
EXPERIMENTAL FREQUENCY-DEPENDENT ROTORDYNAMIC 

COEFFICIENTS FOR A LOAD-ON-PAD, HIGH-SPEED, 

FLEXIBLE-PIVOT TILTING-PAD BEARING 

 
 
 

A Thesis 

by 

LUIS EMIGDIO RODRIGUEZ COLMENARES 

 

 
Submitted to the Office of Graduate Studies of 

Texas A&M University 
in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

 
 

May 2004 
 

 

 

 
Major Subject: Mechanical Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4268027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EXPERIMENTAL FREQUENCY-DEPENDENT ROTORDYNAMIC 

COEFFICIENTS FOR A LOAD-ON-PAD, HIGH-SPEED,  

FLEXIBLE-PIVOT TILTING-PAD BEARING 

 

A Thesis 

by 

LUIS EMIGDIO RODRIGUEZ COLMENARES 

 
Submitted to Texas A&M University 

in partial fulfillment of the requirements 
for the degree of 

MASTER OF SCIENCE 

Approved as to style and content by: 

 

 

Dara W. Childs 

(Chair of Committee) 

 John M. Vance 

(Member) 

William Schneider 

(Member) 

 James Morgan 

(Member) 

 Dennis L. O’Neal 

(Head of Department) 

 

 

May 2004 
 

Major Subject: Mechanical Engineering 



 

 

iii 

ABSTRACT 

 
Experimental Frequency-Dependent Rotordynamic Coefficients for a Load-On-Pad, 

High-Speed, Flexible-Pivot Tilting-Pad Bearing. (May 2004) 

Luis Emigdio Rodriguez Colmenares, B.S., Universidad Simón Bolívar, Venezuela 

Chair of Advisory Committee: Dr. Dara W. Childs 
 
 
 

 This thesis provides experimental frequency dependent stiffness and damping 

coefficient results for a high-speed, lightly loaded, flexible-pivot tilting-pad bearing, 

with a load-on-pad configuration. Test conditions include four shaft speeds (6000, 9000, 

13000 and 16000 rpm), and bearing unit loads from 172 kPa to 690 kPa. The results 

show that the bearing stiffness is a quadratic function of the frequency of vibration; 

hence their frequency dependency can be modeled by added-mass terms. The additional 

degrees of freedom introduced by the pads and the influence of the inertial forces 

generated in the fluid film account for this frequency dependency. The conventional 

frequency-dependent stiffness and damping model for tilting-pad bearings is extended 

with an added-mass matrix to account for the frequency dependency. This approach 

allows the description of the bearing dynamic characteristics with frequency-independent 

stiffness, damping and added-mass matrices. Experimental results are compared with 

predictions from the Reynolds equation and from a bulk-flow Navier-Stokes model. 

Both models produce good predictions of the stiffness and damping coefficients. 

However, results show that the bulk-flow model is more adequate for predicting the 

direct added-mass terms because it accounts for the fluid inertial forces. A bulk-flow 

solution of the Navier-Stokes equations that includes the effects of fluid inertia should be 

used to calculate the rotordynamic coefficients of a flexible-pivot tilting-bearing. 

 Static performance measurement results are also detailed. Results include pad 

metal temperatures, eccentricity-ratios and attitude-angle as a function of bearing load, 

and estimated power losses. 
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CHAPTER I 

INTRODUCTION 

 Tilting-pad (TP) journal bearings are customarily used to support high speed 

rotating machinery such as centrifugal compressors and pumps, gas and steam turbines, 

among others. Fig. 1 depicts a schematic of a conventional TP bearing with four pads 

and the basic geometric characteristics. 
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Fig. 1  Tilting pad bearing configuration  
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 TP bearings are characterized by the inherent stability that arises from their low 

cross coupling. A bearing is said to have cross coupling when the supported rotor moves 

both along and orthogonal to the direction of a given applied load. This characteristic is 

unique of rotating machines operating in fluid film bearings and it can cause self-excited 

vibrations and dynamic instabilities that often lead to machine failure and damage. The 

stabilizing feature of TP bearings makes them suitable as retrofits for unstable machines, 

as well as for new machines that require maximum rotordynamic stability [1].  

 TP bearings differ from fixed geometry journal bearings in that the pads are able 

to tilt freely about a pivot. The pivot configuration can be spherical, as illustrated in Fig. 

1, rocker type, among others. 

 Flexible-pivot tilting-pad (FPTP) bearings achieve low cross coupling via 

flexural rotation of the pad’s “web” support. The web is a beam element that provides 

enough radial stiffness to support bearing radial loads, and still permits the pads to tilt. 

Fig. 2 shows a schematic of a FPTP bearing with a detail of the web support. 
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Fig. 2  Flexible-pivot tilting pad bearing 
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 State-of-the-art electro-discharge machining process allows the manufacture of 

this single-piece while providing accurate control of geometric tolerances. This is a 

convenient design since it is a single-piece part as opposed to the TP bearing multi-piece 

design. TP bearings can be difficult to assemble and their pivot support can wear rapidly, 

which degrades bearing performance. FPTP bearings eliminate pad-pivot wear, since 

there are no parts in relative sliding motion (Zeidan and Paquette [1], and Armentrout 

and Paquette [2]).  

 Reliable rotordynamic calculations, namely critical speeds, response to 

imbalance, and instability margins must include the effect of bearing flexibility and 

damping [3]. Linear analysis relies on the representation of a journal bearing with 

linearized stiffness and damping coefficients. Fig. 3 shows a schematic side view of a 

rotor supported by a fluid film bearing with the linearized dynamic coefficients. 
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Fig. 3  Linearized bearing coefficients 
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The main rotordynamic issue concerning TP bearings is the theoretical prediction 

that the stiffness and damping coefficients are dependent upon the frequency of 

excitation (Barret et al. [4]). There are very limited experimental results in the public-

domain literature to support this prediction. Understanding the nonsynchronous dynamic 

characteristics of these bearings is essential for sound rotordynamic modeling to 

accurately predict rotor critical speeds and stability of machines. 

Rotordynamic coefficient results from this investigation show that the stiffness 

coefficients are strongly dependent upon the frequency of excitation. The source of the 

frequency dependency is twofold; first, the dynamics introduced by the pads’ degrees of 

freedom and second, the effects of the inertial forces generated by the lubricant film. The 

combined effects can be accounted for with an added-mass coefficient matrix. This 

approach allows the description of the bearing force with three frequency-independent 

stiffness, damping and added-mass coefficient matrices. 

Customarily, the effect of the fluid inertia is neglected when calculating the 

dynamic coefficients of journal bearings on the basis that the flow regime is mostly 

laminar. However, in 1975 Reinhardt and Lund [5] demonstrated that in some instances 

the added-mass coefficients could be significant even for a journal bearing operating in a 

laminar flow regime. The experimental results presented in this thesis are compared to 

predictions of an analysis and computer code by San Andres [6] that includes the 

solution of the bulk flow Navier-Stokes equations for TPFP bearings including the 

effects of fluid inertia. 

The test bearing is a four-pad tilting pad bearing with a load-on-pad 

configuration, i.e., the static load is oriented at the bottom pad’s pivot. The bearing 

diameter is 116.8 mm, and the length is 76.2 mm (Length-to-diameter ratio is 0.65). The 

bearing radial clearance is 0.1905 mm, and the pad radial clearance is 0.254 mm. The 

test conditions include four shaft rotational speeds 6000, 9000, 13000 and 16000 rpm, 

and bearing static unit loads from 172 kPa to 689 kPa. Results also include steady-state 

performance measurements, including bearing static load versus deflection 

characteristics, pad metal temperatures, and estimated power losses. 
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CHAPTER II 

LITERATURE REVIEW 

Lund [3] presented the first method for calculating stiffness and damping 

coefficients for TP journal bearings. His approach is the so-called pad assembly method 

and consists of calculating the dynamic coefficients of a single rigid pad, using Reynolds 

equation, and finally adding the contribution of the loaded pads. Later, Nicholas et al. [4] 

modified this approach to include the effect of the unloaded pads and used finite 

elements instead of finite-differences to solve the hydrodynamic pressure field. 

The pad’s rotational degree of freedom requires additional dynamic coefficients 

to describe the translational dynamics of a rotor supported on TP bearings. Barret et al. 

[4] state that ( )452 +⋅⋅ PADN  dynamic coefficients are needed when analyzing the 

dynamics of a rotor mounted on TP bearings, as opposed to the case of fixed geometry 

bearing where only 8 are needed. For rotordynamic calculations, the common practice is 

to eliminate the pad degree of freedom by assuming a given frequency of pad rotation 

and derive eight “reduced” bearing dynamic coefficients equivalent to a fixed geometry 

bearing. A usual assumption is that the system is undergoing synchronous harmonic 

motion [3], such as imbalance response. However, should the system vibrate at 

frequencies other than the rotor running speed, the question is whether the reduced 

dynamic coefficients significantly change with vibration frequency. Barret et al. [4] 

showed that, for some bearing characteristics and operating conditions, there is little 

influence of the ratio of vibration frequency to shaft rotational speed on the reduced 

coefficients and therefore the synchronously reduced coefficients are fairly good for 

stability and critical speed calculations. 

 Most of the experimental results for rotordynamic coefficients of tilting pad 

bearings available in the public-domain literature are obtained by using synchronous 

excitation forces. However, Ha and Yang [8] measured stiffness and damping 
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coefficients varying the frequency of the excitation force for a 300.9 mm diameter, five-

pad, tilting pad bearing. The aim was to determine whether the frequency of excitation 

affected the stiffness and damping coefficients of a TP bearing. The experiments 

included shaft speeds to 3,600 rpm and bearing loads to 220 kPa, and excitation 

frequencies ranging from 60% to 90% of the shaft synchronous frequency. The stiffness 

coefficients either decreased slightly or remained constant with frequency, and the 

damping increased slightly. 

 Chen [9] presented a pad assembly method to calculate reduced dynamic 

stiffness and damping coefficients for FPTP bearings using Reynolds equation, including 

the effects of the radial flexibility of the support web and the inertia of the pad. He 

concluded that the flexibility of the support web could lower the damping coefficients 

and also generate destabilizing cross-coupled stiffness coefficients. 

Some form of the Reynolds equation (laminar or turbulent) is normally used to 

model TP and also FPTP bearings. A perturbation analysis for small motion about an 

equilibrium position produces perturbed reaction forces that define the rotordynamic 

coefficients. The Reynolds equation is a simplified form of the Navier-Stokes equations 

that neglects the temporal and convective acceleration terms of the momentum transport 

equations. The majority of the commercially available bearing computer codes for 

calculating dynamic coefficients rely on the Reynolds equation, and consequently 

neglect fluid inertia effects. 

However, Reinhardt and Lund [5] argue that while this assumption is valid for 

Reynolds numbers smaller than 100, for larger Reynolds numbers, the inertia of the fluid 

may influence the bearing dynamic coefficients, even for laminar flow. They solved 

Reynolds equation without neglecting fluid inertia terms and calculated added-mass 

coefficients. They found that the added-mass coefficients for journal bearings could be 

significant and concluded that they could be important for certain applications, such as 

short light rotors. 

 San Andrés [10] presented a bulk flow model for hydrostatic bearings including 

the effects of variable fluid properties, turbulent flow, and fluid inertia. A perturbation of 
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the momentum and energy transport equations that govern the flow in the bearing fluid 

film is used to determine the bearing steady-state response and dynamic force 

coefficients. In this model, the temporal and convective acceleration terms are included 

in the momentum transport equations. 

 Franchek et al. [11] presented experimental rotordynamic coefficients for a high-

speed, high-pressure, orifice-compensated hybrid (combination of hydrostatic and 

hydrodynamic) bearing and compared the results with predictions with San Andres’ bulk 

flow model. Good agreement was obtained between theory and experiment for stiffness 

and damping coefficients. For the added-mass coefficients the agreement was only fair. 

However, the magnitudes were comparable. 

 San Andrés later extended his model for TP and FPTP bearings. He presented the 

application of this model/computer code to a high-speed hybrid FPTP bearing [6]. His 

numerical predictions agree very well with other theoretical calculations by Chen [9] for 

FPTP bearings operating under laminar flow conditions. 

 The static (or steady-state) performance characteristics of a bearing include load 

capacity (load/deflection curve), required oil flow rate, temperature rise between oil inlet 

and outlet, pad metal temperatures and power losses. There is a wealth of experimental 

and theoretical results in the technical literature concerning the steady-state performance 

of tilting pad journal bearings. 

 Pettinato and De Choudhury [12] presented test results of performance 

measurements for two types of five-shoe TP bearings. Data include pad metal 

temperatures, power loss and operating equilibrium position. The pads were 

instrumented with embedded thermocouples placed at several circumferential locations 

to show the temperature variation from the leading to trailing edge. Power losses were 

estimated by the difference between inlet and outlet oil temperature, and were found to 

be more speed dependent than load dependent. Measurements of journal equilibrium 

position confirmed the observation by other researchers that the journal also moves in 

the direction orthogonal to the static load, rather than exclusively moving along the 

direction of the force, confirming the presence of cross-coupling forces for TP bearings. 
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 De Choudhury et al. [13] detailed performance measurements in a FPTP bearing 

for a high-speed centrifugal compressor. When compared to a conventional TP bearing, 

the FPTP bearing was found to operate at lower exit oil temperatures and cause less 

power loss, while maintaining the required stability characteristics. 

 San Andrés and Jackson [14] measured bearing displacement and pad leading 

and trailing edge temperatures for a four-pad flexible pivot tilting-pad bearing, and 

results were compared to theoretical predictions with good correlation. The bearing did 

not show any subsynchronous unstable vibrations, though cross-coupling due to the web 

flexural stiffness was observable in the static equilibrium position results. 
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CHAPTER III 

DESCRIPTION OF THE TEST RIG 

OVERVIEW 

 Fig. 4 depicts the test rig used to measure the static and dynamic performance of 

high-speed TP journal bearings. Kaul [15] presents a detailed account of the design and 

features of the test rig and facility at the Texas A&M Turbomachinery Laboratory. A 

summary of its main features follows. 

 

 

 
 
 

Fig. 4  Test rig main test section 
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 The rig consists of a steel base that supports the main test section and the air 

turbine that drives the shaft. The shaft is connected to a 65 kW-power air turbine with a 

high-speed flexible disc coupling and can run up to a maximum speed of 17,000 rpm. 

The test shaft is made from stainless steel and machined to a precise diameter of 

116.8095 mm at the test section. It is supported on the pedestals through angular contact 

ball bearings, spaced approximately 457 mm apart. An oil-mist lubrication system is 

used for lubricating the ball bearings. 

 A stator section holds the test bearing and all the associated instrumentation, 

namely, non-contacting eddy-current proximity sensors, accelerometers, pressure 

transducers and thermocouples. A pneumatic loader and two hydraulic shakers apply 

static and dynamic loads to the bearing stator. Angular alignment between the bearing 

and the shaft is provided by an arrangement of six pitch stabilizers. 

ISO VG32 turbine oil is delivered to the test section from an oil supply system. 

The oil supply system can deliver oil up to a maximum pressure of 82.7 bars and a 

volumetric flow of 75 liters per minute. A heat exchanger and a set of pneumatically 

driven valves allow for control of the temperature of the oil being delivered to the test 

section. 

LOADING CONFIGURATION 

 Two orthogonally mounted hydraulic shaker heads are attached to the stator 

middle section. The stator-shaker-stinger arrangement is shown in Fig. 5, as observed 

from the non-drive end. The shaker in the x-direction can excite the stator with dynamic 

loads up to 4450 N in tension and compression, the shaker in the y-direction can excite 

the stator with dynamic loads up to 4450 N in tension and 11125 N in compression. Both 

shakers can provide excitation frequencies up to 1000 Hz.  

 The shaker heads are attached to the stators through beam elements called 

stingers. Stingers isolate the test structure from the dynamics of the shakers structure. 

The load applied to the stator is measured with load cells bolted to the stingers on one 

end and the shaker head in the other end. 
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Fig. 5  Shaker-stinger configuration 

 

 

 While the shakers provide dynamic loads exclusively, the pneumatic loader 

applies a static tensile load to the stator in one direction. Fig. 6 shows the static loader 

assembly. The stator is displaced in the +y direction due to the static load. A cable is 

connected to the stator assembly through a pulley and a yoke, and a spring system 

assures that the load is applied exclusively in one direction. The applied load is 

measured with a load cell attached to the cable. The rated maximum available load is 

22000 N.  
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Fig. 6  Static loader assembly 
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INSTRUMENTATION 

 Four proximity probes, located in the stator end caps record the relative motion 

of the stator with respect to the rotor for each direction of excitation. Two proximity 

probes are placed in a plane at the non-drive end and two at a parallel plane at the drive 

end. Measurement of the stator position in two parallel planes allow monitoring of the 

stator’s pitch and yaw. 

 Piezoelectric accelerometers measure the stator absolute acceleration in both the 

x and y directions. Temperature probes are located in the oil-inlet chamber as well as the 

downstream end caps. A static pressure probe measures the oil pressure in the inlet 

channel and a conventional bourbon-type pressure gauge measures the oil outlet 

pressure, which is close to ambient, i.e., 0.1 bar. 

 Fig. 7 shows the stator assembly, which is comprised of the test bearing and end 

seals, the retainer and the end caps. The oil is supplied to the bearing through two 

opposite entry ports placed in the retainer. The oil then flows through a circumferential 

groove between the retainer and the bearing outer diameter. Radial holes direct the oil to 

the space between the bearing pads. Seals located at each side of the bearing keep the oil 

from exiting freely in the axial direction. This configuration is often referred to as 

“flooded” lubrication. 

The figure also details the location of all the measurement probes in the end caps 

and the retainer, as well as the location of the measurement planes.  
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STATOR − VIEW WITH END SEALS AND CAPS REMOVED

A

A

+x +y

PRESSURE PROBE

OIL SUPPLY PORT
(2 @ 180 °)

ACCELEROMETER
(2 @ 90 °)

SECTION A−A: STATOR SECTION

PROXIMITY SENSOR
(2 @ 90 ° PER END CAP)
(4 TOTAL)

B

B

STATIC 
LOADER YOKE

CONNECTION

THERMOCOUPLE
(1 PER END CAP)

PRESSURE GAGE
CONNECTION

SHAKER STINGERS
(2 @ 90 ° )

THERMOCOUPLE

PITCH 
STABILIZERS

(3 @ 120°)
(6 TOTAL)

SECTION B−B: END CAP AS SEEN FROM 
THE NON−DRIVE END

HOLES FOR 
THERMOCOUPLE CABLES

DRIVE END
END CAP

NON−DRIVE
END CAP

END
SEAL

BEARING
RETAINER

 
 
 

Fig. 7  Bearing stator configuration and instrumentation 
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BEARING CHARACTERISTICS 

 Fig. 8 shows the four-pad high-speed flexible-pivot tilting pad bearing.  
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Fig. 8  Bearing and pad thermocouples location 
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 Pad metal temperatures are measured in several circumferential locations with 

embedded K-type thermocouples, located 3.81mm deep beneath the pads’ babbited 

surfaces. The thermocouples are labeled according to their location as measured from the 

pads’ leading edge, e.g. 5% of the pad length measured from the leading edge. 

 Table 1 summarizes the geometric characteristics and operating conditions of the 

test bearing. 

 
 

Table 1  Bearing characteristics and operating conditions 

No. of pads and load configuration 4 - Load on pad
Pad arc angle, χ 72°
Pivot offset, β 0.5

Pad clearance, C P   (m) 2.54 x 10-4

Bearing clearance, C  B  (m) 1.905 x 10-4

Bearing preload (1-Cb/Cp) 0.25
Bearing diameter (m) 0.11684

Pad length (m) 0.0762
Lubricant ISO VG 32 Steam turbine oil

Oil flow (L/min) 37.85 - 60.57
Oil inlet temperature (°C) 37.8

Pad rotational stiffness (N.m) 1695

Pad inertia (kg.m2) 7.446 x 10-5

Operating speeds (rpm) 6000 - 16000
Reynolds numbers 300 - 1000

Bearing unit loads (kPa) 172 - 1034  
 

 

 



 

 

17 

CHAPTER IV 

THEORETICAL BACKGROUND 

PARAMETER IDENTIFICATION MODEL 

 This section details the rotordynamic parameter identification procedure and has 

been adapted from Childs and Hale [16] and Rouvas and Childs [17]. The equations of 

motion for the stator mass Ms can be written as: 
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where ss yx &&&& ,  are the measured components of the stator’s acceleration, yx ff ,  are the 

measured excitation force, bybx ff ,  are the bearing reaction force components. The x and 

y subscripts in these equations identify the x and y direction, as depicted in Fig. 9. 

 

 

x   

y   

F s   

ω   

 
 

Fig. 9  Coordinate reference frame 
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 The definition of the bearing reaction force as a function of the rotordynamic 

coefficients is given by: 
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Here yx ∆∆ ,  are defined as the relative motion between the rotor and the stator 

and Kij, Cij, Mij are matrices elements referring to stiffness, damping and added-mass 

coefficients, respectively.  

 

Substituting Eq. 1 in Eq. 2 and rearranging, we obtain:  
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 The left hand vector of Eq. 3 is a known function of time. On the right hand side, 

)(tx∆  and )(ty∆  are measured functions of time. The rotordynamic coefficients are 

determined in the frequency domain via the Fast Fourier Transform version of Eq. 3, as 

shown below. 
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 The elements of the bearing dynamic stiffness function H are related to the 

coefficients defined in Eq. 3 by: 

 

)()( 2
ijijijij CJMKH Ω+Ω−= , 

ijijij MKH 2)Re( Ω−= , and ijij CH Ω=)Im(  
(5) 

  



 

 

19 

 Eq. 4 provides only two equations for four unknowns Hxx , Hxy , Hyx , Hyy . To 

provide four independent equations, alternate shakes about a given steady-state rotor 

position are conducted on the stator in orthogonal directions (x and y) yielding four 

equations and four unknowns, given by: 
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 One set of frequency-dependent dynamic stiffnesses (Hxx , Hxy , Hyx , Hyy) is 

obtained as the average of 32 separate shake tests, which are averaged in the frequency 

domain. For most experimental conditions, ten consecutive tests are conducted to 

estimate the variability of the dynamic stiffnesses. In such cases, a total of 320 dynamic 

stiffness coefficients are measured for each frequency in the range of interest (i.e. 20-320 

Hz). 

 The uncertainties of the dynamic stiffness are calculated, at each frequency, as 

two times the standard deviation of the ten individual dynamic stiffnesses obtained from 

each consecutive test. Uncertainties in the dynamic stiffness coefficients vary with 

frequency. Data at the frequency of 60 Hz, and its multiples, are contaminated by 

electrical noise and are consistently poor. These values substantially deviate from the 

rest of the data and are dropped. Similarly, data near or at the shaft’s rotation 

synchronous frequency is also scattered with large uncertainties and are also eliminated. 

CURVE-FITTING PROCEDURE AND UNCERTAINTY ANALYSIS 

 Eq. 5 shows that the real part of the dynamic stiffness is a quadratic function of 

the excitation frequency, whereas the imaginary part is a linear function. However, 

setting 2Ω=Λ  transforms the quadratic into a linear relationship, thus a simple linear 

regression can be performed for both the real and the imaginary parts. 

The intercept and the slope of the regression line of the real part provide 

estimates for the bearing stiffness (Kij) and added-mass (Mij) coefficients, respectively. 
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Similarly, the estimates for the damping coefficients (Cij) are obtained from the slope of 

the linear regression of the imaginary part of the dynamic stiffness. Note that the 

intercept lacks physical meaning in this case, as suggested by Eq. 5, and therefore are 

not reported. 

Here, “estimates” is a statistical term introduced for the following reasons: (i) the 

rotordynamic coefficients are not directly measured but rather are extracted from the 

experimental dynamic stiffness data, and (ii) only limited amounts of data are obtained, 

which introduces sampling error. Other additional sources of error are the measurement 

uncertainty of the instrumentation and the fact that the data do not present perfect 

parabolas or lines. 

Confidence intervals are used to provide the uncertainty of the estimated 

rotordynamic coefficients considering the above factors. A confidence interval is a 

statistical measure of the error bound for the estimate of the slope (or the intercept), to 

assess the overall quality of the regression line and thus the accuracy of the estimates. 

The formulas to compute the slope, the intercept and their associated 

uncertainties are listed below1. Here, the letters x and y refer to a pair of data (xi,yj) for 

the linear regression. They do not refer to the x and y directions as defined in Fig. 9. 

 

Number of data pairs, (xi,yi) N  

Regression line equation xy 10ˆ ββ += ; ŷ denotes the predicted value 

Mean of the x’s ∑
=

=
N

i
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N
x

1

1  
 

Mean of the y’s ∑
=

=
N

i
iy

N
y

1

1  
 

                                                 
1 A complete analysis on linear regression and confidence intervals can be found in most reference books 

on statistical analysis, e.g. chapter 11 of Reference [18]. 
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 Notice that the uncertainty includes a parameter denoted as t. In general terms, 

this is a multiplicative factor that depends on the desired probability that the unknown 

“true” parameter is contained in the interval 00 ββ ∆±  (or, 11 ββ ∆± ). Obviously, a high 

probability is desirable, thus it is set to 95%, which yields t=1.960. This probability is 

commonly referred to as “confidence level”. 
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CHAPTER V 

EXPERIMENTAL PROCEDURE 

 Static and dynamic data are taken in the conditions shown in Table 2. During a 

typical test, the shaft is brought up to the steady state conditions of rotational speed and 

oil inlet temperature, for a given static load. Bearing static equilibrium position, oil inlet 

and outlet temperatures, pad temperatures, static load and bearing oil flow rate data are 

taken several separate times at each steady-state condition and then averaged. 

 
Table 2  Test conditions 

 

ω Tin

[rpm] [LPM] [°C]
6000 37.854 37.8 X O X O X O X O

9000 37.854 37.8 X O X O X O X O O

13000 37.854 37.8 X O X O X O X O O

16000 60.567 39.4 X O X O X O X

NOTES:
1 -  Ten dynamic tests were done for the conditions marked with a 'X'
2 - Only steady-state data were recorded for the conditions marked with an 'O'

P [ kPa ]

172 259 345 431 517 603 690 862 1034Q&

 

 

 The bearing stator is then alternately excited using the hydraulic shakers with a 

pre-specified pseudo-random dynamic excitation in two orthogonal directions, i.e. x-

direction and the y-direction (static load direction). Dynamic data include the bearing 

relative motion with respect to the shaft at the drive and the non-drive end, load applied 

by the shakers and absolute acceleration of the bearing stator. The data are captured in 

time domain and later transformed to the frequency domain with the Fast Fourier 

Transform and reduced with the procedure described earlier. 
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MEASUREMENT OF “BASELINE” DYNAMIC STIFFNESS 

 The tests aim to measure rotordynamic coefficients of the test bearing. However, 

the measurement procedure also measures stiffness and damping introduced by the pitch 

stabilizers, hose connections, etc. To account for these additional elements, ‘base-line’ 

tests were conducted with ‘dry shakes’ at zero rotor speed and no oil supplied to the 

bearing. Fig. 10 to Fig. 12 show the direct and cross-coupled baseline dynamic 

stiffnesses. 
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Fig. 10  Baseline real direct dynamic stiffness 

 

 

Fig. 10 shows the real part of the direct baseline dynamic stiffness with and without 

subtracting the stator mass (Ms), as defined by Eq. 5. A curve-fit of the data of the solid 

curve for a frequency range from 20 to 100 Hz, yields a stator mass of approximately 

19.5 kg, which agrees with the static measurement of the weight of the stator (18.9 kg). 
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Fig. 11  Baseline real cross-coupled dynamic stiffness 
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Fig. 12  Baseline imaginary dynamic stiffness 
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 Fig. 13 shows the change in stator eccentricity as a result of static loads applied 

with the pneumatic loader. According to the relation yKF yyy ⋅= , the static (i.e. zero 

frequency) stiffness may be obtained as the slope of the force versus displacement curve. 

This yields a static stiffness of 2.69 MN/m in the direction of the load. The low-

frequency stiffness obtained from the dry shake dynamic stiffness data is 2.51 MN/m 

(see Fig. 10), which agrees well with the static measurement. 
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Fig. 13  Pitch stabilizers’ static stiffness in the y-direction 
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CHAPTER VI 

STATIC PERFORMANCE CHARACTERISTICS 

 This section includes the static (or steady-state) performance data. These include 

load capacity (load/deflection curve), pad metal temperatures and estimated power 

losses. There is a wealth of experimental and theoretical results in the technical literature 

concerning the steady-state performance of tilting pad journal bearings. In general, the 

results presented herein confirm these results. 

The oil flow rate and inlet temperature were 37.38 liter per minute and 37 ± 2 °C, 

except for the largest shaft speed, 16000 rpm, for which the oil flow rate and inlet 

temperature were 60.57 liter per minute and 39.4 ± 2 °C. For this speed, the oil flow rate 

had to be increased to prevent excessive oil throw-off temperature.  

 The limiting factor for applying larger loads was the excessive proximity of the 

bearing to the shaft (to avoid rubbing). For the case of 16000 rpm, the limiting factor 

was the excessive temperature of the ball bearings, which reached their shut-off limit 

during testing. 

Fig. 14 shows the bearing centerline loci as a function of the static load and 

rotational speed. Here the coordinates (ex,ey) are divided by the bearing pad clearance, 

CP. The Figure shows that the bearing moves not only in the direction of the load, but 

also in the normal direction, due to bearing cross coupling. 

In conventional TP bearings, the cross coupling is theoretically null (given the 

pads’ mass moment of inertia are neglected). However, in the case of FPTP bearings, 

cross coupling is expected because the pads are not completely free to tilt as the 

structural web offers rotational stiffness, and also because of the mass moment inertia of 

the pads. 
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Fig. 14  Bearing centerline loci plots 

 

 

 The position of the bearing may be described with the eccentricity ratio ε and the 

attitude angle φ (see Fig. 14), as defined in the Equations below:  
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Fig. 15 shows the eccentricity ratio and Fig. 16 shows the attitude angle as a 

function of the bearing load. 
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Fig. 15  Eccentricity ratio versus bearing unit load 
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Fig. 16  Attitude angle versus bearing unit load 

 

 

 The attitude angle for 13000 rpm was larger than for the lower speeds. However, 

at a unit load of approximately 900 kPa, the bearing presented a sudden change in its 

static equilibrium position, moving closer to the vertical line, resulting in smaller attitude 

angles. For 16000, the bearing moved in the (-x) direction (negative attitude angle), even 

for small loads. 

 Fig. 17 depicts the temperature of the loaded pad at the 75% location, which is 

close to the trailing edge (refer to Fig. 8). Typically, the highest temperature in the 

bearings occurs at this location. The solid line represents the temperature at the 

centerline plane and the dashed line the temperature at the plane downstream. The 

difference between these two temperatures evidences some level of bearing to shaft 

misalignment. 
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Fig. 17  Maximum temperature of the loaded pad 

 

 The trailing edge temperature increases almost linearly with load. Note that at a 

rotational speed of 13000 rpm and a load of 8000 N there is a sudden reduction in the 

maximum temperature, which is related to the “jump” in bearing position described 

earlier. Such sudden changes in the pad temperature are usually related to a change in 

the flow regime from laminar to turbulent, as observed by Bouchoule et al. [19]. Bearing 

to shaft misalignment might also plays a role in the “jump” occurrence, as experience 

with preliminary tests revealed, where this behavior was repeatedly observed even at 

lower speeds until the bearing alignment was improved to the best of the test rig’s 

capabilities. However, a clear explanation of the physical principles behind this 

phenomenon is not available at the present moment. 

 At the largest speed, 16000 rpm, the maximum temperature was lower than for 

13000 rpm. The temperature at this speed seems to be insensitive to bearing load and to 
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misalignment, as evidenced by the null axial temperature gradient. Note that the oil inlet 

temperature was slightly higher for this speed, as it could not be controlled to the same 

level as for the other speeds.  

 The bearing frictional power loss can be estimated from the change in the 

lubricant’s bulk temperature, according to Eq. 8. Many investigators customarily use this 

simplified heat-balance approach (e.g. Pettinato and De Choudhury [12]). 

 

Power= ( )outinP TTcQ −&ρ         (8) 

 

A simple error-propagation calculation of Eq. 8 revealed that the uncertainty in 

the calculated power loss is approximately 4 kW, which is very high mainly due to the 

uncertainty in the temperature (1.2 °C). Fig. 18 shows the bearing frictional power loss 

as a function of the unit load and the rotational speed. 
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Fig. 18  Estimated frictional power loss 
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PAD TEMPERATURES 

 Fig. 19 and Fig. 20 show the pad temperature profiles for all rotational speeds 

tested and for four different bearing loads. Perhaps the obvious observation is that the 

temperature in the pad varies from the leading to the trailing edge. The highest values 

occur at the vicinity of the trailing edge of each pad. The pad with the highest 

temperatures is the loaded pad (#4), which is the pad that is closest to the shaft. Pad 

temperatures increase with shaft rotational speed.  

 Typically, the location of the highest temperature is not the location next to the 

trailing edge, as intuition would indicate (because of shear losses). Rather, the highest 

temperatures are found in the 75% location, because the fresh oil that is directed to the 

space between the pads cools the metal in the vicinity of trailing edge (95% location). 

 The measurements also confirm that hot oil is carried over from the trailing edge 

of one pad to the leading edge of the pad downstream. This is evidenced by the fact that 

the temperature of the leading edge of the pads is higher than the oil inlet temperature 

(37.85 ºC). 

 Concerning the temperature profile for the rotational speed (16000 rpm), the 

temperatures of the unloaded pads are fairly similar to the temperatures of the loaded 

pad, which is not the case for the rest of the speeds. The temperatures of the unloaded 

pads at 16000 rpm are typically higher than for the rest of speeds.  
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Fig. 19  Pad temperature profiles for 172 kPa (left) and 345 kPa (right) 
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Fig. 20  Pad temperature profiles for 517 kPa (left) and 689 kPa (right) 
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CHAPTER VII 

DYNAMIC STIFFNESS AND ROTORDYNAMIC COEFFICIENTS 

BEARING DYNAMIC STIFFNESS 

Fig. 21 to Fig. 24 show the real and imaginary parts of the dynamic stiffness for a 

rotor speed of 6000 rpm and a bearing unit load of 689 kPa. The baseline dynamic 

stiffnesses are included to show that they are fairly negligible compared to the actual 

measured values for the bearing. Uncertainty bars for the dynamic stiffnesses at each 

frequency indicate the degree of repeatability of the results during the ten consecutive 

tests performed to obtain the averaged dynamic stiffness coefficients. 
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Fig. 21  Real direct dynamic stiffness at 6000 rpm and 689 kPa 
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Fig. 21 depicts the real part of the direct dynamic stiffnesses coefficients, Hxx 

and Hyy. Note that the dynamic stiffness decreases with increasing frequency until they 

actually become negative at certain frequencies. This behavior is due to the combined 

effects of the inertia of the fluid film and the frequency dependency due to the degrees of 

freedom of the pads. 

The presence of added-mass coefficients in journal bearings due to fluid inertial 

forces is well documented by Reindhardt and Lund [4]. They argued that this would be 

the case even for bearings operating in a laminar regime, i.e., for Reynolds numbers with 

an order of magnitude of 102. Representative Reynolds numbers corresponding to each 

actual test condition are shown in Table 3.  

 

 
Table 3  Reynolds Numbers for Test Conditions 

ω [rpm] Re [-]
6000 300
9000 500

13000 800
16000 1000  

 

 

Using their results, an approximate calculation for a journal bearing with 

comparable geometry to the bearing tested in this investigation yields an added-mass 

term of 10 kg. As discussed earlier, added-mass coefficients introduce a frequency 

dependency in the dynamic stiffness as shown by Eq. 9. 

 
2)Re( Ω−= ijijij MKH         (9) 

 

 Additionally, the direct dynamic stiffness coefficients of a TP bearing should 

decrease with increasing frequency of vibration, as predicted by Barret et al.[4]. 

Actually, for a pad preload of 0.5, their numerical results show that coefficients decrease 
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25% to 30% when the vibration frequency is increased from almost zero to the 

synchronous frequency (i.e. the rotor’s rotational frequency). Their numerical data 

includes a low Sommerfeld number (S=0.2), which signifies operation at a high load 

and/or at a low rotor speed, and S=8 (light load and/or high speeds).  

 Numerical data for a null pad preload show similar results for a low Sommerfeld 

number, whereas for S=8, the dynamic stiffness is reduced by as much as two order of 

magnitudes for the same frequency range. However, the range of Sommerfeld numbers 

of the tests results of the present investigation is approximately from 0.2 to 1.5. In 

conclusion, the results of Fig. 21 show that the dynamic stiffness is affected by the 

frequency dependency due to the pad degree of freedom and the effect of the inertia of 

the fluid. Incidentally, it follows from the preceding discussion that the frequency 

dependency is determined by both the bearing geometric characteristics and the 

operating conditions. 

 Ha and Yang [8] provide experimental stiffness and damping coefficients for a 

300.9 mm-diameter and 149.8 mm-long TP bearing as a function of the frequency of 

excitation. Based on their findings, they concluded that there is only a minimal influence 

of the frequency of vibration on the dynamic coefficients of a tilting-pad bearing. This is 

in apparent disagreement with the results of the present study. However, their 

experiments were limited to a narrow range of excitation frequencies, from 60% to 90% 

of the synchronous frequency, and relatively low speeds (the maximum speed was 3600 

rpm). For example, the excitation frequency range for the maximum speed is from 36 to 

54 Hz. 

 Certainly, if we limited the dynamic stiffness data of Fig. 21 to a frequency range 

of, say, 60-90 Hz, the conclusion would also be that the influence of the frequency of 

excitation is not significant. Therefore, a broad range of frequencies of excitation is 

essential for providing a complete description of the frequency-dependent characteristics 

of the dynamic coefficients of a TP bearing. 

 Rotordynamic calculations are based on linearized dynamic coefficients, which 

for bearings are customarily comprised of two 2x2 matrices of frequency-independent 
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stiffness and damping coefficients. However, we will include an added-mass matrix to 

the bearing model (Eq. 2) to account for the combined effects of the inertia of the fluid 

and the frequency dependency of the stiffness. This approach allows for the description 

of the bearing dynamic properties with three 2x2 frequency-independent linearized 

coefficient matrices. 

 As detailed in an earlier section, estimates for the rotordynamic coefficients are 

obtained by means of a least-squares linear regression of the dynamic stiffness data. 

Referring to Fig. 21, the real part of the direct dynamic stiffnesses (Re(Hxx) and Re(Hyy)) 

is fitted to a line whose slope and intercept are estimates of the added-mass (Mxx, Myy) 

and the stiffness (Kxx, Kyy) coefficients, respectively. Evaluating Eqs. 7(a) and 7(c) for 

iix Λ=  and )Re( ixxi Hy = , we obtain: Mxx=38.3±2.5 kg, and similarly Myy=35.6±6.2 kg. 

By use of Equations 7(b) and 7(d), we obtain Kxx=27.95±4.89 MN/m and 

Kyy=95.43±12.13 MN/m. 

 In regards to the direct stiffness coefficients, note that Kyy is much larger than 

Kxx. This asymmetric is characteristic for a load-on-pad TP bearing, where the stiffness 

in the direction of the load is much larger than in the direction normal to it. 

 Fig. 22 presents the real part of the cross-coupled dynamic stiffness coefficients. 

In this case, some degree of frequency dependency is also observed. Re(Hxy) has a 

negative sign and decreases with increasing frequency, whereas Re(Hyx) is positive and 

increases. These results show the presence of cross-coupled added-mass terms of 

opposite sign. 
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Fig. 22  Real cross-coupled dynamic stiffness at 6000 rpm and 689 kPa 

 

 

 We obtain the cross-coupled stiffness and the added-mass coefficients in a 

similar fashion as the direct terms, which yields:  

 

Mxy= 8.4±1.9 kg Myx= - 15.1±1.2 kg 

Kxy= - 4.49±4.89 MN/m Kyx= 8.13±2.27 MN/m 
(10) 

 

 In regard to the cross-coupled stiffness coefficients, for our coordinate system 

and sign convention (see Fig. 9), a positive Kyx term and a negative Kxy term act to 

destabilize a rotor, that is, they develop a reaction force that acts in the direction of the 

orbital motion of the rotor. When the damping available is not enough to cancel this 

“driving” force, the cross-coupled stiffness coefficients cause self-excited vibrations, and 



 

 

40 

the rotor becomes unstable. However, despite the presence of cross-coupled stiffness 

coefficients, FPTP bearings have excellent stabilizing characteristics (Zeidan and 

Paquette [1]). 

Fig. 23 and Fig. 24 present the imaginary part of the direct and the cross-coupled 

dynamic stiffness, respectively. 
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Fig. 23  Imaginary direct dynamic stiffness at 6000 rpm and 689 kPa 
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Fig. 24  Imaginary cross-coupled dynamic stiffness at 6000 rpm and 689 kPa 

 

 
 The damping coefficients (Cxx, Cyy, Cxy, Cyx) are identified from the slope of the 

imaginary parts of the dynamic stiffness. The intercept term is ignored in all cases. Eqs. 

7(a) and 7(c) are evaluated for iix Ω=  and )Im( ixxi Hy = . Thus we obtain:  

 

Cxx=89.04±5.01 Cxy=17.65±7.21 

Cyx=31.56±5.88 Cyy=132.81±17.54 
(kN-s/m) (11) 

 

 Note in Fig. 23 that the imaginary part of the dynamic stiffness tends to decrease 

slightly at higher frequencies (around 280 Hz for the case shown in the Figure), 

evidencing a small degree of frequency dependency for the damping coefficient. For 

most cases, this decrease starts at frequencies above the synchronous frequency. For this 
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reason, this frequency dependency is ignored and the damping is considered to be 

independent of frequency. 

 Fig. 25 shows the cross-coupled imaginary dynamic stiffnesses, which certainly 

do not follow a linear trend. Instead, they seem to increase with frequency in a higher 

order fashion. However, these values are much smaller that the direct imaginary 

dynamic stiffness. Therefore, a first order linear curve fit is used to obtain a rough 

approximation of the cross-coupled damping coefficients. This explains why large 

uncertainties are associated with these cross-coupled coefficients. 

 In addition to the uncertainties associated to each dynamic coefficient, the 

coefficient of determination (r2, commonly referred to as correlation factor) provides an 

indication of the goodness of the curve fits of experimental data. Large r2 values indicate 

a good correlation between fit and data, with 1 being a perfect fit and zero meaning no 

correlation. The coefficients of determination for our example are shown in Table 4. 

 

 
Table 4  Coefficients of determination for dynamic stiffness at 6000 rpm and 689 kPa 

Real Imaginary

r2
xx 0.9762 0.9822

r2
xy 0.7747 0.5239

r2
yx 0.9666 0.8341

r2
yy 0.8499 0.9092

 
 

 

 The description and discussion presented in this section is representative for most 

conditions of bearing load and rotor speed, and was provided as an example of the 

analysis and procedure to extract the rotordynamic data. The appendix contains the 

complete set of dynamic stiffness numerical data for all the test conditions listed in 

Table 2. 
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ROTORDYNAMIC COEFFICIENTS 

 This section provides the results for the frequency independent rotordynamic 

coefficients as obtained in the preceding section. The experimental conditions presented 

here include three rotational speeds: 6000, 9000 and 13000 rpm, and three unit bearing 

loads: 172, 517 and 689 kPa. 

Fig. 25 to Fig. 27 present the bearing stiffness, damping and added-mass coefficients 

matrices. Results are presented both as a function of unit load and of the shaft speed. 

Uncertainty bars are included for each individual point. 

Note that the uncertainty in the direct coefficients in the direction of the load is 

generally larger than in the normal direction, because that the dynamic stiffness data in 

the y-direction are more scattered. This result has to do with the amplitude of motion of 

the bearing during shaking tests. The motion was somewhat limited in this direction 

because of the larger stiffness of the bearing, which renders smaller motions for a given 

shaking force. Smaller amplitudes of motion tend to provide larger signal-to-noise ratio, 

when compared to the larger motions in the normal direction, affecting the quality of the 

data. 

Note that the rotordynamic coefficients for the rotational speed of 16000 rpm are 

not included in the plots. As pointed out in an earlier section, the oil temperature level at 

that speed was much higher than for the rest, which in turn made the viscosity much 

lower. Rotordynamic coefficients are strongly dependent on the viscosity of the fluid, 

therefore direct comparison of the coefficients for 16000 rpm with coefficients for the 

rest of the speeds may prove misleading. However, the numerical results for 16000 rpm 

are provided in the appendix, which contains both dynamic stiffness and rotordynamic 

coefficient data, for all test conditions. 
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Fig. 25  Bearing stiffness coefficients
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Fig. 26  Damping bearing coefficients
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Fig. 27  Bearing added-mass coefficients 
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WHIRL-FREQUENCY RATIO 

 A commonly used parameter for evaluating the stability characteristics of a 

bearing is the whirl-frequency ratio (WFR). It is defined as the ratio between the rotor 

whirl (precessional) frequency and the speed at which the rotor-bearing system becomes 

unstable (referred to as “onset speed of instability”). The WFR is a stability indicator in 

that the higher the WFR the lower the onset speed of instability, and thus a less stable 

system. The formula used for WFR, was taken from San Andrés [20], and it includes the 

added-mass inertia coefficients. 

 Fig. 28 provides the whirl-frequency ratio as a function of the running speed and 

the bearing unit load. These results confirm the superior stability characteristics of a 

FPTP bearing when compared to a rigid geometry journal bearing, for which the WFR is 

typically 0.5. 
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Fig. 28  Whirl-frequency ratio versus rotational speed (left) and unit load (right) 
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CHAPTER VIII 

BULK-FLOW THEORY PREDICTIONS  

FOREWORD 

In the preceding chapter we presented strong experimental evidence to show the 

influence of the fluid inertial forces affects on the dynamic behavior of the FPTP 

bearing. Therefore, to accurately predict these results it is mandatory to use a theoretical 

model that accounts for fluid inertia for the prediction of stiffness and damping 

coefficients. 

Classical lubrication theory relies on the Reynolds equation for the prediction of 

the pressure field inside the fluid film, and consequently the dynamic coefficients. The 

Reynolds equation is derived from the Navier-Stokes (NS) equations, by resorting to a 

series of assumptions related to the flow regime and the geometry (a very thin film of 

fluid). The Reynolds equation neglects the fluid inertia forces by dropping the temporal 

and convective acceleration terms from the momentum transport equations. 

Reinhardt and Lund [5] explain that this is a justifiable assumption when the 

Reynolds number is small, on the order of one, but that for numbers in the order of 102 it 

ceases to be a correct assumption. The repercussion of this is that when the inertial terms 

are included in the first-order perturbation solution of the NS equations, the results show 

added-mass terms that can be several times the mass of the bearing journal. Incidentally, 

this same study showed that the stiffness and damping coefficients are only minimally 

affected by the fluid inertia. 

The concept of added-mass coefficients in addition to stiffness and damping 

coefficients for bearings is not new in itself. Hybrid bearings (combination of hydrostatic 

and hydrodynamic) operate at very high Reynolds numbers and thus well in the turbulent 

regime, due to high speeds, elevated pressure-driven axial flow and low viscosity fluids. 

It follows that fluid inertia plays an important role in such application, and therefore it 
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becomes mandatory to use a solution of the NS equations including inertial forces to 

predict the added-mass coefficients. 

San Andres [10] addressed this issue with a CFD (computational fluid dynamics) 

scheme for solving a bulk-flow version of the Navier-Stokes equations, to predict the 

static and dynamic characteristics of turbulent hybrid bearings. Perturbation of the flow 

and momentum conservation bulk-flow equations is used to calculate zeroth and first 

order flow fields, including the temporal and convective acceleration terms. This 

approach has been used with success in comparison to experimental results obtained for 

a hybrid bearing (Franchek et al. [11]).  

San Andres [6] later presented an extension of this bulk-flow model to analyze 

FPTP and conventional TP fluid film bearings. The computer code, XLTFPBrg -

available with the Turbomachinery Laboratory’s Rotordynamic Software Suite, will be 

used here to generate theoretical predictions for dynamic stiffness of the FPTP bearing. 

Information required for the model/computer code consists of bearing geometry, 

pad inertia and rotational stiffness, load orientation, operating conditions (speed and 

load), lubricant characteristics, and thermal model. For the predictions shown here, the 

isothermal (constant viscosity) model was chosen for simplicity mainly. Trial runs were 

made using the adiabatic model (no heat conduction to the bearing or journal), and found 

only minor differences in the rotordynamic coefficients. 

DYNAMIC STIFFNESS 

Fig. 29 shows the real part of the direct dynamic stiffness of the bearing at a speed of 

9000 rpm and a unit load of 690 kPa. Two solutions have been included, a) solution of 

the NS bulk-flow equations including temporal and convective acceleration terms (in 

solid lines and denoted as “full inertial”), and b) the NS bulk-flow equations ignoring 

these terms which reduces to the Reynolds equation solution (in dashed lines and 

denoted as “inertialess”). 
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Fig. 29  Predicted real part of Hxx and Hyy, 9000 rpm and 689 kPa 

 

 

The full inertial solution for Re(Hxx) and Re(Hyy) predicts a frequency 

dependency similar to the measurements. For Re(Hxx), the agreement is very good at 

low frequencies; whereas, the measurements show the dynamic stiffness to decrease 

much faster than the theory predicts. This means that the theory under predicts the added 

mass term (Mxx). About Re(Hyy), the theory generally over predicts the stiffness, as in 

this particular case. However, note how the rate in which the Re(Hyy) decreases is fairly 

similar for both theory and experiment, which indicates a good prediction of Myy.  

The results for the inertialess solution (Reynolds equation) show the isolated 

effect of the frequency dependency of the dynamic stiffness coefficients due to the 

degrees of freedom of the pads. The full inertial solution shows the additional effect of 

the inertia terms. These results confirm that the frequency dependency observed in 

experimental results is due to both effects combined. 
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 A convenient way to reduce the results presented in Fig. 29 is to use an added-

mass term to account for the frequency dependency by estimating the added-mass 

coefficients with the same curve fit procedure detailed in an earlier section.  

 Here, the intercepts, Kxx and Kyy, may be obtained from the low frequency 

values (5 Hz) instead. This approach is convenient because it will produce a 

rotordynamic-coefficient bearing model that is independent of the frequency of 

vibration. Clearly, such a representation is very attractive as it eliminates the question 

whether the reduced stiffness coefficients must be calculated at the synchronous 

frequency or some other frequency. In a nutshell, the low frequency value of the 

dynamic stiffness provides the stiffness of the bearing, and an added-mass term accounts 

for the frequency dependency of the dynamic stiffness. 

 Table 5 shows the numerical values of the coefficients reduced from the 

theoretical dynamic stiffness. As expected from our discussion, agreement between 

experiment and the inertial solution is the best, specifically for the added-mass 

coefficients. In terms of stiffness coefficients, both theoretical models yield similar 

results. 

 
Table 5  Predicted stiffness and added-mass coefficients, 9000 rpm and 689 kPa 

Kxx Kyy Mxx Myy

Full Inertial 49.87 143.81 19.45 28.16
Inertialess 43.77 137.56 12.22 22.67
Experiment 46.78 105.85 38.24 29.09

percent difference Full Inertial -6.20% -26.4 96.60% 3.30%
with experiments: Inertialess 6.90% -23.10% 212.90% 28.30%

MN/m kg

 
 

 

Fig. 30 shows the imaginary part of the direct dynamic stiffness for the same 

condition. Only the full inertial solution is included as the fluid inertia has a negligible 
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effect on Re(Hyx), Re(Hxy) and Im(Hij). Again, the agreement is excellent, especially at 

frequencies up to the synchronous frequency (150 Hz). 
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Fig. 30  Predicted imaginary part of Hxx and Hyy, 9000 rpm and 689 kPa 

 

 

Consequently, the damping coefficients identified from these results also show 

good agreement with measurements, as shown in Table 6. The damping coefficients 

predictions given here are calculated at the synchronous frequency (150Hz). 

 
Table 6  Predicted direct damping coefficients, 9000 rpm and 689 kPa 

 

Cxx Cyy

Full Inertial 61.39 118.91
Experiment 87.68 108.59
% difference 42.80% -8.70%

kN.s/m
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Fig. 31 shows the real part of the cross-coupled dynamic stiffness for the full 

inertial solution. Both Re(Hxy) and Re(Hyx) agree well with experiments from low 

frequencies up to the synchronous frequency (150 Hz). At larger frequencies the 

theoretical values decrease in magnitude whereas the experiments show the opposite. 

Accordingly, the model does not correctly predict the cross-coupled added-mass 

coefficients. 
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Fig. 31  Predicted real part of Hxy and Hyx, 9000 rpm and 689 kPa 

 

 

Concerning the prediction of the Kyx and Kxy, the agreement with experiments is 

only fair, as shown by Table 7. As with the direct terms, predictions for Kxy and Kyx are 

taken simply from the lowest frequency value (5 Hz) of the real part of the cross-coupled 

dynamic stiffnesses, Re(Hxy) and Re(Hyx). The added-mass coefficients are obtained 

from the curve-fit. First, the code predicts added-mass terms that are an order of 
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magnitude smaller. Additionally, the trends of the dynamic stiffnesses are the opposite, 

e.g., while Re(Hyx) decreases with increasing vibration frequency (evidencing a positive 

cross-coupled added mass term), the theory predicts that it increases, which in turn is 

related to the presence of a negative added-mass term. 

 

 
Table 7  Predicted cross-coupled stiffness coefficients, 9000 rpm and 689 kPa 

Kxy Kyx Mxy Myx

Full Inertial -9.64 3.3 -1.82 0.61
Experiment -4.84 9.13 6.28 -8.36
% difference -49.80% 177.10% -445.10% 1470.50%

kN.s/m kN.s/m

 
 

 

 Fig. 32 presents the imaginary part of the cross-coupled dynamic stiffnesses for 

the same condition as in the previous figures. The comparison with the experimental 

measurements is poor. The predictions are one order of magnitude less than the 

measurements. Also, the experimental Im(Hyx) and Im(Hxy) follow the same trend and 

have the same sign, whereas the predictions have a different sign, as shown in Fig. 33 

(b). The predicted cross-coupled damping coefficients calculated at the synchronous 

frequency were used for comparison with the experimental coefficients. 
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(a) Theory vs. experiment 
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(b) Theory only 
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Fig. 32  Predicted imaginary part of Hxy and Hyx, 9000 rpm and 689 kPa 
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PREDICTED ROTORDYNAMIC COEFFICIENTS 

 Predictions for rotordynamic coefficients are presented as an example for a 

rotational speed of 13000 rpm and a bearing load of 345 kPa.  

 Fig. 33 shows the stiffness coefficients for a rotational speed of 13000 rpm and a 

bearing unit load of 345 kPa. As explained earlier, the direct and cross-coupled stiffness 

coefficients are extracted from the real part of the dynamic stiffness at a low frequency 

(5 Hz), rather than from the linear curve-fit. This approach is taken because the 

theoretical dynamic stiffness does not produce a perfect a parabola, particularly at low 

frequencies which can induce considerable error, if the stiffness coefficients were 

obtained from the intercept of the curve fit. 
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Fig. 33  Stiffness coefficients - theory versus experiment 
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 The agreement with the experimental coefficients is very good overall, and this is 

the case for all speeds. For the direct coefficients, agreement is certainly better for Kxx 

than for Kyy. This is perhaps due to an asymmetry in the actual bearing clearance, 

probably caused by the press-fit between the bearing and the retainer. This condition is 

often referred to as bearing crush. For the cross-coupled coefficients, agreement is very 

good for Kxy, although Kyx is underpredicted by a factor of 3 for most conditions. 

Fig. 34 presents the predicted and measured damping coefficients. The 

comparison here is not so satisfactory since Cxx is underpredicted by a 67% for most 

cases. Agreement for Cyy is slightly better, considering the larger level of uncertainty in 

this coefficient. As we had anticipated, the prediction of the cross-coupled terms is rather 

poor. Their magnitudes are underpredicted and the sign of Cyx is not correct. 

 

 

Rotor Speed: 13000 rpm

Cxy
Cyx

Cyy

Cxx

-20

0

20

40

60

80

100

120

140

160

0 500 1000 1500

Unit Load [kPa]

D
am

pi
ng

 [k
N

-s
/m

]

Solid Line: Experiment
Dashed Line: Theory

Load: 345 kPa

-20

0

20

40

60

80

100

120

140

4000 6000 8000 10000 12000 14000

Shaft Speed [rpm]

Solid Line: Experiment
Dashed Line: Theory

 

Cxx Cxy Cyx Cyy
 

 
Fig. 34  Damping coefficients - theory versus experiment 
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Fig. 35 presents the added-mass coefficients. The theory does a fair job in 

predicting the added-mass coefficients. Mxx is generally underpredicted between 50 and 

60 percent. Agreement for Myy is excellent, specially at large loads (high eccentricity). 

The magnitude of the cross-coupled terms is generally under predicted, although the 

code correctly predicts they have opposite signs. 
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Fig. 35  Added-mass coefficients - theory versus experiment 
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

 This thesis provides experimental results of frequency-dependent stiffness and 

damping coefficients results for a four pad, high-speed, load-on-pad, flexible-pivot 

tilting pad bearing. Test conditions include four shaft rotational speeds from 6000 to 

16000 rpm and bearing unit loads from 172 to 1034 kPa. Steady-state performance 

measurement results are also presented, including pad metal temperatures, eccentricity 

ratios and attitude angles as a function of bearing load, and estimated frictional power 

losses.  

 Dynamic performance results show that the stiffness coefficients are strongly 

dependent upon the frequency of excitation. This outcome is due to two combined 

effects. First, frequency dependency is introduced by the dynamics of the additional 

degree of freedom of the pads (as compared to a rigid geometry bearing). Second, 

inertial forces of considerable magnitude are generated in the fluid films for all test 

conditions. This frequency dependency is well modeled with an added-mass matrix, 

producing three 2x2 frequency-independent matrices of stiffness, damping and added-

mass. This approach resolves the question of whether the TP bearing dynamic 

coefficients should be calculated at the synchronous frequency or some other frequency, 

as is the common practice when performing rotordynamic calculations. 

 The experimental findings are compared to predictions generated with a bulk-

flow solution of the Navier-Stokes (NS) equations that includes the temporal and 

convective acceleration terms. The model yields predictions that are in good agreement 

with the experimental measurements. Additionally, the results are compared to 

predictions based on the Reynolds equation. The bulk-flow NS model provides better 

predictions for the added-mass coefficients, because it accounts for the fluid inertial 

forces.  
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 Using the Reynolds equation and consequently neglecting the effect of the fluid 

inertia has here been proven to be inadequate to accurately predict the dynamic behavior 

of tilting-pad bearings. Therefore, a solution of the Navier-Stokes equations that retains 

the temporal and convective acceleration terms should be used to calculate the 

rotordynamic coefficients of a flexible-pivot tilting-pad bearing. 

 Depending upon the geometric characteristics and operating conditions of the 

bearing, the direct added-mass coefficients may be significant and impact rotor 

dynamics predictions for light machines. Analyses must be made on a case-by-case basis 

to determine whether the added-mass coefficients are needed to obtain sufficient 

accuracy in rotordynamic calculations of critical speeds and instability margins.  

 Rotordynamic analyses are recommended, including bearing added-mass terms, 

for: 1) a machine supported in similar bearings to the one studied here, such as a multi-

stage centrifugal compressor; and 2) a light, high-speed machine, such as an integrally 

geared compressor. These analyses will provide insight on the impact of the bearing 

added-mass coefficients on rotor dynamics of machines supported on flexible-pivot 

tilting-pad bearings. 
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APPENDIX 

 This appendix contains additional numerical data and plots of dynamic stiffness 

and rotordynamic coefficients, including uncertainties for the experimental conditions 

listed in Table 2. These data can be found in the accompanying spreadsheet file. 
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