case TYPE_DS1104: 

              printf("DS1104<BR>\n"); 

              break; 

          case TYPE_DS1401: 

              printf("DS1401<BR>\n"); 

              break; 

          default: 

              printf("unknown.\n"); 

              DS_unregister_host_app(); 

              exit(1); 

              break; 

     } 

 error = DS_is_reset(board_index, &state); 

if(error != DS_NO_ERROR) 

     { 

          printf("DS_is_reset: error = %d\n",error); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

        if(state == DS_TRUE) 

     { 

          printf("No Application running on board %s.\n", board_name); 

          DS_unregister_host_app(); 

          exit(1); 

     } 
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/****************************************************************/ 

 error = DS_get_var_addr(board_index, "tempk", &k_add); 

if(error != DS_NO_ERROR) 

     {  

          printf("DS_get_var_addr: error = %d\n",error); 

         DS_unregister_host_app(); 

          exit(1); 

     } 

  switch(board_spec.board_type) 

    { 

          case TYPE_DS1003:   

          case TYPE_DS1102: 

              error = DS_read_32(board_index, k_add, 1, &value32); 

              if(error != DS_NO_ERROR) 

              { 

                  printf("DS_read_32: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

              } 

            old_valuek64 = (double)DS_cvt_ti_to_ieee(value32); 

              break; 

        case TYPE_DS1005:   

                 case TYPE_DS1103:  

                 case TYPE_DS1104:  

                 case TYPE_DS1401: 

                         error = DS_read_64(board_index, k_add, 1,  

                                (UInt64 *)&old_valuek64); 

              if(error != DS_NO_ERROR) 

              { 

                   printf("DS_read_64: error = %d\n",error); 

                   DS_unregister_host_app(); 



  85 

 

                   exit(1); 

              } 

              break; 

     } 

 new_valuek64=tempk; 

            switch(board_spec.board_type) 

     { 

          case TYPE_DS1003: 

          case TYPE_DS1102: 

              value32 = DS_cvt_ieee_to_ti((float)new_valuek64); 

            error = DS_write_32(board_index, k_add, 1, &value32); 

              if(error != DS_NO_ERROR) 

              { 

                   printf("DS_write_32: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

              } 

              break; 

          case TYPE_DS1005: 

          case TYPE_DS1103: 

          case TYPE_DS1104: 

          case TYPE_DS1401: 

              error = DS_write_64(board_index, k_add, 1,  

                         (UInt64 *)&new_valuek64); 

              if(error != DS_NO_ERROR) 

              { 

                   printf("DS_write_64: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

              } 

              break; 
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     } 

printf("New k value is  %f\n <Br>", new_valuek64); 

/***************************************************************/ 

 error = DS_get_var_addr(board_index, "tempc", &c_add); 

if(error != DS_NO_ERROR) 

     { 

          printf("DS_get_var_addr: error = %d\n",error); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

 switch(board_spec.board_type) 

     { 

          case TYPE_DS1003:  

          case TYPE_DS1102: 

              error = DS_read_32(board_index, c_add, 1, &value32); 

              if(error != DS_NO_ERROR) 

              { 

                   printf("DS_read_32: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

              } 

            old_valuec64 = (double)DS_cvt_ti_to_ieee(value32); 

              break; 

  case TYPE_DS1005:   

            case TYPE_DS1103:  

            case TYPE_DS1104:  

            case TYPE_DS1401: 

               error = DS_read_64(board_index, c_add, 1,  

                            (UInt64 *)&old_valuec64); 

                if(error != DS_NO_ERROR) 

                { 
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                   printf("DS_read_64: error = %d\n",error); 

                  DS_unregister_host_app(); 

                    exit(1); 

                 } 

                 break; 

     } 

new_valuec64=tempc; 

        switch(board_spec.board_type) 

     { 

          case TYPE_DS1003: 

          case TYPE_DS1102: 

              value32 = DS_cvt_ieee_to_ti((float)new_valuec64); 

             error = DS_write_32(board_index, c_add, 1, &value32); 

                if(error != DS_NO_ERROR) 

              { 

                    printf("DS_write_32: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

              } 

              break; 

          case TYPE_DS1005: 

          case TYPE_DS1103: 

          case TYPE_DS1104: 

          case TYPE_DS1401: 

              error = DS_write_64(board_index, c_add, 1,  

                                 (UInt64 *)&new_valuec64); 

             if(error != DS_NO_ERROR) 

             { 

                  printf("DS_write_64: error = %d\n",error); 

                  DS_unregister_host_app(); 

                  exit(1); 
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             } 

             break; 

    } 

    printf("New c value is  %f\n <Br>", new_valuec64);  

 /**********************************************************************/ 

error = DS_get_var_addr(board_index, "tempv", &v_add); 

if(error != DS_NO_ERROR) 

    { 

        printf("DS_get_var_addr: error = %d\n",error); 

        DS_unregister_host_app(); 

        exit(1); 

    } 

 switch(board_spec.board_type) 

    { 

        case TYPE_DS1003:   

        case TYPE_DS1102: 

    error = DS_read_32(board_index, v_add, 1, &value32); 

                 if(error != DS_NO_ERROR) 

             { 

                  printf("DS_read_32: error = %d\n",error); 

                  DS_unregister_host_app(); 

                  exit(1); 

             } 

            old_valuek64 = (double)DS_cvt_ti_to_ieee(value32); 

             break; 

        case TYPE_DS1005:  

        case TYPE_DS1103:  

        case TYPE_DS1104:  

        case TYPE_DS1401: 

            error = DS_read_64(board_index, v_add, 1,  

                               (UInt64 *)&old_valuev64); 



  89 

 

             if(error != DS_NO_ERROR) 

             { 

                  printf("DS_read_64: error = %d\n",error); 

                 DS_unregister_host_app(); 

                  exit(1); 

             } 

             break; 

    } 

 new_valuev64=tempv;     

 switch(board_spec.board_type) 

    { 

        case TYPE_DS1003: 

        case TYPE_DS1102: 

     value32 = DS_cvt_ieee_to_ti((float)new_valuev64); 

     error = DS_write_32(board_index, v_add, 1, &value32); 

                 if(error != DS_NO_ERROR) 

                  { 

                 printf("DS_write_32: error = %d\n",error); 

                DS_unregister_host_app(); 

                 exit(1); 

                  } 

                  break; 

        case TYPE_DS1005: 

        case TYPE_DS1103: 

        case TYPE_DS1104: 

        case TYPE_DS1401: 

                 error = DS_write_64(board_index, v_add, 1,  

                                (UInt64 *)&new_valuev64); 

                 if(error != DS_NO_ERROR) 

             { 

                  printf("DS_write_64: error = %d\n",error); 
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                  DS_unregister_host_app(); 

                  exit(1); 

             } 

             break; 

    } 

 

    

    printf("New Vss value is  %f\n <Br>", new_valuev64); 

  /********************************************************************/ 

error = DS_get_var_addr(board_index, "y_hat_act", &y_hat_act_add); 

if(error != DS_NO_ERROR) 

   { 

        printf("DS_get_var_addr: error = %d\n",error); 

        DS_unregister_host_app(); 

        exit(1); 

    } 

    switch(board_spec.board_type) 

    { 

        case TYPE_DS1003:  /* DSP based, 32 bit variable */ 

        case TYPE_DS1102: 

            error = DS_read_32(board_index, y_hat_act_add, 1, &value32); 

            if(error != DS_NO_ERROR) 

            { 

                printf("DS_read_32: error = %d\n",error); 

                DS_unregister_host_app(); 

                exit(1); 

            } 

           old_valueyha64 = (double)DS_cvt_ti_to_ieee(value32); 

            break; 

        case TYPE_DS1005:  /* PPC based, 64 bit variable */ 

        case TYPE_DS1103:  
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        case TYPE_DS1104:  

        case TYPE_DS1401: 

            error = DS_read_64(board_index, y_hat_act_add, 1,  

                               (UInt64 *)&old_valueyha64); 

            if(error != DS_NO_ERROR) 

            { 

                printf("DS_read_64: error = %d\n",error); 

                DS_unregister_host_app(); 

                exit(1); 

            } 

            break; 

    } 

printf("new value of y hat actual is %lf (m) from its equilibrium position\n<BR>", 

old_valueyha64); 

/**********************************************************************/ 

    DS_unregister_host_app(); 

   fprintf(cgiOut, "</BODY></HTML>\n"); 

 return 0; 

} 
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APPENDIX C 

TEST1.HTML 
 

/*********************************************************************** 

 

<html> 

<body> 

<form action="/cgi-bin/finaltest.exe" method="POST"> 

<p>My name of controller board: <INPUT TYPE="text" NAME="board_name">  

<p>My input variable k: <INPUT TYPE="text" NAME="tempk"> 

<p>My input variable c: <INPUT TYPE="text" NAME="tempc"> 

<p>My input variable for step input change: <INPUT TYPE="text" NAME="tempv">  

<p><input type="SUBMIT" name="Submit" value="Submit"></p> 

</form> 

</body> 

</html 
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APPENDIX D 

SERVER.C 
 

/**********************************************************************/ 

/* to be run on werc-dhcp-1825.tamu.edu*/ 

/**********************************************************************/ 

#include <windows.h>  

#include <winsock.h> 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <clib32.h>                                /* prototypes of Device Driver CLIB functions */ 

 

#define PORTNUM               5000                    // Port number   

#define MAX_PENDING_CONNECTS  4       // Maximum length of the queue  

                                                                            // of pending connections 

 

char board_name[DS_BOARD_NAME_LENGTH+1]; 

int main() 

   { 

            /****************************************************************/ 

 //for winscok 

/****************************************************************/ 

     int index = 0,                       // Integer index 

     iReturn;                             // Return value of recv function 

     float v_act[1];                      // the data in float type to be sent  

     float v_err[1];                      // data to be recieved   

     TCHAR szError[100];               //Error message string 

     double vhatact=0.0,vhaterr=0.0;  

     SOCKET WinSocket = INVALID_SOCKET,  // Window socket 

     ClientSock = INVALID_SOCKET,              // Socket for communicating  
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                                                    // between the server and client 

DuplicateSock = INVALID_SOCKET;  

 SOCKADDR_IN local_sin,                             // Local socket address 

            accept_sin;                                // Receives the address of the  

                                                          // connecting entity 

     int accept_sin_len;                                  // Length of accept_sin 

     WSADATA WSAData;                                       // Contains details of the Winsock 

                                                                // implementation 

/****************************************************************/ 

//for the CLIB 

/****************************************************************/ 

     int                 error, state; 

     unsigned int  board_index; 

     UInt16           board_type; 

     UInt32           vhatact_add, vhatact_val32; 

     UInt32           vhaterr_add, vhaterr_val32; 

     UInt32           flag_add, flag_val32; 

     board_spec_tp board_spec; 

 /****************************************************************/ 

//For the Initialization of clib 

/****************************************************************/ 

     error = DS_register_host_app("SERVER");  

     if(error != DS_NO_ERROR) 

  { 

           printf("DS_register_host_app: error = %d\n",error); 

           exit(1); 

  } 

     printf("Please enter a board name : "); 

     scanf("%s",&board_name); 

     /* Before accessing a processor board, the board index of that board   */ 

     /* must be obtained from the DSP Device Driver. The board index is a   */ 
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     /* parameter for all CLIB functions accessing the board.               */ 

     error = DS_board_index(board_name, &board_index); 

 

     if(error != DS_NO_ERROR) 

  { 

printf("A board named %s is not registered with the DSP Device 

Driver\n", board_name); 

          DS_unregister_host_app(); 

           exit(1); 

  } 

     /* In order to get more information about the selected board call the  */ 

     /* CLIB function DS_board_spec(). That function fills a board_spec     */ 

     /* structure with information like board type, board name, memory size */ 

     /* etc.                                                                */ 

     error = DS_board_spec(board_index, &board_spec); 

     if(error != DS_NO_ERROR) 

  { 

           printf("DS_board_spec: error = %d\n",error); 

           DS_unregister_host_app(); 

           exit(1); 

  } 

     printf("Board type = "); 

    switch(board_spec.board_type) 

  { 

           case TYPE_DS1003: 

                printf("DS1003\n"); 

                break; 

           case TYPE_DS1005: 

                printf("DS1005\n"); 

                break; 

           case TYPE_DS1102: 
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                printf("DS1102\n"); 

                break; 

           case TYPE_DS1103: 

                printf("DS1103\n"); 

                break; 

           case TYPE_DS1104: 

                printf("DS1104\n"); 

                break; 

           case TYPE_DS1401: 

                printf("DS1401\n"); 

                break; 

           default: 

                printf("unknown.\n"); 

                DS_unregister_host_app(); 

                exit(1); 

               break; 

      } 

 

    /* Before accessing a board it is required to check if an application  */ 

    /* is running on that board. A board access is based on command server,*/ 

    /* which is a part of the real-time application background.            */ 

 

    error = DS_is_reset(board_index, &state); 

    if(error != DS_NO_ERROR) 

     { 

          printf("DS_is_reset: error = %d\n",error); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

     if(state == DS_TRUE) 

     { 
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          printf("No Application running on board %s.\n", board_name); 

          DS_unregister_host_app(); 

          exit(1); 

     } 

 

/****************************************************************/ 

 //For the winsock activation 

 /***************************************************************/ 

// Initialize Winsock. 

     if (WSAStartup (MAKEWORD(1,1), &WSAData) != 0)  

 { 

wsprintf (szError, TEXT("WSAStartup failed. Error: %d"), 

WSAGetLastError ()); 

  MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

 } 

 // Create a TCP/IP socket, WinSocket. 

if ((WinSocket = socket (AF_INET, SOCK_STREAM, 0)) == 

INVALID_SOCKET)  

 { 

wsprintf (szError, TEXT("Allocating socket failed. Error: 

%d"),WSAGetLastError ()); 

          MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

 } 

 // Fill out the local socket's address information. 

     local_sin.sin_family = AF_INET; 

     local_sin.sin_port = htons (PORTNUM);   

     local_sin.sin_addr.s_addr = htonl (INADDR_ANY); 

 // Associate the local address with WinSocket. 

if (bind (WinSocket,(struct sockaddr *) &local_sin, sizeof (local_sin)) == 

SOCKET_ERROR)  

 { 
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wsprintf (szError, TEXT("Binding socket failed. Error: 

%d"),WSAGetLastError ()); 

          MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

          closesocket (WinSocket); 

 } 

 // Establish a socket to listen for incoming connections. 

     if (listen (WinSocket, MAX_PENDING_CONNECTS) == SOCKET_ERROR)  

 { 

wsprintf (szError,TEXT("Listening to the client failed. Error: 

%d"),WSAGetLastError ()); 

          MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

          closesocket (WinSocket); 

 } 

accept_sin_len = sizeof (accept_sin); 

// Accept an incoming connection attempt on WinSocket. 

ClientSock = accept (WinSocket,(struct sockaddr *) &accept_sin, (int *) 

&accept_sin_len); 

// Stop listening for connections from clients. 

    // closesocket (WinSocket); 

if (ClientSock == INVALID_SOCKET)  

 { 

   wsprintf (szError, TEXT("Accepting connection with client failed.") 

           TEXT(" Error: %d"), WSAGetLastError ()); 

             MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

 } 

/****************************************************************/   

// infinte loop to collect data from the controller board and send to server 

/****************************************************************/   
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 for (;;) 

   { 

 /**********************************************************/ 

  //collecting the data from the controller board for the flag 

 /**********************************************************/ 

 /* The function DS_get_var_addr returns the memory address of a     */ 

  /* variable given as parameter.To get another variable address, call*/ 

          /* the function with the name of that variable as second parameter. */ 

                error = DS_get_var_addr(board_index, "temp_flag", &flag_add); 

          if(error != DS_NO_ERROR) 

  { 

   printf("DS_get_var_addr: error = %d\n",error); 

            DS_unregister_host_app(); 

              exit(1); 

  } 

          /* The implementation of the variable depends on the board           */ 

         /* type. On DSP based real time processor boards it is implemented as*/ 

          /* 32-bit floating-point. On PPC based real time processor boards it */ 

          /* is implemented as 64-bit floating-point.                          */ 

 switch(board_spec.board_type) 

  { 

   case TYPE_DS1003:  /* DSP based, 32 bit variable */ 

   case TYPE_DS1102: 

error = DS_read_32(board_index, flag_add, 1, 

&flag_val32); 

                     if(error != DS_NO_ERROR) 

     { 

        printf("DS_read_32: error = %d\n",error); 

                      DS_unregister_host_app(); 

                      exit(1); 

       }  
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                       /* convert form TMS320 single precision float to IEEE 754 */ 

                 /* single precision float.                                */ 

                           flag = (double)DS_cvt_ti_to_ieee(flag_val32); 

                           break; 

                   case TYPE_DS1005:  /* PPC based, 64 bit variable */ 

                case TYPE_DS1103:  

           case TYPE_DS1104:  

           case TYPE_DS1401: 

error = DS_read_64(board_index, flag_add, 1,(UInt64 

*)&flag); 

                if(error != DS_NO_ERROR) 

     { 

      printf("DS_read_64: error = %d\n",error); 

                      DS_unregister_host_app(); 

                      exit(1); 

                 } 

                  break; 

  }  // End of switch                  

                    if( flag = = 1 )  // Checking flag to see if the next sample period has  

                // started or not 

                    { 

/**********************************************************/ 

    //recieving the data through the winsock 

/**********************************************************/ 

           // Receive data from the client. 

             iReturn = recv (ClientSock, v_err, sizeof (v_err), 0); 

            // Check if there is any data received. If there is, display it. 

             if (iReturn == SOCKET_ERROR) 

      { 

wsprintf (szError, TEXT("No data is received, recv failed.") 

TEXT(" Error: %d"),  WSAGetLastError ()); 
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           MessageBox (NULL, szError, TEXT("Server"), MB_OK); 

           break; 

         } 

            else if (iReturn == 0) 

         {  

MessageBox (NULL, TEXT("Finished receiving data"), 

TEXT("Server"),MB_OK); 

              break; 

          } 

          vhaterr=v_err[0]; 

 /**********************************************************/ 

         //transferring the data to the controller board 

 /**********************************************************/ 

  error = DS_get_var_addr(board_index, "temp_vhaterr", &vhaterr_add); 

         if(error != DS_NO_ERROR) 

  { 

  printf("DS_get_var_addr: error = %d\n",error); 

              DS_unregister_host_app(); 

              exit(1); 

     } 

        /* The implementation of the variable depends on the board           */ 

         /* type. On DSP based real time processor boards it is implemented as*/ 

         /* 32-bit floating-point. On PPC based real time processor boards it */ 

         /* is implemented as 64-bit floating-point.                          */ 

       switch(board_spec.board_type) 

     { 

     case TYPE_DS1003: 

         case TYPE_DS1102: 

              /* convert from IEEE 754 single precision float to TMS320 */ 

              /* single precision float.                                */ 

              vhaterr_val32 = DS_cvt_ieee_to_ti((float)vhaterr); 
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error = DS_write_32(board_index, vhaterr_add, 1, 

&vhaterr_val32); 

              if(error != DS_NO_ERROR) 

       { 

                   printf("DS_write_32: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

               } 

              break; 

         case TYPE_DS1005: 

         case TYPE_DS1103: 

         case TYPE_DS1104: 

         case TYPE_DS1401: 

error = DS_write_64(board_index, vhaterr_add, 1,(UInt64 

*)&vhaterr); 

              if(error != DS_NO_ERROR) 

               { 

                   printf("DS_write_64: error = %d\n",error); 

                   DS_unregister_host_app(); 

                   exit(1); 

               } 

              break; 

     }  // End of Switch 

 /****************************************************************/ 

 //collecting the data from the controller board 

 /***************************************************************/ 

/* The function DS_get_var_addr returns the memory address of a     */ 

 /* variable given as parameter.To get another variable address, call*/ 

         /* the function with the name of that variable as second parameter. */ 

           error = DS_get_var_addr(board_index, "temp_vhatact", &vhatact_add); 

         if(error != DS_NO_ERROR) 
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  { 

   printf("DS_get_var_addr: error = %d\n",error); 

            DS_unregister_host_app(); 

              exit(1); 

  } 

        /* The implementation of the variable depends on the board           */ 

         /* type. On DSP based real time processor boards it is implemented as*/ 

         /* 32-bit floating-point. On PPC based real time processor boards it */ 

         /* is implemented as 64-bit floating-point.                          */ 

 switch(board_spec.board_type) 

  { 

  case TYPE_DS1003:  /* DSP based, 32 bit variable */ 

  case TYPE_DS1102: 

error = DS_read_32(board_index, vhatact_add, 1, 

&vhatact_val32); 

                     if(error != DS_NO_ERROR) 

     { 

        printf("DS_read_32: error = %d\n",error); 

                        DS_unregister_host_app(); 

                        exit(1); 

       }  

                    /* convert form TMS320 single precision float to IEEE 754 */ 

                 /* single precision float.                                */           

                    vhatact = (double)DS_cvt_ti_to_ieee(vhatact_val32); 

                           break; 

                    case TYPE_DS1005:  /* PPC based, 64 bit variable */ 

           case TYPE_DS1103:  

           case TYPE_DS1104:  

           case TYPE_DS1401: 

error = DS_read_64(board_index, vhatact_add, 1,(UInt64 

*)&vhatact); 
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                if(error != DS_NO_ERROR) 

     { 

      printf("DS_read_64: error = %d\n",error); 

                       DS_unregister_host_app(); 

                       exit(1); 

                 } 

                  break; 

  }  // End of Switch 

 v_act[0]=vhatact; 

      /****************************************************************/ 

 //sending the data through the winsock 

 /****************************************************************/ 

 // Send the data from the server to the client.  

        if (send (ClientSock, v_act, sizeof(v_act), 0)== SOCKET_ERROR)  

    { 

wsprintf (szError, TEXT("Sending data to the client failed. Error: %d"), 

WSAGetLastError ()); 

             MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

    } 

                  }          // End of Flag  

  }                          // End of while loop     

shutdown (ClientSock, 0x02);    // Disable both send ing and receiving on ClientSock. 

closesocket (ClientSock);    // Close ClientSock. 

WSACleanup (); 

 return TRUE; 

} 
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APPENDIX E 

CLIENT.C 
 

/*********************************************************************** 

#include <windows.h>  

#include <winsock.h> 

 

#include <stdio.h> 

#include <stdlib.h> 

 

#include <clib32.h>                              // prototypes of Device  

          // Driver CLIB functions  

 

#define PORTNUM         5000                     // Port number 

#define HOSTNAME  "werc-dhcp-1825.tamu.edu"      // Server name string 

                                             // This should be changed 

                                             // according to the server. 

 

char board_name[DS_BOARD_NAME_LENGTH+1]; 

unsigned long int j = 0;  

void main(void) 

{ 

 /****************************************************************/ 

 //for winscok 

/****************************************************************/ 

int index = 0,                        // Integer index 

     iReturn;                           // Return value of recv function 

     double v_act[1];                        // data to be sent through winsock  

     double v_err[1];                      // data to be recieved through winsock 

     TCHAR szError[100];                      // Error message string 

     double vhatact=0.0,vhaterr=0.0;  
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     SOCKET ServerSock = INVALID_SOCKET;   // Socket bound to the server 

     SOCKADDR_IN destination_sin;           // of the server 

     WSADATA WSAData;                         // Contains details of the  

                                            // Winsocket implementation 

PHOSTENT phostent = NULL;     // Points to the 

HOSTENT structure 

                      // of the server 

  

/****************************************************************/ 

 //for the CLIB 

/****************************************************************/ 

int           error, state; 

     unsigned int  board_index; 

     UInt16        board_type; 

     UInt32        vhatact_add, vhatact_val32; 

     UInt32        vhaterr_add, vhaterr_val32; 

     board_spec_tp board_spec; 

/****************************************************************/ 

       //For the Initialization of clib 

/****************************************************************/ 

error = DS_register_host_app("CLIENT"); 

     if(error != DS_NO_ERROR) 

 { 

          printf("DS_register_host_app: error = %d\n",error); 

          exit(1); 

 } 

printf("Please enter a board name : "); 

    scanf("%s",&board_name); 

/* Before accessing a processor board, the board index of that board   */ 

    /* must be obtained from the DSP Device Driver. The board index is a   */ 

    /* parameter for all CLIB functions accessing the board.               */ 
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error = DS_board_index(board_name, &board_index); 

if(error != DS_NO_ERROR) 

 { 

printf("A board named %s is not registered with the DSP Device 

Driver\n", board_name); 

         DS_unregister_host_app(); 

          exit(1); 

 } 

 

   /* In order to get more information about the selected board call the  */ 

   /* CLIB function DS_board_spec(). That function fills a board_spec     */ 

   /* structure with information like board type, board name, memory size */ 

   /* etc.                                                                */ 

       error = DS_board_spec(board_index, &board_spec); 

   if(error != DS_NO_ERROR) 

 { 

          printf("DS_board_spec: error = %d\n",error); 

         DS_unregister_host_app(); 

          exit(1); 

 } 

   printf("Board type = "); 

   switch(board_spec.board_type) 

 { 

          case TYPE_DS1003: 

              printf("DS1003\n"); 

              break; 

          case TYPE_DS1005: 

              printf("DS1005\n"); 

              break; 

          case TYPE_DS1102: 

              printf("DS1102\n"); 
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              break; 

          case TYPE_DS1103: 

              printf("DS1103\n"); 

              break; 

          case TYPE_DS1104: 

              printf("DS1104\n"); 

              break; 

          case TYPE_DS1401: 

              printf("DS1401\n"); 

              break; 

          default: 

              printf("unknown.\n"); 

              DS_unregister_host_app(); 

              exit(1); 

             break; 

 } 

   /* Before accessing a board it is required to check if an application  */ 

   /* is running on that board. A board access is based on command server,*/ 

   /* which is a part of the real-time application background.            */ 

   error = DS_is_reset(board_index, &state); 

   if(error != DS_NO_ERROR) 

 { 

  printf("DS_is_reset: error = %d\n",error); 

           DS_unregister_host_app(); 

           exit(1); 

 } 

if(state == DS_TRUE) 

 { 

          printf("No Application running on board %s.\n", board_name); 

          DS_unregister_host_app(); 

          exit(1); 
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 } 

 

 

/****************************************************************/ 

      //For the winsock activation 

/****************************************************************/ 

// Initialize Winsocket.  

   if (WSAStartup (MAKEWORD(1,1), &WSAData) != 0)  

 {  

wsprintf (szError, TEXT("WSAStartup failed. Error: 

%d"),WSAGetLastError ()); 

          MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

 } 

// Create a TCP/IP socket that is bound to the server. 

if ((ServerSock = socket (AF_INET, SOCK_STREAM, 0)) == 

INVALID_SOCKET) 

 { 

wsprintf (szError, TEXT("Allocating socket failed. Error: 

%d"),WSAGetLastError ()); 

          MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

 } 

// Fill out the server socket's address information. 

   destination_sin.sin_family = AF_INET; 

  // Retrieve the host information corresponding to the host name. 

   if ((phostent = gethostbyname (HOSTNAME)) == NULL)  

 { 

wsprintf (szError, TEXT("Unable to get the host name. Error: 

%d"),WSAGetLastError ()); 

           MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

           closesocket (ServerSock); 

 } 
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  // Assign the socket IP address. 

memcpy ((char FAR *)&(destination_sin.sin_addr),phostent->h_addr,phostent-

>h_length); 

   // Convert to network ordering. 

   destination_sin.sin_port = htons (PORTNUM);       

  // Establish a connection to the server socket. 

if (connect(ServerSock,(PSOCKADDR) &destination_sin,sizeof 

(destination_sin)) == SOCKET_ERROR)  

 { 

wsprintf (szError,TEXT("Connecting to the server failed. Error: 

%d"),WSAGetLastError ()); 

           MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

           closesocket (ServerSock); 

             } 

     /****************************************************************/   

// infinte loop to collect datd from the controller board and send to server 

/****************************************************************/   

 

     for (;;) 

{ 

/*********************************************************/ 

  //collecting the data from the controller board     

/**********************************************************/ 

                 error = DS_get_var_addr(board_index, "temp_vhaterr", &vhaterr_add); 

        if(error != DS_NO_ERROR) 

  { 

   printf("DS_get_var_addr: error = %d\n",error); 

              DS_unregister_host_app(); 

              exit(1); 

  } 

         printf(" step 1 \n");   // to be removed just for check 
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         /* The implementation of the variable depends on the board           */ 

          /* type. On DSP based real time processor boards it is implemented as*/ 

          /* 32-bit floating-point. On PPC based real time processor boards it */ 

          /* is implemented as 64-bit floating-point.                          */ 

         switch(board_spec.board_type) 

   { 

    case TYPE_DS1003:  /* DSP based, 32 bit variable */ 

    case TYPE_DS1102: 

error = DS_read_32(board_index, vhaterr_add, 1, 

&vhaterr_val32); 

                 if(error != DS_NO_ERROR) 

      { 

printf("DS_read_32: error =   

%d\n",error); 

                        DS_unregister_host_app(); 

                         exit(1); 

      } 

    /* convert form TMS320 single precision float to IEEE 754 */ 

              /* single precision float.                                */ 

             

vhaterr = 

(double)DS_cvt_ti_to_ieee(vhaterr_val32); 

                 break; 

         case TYPE_DS1005:  /* PPC based, 64 bit variable */ 

            case TYPE_DS1103:  

            case TYPE_DS1104:  

            case TYPE_DS1401: 

error = DS_read_64(board_index, 

vhaterr_add, 1,(UInt64 *)&vhaterr); 

                  if(error != DS_NO_ERROR) 

      { 
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printf("DS_read_64: error = 

%d\n",error); 

                         DS_unregister_host_app(); 

                         exit(1); 

                    } 

                   break; 

     } 

printf(" step 2 \n"); // to be removed just for check 

 v_err[0]=vhaterr; 

    /**********************************************************/ 

  //sending the data through the winsock      

/**********************************************************/   

 // Send the data to the server. 

if (send (ServerSock, v_err, sizeof (v_err), 0)== SOCKET_ERROR)  

   { 

wsprintf (szError,TEXT("Sending data to the server failed. 

Error: %d"),WSAGetLastError ()); 

               MessageBox (NULL, szError, TEXT("Error"), MB_OK); 

}     

/**********************************************************/ 

// The program stays at this point till it again recieves value from the  

                        // server  

// Receive data from the server socket. 

 /**********************************************************/ 

        iReturn = recv (ServerSock, v_act, sizeof (v_act), 0); 

      vhatact = v_act[0]; 

// Check if there is any data received. If there is, display it. 

          if (iReturn == SOCKET_ERROR) 

  { 

wsprintf (szError, TEXT("No data is received, recv failed.") 

TEXT(" Error: %d"),WSAGetLastError ()); 
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              MessageBox (NULL, szError, TEXT("Client"), MB_OK); 

              break; 

  } 

     

  else if (iReturn == 0) 

  { 

MessageBox (NULL, TEXT("Finished receiving data"), 

TEXT("Client"),MB_OK); 

              break; 

  } 

 /**********************************************************/ 

  //transferring the data to the controller board 

  /**********************************************************/ 

 /* The function DS_get_var_addr returns the memory address of a     */ 

  /* variable given as parameter.To get another variable address, call*/ 

          /* the function with the name of that variable as second parameter. */ 

 error = DS_get_var_addr(board_index, "temp_vhatact", &vhatact_add); 

          if(error != DS_NO_ERROR) 

   { 

    printf("DS_get_var_addr: error = %d\n",error); 

               DS_unregister_host_app(); 

               exit(1); 

   } 

 /* The implementation of the variable depends on the board           */ 

     /* type. On DSP based real time processor boards it is implemented as*/ 

    /* 32-bit floating-point. On PPC based real time processor boards it */ 

     /* is implemented as 64-bit floating-point.                          */ 

 switch(board_spec.board_type) 

  { 

           case TYPE_DS1003: 

          case TYPE_DS1102: 
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          /* convert from IEEE 754 single precision float to TMS320 */ 

              /* single precision float.                                */ 

    vhatact_val32 = DS_cvt_ieee_to_ti((float)vhatact); 

error = DS_write_32(board_index, vhatact_add, 1, 

&vhatact_val32); 

               if(error != DS_NO_ERROR) 

                   { 

                       printf("DS_write_32: error = %d\n",error); 

                        DS_unregister_host_app(); 

                        exit(1); 

                   } 

                 break; 

         case TYPE_DS1005: 

                      case TYPE_DS1103: 

                   case TYPE_DS1104: 

                       case TYPE_DS1401: 

error = DS_write_64(board_index, vhatact_add, 

1,(UInt64 *)&vhatact); 

                if(error != DS_NO_ERROR) 

                    { 

printf("DS_write_64: error = %d\n",error); 

                         DS_unregister_host_app(); 

                 exit(1); 

                    }  

                break; 

    } 

  printf(" the value of v hat act is %f\n",vhatact); 

    while (j<10000) 

         { 

    j = j+1; 

 }                                               
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       j = 0;  

      }  // End of While loop 

 

   //shutdown (ServerSock, 0x00);    Disable receiving on  ServerSock. 

   // Close the socket. 

   closesocket (ServerSock); 

  WSACleanup (); 

   DS_unregister_host_app(); 

} 
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APPENDIX F 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.47. Probability distribution of round-trip time delay on Sat. 11/30/2002 from  

10:00 AM to 4:00 PM between PCs on same LAN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.48. Probability distribution of round-trip time delay on Tue. 12/03/2002 from  

7:00 PM to 4:00 AM between PCs on same LAN. 
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Fig.49. Probability distribution of round-trip time delay on Sat. 12/07/2002 from  

1:46 PM to 7:40 PM between PCs on same LAN. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.50. Probability distribution of round-trip time delay on Sun. 12/08/2002 from  

2:00 PM to 10:00 AM between PCs on same LAN. 
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