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ABSTRACT 

 

Development & Implementation of an Artificially 

Intelligent Search Algorithm for 

Sensor Fault Detection Using Neural Networks. (May 2004) 

Harkirat Singh, B.E., Gulbarga University, India 

Co-Chairs of Advisory Committee: Dr. Reza Langari  
                                                                  Dr. Charles H. Culp III 

 

This work is aimed towards the development of an artificially intelligent search algorithm used 

in conjunction with an Auto Associative Neural Network (AANN) to help locate and 

reconstruct faulty sensor inputs in control systems. 

 

The AANN can be trained to detect when sensors go faulty but the problem of locating the 

faulty sensor still remains. The search algorithm aids the AANN to help locate the faulty 

sensors and reconstruct their actual values. The algorithm uses domain specific heuristics 

based on the inherent behavior of the AANN to achieve its task. Common sensor errors such 

as drift, shift and random errors and the algorithms response to them have been studied. The 

issue of noise has also been investigated. These areas cover the first part of this work. 

The second part focuses on the development of a web interface that implements and displays 

the working of the algorithm. The interface allows any client on the World Wide Web to 

connect to the engineering software called MATLAB. The client can then simulate a drift, 

shift or random error using the graphical user interface and observe the response of the 

algorithm.  
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C H A P T E R  I  

INTRODUCTION 

Sensors are an integral part of most control systems. When sensors go faulty in a control 

system then the system becomes unreliable. Decisions based on faulty data from such systems 

could lead to disastrous results. For fault tolerance there needs to be redundant means for 

supplying data needed by the control algorithm. This data redundancy is typically produced by 

introducing redundant sensors. Two redundant sensors are sufficient to detect a fault but not 

enough to locate the faulty sensor. A third vote is needed to break this tie. Increasing the 

redundancy to three is one way to achieve this task but this is expensive because of the cost of 

the added sensors and their maintenance. It also proves to be taxing on the control system 

hardware and software [1]. Sensor fault diagnostics is an area that focuses on detecting and 

correcting sensor faults. Use of Auto Associative Neural Networks is one approach to Sensor 

diagnostics. 

 

1.1. Auto Associative Neural Network (AANN) 

 

The Auto Associative Neural Network was developed by Kramer [2].  

 

“An Auto Associative Neural Network (AANN) is a network in which the outputs are trained 

to emulate the inputs over an appropriate dynamic range. Plant variables that have some 

degree of coherence with each other constitute the input. During training, the 

interrelationships between the variables are embedded in the Neural Network connection 

weights” [3] (Hines and Uhrig 1998). 

 

 

__________________ 

This thesis follows the style and format of the IEEE Transactions on Neural Networks. 
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The AANN captures the interrelationship between plant variables that have some degree of 

interdependence with each other. The input to the AANN consists of data measured from a 

real system. The AANN is trained in such a way such that the inputs match the outputs as 

closely as possible, in a least square sense, over the set of training examples [1]. Hence when 

data free of errors is fed to the AANN then the output would ideally be equal to the input 

and their difference would be zero. 

 

On the other hand if the data is faulty (which happens when one or more inputs are 

corrupted) then the difference between the inputs and outputs will be non zero. Thus using 

this approach we can determine when one or more sensor inputs are faulty. 

 

Figure 1.1. shows the general architecture of an AANN. 

 

 

                       

          Fig. 1.1.  Auto Associative Neural Network 
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1.2. Problem Definition 

 

The AANN can be used to determine when a sensor goes faulty but the problem of finding 

out which sensor or sensors are faulty still remains. 

 

It was found in previous research [4] that when one of the inputs to the AANN was 

contaminated it would affect all the AANN outputs. Thus finding the difference between the 

inputs and outputs can be used to determine whether there is a sensor problem but this 

information is not sufficient to capture the identity of the faulty sensors themselves. 

 

Hence a need arose for enhancements to the AANN to locate these faulty sensors. 

 

1.3. Previous Work 

 

In previous works [4] an attempt to develop an Enhanced AANN (E-AANN) was 

undertaken to locate these faulty sensors. The E-AANN used a simple search algorithm that 

was capable of detecting at most one faulty sensor. The algorithm used a simple linear search 

strategy to find the global minimum by searching through the all of the search space. The 

approach was found to be computationally intense and not extensible to detecting more then 

one faulty sensor. Hence the need for a more sophisticated algorithm that was more efficient 

and could detect more then one faulty sensor.  

 

 1.4. Objective 

Aim of this research is to develop an artificially intelligent search algorithm that will locate at 

least two faulty sensors using an AANN trained to recreate eight sensor inputs. 

1.5. Proposed Solution 

An inherent characteristic of the AANN is that whenever the inputs to the AANN are 

faultless then the outputs will match the inputs. 
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In such a case the Sum Squared Error (SSE) will be ideally zero (Eqn. 1.1). 

Hence if ‘X’ be a vector input (Xi, i = 1….n) and ‘Y’ be the corresponding vector output (Yi, i 

= 1….n) then the SSE is given by 

          0   )XΣ(Y  Y) -(X  Y) -(X   SSE 2
ii

T =−==                                           (Eqn. 1.1) 

where X = [X1, X2 …. Xn]T  and  Y  = [Y1, Y2 …. Yn]T

For at least two faulty sensors case the number of combinations to be considered is given by  

2)!(n /2!n!C 2
n −∗=                                                                                     (Eqn. 1.2) 

where ‘n’ is the number of inputs to the AANN. Hence for n = 8, using Eqn.1.2 we have 

  282)!8  /2!8!C 2
8 =−∗= (  

Thus there are 28 possible cases to take into consideration. The pair of faulty sensors could be 

either (1, 2), (1, 3)…. (2, 3)…..(6, 7)…(7, 8). 

 

1.6. Search Algorithm 

 

To locate which the faulty sensors are a search strategy is needed. An intelligent search algorithm 

is an ideal solution. The algorithm should be able to conduct an intelligent search through all 

the possible solutions and locate the faulty sensors if any. The algorithm should be capable of 

not only locating the faulty sensors but also estimating their actual values based on the 

inherent characteristics of the trained AANN. 

The main focus of this research is to develop and implement such an algorithm.  

The development part focuses on the ideas and concepts that drive the algorithm. 
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The implementation part focuses on the building of a MATLAB ~Web interface. The 

interface allows any client on the World Wide Web to connect to MATLAB via a web 

server and perform tests on the algorithm. The client will be able to adjust the parameters 

of the algorithm and test and view the results onscreen via a web based graphical user 

interface. 
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C H A P T E R  I I  

NEURAL NETWORKS 

2.1. Introduction 

 

The neural network is modeled after the structure of a human brain. The brain is a collection 

of interconnected neurons. Each neuron is a cell that uses biochemical reactions to receive 

process and transmit information. A neuron forms synaptic links with its neighbors that 

encourage learning in the brain. 

 

The basic computational element of a neural network is called a node or unit which 

corresponds to a neuron, [Fig. 2.1]. The neural network consists of a number of these nodes 

connected via links that correspond to synapses. The node receives inputs from other nodes 

or from an external source. Each input (X1, X2....Xn) has a weight (W1, W2....Wn) associated 

with it. The weights can be modified so as to model synaptic learning [5], [6]. 

 

 

 
 

Fig 2.1. A Neural Network Node 

 

The node computes some function f of the weighted sum of its inputs 
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∑= )( nn XWfY                                                                                         (Eqn. 2.1) 

 

Its output can serve as input to other similar nodes. The weighted sum is called the net input 

to the node. The function f is called the node's activation function. Each node also has a 

threshold value. If the sum of all the weights of all active inputs is greater than the threshold, 

then the node is active. Hence each node has a set of input links, a set of output links, a 

current activation level and a means of computing the activation level given its inputs and 

weight at any given time. 

 

2.2. Auto Associative Neural Network 

 

The neural network used in this research is called an Auto associative Neural Network. 

 

“Auto Associative Neural Networks are feedforward nets trained to produce an 

approximation of the identity mapping between network inputs and outputs using backpropagation 

or similar learning procedures. The key feature of an auto associative network is a dimensional 

bottleneck between input and output. Compression of information by the bottleneck results in 

the acquisition of a correlation model of the input data, useful for performing a variety of data 

screening tasks” [2]. 

 

Figure 2.2. shows the general architecture of an AANN. The AANN consists of an input 

layer, a number of hidden layers and an output layer. 

 

“The first of the hidden layers is called the mapping layer. The transfer functions of the 

mapping layer nodes are sigmoids, or other similar nonlinearity. The second hidden layer is 

called the bottleneck layer. The transfer function of the nodes in the bottleneck layer can be 

linear (implementing only the summation of the inputs) or nonlinear, without affecting the 

generality of the network. The dimension of the bottleneck layer is required to be the smallest 
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in the network. The third hidden layer is called the demapping layer. The nodal transfer 

functions in this layer are nonlinear, usually sigmoidal” [2]. 

 

 

 
                                        

Fig 2.2. AANN Architecture 

 

 

The bottleneck layer is the most important among the three. It prevents a simple one to one 

mapping during the training of the network which would trivially satisfy the objective 

function. The bottleneck forces a compression of the inputs and a subsequent decompression 

to produce the outputs. The information in the inputs must be preserved in whatever 

representation is chosen at the bottleneck. The training process selects the network weights 

such that the re-created measurement vector at the output layer matches the inputs as closely 

as possible, in a least squares sense, over the set of training examples. This ensures that the 

representation developed by the network will retain the maximum amount of information 

from the original data set. 
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The AANN used for this research is an 8-11-5-11-8 neural network. In other words the input 

and output layers have 8 nodes each, the mapping and de-mapping layers have 11 and the 

bottleneck has 5. 

 

2.3. AANN Training 

 

To train the network to perform a certain task one first initializes the weights of the network. 

The weights are then trained using a learning algorithm applied to a set of training examples 

for the task.  

 

The AANN was trained using a backpropagation technique [7]. 

A backpropagation network uses a supervised learning algorithm1. An input pattern is fed to 

the network. The input is then propagated forward in the net until activation reaches the 

output layer. This constitutes the so called forward propagation phase. The output pattern is then 

computed. The output pattern is compared to a target output pattern resulting in an error 

value.  

 

This error value is propagated backwards (hence the name backward propagation) through the 

network and the values of the connections between the layers of units are adjusted in a way 

that the next time the output pattern is computed, it will be more similar to the target output 

pattern. This process is repeated until output pattern and target output pattern are (almost) 

equal [Fig. 2.3.], [8]. 

 

 

 

 

__________________ 
1 Any learning situation in which both the inputs and outputs of a component can be perceived is 
called supervised learning. 
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Output PatternInput Pattern

Target Pattern

Error  
 

Fig 2.3. Reducing Error 

 

2.4. AANN Training Data 

 

The data that was used to train the network was obtained from a model of a chiller. Figure 

2.4. shows a model of the chiller with inputs and outputs. For more details please refer to [4] 

and [9]. 

 

The inputs and outputs of the model combined, serve as inputs to the AANN. Thus the 

AANN has 8 sensor inputs comprising of the 3 chiller inputs and 5 chiller outputs. These 8 

sensor inputs constitute one sample. 1000 such samples were generated from the system. 

These samples were normalized and the network was then trained using 700 randomly chosen 

samples. The training method employed for the purpose is known as batch training.2  

 

__________________ 
2 In Batch learning a finite set of samples is presented to the network. Weight updates are accumulated 
after presentation of each set. How ever the updates are not applied to the network until all sets have 
been presented. This determines the end of an epoch. This process is then repeated until a specified 
stopping criterion is reached. 
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                                                       Fig 2.4. Chiller Model 

 

The rest of the 300 samples were used as a test set to test the effectiveness of the training. 
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C H A P T E R  I I I  

INTELLIGENT SEARCH ALGORITHMS 

3.1. Introduction 

 

Once we have defined a problem and know how to recognize the solution, the only part 

that remains is to search the state space for a solution. 

Algorithms that define a set of rules to search the state space in a systematic manner are 

called search algorithms.  

Traditional search algorithms sometimes fail to find solutions to complex problems within the 

given space and time constraints. For such purposes we need more efficient search 

techniques.  

Search algorithms that use domain specific information about the state space to make the 

search more efficient are generally termed as intelligent search algorithms [8], [10].They achieve 

better performance by applying certain techniques that gives them an edge over traditional 

methods. 

3.2. Definitions 

 

1. State Space: The set of all possible solutions to a given problem. 

2. Node/State: A possible solution in the search. 

3. Children/Successor Nodes: The children of a node ‘N’ are the nodes that are directly 

achievable from ‘N’.  

4. Parent/Predecessor Nodes: The parents of a node ‘N’ are the nodes from which ‘N’ is 

directly achievable.  
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5. Expanding: The process of generating a nodes successors. 

6. Goal Test: A test that can be applied to a given node to determine if it is a solution to 

the search. 

7. Goal Node/State: A node that gives a solution to the search by satisfying the goal test. 

8. Evaluation Function: Gives an estimate of the utility of a node. 

3.3. Search Strategies 

 

Search strategies are divided into two broad categories.  

Uninformed Search: They are the simplest search methods. They have no information about the 

state space and search blindly through it in a systematic fashion. They work through the state 

space checking out every single possibility until they reach the goal state. This type of search is 

exhaustive and time consuming. 

Informed Search: Informed search methods use certain techniques specific to the domain to 

guide the search to a more efficient conclusion. These special techniques are termed as 

heuristics [8], [11], [12]. 

The word heuristic means “to find” or “to discover”. A heuristic can be defined as a “process 

that may solve a given problem but offers no guarantees of doing so” [8]. 

Heuristics can dramatically reduce the time required to solve a problem by eliminating the 

need to consider unlikely possibilities or irrelevant states. They can be viewed as clues that 

help the search move more directly towards the goal state. 

Best First Search: The best first search strategy falls under the category of informed searches. 

When the nodes in the search tree are so ordered that the one with the best evaluation is 

expanded first, the resulting strategy is called best first [8], [13]. 
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The algorithm uses a best first strategy to expand its nodes [Fig. 3.1.]. This is explained in 

more detail in the next chapter. 
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Fig 3.1. Best First Search 
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C H A P T E R  I V  

DEVELOPING THE SEARCH ALGORITHM 

4.1. Problem Definition 

 

The AANN is trained to recreate it inputs at the outputs. When a sensor input is 

faulty it affects all the outputs. Hence even though we know that there is a sensor 

fault we do not know which sensor is causing the fault. 

 

The main idea of developing the search algorithm is to be able to locate the faulty 

sensors and reconstruct their actual values. This particular research focuses on 

developing an algorithm that can locate at least two faulty sensors and recreate 

their actual values based on 8 sensors inputs. 

 

4.2. Nodes 

 

The term ‘node’ in this work refers to the 8 x 1 vector of sensor inputs which 

constitutes one sample of data to the AANN. 

 

Hence the 8 x 1 vector 

 

X =  [X1, X2, X3, X4, X5, X6, X7, X8]T

 

constitutes a single node.  
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4.3. Evaluation Function 

  

When the sensor inputs to the AANN are faultless then the Sum Squared Error 

should be ideally zero. This is not the case in reality. 

 

In an AANN the SSE serves as a performance index. It gives an indication of the 

performance of the network and how accurately it can reconstruct the data based 

on its training. The SSE measures the loss of information between mapping and 

demapping of the data through the network. The lower the SSE, the better its 

performance.  

 

Thus the SSE serves as an ideal evaluation function for our purposes and gives a 

good estimation of the utility of the node in question.  

 

4.4. Goal Test 

 

A search is complete when it has found a goal. This happens when a node satisfies 

the goal test. 

 

The goal test was fixed based on the training accuracy3 of the network. 

The network was trained with a training accuracy of 10-5. 

 

Hence a simple way of establishing whether or not we have reached the goal is to 

test if the SSE of the node is less then the training accuracy. 

 

SSE (node) < Training Accuracy    Goal Found                         (Eqn.4.1.) 

 

__________________ 
3 Training accuracy determines the precision to which the network must be trained. For example a 
training accuracy of 10-6 implies that after training the sum squared error between inputs and outputs 
of the AANN should be less then this factor provided the input data fed to the AANN is error free. 
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Fig. 4.1. captures the relationship between the training accuracy that was 

established and the SSE’s of the 300 test samples and Fig. 4.2. does the same with 

the 700 training samples. 
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Fig. 4.1. SSE Response of the 300 Test Samples 

 

 

 

 



 18

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2
x 10-5 SSE of the 700 Training Samples

Samples

S
um

 S
qu

ar
ed

 E
rro

r
Training Accuracy 

 
Fig. 4.2. SSE Response of the 700 Training Samples 

 

 

4.5. Heuristics Used 

 

4.5.1 Nine Step Procedure 

  

For this study we will only consider the case of two faulty sensors. The same approach can be 

extended to more then two faulty sensors. For a two faulty sensor case we have 28 possible 

combinations to consider. Hence for 8 sensor inputs to AANN and 2 possible faulty sensors 

we have 28)!28(!2/!82
8 =−∗=C possible combinations. 

 

Thus the pair of faulty sensors could be either (1, 2), (1, 3)…….. 

(2, 3)…..(5, 7)…(7, 8) 
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Each node represents the eight sensor inputs.  

 

X =  [X1, X2, X3, X4, X5, X6, X7, X8]T represents a single node.  

 

Thus if sensors 1 and 4 are faulty and are off by a factor ‘∆U’ and ‘∆T’ 

respectively, then we can represent the faulty sensor pair/node as  

 

X =  [X1 + ∆U, X2, X3, X4 + ∆T, X5, X6, X7, X8]T  

 

We now have 28 combinations to search and find the correct combination/faulty 

sensor pair. Each combination is the start node of a best first search tree (explained in 

section 4.5.2). 

 

For the search to be successful we need to evaluate the given combination and find 

out whether it is the faulty sensor pair. If it is the pair that we are searching for 

then its SSE given its actual values will be the lowest. To figure out if the 

combination under question is the one we want, we need a strategy that surmises 

the offsets of the faulty sensors and reconstructs their actual values. When this 

happens the SSE will satisfy the goal test. 

 

The nine step procedure aims at surmising the offsets ‘∆U’ and ‘∆T’.  

 

The nine steps are as follows 

 

Step 1: Adding small increments to the faulty sensor pair under consideration (+δs, 

+δs) 

 

Step 2: Subtracting small increments from the faulty sensor pair under 

consideration (-δs, -δs) 
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Step 3: Adding a small increment to first sensor and subtracting the same from the 

second (+δs, -δs) 

 

Step 4: Subtracting a small increment from first sensor and adding the same to 

second (-δs, +δs) 

 

Step 5: Subtracting a small increment from first sensor and keeping second fixed (-

δs, 0) 

 

Step 6: Adding a small increment to first sensor and keeping second fixed (+δs, 0) 

 

Step 7: Keeping first sensor fixed and subtracting a small increment from second 

(0, -δs)  

 

Step 8: Keeping first sensor fixed and adding a small increment to second (0, +δs) 

 

Step 9: Keep both sensors fixed at their present values (0, 0)   

 

‘δs’ represents a small step size.  

At every step the parent node is tested for these 9 cases resulting in generation of 

nine children nodes. Thus the branching factor 3 at every step is 9. 

 

If node under test is combination (1, 4) then the nine steps generates nine children 

as follows 

 

Child-1 = [X1 + ∆U + δs , X2, X3, X4 + ∆T + δs, X5, X6, X7, X8]T  

 

Child-2 = [X1 + ∆U - δs , X2, X3, X4 + ∆T - δs, X5, X6, X7, X8]T  

__________________ 
4 Branching factor refers to the number of children nodes generated at every step. 
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Child-3 = [X1 + ∆U + δs , X2, X3, X4 + ∆T - δs, X5, X6, X7, X8]T  

 

Child-4 = [X1 + ∆U - δs, X2, X3, X4 + ∆T + δs, X5, X6, X7, X8]T  

 

Child-5 = [X1 + ∆U - δs, X2, X3, X4 + ∆T + 0, X5, X6, X7, X8]T 

 

Child-6 = [X1 + ∆U + δs, X2, X3, X4 + ∆T - 0, X5, X6, X7, X8]T 

 

Child-7 = [X1 + ∆U - 0, X2, X3, X4 + ∆T – δs, X5, X6, X7, X8]T 

 

Child-8 = [X1+ ∆U - 0, X2, X3, X4 + ∆T + δs, X5, X6, X7, X8]T 

 

Child-9 = [X1 + ∆U - 0, X2, X3, X4 + ∆T - 0, X5, X6, X7, X8]T  

 
This procedure of expansion is carried on generating 9 children at every expansion. Thus at 

every step the search has 9 directions to choose from. To choose the direction that gives the 

maximum advantage, a best first strategy is employed [Section 4.5.2].  

 

In order to reconstruct the actual values the algorithm tests the 28 combinations one by one 

(based on their priorities established by the preliminary test [Section 4.5.5]) and reduces its 

SSE using a decremental step sizing procedure (explained in sections 4.3.2.1 and 4.3.2.2) in 

combination with the 9 step procedure. When it reaches the correct combination, which in 

our case represents the combination (1, 4), the SSE will fall below the established goal 

criterion and satisfy the goal test. 

 

In order to make it easier to surmise the offsets, the values of the sensor pair under test are 

replaced by the minimum values of the sensors in their range. For example let us say that 

the faulty pair under test is (1, 4) and their respective values are X1 = 0.56677 and 

X2 = 0.7890 Let the minimum values for the sensors in their range be X1min = 

0.23442 and X2min = 0.4566. The algorithm then replaces the values X1 and X2 by 
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X1min and X2min. This is particularly helpful it the errors are large e.g. if a sensor goes 

out of its range and has a very high percentage of error. As will be explained later, 

the algorithm checks for sensors out of range and this feature makes it easier for 

the algorithm to converge more quickly towards its goal.  

 

4.5.2 Implementing the Best First Strategy 

 

The algorithm implements a best first strategy at every generation to choose the 

next node to expand. The best first strategy orders the nodes according to their 

utility. The utility is measured by the evaluation function which evaluates the 

desirability of a node by predicting how close the node is to the goal node [8]. The 

node which is predicted to be the closest to the goal node is said to be the most 

desirable. For our purposes the SSE serves as the ideal evaluation function. The 

node with the lowest SSE is always given the highest priority [Fig. 4.3.].  
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Fig. 4.3. Best First Search Tree 
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The algorithm takes the combination under test and expands it using the nine step procedure 

to generate nine children. In the next step it takes the child node with the lowest SSE as the 

parent node and expands it [Fig. 4.3.]. This process is repeated for subsequent generations 

till the SSE can’t be reduced any further for the given step size. The SSE is then reduced 

further using a decremental step sizing procedure which ensures that it falls to the 

minimum value possible for the combination under test.  

 

 4.5.3. Decremental Step Sizing 

 

The step size is the most important factor that governs the whole process. It is 

important to choose a step size that will ensure that the SSE is reduced as quickly 

and as efficiently as possible without involving too much computational time. If 

the step size is not chosen properly then the search runs the risk of never being 

able to reduce the SSE to a low enough value that will satisfy the goal test.  

 

The algorithm uses a decremental step sizing procedure to ensure that the SSE falls 

to the lowest value possible for every combination being tested. 

 

4.5.3.1. Choosing the Step Sizing Procedure 

 

In order to choose the correct step size, the relation between different step sizes 

and the SSE was studied. Since the values are normalized (e.g. 0.68721), the step 

sizes (δs) that were considered were 0.1, 0.01, 0.001 and 0.0001.  

 

For the comparison test, sensors 2 and 8 were corrupted for 20 samples. The 

samples were then fed to the AANN. The algorithm then reduced the SSE using 

the nine step procedure for the combination under test. This was done for each step 

size till the SSE could not be reduced any further with the given step size. The final SSE for 

each step size was plotted for all the 20 samples along with the actual SSE (SSE with 

uncorrupted data). The results are shown in figures 4.4 and 4.5. 
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Fig. 4.4. Comparing Step Sizes 
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Fig. 4.5. Enlarged View of Fig. 4.4. (x 3) 
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As can be observed from the plot, the step size of 0.0001 gave the best results and 

was closest to the actual SSE. The only drawback of using a small step size such as 

0.0001 is that even though it guarantees reaching the minimum (actual SSE) the 

computational time is too severe. On the other hand too large a step size might 

make the algorithm oscillate and become unstable and never reach the minimum as 

can be seen in Fig. 4.4 for step size 0.1. A compromise was thus reached in the 

form of alternating the step sizes to achieve better performance. 

 

 The computational time was found to be inversely proportional to the accuracy. 

Table 4.1. tabulates the average time taken to cycle through all the 20 samples for 

the different step sizes.  

 

 

Table 4.1. Single Step Size Computational Times 

 

Step Size Computational Time/Sample 
(secs) 

0.1 2.4 
0.01 5.1 

0.001 12.4 
0.0001 38.3 

 

 

The decremental step sizing procedure flowchart is shown in figure 4.6.  

 

For every combination under test, the algorithm starts to expand the parent node 

using the nine step procedure and implementing a best first strategy at every 

expansion. The step size chosen in the beginning is 0.1.  
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Fig. 4.6. Decremental Step Sizing Flowchart 
 

The expansion is carried on till the SSE can’t be reduced any further with the given 

step size. Let us term this point as the ‘extreme point’ 

 

The extreme point is the point where the Sum Squared Error can’t be reduced any further for 

the given step size [Fig. 4.7.]. 

 

Thus from a current position the search chooses a direction from the 9 available 

directions (using the best first strategy) and then proceeds to take a step in that 

direction. This process is continued until an extreme point is reached.  
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When the extreme point is reached for a given step size, the step size is 

decremented by a factor of 1/10 and the same procedure is repeated till another 

extreme point is reached. This goes on till the step size reaches 0.0001 after which 

it is not decremented any further.  

Fig.4.7. depicts the reduction in SSE obtained with the step sizing procedure.  
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                      Fig. 4.7. SSE Reduction Using Decremental Step Sizing 

 

 

The SSE obtained using decremental step sizing is compared with the SSE 

obtained using single step sizes in figures 4.8, 4.9 and 4.10. 

 

As can be seen in the figures, the SSE using decremental step sizing is more 

accurate and takes less time [Table 4.2.] then using a single step size. 
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Fig. 4.8. SSE Comparison  
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Fig. 4.9. Enlarged View of Fig. 4.8. (x 5) 
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Fig. 4.10. Enlarged View of Fig. 4.8. (x 7) 

 

 

The time taken to reduce the SSE using decremental step sizing is compared along 

with the time taken using a single step size [Table 4.2.]. The time calculations were 

done on a 1.1 Ghz processor. 

 

 

Table 4.2. Time Comparison with Decremental Step Sizing 

 

Step Size Computational Time/Sample 
(secs) 

0.1 2.4 
0.01 5.1 

0.001 12.4 
0.0001 38.3 

Decremental Step Sizing 5.65 
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The least step size (the step size till which the algorithm will reduce the SSE) is an 

important factor in the process as it determines the accuracy to which the 

algorithm will reconstruct the values. Defining the least step size as 0.0001 allows 

the algorithm to reconstruct the values to a precision of 0.0001. In some cases 

such a high precision may not be desired and the least step size can be reduced to 

0.01 or 0.001 to reduce the computational time and unnecessary effort. Care 

should be taken in fixing the least step size as choosing too low a step size might 

not allow the algorithm to reduce the SSE enough in order to satisfy the chosen 

goal test. The goal test will also have to be revaluated and made higher in such a 

case. This lowers the sensitivity of the network to detecting faults. For the purpose 

of this study the least step size was chosen as 0.0001 as it offered the best results.  

 

4.5.3.2. Significance of the Step Sizing Procedure 

 

Changing the step size from coarse grained to fine grained according to recent 

performance (measured by the SSE) offers significant advantages. Fine graining the 

step size makes the algorithm more efficient and robust ensuring that the SSE is 

reduced to the minimum level possible. This is important in order for the goal test 

to be properly satisfied and a solution to be found. Figure 4.11. depicts the 

procedure followed by algorithm during decremental step sizing. 

 

 
 

 



 33

S
um

 S
qu

ar
ed

 E
rr

or

Extreme Point for
Step Size 0.1

Extreme Point for
Step Size 0.01

Extreme Point for
Step Size 0.001

Goal found at Step
Size 0.0001

Step Size 0.1
Step Size 0.01
Step Size 0.001
Step Size 0.0001

     Goal

 A

C

B

D

Direction taken by Step Size 0.1
Direction taken by Step Size 0.01
Direction taken by Step Size 0.001
Direction taken by Step Size 0.0001

 A
 B
 C

 D

 
Fig. 4.11. Step Sizing Procedure 

 

 

The algorithm first starts by taking big steps (step size 0.1) to reduce the SSE. In this way it 

travels rapidly over the error surface to try and reduce the SSE. At some point it will either 

overstep the goal (as shown in figure by ‘Extreme point for 0.1’) or will be short of the goal. 

At that point the algorithm can not reduce the SSE any further using the given step size. It 

has reached an extreme. Now it decrements the step size by a factor of 1/10 and again starts 

to reduce the SSE by following the path towards the goal (marked by arrows in figure) until 

another extreme is reached. It again decrements the step size by 1/10 and repeats the same 

procedure. This goes on till a step size of 0.0001 is reached at which point it will have reduced 

the SSE below the established goal criterion for the correct faulty sensor combination. 

 

It may be noted that this procedure can only be truly successful if there is a singular minimum 

otherwise the algorithm is likely to get stuck in local minima’s. Fortunately the SSE behavior 

of the AANN due to its inherent nature is linear or in other words it decreases as we get 

closer to the actual values and increases if we digress from it. This can be explained by the fact  
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that the network is trained to recreate the actual values and the higher the error the worse its 

performance will be. It thus gives a singular minimum when we reach the actual values (the 

goal) or very close to it. 

 

Since the algorithm is only concerned with the state of the current node and its evaluation the 

algorithm falls into the category of iterative improvement algorithms. In the field of Artificial 

Intelligence the precise term to describe such a procedure is called gradient descent [8], [14]. 

 

The number of steps it takes a hill climber or gradient descent to traverse a path, is linear in 

the length of the path, if it is using constant step sizes. In contrast the algorithm by changing 

the size of its steps in multiples of 1/10 requires lesser computational time and effort [Table 

4.2.]. 

 

4.5.4. Cut Off Test 

 

A cut off test is used during the search to discard those combinations under test 

that are highly unlikely to be the correct faulty sensor pair based on their response 

and SSE trend. Cut off values were established at every extreme point to identify 

and discard such combinations.  

 

The algorithm checks the SSE at every extreme point and if it does not satisfy the 

cut off test at the given extreme point then the combination under test is discarded 

and the search moves on to the next combination in queue. This saves on 

computational time and keeps the search on track by not allowing it to veer into 

paths that do not lead to the goal. The cut off test can be depicted as follows. 

 

If SSE (extreme point) > Cut off Value (extreme point) 

        Discard combination under test 

End 
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Hence if the faulty sensor pair combination is (1, 4) as represented by  

 

X =  [X1 + ∆U, X2, X3, X4 + ∆T, X5, X6, X7, X8]T  

 

And if the combination under test is (2, 3) 

 

X =  [X1 + ∆U , X2 + δs, X3 - δs, X4 + ∆T, X5, X6, X7, X8]T

  

then the SSE at some point will rise above the cut off criterion and be discarded. 

Thus the algorithm keeps checking to see if the SSE has reduced to an appreciable 

amount for the combination under test. If it fails the cut off test then the 

combination is discarded and the search moves on to the next one in the queue. 

 

4.5.4.1 Establishing the Cut Off Values 

 

The cut off values at each extreme point were established by conducting tests on 

all the 28 possible combinations for all the 300 test samples. The SSE at each 

extreme point was recorded. Hence a total of 28 x 300 = 8400 SSE data points 

were generated for each of the step sizes 0.1, 0.01 and 0.001. The results are 

plotted in figures 4.12, 4.13. and 4.14. 

 

The step size of 0.0001 was not taken into consideration since the search skips to 

the next combination at the extreme point for the last step size. It would be 

redundant to establish a cut off value at that point. 
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Fig. 4.12. Establishing the Cut off Value for Step Size 0.1 
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Fig. 4.13. Establishing the Cut off Value for Step Size 0.01 
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Fig. 4.14. Establishing the Cut off Value for Step Size 0.001 

 

 

A safety factor was added to the cut off values established by the test to take care 

of any uncertainties. The actual cut off values used are shown in Table 4.3. 

 

 

Table 4.3. Cut Off Values 

 

Step Size Cut Off value
0.1 8 

0.01 2 
0.001 0.5 
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4.5.4.2 Significance of the Cut Off Test 

 

The algorithm explores the nodes in the priority queue one by one using the 

decremental step sizing to reduce the SSE [Fig. 4.15]. Nodes which are not 

solutions will soon get cut off at the extreme points. This helps the algorithm to 

explore the search space more rapidly and reach the goal quickly by not straying 

off into paths that do not lead to the goal. The cut off test thus saves on 

computational effort and time and keeps the search on the right track. 
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Fig. 4.15 Cut Off Procedure 

 

 

4.5.5. Preliminary Test 

 

At the beginning of the search the algorithm performs a preliminary test of the 

faulty inputs to the AANN to capture the SSE trend. It tests the faulty inputs for 

all the 28 combinations using different step sizes. It expands all the 28 probable 
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cases using the nine step procedure for a given step size and by observing the SSE 

response to the simulated change it tries to figure out which is most likely to be 

the correct faulty sensor pair. The step sizes chosen to simulate a change were 1, 

0.1 and 0.01. The flowchart is shown in Fig. 4.16. 
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Fig. 4.16. Preliminary Test Flowchart 
 

 

The preliminary test first uses a step size 1 to expand all the 28 possible 

combinations using the nine step procedure. It then repeats the procedure for the 

step sizes 0.1 and 0.01. The total number of children generated are 28 x 9 x 3= 

756. The SSE for all the 756 children is calculated and they are put into a priority 
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queue sorted by their SSE. Based on the observed trend, the combinations with the 

lowest observed SSE are given the highest priority whereas the ones with the 

highest observed SSE are given the lowest [Fig.4.17.].  
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Fig. 4.17. Preliminary Test Data 

 

 

All the 28 combinations are then stored into another priority queue sorted 

according to their priorities.  

 

Table 4.4. depicts the final priority queue obtained which holds all the 28 

prioritized combinations. The search then uses this queue to pull out the nodes 

one by one.  

  

To gauge the effectiveness of this feature random tests were conducted on 

randomly chosen samples for all the 28 possible cases. The procedure used was as 

follows 

 
 



 41

1. Choose a sample at random. 

2. Induce a random fault in sensors 1 and 2. 

3. Run the preliminary test and note the results. 

4. Repeat steps 2 and 3 with the next sensor pair e.g. 1 and 3. Do this for all the 

28 pairs and note down the results. 

5. Begin with step 1 and use a different sample each time. 

 

 

Table 4.4.  Priority Queue (PQ) with the 28 Prioritized Combinations 

 

Instance Combination 

1 28 
2 7 
3 13 
4 18 
5 22 
6 25 
7 27 
8 2 
9 8 
10 14 
11 15 
12 16 
13 17 
14 5 
15 20 
16 26 
17 23 
18 11 
19 4 
20 1 
21 6 
22 24 
23 3 
24 10 
25 19 
26 12 
27 9 
28 21 
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Using the above mentioned procedure 28 x 5 = 140 tests were conducted. The 

results are shown in Table 4.5. PQ signifies the Priority Queue. 

 

 

Table 4.5. Preliminary Test Results  

 

Number of times the faulty pair was detected in the instances 1 - 5 of PQ 102 

Number of times the faulty pair was detected in the instances 6 - 10 of PQ 29 

Number of times the faulty pair was detected in the instances 11 - 15 of PQ 6 

Number of times the faulty pair was detected in the instances 16 - 20 of PQ 0 

Number of times the faulty pair was detected in the instances 21 - 28 of PQ 3 

TOTAL TESTS CONDUCTED 140 

 

 

 

From the results we can see that the preliminary test arms the search with a very 

good idea of which the faulty pair is most likely to be. 

  

It was generally found that for samples that have a good response (recreate well at 

the outputs) the preliminary test is particularly effective in gauging which the most 

likely faulty pair will be. For samples that do not recreate well the results were not 

as effective and the preliminary test had a lesser probability of zeroing in on the 

correct combination. 

 

4.5.6. Feedback Correction 

 

Once the faulty sensors have been identified, the algorithm ‘assumes’ that in the next time 

instant the same sensors will remain faulty. When the next set of inputs arrives and it is also 

found to be faulty then the algorithm based on its previous finding gives the highest priority 

to the pair (or single sensor) that was found to be faulty previously and proceeds to test those 
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sensors first. In this case it skips over the preliminary test. This feature is particularly useful in 

the case of drift and shift errors where the same sensor is the cause of the fault in the next 

time instant. It saves on time by not repeating the preliminary test for every input sample that 

is fed to the AANN thus improving the dynamic response of the system. 

 

 We can write the pseudo code for this as follows 

 

If for time t = t  

Sensors ‘i’ and ‘j’ (combination ‘n’) faulty;  1 <= n <= 28, 1<= i, j <= 8 

Then at time t’  = t + 1 

Assume Sensors ‘i’ and ‘j’ remain faulty 

Until at some point in time t’’ >= t’ 

SSE (combination ‘n’) > goal criterion 

Then start search again and find correct faulty sensor(s) 

End 

 

The question now arises as to what happens when as we progress in time, we have fault(s) in 

some other sensor(s) then the one that the algorithm has ‘assumed’ will be faulty? To 

overcome this situation the algorithm has a feedback correction feature. It checks in this case 

whether the SSE after reduction for the ‘assumed’ faulty sensor combination satisfies the goal 

test or not. If not then it knows that it is on the wrong track and discards the combination 

and starts the search all over again. 

 

4.5.6.1. Demonstration 

 

 The demonstration of this feature inputs 50 samples through the network and shows the 

response. 

 

The following faults have been induced in the samples to observe the algorithms response to 

these faults. 
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i. Sensors 1 and 5 in sample 20 were corrupted with randomly chosen errors. 

ii. Sensors 1 and 2 in samples 25 ~ 30 were corrupted with a shift error. 

iii. Sensor 4 in samples 40 ~ 44 were corrupted with a shift error. 

 

These 50 samples were then fed to the network. As soon as sample 20 was fed to the 

EAANN, the algorithm detected the fault and started to conduct the preliminary test. It then 

identifies sensors 1 and 5 as finally and reconstructs their actual values [Fig. 4.18.]. 
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Fig 4.18. Reconstruction of Sample 20 

 

 

The algorithm then moves on and again detects a fault in sample 25. This time it assumes 

sensors 1 and 5 are faulty and checks the combination first. Finding that the SSE does not 

satisfy the goal test for the combination, it again performs the preliminary test, searches and 

detects the correct combination (1,2) and reconstructs the actual values. It then moves on to 

sample 26. This time it is already armed with the knowledge that sensors 1 and 2 are faulty. 

The SSE satisfies the goal test so it knows this is the correct combination. It reconstructs the 
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values for sample 26 and moves on. This is repeated for samples 27 – 30  [Fig. 4.19. and Fig. 

4.20.]. 

 

Next it reaches sample 40 and again detects the fault. This time it assumes sensors 1 and 2 are 

faulty. It detects this faulty assumption and again re-corrects itself. It performs the preliminary 

test, detects the correct combination and reconstructs the actual values [Fig. 4.21.]. 
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Fig 4.19. Reconstruction of Samples 25 – 30 for Faulty Sensor 1 
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Fig 4.20. Reconstruction of Samples 25 – 30 for Faulty Sensor 5 
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Fig 4.21. Reconstruction of Samples 40 – 44 for Faulty Sensor 4 
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4.5.7. Fallback Solution 

 

If for some unforeseen reason5 the SSE after testing all the 28 combinations fails to fall below 

the specified goal criterion then the algorithm compares the reduced SSE’s of all the 28 

combinations and outputs the combination with the lowest SSE as the solution. In this way it 

finds the global minimum by looking at all the local minima’s (least SSE values of all the 28 

combinations) and choosing the best one [Fig. 4.22.].  
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  SSE 1   SSE 3 SSE 28

SSE3 < SSE1 < SSE2.......<SSE28

Solution = Node 3
 

                                       

Fig 4.22. Fall Back Solution 

 
 
 
__________________ 
5 This may happen when a sample with a bad response is input to the E-AANN. The goal criterion for 
the network was established based on the response of the 300 samples. The goal criterion took into 
consideration the samples with the worst responses. It might be the case in reality that a sample whose 
SSE does not satisfy the goal might be presented to the E-AANN. In such a case the fall back solution 
will come into play. 
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This works because of the inherent nature of the AANN which implies that the node with the 

lowest SSE will be the closest to the solution as the loss of information in such a case will be 

minimal. This feature ensures that the algorithm finds a solution if it exists.  

 

4.6. Algorithm Working 

 

Fig. 4.23. shows the flowchart of the algorithm. It gives an overall picture of the way the 

algorithm works. 
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                                                Fig 4.23. Algorithm Flowchart 
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The following steps give a detailed explanation of the process. 

 

1. The algorithm checks whether the goal criterion is satisfied [Eqn. 4.1.]. If there are no 

faults in the sensor inputs then the inputs will satisfy the goal criterion and the search 

will end. 

 

2. If it does not satisfy the goal criterion then the algorithm will detect the sensor fault 

and begin the search to locate and reconstruct the faulty sensor(s). 

 

3. The algorithm then checks to see whether any sensors are out of their given range.  

Three possibilities arise here 

i. Only one sensor is out of range:  In this case the algorithm has to only cycle through 7 

possible combinations given that we already know the first faulty sensor. Hence a 

total of 7 nodes are placed in the queue. The preliminary test is skipped in this case. 

ii. Both sensors are out of range:  In this case we have already identified both the faulty 

sensors and hence only 1 node containing the faulty sensor pair is placed in the 

queue. The preliminary test is skipped in this case too. 

iii. No sensors are out of range: In this case the algorithm proceeds to perform a 

preliminary test on the faulty inputs. Based on the results the 28 possible 

combinations are prioritized. The 28 nodes are then placed in a priority queue 

sorted according to their calculated priorities. 

 

4. Now the algorithm is ready to start testing the nodes placed in the queue. The queue 

size ranges from only 1 node, incase of two sensors out of range condition, 7 nodes, 

incase of only one faulty sensor out of range condition, to 28 nodes incase of no 

sensors out of range condition. It begins to pull out the nodes one by one from the 

queue and reduces their SSE using the decremental step sizing procedure.  

 

5. When the SSE for the combination under test falls bellows the established goal 

criterion then the search exits and outputs the solution. 
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C H A P T E R  V  

RESULTS 

The algorithm’s performance was tested under different types of conditions. Common sensor 

errors such as drift, shift and random errors were induced in the data and the faulty data was 

fed to the E-AANN6. The response of the algorithm to the faulty data and its reconstruction 

of the actual values was then studied. Effect of noise on the system performance was also 

taken into account. These observations have been divided into 4 main categories as follows. 

1. Handling Random Errors: Studying the response of the algorithm to random errors. 

2. Handling Drift Errors: Studying the response of the algorithm to drift errors. 

3. Handling Shift Errors: Studying the response of the algorithm to shift errors. 

4. Handling Noise: Studying the response of the algorithm to drift and shift errors in presence 

of noise. 

5.1. Handling Random Errors 

Random errors are errors that arise from random fluctuations in the measurement. The 

algorithms response to random errors is depicted in the examples that follow. 

 

5.1.1. Test Example 1: Two Sensors (3 and 8) with Random Error 

For this example sensors 3 and 8 in sample 128 were induced with 10% and 15% errors 

respectively and the faulty inputs were fed to the E-AANN. Figures 5.1. and 5.2 show the 

reconstruction of the sensors. 

 

 

__________________ 
6 E – AANN refers to the Enhanced AANN i.e. AANN + Algorithm 
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           Fig. 5.1. Reconstruction of Sensors 3 and 8 from Induced Random Error 
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       Fig. 5.2. Enlarged View of Fig. 5.1. (x 13) 
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Table 5.1. compares the reconstructed inputs to the actual inputs. 

 

 

Table 5.1. Comparison of Actual and Reconstructed Values for Sensors 3 and 8 

 

Faulty Inputs Actual Inputs Reconstructed Inputs 

-1.9494 -1.9494 -1.9494 

-1.9494 -1.9494 -1.9494 

-2.0956 -2.3284 -2.3284 

-1.8723 -1.8723 -1.8723 

-2.0198 -2.0198 -2.0198 

-2.2398 -2.2398 -2.2398 

-1.7836 -1.7836 -1.7836 

0.90506 1.0648 1.0648 

 

 

 

As can be seen the reconstruction is almost exact in this case. This is not always the case 

especially when there is noise in the system [Section 5.4].  

  

5.1.2. Test Example 2: Two Sensors (2 and 4) with Random Error 

For this example sensors 2 and 4 in sample 213 were induced with 35% and 20% errors 

respectively and the faulty inputs were fed to the E-AANN. Figures 5.3. and 5.4 show the 

reconstruction of the sensors. 
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                  Fig. 5.3. Reconstruction of Sensors 2 and 4 from Induced Random Error 
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              Fig. 5.4. Enlarged View of Fig. 5.3. (x 13) 
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Table 5.2. compares the reconstructed inputs to the actual inputs. 

 

 

Table 5.2. Comparison of Actual and Reconstructed Values for Sensors 2 and 4 

 

Faulty Inputs Actual Inputs Reconstructed Inputs 

0.25623 0.25623 0.25623 

0.16655 0.25623 0.25636 

1.0721 1.0721 1.0721 

0.16883 0.21104 0.21111 

0.30174 0.30174 0.30174 

0.64064 0.64064 0.64064 

0.93077 0.93077 0.93077 

0.21359 0.21359 0.21359 

 

 

 

5.1.3. Test Example 3: Only One Sensor with Random Error 

For this example only sensor 5 in sample 180 was induced with 10% error. Figures 5.5. and 

5.6.  show the reconstruction of the sensors. 
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          Fig. 5.5. Reconstruction of Sensor 5 from Induced Random Error 
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Table 5.3. compares the reconstructed inputs to the actual inputs. 

 

 

Table 5.3. Comparison of Actual and Reconstructed Values for Sensor 5  

 

Faulty Inputs Actual Inputs Reconstructed Inputs 

-2.0699 -2.0699 -2.0699 

-2.0699 -2.0699 -2.0699 

-2.5775 -2.5775 -2.5775 

-1.9767 -1.9767 -1.9766 

-1.9393 -2.1547 -2.1546 

-2.3924 -2.3924 -2.3924 

-2.26 -2.26 -2.26 

1.0229 1.0229 1.0229 

 

 

 

It may be noted that in the case of only one faulty sensor, the probability of finding the right 

node is highly increased. This is because in this case the correct node can be either (1, 5), (2, 

5), (3, 5), (4, 5), (5, 6), (5, 7), (5, 8). As soon as the algorithm encounters any of these 7 nodes 

it will immediately detect it. In the example shown above the node (4, 5) was encountered first 

and the algorithm detected the fault in sensor 5.  It may be noted that even though only 

sensor 5 was made faulty, we see that sensor 4 was also slightly affected [Table 5.3]. This can 

be explained by the fact that the algorithm uses the nine step procedure in which it tests the 

inputs in pairs using small increments. It then reduces the SSE for the given pair and zeros in 

on the pair of values that gives the least SSE which satisfies the goal. In this case the pair (4, 

5) gave the least SSE and the sensor values corresponding to it were taken. These values 

usually do not correspond to the exact values but are very close to it. This effect becomes 

more pronounced when there is noise in the system as will be seen later [Section 5.4]. The 

actual SSE with actual inputs was 2.234567e-007 whereas the SSE with the reconstructed 
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inputs was 2.286628e-007. This explains the slight difference between the actual and 

reconstructed values. This also highlights the fact that the algorithm reduces the SSE to the 

lowest value possible given that the least step size chosen is small enough in the decremental 

step sizing procedure [Section 4.5.3]. Using higher values degrades the accuracy of 

reconstruction. 

 

5.2. Handling Drift Errors 

 

Drift errors are undesired changes in output over a period of time that are unrelated to the 

input. They can be due to aging, temperature effects, sensor contamination etc. The response 

of the algorithm to drift errors is depicted in the examples that follow. 

  

5.2.1. Test Example 1: Two Sensors with Drift Error 

For this example, sensors 1 and 4 were induced with a drift error for the test samples 1 - 300. 

Samples 100 - 150 were then fed to the E-AANN. Figures 5.7. and 5.8. show the 

reconstruction of the sensors. 
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Fig. 5.7. Reconstruction of Sensor 1 from Induced Drift Error 
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Fig. 5.8. Reconstruction of Sensor 4 from Induced Drift Error 

 

 

5.3. Handling Shift Errors 

 

Shift Errors are errors that happen abruptly as compared to drift errors which occur gradually 

over a period of time. The response of the algorithm to shift errors is depicted in the 

examples that follow. 

 

5.3.1. Test Example 1: Two Sensors (5 and 8) with Shift Error 

For this example, samples 10 - 30 were induced with a shift error of 0.2 for sensor 5 and 

samples 15 - 30 were induced with a shift error of 0.5 for sensor 8. Samples 1 - 50 were then 

fed to the E-AANN. Figures 5.9. and 5.10. show the reconstruction of the sensors. 
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Fig. 5.9. Reconstruction of Sensor 5 from Induced Shift Error 
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Fig. 5.10. Reconstruction of Sensor 8 from Induced Shift Error 
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5.3.2. Test Example 2: Two Sensors (4 and 6) with Very Small Shift Error 

For this example, samples 110 - 300 were induced with a small shift error of 0.05 for sensor 4 

and samples 115 - 300 were induced with a small shift error of 0.05 for sensor 6. Samples 100 

- 120 were then fed to the E-AANN. Figures 5.11. and 5.12. show the reconstruction of the 

sensors. 
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Fig. 5.11. Reconstruction of Sensor 4 from Induced Shift Error 
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Fig. 5.12. Reconstruction of sensor 6 from Induced Shift Error 

 

 

5.4. Handling Noise 

 

Noise is defined as the generally unwanted component of a signal that tends to interfere with 

the measuring process.  

 

The E-AANN when trained using synthetic data has high performance. This is explained by 

the fact that during training the network learns the interrelationship among variables and 

hence data with a high degree of correlation (synthetic data) will yield high performance when 

passed through the network. When the data is not correlated the AANN will not find any 

correlation and as a result the loss of information as measured by the Sum Squared Error 

between inputs and outputs will be high. 

 

When noise is present in the system it disturbs the correlation among the inputs. Thus the 

AANN reconstructs the data with degraded accuracy. This also impacts the working of the E-

AANN (AANN + algorithm). In general it was found that the performance is inversely 
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proportional to the noise level. Higher the noise level, worse the performance of the E-

AANN. 

 

For the purpose of this study the data was contaminated with 4%, 8% and 15% noise and the 

network was trained using the noisy data. 700 samples were used for training and the rest of 

the 300 were used as test samples. 

 

Fig. 5.13. shows the training for 4% noise. The training accuracy reached was 1.06059 which 

is as expected since with 4% noise the SSE (loss of information) over the range of the 700 

samples can be approximated as (0.04)2 * 700 = 1.12.  

 

 

0 50 100 150 200 250 300
10-4

10-3

10-2

10-1

100

101

102

103

104

105

301 Epochs

Tr
ai

ni
ng

-B
lu

e 
 G

oa
l-B

la
ck

Performance is 1.06059, Goal is 0.001

 
                        Fig. 5.13. Training Plot for 4% Noise 
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Fig. 5.14. shows the training for 8% noise. The training accuracy reached was 3.8713 which is 

as expected since with 8% noise the SSE over the range of the 700 samples can be 

approximated as (0.08)2 * 700 = 4.48. 
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                       Fig. 5.14. Training Plot for 8% Noise 

 

 

Fig. 5.15. shows the training for 15% noise. The training accuracy reached was 14.1824 which 

is as expected since with 8% the SSE over the range of the 700 samples can be approximated 

as (0.15)2 * 700 = 15.75. 
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                      Fig. 5.15. Training Plot for 15% Noise 

 

 

Fig. 5.16. shows the SSE’s of the 300 test samples with 4% noise. The training accuracy has 

degraded from 10-5 (with synthetic data) to 1.106059(with 4% noise). This poses a problem for 

the algorithm as now it has no means to establish whether a node is a goal or not since the 

goal test [using Eqn. 4.1.] will never be satisfied for such a high training accuracy. A simple 

way to overcome this is to revaluate the goal test in the presence of noise. As shown in Fig. 

5.16. the SSE’s of the 300 samples lie below 5 x 10-3. Fig. 5.17. shows the SSE’s of the 700 

training samples with 4% noise. The SSE of the 700 training samples is also below 5 x 10-3 as 

expected. Hence we can restate the goal test in the presence of 4% noise as follows 

SSE (node) < 5 x 10-3    Goal Found                                   (Eqn. 5.1.) 
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                   Fig. 5.16. SSE Plot of the 300 Test Samples with 4% Noise 
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                 Fig. 5.17. SSE Plot of the 700 Training Samples with 4% Noise 
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Fig. 5.18. and Fig. 5.19. show the SSE’s of the 300 test samples and the 700 training samples 

with 8% noise. In the same manner we can establish a goal test for 8% noise in the system. 

 

Goal test for 8% noise can be depicted as 

 

SSE < 3 x 10-2                    Goal Found                                                  (Eqn. 5.2.) 
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 Fig. 5.18. SSE Plot of the 300 Test Samples with 8% Noise 
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      Fig. 5.19. SSE Plot of the 700 Training Samples with 8% Noise 

 

 

Fig. 5.20. and Fig. 5.21. show the SSE’s of the 300 test samples and the 700 training samples 

with 8% noise. 

 

Goal test for 15% noise can be depicted as  

 

SSE < 8 x 10-2                            Goal Found                                                                              (Eqn. 5.3.) 
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              Fig. 5.20. SSE Plot of the 300 Test Samples with 15% Noise 
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         Fig. 5.21. SSE Plot of the 700 Training Samples with 15% Noise 
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Continuing in this manner, based on the amount of noise present in the system, the goal test 

can be adapted to suit our needs. Thus using this method the algorithm can be trained to 

distinguish between noise and sensor errors. 

 

The only governing criterion is that the algorithm has to detect the fault based on the goal test 

established in the presence of noise. If the error is too small, the algorithm will treat it as noise 

and not detect it because its SSE will fall below the goal test established. The E-AANN will 

thus not be able to detect sensor faults when noise level is too high as compared to the fault. 

In other words the fault must have more 'significance' then the noise for the algorithm to 

categorize it as a fault. 

 

The following examples will give more clarity to the above discussion. The cut off heuristic 

was not used for the calculations due to the uncertainty caused by the presence of noise. The 

algorithm was tested for noise up to 15%. 

 

5.4.1. Test Example 1: Two Sensors with Shift Error in Presence of 4% Noise 

For this example 4% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 53 - 70 were then induced with a shift error of 0.3 for sensor 3 and samples 59 - 70 

were induced with a shift error of 0.4 for sensor 6. Samples 50 - 70 were then fed to the E-

AANN. Figures 5.22. and 5.23. show the reconstruction of the sensors. 
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Fig. 5.22. Reconstruction of Sensor 3 + Shift Error of 0.6 at 4% Noise 
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   Fig. 5.23. Reconstruction of Sensor 6 + Shift Error of 0.8 at 4% Noise 
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5.4.2. Test Example 2: Only One Sensor with Shift Error in Presence of 4% Noise 

For this example 4% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 123 - 150 were then induced with a shift error of 0.5 for sensor 5. Samples 120 - 150 

were then fed to the E-AANN. Figure 5.24. shows the reconstruction of the sensor. 
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Fig. 5.24. Reconstruction of Sensor 5 + Shift Error of 0.5 at 4% Noise 

In this case only sensor 5 was made faulty. The algorithm detected the fault in sensor pair [5, 

7] and then reduced the SSE for the combination. In the process sensor 7 was also affected 

even though it was not faulty. This happened because a value of sensor 7 that gave the lowest 

SSE value when combined with the value of sensor 7 is always taken. These values are not 

exactly the same as the actual values but close to it. The plot of sensor 7 is shown in Fig. 5.25. 
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Fig. 5.25.  Plot of Sensor 7 at 4% Noise 

5.4.3. Test Example 3: Two Sensors with Too Small Shift Error to be Detected in Presence of 4% Noise 

For this example, 4% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 104 - 120 were then induced with a shift error of 0.1 for sensor 7 and samples 107 - 

120 were induced with a shift error of 0.1 for sensor 8. Samples 100 - 120 were then fed to 

the E-AANN. Figures 5.26. and 5.27. show the reconstruction of the sensors. 
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Fig. 5.26. Reconstruction of Sensor 7 + Shift Error of 0.1 at 4% Noise 
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Fig. 5.27. Reconstruction of Sensor 8 + Shift Error of 0.1 at 4% Noise 
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In this case the shift in sensor 8 went unnoticed as can be observed from the plots. The 

reason is after detecting the fault in sensor 7 the algorithm could reduce the SSE value enough 

to satisfy the goal [Eqn. 5.1.]. The fault in sensor 8 did not impact the SSE enough to render 

it as a fault and hence the algorithm ignored it. In other words sensor 8 is an ‘insensitive’ 

sensor and has less significance then other sensors in impacting the overall SSE. Lets see what 

happens if we raise its value to 0.2. This is shown in the next example 

 

5.4.4. Test Example 4: Two Sensors with Small Shift Error in Presence of 4% Noise 

For this example, 4% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 104 - 120 were then induced with a shift error of 0.1 for sensor 7 and samples 107 - 

120 were induced with a shift error of 0.2 for sensor 8. Samples 100 - 120 were then fed to 

the E-AANN. Figures 5.28. and 5.29. show the reconstruction of the sensors. 
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Fig. 5.28. Reconstruction of Sensor 7 + Shift Error of 0.1 at 4% Noise 
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Fig. 5.29. Reconstruction of Sensor 8 + Shift Error of 0.2 at 4% Noise 

As can be seen the algorithm could now detect the fault in sensor 8 as it was large enough to 

produce a significant change in the SSE and be categorized as a fault. 

 

5.4.5. Test Example 5: Two Sensors with Shift Error in Presence of 8% Noise 

For this example, 8% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 23 - 40 were then induced with a shift error of 0.7 for sensor 1 and samples 24 - 40 

were induced with a shift error of 0.8 for sensor 8. Samples 20 - 40 were then fed to the E-

AANN. Figures 5.30. and 5.31. show the reconstruction of the sensors. 
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   Fig. 5.30. Reconstruction of Sensor 1 + Shift Error of 0.7 at 8% Noise 
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Fig. 5.31. Reconstruction of Sensor 8 + Shift Error of 0.8 at 8% Noise 
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5.4.6. Test Example 6: Two Sensors with Drift Error in Presence of 8% Noise 

For this example, 8% noise was simulated in the 300 test samples for all the 8 sensors. 

Sensors 2 and 7 were then induced with a drift error over the 300 samples. Samples 100 - 150 

were then fed to the E-AANN. Figures 5.32. and 5.33. show the reconstruction of the 

sensors. 
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Fig. 5.32. Reconstruction of Sensor 2 + Drift Error at 8% Noise 
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Fig. 5.33. Reconstruction of Sensor 7 + Drift Error at 8% Noise 

5.4.7. Test Example 7: Two Sensors with Too Small Shift Error to Be Detected in Presence of 15% Noise 

For this example, 15% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 185 - 200 were then induced with a shift error of 0.5 for sensor 1 and samples 185 - 

200 were induced with a shift error of 0.5 for sensor 8. Samples 180 - 200 were then fed to 

the E-AANN. Figures 5.34. and 5.35. show the reconstruction of the sensors. 
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Fig. 5.34. Reconstruction of Sensor 1 + Shift Error of 0.5 at 15% Noise 
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Fig. 5.35. Reconstruction of Sensor 8 + Shift Error of 0.5 at 15% Noise 
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In this case the algorithm had a hard time trying to locate the faulty sensors at the given noise 

level. For some samples it could distinguish between the noise and the faults as the change in 

values in those samples impacted the SSE in a significant way so as to raise its value above the 

established goal. Lets see what happens if we increase the error to an amount that is more 

significant then the noise level for the same case. This is shown in the next example. 

 

5.4.8. Test Example 8: Two Sensors with Shift Error in Presence of 15% Noise 

For this example, 15% noise was simulated in the 300 test samples for all the 8 sensors. 

Samples 185 - 200 were then induced with a shift error of 1 for sensor 1 and samples 185 - 

200 were induced with a shift error of 1 for sensor 8. Samples 180 - 200 were then fed to the 

E-AANN.  Figures 5.36. and 5.37. show the reconstruction of the sensors. 
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Fig. 5.36. Reconstruction of Sensor 1 + Shift Error of 1 at 15% Noise 
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Fig. 5.37. Reconstruction of Sensor 8 + Shift Error of 1 at 15% Noise 

In this case the algorithm stood a better chance of identifying the faulty sensors and 

reconstructing them as it could clearly differentiate between the noise and the faults.  

 

5.5. Summary of Noise Results 

1. When there is noise in the system the AANN reconstructs the data with degraded 

accuracy. This impacts the working of the E-AANN (AANN + algorithm). As can be 

observed from the results, for 4% noise the reconstruction is more accurate as 

compared to the reconstruction with 15% noise. In general the performance is 

inversely proportional to the noise level.  

 

2. The governing criterion for fault detection in presence of noise is that the fault must 

have more ‘significance’ then the noise. The reason is because the algorithm has to 
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detect the fault based on the goal test established in the presence of noise. Thus the 

fault should impact the SSE more then the noise does in order for it to be categorized 

as a fault. If the error is too small in the sample then the algorithm will treat it as noise 

and not detect it since its SSE will fall below the goal test established. This can be 

observed in Test Example 3 for 4% noise. 

 

Thus the E-AANN can not catch sensor faults when the fault is too low as compared 

to the noise level.  
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C H A P T E R  V I  

IMEPLEMENTING THE SEARCH ALGORITHM 

This part of the work focuses on the development of a web interface that allows a client on 

the World Wide Web to establish a connection to MATLAB and test the performance of the 

algorithm. The interface allows the user to experiment with various inputs and observe the 

response of the E-AANN. The user can create up to two sensor faults and test the system 

response. The interface also allows a user to simulate drift, shift and noise errors in up to two 

sensors and observe the behavior of the system. The interface was built using JAVA [15] 

technology. It uses a JAVA servlet [16] to connect to MATLAB via a web server and perform 

computations on it. The servlet uses functions from the Jmatlink Java library to interface with 

MATLAB [17]. 

The interface is currently hosted on a server at Texas A&M. It is located at 

http://hsingh.tamu.edu/eaann. 

6.1. Functional Description 
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Fig. 6.1. Functional Description 
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Fig. 6.2. Functional Description Flowchart 

 

The following steps give a detailed description of the process of obtaining data from 

MATLAB through a web server. Figures 6.1. and 6.2 depict the paths of the flowing data. 

1. The client, which can be any advanced web browser, requests an HTML-file from the 

web server. 

2. The web server fetches the file from its disc and sends it back to the client over the 

Internet (dashed lines). The received HTML file contains an HTML form [Fig. 6.3] which 

allows user to enter data and set variables that trigger certain actions  
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Fig. 6.3. E-AANN Interface 

 

 

3. The user submits the form and the form data is sent back to the web server.  

4. The web server feeds the data to a Java servlet. 

5. The servlet processes the data and sends appropriate commands to MATLAB for 

evaluation.  

i. Methods from the JMatlink Java library [6] are used to connect to Matlab and perform 

the required computations. 

ii. MATLAB runs E-AANN with the given form data and outputs the desired result. 

6. The servlet gets the output from MATLAB and sends an instantaneous HTML-code back 

to the client displaying the results [Fig. 6.4.]. 
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Fig. 6.4. E-AANN Results Display 

 

 

6.2. Understanding the Interface 

 

6.2.1 Process Description 

There are 4 main steps involved in using the interface: 

1. Establishing a connection to the Matlab engine by pressing the ‘Open Engine’ button. 

2. Running the desired faulty/drift/shift code by pressing the ‘Run Code’ button. 

3. Viewing the results onscreen. 

4. Closing the connection to the Matlab engine by pressing the ‘Close Engine’ button. 
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Before diving into the details a short note is necessary regarding the nature of a HTML 

form. When a form is submitted using a button the submitting button contributes a 

‘Name/Value’ pair. This ‘Name/Value’ pair consists of the name and value assigned to 

that particular button. This value is then sent to the Java servlet which then 

distinguishes which button has been invoked from the name value and then proceeds to 

evaluate the corresponding routine. 

Let us now look into the 4 steps in detail: 

6.2.1.1. Establishing a Connection to Matlab 

 

i. When the ‘Open Engine’ button is pressed a name value of “engOpen” is sent to the 

Java Servlet. 

ii. The Java Servlet checks whether the name has a value associated with it 

iii. The servlet then invokes a routine that uses the “engOpen()” function from the Jmatlink 

Java library [6] to establish a connection to Matlab.  

Fig. 6.5. depicts this process. 
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{ 
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engOpen() 

. 
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Fig. 6.5. Open Engine Routine 
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6.2.1.2. Running the Code 

 

i. When the ‘Run code’ button is pressed a name value of  “runEslCode” or  “runDriftCode” or 

“runShiftCode”  is sent to the java servlet depending on whether the random fault, drift 

fault or shift fault code is desired to be run. 

ii. The servlet then takes the corresponding random fault, drift fault or shift fault form 

variables and executes the desired code on Matlab using the ‘engEvalString(String)’ method 

from the Jmatlink Java library [Fig. 6.6.]. 
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Fig. 6.6. Run Code Routine 
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6.2.1.3. Viewing the Results Onscreen 

After the code has been executed the servlet gets the desired output from Matlab’s workspace 

using the ‘engGetScalar(String)’ method and outputs the results onscreen using HTML [Fig. 

6.3.]. 

 

6.2.1.4. Closing the Connection to Matlab 

 

i. When the ‘Close Engine’ button is pressed a name value of “engClose” is sent to the Java 

Servlet. 

ii. Java Servlet checks whether the name has a value associated with it. 

iii. The servlet then invokes a routine that uses the ‘engClose()’ method to close the connection 

to Matlab [Fig. 6.7.]. 
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Press ‘Close 
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engClose() 
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Stop Close Engine routine 
 

Fig. 6.7. Close Engine Routine  
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Fig. 6.8. captures the overall process in a flowchart. 
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Fig. 6.8. Process Flowchart 
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 C H A P T E R  V I I  

CONCLUSIONS 

The majority of this work focuses on the development of an intelligent search strategy. Some 

of the important features that are used to evaluate search strategies and gauge its effectiveness 

are discussed below [8]. 

 

7.1. Completeness 

 

The most important feature in a good search strategy is its completeness. Is the search 

guaranteed to find a solution if there is one?  

 

The search strategy developed in this work is complete since it is guaranteed to find the faulty 

sensor(s) if it exists. Due to the ‘Fallback Solution’ feature implemented the search ensures 

that it finds its goal. The fallback solution guarantees that if for some reason the goal test is 

not satisfied then the algorithm will still find the solution after cycling through all the possible 

solutions and finding the global minimum.  

 

The search can thus be said to be complete.7 

 

 

 

 

 

 

__________________ 
7  This can only be said with certainty when there is no noise in the system. In presence of noise it 
becomes increasingly difficult for the algorithm to distinguish between faulty data and noise and it is 
not always possible to identify the faulty sensor. This is especially true when the noise level is too high 
[Refer to Section 5.4.].
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7.2. Optimality 
 

Optimality of a search focuses on finding the highest quality solution when there are several 

different solutions. Since the SSE measures the loss of information during mapping and de-

mapping, the node that gives the lowest SSE will be the most optimal solution. Since the 

search always reduces the SSE of a node to the lowest value possible, hence it will find the 

most optimal solution among all possible solutions. The fallback feature takes advantage of 

this fact to find the most optimal solution among all possible solutions when the goal test is 

not satisfied. Table 5.1. depicts the accuracy with which the algorithm reconstructs the data to 

give the highest quality solution. 

 

The search is thus optimal. 

 

7.3. Sensitivity 

Sensitivity refers to minimum amount of change in sensor inputs that the algorithm can detect 

as a fault. 

The algorithm can handle and reconstruct the sensors up to an accuracy of 0.0001 as 

determined by the least step size used in the decremental step sizing procedure. Hence ideally 

the algorithm can detect changes in sensor input as low as 0.0001. This factor however is 

overshadowed by the goal test used and the amount of noise present in the system. 

The goal test determines whether the algorithm will treat the change in sensor input as a fault 

or treat it as ‘normal’ inputs to the network. When the SSE of the inputs rises above the 

established goal criterion then the algorithm detects it as a fault. If the change is very low and 

the goal criterion too high then the algorithm will not detect the fault. Hence a lower goal 

criterion is favorable in order for increased sensitivity.  

The noise reduces the training accuracy and forces the goal criterion to be higher thus 

reducing the sensitivity of the algorithm in the process. 
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7.4. Memory Requirements 

The algorithm has minimal memory requirements since it searches through the nodes one by 

one and keeps on discarding the ones that it knows is not leading towards the goal. This is 

possible because the evaluation function (SSE) is ‘omniscient’ or in other words infallible. 

Due to the inherent property of the network that the node with the lowest SSE will be the 

closest to the goal the SSE serves as a trustworthy evaluation function. As long as it is being 

reduced it will eventually lead towards the goal. Thus at every step we can boldly throw away 

the memory of unwanted nodes and store only that node which offered the best solution. 

When the SSE has been reduced to the lowest value possible for the combination under test, 

it then stores only the node that offered the best solution in the end. Thus in the worst case 

scenario when the algorithm has to cycle through all the 28 possible cases (this can happen if 

the goal test is never satisfied) it has only 28 nodes stored in the memory that corresponded 

to the best solutions for each case.  

The space complexity is thus negligible. 

7.5. Computational Time 

Most of the heuristics developed were geared towards reducing the computational time. As a 

result the algorithm does not consume much time and is a ‘reasonable’ problem or in other 

words runs in reasonable and definite time. The computational time of the algorithm in static 

response varies between 15 seconds to 2 minutes depending upon how deep the solution lies 

in the search. The time expense is mainly on part of the software (MATLAB) being used for 

computation. The maximum amount of time consumed in the search process was found to be 

due to the slow response of the MATLAB neural network object. The network was trained 

using the MATLAB neural network tool box and is stored as a MATLAB object. The 

response of the network object to inputs involves a significant amount of computational time. 

Fig. 7.1. shows the computational times involved in running one sample through the network. 
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Fig. 7.1. Computational Time of the MATLAB Network Object 

 

From the figure it can be seen that the network object takes a total of 0.09 seconds to recreate 

the outputs for one sample. This is computationally very intensive.  

Work is currently under progress to use alternative methods to simulate the neural network. 

 7.6. Future Work 

Some of the areas where the algorithm can be improved upon are outlined below. 

7.6.1 Extending the Algorithm  

The algorithm can be easily extended to detect more then two faulty sensors. For example the 

search can be extended to locate 3 faulty sensors e.g. given 8 inputs to E-AANN the number 

of possible combinations for a 3 faulty sensor case will be 56 [using Eqn.1.2.] and the 9 step 
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procedure will be replaced by the 27 step procedure. The heuristics used will basically remain 

the same. The computational time will increase as the number of faulty sensors to search for 

increases. If the sensor inputs are reduced then the process becomes much easier. For 

example for 5 sensor inputs and locating two faulty sensors we would only have 10 possible 

combinations which would require much less time and effort.  

7.6.2. Improving the Computational Time  

The computational time is one area where the algorithm has scope for much improvement. 

To reduce the computational time work is currently under progress to use a C program code 

that does the same work of the neural network in lesser amount of time. The initial tests show 

that the C code is faster in response as compared to the MATLAB network object by a factor 

of over 200. In a comparison test, 300 samples were passed through the MATLAB network 

object and similarly through the simulated network in C. The time taken by the C program 

was 0.02 seconds whereas the network took 6 seconds to do the same. This is an 

improvement by a factor of 300. 

This area of research is thus very promising and can significantly help in speeding up the 

response of the algorithm.  
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