
CONTRIBUTIONS TO A GENERAL THEORY OF CODES

A Dissertation

by

TRAE DOUGLAS HOLCOMB

Submitted to the OÆce of Graduate Studies of
Texas A&M University

in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2002

Major Subject: Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4267969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTRIBUTIONS TO A GENERAL THEORY OF CODES

A Dissertation

by

TRAE DOUGLAS HOLCOMB

Submitted to Texas A&M University
in partial ful�llment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

G.R. Blakley
(Chair of Committee)

Itshak Borosh
(Member)

Peter Stiller
(Member)

Andreas Klappenecker
(Member)

William Rundell
(Head of Department)

May 2002

Major Subject: Mathematics

iii

ABSTRACT

Contributions to a General Theory of Codes. (May 2002)

Trae Douglas Holcomb, B.S., Southwest Texas State University;

M.S., University of Colorado at Colorado Springs

Chair of Advisory Committee: Dr. G. R. Blakley

In 1997, Drs. G. R. Blakley and I. Borosh published two papers whose stated purpose was to

present a general formulation of the notion of a code that depends only upon a code's structure

and not its functionality. In doing so, they created a further generalization{the idea of a precode.

Recently, Drs. Blakley, Borosh, and A. Klappenecker have worked on interpreting the structures

and results in these pioneering papers within the framework of category theory.

The purpose of this dissertation is to further the above work. In particular, we seek to accomplish

the following tasks within the \general theory of codes."

(1) Rewrite the original two papers in terms of the alternate representations of precodes as

bipartite digraphs and Boolean matrices.

(2) Count various types of bipartite graphs up to isomorphism, and count various classes of

codes and precodes up to isomorphism.

(3) Identify many of the classical objects and morphisms from category theory within the

categories of codes and precodes.

(4) Describe the various ways of constructing a code from a precode by \splitting" the precode.

Identify important properties of these constructions and their interrelationship. Discuss

the properties of the constructed codes with regard to the factorization of homomorphisms

through them, and discuss their relationship to the code constructed from the precode by

\smashing."

(5) De�ne a parametrization of a precode and give constructions of various parametrizations

of a given precode, including a \minimal" parametrization.

iv

(6) Use the computer algebra system, Maple, to represent and display a precode and its com-

panion, opposite, smash, split, bald-split, and various parametrizations. Implement the

formulae developed for counting bipartite graphs and precodes up to isomorphism.

v

DEDICATION

I dedicate this dissertation to my wife, Stephanie, and my three beloved children, Kaitlyn,

Jeremiah, and Benjamin. Although completing this Ph.D. program was very satisfying, they were{

and will continue to be{my greatest source of ful�llment and joy throughout life.

vi

ACKNOWLEDGMENTS

I thank my advisor, Dr. G. R. Blakley, for allowing me to assist him in furthering the work

on a general theory of codes. The topic was an optimal choice for my dissertation given its many

unexplored areas and the relatively short period I had available to complete this work. I greatly

appreciate the freedom granted by Dr. Blakley to attack problems that piqued my interest and

the suggestions of others when my own ideas were in short supply. I also appreciate Drs. Borosh,

Klappenecker, and Stiller for serving as committee members and for providing valuable insights and

suggestions.

vii

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

2. PRELIMINARIES . 2

2.1 Precodes and Codes De�ned .2
2.2. Subprecodes, Unions, and Intersections . 3
2.3. Companions, Self-Companion Precodes, and Nubs . 5
2.4. Opposites, Self-Opposite Precodes, and Hinges . 7
2.5. Janiform Codes . 8
2.6. Self-Companion, Self-Opposite Codes . 9
2.7. Nulls . 10
2.8. Homomorphisms. .10
2.9. Products and Sums . 15

3. ENUMERATING BIPARTITE GRAPHS . 17

3.1. Counting Bipartite Graphs up to M-equivalence . 21
3.2. Counting Mixed Bipartite Graphs up to Isomorphism . 26

4. COUNTING CODES . 29

4.1. O Codes .29
4.2. S Codes . 29
4.3. E and D Codes. .30
4.4. Integration . 31
4.5. ED Codes . 33
4.6. SE and SD Codes . 34
4.7. SED Codes . 36
4.8. Self-companion Codes . 38
4.9. Janiform Codes. .38
4.10. Self-opposite Codes . 41
4.11. Calculations . 42

5. COUNTING PRECODES. 44

5.1. Self-companion Precodes. .44
5.2. Janiform Precodes . 45
5.3. Self-opposite Precodes . 45
5.4. Calculations . 46

6. CATEGORICAL VIEW OF PRECODES . 47

6.1. Well-powered and Co-(well-powered) .47
6.2. Intersections . 48
6.3. Pullbacks and Pushouts . 48
6.4. Regular Monomorphisms . 49
6.5. Regular Epimorphisms. .52

viii

Page

6.6. Extremal Monomorphisms . 53
6.7. Extremal Epimorphisms . 54
6.8. Factorizations . 54
6.9. Sections and Retractions. .55
6.10. Completeness and Cocompleteness .64
6.11. Projective and Injective Precodes . 64
6.12. Separators and Coseparators . 65

7. SPLITTING A PRECODE. .70

7.1. The ED-Split of a Precode .70
7.2. The Split of a Precode . 71
7.3. The Relationship Between the Split and Smash . 78
7.4. The Bald-Split of a Precode . 84

8. PARAMETRIZATION . 92

8.1. A First Parametrization . 92
8.2. An ED-Split Parametrization . 95
8.3. A Minimal ED Parametrization .98
8.4. A Minimal Parametrization. .108

9. CONCLUSION . 115

REFERENCES . 116

APPENDIX A PRECODE PRELIMINARIES . 117

A.1 Precodes as Strip Charts . 117
A.2 Precodes as Bipartite Digraphs . 118
A.3 Precodes as Boolean Matrices . 118
A.4 Subprecodes, Unions, and Intersections . 119
A.5 Companions, Self-Companion Codes, and Nubs . 120
A.6 Opposites, Self-Opposite Codes, and Hinges . 120
A.7 Janiform Codes. .121
A.8 Self-Companion, Self-Opposite Codes . 121
A.9 Nulls . 121
A.10 Homomorphisms . 122
A.11 Products and Sums. .126
A.12 The Smash of a Precode . 126

APPENDIX B CATEGORY THEORY PRELIMINARIES . 127

B.1 Categories . 127
B.2 Subcategories .128
B.3 Morphisms . 128
B.4 Subobjects . 129
B.5 Well-powered and Co-(well-powered) .130
B.6 Intersections . 130

ix

Page

B.7 Products and Coproducts .131
B.8 Equalizers and Coequalizers . 132
B.9 Regular Morphisms . 133
B.10 Extremal Morphisms . 134
B.11 Factorizations . 134
B.12 Functors and Natural Transformations .136
B.13 Limits and Colimits . 137
B.14 Completeness and Cocompleteness .142
B.15 Projective and Injective Objects . 143
B.16 Separators and Coseparators . 143

APPENDIX C MAPLE CODE FOR PLOTTING PRECODES . 144

C.1 The Plotting Algorithms. .150
C.2 The Companion of a Precode . 157
C.3 The Opposite of a Precode . 158
C.4 The Smash of a Precode . 159
C.5 The Split of a Precode .162
C.6 Parametrizations . 168

APPENDIX D MAPLE CODE FOR COUNTING CODES AND PRECODES 177

D.1 Counting Bipartite Graphs up to M-Equivalence . 177
D.2 Counting Mixed Bipartite Graphs up to Isomorphism . 183
D.3 Counting S Codes . 186
D.4 Counting E and D Codes . 187
D.5 Counting SE and SD Codes . 188
D.6 Counting SED Codes . 190
D.7 Counting ED Codes . 192
D.8 Counting All Codes . 193
D.9 Computing Compositions . 194
D.10 Counting Janiform Codes . 195
D.11 Counting Self-Companion Codes. .197
D.12 Counting Self-Opposite Codes . 197
D.13 Counting All Precodes. .199
D.14 Counting Self-Companion Precodes . 199
D.15 Counting Janiform Precodes .199
D.16 Counting Self-Opposite Precodes . 200

VITA . 201

x

LIST OF TABLES

TABLE Page

1 Enumeration of Codes . 43

2 Enumeration of Precodes . 46

xi

LIST OF FIGURES

FIGURE Page

1 Nonisomorphic Codes with Isomorphic Bipartite Graphs. .20

2 Two Nonisomorphic Codes with the Same Partition . 32

3 An Isolated Vertex Sent to a Nonisolated Vertex. .58

4 Distinct Components Not Sent to Distinct Components (Strip Chart Representation) 59

5 Distinct Components Not Sent to Distinct Components (Digraph Representation)59

6 The Domain Is Not a Code. .60

7 The Codomain Is Not a Code . 62

8 The Domain Is a Code Which Is Not Self-Companion . 62

9 The Codomain Is a Code Which Is Not Self-Companion . 63

10 A Is Isomorphic to B = (((Aop)I)
op)# . 83

11 A Is Not Isomorphic to B = (((Aop)I)
op)# . 84

12 The Precodes A, A1, A2 and A3 . 91

13 The Precode A in Example 8.4 . 94

14 A Parametrization of A . 94

15 The Parametrization of A from Algorithm 8.2 . 95

16 The Precode A from Example 8.15 . 102

17 The Parametrization Given by Algorithm 8.5 (Example 8.15) . 102

18 The Parametrization Given by Algorithm 8.12 (Example 8.15) . 103

19 The Precode A from Example 8.16 . 103

20 The Parametrization Given by Algorithm 8.5 (Example 8.16) . 104

21 The Parametrization Given by Algorithm 8.12 (Example 8.16) . 104

22 The Precode A from Example 8.17 . 105

23 The Parametrization Given by Algorithm 8.5 (Example 8.17) . 105

xii

FIGURE Page

24 The Parametrization Given by Algorithm 8.12 (Example 8.17) .106

25 The Precode A from Example 8.18 . 107

26 The Parametrization Given by Algorithm 8.5 (Example 8.18). .107

27 The Parametrization Given by Algorithm 8.12 (Example 8.18) . 108

28 The Parametrization Given by Algorithm 8.22 (Example 8.28) .114

29 A Strip Chart Representation of a Precode . 117

30 The Plots Produced by the Precode Plot() Procedure . 155

31 The Output Produced by the Synoptic Plot() Procedure . 157

32 The Plot of the Precode Produced by the Cpn() Procedure . 158

33 The Plot of the Precode Produced by the Opp() Procedure . 159

34 The Plot of the Precode Produced by the Smash() Procedure .162

35 The Plots of the Precodes Produced by the Split() Procedure .167

36 The Plot of the Precode Produced by the Split ED() Procedure . 168

1

1. INTRODUCTION

The stated purpose of [2] and [3] was to present a general formulation of the notion of a code,

which depends only upon a code's structure and not its functionality. The purpose of this paper

is to continue this work as described in the included abstract. The body of this work is written

in a manner which presupposes familiarity with the contents of [2] and [3]. However, Appendix A

contains the pertinent background information from these works for the reader who does not have

them on hand.

This dissertation follows the style and format of the Bulletin (New Series) of the American Math-
ematical Society.

2

2. PRELIMINARIES

2.1. Precodes and Codes De�ned. We start with the most basic of de�nitions.

De�nition 2.1. Let A and B be sets. A relation r from A to B is a subset of A � B. We

let DOM(r) � A denote the domain of r and RAN(r) � B denote the range of r. A relation

from A to A is said to be a relation on A. We let A2 denote the cartesian product A � A. We

let diag(A2) = f(a; a) j a 2 Ag, the diagonal of A2. Note that diag(A2) is the identity function

iA : A! A. A relation r on A is called subdiagonal if r � diag(A2). For a relation r � A�B, we

let r = f(b; a) 2 B �A j (a; b) 2 rg denote the converse relation of r.

Following 2B1 and 2C1 in [2], we have the following de�nition.

De�nition 2.2. Let PA and CA be sets, and let e � PA � CA and d � CA � PA. The four-tuple

A = (PA; CA; eA; dA) is called a precode from PA to CA. PA and CA are called the plaintext and

codetext alphabets of A, respectively. Furthermore, we call eA � PA �CA the encode relation of A

and dA � CA � PA the decode relation of A.

The precode A = (PA; CA; eA; dA) is said to be a code from PA to CA if the composite relation

dA Æ eA � PA
2 is a subdiagonal relation on PA, that is, if dA Æ eA is an identity partial function

from PA to PA. The relation cA = eA \ d A is called the circulation relation of A.

Notation 2.3. If A is a precode, we will use PA, CA, eA, and dA to denote its plaintext set,

codetext set, encode relation, and decode relation, respectively.

Proposition 2C3 in [2] notes that A is a code if and only if

dA Æ eA = iDOM(cA) = diag(DOM(cA)
2):

Furthermore, if A is a code, then c A Æ cA = dA Æ eA and c A is a (partial) function.

De�nition 2.4. Let m;n 2 Z+. A precode with m plaintext elements and n codetext elements is

said to be an (m;n) precode. We de�ne an (m;n) code analogously.

3

We recall that precodes can be represented by bipartite digraphs and Boolean matrices. As in

De�nition A.2, we use MA to denote the synoptic codebook matrix of a precode A.

De�nition 2.5. Let A be a precode with synoptic codebook matrix MA. A column (row) of A is

said to be of type o if each of its entries is an o. A column (row) is of type e if each of its entries is

either an o or an e. A column (row) is of type d if each of its entries is either an o or a d. Finally,

a column (row) is of type s if it contains exactly one s entry, with each remaining entry being an o.

We call a column (row) of type o an o column. We de�ne e, d, and s columns (rows) analogously.

Remark 2.6. Let A be a precode. In terms of bipartite graphs, a column in MA associated with

� 2 C is of type

1) o if there are no edges incident on �.

2) e if all of the edges incident on � are contained in the encode relation, eA.

3) d if all of the edges incident on � are contained in dA.

4) s if there are exactly two edges incident on �, and these edges are (�; �) 2 eA and (�; �) 2 dA

for some � 2 PA.

We note that precodes may have columns which are not of any of the above four types. However,

as in Theorem 5B:5 in [1], a precode A is a code if and only if each of the columns in MA is of one

of these four types.

2.2. Subprecodes, Unions, and Intersections. Recall the de�nition of subprecodes and su-

perprecodes from De�nition A.3 and the de�nition of the intersection of two precodes given in

De�nition A.4.

Notation 2.7. Let Â and A be precodes such that P
Â
� PA and C

Â
� CA. IfMÂ

(�; �) �MA(�; �)

for all (�; �) 2 P
Â
� C

Â
, we will write M

Â
�MA.

Lemma 2.8. Let Â and A be precodes such that P
Â
� PA and C

Â
� CA. Then Â is a subprecode

of A if and only if M
Â
�MA.

4

Proof. This is clear since in SY BAP , o � e � s and o � d � s. �

De�nition 2.9. The union A [Â of the precodes A and Â is de�ned to be the precode

A [Â = (PA [PÂ; CA [CÂ; eA [eÂ; dA [dÂ):

Notation 2.10. Let A and Â be precodes. We de�ne the matrices

MA ^MÂ
: (PA \ PÂ)� (CA \ CÂ) �! SY BAP

and

MA _MÂ
: (PA [PÂ)� (CA [CÂ) �! SY BAP

via

(MA ^MÂ
)(�; �) =MA(�; �) ^MÂ

(�; �) for all (�; �) 2 (PA \ PÂ)� (CA \ CÂ)

and

(MA _MÂ
)(�; �) =

8>>>>>>>>>><
>>>>>>>>>>:

MA(�; �) _MÂ
(�; �) if (�; �) 2 (PA \ PÂ)� (CA \ CÂ);

MA(�; �) if (�; �) 2 (PA � CA)n((PA \ PÂ)� (CA \ CÂ));

M
Â
(�; �) if (�; �) 2 (P

Â
� C

Â
)n((PA \ PÂ)� (CA \ CÂ));

o otherwise :

We then have

Lemma 2.11. If A and Â are precodes, then M
A\Â =MA ^MÂ

and M
A[Â =MA _MÂ

.

5

2.3. Companions, Self-Companion Precodes, and Nubs. Recall the de�nition of the com-

panion of a precode and a self-companion precode as given in De�nition A.5. It is clear that the

matrix for Apn, MApn , is formed by interchanging the bits in the corresponding entries of MA.

That is, a d = 01 entry becomes an e = 10 and vice versa. Entries of type s = 11 or o = 00 remain

unchanged. In particular, we have

Lemma 2.12. Let A be a precode. For (�; �) 2 PA � CA,

MApn(�; �) =

8>>>>>>>>>><
>>>>>>>>>>:

s if MA(�; �) = s;

e if MA(�; �) = d;

d if MA(�; �) = e;

o if MA(�; �) = o:

We now give a proof of Theorem 3A2 from [2].

Theorem 2.13. Let A be a precode. Then (Apn)pn = A, and A is a code if and only if Apn is a

code.

Proof. By Lemma 2.12, M(Apn)pn =MA. Thus, (A
pn)pn = A. Furthermore, a column in MA is of

type s or o if and only if the corresponding column in MApn is of the same type. A column in MA

is of type e (resp. d) if and only if the corresponding column in MApn is of type d (resp. e). Since

a matrix represents a code if and only if each of its columns is of type s; e; d; or o, then A is a code

if and only if Apn is a code. �

Lemma 2.14. A precode A is self-companion if and only if each entry in MA is either an s or o.

Hence, a code is self-companion if and only if each of its columns is of type s or o. These codes are

precisely the S codes as de�ned in De�nition 4.2.

Proof. This is clear from Lemma 2.12 since if A is self-companion, then MApn =MA. �

We next prove Theorem 3A7 in [2].

6

Theorem 2.15. A is a self-companion code if and only if dA is a partial function and eA = d A .

Proof. The statement that eA = d A means precisely that MA contains only s and o entries. That

is, eA = d A if and only if A is a self-companion precode.

()): Now, if A is a self-companion code, then each column ofMA is either of type s or o. Recall

that an s column contains only one s entry. Thus, for each � 2 CA, there is at most one element

in the decode relation d. Hence, d is a partial function.

((): Suppose that eA = d A and dA is a partial function. Since eA = d A , then MA contains

only s and o entries. Since dA is a partial function, then each s column in MA contains precisely

one s entry. Thus, A is a code. �

Recall from De�nition A.6 that the self-companion kernel of a precode A is the precode N(A) =

(PA; CA; �; �
), where � = eA \ d A .

De�nition 2.16. If A is an (m;n) code with at least one codetext element of type s, then we call

N(A) the underlying S code of A, and we denote it by S(A). That is, S(A) is the (m;n) code

formed from A by keeping only the s edges in A.

Lemma 2.17. For (�; �) 2 PA � CA,

MN(A)(�; �) =

8>><
>>:

s if MA(�; �) = s;

o otherwise :

Proof. This is clear from Lemma 2.14. �

We now prove Theorem 3A9 in [2].

Theorem 2.18. Let A be a precode. The nub, N(A), of A is the unique maximal self-companion

subprecode of A. In fact, N(A) = A \ Apn. Consequently, N(A)pn = N(Apn). Also, N(N(A)) =

N(A); that is, the nub operator is idempotent.

7

Proof. We recall that a precode is self-companion if and only if each entry in its synoptic codebook

matrix is either an s or o. By Lemma 2.17, it is clear that N(A) is the unique maximal self-

companion subprecode of A. It is also clear that MN(N(A)) = MN(A) and MN(A) = MA ^MApn .

Hence, the nub operator is idempotent and N(A) = A \Apn. �

2.4. Opposites, Self-Opposite Precodes, and Hinges. Recall the de�nition of the opposite of

a precode and a self-opposite precode as given in De�nition A.7.

Since the roles of PA and CA are switched and the roles of eA and dA are also interchanged,

then MAop should be related to MA
t, the transpose of MA. In particular, MAop is formed from

MA
t by interchanging the bits in each entry. That is, a d = 01 entry becomes an e = 10 and vice

versa. Entries of type s = 11 or o = 00 remain unchanged. We have

Lemma 2.19. Let A be a precode. For (�; �) 2 PA � CA,

MAop(�; �) =

8>>>>>>>>>><
>>>>>>>>>>:

s if MA
t(�; �) = s;

e if MA
t(�; �) = d;

d if MA
t(�; �) = e;

o if MA
t(�; �) = o:

Lemma 2.20. Let A be a precode. Then (Aop)op = A and MAop = (MApn)t.

Proof. By Lemma 2.19, M(Aop)op =MA, so that (A
op)op = A. By Lemma 2.12, MAop = (MApn)t.

�

Recall from De�nition A.8 that for a precode A, the precode

H = H(A) = (PA \ CA; PA \ CA; eA \ dA; eA \ dA) = A \Aop

is called the hinge of A. Recall from De�nition A.2 that we can view the entries of MH(A)

as two-bit vectors and reference them accordingly. We have that MH(A)(�; �)(E) = 1 if and

8

only if MA(�; �)(E) = 1 and MA(�; �)(D) = 1. Similarly, MH(A)(�; �)(D) = 1 if and only if

MA(�; �)(D) = 1 and MA(�; �)(E) = 1. Thus, we have

Lemma 2.21. Let A be a precode. For (�; �) 2 (PA \ CA)� (PA \ CA),

MH(A)(�; �)(E) =MA(�; �)(E) ^MA(�; �)(D)

and

MH(A)(�; �)(D) =MA(�; �)(D) ^MA(�; �)(E):

We now prove Theorem 3B7 in [2].

Theorem 2.22. If A is a precode, then H(H(A)) = H(A); that is, the hinge operator is idempotent.

Proof. The plaintext and codetext sets of H(A) are equal, as are its encode and decode relations.

Thus, H(H(A)) = H(A). �

2.5. Janiform Codes. Recall from De�nition A.9 that a precode is janiform if its opposite is a

code. We recall also that MAop is formed from the transposeMA
t of MA by interchanging the bits

in each entry. That is, a d = 01 entry becomes an e = 10 and vice versa. Entries of type s = 11

or o = 00 remain unchanged. Notice that this means that Aop is a code if and only if the precode

represented by MA
t is a code. Thus, we have

Lemma 2.23. A precode A is janiform if and only if each of the columns of MA
t (i.e. each of the

rows of MA) is of type s; e; d; or o.

9

2.6. Self-Companion, Self-Opposite Codes. We now prove Proposition 3D1 from [2].

Theorem 2.24. A code A is self-companion and self-opposite if and only if each of the following

conditions hold:

(1) PA = CA

(2) dA = eA

(3) eA is a partial involution

Proof. By Theorem 2.15, A is a self-companion code if and only if dA is a partial function and

eA = d A . By de�nition, A is self-opposite if and only if PA = CA and dA = eA.

()): Suppose A is self-companion and self-opposite. As above, dA is a partial function, eA = d A ,

and eA = dA. Thus, eA is a partial function, and eA = e A . Hence, eA is a partial involution.

((): Suppose PA = CA, dA = eA, and eA is a partial involution. Since PA = CA and dA = eA,

then A is self-opposite. Since eA is a partial involution, then eA = e A = d A . Since dA = eA is a

partial function, then A is self-companion. �

We also prove Proposition 3D3 from [2].

Theorem 2.25. Let A be a precode. Then (Aop)pn = (Apn)op.

Proof. As noted in Lemma 2.20, the matrix for the opposite of a precode is simply the transpose

of the matrix of the precode's companion. Similarly, the matrix of the companion of a precode is

the transpose of the matrix of the opposite. By Lemma 2.13, (Apn)pn = A, so that M(Apn)op =

(M(Apn)pn)
t = (MA)

t. By Lemma 2.20, (Aop)op = A, so that M(Aop)pn = (M(Aop)op)
t = (MA)

t.

Thus, (Aop)pn = (Apn)op. �

Recall De�nition A.10. We next prove Proposition 3D5 from [2].

Theorem 2.26. Let A be a precode. The number of members in the quartet of A which are codes

is an even number. If A is a janiform code, then all four members are janiform codes.

10

Proof. By Theorem A.5, A is a code if and only if Apn is a code, and Aop is a code if and only if

Aoppn is a code. Since a janiform code is a code whose opposite is also a code, then the theorem

holds. �

2.7. Nulls. Let A be a precode, and recall De�nition A.11. In terms of matrices, we note that

1) eANL is the subset of CA corresponding to the d columns of MA.

2) dANL is the subset of CA corresponding to the e columns of MA.

3) cANL is the subset of CA corresponding to the columns of MA having no s entries.

4) sANL is the subset of CA corresponding to the o columns of MA.

5) eAV D is the subset of PA corresponding to the d rows of MA.

6) dAV D is the subset of PA corresponding to the e rows of MA.

7) cAV D is the subset of PA corresponding to the rows in MA having no s entries.

8) sAV D is the subset of PA corresponding to the o rows in MA.

2.8. Homomorphisms. We start with homomorphisms between relations.

2.8.1. Relation Homomorphisms. Recall De�nitions A.12, A.13, and A.14. We now prove Proposi-

tion 7A5 from [3].

Theorem 2.27. Suppose that the function pair (g; h) is a relation isomorphism from (G;H; r)

to (Ĝ; Ĥ;m). Then g and h are bijections. Moreover, (g; h) and (g ; h) are strong relation

homomorphisms.

Proof. Since g and g are both functions, then g is a bijection with inverse g . Similarly, h

is a bijection with inverse h . Since (g ; h) is a relation homomorphism from (Ĝ; Ĥ;m) to

(G;H; r), then r � h Æm Æ g. Thus, h Æ r Æ g � m, which shows that (g; h) is a strong relation

homomorphism. We similarly see that (g ; h) is a strong relation homomorphism. �

11

In the following example, we see that not every relation homomorphism (g; h) for which g and h

are bijections is a relation isomorphism. However, as noted in [3], a strong relation homomorphism

(g; h) for which g and h are bijections is a relation isomorphism.

Example 2.28. Let G = f0; 1g. Note that 1G is a bijection, but

(1G; 1G) : (G;G; ;) �! (G;G;G �G)

is a relation homomorphism which is not an isomorphism.

2.8.2. Quotients and Canonical Maps. Recall De�nitions A.15, A.16, and A.17. We now prove

Theorem 7A7 from [3].

Theorem 2.29. Let (G;H; r) be a relation, and let (G;G; s) and (H;H; t) be equivalence relations.

The canonical map pair (fs; ft) from the relation (G;H; r) to the relation (G;H; r)=(s; t) is a strong

homomorphism with kernel (s; t).

Proof. Recall that (G;H; r)=(s; t) = (G=s;H=t; r=(s; t)). To show that (fs; ft) is a strong homo-

morphism, we need to show that r=(s; t) � ft Æ r Æ f s . However, r=(s; t) = ft Æ r Æ f s by de�nition.

Furthermore, the kernel of (fs; ft) is de�ned to be (f s Æ fs; f

t Æ ft) = (s; t). �

2.8.3. Isomorphism Theorems for Relations. We can restate the second part of Theorem A.18 in a

way that more closely resembles the �rst isomorphism theorem as given in [7].

Theorem 2.30. Let (g; h) be a relation homomorphism from (G;H; r) to (Ĝ; Ĥ;m) with kernel

(s; t) = (g Æ g; h Æh). Then the natural map pair n = (g Æ f s ; h Æ f t) is a relation isomorphism

from (G;H; r)=(s; t) onto Im((g; h)) = (g(G); h(H); h Æ r Æ g).

Proof. This follows directly from Theorem A.18 since (g; h) is by de�nition a strong relation epi-

morphism onto its image. �

12

2.8.4. Precode Homomorphisms. Recall De�nitions A.19, A.20, and A.21.

Remark 2.31. We note that the precodes A and Â are isomorphic if and only if their bipartite

digraphs are graph isomorphic, that is, if and only if the matricesMA andM
Â
determine isomorphic

graphs. Since the synoptic codebook matrix of a precode is, in essence, an incidence matrix for the

precode's associated bipartite digraph, then A and Â are isomorphic if and only if there are bijections

� : PA ! P
Â
and � : CA ! C

Â
such that MA(�; �) =M

Â
(�(�); �(�)) for all (�; �) 2 PA � CA.

As we saw in Example A.22, not every precode homomorphism (g; h) for which g and h are

bijections is a precode isomorphism. However, we note a strong precode homomorphism (g; h) for

which g and h are bijections is a precode isomorphism.

2.8.5. Isomorphism Theorems for Precodes. Recall De�nition A.23. We now prove Theorem 9B1

from [3]. It is an analogue to the �rst isomorphism theorem of group theory.

Theorem 2.32. Let (g; h) : A �! Â be a precode homomorphism with kernel (s; t) = (g Æg; h Æ

h). Then the following three statements hold.

1. The natural map pair n = (g Æ f s ; h Æ f t) is a precode homomorphism from A=(s; t) to Â.

2. If (g; h) is a strong precode epimorphism, then n : A=(s; t) �! Â is a precode isomorphism.

3. If Â is a code, then A=(s; t) is also a code.

Proof. Part 3 was shown in [3], so we need only show the other two parts. By the de�nition of a

precode homomorphism,

(g; h) : (PA; CA; eA) �! (P
Â
; C
Â
; e
Â
) and (h; g) : (CA; PA; dA) �! (C

Â
; P
Â
; d
Â
)

are relation homomorphisms with kernels (s; t) and (t; s), respectively. By Theorem A.18, then

(g Æ f s ; h Æ f t) is a relation homomorphism from (PA; CA; eA)=(s; t) = (PA=s; CA=t; eA=(s; t)) to

(P
Â
; C
Â
; e
Â
) and is an isomorphism if (g; h) is a strong relation epimorphism from (PA; CA; eA) to

(P
Â
; C
Â
; e
Â
). Similarly, (h Æ f t ; g Æ f s) is a relation homomorphism from (CA; PA; dA)=(t; s) =

13

(CA=t; PA=s; dA=(t; s)) to (C
Â
; P
Â
; d
Â
) and is an isomorphism if (h; g) is a strong relation epi-

morphism from (CA; PA; dA) to (C
Â
; P
Â
; d
Â
). By de�nition, then (g Æ f s ; h Æ f t) is a precode

homomorphism from A=(s; t) to Â which is an isomorphism if (g; h) is a strong precode epimorphism

from A to Â. �

We can restate the second part of this theorem in a way that more closely resembles the �rst

isomorphism theorem as given in [7].

Theorem 2.33. Let (g; h) : A �! Â be a precode homomorphism with kernel (s; t) = (g Æg; h Æ

h). Then the natural map pair n = (g Æ f s ; h Æ f t) is a precode isomorphism from A=(s; t) to

Im((g; h)) = (g(PA); h(CA); h Æ eA Æ g ; g Æ dA Æ h).

Proof. This follows directly from Theorem 2.32 since (g; h) is a strong precode epimorphism onto

its image. �

2.8.6. Precode Homomorphisms in Terms of Bipartite Digraphs and Matrices. We recall that pre-

codes can be represented via bipartite digraphs, and we note that there is a natural one-to-one

correspondence between precode homomorphisms and the homomorphisms of the associated bipar-

tite digraphs. There is also a nice way of describing precode homomorphisms in terms of their e�ect

on the matrices associated with the precodes.

Let (g; h) be a precode homomorphism from A to Â with kernel (s; t) = (g Æ g; h Æ h). By

Theorem 2.33,

(g Æ f s ; h Æ f t) : A=(s; t) �! Im((g; h)) = (g(P); h(C); h Æ e Æ g ; g Æ d Æ h)

is a precode isomorphism. So, a matrix representation of the precode A=(s; t) is also a matrix

representation for Im((g; h)).

We further note that for any equivalence relations (PA; PA; s) and (CA; CA; t), we have the strong

precode epimorphism (fs; ft) : A ! A=(s; t), where fs : PA ! PA=s and ft : CA ! CA=t are the

canonical maps. Hence, A=(s; t) = Im((fs; ft)).

14

Thus, the matrix representations of homomorphic images of a precode are precisely those for the

precodes of the form A=(s; t), where s and t are equivalence relations on PA and CA, respectively.

Recall that A=(s; t) = (PA=s; CA=t; eA=(s; t); dA=(t; s)). Recall also that

eA=(s; t) = ft Æ eA Æ f

s

= f(s(fg); t(f�g)) j (; �) 2 eAg;

that is, for � 2 PA=s and � 2 CA=t,

(�; �) 2 eA=(s; t), there are � 2 � and � 2 � such that (�; �) 2 eA:

In matrix terms,

MA=(s;t)(�; �)(E) = 1,MA(�; �)(E) = 1 for some � 2 � and � 2 �:

Thus, MA=(s;t)(�; �)(E) =
W
�2�

W
�2�MA(�; �)(E), where the _ is the ZOBAP operator. Simi-

larly, MA=(s;t)(�; �)(D) =
W
�2�

W
�2�MA(�; �)(D). This gives us the following theorem.

Theorem 2.34. Let A be a precode, and let (PA; PA; s) and (CA; CA; t) be equivalence relations.

Let MA be a matrix representation of A. Then a matrix representation for A=(s; t) can be de�ned

via MA=(s;t)(�; �) =
W
�2�

W
�2�MA(�; �), where _ is the SY BAP operator.

Proof. We merely recall that we can view each of o, d, e, and s as two-vectors over ZOBAP , in

which case the SY BAP operation _ is precisely the corresponding operation in ZOBAP applied

coordinate-wise. �

It is clear that there is a homomorphism from A to Â if and only if there is a subprecode

B = (PB; CB; eB; dB) of Â which is isomorphic to A=(s; t) for some equivalence relations (PA; PA; s)

and (CA; CA; t). Recall that B and A=(s; t) are isomorphic if and only if there are bijections � :

PB ! PA=s and � : CB ! CA=t such thatMB(�; �) =MA=(s;t)(�(�); �(�)) for all (�; �) 2 PB�CB.

This proves the following theorem.

15

Theorem 2.35. Let A and Â be precodes. There is a precode homomorphism from A to Â if

and only if there exist a subprecode B = (PB; CB; eB; dB) of Â, equivalence relations (PA; PA; s)

and (CA; CA; t), and bijections � : PB ! PA=s and � : CB ! CA=t such that MB(�; �) =

MA=(s;t)(�(�); �(�)) for all (�; �) 2 PB � CB.

2.9. Products and Sums. Let fAi = (Pi; Ci; ei; di)gi2I be a family of precodes indexed by a set

I . Recall that as in De�nition A.24, the product of the Ai is the precode

A = (PA =
Y
i2I

Pi; CA =
Y
i2I

Ci; eA =
Y
i2I

ei; dA =
Y
i2I

di):

For � =
Q
i2I �i 2 PA and � =

Q
i2I �i 2 CA, we have that

(�; �) 2 eA , (�i; �i) 2 ei for each i 2 I;

which implies that

MA(�; �)(E) = 1,MAi
(�; �)(E) = 1 for each i 2 I:

Thus, MA(�; �)(E) =
V
i2IMAi

(�i; �i)(E). Similarly, MA(�; �)(D) =
V
i2IMAi

(�i; �i)(D). Since

the SY BAP operation ^ is precisely the corresponding operation in ZOBAP applied coordinate-

wise, then we have

Lemma 2.36. Let fAi = (Pi; Ci; ei; di)gi2I be a family of precodes indexed by a set I, with product

A = (PA =
Y
i2I

Pi; CA =
Y
i2I

Ci; eA =
Y
i2I

ei; dA =
Y
i2I

di):

For � =
Q
i2I �i 2 PA and � =

Q
i2I �i 2 CA, MA(�; �) =

V
i2IMAi

(�i; �i):

Recall De�nition A.25. We clearly have

Lemma 2.37. Let fAi = (Pi; Ci; ei; di)gi2I be a family of precodes indexed by a set I, with direct

sum

A = (PA =
[
i2I

Pi � fig; CA =
[
i2I

Ci � fig; eA =
[
i2I

ei ��i; dA =
[
i2I

di ��i);

16

where �i denotes the relation �i = f(i; i)g. For ((�; i); (�; j)) 2 PA � CA,

MA((�; i); (�; j)) =

8>><
>>:

o if i 6= j;

MAi
(�; �) if i = j:

17

3. ENUMERATING BIPARTITE GRAPHS

In Sections 4 and 5, we show how to count codes and precodes up to isomorphism. To do so,

we need to count certain types of bipartite graphs up to equivalence. In particular, we need to

count bipartite graphs with m vertices of one color and n vertices of another up to equivalence,

where equivalence is as de�ned in De�nition 3.10. We must also count mixed bipartite graphs up

to isomorphism. We start with some background from [5].

De�nition 3.1. A bipartite graph is a graph that can be bicolored; that is, its vertex set can be

partitioned into two disjoint, nonempty subsets such that no two adjacent vertices are contained in

the same subset.

Let m;n 2 Z+. A bipartite graph with m vertices of one color and n of the other color is said to

be an (m;n) bipartite graph.

De�nition 3.2. Let A be a permutation group with object set X = f1; 2; :::; ng. Recall that each

� 2 A can be written uniquely as a product of disjoint cycles. For each 1 � k � n, we let jk(�)

denote the number of cycles of length k in the cycle decomposition of �. The cycle index of A is

the polynomial in the variables s1; :::; sn de�ned by

Z(A) = Z(A; s1; :::; sn) =
1

jAj

X
�2A

Y
1�k�n

s
jk(�)
k :

Furthermore, Z(A; 1 + x) is de�ned to be Z(A; 1 + x; 1 + x2; :::), where we substitute 1 + xk for sk

in the formula for Z(A).

The following is Corollary 2.5.1 of the P�olya Enumeration Theorem in [5].

Theorem 3.3. Let A be a permutation group with object set X. The coeÆcient of xr in Z(A; 1+x)

is the number of A equivalence classes of r sets of X.

We now establish some notation that we will employ throughout the remainder of this section.

18

Notation 3.4. As is commonly done, we use Sk to denote the symmetric group on k symbols, and

we use [r; t] and (r; t) to denote the least common multiple and greatest common divisor, respectively,

of r and t. For m;n 2 Z+, we let Km;n denote the complete (m;n) bipartite graph, and we let X

be the edge set of Km;n.

Note that any (m;n) bipartite graph can be viewed as a spanning subgraph of Km;n. Recall that

a permutation � = (�; �) 2 Sm�Sn is an isomorphism between two (m;n) bipartite graphs G1 and

G2 if and only if � preserves edge adjacency. Furthermore, each � = (�; �) 2 Sm � Sn induces a

permutation �0 on X via �0(fi; jg) = f�(i); �(j)g for every fi; jg 2 X. Although we are slightly

abusing notation, we will also write �0 = (�; �).

De�nition 3.5. The collection of permutations on X induced (as described in Notation 3.4) by the

permutations in Sm � Sn is a group, called the edge group of Km;n.

Let A be a subgroup of Sm � Sn, and let A be the subgroup of the edge group of Km;n induced

by the permutations in A. By Theorem 3.3, the coeÆcient of xr in Z(A; 1+ x) is the number of A

equivalence classes of r sets of X. Each such equivalence class (of sets of r edges in X) corresponds

precisely to the set of spanning subgraphs of Km;n with precisely r edges which are isomorphic to

each other via an element of A. We say that two such graphs are A-equivalent.

The following is an adaptation of the theorem given on page 84 of [5] for bipartite graphs and

arbitrary subgroups of the edge group of Km;n.

Theorem 3.6. Let A be a subgroup of Sm � Sn, and let A be the subgroup of the edge group

of Km;n induced by the permutations in A. The polynomial bm;n;A(x) which enumerates (m;n)

bipartite graphs up to A-equivalence by number of edges is given by

bm;n;A(x) = Z(A; 1 + x);

19

where

Z(A) =
1

jAj

X
(�;�)2A

Y
1�r�m;1�t�n

s
(r;t)jr(�)jt(�)
[r;t] :

Proof. We need only show that the formula for Z(A) is correct. Suppose that the vertex set of

Km;n is V = V1 [V2, where V1 = fa1; :::; amg is the set of vertices of one color and V2 = fb1; :::; bng

is the set of vertices of the other color. The edge set of Km;n is X = ffa; bgja 2 V1 and b 2 V2g.

We note that A contains the permutations on X induced by the automorphisms of Km;n of the

form � = (�; �) 2 A, where � 2 Sm and � 2 Sn. Recall that we also use (�; �) to denote the

induced permutation �0 on X .

Notice that jX j = m � n. By De�nition 3.2,

Z(A) = Z(A; s1; :::; sm�n) =
1

jAj

X
(�;�)2A

Y
1�k�m�n

s
jk((�;�))
k ;

where for each 1 � k � m � n and for each (�; �) 2 A, jk((�; �)) is the number of cycles of length k

in the cycle decomposition of (�; �).

The cycle structure of any (�; �) 2 A is completely determined by the cycle structures of � and

�. That is, the correspondence between the permutations in A and A induces a correspondence

between the contribution of � = (�; �) to Z(A) and the contribution of �0 = (�; �) to Z(A).

Let � = (�; �) 2 A, whose contribution to Z(A) is
Q

1�k�(m�n) s
jk(�)
k . Ostensibly, there are two

contributions made by �0 to the corresponding term in Z(A). The �rst comes from edges whose

endpoints are both contained in a single cycle of �. The second comes from edges whose ends are

contained in di�erent cycles of �. However, if fa; bg 2 X (where a 2 V1 and b 2 V2), then a and b

must be in di�erent cycles of � since the elements of A permute the elements of V1 and permute

the elements of V2. Thus, the only contribution is of the second form.

To calculate this contribution, let fa; bg 2 X , where a 2 V1, b 2 V2, and such that a and b are in

di�erent cycles of �. Let zr be the cycle of length r containing a, and let zt be the cycle of length t

containing b. Then zr and zt induce a cycle of length [r; t] on the edge fa; bg. There are r � t edges

20

which are a�ected by the two cycles. Thus, there are ((r � t)=[r; t]) = (r; t) cycles induced by zr and

zt.

Thus, our formula becomes

Z(A; s1; :::; sm�n) =
1

jAj

X
(�;�)2A

Y
1�k�m�n

s
jk((�;�))
k

=
1

jAj

X
(�;�)2A

Y
1�r�m;1�t�n

s
(r;t)jr(�)jt(�)
[r;t] ;

where jr(�) is the number of cycles of length r in the cycle decomposition of � and jt(�) is the

number of cycles of length t in the cycle decomposition of �. �

We note (as in the comments on page 99 of [5]) that the above theorem holds when m = n only

if the colors are not interchangeable. However, this is precisely the case in which we are interested,

since the bipartite graphs associated with codes are digraphs. We give the following example as an

illustration.

Example 3.7. Let m = n = 2. Consider A = (PA; CA; eA; dA) and B = (PB; CB; eB; dB), where

PA = fp1; p2g = PB, CA = fc1; c2g = CB, eA = f(p1; c1); (p1; c2)g, eB = f(p1; c1); (p2; c1)g, and

dA = ; = dB, as depicted in Figure 1.

Precode A

p1p1

p2p2

c1

c2

Precode B

p1p1

p2p2

c1

c2

Figure 1. Nonisomorphic Codes with Isomorphic Bipartite Graphs

21

Although the undirected bipartite graphs for these codes are isomorphic, the codes are not.

3.1. Counting Bipartite Graphs up to M-equivalence. We begin with a de�nition.

De�nition 3.8. Let n 2 Z+. A nonnegative partition of n of length k is a k-tuple (n1; :::; nk)

of nonnegative integers where repetition is allowed; the order of the integers does not matter; and

n =
P

1�j�k nj. A partition of n of length k is a nonnegative partition of n of length k, where each

nj 2 Z+. A nonnegative composition of n of length k is an ordered k-tuple (n1; :::nk) of nonnegative

integers where repetition is allowed and n =
P

1�j�k nj . A composition of n of length k is a

nonnegative composition of n of length k, where each nj 2 Z+. We let part(n) and npart(n) denote

the sets of partitions and nonnegative partitions, respectively, of n. Similarly, we let comp(n) and

ncomp(n) denote the sets of compositions and nonnegative compositions, respectively, of n.

De�nition 3.9. Let M = (p1; :::; pk) be a given partition of m 2 Z+. Then � 2 Sm is said to be a

permutation of m of typeM if � can be written as � = �1 � � ��k, where �j 2 Spj for each 1 � j � k.

We will consider � to be an element of Sp1 � � � � � Spk , and we may write � = (�1; : : : ; �k).

De�nition 3.10. Let M be a given partition of m 2 Z+. Then two bipartite (m;n) graphs G1 and

G2 are said to be equivalent with respect to M (or M-equivalent) if there is a graph isomorphism

between G1 and G2 of the form � = (�; �) 2 Sm � Sn, where � 2 Sm is a permutation of type M

and � 2 Sn.

Notation 3.11. In the discussion that follows, we �x a partition M = (p1; : : : ; pk) of m 2 Z+, and

we let A denote the set of permutations on X induced by the automorphisms of Km;n which are of

type M . It is clear that A is a subgroup of the edge group of Km;n.

We let bm;n;M(x) denote the polynomial which enumerates the M -equivalence classes of (m;n)

bipartite graphs. That is, the coeÆcient of xr in bm;n;M (x) is the number of M-equivalence classes

of (m;n) bipartite graphs which have exactly r edges.

22

Corollary 3.12. bm;n;M (x) = Z(A; 1 + x), where

Z(A) =
1

p1!p2! � � � pk!n!

X
(�;�)2A

Y
1�r�m;1�t�n

s
(r;t)jr(�)jt(�)
[r;t] :

Proof. This follows immediately from Theorem 3.6 since jAj = p1! � � � pk!n!. �

Remark 3.13. We will frequently use bm;n;M to denote bm;n;M (1), the number of (m;n) bipartite

graphs up to M-equivalence. Furthermore, if M = (m), we will often use bm;n instead of bm;n;M .

To compute bm;n;M , we need only evaluate Z(A; 1 + x) at x = 1. That is, we need only make the

substitution sk = 2 in Z(A) for each k.

Notice that if M = (m), we have the following formula (given on page 96 of [5]) for counting

bipartite graphs up to isomorphism.

Corollary 3.14. bm;n(x) = Z(Sm � Sn; 1 + x), where

Z(Sm � Sn) =
1

m!n!

X
(�;�)2Sm�Sn

Y
1�r�m;1�t�n

s
(r;t)jr(�)jt(�)
[r;t] :

Proof. This follows immediately from Theorem 3.6 since jSm � Snj = m! � n!. �

Example 3.15. In [5], Harary computes b3;2;(3)(x). To illustrate Corollary 3.14 when m = n = 3,

we compute b3;3;(3)(x). We �rst need to �nd the cycle index of the edge group of Km;n, Z(S3�S3).

Now, there are thirty-six elements in S3 � S3, but the cycle structure of any (�; �) 2 S3 � S3 is

completely determined by the cycle structures of � and �.

For each permutation � 2 Sn and for each 1 � k � n, recall that jk(�) is the number of cycles

of length k in the disjoint cycle decomposition of �. We can therefore naturally associate � with

the partition of n which has exactly jk(�) parts equal to k, and we represent this partition by the

tuple (j(�)) = (j1(�); j2(�); :::; jn(�)). For each partition (j) of n, we let h(j) denote the number

23

of elements in Sn with cycle decomposition corresponding to (j). We note that if �; � 2 Sn have

the same associated partition (j), then (j(�)) = (j(�)).

De�nition 3.2 gives us the following formula for Z(Sn) in terms of partitions of n:

Z(Sn; s1; :::; sn) =
1

jSnj

X
�2A

Y
1�k�n

s
jk(�)
k

=
1

n!

X
(j)

h(j)
Y

1�k�n

sjkk ;

where the last sum is taken over all partitions of n, and where jk is the common value jk(�), where

� is any permutation with associated partition (j).

Now, if � 2 S3 contributes the monomial s1s2 to Z(S3) and � 2 S3 contributes s3 to Z(S3),

then j1(�) = 1, j2(�) = 1, j3(�) = 0, j1(�) = 0, j2(�) = 0, and j3(�) = 1. Using the formula for

the cycle index given in De�nition 3.2, the contribution of (�; �) to Z(S3 � S3) is

1

3!3!

Y
1�r�3;1�t�3

s
(r;t)jr(�)jt(�)
[r;t] = s3s6:

Since there are three permutations with the same cycle structure as � and two permutations with

the same cycle structure as �, then there are six permutation pairs of the form (�; �), where � has

the same cycle structure as � and � has the same structure as �. There are also six pairs of the

form (�; �). The total contribution of these twelve pairs to Z(S3 � S3) is 12s3s6:

There are only three partitions of 3, so we have only 3 � 3 = 9 types of permutation pairs to

consider. After computing the other seven, we �nd that

Z(S3 � S3) =
1

3!3!

X
(�;�)2Sm�Sn

Y
1�r�3;1�t�3

s
(r;t)jr(�)jt(�)
[r;t]

=
1

36
(s91 + 6s31s

3
2 + 8s33 + 9s1s

4
2 + 12s3s6):

To �nd b3;3;(3)(x) = Z(S3 � S3; 1+ x), we must substitute 1+ xk for sk in the above expression.

However, since we are only interested in the value b3;3;(3)(1), we need only make the substitution

24

sk = 2 for each k. Doing so, we �nd that b3;3;(3)(1) = 36. This is precisely the number of (3; 3)

bipartite graphs up to isomorphism, where the colors are not allowed to be interchanged.

Recall from Remark 3.13 that to compute bm;n;M , we need only evaluate Z(A; 1 + x) (as given

in Corollary 3.12) at x = 1. That is, we need only make the substitution sk = 2 in Z(A) for

each 1 � k � m � n. We now develop a formula for bm;n;M more suitable for implementation by a

computer.

Notation 3.16. Recall that M = (p1; : : : ; pk) is a �xed partition of m 2 Z+, and A is the set

of permutations on X induced by the automorphisms of Km;n which are of type M . For each

1 � i � k, we let J [i] be a list of the partitions of pi. Each such partition represents one of the

possible cycle structures for the elements of Spi . We let JZ [i] be the list of length jJ [i]j such that for

each 1 � j � jJ [i]j, JZ [i][j] contains the list of length m which represents the cycle structure shared

by the permutations of type J [i][j]; that is, for each 1 � q � m, JZ [i][j][q] contains the number of

times q appears in the partition J [i][j]. For example, if m = 8, pi = 7, and J [i][j] = [1; 1; 2; 3], then

JZ [i][j] = [2; 1; 1; 0; 0; 0; 0; 0]. Finally, we let JN [i] be the list of length jJ [i]j such that JN [i][j] is the

number of permutations in Spi with cycle structure JZ [i][j].

There are Q = jJ [1]j � jJ [2]j � � � jJ [k]j possible cycle structures for the elements in Sp1 � : : :�Spk .

We let LZ and LN be lists of length Q. For each 1 � j � Q, LZ [j] contains a list of length m which

represents one of the possible cycle structures for the elements in Sp1 � : : :�Spk . That is, for each

1 � q � m, LZ [j][q] contains the number of cycles of length q in the corresponding permutation.

Each entry in LN contains the number of permutations of the type represented by the corresponding

entry in LZ .

We let K be a list of the partitions of n. Each such partition represents one of the possible

cycle structures for the elements of Sn. We let KZ be the list of length jKj such that for each

1 � j � jKj, KZ [j] contains the list of length n which represents the cycle structure shared by the

permutations of type K[j]; that is, for each 1 � q � n, KZ [j][q] contains the number of times q

25

appears in the partition K[j]. Finally, we let KN be the list of length jKj such that KN [j] is the

number of permutations in Sn with cycle structure KZ [j].

Corollary 3.17.

bm;n;M =
1

p1!p2! � � � pk!n!

X
1�a�Q

X
1�b�jKj

0
@LN [a] �KN [b] �

0
@ Y

1�r�m

Y
1�t�n

2(r;t)�LZ [a][r]�KZ[b][t]

1
A
1
A :

Proof. This follows immediately from Corollary 3.12 and Notation 3.16.

De�nition 3.18. Let m;n 2 Z+. An (m;n) bipartite graph is said to be a 2-strict (m;n) bipartite

graph if none of the n vertices of the second color are isolated. That is, there must be at least one

edge incident on each of those n vertices. We de�ne a 1-strict (m;n) bipartite graph analogously.

Let M be a partition of m. We let bStrm;n;M denote the number of 2-strict (m;n) bipartite

graphs up to M-equivalence, where the equivalence is as de�ned in De�nition 3.10. If M = (m),

we will often use bStrm;n instead of bStrm;n;M .

Let Bm;n denote the number of (m;n) bipartite graphs with no isolated vertices (that is, (m;n)

bipartite graphs which are both 1-strict and 2-strict) up to isomorphism.

Corollary 3.19. Let M be a partition of m 2 Z+. Then bStrm;n;M is given recursively by

bStrm;n;M = bm;n;M � 1�
X

1�k�n�1

bStrm;(n�k);M :

Proof. Any (m;n) bipartite graph which is not 2-strict has k isolated vertices of the second color

for some 1 � k � n. If k = n, the graph is the unique (m;n) bipartite graph with no edges. If

k � n�1, then the graph formed by removing the k isolated vertices is a 2-strict (m;n�k) bipartite

graph. Hence, the number of (m;n) bipartite graphs up to M -equivalence which are not 2-strict is

1 +
P

1�k�n�1 bStrm;(n�k);M . �

Corollary 3.20. For m;n 2 Z+, Bm;n is given recursively by

Bm;n = bm;n �
X

1�j�(m�1)

X
1�k�(n�1)

Bj;k �
X

1�j�(m�1)

Bj;n �
X

1�k�(n�1)

Bm;k:

26

Proof. The number of (m;n) bipartite graphs with no isolated vertices up to isomorphism is the

number of (m;n) bipartite graphs up to isomorphism minus the number of (m;n) bipartite graphs

with isolated vertices up to isomorphism. The number of graphs with at least one of the m vertices

isolated and with none of the n vertices isolated is
P

1�j�m�1 Bj;n. The number of graphs with

at least one of the n vertices isolated and with none of the m vertices isolated is
P

1�k�n�1Bm;k.

Finally, the number of graphs with at least one of the m and at least one of the n vertices isolated

is
P

1�j�m�1

P
1�k�n�1 Bj;k. �

3.2. Counting Mixed Bipartite Graphs up to Isomorphism. To count precodes, we will also

need to count mixed bipartite graphs up to isomorphism. We begin with a de�nition.

De�nition 3.21. A mixed graph is a graph that may contain both directed and non-directed edges.

Notation 3.22. We now let X denote the set of all ordered pairs corresponding to the edges of

Km;n. That is, if fi; jg is an edge in Km;n, then (i; j); (j; i) 2 X.

Each � = (�; �) 2 Sm � Sn induces a permutation �0 on X via �0((i; j)) = (�(i); �(j)) for every

(i; j) 2 X. Although slightly abusing notation, we will also write �0 = (�; �).

Let A denote the set of permutations on X induced by the automorphisms of Km;n. A is called

the reduced ordered pair group of Sm � Sn.

Theorem 3.23. The counting polynomial for mixed (m;n) bipartite graphs is given by

mm;n(x; y) = Z(A; (1 + 2x+ y)1=2);

where

Z(A) =
1

m!n!

X
(�;�)2A

Y
1�r�m;1�t�n

s
2(r;t)jr(�)jt(�)
[r;t] :

Proof. The fact that mm;n(x; y) = Z(A; (1 + 2x+ y)1=2) follows from (5.4.4) in [5]. Thus, we need

only show that the formula for Z(A) is correct.

27

Suppose that the vertex set of Km;n is V = V1 [V2, where V1 = fa1; :::; amg is the set of vertices

of one color and V2 = fb1; :::; bng is the set of vertices of the other color.

Notice that X contains 2 �m � n elements. By De�nition 3.2,

Z(A) = Z(A; s1; :::; s2mn) =
1

jAj

X
(�;�)2A

Y
1�k�m�n

s
jk((�;�))
k ;

where for each 1 � k � n and for each (�; �) 2 A, jk((�; �)) is the number of cycles of length k in

the cycle decomposition of (�; �).

The cycle structure of any (�; �) 2 A is completely determined by the cycle structures of � and �.

That is, the correspondence between the permutations in Sm�Sn and A induces a correspondence

between the contribution of � = (�; �) to Z(Sm �Sn) and the contribution of �0 = (�; �) to Z(A).

Let � = (�; �) 2 Sm � Sn, whose contribution to Z(Sm � Sn) is
Q
s
jk(�)
k . As in the proof of

Theorem 3.6, there is no contribution made by �0 to the corresponding term in Z(A) from elements

of the form (x; y) 2 X , where x and y are both contained in a single cycle of �. The only contribution

comes from elements where x and y are contained in di�erent cycles of �.

To calculate this contribution, let (x; y) 2 X such that x and y are in di�erent cycles of �.

W.l.o.g., suppose that x 2 V1 and y 2 V2. Let zr be the cycle of length r containing x, and let zt

be the cycle of length t containing y. Then zr and zt induce a cycle of length [r; t] on (x; y). There

are 2rt ordered pairs which are a�ected by the two cycles. Thus, there are ((2rt)=[r; t]) = 2(r; t)

cycles induced by zr and zt.

Since jAj = m!n!, then the above formula becomes

Z(A; s1; :::; sm�n) =
1

m!n!

X
(�;�)2A

Y
1�k�m�n

s
jk((�;�))
k

=
1

m!n!

X
(�;�)2A

Y
1�r�m;1�t�n

s
2(r;t)jr(�)jt(�)
[r;t] ;

where jr(�) is the number of cycles of length r in the cycle decomposition of � and jt(�) is the

number of cycles of length t in the cycle decomposition of �. �

28

Notation 3.24. We will frequently use mm;n to denote mm;n(1; 1), the number of (m;n) mixed

bipartite graphs up to isomorphism.

As was the case for Theorem 3.6, the above theorem holds for m = n only if the colors are not

interchangeable. However, as mentioned before, this is precisely the case in which we are interested

since the graphs associated with precodes have directed edges.

29

4. COUNTING CODES

De�nition 4.1. Let m;n 2 Z+. We let pm;n denote the number of (m;n) precodes up to isomor-

phism and cm;n denote the number of (m;n) codes up to isomorphism.

In this section, we show how to compute cm;n using the results from Section 3. Recall from

De�nition A.2 and Remark 2.6 that if A is a code, then each of the columns in its associated

matrix, MA, is of one of the four types: s, e, d, and o.

De�nition 4.2. A code is said to be of type O (or an O code) if all of the columns in its matrix

representation are o columns. A code is said to be of type E (or an E code) if its matrix repre-

sentation has at least one e column and all of the columns in its matrix representation are e or o

columns. A code is said to be a strictly E code if all of the columns in its matrix representation are

e columns. The de�nitions for D, strictly D, S, and strictly S codes are analogous.

Notation 4.3. We use em;n and eStrm;n to denote the number of E and strictly E (m;n) codes,

respectively, up to isomorphism. The de�nitions of om;n, sm;n, dm;n, sStrm;n, and dStrm;n are

analogous.

We begin by counting the number of (m;n) O, S, E, and D codes up to isomorphism.

4.1. O Codes. We begin with the trivial codes.

Lemma 4.4. om;n = 1.

Proof. The only (m;n) O code is the code with no edges. �

4.2. S Codes. Recall that these are the non-trivial self-companion codes.

Lemma 4.5. sStrm;n is the number of partitions of n into m nonnegative parts; that is, the number

of partitions of n into m or fewer parts. Furthermore, sm;n =
P

1�j�n sStrm;j .

30

Proof. Let A be an (m;n) S code with PA = f�1; :::; �mg. For any � 2 CA, the set of edges in

A incident on � is either empty or is of the form f(�j ; �); (�; �j)g for some �j 2 PA. For each

1 � j � m, let nj be the number of codetext vertices � for which f(�j ; �)g is an edge in A. Since

we are only concerned with counting codes up to isomorphism, then by renaming if necessary, we

may assume that n1 � : : : � nm. Thus, each (m;n) S code can be represented by the ordered

m-tuple (n1; :::; nm), and it is clear that two (m;n) S codes are isomorphic if and only if they are

represented by the same m-tuple. If A is a strictly S code, then n =
P

1�j�m nj . This proves the

�rst statement.

Now, suppose that A is an S code with precisely k isolated codetext vertices. That is, suppose

there are exactly k o-columns in MA, so that
P

1�j�m nj = n � k. Thus, the ordered m-tuple

(n1; :::; nm) which represents A is also the m-tuple used to represent one of the isomorphism classes

of strictly S (m;n�k) codes. Thus, there is a one-to-one correspondence between the isomorphism

classes of (m;n) S codes with exactly k isolated codetext vertices and the isomorphism classes of

strictly S (m;n� k) codes. This proves the lemma. �

4.3. E and D Codes. The E codes (and strictly E codes) have nonempty encode relations and

empty decode relations. There is a one-to-one correspondence between the E codes and D codes

given via A = (PA; CA; eA; ;) $ Apn. Furthermore, this correspondence preserves isomorphism .

Thus, dm;n = em;n.

For the purpose of counting, the E codes can be represented by bipartite graphs. Recall that

bipartite graphs are precisely those graphs that can be bicolored; that is, their vertex set can be

partitioned into two disjoint, nonempty subsets such that no two adjacent vertices are contained in

the same subset. In our case, the two sets are PA and CA. The edge set of the bipartite graph is

ff�; �gj(�; �) 2 eAg

Furthermore, if m 6= n, it is clear that two (m;n) E codes are isomorphic if and only if their

corresponding bipartite graphs are isomorphic. If m = n, we must be a bit more careful since

31

precodes are represented by digraphs. Recall that in Example 3.7, we constructed two codes which

are not isomorphic, but which have isomorphic corresponding bipartite graphs (if we are allowed

to interchange the colors). Thus, for any m and n, counting the number of (m;n) E codes up

to isomorphism is equivalent to counting the number of (m;n) bipartite graphs, where the colors

cannot be interchanged.

Lemma 4.6. dm;n = em;n = bm;n � 1 and eStrm;n = bStrm;n, where bm;n and bStrm;n are as

de�ned in Remark 3.13 and De�nition 3.18.

Proof. The proof that dm;n = em;n = bm;n � 1 was given in the discussion preceeding the lemma,

keeping in mind that bm;n counts the single O code (the code with no edges). Thus, to obtain em;n,

we must subtract 1 from bm;n.

As in De�nition 3.18, bStrm;n denotes the number of 2-strict (m;n) bipartite graphs up to

isomorphism. Recall that a bipartite graph is said to be 2-strict if none of the n vertices of the

second color are isolated. However, an (m;n) code is a strictly E code if all of the columns in its

matrix representation are e-columns. That is, if none of the n codetext vertices in the associated

bipartite graph are isolated. Thus, eStrm;n is also the number of 2-strict (m;n) bipartite graphs

up to isomorphism. �

4.4. Integration. It might seem that the number of isomorphism classes of codes is

X
(n1;n2;n3;n4)2ncomp(n)

(om;n1sm;n2em;n3dm;n4);

where ncomp(n) is the set of all nonnegative compositions of n (see De�nition 3.8) and the factors

are de�ned to be 1 if the corresponding term of the composition is 0. However, this is not the case.

Although each of the columns in the matrix representation of a code is of one of the four types, the

following example illustrates why we cannot count as we might have hoped.

Example 4.7. Let m = 2 = n, and consider the composition (0; 1; 1; 0) of n which represents the

codes with no o columns, one s column, one e column, and no d columns. We have that om;0 = 1,

32

sm;1 = 1, em;1 = 1, and dm;0 = 1. However, there are two nonisomorphic (2; 2) codes corresponding

to the composition (0; 1; 1; 0). They are depicted as Precodes A and B in Figure 2.

Precode A

p1p1

p2p2

c1

c2

Precode B

p1p1

p2p2

c1

c2

Figure 2. Two Nonisomorphic Codes with the Same Partition

We need to take another approach. We begin with an extension of De�nition 4.2.

De�nition 4.8. A code is said to be an SE code if its matrix representation has at least one s

column, at least one e column, and no d columns. A code is said to be a strictly SE code if it is an

SE code with no o columns. There are analogous de�nitions for SD, strictly SD, ED, and strictly

ED codes. A code is said to be of type SED if its matrix representation has at least one s column,

at least one e column, and at least one d column.

Notation 4.9. We use sem;n and seStrm;n to denote the number of SE and strictly SE (m;n)

codes, respectively, up to isomorphism. The de�nitions of sdm;n, sdStrm;n, edm;n, edStrm;n, and

sedm;n are analogous.

There is a one-to-one correspondence between the SE codes and SD codes given via A$ Apn.

Furthermore, this correspondence preserves isomorphism. Thus, sdm;n = sem;n and sdStrm;n =

seStrm;n. We are now ready to state the main theorem of this section.

33

Theorem 4.10.

cm;n = om;n + sm;n + em;n + dm;n + sem;n + sdm;n + edm;n + sedm;n

= om;n + sm;n + 2 � em;n + 2 � sem;n + edm;n + sedm;n:

Proof. This is clear since each (m;n) code is of precisely one of the following types: O, S, E, D,

SE, SD, ED, and SED. �

We have already computed om;n, sm;n, em;n, and dm;n. It therefore remains to compute edm;n,

sem;n, sdm;n, and sedm;n.

4.5. ED Codes. Recall that these are the non-trivial codes with no s codetext elements.

Lemma 4.11.

edm;n =

8>>><
>>>:

0; if n < 2

P
0�j�(n�2)

P
1�k�(n�j�1)(eStrm;k � eStrm;n�j�k); if n � 2:

Proof. Since an ED code must have at least one e codetext element and at least one d codetext

element, then edm;n = 0 if n < 2.

For n � 2, the number of isomorphism classes of ED codes is
P
j

P
k I(k; n� (j + k)), where j

represents the number of o-columns in an ED code, k is the number of e-columns, n� (j+k) is the

number of d-columns, and I(k; n� (j + k)) is the number of isomorphism classes of ED codes with

exactly k e-columns and n�(j+k) d-columns. But, I(k; n�(j+k)) = eStrm;k �eStrm;n�(j+k), since

eStrm;k is the number of (m; k) strictly E codes and eStrm;n�(j+k) is the number of (m;n�(j+k))

strictly D codes. Since there must be at least one e and at least one d column in the matrix

representation of any ED code, then j can be no larger than n � 2. Furthermore, k must be at

least 1 and no more than n� (j + 1).

Notice that when n < 2, there is no j satisfying 0 � j � (n � 2). Thus, we may employ the

standard practice of de�ning
P

0�j�(n�2)

P
1�k�(n�j�1)(eStrm;k �eStrm;n�j�k) to be 0 in this case.

Thus, the above formula actually holds for all n 2 Z+. �

34

4.6. SE and SD Codes. As noted above, there is a one-to-one correspondence between the SE

codes and SD codes which preserves isomorphism. Thus, sem;n = sdm;n.

Notation 4.12. For a given partition J of q 2 Z+, we let jJ j denote the number of parts in J .

For example, if q = 4 and J = (1; 1; 2), then jJ j = 3.

Now, let J be a partition of some s 2 Z+ such that s � n and jJ j � m. Let M(J) denote the

partition of jJ j which tracks the number of times each value in J appears. For example, suppose

m = 4, n = 5, s = 4, and J = (1; 1; 2). Then M(J) = (2; 1), indicating that the value 1 appears

two times and the value 2 appears one time. Finally, we let K(J) denote the partition of m formed

by adding at most one term to M(J). In the above example, K(J) = (2; 1; 1).

Lemma 4.13.

sdm;n = sem;n =

8>>><
>>>:

0; if n < 2

P
1�c�(n�1)

P
J (bm;c;K(J) � 1); if n � 2;

where the second sum is over all partitions J of s = n� c such that jJ j � m and where K(J) is as

de�ned in Notation 4.12. Furthermore, sdStrm;n = seStrm;n = sem;n �
P

1�k�(n�1) seStrm;n�k.

Proof. Since an SE code must have at least one s codetext element and at least one e codetext

element, then sem;n = 0 if n < 2.

Now, let c represent the sum of the number of e and o codetext elements in an SE code, i.e.,

c = n � s, where s is the number of s codetext elements. Since the code must have at least one s

column, c � n� 1. Since there must be at least one e column, c � 1.

Two SE codes with nonisomorphic underlying S codes (recall De�nition 2.16) are clearly not

isomorphic. As we saw in Lemma 4.5, there is a one-to-one correspondence between the isomorphism

classes of S codes with s codetext elements of type s and the partitions of s with m or fewer parts.

Each entry in such a partition represents a connected component of the S code associated with the

partition.

35

To �nish the proof, we need to determine the number of isomorphism classes of SE codes

whose underlying S code is associated with a given partition J of s such that jJ j � m. So, let

J = (n1; :::; nk) be a partition of s with k � m and n1 � ::: � nk. As in Lemma 4.5, we let S0 be

the (m;n) S code associated with J . In particular,

S0 = (PS0 = f�1; :::; �mg; CS0 =
[

1�j�(k+1)

Cj ; eS0 =
[

1�j�k

(f�jg � Cj); dS0 = e S0);

where C1; :::; Ck; Ck+1 are pairwise disjoint subsets of CS0 such that for each 1 � j � k, jCj j = nj

and such that jCk+1j = n� s = c. For each 1 � j � k, S0j = (f�jg; Cj ; f�jg � Cj ; Cj � f�jg) is an

s component of S0.

Now, any SE code whose underlying S code is isomorphic to S0 is isomorphic to an SE code of

the form S0 [E0 = (PS0 ; CS0 ; eS0 [e0; dS0) for some E code E0 = (PS0 ; CS0 ; e0; ;), where eS0 and e0

are disjoint. We must determine the number of codes of this type up to isomorphism. We are free

to construct e0 using as edges any of the elements in PS0 �Ck+1, but we may not use any elements

in PS0 � (
S

1�j�k Cj), since S
0 [E0 would fail to be a code.

As above, we letM(J) denote the partition of jJ j which tracks the number of times each value in

J appears. ThenM(J) contains one entry for each connected s component in S0 up to isomorphism,

and the value of each entry is the number of s components in the corresponding isomorphism class.

Now, jJ j is the number of s components of S0 and therefore also the number of plaintext elements

which are part of some s component. As above, we let K(J) denote the partition of m formed by

tacking at most one term on to M(J). This term represents the number of plaintext vertices which

are not part of any s component of S0.

If E1 = (PS0 ; Ck+1; e1; ;) and E2 = (PS0 ; Ck+1; e2; ;), then S0 [E1 and S
0 [E2 are isomorphic if

and only if the bipartite graphs corresponding to E1 and E2 are equivalent with respect to K(J),

where this equivalence is as de�ned in De�nition 3.10. The number of (m; c) E codes up to K(J)-

equivalence is precisely bm;c;K(J) � 1, where bm;c;K(J) is as in Notation 3.13. Note that we must

36

subtract 1 from bm;c;K(J) since we must not count the code with no edges. This proves the �rst

formula.

The number of (m;n) strictly SE codes up to isomorphism is the number of (m;n) SE codes

up to isomorphism minus the number of (m;n� k) strictly SE codes up to isomorphism, where k

runs from 1 to n� 1. Here, k represents the number of o columns we have. We do not let k run to

n since the single O code is not counted in sem;n. �

4.7. SED Codes. Recall that in Corollary 3.19, we de�ne bStrp;q;M to be the number of 2-strict

(p; q) bipartite graphs up to M -equivalence, where p; q 2 Z+ and M is a partition of p.

Lemma 4.14.

sedm;n =

8>>><
>>>:

0; if n < 3

P
1�c�(n�1)

P
J

P
1�e�(n�s�1)

P
1�d�(n�s�e)(bStrm;e;K(J) � bStrm;d;K(J)); if n � 3;

where the second sum is over all partitions J of s = n� c such that jJ j � m and where K(J) is as

de�ned in Notation 4.12.

Proof. Since an SED code must have at least one s codetext vertex, at least one e codetext vertex,

and at least one d codetext vertex, then the number of SED codes is 0 if n < 3.

Let c represent the sum of the number of e and o codetext elements in an SED code, i.e.,

c = n � s, where s is the number of s codetext elements. Since the code must have at least one s

column, c � n� 1. Since there must be at least one e column, c � 1.

The justi�cation for the structure of the �rst two sums is the same as that given in the proof of

Lemma 4.13. To �nish the proof, we need to show that the number of isomorphism classes of SED

codes whose underlying S code is associated with a given partition J of s such that jJ j � m is

X
1�e�(n�s�1)

X
1�d�(n�s�e)

(bStrm;e;K(J) � bStrm;d;K(J)):

37

So, let J = (n1; :::; nk) be a partition of s with k � m and n1 � ::: � nk. As in Lemma 4.5, we let

S0 be the (m;n) S code associated with J . In particular,

S0 = (PS0 = f�1; :::; �mg; CS0 =
[

1�j�(k+1)

Cj ; eS0 =
[

1�j�k

(f�jg � Cj); dS0 = e S0);

where C1; :::; Ck; Ck+1 are pairwise disjoint subsets of CS0 such that for each 1 � j � k, jCj j = nj

and such that jCk+1j = n� s = c. For each 1 � j � k, S0j = (f�jg; Cj ; f�jg � Cj ; Cj � f�jg) is an

s component of S0.

Let e represent the number of e codetext elements in an SED code whose underlying S code

is isomorphic to S0. Since we must have at least one e and at least one d codetext element, then

1 � e � n � (s + 1). Let d represent the number of d codetext elements in such a code. Then

d � n� (s+ e). This justi�es the form of the last two sums.

Finally, we must show that the number of isomorphism classes of SED codes whose underlying S

code is S0 and which have e columns of type e and d columns of type d is (bStrm;e;K(J)�bStrm;d;K(J)).

Recall that Ck+1 is the set of n � s codetext elements which are not part of any of the s

components of S0. Let Ce, Cd, and Co be pairwise disjoint subsets of Ck+1 such that jCej = e,

jCdj = d, Co = n� (s+ e+ d). That is, Ck+1 = Ce [Cd [Co. Any SED code whose underlying S

code is isomorphic to S0 and which has e columns of type e and d columns of type d is isomorphic

to an SED code of the form S0 [E0 [D0 = (PS0 ; CS0 ; eS0 [e0; dS0 [d0) for some strictly E code

E0 = (PS0 ; Ce; e
0; ;) and some strictly D code D0 = (PS0 ; Cd; ;; d0).

As above, we letM(J) denote the partition of jJ j which tracks the number of times each value in

J appears. ThenM(J) contains one entry for each connected s component in S0 up to isomorphism,

and the value of each entry is the number of s components in the corresponding isomorphism class.

Now, jJ j is the number of s components of S0 and therefore also the number of plaintext elements

which are part of some s component. As above, we let K(J) denote the partition of m formed by

tacking at most one term on to M(J). This term represents the number of plaintext vertices which

are not part of any s component of S0.

38

For strict codes E1 = (PS0 ; Ce; e1; ;); E2 = (PS0 ; Ce; e2; ;); D1 = (PS0 ; Cd; ;; d1); and D2 =

(PS0 ; Cd; ;; d2); then S0 [E1 [D1 and S0 [E2 [D2 are isomorphic if and only if the bipartite

graphs corresponding to E1 and E2 are K(J)-equivalent and the bipartite graphs corresponding to

D1 and D2 areK(J)-equivalent, where this equivalence is as de�ned in De�nition 3.10. The number

of strictly E codes of the form E0 = (PS0 ; Ce; e
0; ;) up to K(J)-equivalence is bStrm;e;K(J), and the

number of strictly D codes of the form D0 = (PS0 ; Cd; ;; d0) up to K(J)-equivalence is bStrm;d;K(J).

This proves the lemma. �

Corollary 4.15. Let S = sem;n + sdm;n + sedm;n. Then

S =

8>>>>>>>><
>>>>>>>>:

0; if n < 2

P
1�c�(n�1)

P
J (2 � (bm;c;K(J) � 1)

+
P

1�e�(n�s�1)

P
1�d�(n�s�e)(bStrm;e;K(J) � bStrm;d;K(J))); if n � 2;

where the second sum is over all partitions J of s = n� c such that jJ j � m and where K(J) is as

de�ned in Notation 4.12.

Proof. This is just the combination of Lemmas 4.13 and 4.14. �

4.8. Self-companion Codes. The self-companion (m;n) codes are precisely the (m;n) S codes as

de�ned in De�nition 4.2, along with the single (m;n) O code. The next theorem follows immediately.

Theorem 4.16. Let scm;n denote the number of self-companion (m;n) codes up to isomorphism.

Then scm;n = sm;n + 1, where sm;n is as given in Lemma 4.5.

4.9. Janiform Codes. Recall that a janiform code is a code whose opposite is also a code.

Notation 4.17. Let m and n be nonnegative integers. We let Sm;m denote the number of (m;m)

strictly S codes whose opposites are also strictly S codes. We let Em;n denote the number of (m;n)

strictly E codes whose opposites are strictly D codes. We de�ne Dm;n analogously. Furthermore,

39

if m = 0 and n = 0, we set Sm;n = Em;n = Dm;n = 1, representing the empty code (;; ;; ;; ;). We

note that in the theorems below, we will encounter neither the case m = 0 and n 6= 0 nor the case

m 6= 0 and n = 0.

Lemma 4.18. Sm;m = 1 for any nonnegative integer m.

Proof. By de�nition, S0;0 = 1. Let m 2 Z+, and let

S = (PS = f�1; :::; �mg; CS = f�1; :::; �mg; eS; dS)

be an (m;m) strictly S code whose opposite is also a strictly S code. Let S0 be a connected s compo-

nent of S. Note that if either the encode or decode relation of S0 contained more than one edge, then

Sop would not be a code. Thus, S0 = (f�ig; f�jg; f(�i; �j)g; f(�j ; �i)g) for some �i 2 PS and some

�j 2 CS . By renaming if necessary, we may assume that S0 = (f�jg; f�jg; f(�j ; �j)g; f(�j ; �j)g).

Since S and Sop are strictly S codes, then S has no isolated plaintext or codetext elements. Thus,

there are precisely m s components, each of the above form. There is only one such code up to

isomorphism. �

Lemma 4.19. Let m;n 2 Z+. Then Em;n = Dm;n = Bm;n, where Bm;n is as in De�nition 3.18.

Proof. Notice that any (m;n) E code is janiform. Thus, following the proof of Lemma 4.6, the

number of strictly E (m;n) codes whose opposites are strictly D codes is the number of (m;n)

bipartite graphs which have no isolated vertices up to isomorphism. However, this is precisely

Bm;n. Furthermore, there is the obvious one-to-one correspondence between (m;n) E codes and

(m;n) D codes which preserves isomorphism. Thus, Em;n = Dm;n. �

Theorem 4.20. Let m;n 2 Z+, and let jm;n denote the number of (m;n) janiform codes up to

isomorphism. Then

jm;n =
X
M;N

Eme;neEmd;nd ;

40

where the sum is taken over all nonnegative compositions M = (ms;me;md;mo) and N = (ns =

ms; ne; nd; no) of m and n, respectively, such that ma and na are either both zero or both nonzero

for each a 2 fs; e; dg.

Proof. Let A = (PA = f�1; :::; �mg; CA = f�1; :::; �ng; eA; dA) be an (m;n) janiform code with

synoptic codebook matrix MA. Recall that MAop is formed from MA
t by interchanging the bits in

each entry. That is, MAop is de�ned via

MAop(�; �) =

8>>>>>>>>>><
>>>>>>>>>>:

s if MA
t(�; �) = s;

e if MA
t(�; �) = d;

d if MA
t(�; �) = e;

o if MA
t(�; �) = o:

Since Aop is a code, this implies that each of the rows of MA (as well as each of the columns of

MA) is of one of the four types: s, e, d, and o. Let Ps and Cs be the sets of plaintext and codetext

elements, respectively, of type s. Let ms = jPsj and ns = jCsj. Let Pe, Ce, Pd, Cd, Po, and Co be

de�ned analogously, with cardinalities me, ne, md, nd, mo, and no, respectively. We note that if

� 2 fs; e; dg, then either m� and n� are both zero or both nonzero. Since e and d columns (or rows)

may contain o entries, then it is not necessarily the case that either mo and no are both zero or

both nonzero. Since each row and column of type s in MA has exactly one s entry, then ms = ns.

We have that PA = Ps [Pe [Pd [Po and CA = Cs [Ce [Cd [Co are disjoint unions. Let

es = (Ps �Cs)\ eA, ee = (Pe �Ce)\ eA, ds = (Cs�Ps)\ dA, and dd = (Cd�Pd)\ dA. It is clear

that A = S [E [D [O = (PA; CA; es [ee; ds [dd), where S = (Ps; Cs; es; ds), E = (Pe; Ce; ee; ;),

D = (Pd; Cd; ;; dd), and O = (Po; Co; ;; ;). Notice that S is an (ms;ms) strictly S code. Also, E

is a strictly E code, and Eop is a strictly D code. Similarly, D is a strictly D code, and Dop is a

strictly E code. Finally, O is the unique (mo; no) O code.

Let A1 = S1 [E1 [D1 [O1 and A2 = S2 [E2 [D2 [O2 be janiform codes which are both

associated with the nonnegative compositionsM = (ms;me;md;mo) and N = (ns = ms; ne; nd; no)

41

of m and n, respectively, given above. That is, S1 and S2 are (ms;ms) strictly S codes, E1 and E2

are (me; ne) strictly E codes whose opposites are strictly D codes, D1 and D2 are (md; nd) strictly

D codes whose opposites are strictly E codes, and O1 = O2 is the unique (mo; no) O code.

It is clear that A1 and A2 are isomorphic if and only if their component codes are isomor-

phic. This proves that the number of (m;n) janiform codes up to isomorphism is given by

P
M;N Sms;ms

Eme;neDmd;nd , where the sum is taken over all appropriate nonnegative compositions

M = (ms;me;md;mo) and N = (ns = ms; ne; nd; no)

of m and n, respectively. However, by Lemmas 4.18 and 4.19, this is
P
M;N Eme;neEmd;nd . �

4.10. Self-opposite Codes. Recall �rst that a janiform code is a code whose opposite is also

a code. Thus, a self-opposite code is janiform. Furthermore, if A is self-opposite, then A =

(PA; PA; eA; eA).

Theorem 4.21. Let m 2 Z+, and let sopm;m denote the number of (m;m) self-opposite codes up

to isomorphism. Then

sopm;m =
X
M

Eme;md
;

where the sum is taken over all nonnegative compositions M = (ms;me;md;mo) of m such that me

and md are either both zero or both nonzero.

Proof. Let A = (PA = f�1; :::; �mg; CA = PA; eA; dA = eA) be an (m;m) self-opposite code. We

let the sets Ps, Cs, Pe, Ce, Pd, Cd, Po, Co and their associated cardinalities ms, ns, me, ne, md,

nd, mo, no, respectively, be de�ned as in the proof of Theorem 4.20. We also de�ne es, ee, ds,

and dd as in the proof. We have then that A = S [E [D [O = (PA; CA; es [ee; ds [dd), where

S = (Ps; Cs; es; ds), E = (Pe; Ce; ee; ;), D = (Pd; Cd; ;; dd), and O = (Po; Co; ;; ;). We saw that S

is an (ms;ms) strictly S code, E and Dop are strictly E codes, D and Eop are strictly D codes,

and O is the unique (mo; no) O code.

42

Since A is self-opposite, then Ps = Cs and es = ds = 1Ps , so that S = (Ps; Ps; 1Ps ; 1Ps).

Furthermore, dd=ee, Pd = Ce, and Cd = Pe so that D = (Ce; Pe; ;; ee). Hence, the structure

of D is completely determined by the structure of E. Since ms = ns, me = nd, md = ne, and

ms+me+md+mo = m = ns+ne+nd+no, then mo = no. Thus, we can associate A with the single

nonnegative composition M = (ms;me;md;mo) of m. We further note that as in Theorem 4.20,

either me and ne are both zero or both nonzero. Since md = ne, then either me and md are both

zero or both nonzero.

Let A1 = S1 [E1 [D1 [O1 and A2 = S2 [E2 [D2 [O2 be self-opposite codes which are

both associated with the nonnegative composition M = (ms;me;md;mo) of m given above. It is

clear that A1 and A2 are isomorphic if and only if their component codes are isomorphic. Since

the structure of D1 is completely determined by that of E1 (and similarly for D2 and E2), then the

number of (m;m) self-opposite codes up to isomorphism is
P
M Sms;ms

Eme;md
, where the sum is

taken over all appropriate nonnegative compositions M = (ms;me;md;mo) of m. By Lemma 4.18,

this is
P
M Bme;md

. �

4.11. Calculations. In Appendix D, we provide Maple algorithms which implement the formulae

from this section. Some of the results are given in Table 1. The (m;n) entry in the table is of the

form

0
BB@
om;n sm;n em;n

sem;n edm;n sedm;n

1
CCA

43

m/n 1 2 3 4 5

1 1 1 1
0 0 0

1 2 2
1 1 0

1 3 3
3 3 1

1 4 4
6 6 4

1 5 5
10 10 10

2 1 1 2
0 0 0

1 3 6
3 4 0

1 5 12
14 20 9

1 8 21
40 60 58

1 11 33
91 144 224

3 1 1 3
0 0 0

1 3 12
5 9 0

1 6 35
33 63 25

1 10 86
134 282 255

1 15 189
431 1002 1522

4 1 1 4
0 0 0

1 3 21
7 16 0

1 6 86
60 152 49

1 11 316
346 961 694

1 17 1052
1631 5011 6109

5 1 1 5
0 0 0

1 3 33
9 25 0

1 6 189
98 305 81

1 11 1052
785 2649 1525

1 18 5623
5558 20015 18849

6 1 1 6
0 0 0

1 3 49
11 36 0

1 6 385
148 552 121

1 11 3249
1639 6433 2902

1 18 28575
17639 69697 49033

7 1 1 7
0 0 0

1 3 69
13 49 0

1 6 733
213 917 169

1 11 9342
3216 14057 5047

1 18 136757
52750 216919 113942

8 1 1 8
0 0 0

1 3 94
15 64 0

1 6 1323
294 1440 225

1 11 25206
5982 28500 8170

1 18 613893
148910 622016 242189

9 1 1 9
0 0 0

1 3 124
17 81 0

1 6 2283
394 2151 289

1 11 64116
10633 54238 12565

1 18 2583163
397718 1664702 481081

10 1 1 10
0 0 0

1 3 160
19 100 0

1 6 3789
514 3100 361

1 11 155003
18163 98180 18498

1 18 10208742
1007678 4211160 902849

Table 1. Enumeration of Codes

44

5. COUNTING PRECODES

In this section, we show how to compute pm;n (recall De�nition 4.1) for m;n 2 Z+. Since there

is no standard matrix representation for precodes, one might intuitively conclude that it might be

diÆcult, if not impossible, to count the number of precodes of a given size up to isomorphism.

However, it turns out that the task is easier than that of counting codes. To accomplish it, we

again turn to the techniques employed in [5].

Theorem 5.1. For m;n 2 Z+, pm;n = mm;n, where mm;n is as de�ned in Notation 3.24.

Proof. Any precode A can be represented by a mixed bipartite graph. We represent an s edge (i.e.

an edge in eA \ dnvA) by a non-directed edge, and we represent edges in e and d by the appropriate

directed edges. If m 6= n, it is clear that two (m;n) precodes are isomorphic if and only if their

corresponding mixed bipartite graphs are isomorphic. Ifm = n, we must be more careful. Switching

the roles of a code's plaintext and codetext elements may result in a code which is not isomorphic

to the original, even though the associated mixed graphs are isomorphic. Thus, for any m and n,

counting the number of (m;n) precodes up to isomorphism is equivalent to counting the number of

(m;n) mixed bipartite graphs, where the colors cannot be interchanged. The number of such graphs

is mm;n. �

5.1. Self-companion Precodes. Recall De�nition A.5.

Theorem 5.2. Let m;n 2 Z+, and let pscm;n denote the number of self-companion (m;n) precodes

up to isomorphism. Then

pscm;n = bm;n;

where bm;n is as given in Notation 3.13.

Proof. Any self-companion precode A is of the form A = (PA; CA; eA; e

A). Thus,

(PA; CA; eA; e

A)$ (PA; CA; eA; ;)

45

gives a one-to-one correspondence (which preserves isomorphism) between the self-companion pre-

codes and the precodes whose columns are each of type e or o. These latter precodes are precisely

the (m;n) E codes, along with the single (m;n) O code. As in Theorem 4.6, the number of such

codes is em;n + 1 = bm;n. �

5.2. Janiform Precodes. Recall that a janiform precode is a precode whose opposite is a code.

Theorem 5.3. Let m;n 2 Z+, and let pjm;n denote the number of janiform (m;n) precodes up to

isomorphism. Then

pjm;n = cm;n;

where cm;n is as in Theorem 4.10.

Proof. A one-to-one correspondence between janiform precodes and codes is given via A $ Aop.

This correspondence clearly preserves isomorphism. Thus, the number of janiform (m;n) precodes

up to isomorphism is the number of (m;n) codes up to isomorphism. �

5.3. Self-opposite Precodes. Recall De�nition A.7.

Theorem 5.4. Let m 2 Z+, and let psopm;m denote the number of self-opposite (m;m) precodes

up to isomorphism. Then

psopm;m = bm;m;

where bm;m is as given in Notation 3.13.

Proof. Any self-opposite precode A is of the form A = (PA; PA; eA; eA). Thus, (PA; PA; eA; eA)$

(PA; PA; eA; ;) gives a one-to-one correspondence (which preserves isomorphism) between the (m;m)

self-opposite precodes and the (m;m) precodes whose columns are each of type e or o. These latter

precodes are precisely the (m;m) E codes, along with the single (m;m) O code. The number of

such codes is em;m + 1 = bm;m. �

46

5.4. Calculations. In Appendix D, we provide Maple algorithms which implement the formulae

from this section. Some of the results are given in Table 2. The (m;n) entry in the table is of the

form

0
BB@

cm;n

pm;n

scm;n

pscm;n

jm;n

pjm;n

sopm;n

psopm;n

1
CCA

m/n 1 2 3 4 5

1

4
4

1
2

4
4

2
2

10
10

2
3

6
10

0
0

20
20

3
4

8
20

0
0

35
35

4
5

10
35

0
0

56
56

5
6

12
56

0
0

2

6
10

1
3

6
6

0
0

26
76

3
7

22
26

5
7

87
420

5
13

42
87

0
0

249
1996

8
22

70
249

0
0

628
7882

11
34

106
628

0
0

3

8
20

1
4

8
8

0
0

47
430

3
13

42
47

0
0

231
8240

6
36

124
231

10
36

988
131505

10
87

280
988

0
0

3780
1757384

15
190

568
3780

0
0

4

10
35

1
5

10
10

0
0

76
1996

3
22

70
76

0
0

500
131505

6
87

280
500

0
0

2991
7880456

11
317

928
2991

20
317

16504
400709367

17
1053

2784
16504

0
0

5

12
56

1
6

12
12

0
0

113
7882

3
34

106
113

0
0

967
1757384

6
190

568
967

0
0

7860
400709367

11
1053

2784
7860

0
0

61245
79846389608

18
5624

13436
61245

42
5624

6

14
84

1
7

14
14

0
0

160
27412

3
50

152
160

0
0

1746
20075154

6
386

1076
1746

0
0

19123
17315935276

11
3250

7926
19123

0
0

211177
13581262890860

18
28576

63762
211177

0
0

7

16
120

1
8

16
16

0
0

217
85822

3
70

208
217

0
0

2985
200210860

6
734

1932
2985

0
0

44232
646805806837

11
9343

21506
44232

0
0

709894
1994012193306252

18
136758

292654
709894

0
0

8

18
165

1
9

18
18

0
0

286
246202

3
95

276
286

0
0

4906
1774852035

6
1324

3324
4906

0
0

99058
21250295114566

11
25207

55714
99058

0
0

2389830
256826902064216489

18
613894

1280816
2389830

0
0

Table 2. Enumeration of Precodes

47

6. CATEGORICAL VIEW OF PRECODES

Recall the preliminary de�nitions from Appendix B. Throughout this section, we use P and C

to denote the categories of precodes and codes, respectively.

6.1. Well-powered and Co-(well-powered). Recall De�nition B.13.

Theorem 6.1. The categories P and C are well-powered and co-(well-powered).

Proof. Let B be a precode. By de�nition, each of PB, CB, eB, and dB is a set. Since we are

only concerned with considering subobjects up to isomorphism, we may (by relabeling) restrict

our attention to subprecodes of B. That is, we need only consider subobjects of B of the form

(A; (1PA ; 1CA)), so that PA � PB, CA � CB, eA � eB, and dA � dB. Each subprecode of B is an

element in X = 2PA � 2CB � 2eB � 2dB . Since the power set of a set is again a set, and since the

product of two sets is a set, then X is a set. Thus, there is at most a set of subprecodes of B, and

P is well-powered.

Now, let (f = (f1; f2); A) be a quotient object of B. We can view the quotient object (f;A)

as the 3-tuple (f1; f2;A). Since f1 and f2 are surjective and since we are only concerned with

considering quotient objects up to isomorphism, then by relabeling, we may assume that PA � PB,

CA � CB, eA � eB, and dA � dB. As above, there are at most a set of such precodes A.

We further note that (f1; PA) and (f2; CA) are quotient objects of PB and CB, respectively, in

the category of sets. As in [6], the category of sets is co-(well-powered). Thus, for each A, the class

of possible functions for f1 is at most a set, and similarly for f2. Thus, there is at most a set of

3-tuples of the form (f1; f2;A). Hence, P is co-(well-powered).

Since C is a subcategory of P, then C is well-powered and co-(well-powered). �

48

6.2. Intersections. Recall De�nition B.14.

Theorem 6.2. The categories P and C have intersections. We note that the following theorem

holds since the categories have limits as shown in [4]. However, the following alternate proof is

instructive since it gives the construction of an intersection within the categories.

Proof. Let (Ai = (Pi; Ci; ei; di);mi) be a family of subobjects of a precode A indexed by a set I .

We will construct an intersection of the family (Ai;mi) in P. W.l.o.g., we may assume that for

each i 2 I , Ai is a subprecode of A; that is, mi = 1Ai
= (1Pi ; 1Ci).

Let
T
i2I Ai denote the precode (

T
i2I Pi;

T
i2I Ci;

T
i2I ei;

T
i2I di). Let

1PA :
\
i2I

Pi �! PA and 1CA :
\
i2I

Ci �! CA

be the usual inclusions. We claim that (
T
i2I Ai; 1A = (1PA ; 1CA)) is an intersection of the family

(Ai;mi).

It is clear that (1) and (2) in De�ntion B.14 hold. Now, suppose g : B �! A and gi : B �! Ai

(for each i 2 I) are homomorphisms such that g = mi Æ gi = 1Ai
Æ gi = gi. We need to show that

there exists a unique homomorphism f : B �!
T
i2I Ai such that 1A Æ f = g. But, this is clear

since we must have f = g.

Since the intersection of a family of codes is again a code, then C has intersections as well. �

6.3. Pullbacks and Pushouts. Recall De�nition B.45.

Lemma 6.3. In the categories P and C, the pullback of

(1) an epimorphism is an epimorphism.

(2) a regular epimorphism is a regular epimorphism.

(2) a monomorphism is a monomorphism.

(3) a regular monomorphism is a regular monomorphism.

(4) a retraction is a retraction.

49

Proof. Statments (1) and (2) are proven in Lemmas 19 and 20 in [4]. The remainder of the lemma

holds by Proposition 21.13 in [6]. �

6.4. Regular Monomorphisms. Recall De�nition B.22.

Theorem 6.4. Let h = (h1; h2) : H �! A be a precode monomorphism. Then h is a regular

monomorphism in P if and only if

h : H �! F = (h1(PH); h2(CH); eA \ (h1(PH)� h2(CH)); dA \ (h2(CH)� h1(PH)))

is a strong monomorphism; that is, if and only if it is an isomorphism.

Proof. By relabeling, we may suppose that h = 1H. We also suppose that for each � 2 PA, �0 =2 PA

and for each � 2 CA, �0 =2 CA.

Case 1: Suppose PH = ; or CH = ;. Then h1(PH) = ; or h2(CH) = ;, and h is a strong

monomorphism onto F = (h1(PH); h2(CH); ;; ;). Thus, we need only show that h is regular.

If PH = CH = ;, then h is the empty monomorphism and is regular since h � Equ(h; h). So,

suppose that exactly one of PH and CH is nonempty, say PH 6= ;. Thus, H = (PH; ;; ;; ;). Fix

 2 PH. For each � 2 PA, we de�ne

g1(�) =

8>>><
>>>:

�; if � 2 PH

 ; if � =2 PH.

Let C 0A = f�0 j � 2 CAg and C = CA [C 0A. If CA 6= ;, then for each � 2 CA, de�ne f2(�) = � and

g2(�) = �0. If CA = ;, we let f2 = g2 : CA �! C be the empty function. Let

e = eA [f(�; �
0) j (�; �) 2 eAg and d = dA [f(�

0; �) j (�; �) 2 dAg:

Then f = (1PA ; f2) and g = (g1; g2) are homomorphisms from A to (PA; C; e; d). By Lemma B.21,

Equ(f; g) � (PH; ;; ;; ;) = H. Thus, h is a regular monomorphism.

Case 2: Suppose that PH 6= ; and CH 6= ;.

50

(() : Suppose h is a strong monomorphism onto F. Fix 2 PH and � 2 CH. Set f = 1A and

g = (g1; g2), where for � 2 PA and � 2 CA, we de�ne

g1(�) =

8>>><
>>>:

�; if � 2 PH

 ; if � =2 PH,

and g2(�) =

8>>><
>>>:

�; if � 2 CH

�; if � =2 CH.

Note that f; g : A �! B = (PA; CA; PA � CA; CA � PA) are homomorphisms since their compo-

nents are functions. Since h is strong onto F, then eAjPH�CH = eH and dAjCH�PH = dH. By

Lemma B.21, then Equ(f; g) �H, and h is a regular monomorphism.

()) : Suppose h is a regular monomorphism. Thus, H is the equalizer of some precode homo-

morphisms f; g : A �! B. By Lemma B.21, eH = eAjPH�CH and dH = dAjCH�PH . Thus, h is a

strong homomorphism onto F. �

Theorem 6.5. Let h = (h1; h2) : H �! A be a monomorphism between codes. Then h is a regular

monomorphism in C if and only if it is a strong monomorphism onto F = (h1(PH); h2(CH); eA \

(h1(PH) � h2(CH)); dA \ (h2(CH) � h1(PH))) and there is no (�; �) 2 eA \ dnvA such that � 2

PAnh1(PH) and � 2 h2(CH).

Proof. If PH = ; or CH = ;, then the proof is the same as in Case 1 of Theorem 6.4. Thus, we

suppose that PH 6= ; and CH 6= ;. By relabeling, we may suppose that h = 1H. We also suppose

that for each � 2 PA, �0 =2 PA and for each � 2 CA, �0 =2 CA.

(() : Suppose h is a strong monomorphism onto F and there is no (�; �) 2 eA \ dnvA such that

� 2 PAnPH and � 2 CH. Let P = PAnPH and C = CAnCH. Let

e = ((P � CH) [(PH � C) [(P � C)) \ eA;

that is, e contains all the edges in eA incident on at least one vertex not in H. Similarly, let

d = ((CH � P) [(C � PH) [(C � P)) \ dA.

51

Let P 0 = f�0 j � 2 Pg, C 0 = f�0 j � 2 Cg,

e0 = f(�0; �) j (�; �) 2 eg [f(�; �0) j (�; �) 2 eg and d0 = f(�; �0)j(�; �) 2 dg [f(�0; �)j(�; �) 2 dg:

Let B = (PB; CB; eB; dB) = (PA [P
0; CA [C

0; eA [e
0; dA [d

0): We now show that B is a code by

contradiction. Assume there are �1; �2 2 PB with �1 6= �2 and � 2 CB such that (�1; �) 2 eB and

(�; �2) 2 dB. Since CB = CA [C 0, we have two cases.

Case 1: Suppose that � 2 CA. Since A is a code, then either �1 =2 PA or �2 =2 PA. That is,

�1 2 P
0 or �2 2 P

0. W.l.o.g., suppose �1 2 P
0. Then �1 = �0 for some � 2 P , and (�; �) 2 e � eA

since (�0; �) 2 e0. Since (�; �2) 2 dB = dA [d0, then either (�; �2) 2 dA or (�; �2) 2 d0. If

(�; �2) 2 dA, then �2 = � since A is a code. But, then (�; �) 2 eA \ dnvA , a contradiction. Thus,

(�; �2) 2 d0. Since � 2 CA, then �2 = 0 for some 2 PA and (�;) 2 d � dA. Since, (�; �) 2 eA

and (�;) 2 dA, then � = . Hence, �1 = �0 = 0 = �2, a contradiction.

Case 2: Suppose that � 2 C 0. Then � = �0 for some � 2 C. Thus, (�1; �) 2 eA and (�; �2) 2 dA.

Since A is a code, then �1 = �2, a contradiction.

Thus, B is a code. We now construct g = (g1; g2) : A �! B so that Equ(1A; g) � H. For

� 2 PA and � 2 CA, we de�ne

g1(�) =

8>>><
>>>:

�; if � 2 PH

�0; if � =2 PH,

and g2(�) =

8>>><
>>>:

�; if � 2 CH

�0; if � =2 CH.

It is clear from the de�nition of B that g is a homomorphism. Since h is a strong monomorphism

onto F, then eAjPH�CH = eH and dAjCH�PH = dH. By Lemma B.21, Equ(1A; g) �H. Thus, h is

a regular monomorphism.

()) : Suppose h is a regular monomorphism. Hence, there is a code B such thatH is the equalizer

of some homomorphisms f; g : A �! B. By Lemma B.21, eH = eAjPH�CH and dH = dAjCH�PH .

Thus, h is a strong homomorphism onto F.

Now, assume there are � 2 PAnh1(PH) = PAnPH and � 2 h2(CH) = CH such that (�; �) 2 eA\

dnvA . Since H is the equalizer of f = (f1; f2) and g = (g1; g2), then f1(�) 6= g1(�) since � =2 PH, and

52

f2(�) = g2(�) since � 2 CH. Since (�; �) 2 eA \ dnvA , then (f1(�); f2(�)); (g1(�); g2(�)) 2 eB \ dnvB .

This contradicts that B is a code since f1(�) 6= g1(�) and f2(�) = g2(�). �

6.5. Regular Epimorphisms. We note that the following was proven by Dr. Klappenecker inde-

pendently of this work and is recorded as Proposition 16 in [4].

Theorem 6.6. Let h : B �! H be a precode or code epimorphism. Then h is a regular epimorphism

if and only if it is a strong epimorphism.

Proof. The following proof also holds if B and H are assumed to be codes.

(() : Suppose h is a strong epimorphism. Let (s; t) be the kernel of h. We recall that H is

isomorphic to H0 = (PB=s; CB=t; eB=(s; t); dB=(t; s)).

Let fPigi2I be the family of s-equivalence classes of PB and fCjgj2J be the family of t-equivalence

classes of CB. Consider the code A = (PA =
S
i2I (Pi � Pi); CA =

S
j2J (Cj � Cj); ;; ;).

For (�;) 2 PA, we de�ne f1((�;)) = � and g1((�;)) = . Similarly, for (�; �) 2 CA, we

de�ne f2((�; �)) = � and g2((�; �)) = �. Since eA = ; = dA, then f = (f1; f2); g = (g1; g2) : A �!

B are trivially precode homomorphisms.

Let E1 be the smallest equivalence relation on PB containing the pairs (f1((�;)); g1((�;))) =

(�;) for all (�;) 2 PA, and let E2 be the smallest equivalence relation on CB containing the

pairs (f2((�; �)); g2((�; �))) = (�; �) for all (�; �) 2 CA. It is clear that E1 = s and E2 = t. As

in [4], Coeq(f; g) � (PB=E1; CB=E2; eB=(E1; E2); dB=(E2; E1)) = H0, which is isomorphic to H.

So, h is a regular epimorphism.

()) : Suppose h is a regular epimorphism. Thus, h is the coequalizer of precode homomorphisms

f; g : A �! B. Assume that h is not strong so that h2 Æ eB Æ hnv1 6= eH or h1 Æ dB Æ hnv2 6= dH.

W.l.o.g., suppose that h2 Æ eB Æ hnv1 6= eH. Hence, there exist � 2 PH and � 2 CH such that

(�; �) 2 eH, but there exist no �0 2 PB and �0 2 CB for which h1(�
0) = �, h2(�

0) = �, and

(�0; �0) 2 eB. Letting H0 = (PH; CH; eHnf(�; �)g; dH), then h : B �! H0 satis�es h Æ f = h Æ g.

53

However, (1PH ; 1CH) : H �! H0 is not a homomorphism, contradicting that (h;H) � Coeq(f; g).

Thus, h must be a strong homomorphism. �

6.6. Extremal Monomorphisms. Recall De�nition B.23.

Theorem 6.7. In P and C, a monomorphism

h = (h1; h2) : H �! A

is an extremal monomorphism if and only if

h : H �! F = (h1(PH); h2(CH); eA \ (h1(PH)� h2(CH)); dA \ (h2(CH)� h1(PH)))

is a strong monomorphism; that is, if and only if it is an isomorphism.

Proof. By relabeling, we suppose that h = 1H.

()) : Suppose that h is not an isomorphism onto F = (PH; CH; eA\(PH�CH); dA\(CH�PH)).

Let f = 1H : F �! F. Since h = f Æ h and h : H �! F is an epimorphism which is not an

isomorphism, then h : H �! A is not extremal.

(() : Suppose that h is an isomorphism onto F = (PH; CH; eA \ (PH �CH); dA \ (CH � PH)).

Suppose that h = f Æ e for some epimorphism e = (e1; e2) : H �! B and some homomorphism

f = (f1; f2) : B �! A. To show that h is extremal, we must show that e must be an isomorphism.

Since h is a monomorphism, then e must be a monomorphism. Thus, e1 and e2 are bijections.

Since h1 : PH �! PH and h2 : CH �! CH are bijections satisfying h1 = f1 Æ e1 and h2 = f2 Æ e2,

then f1 : PB �! PH and f2 : CB �! CH must be bijections. Since h : H �! F is a strong

epimorphism, then f : B �! F must be a strong epimorphism. Since strong precode bimorphisms

are precode isomorphisms, then f : B �! F is a precode isomorphism. Since h = f Æ e, then e must

be an isomorphism. �

Corollary 6.8. In P, the extremal monomorphisms are precisely the regular monomorphisms.

Proof. This is just a combination of Theorems 6.4 and 6.7. �

54

6.7. Extremal Epimorphisms. Recall De�nition B.23.

Theorem 6.9. In P and C, the extremal epimorphisms are precisely the regular epimorphisms.

Proof. This follows from Theorem 6.10 and Proposition B.27. �

6.8. Factorizations. We now prove the following theorem, noting that Dr. Klappenecker indpen-

dently showed that the categories P and C are uniquely (regular epi, mono)-factorizable.

Theorem 6.10. The categories P and C are uniquely (regular epi, mono)-factorizable and uniquely

(extremal epi, mono)-factorizable.

Proof. Let f = (f1; f2) : A �! B be a precode homomorphism. Recall from De�nition A.19 that

the image of f is the precode Im(f) = (f1(PA); f2(CA); f2 Æ eA Æ fnv1 ; f1 Æ dA Æ fnv2) and that

e = (f1; f2) : A �! Im(f) is a strong precode epimorphism. By Theorem 6.6, e is a regular

epimorphism. Let m = (1f1(PA); 1f2(CA)) : Im(f) �! B. Then m is a monomorphism and

f = mÆe. Thus, P is (regular epi, mono)-factorizable. By Proposition B.27, P is uniquely (regular

epi, mono)-factorizable. Notice that if A and B are codes, then so is Im(f) since a subprecode of

a code is again a code. The categories are uniquely (extremal epi, mono)-factorizable since regular

epimorphisms are extremal epimorphisms. �

Corollary 6.11. The categories P and C are (regular epi, mono) categories.

Proof. This follows directly from Theorem 6.10 above and Proposition B.28. �

Theorem 6.12. The category P is an (epi, regular mono) category and C is an (epi, extremal

mono) category.

Proof. By Theorems 6.1, 6.2, and B.20, the categories have intersections and equalizers and are

well-powered. Thus, by Theorem B.29, they are (epi, extremal mono) categories. By Theorem 6.8,

in P, the regular monomorphisms are the extremal monomorphisms. Hence, P is an (epi, regular

mono) category. �

55

Remark 6.13. We now show how to construct the unique (epi, extremal mono)-factorization of a

given precode homomorphism h = (h1; h2) : H �! A guaranteed by Theorem 6.12. Let

F = (PF = h1(PH); CF = h2(CH); eF = eA \ (h1(PH)� h2(CH)); dF = dA \ (h2(CH)� h1(PH))):

Then m = (1PF ; 1CF) : F �! F is an extremal monomorphism by Theorem 6.7; h : H �! F is an

epimorphism; and h = m Æ h.

Corollary 6.14. In P and C,

(1) The composition of extremal monomorphisms is an extremal monomorphism.

(2) The intersection of extremal subobjects is an extremal subobject.

(3) The inverse image (pullback) of an extremal monomorphism is an extremal monomorphism.

(4) The product of extremal monomorphisms is an extremal monomorphism.

Proof. This follows from Theorems 6.12, B.29, and B.30. �

6.9. Sections and Retractions. Recall De�nition B.8.

Proposition 6.15. In P and C, there are regular monomorphisms which are not sections.

Proof. Let H = (f�g; f�g; f(�; �)g; ;) and A = (f�; g; f�; �g; f(�; �)g; f(�;)g). Let f1(�) = �

and f2(�) = �. Then f = (f1; f2) : H �! A is a regular monomorphism, but it is not a section. To

see this, note that there is no homomorphism from A to H since the decode relation of A is empty

while the one for A is not. �

Lemma 6.16. Let A and B be precodes. If A
f
�!B is a section (or a retraction), then PA = ; ,

PB = ;, CA = ; , CB = ;, eA = ; , eB = ;, and dA = ; , dB = ;. Furthermore, if f is a

section, then a vertex in A is isolated if and only if its image under f is isolated in B.

Proof. ((): These hold since f is a homomorphism.

56

()): These hold since if f is a section or a retraction, then there exists a precode homomorphism

g : B �! A. �

Lemma 6.17. Let A and B be precodes. If f = (f1; f2) : A �! B is a section, then it must be an

isomorphism onto

F = (f1(PA); f2(CA); eB \ (f1(PA)� f2(CA)); dB \ (f2(CA)� f1(PA))):

If f is a retraction, then it must be a strong epimorphism.

Proof. By Proposition 16.15 in [6], sections are regular monomorphisms, and dually, retractions are

regular epimorphisms. The lemma then holds by Theorems 6.4 and 6.6. �

Lemma 6.18. Let A and B be precodes. Recall that we can view A and B as bipartite digraphs. If

A
f
�!B is a section, then f must send distinct components of A into distinct components of B.

Proof. Recall that a precode homomorphism is a graph homomorphism between the associated

digraphs. Thus, the image of a connected precode must be a connected precode. Now, if f is a

section, then there exists a precode homomorphism g : B �! A such that g Æ f = 1A. Since g and

f must each send components into components, the proof is complete. �

Lemma 6.19. Let A and B be precodes. Recall that we can view A and B as bipartite digraphs. If

B
g
�!A is a retraction with associated section A

f
�!B (i.e. gÆf = 1A) and XA is a graph component

of A, then there must be a component XB of B for which XA = Im(gjXB). That is, XA is the

image of XB under g. Furthermore, f(XA) is isomorphic to XA and gjf(XA) : f(XA) �! XA is

an isomorphism.

Proof. Let XA be a connected component of A. Then f(XA) is a subprecode of some connected

component XB of B. Since g is an epimorphism which must send components into components and

since g Æ f = 1A, then g(XB) = XA. Since f is monic, then f(XA) is isomorphic to XA. Since

g Æ f = 1A, then gjf(XA) : f(XA) �! XA is an isomorphism. �

57

Lemma 6.20. A monomorphism f = (f1; f2) : A = (PA; CA; eA = ;; dA = ;) �! B is a section if

and only if the following conditions hold:

(1) B = (PB; CB; eB = ;; dB = ;),

(2) PA 6= ; , PB 6= ;, and

(3) CA 6= ; , CB 6= ;.

Proof. ()): This holds by Lemma 6.16.

((): As mentioned on page 33 in [6], a morphism in the category of sets is a section if and only

if it is injective and is not the empty function from the empty set to a non-empty set. Thus, f1

and f2 are sections in the category of sets. Since the encode and decode relations of A and B are

empty, f is clearly a section in P and C. �

Lemma 6.21. Let A be a self-companion code with eA 6= ; or dA 6= ;. Then a precode monomor-

phism f : A �! B is a section if and only if it is an isomorphism onto F = (f1(PA); f2(CA); eB \

(f1(PA)� f2(CA)); dB \ (f2(CA)� f1(PA))) which sends distinct components into distinct compo-

nents and which sends isolated vertices to isolated vertices.

Proof. ()): This holds by Lemmas 6.16, 6.17, and 6.18.

((): Suppose f is an isomorphism onto F which sends distinct components of A into distinct

components of B and sends isolated vertices to isolated vertices. W.l.o.g., we suppose that f =

(1PA ; 1CA). Since A is self-companion, then eA 6= ; or dA 6= ; implies that there are 2 PA and

� 2 CA such that (; �) 2 eA \ dnvA . We de�ne g = (g1; g2) : B �! A by showing how it behaves

on a connected component XB = (PXB ; CXB ; eXB ; dXB) in the digraph representation of B.

By Lemma 6.18, either XB \ Im(f) = ; or there is a component XA = (PXA ; CXA ; eXA ; dXA)

of A such that XB \ Im(f) = XA. In the �rst case, for all � 2 PXB and � 2 CXB , we de�ne

g1(�) = and g2(�) = �. In the latter case, if XB is an isolated vertex, then we de�ne g to be the

identity on XB. If XB is not an isolated vertex, then neither is XA. Since A is a self-companion

58

code, then PXA = f 0g for some 0 2 PA, CXA 6= ;, and (0; �0) 2 eA \ dnvA for each �0 2 CXA .

Fix some �0 2 CXA . For each �
0 2 PXB , we de�ne g1(�

0) = 0. For each � 2 CXB , we de�ne

g2(�) =

8>>><
>>>:

�; if � 2 CXA

�0; if � =2 CXA .

It is clear that g is a homomorphism and that g Æ f = 1A. Thus, f is a section. �

We now give examples to show that the hypotheses of the above lemma cannot be weakened.

Example 6.22. Let A = (PA = fp1g; CA = fc1; c2g; eA = f(p1; c1)g; dA = envA) and

B = (PA; CA; eB = f(p1; c1); (p2; c2)g; dA = envB)

as depicted in Figure 3.

Precode A

p1p1

c1

c2

Precode B

p1p1

p2p2

c1

c2

Figure 3. An Isolated Vertex Sent to a Nonisolated Vertex

Notice that A is a self-companion code and that f = 1A sends distinct components into distinct

components. However, f sends an isolated vertex to a vertex which is not isolated. Since there is

no homomorphism g : B �! A satisfying g Æ f = 1A, then f is not a section.

59

Example 6.23. Let A = (PA = fp1; p3g; CA = fc1; c2g; eA = f(p1; c1); (p3; c2)g; envA) and

B = (fp1; p2; p3g; fc1; c2g; eB = f(p1; c1); (p2; c2); (p3; c2)g; dB = f(c1; p1); (c1; p2); (c2; p3)g)

as depicted in Figure 4.

Precode A

p1p1

p3p3

c1

c2

Precode B

p1p1

p2p2

p3p3

c1

c2

Figure 4. Distinct Components Not Sent to Distinct Components (Strip Chart Representation)

Notice that A is a self-companion code with no isolated vertices. However, f = 1A does not

send distinct components into distinct components since B has only one component as a bipartite

graph (see Figure 5).

Precode A

p1

p3

c1

c2

Precode B

p1

p2

p3

c1

c2

Figure 5. Distinct Components Not Sent to Distinct Components (Digraph Representation)

60

If f = 1A is a section, there must be a homomorphism g = (g1; g2) : B �! A such that g2 = 1CA

and g1jPA = 1PA . Also, g1(p2) must be adjacent to both c1 and c2 in A since p2 is adjacent to both

c1 and c2 in B. Thus, f is not a section.

Example 6.24. Let

A = (PA = fp1; p2g; CA = fc1; c2; c3g; eA = f(p1; c1); (p1; c2); (p2; c2); (p2; c3)g; e
nv
A)

and

B = (fp1; p2; p3g; fc1; c2; c3g; eB = f(p1; c1); (p1; c2); (p2; c2); (p2; c3); (p3; c1); (p3; c3)g; e
nv
B)

as depicted in Figure 6.

Precode A

p1p1

p2p2

c1

c2

c3

Precode B

p1p1

p3p3

p2p2

c1

c2

c3

Figure 6. The Domain Is Not a Code

Notice that A is a self-companion precode with no isolated vertices and that f = 1A sends distinct

components into distinct components. However, A is not a code. If f is a section, there must be a

homomorphism g = (g1; g2) : B �! A such that g2 = 1CA and g1jPA = 1PA . But, g1(p3) 6= p1 since

(p3; c3) 2 eB, but (p1; c3) =2 eA. Similarly, g1(p3) 6= p2. Thus, f is not a section.

61

Theorem 6.25. Let B be a self-companion code, and let A be a precode. Then an epimorphism

B
g
�!A is a retraction if and only if for each component XA of A, there is a component XB of B

for which XA = g(XB). We note that in this case, A will necessarily be a self-companion code as

well.

Proof. ()): This holds by Lemma 6.19.

((): Suppose the hypothesis holds. Then g is a strong epimorphism and A must be self-

companion. Since B is a self-companion code, then each component of B contains precisely one

plaintext element. Since g = (g1; g2) maps the components of B onto the components of A, then

the same holds for the components of A. Hence, A is a code.

We now de�ne f = (f1; f2) : A �! B on an arbitrary component XA = (PXA ; CXA ; eXA ; dXA) of

A. By hypothesis, there is a component XB = (PXB ; CXB ; eXB ; dXB) of B for which XA = g(XB).

We note that XA is an isolated vertex if and only if XB is as well, and in this case, f must send the

vertex in XA to the one in XB. So, we suppose that XA and XB have both plaintext and codetext

elements. We have already seen that they each contain a single plaintext element, say � 2 PXA

and 2 PXB . Furthermore, since they are components of self-companion codes, then for each

� 2 CXA and � 2 CXB , we must have (�; �) 2 eA \ d
nv
A and (; �) 2 eB \ dnvB . Since g1() = �, we

must de�ne f1(�) = . For each � 2 CXA , choose a �B 2 CXB for which g2(�B) = � and de�ne

f2(�) = �B. It is clear that f is a homomorphism and g Æ f = 1A. Hence, g is a retraction. �

We now give examples to show that the hypotheses of the above theorem cannot be weakened.

Example 6.26. Let A = (fp1g; fc1; c2; c3g; f(p1; c1); (p1; c2); (p1; c3)g; envA) and

B = (PB = fp1; p2g; CB = fc1; c2; c3g; eB = f(p1; c1); (p1; c2); (p2; c2); (p2; c3)g; e
nv
B)

as depicted in Figure 7.

62

Precode A

p1p1

c1

c2

c3

Precode B

p1p1

p2p2

c1

c2

c3

Figure 7. The Codomain Is Not a Code

Notice that B is a self-companion precode which is not a code. De�ne g = (g1; 1CB) : B �! A

via g1(p1) = g1(p2) = p1. Then g satis�es all hypotheses of the theorem with the exception of B

being a code. However, B contains no isomorphic copy of A. Thus, by Lemma 6.19, g is not a

retraction.

Example 6.27. Let A = (fp1; p2g; fcg; f(p1; c); (p2; c)g; f(c; p1)g) and

B = AI = (fp1g; finc; p1cp1g; f(p1; p1cp1); (p1;in c); (p2;in c)g; f(p1cp1; p1)g

as depicted in Figure 8. In the picture, we use p1c to represent p1cp1 and c in to represent inc.

Precode A

p1p1

p2p2

c

Precode B

p1p1

p2p2

p1c

c_in

Figure 8. The Domain Is a Code Which Is Not Self-Companion

63

Notice that B is a code which is not self-companion. The canonical map � : B �! A is not a

retraction since B contains no isomorphic copy of A.

Example 6.28. We note that in Example 6.27, A was a precode which was not a code. This

example shows that requiring A to be a code (as in the theorem) does not help either.

Let

A = (fp1g; fc1; c2; c3g; f(p1; c1); (p1; c2); (p1; c3)g; f(c3; p1)g)

and B = (fp1; p2g; fc1; c2; c3; c4; c5g; eB; dBg; where

eB = f(p1; c1); (p1; c3); (p2; c5); (p2; c2)g and dB = f(c3; p1); (c4; p1); (c4; p2); (c5; p2)g;

as depicted in Figure 9.

Precode A

p1p1

c3

c1

c2

Precode B

p2p2

p1p1

c5

c3

c4

c1

c2

Figure 9. The Codomain Is a Code Which Is Not Self-Companion

Notice that A is a code which is not self-companion. The map g = (g1; g2) : B �! A de�ned via

g1(p1) = g1(p2) = p1, g2(c1) = c1, g2(c2) = c2, and g2(c3) = g2(c4) = g2(c5) = c3 is not a retraction

since B contains no isomorphic copy of A.

64

6.10. Completeness and Cocompleteness. Since P and C have products and equalizers, then

Theorem B.49 gives us the following theorem.

Theorem 6.29. The categories P and C are complete and have multiple pullbacks, terminal objects,

inverse images, �nite intersections, intersections of regular subobjects, and inverse limits.

6.11. Projective and Injective Precodes. Recall De�nition B.50.

Theorem 6.30. A is projective in P or C if and only if eA = ; = dA.

Proof. ()) : Suppose that eA [dA 6= ;. W.l.o.g., suppose that eA 6= ;. Let F = A and B =

(PA; CA; eB = ;; dB = ;). Then g = 1A : A �! F and f = 1A : B �! F are epimorphisms.

However, since eA 6= ; and eB = ;, there is no homomorphism h : A �! B (much less one for

which f Æ h = g).

(() : Suppose that eA = ; = dA. Let B = (PB; CB; eB; dB) and F = (PF; CF; eF; dF) be

precodes (resp. codes). Let f = (f1; f2) : B �! F be an epimorphism and g = (g1; g2) : A �! F

be a homomorphism. For every � 2 PA, we choose �0 2 PB such that �0 2 f�11 (g1(�)), and we

de�ne h1(�) = �0. Similarly, for every � 2 CA, we choose �0 2 CB such that �0 2 f�12 (g2(�)),

and we de�ne h2(�) = �0. We note that if PA = ;, then h1 : PA �! PB and g1 : PA �! F are

the empty function, and if CA = ;, then h2 : CA �! CB and g2 : CA �! CF are the empty

function. By de�nition, f1 Æ h1 = g1 and f2 Æ h2 = g2, so that f Æ h = g. Since eA = ; = dA, then

h = (h1; h2) : A! B is a homomorphism. Thus, A is projective. �

Theorem 6.31. A is injective in P or C if and only if PA 6= ;, CA 6= ;, eA = PA � CA, and

dA = CA � PA. Hence, in C, A is injective if and only if A is of the form A = (f�g; CA; f�g �

CA; CA � f�g).

Proof. ()) : Suppose that it is not the case that PA 6= ;, CA 6= ;, eA = PA�CA, and dA = CA�PA.

Case 1: Suppose that PA = ; or CA = ;. W.l.o.g., suppose PA = ;. Then A = (;; CA; ;; ;).

Note that B = (PB = fpg; CA; ;; ;) is a code. Let F = A, and let g1 : PF �! PA and f1 : PF �! PB

65

be the empty function. If CA = ;, let g2 : CF �! CA and f2 : CF �! CB be the empty function;

otherwise, let g2 = 1CF = f2. In either case, f is a monomorphism. Since PB 6= ; and PA = ;,

there is no homomorphism from B to A. Thus, A is not injective.

Case 2: Suppose that PA 6= ; 6= CA and that eA 6= PA � CA or dA 6= CA � PA. W.l.o.g.,

suppose eA 6= PA � CA. Thus, there exist � 2 PA and � 2 CA such that (�; �) =2 eA. Notice that

B = (PB = f�g; CB = f�g; eB = f(�; �)g; dB = f(�; �)g) and F = (f�g; f�g; ;; ;) are codes. Also,

g = 1F : F �! A and f = 1F : F �! B are monomorphisms. To have h Æ f = g, we must de�ne

h = 1B : B �! A. But, h is not a homomorphism since (�; �) 2 eB and (�; �) =2 eA.

(() : Suppose that PA 6= ;, CA 6= ;, eA = PA � CA, and dA = CA � PA. Let B =

(PB; CB; eB; dB) and F = (PF; CF; eF; dF) be precodes (resp. codes). Let f = (f1; f2) : F �! B

be a monomorphism and g = (g1; g2) : F �! A be a homomorphism. For all � 2 PF and � 2 CF,

we must set h1(f1(�)) = g1(�) and h2(f2(�)) = g2(�). This is well-de�ned since f1 and f2 are

one-to-one. Now, �x � 2 PA and � 2 CA. For any �0 2 PB such that �0 =2 f1(PF), we de�ne

h1(�
0) = �, and for any �0 2 CB such that �0 =2 f2(CF), we de�ne h2(�

0) = �. It is clear that

h = (h1; h2) : B �! A is a homomorphism since eA = PA � CA and dA = CA � PA. �

6.12. Separators and Coseparators. Recall De�nition B.51.

Theorem 6.32. The categories P and C have no separators.

Proof. Consider the codes A = (PA = f�g; CA = ;; ;; ;) and B = (PB = f�; g; CB = ;; ;; ;).

De�ne f1; g1 : PA �! PB via f1(�) = � and g1(�) = . Let f2 = g2 : CA �! CB be the empty

function. Then f = (f1; f2); g = (g1; g2) : A �! B are distinct precode homomorphisms. If S is a

precode with CS 6= ;, then there is no homomorphism x : S �! A. Thus, for S to be a separator,

we must have CS = ;. Similarly, we must have PS = ;. However, the only homomorphism from

S = (;; ;; ;; ;) to A is the empty homomorphism, x = (;; ;), and f Æ x = g Æ x. Hence, there are no

separators. �

66

Lemma 6.33. Let A and B be codes and let f = (f1; h) and g = (g1; h) be distinct homomorphisms

from A to B; that is, f1 6= g1. Let S be a code for which there exist �; 2 PS with � 6= and

distinct �1; �2; �3; and �4 2 CS such that

f(�; �1); (�; �2); (; �2); (; �4)g � eS and f(�1; �); (�3; �); (�3;); (�4;)g � dS :

Then there exists a homomorphism x : B �! S satisfying x Æ f 6= x Æ g.

Proof. Choose �A 2 PA such that f1(�A) 6= g1(�A), and set �0 = f1(�A);
0 = g1(�A). For each

� 2 PB and each � 2 CB, de�ne

x1(�) =

8>>><
>>>:

�; if � 6= 0

 ; if � = 0

and x2(�) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�1; if � is of type o or (�; �) 2 eB \ dnvB for some � 6= 0

�2; if � is of type e

�3; if � is of type d

�4; if (0; �) 2 eB \ dnvB

We show that x : B �! S is a homomorphism by showing that it preserves the edges in B.

Suppose that (�; �) 2 eB [d
nv
B . If (�; �) 2 eB \ d

nv
B , then x(�; �) 2 f(�; �1); (; �4)g 2 eS \ d

nv
S . If

(�; �) 2 eBndnvB , then � is of type e and x(�; �) 2 f(�; �2); (; �2)g 2 eS . If (�; �) 2 dnvB neB, then

� is of type d and x(�; �) 2 f(�; �3); (; �3)g 2 dnvS . Since

x1(f1(�A)) = x1(�
0) = � 6= = x1(

0) = x1(g1(�A));

then x Æ f 6= x Æ g. �

Theorem 6.34. Let S = (PS ; CS ; eS ; dS) be a precode, and consider the following conditions on S:

i) There exist distinct �; 2 PS with � 6= and � 2 CS such that f(�; �); (; �)g � eS \ dnvS .

ii) There exist � 2 PS and �; � 2 CS with � 6= � such that f(�; �); (�; �)g � eS \ dnvS .

67

iii) There exist �; 2 PS with � 6= and distinct �1; �2; �3; and �4 2 CS such that

f(�; �1); (�; �2); (; �2); (; �4)g � eS and f(�1; �); (�3; �); (�3;); (�4;)g � dS :

S is a coseparator in the category of precodes, P, if and only if conditions (i) and (ii) hold. If S is

a code, then it is a coseparator in the category of codes, C, if and only if conditions (ii) and (iii)

hold.

Proof. ()) : Suppose S is a coseparator in P. We show that (i) holds. Let

A = (PA; CA; eA; dA) = (f�0g; f�0g; f(�0; �0)g; f(�0; �0)g)

and

B = (PB; CB; eB; dB) = (f�0; 0g; f�0g; f(�0; �0); (0; �0)g; f(�0; �0); (�0; 0)g):

De�ne f1; g1 : PA �! PB via f1(�
0) = �0 and g1(�

0) = 0. Then f = (f1; 1CA); g = (g1; 1CA) :

A �! B are distinct precode homomorphisms. Since S is a coseparator, there exists a homo-

morphism x = (x1; x2) : B �! S with x1 Æ f1 6= x1 Æ g1, so that x1(�
0) 6= x1(

0). Since

(�0; �0); (0; �0) 2 eB \ dnvB , then (x1(�
0); x2(�

0)); (x1(
0); x2(�

0)) 2 eS \ dnvS . Thus, (i) holds.

Suppose now that S is a coseparator in C. We show that (iii) holds. Let

A = (PA; CA; eA; dA) = (f�0g; f�0g; f(�0; �0)g; ;) and B = (PB; CB; eB; dB);

where PB = (f�0; 0g, CB = f�01; �
0
2; �
0
3; �
0
4g, eB = f(�0; �01); (�

0; �02); (
0; �02); (

0; �04)g, and dB =

f(�01; �
0); (�03; �

0); (�03;
0); (�04;

0)g): De�ne f1; g1 : PA �! PB via f1(�
0) = �0 and g1(�

0) = 0.

Let h : CA �! CB be the constant function onto �02. Then f = (f1; h); g = (g1; h) : A �! B

are distinct precode homomorphisms. Since S is a coseparator, there exists a homomorphism

x = (x1; x2) : B �! S such that x1 Æ f1 6= x1 Æ g1. Thus, x1(�0) 6= x1(
0).

Set � = x1(�
0), = x1(

0), �1 = x2(�
0
1), �2 = x2(�

0
2), �3 = x2(�

0
3), and �4 = x2(�

0
4).

Since (�0; �01); (
0; �04) 2 eB\d

nv
B and since x is a homomorphism, then (�; �1); (; �4) 2 eS\dnvS .

Since S is a code, and � 6= , then �1 and �4 must be distinct. Similarly, (�
0; �02); (

0; �02) 2 eB and

68

(�03; �
0); (�03;

0) 2 dB, imply that (�; �2); (; �2) 2 eS and (�3; �); (�3;) 2 dS . Since S is a code,

and � 6= , then �2 and �3 must be distinct. It is also clear that �2 and �3 must be distinct from

�1 and �4. Thus, (iii) holds.

We now show that if S is a coseparator in either category, then (ii) holds. Consider the codes

A = (PA; CA; eA; dA) = (f�0g; f�0g; f(�0; �0)g; f(�0; �0)g)

and

B = (PB; CB; eB; dB) = (f�0g; f�0; �0g; f(�0; �0); (�0; �0)g; f(�0; �0); (�0; �0)g):

De�ne f2; g2 : CA �! CB via f2(�
0) = �0 and g2(�

0) = �0. Then f = (1PA ; f2); g = (1PA ; g2) :

A �! B are distinct precode homomorphisms. Since S is a coseparator, there is a homomor-

phism x = (x1; x2) : B �! S with x2 Æ f2 6= x2 Æ g2. Thus,(ii) holds since x2(�
0) 6= x2(�

0) and

(x1(�
0); x2(�

0)); (x1(�
0); x2(�

0)) 2 eS \ dnvS .

(() : Suppose S satis�es (i) and (ii). Let A and B be precodes and f = (f1; f2); g = (g1; g2) :

A �! B be distinct precode homomorphisms.

Case 1: Suppose that f2 6= g2. Thus, there exists � 2 CA for which �0 = f2(�) 6= g2(�) = �0.

Let � 2 PS and �; � 2 CS with � 6= � be as in condition (ii). De�ne x1 : PB �! PS via x1(�
0) = �

for all �0 2 PB and x2 : CB �! CS via

x2(�
0) =

8>>><
>>>:

�; if �0 = �0

�; if �0 6= �0

Since (�; �); (�; �) 2 eS \ dnvS , then x = (x1; x2) : B �! S is a homomorphism. Also, x Æ f 6= x Æ g

since x2(f2(�)) = x2(�
0) = � 6= � = x2(�

0) = x2(g2(�)). Hence, S is a coseparator in P.

Case 2: Suppose that f1 6= g1. Thus, there exists � 2 PA for which �0 = f1(�) 6= g1(�) = 0.

Let �; 2 PS with � 6= and � 2 CS be as in condition (i). De�ne x2 : CB �! CS via x2(�
0) = �

for all �0 2 CB and x1 : PB �! PS via

69

x1(�
0) =

8>>><
>>>:

�; if �0 = �0

 ; if �0 6= �0

Since (�; �); (; �) 2 eS \ dnvS , then x = (x1; x2) : B �! S is a precode homomorphism. Also,

x Æ f 6= x Æ g since x1(f1(�)) = x1(�
0) = � 6= = x1(

0) = x1(g1(�)). Thus, S is a coseparator in

P.

If S is a code for which conditions (ii) and (iii) hold, we suppose that f = (f1; f2); g = (g1; g2) :

A �! B are distinct homomorphisms between codes. If f2 6= g2, then the proof above for pre-

codes works here too by employing (ii). If f2 = g2 and f1 6= g1, then Lemma 6.33 guarantees a

homomorphism x : B �! S satisfying x Æ f 6= x Æ g. Hence, S is a coseparator in C. �

In Algorithm 7.2, we show how to construct the split of a precode. It is interesting to note that

the subcode described in condition (iii) in Theorem 6.34 is the split of the subprecode given by

condition (i). Furthermore, since the subprecode described in condition (ii) is a code, it is its split

as well. Thus, we may restate the theorem as follows:

Theorem 6.35. S is a coseparator in P if and only if it contains

A = (f�; g; f�g; f(�; �); (; �)g; f(�; �); (�;)g)

and

B = (f�0g; f�0; �0g; f(�0; �0); (�0; �0)g; f(�0; �0); (�0; �0)g)

as subprecodes. If S is a code, then it is a coseparator in C if and only if it contains AI and BI

as subcodes.

70

7. SPLITTING A PRECODE

7.1. The ED-Split of a Precode. We start with a method of splitting A which will be useful

when we discuss precode parametrizations in Section 8.

Algorithm 7.1. Let A be a precode. We construct the precode

A�ed� = (PA
�ed�

= PA; CA
�ed�
; eA

�ed�
; dA

�ed�
);

called the ed-split of A, as follows:

Set PA
�ed�

= PA, CA
�ed�

= ;, eA
�ed�

= ;, and dA
�ed�

= ;.

For each � 2 CA

If 9�1; �2 2 PA such that �1 6= �2; (�1; �) 2 eA, and (�2; �) 2 dnvA , then

/* � must be split */

Add in� to CA
�ed�

Add �out to CA
�ed�

For each � 2 PA such that (�; �) 2 eA

Add (�;in �) to eA
�ed�

end for

For each � 2 PA such that (�; �) 2 dnvA

Add (�; �out) to d
nv
A
�ed�

end for

else

/* � does not need to be split */

Add � to CA
�ed�

For each � 2 PA

If (�; �) 2 eA, then

Add (�; �) to eA
�ed�

71

end if

If (�; �) 2 dnvA , then

Add (�; �) to dnvA
�ed�

end if

end for

end if

end for

7.2. The Split of a Precode. The following \split" is in many ways the most useful.

Algorithm 7.2. Let A be a precode. We construct a code AI, called the split of A, as follows:

Set PA
I
= PA, CA

I
= ;, eA

I
= ;, and dA

I
= ;.

For each � 2 CA

If 9�1; �2 2 PA such that �1 6= �2; (�1; �) 2 eA; and (�2; �) 2 dnvA , then

/* � must be split */

For each � 2 PA such that (�; �) 2 eA \ dnvA

Add ��� to CA
I

Add (�; ���) to eA
I

Add (�; ���) to dnvA
I

end for

If 9�1 2 PA such that (�1; �) 2 eAndnvA or

if 9�1; �2 2 PA such that �1 6= �2 and (�1; �); (�2; �) 2 eA, then

Add in� to CA
I

For each � 2 PA such that (�; �) 2 eA

Add (�;in �) to eA
I

end for

72

end if

If 9�1 2 PA such that (�1; �) 2 dnvA neA or

if 9�1; �2 2 PA such that �1 6= �2 and (�1; �); (�2; �) 2 dnvA , then

Add �out to CA
I

For each � 2 PA such that (�; �) 2 dnvA

Add (�; �out) to d
nv
A
I

end for

end if

else

/* � does not need to be split */

Add � to CA
I

For each � 2 PA

If (�; �) 2 eA, then

Add (�; �) to eA
I

end if

If (�; �) 2 dnvA , then

Add (�; �) to dnvA
I

end if

end for

end if

end for

We can give an alternate description of Algorithm 7.2 using the synoptic codebook matrices

MA and MA
I
. Let MA(�)(�) denote MA(�; �), the �-th entry of the �-th column of MA. In

the following algorithm, we use a question mark as a wildcard character. That is, we use 1? to

represent either symbol in fe = 10; s = 11g and ?1 to represent either symbol in fd = 01; s = 11g.

73

Algorithm 7.3. Let A be a precode. We construct MA
I

from MA as follows:

Set PA
I
= PA, CA

I
= ;, eA

I
= ;, and dA

I
= ;.

For each � in CA

If MA(�)(�) = 1? and MA(�)() =?1 for some �; 2 PA such that � 6= , then

/* � must be split */

For each 2 PA such that MA(�)() = 11

Add a column to MA
I

with a 11 in row and 00's elsewhere.

end for

If MA(�)(�) = 10 for some � 2 PA or

if MA(�)(�) = 1? and MA(�)() = 1? for some �; 2 PA such that � 6= , then

Add a column to MA
I

with a 10 in each row for which there is a 1? in MA(�)

and with 00's elsewhere

end if

If MA(�)(�) = 01 for some � 2 PA or

if MA(�)(�) =?1 and MA(�)() =?1 for some �; 2 PA such that � 6= , then

Add a column to MA
I

with a 01 in each row for which there is a ?1 in MA(�)

and with 00's elsewhere

end if

else

/* � does not need to be split */

Add a column to MA
I

identical to MA(�)

end if

end for

Remark 7.4. In constructing AI, for each � 2 CA, we add to CA
I

some nonempty subset

K� � (fin�; �out; �g [
S
�2PA

f���g). Furthermore, PA
I

= PA, and (�; �) 2 eA if and only if

74

(�; k) 2 eA
I

for some k 2 K�. Similarly, (�; �) 2 dA if and only if (k; �) 2 dA
I

for some k 2 K�.

Hence, there is a canonical strong epimorphism k = (k1; k2) : AI ! A such that k1 = 1PA and for

each � 2 CA, k2(K�) = f�g. We say that � 2 CA is a split vertex if jK� = k�12 (�)j > 1.

We next state and prove a theorem which is an analogue of Theorem 7 in [4] for AI. We �rst

de�ne several sets used in the proof of the theorem and the discussion which follows it.

Notation 7.5. Let h = (h1; h2) : Â! A be a precode homomorphism between the precodes Â and

A. Let �̂ 2 C
Â
and � = h2(�̂). We de�ne

P̂ê(�̂) = f�̂ 2 P
Â
j(�̂; �̂) 2 e

Â
g

P̂d̂nv(�̂) = f�̂ 2 P
Â
j(�̂; �̂) 2 dnv

Â
g

Pe(�) = f� 2 PAj(�; �) 2 eAg

Pdnv(�) = f� 2 PAj(�; �) 2 dnvA g

Ê(�̂) = (P
Â
� f�̂g) \ e

Â
= P̂ê(�̂)� f�̂g � e

Â

D̂nv(�̂) = (P
Â
� f�̂g) \ dnv

Â
= P̂d̂nv (�̂)� f�̂g � dnv

Â

E(�) = Pe(�)� f�g � eA.

Dnv(�) = Pdnv(�)� f�g � dnvA .

Eh(�̂) = h1(P̂ê(�̂))� f�g � E(�) � eA

Dnv
h (�̂) = h1(P̂d̂nv (�̂))� f�g � Dnv(�) � dnvA

Remark 7.6. In plain language, we have the following descriptions of the sets de�ned above:

P̂ê(�̂) is the set of elements in P
Â
which are adjacent to �̂ via an edge in e

Â
.

P̂d̂nv(�̂) is the set of elements in P
Â
which are adjacent to �̂ via an edge in dnv

Â
.

Pe(�) is the set of elements in PA which are adjacent to � via an edge in eA.

Pdnv(�) is the set of elements in PA which are adjacent to � via an edge in dnvA .

Ê(�̂) is the set of edges in e
Â
which are incident on �̂.

D̂nv(�̂) is the set of edges in dnv
Â

which are incident on �̂.

E(�) is the set of edges in eA which are incident on �.

75

Dnv(�) is the set of edges in dnvA which are incident on �.

Eh(�̂) is the set of edges in eA which are the images under h of the edges in Ê(�̂).

Dnv
h (�̂) is the set of edges in dnvA which are the images under h of the edges in D̂nv(�̂).

Theorem 7.7. Let A be a precode with associated split code AI and canonical strong epimorphism

k = (k1; k2) : AI ! A. Let Â be a code and h = (h1; h2) : Â ! A be a precode homomorphism.

Then there exists a precode homomorphism f = (f1; f2) : Â! AI such that h = k Æ f .

Proof. We recall that by de�nition, PA
I
= PA and k1 = 1PA . Since we need k1 Æ f1 = h1, then we

must set f1 = h1. Let �̂ 2 C
Â
and � = h2(�̂) 2 CA. We show how to de�ne f2(�̂) using the sets

de�ned in Notation 7.5.

Case 1: Suppose that �̂ 2 J(Â) = RAN(e
Â
) \ DOM(d

Â
). Since Â is a code, there is some

�̂ 2 P
Â
such that (�̂; �̂) 2 e

Â
\ dnv

Â
. Furthermore, (�̂; �̂) is the only edge in e

Â
incident to �̂ and

(�̂; �̂) is the only edge in d
Â
incident from �̂. Since h is a homomorphism, then (� = h1(�̂); �) must

be in eA \ dnvA . As in Algorithm 7.2, there is exactly one codetext vertex b 2 K� = k�12 (�) such

that (�; b) 2 eA
I
\ dnvA

I
. In particular, b = � if � is not a split vertex, and b = ��� if � is a split

vertex. In either case, we must set f2(�̂) = b.

Case 2: Suppose that �̂ 2 C
Â
nJ(Â). Thus, either Ê(�̂) = ; or D̂nv(�̂) = ;. That is, any edges

in Â incident on �̂ must be contained in one of e
Â
or dnv

Â
. W.l.o.g., suppose that D̂nv(�̂) = ;.

Case 2.1: Suppose � is not a split vertex. Then k�12 (�) = f�g, and we must de�ne f2(�̂) = �.

Case 2.2: Suppose � is a split vertex. Then � 2 J(A) and jk�12 (�)j > 1.

Case 2.2.1: Suppose jEh(�̂)j > 1. Then jÊ(�̂)j > 1. Since � is a split vertex, then in� 2

k�12 (�), and it is the only vertex in k�12 (�) which has more than one edge in eA
I

incident to it.

Thus, we must de�ne f2(�̂) =in �.

Case 2.2.2: Suppose jEh(�̂)j = 1; that is, Eh(�̂) = f(�; �)g for some � 2 PA.

76

Case 2.2.2.1: Suppose (�; �) 2 eAn(eA \ dnvA). Then ��� =2 k�12 (�). Thus, in� 2 k
�1
2 (�),

and it is the only vertex in k�12 (�) which has an edge in eA
I
incident from � to it. Hence, we must

de�ne f2(�̂) =in �.

Case 2.2.2.2: Suppose (�; �) 2 eA \ dnvA .

Case 2.2.2.2.1: Suppose jE(�)j � 1. Since jEh(�̂)j = 1 and Eh(�̂) � E(�), then

E(�) = Eh(�̂) = f(�; �)g. Since (�; �) 2 eA \ dnvA , then k�12 (�) = f���; �outg, and ��� is the only

vertex in k�12 (�) which has an edge in eA
I
incident from � to it. So, we must set f2(�̂) = ���.

Case 2.2.2.2.2: Suppose jE(�)j > 1. Since (�; �) 2 eA \ dnvA , then k�12 (�) � fin�; ���g,

and these are the only vertices in k�12 (�) which have edges in eA
I
incident from � to them. Since

jEh(�̂)j = 1, we may either set f2(�̂) = ��� or f2(�̂) =in �.

Case 2.2.3: Suppose jEh(�̂)j = 0. Then jÊ(�̂)j = 0 (i.e. �̂ is an isolated vertex), and we

may set f2(�̂) = m, for any m 2 k�12 (�). Since � is a split vertex, then jk�12 (�)j � 2. �

Remark 7.8. We note that the factorization in Theorem 7.7 is unique as long as Cases 2.2.2.2.2

and 2.2.3 never apply. Thus, the precode homomorphism f = (f1; f2) : Â ! AI is unique unless

C
Â

contains a vertex �̂ such that jk�12 (h2(�̂))j > 1 and any of the conditions speci�ed below in

(a),(b), or (c) hold:

(a) Ê(�̂) = ; = D̂nv(�̂) (Case 2.2.3)

(b) D̂nv(�̂) = ;, jEh(�̂)j = 1, Eh(�̂) � eA \ dnvA , and jE(�)j > 1 (Case 2.2.2.2.2)

(c) Ê(�̂) = ;, jDnv
h (�̂)j = 1, Dnv

h (�̂) � eA \ dnvA , and jDnv(�)j > 1 (Case 2.2.2.2.2)

In graph terms, f is unique unless there exists �̂ 2 C
Â
such that h2(�̂) is a split vertex and either

(a) �̂ is isolated; i.e., env
Â
(�̂) = ; and d

Â
(�̂) = ; (Case 2.2.3) OR

(b) the following three conditions hold (Case 2.2.2.2.2):

(i) all the edges incident on �̂ are contained in e
Â
(respectively dnv

Â
)

(ii) the image under h of these edges is a single edge which is contained in eA \ dnvA

(iii) there is more than one edge in eA (respectively dnvA) incident on �.

77

Notice that there is no set of conditions on Â alone which will guarantee uniqueness.

From a categorical perspective, we would like to have a result analogous to Theorem 7 in [4] to

hold for the split operator. The above theorem shows that no such result holds for the entire cate-

gory of precodes. We now attempt to construct a subcategory for which we have both existence and

uniqueness of factorization. However, per the above remark, we cannot merely place restrictions

on the structure of Â. We must restrict the homomorphisms contained in a candidate subcate-

gory. We begin with the largest potential subcategory. That is, we exclude from consideration all

homomorphisms prohibited by the above remark. Consider the following example.

Example 7.9. We de�ne

Â = (P
Â
= f1; 2g; C

Â
= f�; �; �g; e

Â
= f(1; �); (2; �)g; d

Â
= f(�; 1)g);

�A = (P �A = f1; 2g; C �A = f�; �g; e �A = f(1; �); (2; �)g; d �A = f(�; 1)g);

and

A = (PA = f1; 2g; CA = f�g; eA = f(1; �); (2; �)g; dA = f(�; 1)g):

De�ne f = (1PA ; f2) : Â �! �A and g = (1PA ; g2) :
�A �! A by de�ning

f2(�) = �; f2(�) = f2(�) = �; and g2(�) = g2(�) = �:

It is clear that Â and �A are codes and that f and g are morphisms which we do not exclude

outright. However, h = g Æ f is a prohibited morphism since � is mapped onto the split vertex �

in A; (1; �) is the only edge in Â incident on �; h(1; �) = (1; �) 2 eA \ dnvA ; and there is more

than one edge in eA incident on �. Thus, we must exclude at least one of these morphisms as well.

However, f is one of the most basic morphisms possible between codes, and g is one of the most

elemental morphisms from a code to a non-code precode. We certainly do not wish to exclude such

fundamental homomorphisms. We conclude that there is no useful subcategory of the category of

78

precodes for which we have a factorization theorem analogous to Theorem 7.7 and for which the

factorization must always be unique.

7.3. The Relationship Between the Split and Smash. Recall De�nition A.26. We now work

toward evidencing a connection between the split of a precode and its smash. Although the state-

ment of the following lemma may seem a bit odd, it will make the proof of the next theorem simpler.

We �rst recall some notation which we will use in the following proofs.

Remark 7.10. Let A be a precode. Then

Aop = (CA; PA; dA; eA);

(Aop)I = (CA; C(Aop)
I
; e(Aop)

I
; d(Aop)

I
);

and

((Aop)I)
op = (C(Aop)

I
; CA; d(Aop)

I
; e(Aop)

I
):

We also recall that C(Aop)
I

is the disjoint union C(Aop)
I
=
S
�2PA

K� as in Remark 7.4. Finally,

(((Aop)I)
op)# = (C(Aop)

I
=E;CA; d(Aop)

I
=(E; I); e(Aop)

I
=(I; E));

where E is the smallest equivalence relation containing e(Aop)
I
Æ d(Aop)

I
.

Lemma 7.11. Let A be a code, and recall Remark 7.10. If � and are in the same E-equivalence

class, then �; 2 K� for some � 2 PA; that is, � and were split from the same element of PA

in the formation of (Aop)I.

Proof. Throughout this proof, let C = C(Aop)
I
, e = e(Aop)

I
, and d = d(Aop)

I
. Suppose � and

are in the same E-equivalence class. Since E is the smallest equivalence relation containing e Æ d,

then there exist distinct �1; :::; �n�1 2 C such that

79

(�0 = �; �1) 2 e Æ d or (�1; �0 = �) 2 e Æ d

(�1; �2) 2 e Æ d or (�2; �1) 2 e Æ d

...

(�n�1; �n =) 2 e Æ d or (�n = ; �n�1) 2 e Æ d:

Thus, there exist �1; : : : ; �n 2 CA such that

((�0 = �; �1) 2 d and (�1; �1) 2 e) or ((�1; �1) 2 d and (�1; �0 = �) 2 e)

((�1; �2) 2 d and (�2; �2) 2 e) or ((�2; �2) 2 d and (�2; �1) 2 e)

...

((�n�1; �n) 2 d and (�n; �n =) 2 e) or ((�n = ; �n) 2 d and (�n; �n�1) 2 e):

We now show that for any 0 � i � n � 1, �i; �i+1 2 K� for some � 2 PA. Since the K� are

pairwise disjoint, this will show that �; 2 K� for some � 2 PA. Let 0 � i � n� 1, and suppose

that �i 2 K� and �i+1 2 K� for some �; � 2 PA. Now, as above, we have that

((�i; �i+1) 2 d and (�i+1; �i+1) 2 e) or ((�i+1; �i+1) 2 d and (�i+1; �i) 2 e):

W.l.o.g., suppose that (�i; �i+1) 2 d and (�i+1; �i+1) 2 e: Hence, (�; �i+1) 2 eA and (�i+1; �) 2

dA, so that (�; �) 2 dA Æ eA. Since A is a code, then � = �. �

Remark 7.12. For each 2 C(Aop)
I
, let E denote the E-equivalence class of . Then the

above lemma shows that if E� = E , then �; 2 K� for some � 2 PA. In particular each K� is

the disjoint union of some of the E-equivalence classes. That is, the E-equivalence classes form a

re�nement of the partition fK� j a 2 PAg of PA.

The following lemma is a partial converse of Lemma 7.11.

80

Lemma 7.13. Let A be a code, and recall Remark 7.10. Suppose �; 2 K� for some � 2 PA,

where � 6= . Then � and are in the same E-equivalence class if and only if (�; �) 2 eA \ dnvA

for some � 2 CA.

Proof. Throughout this proof, let C = C(Aop)
I
, e = e(Aop)

I
, and d = d(Aop)

I
. Since jK�j > 1,

then � is a split vertex with respect to the construction of (Aop)I from Aop.

((:) Suppose (�; �) 2 eA \ dnvA for some � 2 CA. Then (�; �) 2 dA and (�; �) 2 eA. By the

de�nition of (Aop)I, (�; ���) 2 e and (���; �) 2 d. We will be done if we can show that � and

are each E-equivalent to ���. Since these proofs are similar, we need only show that � and ���

are E-equivalent.

Since � 2 K�, then there is some edge incident on � in (Aop)I. Thus, (��; �) 2 e or (�; ��) 2 d

for some �� 2 CA. W.l.o.g., suppose that (�; ��) 2 d. Thus, either � = �out or � = Æ�Æ for some

Æ 2 CA.

Case 1: Suppose that � = Æ�Æ for some Æ 2 CA. Then (Æ; Æ�Æ) 2 e and (Æ�Æ; Æ) 2 d. By

Algorithm 7.2, we note that Æ�Æ 2 K� if and only if in� 2 K� or �out 2 K�. W.l.o.g., suppose

in� 2 K�. Thus, (Æ;in �) 2 e. Also, since (�; �) 2 dA, then (�;in �) 2 e. But, (���; �) 2 d and

(�;in �) 2 e imply that ��� and in� are in the same E-equivalence class. Similarly, (Æ�Æ; Æ) 2 d

and (Æ;in �) 2 e imply that � = Æ�Æ and in� are in the same E-equivalence class. Hence, ��� and

� are E-equivalent.

Case 2: Suppose that � = �out. Then (�out; �) 2 d. Since (� = �out; �) 2 d and (�; ���) 2 e,

then � and ��� are E-equivalent.

():) Suppose � and are in the same E-equivalence class, and assume there is no � 2 CA such

that (�; �) 2 eA \ dnvA . Thus, there are no elements of the form ��� in K�. Since � 6= , then

f�; g = K� = fin�; �outg. W.l.o.g., suppose � =in � and = �out.

Since E is the smallest equivalence relation containing e Æ d, then � and being in the same

E-class means there exist distinct �1; :::; �n�1 2 C such that

81

(�; �1) 2 e Æ d or (�1; �) 2 e Æ d

(�1; �2) 2 e Æ d or (�2; �1) 2 e Æ d

...

(�n�1;) 2 e Æ d or (; �n�1) 2 e Æ d:

Thus, there exist �1; :::; �n 2 CA such that

((�; �1) 2 d and (�1; �1) 2 e) or ((�1; �1) 2 d and (�1; �) 2 e)

((�1; �2) 2 d and (�2; �2) 2 e) or ((�2; �2) 2 d and (�2; �1) 2 e)

...

((�n�1; �n) 2 d and (�n;) 2 e) or ((; �n) 2 d and (�n; �n�1) 2 e):

W.l.o.g., suppose that (�; �1) 2 d and (�1; �1) 2 e. Now, �1 2 K�1 for some �1 2 PA. Since

� 2 K�, then (�; �1) 2 eA and (�1; �1) 2 dA, so that (�; �1) 2 dA Æ eA. Since A is a code, then

� = �1. Thus, (�; �1) 2 eA \ dnvA . However, this contradicts that there is no � 2 CA such that

(�; �) 2 eA \ dnvA . �

Remark 7.14. The proof of the above lemma shows that for � 2 PA such that jK�j > 1, there are

two cases:

1) K� = fin�; �outg, in which case fin�g and f�outg are distinct E-equivalence classes.

2) K� contains an element of the form ��� for some � 2 CA, in which case K� is contained in

an E-equivalence class. By Lemma 7.11, then K� must be an E-equivalence class.

Lemmas 7.11 and 7.13 (and their proofs) give us the following relationship between the codes A

and ((((Aop)I)
op)#).

Theorem 7.15. Let A be a code. Then the structure of ((((Aop)I)
op)#) is determined locally for

each � 2 PA as follows:

82

If either K� = f�g or K� 6= f�g and there is some � 2 CA such that (�; �) 2 eA \ dnvA , then the

E-equivalence class containing � is K�. Thus, (�; k) 2 eA if and only if (K�; k) 2 d(Aop)
I
=(E; I),

and (k; �) 2 dA if and only if (k;K�) 2 e(Aop)
I
=(I; E).

If K� 6= f�g and there is no (�; �) 2 eA \ dnvA for any � 2 CA, then K� = fin�; �outg. In this

case, there are two E-classes associated with K�: fin�g and f�outg. Moreover, (�; k) 2 eA if and

only if (f�outg; k) 2 d(Aop)
I
=(E; I), and (k; �) 2 dA if and only if (k; fin�g) 2 e(Aop)

I
=(I; E).

Remark 7.16. The above theorem simply says that if A is a code, then ((((Aop)I)
op)#) = B =

(PB; CB; eB; dB) is the minimal code having A as a homomorphic image and which satis�es the

following condition:

If � 2 PB and (�; �) =2 dBÆeB, then there are no �; Æ 2 CB such that (�; �) 2 eB and (Æ; �) 2 dB.

This condition is equivalent to the following one:

cBV D = eBV D [dBV D; where

eBV D = PBnDOM(eB); dBV D = PBnRAN(dB); and cBV D = PBnDOM(cB)

as in De�nition A.11.

Note that if we view codes as graphs, then the above characterization implies that ((((Aop)I)
op)#)

is the direct sum (see De�nition A.25) of the connected components of A with plaintext vertices added

as necessary to satisfy the above condition.

Example 7.17. Consider A = (PA = fp1; p2g; CA = fc1; c2; c3g; eA; dA), where

eA = f(p1; c2); (p1; c1); (p2; c2)g and dA = f(c1; p1); (c3; p1); (c3; p2))g:

Then B = (((Aop)I)
op)# = (C(Aop)

I
=E;CA; d(Aop)

I
=(E; I); e(Aop)

I
=(I; E)), where

C(Aop)
I
=E = fKp1 ; fp2g; fp3gg, d(Aop)

I
=(E; I) = f(Kp1 ; c1); (Kp1 ; c2); (fp2g; c2)g, and

e(Aop)
I
=(I; E) = f(c1;Kp1); (c3;Kp1); (c3; fp3g)g:

83

The plots of A and B in Figure 10 were generated using the Maple code given in Appendix C. We

note that the program represents elements of the form �out via � out, etc. Also, when it generates

the smash of a precode, it chooses a representative for an equivalence class to represent the class.

Thus, for example, it represents Kp1 with p1 out.

Precode A

p1p1

p3p3

p2p2

c1

c3

c2

Precode B

p1_outp1_out

p3p3

p2p2

c1

c3

c2

Figure 10. A Is Isomorphic to B = (((Aop)I)
op)#

Example 7.18. Consider A = (PA = fp1; p2; p3g; CA = fc1; c2g; eA; dA), where

eA = f(p1; c1); (p2; c1)g and dA = f(c2; p1); (c2; p3)g:

Then B = (((Aop)I)
op)# = (C(Aop)

I
=E;CA; d(Aop)

I
=(E; I); e(Aop)

I
=(I; E)), where

C(Aop)
I
=E = ffinp1g; finp2g; fp1outg; fp2outgg, d(Aop)

I
=(E; I) = f(fp1outg; c1); (fp2outg; c1)g, and

e(Aop)
I
=(I; E) = f(c2; finp1g); (c2; finp2g)g:

See Figure 11.

84

Precode A

p1p1

p2p2

c2

c1

Precode B

p1_inp1_in

p2_inp2_in

p1_outp1_out

p2_outp2_out

c2

c1

Figure 11. A Is Not Isomorphic to B = (((Aop)I)
op)#

7.4. The Bald-Split of a Precode. The following \split" is a subprecode of the one given by

Algorithm 7.2.

Algorithm 7.19. Let A be a precode. We construct a code A��; called the bald-split of A, as

follows:

Set PA
��
= PA, CA

��
= ;, eA

��
= ;, and dA

��
= ;.

For each � 2 CA

If 9�1; �2 2 PA such that �1 6= �2; (�1; �) 2 eA, and (�2; �) 2 dnvA , then

/* � must be split */

For each � 2 PA such that (�; �) 2 eA \ dnvA

Add ��� to CA
��

Add (�; ���) to eA
��

Add (�; ���) to dnvA
��

end for

(*) If 9�1 2 PA such that (�1; �) 2 eAndnvA , then

Add in� to CA
��

(*) For each � 2 PA such that (�; �) 2 eAndnvA

85

Add (�;in �) to eA
��

end for

end if

(*) If 9�1 2 PA such that (�1; �) 2 dnvA neA, then

Add �out to CA
��

(*) For each � 2 PA such that (�; �) 2 dnvA neA

Add (�; �out) to d
nv
A
��

end for

end if

else

/* � does not need to be split */

Add � to CA
��

For each � 2 PA

If (�; �) 2 eA, then

Add (�; �) to eA
��

end if

If (�; �) 2 dnvA , then

Add (�; �) to dnvA
��

end if

end for

end if

end for

We can give an alternate description of Algorithm 7.19 using the synoptic codebook matrices

MA and MA
��
. Let MA(�)(�) denote MA(�; �), the �-th entry of the �-th column of MA. In

86

the following algorithm, we use a question mark as a wildcard character. That is, we use 1? to

represent either symbol in fe = 10; s = 11g and ?1 to represent either symbol in fd = 01; s = 11g.

Algorithm 7.20. Let A be a precode. We construct MA
��
from MA as follows:

Set PA
��
= PA, CA

��
= ;, eA

��
= ;, and dA

��
= ;.

For each � in CA

If MA(�)(�) = 1? and MA(�)() =?1 for some �; 2 PA such that � 6= , then

/* � must be split */

For each 2 PA such that MA(�)() = 11

Add a column to MA
��
with a 11 in row and 00's elsewhere.

end for

If MA(�)(�) = 10 for some � 2 PA, then

Add a column to MA
��
with a 10 in each row

for which there is a 10 in MA(�) and with 00's elsewhere

end if

If MA(�)(�) = 01 for some � 2 PA, then

Add a column to MA
��
with a 01 in each row

for which there is a 01 in MA(�) and with 00's elsewhere

end if

else

/* � does not need to be split */

Add a column to MA
��
identical to MA(�)

end if

end for

Remark 7.21. In constructing A��, for each � 2 CA, we add to CA
��
some nonempty subset K� �

(fin�; �out; �g[
S
�2PA

f���g). Furthermore, PA
��
= PA, and there is a one-to-one correspondence

87

between eA and eA
��
such that (�; �) 2 eA if and only if (�; �) 2 eA

��
for some � 2 K�. Similarly,

there is a one-to-one correspondence between dA and dA
��
such that (�; �) 2 dA if and only if

(�; �) 2 dA
��
for some � 2 K�. Moreover, there is a one-to-one correspondence between eA \ d

nv
A

and eA
��
\ dnvA

��
such that (�; �) 2 eA \ dnvA if and only if (�; �) 2 eA

��
\ dnvA

��
for some � 2 K�.

Hence, there is a canonical strong epimorphism k = (k1; k2) : A�� ! A such that k1 = 1PA and for

each � 2 CA, k2(K�) = f�g. We say that � 2 CA is a split vertex if jK� = k�12 (�)j > 1.

We note that Algorithm 7.19 di�ers from Algorithm 7.2 only on the lines marked with (*).

The following theorem follows from the above remarks.

Theorem 7.22. Let A be a precode. Then A�� 6= AI if and only if there exists a split vertex � 2 CA

such that at least one of the following two conditions holds:

(i) There exist �1; �2 2 PA such that �1 6= �2; (�1; �) 2 eA; and (�2; �) 2 eAnd
nv
A

(ii) There exist �1; �2 2 PA such that �1 6= �2; (�1; �) 2 d
nv
A ; and (�2; �) 2 d

nv
A neA:

Theorem 7.23. Let A be a precode with bald-split A�� = (PA
��
; CA

��
; eA

��
; dA

��
) and canonical

strong epimorphism k = (k1; k2) : A�� ! A. Let Â be a code with no isolated codetext elements

and h = (h1; h2) : Â ! A be a precode homomorphism. If there exists a precode homomorphism

f = (f1; f2) : Â! A�� making the diagram

A A��

k
��

Â

h

��

f

��

commute (i.e. h = k Æ f), then f is unique.

Proof. Suppose that f = (f1; f2) : Â ! A�� is a precode homomorphism satisfying h = k Æ f . By

de�nition, PA
��
= PA and k1 = 1PA . Since k1 Æ f1 = h1, then f1 = h1. Hence, f1 is unique.

88

Let �̂ 2 C
Â
and � = h2(�̂). Since Â is a code and �̂ is not isolated, then there exists �̂ 2 P

Â

such that (�̂; �̂) 2 e
Â
or (�̂; �̂) 2 d

Â
. W.l.o.g., suppose that (�̂; �̂) 2 e

Â
, and let � = h1(�̂). Since

h is a homomorphism, then (�; �) 2 eA. As in Remark 7.21, there is a unique � 2 PA
��
such that

(�; �) 2 eA
��
. Thus, we must have f2(�̂) = �, and f2 is unique. �

Recall that Theorem 7.7 shows that we can factor any homomorphism from a code Â to a precode

A through AI. We immediately have the following corollary to Theorem 7.23.

Corollary 7.24. Let A be a precode such that A�� = AI. Let Â be a code with no isolated codetext

elements and h = (h1; h2) : Â ! A be a precode homomorphism. Let k = (k1; k2) : A�� ! A be the

canonical strong epimorphism. Then there exists a unique precode homomorphism f = (f1; f2) :

Â! A�� such that h = k Æ f .

We note that Corollary 7.24 and Theorem 7.22 give conditions on the structure of A which

guarantee the existence and uniqueness of a factorization through A��. We now give conditions on

the code Â which guarantee the existence and uniqueness of the factorization through A��.

De�nition 7.25. Let A = (PA 6= ;; CA 6= ;; eA; dA) be a precode.

For each � 2 CA, let P� = f� 2 PA j (�; �) 2 eA [d
nv
A g and set n� = jP�j. Let n be the

supremum of fn� j � 2 CAg. Then A is said to be of C-order n, and we call A a Cn precode. Note

that n may be in�nite.

Remark 7.26. For n 2 N, each codetext element in a Cn precode is adjacent to no more than n

plaintext elements. Furthermore, the C1 codes are precisely those for which each codetext element

of type e or d has precisely one edge incident on it.

Theorem 7.27. Let A be a precode with bald-split A�� and canonical strong epimorphism k =

(k1; k2) : A�� ! A. Let Â be a C1 code and h = (h1; h2) : Â ! A be a precode homomorphism.

Then there exists a precode homomorphism f = (f1; f2) : Â! A�� making the diagram

89

A A��

k
��

Â

h

��

f

��

commute; that is, h = k Æ f . Furthermore, if Â has no isolated codetext elements, then f is unique.

Proof. We note that if Â has no isolated codetext elements, then by Theorem 7.23, f must be

unique if it exists. By de�nition, PA
��
= PA and k1 = 1PA . Since we need k1 Æ f1 = h1, then we

must set f1 = h1.

Let �̂ 2 C
Â
and � = h2(�̂). We now show how to de�ne f2(�̂). If �̂ is isolated, we may choose

any � 2 k�12 (h2(�̂)) and set f2(�̂) = �. If �̂ is not isolated, then since Â is a C1 code, there is

precisely one �̂ 2 P
Â
for which (�̂; �̂) 2 e

Â
[dnv

Â
. Let � = h1(�̂). Since h is a homomorphism, then

(�; �) 2 eA if (�̂; �̂) 2 e
Â
and (�; �) 2 dnvA if (�̂; �̂) 2 dnv

Â
. Furthermore, by Remark 7.21, we know

that there is some � 2 K� such that (�; �) 2 eA
��
if (�; �) 2 eA and (�; �) 2 dA

��
if (�; �) 2 dA.

Thus, we may set f2(�̂) = �. �

De�nition 7.28. Let A = (PA 6= ;; CA 6= ;; eA; dA) be a precode such that eA and dnvA are

surjective relations; that is, for each � 2 CA, there exist (�; �) 2 eA and (; �) 2 dnvA for some

�; 2 PA. Then A is said to be a C-full precode. If A is a code, we call it a C-full code, and we

note that A is self-companion.

Lemma 7.29. Suppose that A is a C-full precode with bald-split A��: Then A�� is a C-full code (and

is therefore self-companion) if and only if A is a self-companion precode.

Proof. We have the canonical strong epimorphism k = (k1; k2) : A�� ! A.

((:) Suppose A is self-companion. Then eA = eA \ d
nv
A = dnvA . Let � 2 CA, and let P 0A =

f� 2 PAj(�; �) 2 eAg. Since A is C-full, then jP 0Aj 6= 0. If jP 0Aj > 1, then as in Algorithm 7.19,

K� = k�12 (�) =
S
�2P 0

A

���. Furthermore, (�; ���) 2 eA
��
\ dnvA

��
for each ��� 2 K�. If jP 0Aj = 1,

90

then P 0A = f�g for some � 2 PA. As in Algorithm 7.19, then K� = f�g and (�; �) 2 eA
��
\ dnvA

��
.

Since � was chosen arbitrarily, then eA
��
and dnvA

��
are surjective.

():) Suppose A�� is a C-full code. Since k is a strong precode homomorphism and A�� is self-

companion, then by Theorem 8B4 in [3], A = k(A��) is self-companion. �

De�nition 7.30. We call a self-companion C-full precode an SCF -precode. We note that the

SCF -precodes are precisely the self-companion precodes with no isolated codetext elements. The

SCF -codes are the self-companion precodes with no isolated codetext elements; that is, they are the

strictly S-codes as de�ned in De�nition 4.2. We also note that the SCF -codes are C1 codes as

de�ned in De�nition 7.25.

Let PSCF be the category of SCF -precodes and precode homomorphisms. The following corol-

lary of Theorem 7.27 is the analogue of Theorem 7.7 for the category PSCF .

Corollary 7.31. Let A be an SCF -precode with associated bald-split code A�� and canonical strong

epimorphism k : A�� ! A. Let Â be an SCF -code and h : Â ! A be a precode homomorphism.

Then there exists a unique precode homomorphism f : Â! A�� such that h = k Æ f .

The next example demonstrates the relationships evidenced in this section.

Example 7.32. Let PA = PA1
= PA2

= PA3
= f1; 2g and CA = CA1

= CA2
= CA3

= fag.

Let A = (PA; CA; eA; dA), where eA = f(1; a); (2; a)g and dA = f(a; 1); (a; 2)g:

Let A1 = (PA1
; CA1

; eA1
; dA1

), where eA1
= f(1; a); (2; a)g and dA1

= ;:

Let A2 = (PA2
; CA2

; eA2
; dA2

), where eA2
= f(1; a)g and dA2

= ;:

Let A3 = (PA3
; CA3

; eA3
; dA3

), where eA3
= f(1; a)g and dA3

= f(a; 1)g:

See Figure 12 for plots of these precodes.

91

Precode A

11

22

a

Precode A1

11

22

a

Precode A2

11

22

a

Precode A3

11

22

a

Figure 12. The Precodes A, A1, A2 and A3

Note that A is a self-companion precode. Furthermore, A1, A2, and A3 are codes. A1 is not a

C1 code and is therefore also not self-companion. A2 is a C1 code, but it is not self-companion.

Finally, A3 is a self-companion code.

Note that h = 1A can be viewed as a precode homomorphism from each of A1, A2, and A3 to A.

Furthermore,

1) h : A1 �! A does not factor through A��, but it factors uniquely through AI.

2) h : A2 �! A factors through both A�� and AI. The factorization through A�� is unique; the

factorization through AI is not.

3) h : A3 �! A factors uniquely through both A�� and AI.

92

8. PARAMETRIZATION

In calculus, it is sometimes possible to represent a curve in R2 given by a relation in the variables

x and y via functions f; g : T �! R, where T � R. The functions are called parametric equations

and together they form a parametrization of the curve. For example, the unit circle is given

by the relation x2 + y2 = 1. One possible parametrization of this curve is de�ned by setting

T = (�2 ;
3�
2) and by de�ning f(t) = cos(t) and g(t) = sin(t). The unit circle consists of all the

points (x = f(t); y = g(t)) where t ranges over T . We now develop an analogue of parametrization

for precodes.

De�nition 8.1. Let A be a precode, and let T be a set. A pair of codes (F;G) is called a parametriza-

tion of A in T if PF = PA, PG = CA, CF = CG = T , dG Æ eF = eA, and dF Æ eG = dA. Since

eF � PA � T; dF � T � PA; eG � CA � T; dG � T � CA; eA � PA � CA; and dA � CA � PA;

then dG Æ eF � PA � CA and dF Æ eG � CA � PA. Thus, the requirement that dG Æ eF = eA and

dF Æ eG = dA makes sense.

8.1. A First Parametrization. We start with an \obvious" parametrization.

Algorithm 8.2. Let A be a precode. We can construct a parametrization (F;G) for A as follows:

Set T = PA � CA.

Set PF = PA, PG = CA, CF = T , and CG = T .

Set eF = ;, dF = ;, eG = ;, and dG = ;.

For each (�; �) 2 eA

Add (�; (�; �)) to eF

Add (�; (�; �)) to dnvG

end for

For each (�; �) 2 dA

Add (�; (�; �)) to dnvF

93

Add (�; (�; �)) to eG

end for

Theorem 8.3. Let A be a precode, and let F and G be as de�ned in Algorithm 8.2. Then (F;G) is

a parametrization of A in T = PA�CA. Furthermore, A is self-companion , F is self-companion

, G is self-companion.

Proof. By de�nition, PF = PA, PG = CA, and CF = PA � CA = CG. To show that (F;G) is a

parametrization, we need to show that dG Æ eF = eA, dF Æ eG = dA, and that F and G are codes.

By examining Algorithm 8.2, we see that F is a code since the only possible edge incident on

(�; �) 2 CF in eF or dnvF is f(�; (�; �))g. We similarly see that G is a code. Since

(�; �) 2 eA , (�; (�; �)) 2 eF and (�; (�; �)) 2 dnvG

, (�; �)) 2 dG Æ eF

and

(�; �) 2 dA , (�; (�; �)) 2 dnvF and (�; (�; �)) 2 eG

, (�; �) 2 dF Æ eG;

then dG Æ eF = eA and dF Æ eG = dA.

Notice that A is self-companion , both F and G are self-companion since

(�; �) 2 eA \ d
nv
A , (�; (�; �)) 2 eF \ d

nv
F and (�; (�; �)) 2 eG \ d

nv
G :

Furthermore,

(�; (�; �)) 2 eF , (�; (�; �)) 2 dnvG and (�; (�; �)) 2 dnvF , (�; (�; �)) 2 eG:

Thus, F is self-companion if and only if G is self-companion. �

94

The following example shows that parameterizations are not, in general, unique. It also shows

that the parametrization given in Algorithm 8.2 is not minimal in any sense.

Example 8.4. Let A = (PA = f1; 2; 3g; CA = fag; eA = f(1; a); (2; a); (3; a)g; dA = envA) as

depicted in Figure 13.

Precode A

11

22

33

a

Figure 13. The Precode A in Example 8.4

Consider F0 = (f1; 2; 3g; fx; yg; eF0 = f(1; x); (2; x); (3; x)g; dF0 = f(y; 1); (y; 2); (y; 3)g) and

G0 = (fag; fx; yg; eG0 = f(a; y))g; dG0 = f(x; a)g) as depicted in Figure 14.

Precode F’

11

22

33

y

x

Precode G’

aa

x

y

Figure 14. A Parametrization of A

95

Then (F0;G0) is a parametrization of A in fx; yg. However, the parametrization (F;G) of A given

in Algorithm 8.2 satis�es

F = (f1; 2; 3g; f(1; a); (2; a); (3; a)g; eF = f(1; (1; a)); (2; (2; a)); (3; (3; a))g; dF = envF)

and

G = (fag; f(1; a); (2; a); (3; a)g; eG = f(a; (1; a)); (a; (2; a)); (a; (3; a))g; dG = envG):

Note that in Figure 15, we use 1a to represent (1; a), etc.

Precode F

11

22

33

1a

2a

3a

Precode G

aa

1a

2a

3a

Figure 15. The Parametrization of A from Algorithm 8.2

Note that F and G have jPA �CAj = 3 codetext elements, while F0 and G0 have 2. Furthermore,

jeFj = jdFj = jeGj = jdGj = jeF0j = jdF0 j = 3, while jeG0 j = jdG0 j = 1.

Although it is not minimal, the parametrization given in Algorithm 8.2 is nice in that it preserves

the self-companion property.

8.2. An ED-Split Parametrization. We now attempt to �nd a parametrization which is minimal

in some sense. It turns out that F0 in Example 8.4 is isomorphic to A�ed� recall (Algorithm 7.1).

This motivates the following algorithm.

96

Algorithm 8.5. Let A be a precode. We construct a parametrization

(F = (PF = PA; CF; eF; dF); G = (PG = CA; CG; eG; dG))

of A such that F is isomorphic to the subcode of A�ed� which is formed by removing the isolated

vertices from CA
�ed�

. By relabling if necessary, we assume that PA and CA are disjoint. We further

assume that no element in PA is of the form a, ina, or aout for any a 2 CA. We construct F = A�ed�

as in Algorithm 7.1, with the exception that we exclude the isolated vertices in CA from CF. We

now give the algorithm for constructing G:

Set PG = CA, CG = CF, eG = ;, and dG = ;. For each � 2 CA

If �̂ 2 CF, then

/* � was not a split vertex */

For each (�; �̂) 2 eF

Add (�̂; �) to dG

end for

For each (�̂; �) 2 dF

Add (�; �̂) to eG

end for

else

/* � was a split vertex, and thus in�; �out 2 CF. */

For each (�;in �) 2 eF

Add (in�; �) to dG

end for

For each (�out; �) 2 dF

Add (�; �out) to eG

end for

end if

97

end for

Theorem 8.6. Let A be a precode, and let F and G be as de�ned in Algorithm 8.5. Then (F;G) is

a parametrization of A.

Proof. By de�nition, PF = PA, PG = CA, and CF = CG. To show that (F;G) is a parametrization,

we need to show that dG ÆeF = eA, dF ÆeG = dA, and that F and G are codes. Since F is isomorphic

to a subcode of A�ed�, then F is a code. By examining Algorithm 8.5, we see that since F is a

code, then G must also be code. Now, for any � 2 CA, there are two cases. Either �̂ 2 CF or

in�; �out 2 CF.

Case 1: Suppose that �̂ 2 CF. Now,

(�; �) 2 eA , (�; �̂) 2 eF and (�̂; �) 2 dG

, (�; �) 2 dG Æ eF

and

(�; �) 2 dA , (�̂; �) 2 dF and (�; �̂) 2 eG

, (�; �) 2 dF Æ eG:

Case 2: Suppose that in�; �out 2 CF. Then, dG Æ eF = eA and dF Æ eG = dA since

(�; �) 2 eA , (�;in �) 2 eF and (in�; �) 2 dG

, (�; �)) 2 dG Æ eF

and

(�; �) 2 dA , (�out; �) 2 dF and (�; �out) 2 eG

, (�; �) 2 dF Æ eG:

�

98

Note that we have made a substantial improvement since jT j = jPAj � jCAj in Algorithm 8.2,

while jT j � 2 � jCAj in Algorithm 8.5.

8.3. A Minimal ED Parametrization. We begin with a de�nition.

De�nition 8.7. Let A be a precode, and let

(F = (PF = PA; CF = T; dF; dF);G = (PG = CA; CG = T; eG; dG))

be a parametrization of A. If (�; t) 2 eF and (t; �) 2 dG, then t is said to induce (�; �) 2 eA. We

also say that the edges (�; t) 2 eF and (t; �) 2 dG induce (�; �) 2 eA. Similarly, if (t; �) 2 dF

and (�; t) 2 eG, then t is said to induce (�; �) 2 dA. We also say that the edges (t; �) 2 dF and

(�; t) 2 eG induce (�; �) 2 dA.

Since we are interested in �nding a minimal parametrization for A, then we may assume that T

contains no elements which are isolated in F and G.

Lemma 8.8. Suppose that � 2 CA is a split vertex in Algorithm 7.1, and let

(F = (PF = PA; CF = T; dF; dF);G = (PG = CA; CG = T; eG; dG))

be any parametrization of A. Then at least two elements in T are necessary to induce the edges

incident on � in A{one for the edges in eA and one for the edges in dA.

Proof. By the de�nition of a split vertex, there exist �1; �2 2 PA with �1 6= �2 such that (�1; �) 2 eA

and (�; �2) 2 dA. By the de�nition of a parametrization, there must be some x 2 T such that

(�1; x) 2 eF and (x; �) 2 dG. Similarly, there must be some y 2 T such that (y; �2) 2 dF and

(�; y) 2 eG. Since F must be a code, then we must have that x 6= y. �

The above lemma shows that the parametrization in Algorithm 8.5 is minimal in a local sense.

However, it may be possible to produce another parametrization of A from the parametrization in

Algorithm 8.5 by combining certain elements in T which come from di�erent elements in CA. We

now explore this idea.

99

Notation 8.9. Let A be a precode. For each non-isolated � 2 CA, let In� = f� 2 PA j (�; �) 2 eAg

and Out� = f� 2 PA j (�; �) 2 dAg.

Lemma 8.10. Let (F = (PF = PA; CF = T; eF; dF);G = (PG = CA; CG = T; eG; dG)) be a

parametrization of A. Suppose �1; �2 2 CA are non-isolated vertices with �1 6= �2. Then

1) If �1 2 In�1nIn�2 and x 2 T induces (�1; �1) 2 eA, then x 6= y for any y 2 T which induces

any edge incident on �2 in A.

2) If �1 2 Out�1nOut�2 and x 2 T induces (�1; �1) 2 dA, then x 6= y for any y 2 T which

induces any edge incident on �2 in A.

Proof. We prove 1. The proof for 2 is similar. Suppose that �1 2 In�1nIn�2 and that x 2 T induces

(�1; �1) 2 eA. Thus, (�1; x) 2 eF and (x; �1) 2 dG. Since �1 2 In�1nIn�2 , then (�1; �2) =2 eA.

Suppose that y 2 T induces some edge in A incident on �2.

Case 1: Suppose that y induces (�2; �2) 2 eA; that is, suppose that (�2; y) 2 eF and (y; �2) 2 dG.

If x = y, then (�1; x) 2 eF and (y; �2) 2 dG imply that (�1; �2) 2 dG Æ eF = eA, a contradiction.

Case 2: Suppose that y induces (�2; �2) 2 dA; that is, suppose that (y; �2) 2 dF and (�2; y) 2 eG.

Now, (�2; y) 2 eG and (x; �1) 2 dG imply that x 6= y since �1 6= �2 and G is a code. �

Notation 8.11. Let A be a precode. For each nonempty B � PA, let In(A;B) = f� 2 CA j In� =

Bg and Out(A;B) = f� 2 CA j Out� = Bg. Notice fIn(A;B) j ; 6= B � PAg forms a partition of

the set of non-isolated elements in CA, as does fOut(A;B) j ; 6= B � PAg.

Algorithm 8.12. Let A be a precode. We construct a parametrization

(F = (PF = PA; CF; eF; dF);G = (PG = CA; CG; eG; dG))

of A in T = AIn [AOut, where

AIn = fiB j ; 6= B � PA and In(A;B) 6= ;g and AOut = foB j ; 6= B � PA and Out(A;B) 6= ;g:

100

Set PF = PA, PG = CA, CF = T , CG = T , eF = ;, dF = ;, eG = ;, and dG = ;.

For each (�; �) 2 eA

Let B = In�.

Add (�; iB) to eF

Add (iB ; �) to dG

end for

For each (�; �) 2 dA

Let B = Out�.

Add (oB ; �) to dF

Add (�; oB) to eG

end for

De�nition 8.13. A parametrization (F = (PF; CF = T; eF; dF);G = (PG; CG = T; eG; dG)) of

a precode A in which both F and G are codes of a certain pre-de�ned type, �, is called an �-

parametrization of A in T . For example, if both F and G are ED codes as de�ned in De�nition 4.8,

we call (F;G) an ED-parametrization of A.

An �-parametrization of A in T is said to be a minimally-edged �-parametrization of A if each

edge in A is induced by precisely one element in T and each edge in F and each edge in G induces

some edge in A.

A parametrization (F;G) of A in T is said to be a minimal parametrization of A if it is minimally-

edged and for any parametrization (F0;G0) of A in S, we have jT j � jSj, jeFj � jeF0j, jdFj � jdF0j,

jeGj � jeG0 j, and jdGj � jdG0 j.

Theorem 8.14. Let A be a precode, and let F and G be as de�ned in Algorithm 8.12. Then (F;G)

is an ED-parametrization of A in AIn [AOut. Furthermore, it is a minimal ED-parametrization

of A.

101

Proof. By de�nition, PF = PA, PG = CA, and CF = AIn [AOut = CG. To show that (F;G) is a

parametrization, we need only show that dG Æ eF = eA, dF Æ eG = dA, and that F and G are codes.

By examining Algorithm 8.12, we see that the only edges incident in F on iB 2 CF are encode

edges, and the only edges incident in F on oB 2 CF are decode edges. Thus, F is an ED-code. We

similarly see that G is an ED-code.

Let � 2 CA, B1 = In�, and B2 = Out�. Then, dG Æ eF = eA and dF Æ eG = dA since

(�; �) 2 eA , (�; iB1
) 2 eF and (iB1

; �) 2 dG

, (�; �) 2 dG Æ eF:

and

(�; �) 2 dA , (oB2
; �) 2 dF and (�; oB2

) 2 eG

, (�; �) 2 dF Æ eG:

We now show minimality. By Algorithm 8.12, each edge in A is induced by precisely one element

in T . We now show that for any vertex in T , there must be at least one corresponding vertex in S

for any ED-parametrization

(F0 = (PF0 ; CF0 = S; eF0; dF0);G0 = (PG0 ; CG0 = S; eG0 ; dG0))

of A. Recall that T contains no isolated vertices.

Let K1 � CA be the set of all codetext elements which are part of an edge in eA and K2 � CA

be the set of all codetext elements which are part of an edge in dA. Since (F0;G0) must be an

ED-parametrization, then each element in S can either induce only edges in eA or only edges in

dA. Let S1 � S be the set of elements which induce edges in eA and S2 � S be the set of elements

which induce edges in dA. Note that S1 and S2 are disjoint.

For each � 2 K1, there must be some �̂ 2 S1 which induces an edge in eA incident on �.

Furthermore, by Lemma 8.10 (part 1), we may only have �̂ = ̂ for some �; 2 CA only if

In� = In . Thus, there must be at least one element in S1 for each element in AIn. Similarly,

102

by applying Lemma 8.10 (part 2), we see that there must be at least one element in S2 for each

element in AOut. Since T = AIn [AOut, then jT j � jSj. �

We now give examples showing that sometimes the parametrization in Algorithm 8.5 is \smaller"

than the one given in Algorithm 8.12, while sometimes the opposite holds.

Example 8.15. Let A = (PA = f1g; CA = fag; eA = f(1; a)g; dA = envA), as depicted in Figure 16.

Precode A

11

a

Figure 16. The Precode A from Example 8.15

The parametrization (F;G) of A given in Algorithm 8.5 satis�es PF = PA,PG = CA, CF = fag =

CG, eF = f(1; a)g, dF = envF , eG = f(a; a)g, and dG = envG as depicted in Figure 17.

Precode F

11

a

Precode G

aa

a

Figure 17. The Parametrization Given by Algorithm 8.5 (Example 8.15)

103

The parametrization (F0;G0) of A given in Algorithm 8.12 satis�es PF0 = PA, PG0 = CA, CF0 =

fif1g; of1gg = CG0 = fif1g; of1gg, eF0 = f(1; if1g)g, dF0 = f(of1g; 1)g), eG0 = f(a; of1g)g, and

dG0 = f(if1g; a)g). In Figure 18, we use o f1g to represent of1g, etc.

Precode F’

11

o_{1}

i_{1}

Precode G’

aa

i_{1}

o_{1}

Figure 18. The Parametrization Given by Algorithm 8.12 (Example 8.15)

Note that F and G have 1 codetext element, while F0 and G0 have 2.

Example 8.16. Let A = (PA = f1g; CA = fa; bg; eA = f(1; a); (1; b)g; dA = f(a; 1)g). See Fig-

ure 19.

Precode A

11

a

b

Figure 19. The Precode A from Example 8.16

104

The parametrization (F;G) of A given in Algorithm 8.5 satis�es PF = PA, PG = CA, CF =

fa; bg = CG, eF = f(1; a); (1; b)g, dF = f(a; 1)g, eG = f(a; a)g, and dG = f(a; a); (b; b)g. See

Figure 20.

Precode F

11

a

b

Precode G

aa

bb

a

b

Figure 20. The Parametrization Given by Algorithm 8.5 (Example 8.16)

The parametrization (F0;G0) of A given in Algorithm 8.12 satis�es PF0 = PA, PG0 = CA,

CF0 = fif1g; of1gg = CG0 , eF0 = f(1; if1g)g, dF0 = f(of1g; 1)g, eG0 = f(a; of1g)g, and dG0 =

f(if1g; a); (if1g; b)g. See Figure 21.

Precode F’

11

o_{1}

i_{1}

Precode G’

aa

bb

i_{1}

o_{1}

Figure 21. The Parametrization Given by Algorithm 8.12 (Example 8.16)

105

Note that jCFj = jCF0 j. Also, jdFj = jdF0 j = 1, jeGj = jeG0 j = 1, and jdGj = jdG0 j = 2. However,

jeFj = 2, while jeF0 j = 1.

Example 8.17. Let A = (PA = f1g; CA = fa; b; cg; eA = f(1; a); (1; b); (1; c)g; dA = envA), as

depicted in Figure 22.

Precode A

11

a

b

c

Figure 22. The Precode A from Example 8.17

The parametrization (F;G) of A given in Algorithm 8.5 satis�es PF = PA, PG = CA, CF =

fa; b; cg = CG, eF = f(1; a); (1; b); (1; c)g, dF = envF , eG = f(a; a); (b; b); (c; c)g, and dG = envG . See

Figure 23.

Precode F

11

a

b

c

Precode G

aa

bb

cc

a

b

c

Figure 23. The Parametrization Given by Algorithm 8.5 (Example 8.17)

106

The parametrization (F 0 = (PF 0 ; CF 0 ; eF 0 ; dF 0); G0 = (PG0 ; CG0 ; eG0 ; dG0)) of A given in Al-

gorithm 8.12 satisi�es PF0 = PA, PG0 = CA, CF0 = fif1g; of1gg = CG0 , eF0 = f(1; if1g)g,

dF0 = f(of1g; 1)g, eG0 = f(a; of1g); (b; of1g); (c; of1g)g, and dG0 = f(if1g; a); (if1g; b); (if1g; c)g. See

Figure 24.

Precode F’

11

o_{1}

i_{1}

Precode G’

aa

bb

cc

i_{1}

o_{1}

Figure 24. The Parametrization Given by Algorithm 8.12 (Example 8.17)

Note that jeGj = jeG0 j = 3 and jdGj = jdG0 j = 3. However, jCFj = 3, while jCF0 j = 2. Also,

jeFj = jdFj = 3, while jeF0j = jdF0j = 1.

Example 8.18. Let A = (PA = f1; 2g; CA = fa; b; cg; eA = f(1; a); (1; b); (2; c)g; dA = envA) as

depicted in Figure 25.

107

Precode A

11

22

a

b

c

Figure 25. The Precode A from Example 8.18

The parametrization (F;G) of A given in Algorithm 8.5 satis�es eF = f(1; a); (1; b); (2; c)g, dF =

envF), eG = f(a; a); (b; b); (c; c)g, and dG = envG . See Figure 26.

Precode F

11

22

a

b

c

Precode G

aa

bb

cc

a

b

c

Figure 26. The Parametrization Given by Algorithm 8.5 (Example 8.18)

The parametrization (F0;G0) of A given in Algorithm 8.12 satis�es eF0 = f(1; if1g); (2; if2g)g;

dF0 = f(of1g; 1); (of2g; 2)g); eG0 = f(a; of1g); (b; of1g); (c; of2g)g; and

dG0 = f(if1g; a); (if1g; b)g); (if2g; c)g: See Figure 27.

108

Precode F’

11

22

o_{1}

o_{2}

i_{1}

i_{2}

Precode G’

aa

bb

cc

i_{1}

i_{2}

o_{1}

o_{2}

Figure 27. The Parametrization Given by Algorithm 8.12 (Example 8.18)

Note that jeGj = jeG0 j = 3 and jdGj = jdG0 j = 3. However, jCFj = 3, while jCF0 j = 4. Also,

jeFj = jdFj = 3, while jeF0 j = jdF0 j = 2. Thus, (F;G) is \smaller" in terms of number of codetext

elements, while (F0;G0) is \smaller" with respect to number of edges.

8.4. A Minimal Parametrization. Since we now better understand the properties of parame-

terizations, we continue to work toward creating a truly minimal one. Any parametrization of A is

of the form

(F = (PF; CF = T; eF; dF);G = (PG; CG = T; eG; dG)):

We attempt to construct a parametrization which minimizes jT j. We begin with a lemma that

seems unmotivated, but is necessary for the discussion which follows.

Lemma 8.19. Let (F = (PF; CF = T; eF; dF);G = (PG; CG = T; eG; dG)) be a parametrization of

a precode A in T . Let �1; �2 2 CA be non-isolated vertices such that �1 6= �2, with �1 a codetext

element of type s. Suppose that t1 2 T induces the edges incident on �1 and t2 2 T induces any

edge incident on �2. Then t1 6= t2.

Proof. Since �1 is of type s, then the only edges incident on �1 are (�1; �1) 2 eA and (�1; �1) 2 dA

for some �1 2 PA. An edge incident on �2 may be of the form (�2; �2) 2 eA or (�2; �2) 2 dA.

W.l.o.g., we suppose that t2 induces the edge (�2; �2) 2 eA.

109

Assume that t1 = t2. By Lemma 8.10, then In�1 = In�2 . Since In�1 = f�1g, then �2 = �1.

Since t2 = t1 induces (�2 = �1; �2) 2 eA, then (�1; t1) 2 eF and (t1; �2) 2 dG. Also, (�1; t1) 2 eG

and (t1; �1) 2 dF since t1 induces (�1; �1) 2 dA. Since G is a code, (�1; t1) 2 eG, and (t1; �2) 2 dG,

then �1 = �2, a contradiction. �

Let C1 be the set of elements in CA which must be split to form A�ed� (recall Algorithm 7.1).

These are precisely the � 2 CA for which there exist �1; �2 2 PA with �1 6= �2 such that (�1; �) 2 eA

and (�; �2) 2 dA. Let C2 be the set of elements in CA of type d or e, and let C3 be the set of

elements in CA of type s. Then C1; C2; and C3 form a partition of the non-isolated elements in CA.

If � 2 C1, then by Lemma 8.8, at least two elements in T are necessary to induce the edges

incident on � in A (one for the encode edges and one for the decode edges). If � 2 C2, it is

possible to induce the edges incident on � using only one element in T . The parameterizations in

Algorithm 8.5 and Algorithm 8.12 are such parameterizations.

If � 2 C3, then the only edges incident on � are (�; �) 2 eA and (�; �) 2 dA for some � 2 PA.

In this case, it is possible to induce these edges with a single element in T (as in Algorithm 8.5).

The other alternative (as employed in Algorithm 8.12) is to use two elements in T to induce these

edges. Furthermore, Lemma 8.19 shows that if we use a single element in T to induce the edges on

�, then it cannot be used to induce edges on any other element in CA.

We have seen (as in Algorithm 8.12) that if we use distinct elements to induce the encode and

decode edges incident on an arbitrary non-isolated � 2 CA, then it may be possible to use these

same elements to induce the edges incident on other elements in CA. In particular, for any � 2 CA

such that In� = In�, we may use one element t1 2 T to induce all of the edges in eA incident on

� and �. Similarly, if Out� = Out�, we may use one element t2 2 T to induce all of the edges in

dA incident on � and �. Furthermore, Lemma 8.10 shows that if In� 6= In�, then t1 cannot be

used to induce both an edge in eA incident on � and an edge in eA incident on �. Similarly, if

Out� 6= Out�, then t2 cannot be used to induce both an edge in dA incident on � and an edge in

dA incident on �.

110

Now, if � 2 C3, then using separate elements to induce the encode and decode edges incident

on � will result in fewer elements in T when we can use both of the elements to induce edges on

other elements in CA. If we can use only one of the elements to induce edges on other elements in

CA, then the number of elements required in T will remain the same, but the number of edges in F

required to induce the edges incident on � will be reduced. This is the gist of the following lemma.

Lemma 8.20. Let A be a precode. Let � 2 CA be a non-isolated vertex of type s; that is, the

edges incident on � are (�; �) 2 eA and (�; �) 2 dA for some � 2 PA. Suppose there is some

� 6= � for which In� = In� (resp. Out� = Out�), and suppose that there is no �0 2 CA for which

Out� = Out�0 (resp. In� = In�0). Let

B = (PA; CB = CAnf�g; eA \ (PA � CB); dA \ (CB � PA));

that is, B is the precode formed from A be removing the codetext element �. Let

(F = (PF; CF = T; eF; dF);G = (PG; CG = T; eG; dG))

be any parametrization of B in T such that �e 2 T induces the elements in eA incident on � (resp.

�d 2 T induces the elements in dA incident on �). To create a parametrization for A from the

parametrization (F;G) of B, we must add an element, say t =2 T , to T to induce (�; �) 2 dA (resp.

(�; �) 2 eA).

Using t to generate only the edge (�; �) 2 dA (resp. (�; �) 2 eA) will require fewer edges in F

and G than will using t to induce both (�; �) 2 eA and (�; �) 2 dA.

Proof. Suppose that we use t to induce both edges. We must add (�; t) to eF and (t; �) to dG to

generate (�; �) 2 eA. We must add (�; t) to eG and (t; �) to dF to generate (�; �) 2 dA.

Now, suppose that we use �e to induce (�; �) 2 eA and t to induce (�; �) 2 dA. Since �e generates

the edges in eA incident on � and since In� = In� = f�g, then (�; �e) 2 eF and (�e; �) 2 dG. To

generate (�; �) 2 dA, we need only add (�; t) to eG and (t; �) to dF. �

111

Notation 8.21. Let A be a precode. Recall the de�nitions made in Notation 8.11. Let

S = f� 2 CA j � is of type sg and L = f� 2 S j jIn(A; In�)j = 1 and jOut(A; Out�)j = 1g:

Recall that In� is the set of elements in PA which are incident on � via edges in eA. Also, recall

that for each nonempty B � PA, In(A; B) = f� 2 CA j In� = Bg and Out(A; B) = f� 2 CA j

Out� = Bg. Thus, In(A; In�) = f� 2 CA j In� = In�g and Out(A; Out�) = f� 2 CA j Out� =

Out�g. Thus, L is the set of � 2 CA for which using two elements to induce the edges incident on

� will not result in a \smaller" parametrization. Note that for ; 6= B � PA, then

In(A; B) � L, In(A; B) = Out(A; B) = f�g for some � 2 L

, Out(A; B) � L:

Algorithm 8.22. Let A be a precode. Let

AIn = fiB j ; 6= B � PA; In(A; B) 6= ;; and In(A; B) * Lg

and

AOut = foB j ; 6= B � PA; Out(A; B) 6= ;; and Out(A; B) * Lg:

We construct a parametrization

(F = (PF = PA; CF = T; eF; dF);G = (PG = CA; CG = T; eG; dG))

of A in T , where T = AInB [AOutB [L. Note that AInB , AOutB , and L are pairwise disjoint.

Except for the method of handling the edges incident on elements of L, this parametrization is

identical to the one given in Algorithm 8.12.

Set PF = PA, PG = CA, CF = T , CG = T , eF = ;, dF = ;, eG = ;, and dG = ;.

For each non-isolated � 2 CA

If � 2 L then

/* � is of type s */

Let � 2 PA be the unique element such that (�; �) 2 eA and (�; �) 2 dA.

112

Add (�; �) to eF

Add (�; �) to dG

Add (�; �) to dF

Add (�; �) to eG

else

Let B = In�.

For each (�; �) 2 eA

Add (�; iB) to eF

Add (iB ; �) to dG

end for

Let B = Out�.

For each (�; �) 2 dA

Add (oB ; �) to dF

Add (�; oB) to eG

end for

end if

end for

Theorem 8.23. Let A be a precode, and let F and G be as de�ned in Algorithm 8.22. Then (F;G)

is a minimal parametrization of A.

Proof. We need only show that (F;G) is a parametrization of A since minimality follows from the

discussion preceding Algorithm 8.22. However, the proof that (F;G) is a parametrization is similar

to those given in the earlier theorems of this section. �

De�nition 8.24. Parameterizations (F;G) and (F0;G0) are said to be isomorphic if F is isomorphic

to F0 and G is isomorphic to G0.

113

We now compare the parametrization in Algorithm 8.22 with the earlier ones by revisiting Ex-

amples 8.15, 8.16, 8.17, and 8.18.

Example 8.25. Let A = (PA = f1g; CA = fag; eA = f(1; a)g; dA = envA) as in Example 8.15. The

parametrization (F00;G00) of A given in Algorithm 8.22 satis�es F00 = A and

G00 = (PG00 = CA; CG00 = CA; eG00 = f(a; a)g; dG00 = envG00):

Note that (F00;G00) is the parametrization (F;G) of A given in Algorithm 8.5.

Example 8.26. Let A = (PA = f1g; CA = fa; bg; eA = f(1; a); (1; b)g; dA = f(a; 1)g) as in

Example 8.16. The parametrization (F00;G00) of A given in Algorithm 8.22 is the parametrization

(F0;G0) given in Algorithm 8.12.

Example 8.27. Let A = (PA = f1g; CA = fa; b; cg; eA = f(1; a); (1; b); (1; c)g; dA = envA) as in

Example 8.17. The parametrization (F00;G00) of A given in Algorithm 8.22 is the parametrization

(F0;G0) given in Algorithm 8.12.

Example 8.28. Let A = (PA = f1; 2g; CA = fa; b; cg; eA = f(1; a); (1; b); (2; c)g; dA = envA) as

in Example 8.18. Also as in Example 8.18, let (F;G) be the parametrization of A given by Algo-

rithm 8.5, and let (F0;G0) be the parametrization of A given by Algorithm 8.12.

The parametrization (F00;G00) of A given in Algorithm 8.22 satis�es eF00 = f(1; if1g); (2; c)g,

dF00 = f(of1g; 1); (c; 2)g, eG00 = f(a; of1g); (b; of1g); (c; c)g, and

dG00 = f(if1g; a); (if1g; b); (c; c)g: See Figure 28.

114

Precode F’’

22

11

c

o_{1}

i_{1}

Precode G’’

cc

aa

bb

c

i_{1}

o_{1}

Figure 28. The Parametrization Given by Algorithm 8.22 (Example 8.28)

Note that G, G0, and G00 each have 6 edges. This example is interesting since F00 and F0 have the

same number of edges, but F00 has fewer codetext elements than F0. Also, F00 and F have the same

number of codetext elements, but F00 has fewer edges than F. Thus, (F00;G00) is an improvement

over both (F;G) and (F0;G0).

115

9. CONCLUSION

The purpose of this paper was to further the work begun in [2], [3], and [4]. In particular, we

accomplished the following tasks:

(1) Rewrote [2] and [3] in terms of the alternate representations of precodes as bipartite digraphs

and Boolean matrices.

(2) Counted various types of bipartite graphs up to isomorphism, and counted various classes

of codes and precodes up to isomorphism.

(3) Identi�ed many of the classical objects and morphisms from category theory within the

categories P and C.

(4) Described various ways of constructing a code from a precode by \splitting" the precode,

identifying important properties of these constructions and their interrelationship. Dis-

cussed the properties of the constructed codes with regard to the factorization of homomor-

phisms through them, and discussed their relationship to the code constructed from the

precode by \smashing."

(5) De�ned a parametrization of a precode and gave constructions of various parametrizations

of a given precode, including a \minimal" parametrization.

(6) Used the computer algebra system, Maple, to represent and display a precode and its

opposite, smash, split, bald-split, and various parametrizations. Implemented the formulae

developed for counting bipartite graphs and precodes up to isomorphism.

Although many topics were explored extensively, there are still promising possibilities for future

research within the \general theory of codes." For example, it appears that precodes might be

used to describe general access structures as described in [9]. In this case, Shamir's secret-sharing

scheme (see [10]) is immediately described in terms of precodes.

116

REFERENCES

[1] G. R. Blakley and I. Borosh, Codes, unpublished manuscript, 1995.

[2] , A general theory of codes i: Basic concepts, in \Proceedings of the Klagenfurt Confer-

ence, May 29-June 1, 1997," Contributions to General Algebra, Vol. 10, Klagenfurt, Austria,

(1998), 1{29. MR 99m:94062

[3] , A general theory of codes ii: Paradigms and homomorphisms, in \First International

Workshop, Proceedings/ISW'97, September 17-19, 1997," Information Security, Vol. 1396,

Tatsunokuchi, Ishikawa, Japan, (1998), 1{30.

[4] G. R. Blakley, I. Borosh, T. Holcomb, and A. Klappenecker, Categorical code constructions,

in preparation.

[5] F. Harary and E. M. Palmer, \Graphical enumeration," Academic Press, New York, 1973. MR

50 #9682

[6] H. Herrlich and G. E. Strecker, \Category theory," Allyn and Bacon, Inc., Boston, 1973. MR

50 #2284

[7] T. W. Hungerford, \Algebra," Springer-Verlag, New York, 1974. MR 82a:00006

[8] S. Mac Lane, \Categories for the working mathematician," Springer-Verlag, New York, 1998.

MR 2001j:18001

[9] A. J. Menezes, P. van Oorschot, and S. Vanstone, \Handbook of applied cryptography," CRC

Press, Boca Raton, FL, 1997. MR 99g:94015

[10] A. Shamir, How to share a secret, Communications of the ACM 22 (1979), no. 11, 612{613.

MR 80g:94070

117

APPENDIX A

PRECODE PRELIMINARIES

A.1. Precodes as Strip Charts. As documented in 6A in [2], a two-strip chart is a useful way

to present precodes graphically. A strip chart is composed of vertical axes alternating with vertical

strips. A vertical axis consists of symbols representing the elements in some set. A vertical strip

consists of line segments between points in two vertical axes, representing a relation between the

sets represented by the axes. To display a precode A, we use the format PeCdP , where P denotes a

vertical axis representing PA, C is a vertical axis representing CA, e is a vertical strip representing

eA, and d is a vertical strip representing dA. We give the following example to demonstrate the

above discourse.

Example A.1. Let

A = (PA = fp1g; CA = fc1; c2; c3g; eA = f(p1; c2); (p2; c1); (p2; c2)g; dA = f(c1; p2); (c3; p2)g:

Then a strip-chart presentation of A is depicted below, where we use p1 to represent p1, etc.

Precode A

p2p2

p1p1

c1

c3

c2

Figure 29. A Strip Chart Representation of a Precode

118

In addition to the set-theoretic de�nition of a precode given above, there are also useful repre-

sentations of precodes in terms of bipartite digraphs and matrices.

A.2. Precodes as Bipartite Digraphs. As in section 5A of [2], we show how bipartite graphs

can represent precodes and vice versa. Let PA [CA be the vertex set of a bipartite digraph A,

where PA and CA are disjoint sets. Let eA be a set of directed edges from PA to CA; that is, let

eA � PA�CA. Also, let dA � CA�PA be a set of directed edges from CA to PA. We can represent

A by the four-tuple, A = (PA; CA; eA; dA). Hence, we can view A as a precode.

Similarly, we can represent a precode A = (PA; CA; eA; dA) by a digraph. The sets PA and CA

can be viewed as disjoint vertex sets (by relabeling if necessary), and the relations eA � PA�CA and

dA � CA � PA specify adjacency structures between these sets. The bipartite digraph associated

with A is the graph whose vertex set is PA [CA and whose edge set is given by eA [dA.

With a slight abuse of notation, we will call the ordered pairs in eA [dA edges in A. As in

Theorem 5A1 in [2], we note that if A is a code, then the bipartite graph representing A has the

property that every two-arc path beginning in PA (and thus also ending in PA) is a circuit. Theorem

5A2 states that every bipartite digraph A = (PA; CA; eA; dA) with the property that every two-arc

path which begins (and thus ends) in PA is a circuit represents a code from PA to CA.

A.3. Precodes as Boolean Matrices. The following comes from the discussion in Section 5 of [1].

The zero-one complete atomic Boolean algebra ZOBAP = (f0; 1g;_;^;:;�) satis�es

0 ^ 0 = 0 ^ 1 = 1 ^ 0 = 0 _ 0 = :1 = 0;

1 _ 0 = 0 _ 1 = 1 _ 1 = 1 ^ 1 = :0 = 1:

We note that it is also a poset (partially ordered set) in which 0 � 1.

119

Let o = 00; d = 01; e = 10; and s = 11. The synoptic complete atomic Boolean algebra

SY BAP = (fo; d; e; sg;_;^;:;�) is de�ned via

o ^ e = o ^ d = o ^ s = e ^ d = :s = o;

o _ d = d _ d = d ^ d = d ^ s = :e = d;

o _ e = e _ e = e ^ e = e ^ s = :d = e;

s _ o = s _ e = s _ d = e _ d = :o = s:

SY BAP is a poset satisfying o � e � s and o � d � s.

We can view each of o, d, e, and s as two-vectors over ZOBAP . In this case, the SY BAP

operations _, ^, :, � are precisely the corresponding operations in ZOBAP applied coordinate-

wise.

The following corresponds to De�nition 5B:1 in [1].

De�nition A.2. Let A be a precode. The synoptic codebook matrix MA of A is de�ned by setting

MA(�; �) =

8>>>>>>>>>><
>>>>>>>>>>:

s if (�; �) 2 eA and (�; �) 2 dA;

e if (�; �) 2 eA and (�; �) =2 dA;

d if (�; �) =2 eA and (�; �) 2 dA;

o if (�; �) =2 eA and (�; �) =2 dA:

We can view the entries of MA as two-bit vectors and reference them accordingly. The left bit is

the encode (or E) bit, and the right bit is the decode (or D) bit. For example, if MA(�; �) = e = 10,

we may write MA(�; �)(E) = 1 and MA(�; �)(D) = 0.

Notice that each column in MA represents the local structure of A with respect to a particular

codetext element.

A.4. Subprecodes, Unions, and Intersections. The following is a restatement of 2D1 in [2].

De�nition A.3. Let A and Â be precodes. Â is a subprecode of A (and A is a superprecode of Â)

if P
Â
� PA, CÂ � CA, eÂ � eA, and dÂ � dA. A subprecode which is a code is called a subcode.

120

Similarly, a superprecode which is a code is a supercode. We note that a subprecode of a code is a

code.

The following comes from 2D2 in [2].

De�nition A.4. The intersection of the precodes A and Â is the precode

A \ Â = (PA \ PÂ; CA \ CÂ; eA \ eÂ; dA \ dÂ):

We note that A \ Â is a code if either A or Â is a code.

A.5. Companions, Self-Companion Codes, and Nubs. The following is a restatement of 3A1

in [2].

De�nition A.5. Let A be a precode. The companion Apn of A is the precode Apn = (PA; CA; d

A ; e

A).

If A = Apn, then A is called a self-companion precode. The companion of a code, and a self-

companion code, are de�ned analogously.

The following is De�nition 3A8 in [2].

De�nition A.6. Let A be a precode. The self-companion kernel (the nub) of A is the precode

N(A) = (PA; CA; c; c
), where c is as in De�nition 2.2.

A.6. Opposites, Self-Opposite Codes, and Hinges. The following is a restatement of 3B1

in [2].

De�nition A.7. Let A be a precode. The the precode Aop = (CA; PA; dA; eA) is called the opposite

of A. If Aop = A, then A is said to be self-opposite. The opposite of a code, and a self-opposite

code, are de�ned analogously.

The following is a restatement of 3B6 in [2].

121

De�nition A.8. Let A be a precode. The precode

H = H(A) = (PA \ CA; PA \ CA; eA \ dA; eA \ dA) = A \Aop

is called the hinge of A.

A.7. Janiform Codes. The following is a restatement of 3C1 in [2].

De�nition A.9. Let A be a precode. A is a janiform precode if Aop is a code. A janiform code is

a code whose opposite is also a code.

A.8. Self-Companion, Self-Opposite Codes. The following is a restatement of 3D4 in [2].

De�nition A.10. Let A be a precode. We call Aoppn = (Aop)pn = (Apn)op the companion opposite

of A. The list of four precodes [A;Apn;Aop;Aoppn] is called the quartet of A.

A.9. Nulls. The following is 4A7 in [2].

De�nition A.11. Let A be a precode. The set eANL of encode nulls, the set dANL of decode

nulls, the set cANL of circulation nulls, and the set sANL of simultaneous nulls are de�ned by

setting

eANL = CAnRAN(eA);

dANL = CAnDOM(dA);

cANL = CAnRAN(cA);

sANL = eANL \ dANL:

122

Similarly, the set eAV D of encode voids, the set dAV D of decode voids, the set cAV D of circulation

voids, and the set sAV D of simultaneous voids are de�ned by setting

eAV D = PAnDOM(eA);

dAV D = PAnRAN(dA);

cAV D = PAnDOM(cA);

sAV D = eAV D \ dAV D:

A.10. Homomorphisms. We start with homomorphisms between relations.

A.10.1. Relation Homomorphisms. As in [3], we say that (G;H; r) is a relation to mean that r is a

binary relation from G to H . The following de�nitions correspond to 7A1, 7A2, and 7A4 in [3].

De�nition A.12. A relation homomorphism from the relation (G;H; r) to the relation (Ĝ; Ĥ;m)

is a pair (g; h) of functions g : G ! Ĝ and h : H ! Ĥ such that h Æ r Æ g � m. We call the

relation Im((g; h)) = (g(G); h(H); h Æ r Æ g) the image of the homomorphism (g; h). A relation

homomorphism (g; h) is called a relation epimorphism if g and h are surjections.

De�nition A.13. A relation homomorphism (g; h) from (G;H; r) to (Ĝ; Ĥ;m) is a strong relation

homomorphism if m � h Æ r Æ g .

De�nition A.14. Suppose that g : G ! Ĝ and h : H ! Ĥ are functions. Suppose that (g; h)

is a relation homomorphism from (G;H; r) to (Ĝ; Ĥ;m), and that the function pair (g ; h) is a

relation homomorphism from (Ĝ; Ĥ;m) to (G;H; r). Then (g; h) is said to be a relation isomorphism

from (G;H; r) to (Ĝ; Ĥ;m).

A.10.2. Quotients and Canonical Maps. The following de�nition is a combination of De�nitions 6C1

and 6C2 and Lemma 6C3 in [3].

123

De�nition A.15. If (G;G; s) is an equivalence relation, then the quotient, G modulo s, is the set

G=s = fs(fg) j 2 Gg;

i.e., G=s is the partition of G induced by the equivalence relation s. Its members are called cells.

Any function g : G! Ĝ e�ects a partition 	[g] = fg (f̂g) j ̂ 2 RAN(g)g, where the cells are

the �bers of g. It is clear that s = g Æ g is the equivalence relation such that G=s = 	[g].

Furthermore, an equivalence relation (G;G; s) determines a canonical function fs : G ! G=s

such that fs = f(; s(fg)) j 2 Gg. It is clear that f s Æfs = s and fsÆf s = diag((G=s)2) = iG=s.

The following de�nition comes from 6C5 in [3].

De�nition A.16. Let (G;G; r) be a relation, and let (G;G; s) and (H;H; t) be equivalence relations.

We de�ne the quotient relation

(G;H; r)=(s; t) = (G=s;H=t; r=(s; t))

where

r=(s; t) = ft Æ r Æ f

s

= f(s(fg); t(f�g)) j (; �) 2 rg:

We recall 7A6 from [3].

De�nition A.17. Let (g; h) be a relation homomorphism from (G;H; r) to (Ĝ; Ĥ;m). Then the

equivalence relation pair

Ker((g; h)) = (g Æ g; h Æ h)

is called the kernel of the homomorphism (g; h).

124

A.10.3. Isomorphism Theorems for Relations. The following theorem is stated and proven in [3] as

Theorem 7B1. It is an analogue to the �rst isomorphism theorem of group theory.

Theorem A.18. Let (g; h) be a relation homomorphism from (G;H; r) to (Ĝ; Ĥ;m) with kernel

(s; t) = (g Æ g; h Æ h). Let (fs; ft) be the canonical map pair from (G;H; r) onto (G;H; r)=(s; t).

Then

1. The natural map pair n = (g Æ f s ; h Æ f t) is a relation homomorphism from (G;H; r)=(s; t)

to (Ĝ; Ĥ;m):

2. If (g; h) is a strong relation epimorphism, then n = (g Æf s ; hÆf t) is a relation isomorphism

from (G;H; r)=(s; t) to (Ĝ; Ĥ;m):

A.10.4. Precode Homomorphisms. We are now ready to de�ne precode homomorphisms using re-

lation homomorphisms. The following de�nitions come from 8A1, 8A2, 8A3, and 8A4 in [3].

De�nition A.19. Let A and Â be precodes. A pair (g; h) of functions g : P ! P
Â
and h : CA ! C

Â

is a precode homomorphism if the following two conditions hold:

1. (g; h) is a relation homomorphism from (PA; CA; eA) to (P
Â
; C
Â
; e
Â
):

2. (h; g) is a relation homomorphism from (CA; PA; dA) to (C
Â
; P
Â
; d
Â
):

By De�nition A.12, these two conditions are equivalent to requiring that

h Æ eA Æ g
 � e

Â
and g Æ dA Æ h

 � d
Â
:

If g and h are surjections, then (g; h) is called a precode epimorphism.

The precode Im((g; h)) = (g(P); h(C); h Æ eA Æ g ; g Æ dA Æh) is called the image of the precode

homomorphism (g; h), and we may also denote it by (g; h)(A).

For a precode A, we will often use 1A to denote the function pair (1PA ; 1CA). That is, for any

superprecode B of A, 1A : A �! B represents the natural inclusion precode homomorphism.

De�nition A.20. Let (g; h) : A �! Â be a precode homomorphism such that e
Â
� hÆeA Æg and

d
Â
� g Æ dA Æh . Then (g; h) is called a strong precode homomorphism from A to Â. Note that by

125

De�nition A.13, this is equivalent to requiring that (g; h) be a strong relation homomorphism from

(PA; CA; eA) to (P
Â
; C
Â
; e
Â
) and (h; g) be a strong relation homomorphism from (CA; PA; dA) to

(C
Â
; P
Â
; d
Â
). If g and h are surjections, then we say that (g; h) is a strong precode epimorphism.

De�nition A.21. Let (g; h) : A �! Â be a precode homomorphism. If (g ; h) is a precode

homomorphism from Â to A, then (g; h) is a precode isomorphism. This is equivalent to requiring

that (g; h) be a relation isomorphism from (PA; CA; eA) to (P
Â
; C
Â
; e
Â
) and (h; g) be a relation

isomorphism from (CA; PA; dA) to (C
Â
; P
Â
; d
Â
).

The following example from [4] shows that not every precode homomorphism (g; h) for which

g and h are bijections is a precode isomorphism. It is an extension of Example 2.28. However,

we note that a strong precode homomorphism (g; h) for which g and h are bijections is a precode

isomorphism.

Example A.22. Let G = f0; 1g, and let 1G : G �! G be the identity function. Note that 1G is a

bijection, but (1G; 1G) : (G;G; ;; ;) �! (G;G;G �G;G�G) is a precode homomorphism which is

not an isomorphism.

A.10.5. Isomorphism Theorems for Precodes. This de�nition is the analogue of De�nition A.17 for

precodes.

De�nition A.23. Let (g; h) : A �! Â be a precode homomorphism. The equivalence relation pair

Ker((g; h)) = (s; t) = (g Æ g; h Æ h)

is called the kernel of the homomorphism (g; h). We note that by the de�nition of a precode ho-

momorphism, (g; h) is relation homomorphism from (PA; CA; eA) to (PÂ; CÂ; eÂ) with kernel (s; t)

and (h; g) is a relation homomorphism from (CA; PA; dA) to (C
Â
; P
Â
; d
Â
) with kernel (t; s).

126

A.11. Products and Sums. As in [4], we have the following de�nition.

De�nition A.24. Let Ai = (Pi; Ci; ei; di) be a family of precodes indexed by a set I. The precode

A = (
Q
i2I Pi;

Q
i2I Ci;

Q
i2I ei;

Q
i2I di) is called the product of the Ai.

As in the proof of Theorem 12 in [4], we have the following de�nition.

De�nition A.25. Let fAi = (Pi; Ci; ei; di) j i 2 Ig be a family of precodes indexed by a set I. The

precode A = (
S
i2I Pi�fig;

S
i2I Ci�fig;

S
i2I ei��i;

S
i2I di��i) is called the direct sum of the

Ai, where �i denotes the relation �i = f(i; i)g.

A.12. The Smash of a Precode. The following comes from [4].

De�nition A.26. Let A be a precode. Let E denote the smallest equivalence relation on PA

containing dA Æ eA, and let I denote the identity relation on CA. The code

A# = (PA=E;CA; eA=(E; I); dA=(I; E))

is called the smash of A.

127

APPENDIX B

CATEGORY THEORY PRELIMINARIES

B.1. Categories. The following is a combination of De�nitions 3.1 and 4.12 in [6].

De�nition B.1. A category is a quintuple C = (O;M; dom; cod; Æ) where

(i) O is a class whose members are called C objects,

(ii) M is a class whose members are called C morphisms

(iii) dom and cod are functions from M to O (dom(f) is called the domain of f , and cod(f)

is called the codomain of f),

(iv) Æ is a function from D = f(f; g) j f; g 2M and dom(f) = cod(g)g into M , called the

composition law of C (Æ(f; g) is usually written f Æ g and we say that f Æ g is de�ned

if and only if (f; g) 2 D);

such that the following conditions are satis�ed:

(1) Matching Condition: If f Æ g is de�ned, then dom(f Æ g) = dom(g) and cod(f Æ g) = cod(f);

(2) Associativity Condition: If f Æ g and h Æ f are de�ned, then h Æ (f Æ g) = (h Æ f) Æ g;

(3) Identity Existence Condition: For each C-object A there exists a C-morphism 1A such that

dom(1A) = A = cod(1A) and

(a) f Æ 1A = f whenever f Æ 1A is de�ned, and

(b) 1A Æ g = 1A whenever 1A Æ g is de�ned;

(4) Smallness of the Morphism Class Condition: For any pair (A;B) of C-objects, the class

homC(A;B) = ff j f 2M;dom(f) = A; and cod(f) = Bg is a set.

The opposite (or dual) category of C is the category Cop = C = (O;M; cod; dom; �), where � is

de�ned by f � g = g Æ f .

Notation B.2. Let C be a category. For a given C-object A, the morphism 1A satisfying 3(a) and

3(b) is unique. We will typically denote the class of C-objects by Ob(C) and the class of C-morphisms

by Mor(C). We will often use hom(A;B) to denote homC(A;B) when no confusion will arise.

128

B.2. Subcategories. We begin with De�nition 4.1 in[6].

De�nition B.3. A category B is said to be a subcategory of the category C provided that the

following conditions hold:

(1) Ob(B) � Ob(C).

(2) Mor(B) �Mor(C).

(3) The domain, codomain and composition functions of B are restrictions of the corresponding

functions of C.

(4) Every B-identity is a C-identity.

Note that (2) and (3) imply that homB(A;B) � homC(A;B)

De�nition B.4. A subcategory B of a category C is a full subcategory of C provided that for all

A;B 2 Ob(B), homB(A;B) = homC(A;B).

As in [4], we have the following de�nition.

De�nition B.5. The category of precodes, P, is the category which has precodes as objects and

precode homomorphisms as morphisms. The composition of arrows is given by the composition of

functions. The category of codes, C, has codes as objects and precode homomorphisms as morphisms.

It is clear that C is a full subcategory of P.

B.3. Morphisms. The following is a combination of De�nitions 6.2 and 6.9 in [6].

De�nition B.6. Let C be a category. A C-morphism A
f
�!B is said to be a monomorphism in

C provided that for all C-morphisms h and k such that f Æ h = f Æ k, it follows that h = k. The

morphism f is said to be an epimorphism in C if for all C-morphisms h and k such that hÆf = kÆf ,

it follows that h = k.

The following is Proposition 1 from [4].

129

Proposition B.7. Let f = (f1; f2) : A! B be a precode homomorphism.

(a) f is a monomorphism if and only if f1 and f2 are injective functions.

(b) f is an epimorphism if and only if f1 and f2 are surjective functions.

The following is a combination of De�nitions 5.2, 5.7, 5.13, and 6.16 in [6].

De�nition B.8. Let C be a category. A C-morphism A
f
�!B is said to be a section (resp. retraction)

in C if there exists some C-morphism B
g
�!A such that g Æ f = 1A (resp. f Æ g = 1A). It is an

isomorphism in C if it is both a C-section and a C-retraction. It is a bimorphism in C if it is both

a monomorphism and an epimorphism. C is said to be balanced if each of its bimorphisms is an

isomorphism.

The following is a combination of Propositions 5.4, 5.10, 5.16, 6.4, 6.12, and 6.20 in [6].

Proposition B.9. If A
f
�!B and B

g
�!C are C-sections (resp. retractions, isomorphisms, monomor-

phisms, epimorphisms, or bimorphisms), then A
gÆf
�!C is a C-section (resp. retraction, isomorphism,

monomorphism, epimorphism, or bimorphism).

We note that the categorical notion of isomorphism in the categories P and C coincides with the

de�nition given in De�nition A.21. We also note that if f = (f1; f2) is an isomorphism in P or C,

then f1 and f2 are bijections.

Proposition B.10. The categories P and C are not balanced.

Proof. See Example A.22. �

B.4. Subobjects. The following comes from De�nitions 6.22 and 6.23 in [6].

De�nition B.11. A subobject of an object B in a category C is a pair (A; f) where A
f
�!B is a

monomorphism. Dually, (f;A) is a quotient object of B if B
f
�!A is an epimorphism.

130

If (A; f) and (C; g) are subobjects of B, then (A; f) is said to be smaller than (C; g) (denoted by

(A; f) � (C; g)) if and only if there exists some morphism A
h
�!C such that the triangle

A
f

���
��

��
��

h

��

B

C

g

���������

commutes; i.e., g Æ h = f . If (A; f) � (C; g) and (C; g) � (A; f), then (A; f) and (C; g) are said to

be isomorphic subobjects of B, denoted by (A; f) � (C; g).

Remark B.12. By Proposition 6.24 in [6], subobjects (A; f) and (C; g) of B are isomorphic sub-

objects of B if and only if there is a unique isomorphism A
h
�!C such that g Æ h = f . The class of

all subobjects of an object B is partitioned into equivalence classes of isomorphic subobjects.

B.5. Well-powered and Co-(well-powered). The following comes from De�nition 6.27 in [6].

De�nition B.13. A category C is said to be well-powered provided that each C-object has a rep-

resentative class of subobjects that is a set. Dually, C is said to be co-(well-powered) provided that

each C-object has a representative class of quotient objects which is a set.

B.6. Intersections. The following comes from De�nitions 17.2 and 17.5 in [6].

De�nition B.14. If B is a C-object and (Ai;mi)i2I is a family of subobjects of B, then the pair

(D; d) is called an intersection in C of (Ai;mi)i2I provided that

(1) d : D �! B is a C-monomorphism;

(2) for each i 2 I there is a C-monomorphism di : D �! Ai with the property that mi Æ di = d;

(3) if g : C �! B and for each i 2 I, gi : C �! Ai such that mi Æ gi = g, then there exists a

unique C-morphism f : C �! D such that the triangle

131

C

f

��

g

��
D

d

�� B

commutes; i.e., d Æ f = g.

C is said to have intersections if every set-indexed family of subobjects of each C-object has an

intersection.

The following is Proposition 17.3 in [6].

Proposition B.15. Every intersection (D; d) of a family of subobjects (Ai;mi)i2I of an object B

is a subobject of B; i.e., d is a monomorphism. Furthermore, (D; d) is (up to isomorphism) the

largest subobject (relative to the order � on subobjects) that is smaller than each of the subobjects

(Ai;mi)i2I .

B.7. Products and Coproducts. The following comes from De�nition 18.5 in [6].

De�nition B.16. A C-product of a family (Ai)i2I of C-objects is a pair (
Q
i2I Ai;

Q
i2I �i) where

Q
i2I Ai is a C-object and �i :

Q
i2I Ai �! A are C-morphisms (called projections) with the property

that if C is any C-object and fi : C �! A are arbitrary C-morphisms, then there exists a unique

C-morphism < fi >: C �!
Q
i2I Ai such that for each j 2 I, the diagram

C

fj ���
��

��
��

��
�

<fi>
��
Q
i2I Ai

�j

��
A

commutes. We will often denote (
Q
i2I Ai;

Q
i2I �i) by

Q
i2I Ai.

A C-coproduct of the family (Ai)i2I is a pair (
`
i2I �i;

`
i2I Ai) where

`
i2I Ai is a C-object

and �i : A �!
`
i2I Ai are C-morphisms (called injections) with the property that if C is any

132

C-object and fi : A �! C are arbitrary C-morphisms, then there exists a unique C-morphism

[fi] :
`
i2I Ai �! C making the diagram

A
fj

���
��

��
��

��
�

�j

��`
i2I Ai

[fi]

�� C

commute for each j 2 I. We will often denote (
`
i2I �i;

`
i2I Ai) by

`
i2I Ai.

The following is a combination of Theorems 9 and 12 in [4].

Theorem B.17. The categories P and C have products and coproducts.

We note that the product as de�ned in A.24 is such a product, and the direct sum as de�ned in

A.25 is the corresponding coproduct.

B.8. Equalizers and Coequalizers. We have the following de�nition from De�nition 16.2 in [6].

De�nition B.18. Let A
f
�!B and A

g
�!B be a pair of C-morphisms. A pair (E; e) is called an

equalizer in C of f and g provided that the following conditions hold:

(1) e : E �! A is a C-morphism;

(2) f Æ e = g Æ e;

(3) For any C-morphism e0 : E0 �! A such that f Æ e0 = g Æ e0, there exists a unique C-morphism

�e : E0 �! E making the triangle

E0

e0

���
��

��
��

�

�e

��
E

e

�� A

133

commute. Dually, if c : B ! C, then (c; C) is called the coequalizer in C of the morphisms A
f
�!B

and A
g
�!B if and only if c Æ f = c Æ g and each C-morphism c0 : E0 �! A satisfying c0 Æ f = c0 Æ g

can be uniquely factored through c.

Remark B.19. By Proposition 16.5 in [6], any two equalizers of a given pair of morphisms A
f
�!B

and A
g
�!B are isomorphic subobjects of A. For this reason, we refer to the equalizer of f and g

and denote it by Equ(f; g). We similarly use Coeq(f; g) to denote the coequalizer of morphisms f

and g.

The following is a combination of Theorems 10, 13, and 14 in [4].

Theorem B.20. The categories P and C have equalizers and coequalizers.

The following was shown in [4].

Lemma B.21. Let f = (f1; f2); g = (g1; g2) : A �! (P;C; e; d) be precode homomorphisms. The

equalizer of f and g is (P �; C�; e�; d�), where

P � = f� 2 P j f1(�) = g1(�)g; C
� = f� 2 C j f2(�) = g2(�)g; e

� = eAjP��C� ; and d� = dAjC��P� :

B.9. Regular Morphisms. The following comes from De�nition 16.13 in [6].

De�nition B.22. If H
h
�!A is a C-morphism, then (H;h) is called a regular subobject of A and h

is called a regular monomorphism if and only if there are C-morphisms f and g such that (H;h) �

Equ(f; g).

Dually, if B
h
�!H is a C-morphism, then (h;H) is called a regular quotient object of B and h

is called a regular epimorphism if and only if there are C-morphisms f and g such that (h;H) �

Coeq(f; g).

By Proposition 16.15 in [6] and duality, regular monomorphisms are monomorphisms, and regular

epimorphisms are epimorphisms.

134

B.10. Extremal Morphisms. The following comes from De�nition 17.9 in [6].

De�nition B.23. An epimorphism e is called an extremal epimorphism provided that if e = m Æ

f , where m is a monomorphism, then m must be an isomorphism. If A
e
�!B is an extremal

epimorphism, then (e;B) is called an extremal quotient object of A.

A monomorphism m is called an extremal monomorphism provided that if m = f Æ e, where e is

an epimorphism, then e must be an isomorphism. If A
m
�!B is an extremal monomorphism, then

(A;m) is called an extremal subobject of B.

The following is Proposition 17.11 in [6] and its dual.

Proposition B.24. Every regular epimorphism is an extremal epimorphism, and every regular

monomorphism is an extremal monomorphism.

B.11. Factorizations. The following is a combination of De�nitions 17.15 and 33.1 in [6].

De�nition B.25. Let E and M be classes of morphisms of a category C.

(1) A pair (e;m) is called an (E;M)-factorization of a C-morphism f provided that f = m Æ e,

where e 2 E and m 2M . We say that f = m Æ e is an (E;M)-factorization of f .

(2) C is called an (E;M)-factorizable category if each C-morphism has an (E;M)-factorization.

(3) C is called a uniquely (E;M)-factorizable category if and only if it is (E;M)-factorizable and

for any two (E;M)-factorizations f = m Æ e = �m Æ �e, there exists an isomorphism h such that the

diagram

�

h

��

m

		�
��

��
��

�

e

�������

�e 		�
��

��
��

�

�
�m

�������

135

commutes.

(4) C is called an (E;M) category provided that it is uniquely (E;M)-factorizable and both E

and M are closed under composition.

Remark B.26. If E is the class of extremal epimorphisms (resp. regular epimorphisms) of C and

M is the class of all C-monomorphisms, an (E;M)-factorization is called an (extremal epi, mono)-

factorization (resp. (regular-epi,mono)-factorization), and if E is the class of all C-epimorphisms

and M is the class of all extremal monomorphisms (resp. regular monomorphisms) in C, an

(E;M)-factorization is called an (epi, extremal mono)-factorization (resp. (epi, regular mono)-

factorization).

The following is Proposition 17.18 in [6].

Proposition B.27. If a category C is (regular epi, mono)-factorizable, then

(1) C is uniquely (regular epi, mono)-factorizable.

(2) The regular epimorphisms in C are precisely the extremal epimorphisms.

The following is Proposition 33.4 in [6].

Proposition B.28. For any category C, the following are equivalent:

(1) C is (regular epi, mono)-factorizable.

(2) C is a (regular epi, mono) category.

The following is a combination of Proposition 33.4 and Theorem 34.5 in [6].

Theorem B.29. Every well-powered category C that has intersections and equalizers has the (epi,

extremal mono)-diagonalization property and is an (epi, extremal mono) category.

The following is Proposition 34.2 in [6].

136

Theorem B.30. If C has the (epi, extremal mono)-diagonalization property, then in C:

(1) The composition of extremal monomorphisms is an extremal monomorphism.

(2) The intersection of extremal subobjects is an extremal subobject.

(3) The inverse image (pullback) of an extremal monomorphism is an extremal monomorphism.

(4) The product of extremal monomorphisms is an extremal monomorphism.

B.12. Functors and Natural Transformations. The following is a combination of De�nitions

9.1 and 9.5 in [6].

De�nition B.31. Let C and D be categories. A (covariant) functor from C and D is a triple

(C; F;D) where F is a function from the class of morphisms of C to the class of morphisms of D

satisfying the following conditions:

(1) F preserves identities; i.e., if 1A is a C-identity, then F (1A) is a D-identity.

(2) F preserves composition; F (f Æ g) = F (f) Æ F (g); i.e., whenever dom(f) = cod(g), then

dom(F (f)) = cod(F (g)) and the above equality holds.

We will often use F : C! D or C
F
�!D instead of (C; F;D) to denote a functor.

A triple (C; F;D) is called a contravariant functor from C to D if and only if (Cop; F;D) is a

functor (or, equivalently, if and only if (C; F;Dop) is a functor).

The following is De�nition 13.1 in [6].

De�nition B.32. Let F : A! B and G : A! B be functors.

(1) A natural transformation (or functor morphism) from F to G is a triple (F; �;G) where

� : Ob(A)!Mor(B) is a function satisfying the following conditions:

(i) For each A-object A, �(A) (usually denoted by �A) is a B-morphism �A : F (A)! G(A).

(ii) For each A-morphism A
f
�!A0, the diagram

137

F (A)
�A
�! G(A) A

??yF (f)
??yG(f)

??yf

F (A0)
�A0

�! G(A0) A0

commutes.

(2) A natural transformation (F; �;G) is called a natural isomorphism provided that for each

A-object A, �A is a B-isomorphism.

(3) F and G are said to be naturally isomorphic (denoted by F �= G) if and only if there exists

a natural isomorphism from F to G.

Notation B.33. We will often write F in place of 1F for the identity natural transformation on

the functor F .

B.13. Limits and Colimits. Both limits and colimits are important examples of universal objects.

In this section, we recall the de�nitions of universals and limits and examine some examples.

As in [8] and De�nition 26.1 in [6], the general notion of a universal arrow (map) is given by the

following de�nition.

De�nition B.34. If S : D �! C is a functor and c an object of C, a universal arrow from c to S

(a universal map for c with respect to S) is a pair (r; u) consisting of an object r of D and an arrow

u : c �! S(r) of C, such that to every pair (d; f) with d an object of D and f : c �! S(d) an arrow

of C, there is a unique arrow f 0 : r �! d of D with S(f 0) Æu = f . In other words, every arrow f to

S factors uniquely through the universal arrow u, as in the following commutative diagram:

c
u
�! S(r) r

??y1c
??yS(f 0)

??yf 0

c
f
�! S(d) d

Remark B.35. By Proposition 26.7 in [4], the object r is unique up to isomorphism in D.

138

The following is the dual of the above de�nition.

De�nition B.36. If S : D �! C is a functor and c an object of C, a universal arrow from S to c

(a co-universal map for c with respect to S) is a pair (r; v) consisting of an object r 2 D and an

arrow v : S(r) �! c of C, such that to every pair (d; f) with d 2 D and f : S(d) �! c an arrow of

C, there is a unique arrow f 0 : d �! r of D with v ÆS(f 0) = f . This gives the commutative diagram

d S(d)
f
�! c

??yf 0
??yS(f 0)

??y1c

r S(r)
v
�! c

This comes from page 67 in [8].

De�nition B.37. Let C and J be categories, and let CJ denote the category of functors between

J and C. For each c 2 C, we let �c : J �! C denote the functor de�ned via �c(i) = c for each

i 2 J and �c(f) = 1c for each arrow f in J . Furthermore, for an arrow f : c �! c0 of C, we de�ne

�f : �c �! �c0 to be the natural transformation which has the same value f at each object i 2 J .

It is clear that �f is indeed is a natural transformation since the diagram

�c(i) = c
�fi=f
�! �c0(i) = c0

??y1c
??y10c

�c(j) = c
�fj=f
�! �c0(j) = c0

commutes for each i; j 2 J . We de�ne the diagonal functor �: C �! CJ via c 7! �c and f 7! �f .

De�nition B.38. A universal arrow (r; �) from � to a functor F 2 CJ is called a limit for the

functor F . It consists of an object r 2 C and a natural transformation � : �r �! F which is

universal among all natural transformations � : �c ! F . A universal arrow (r; �) from a functor

F 2 CJ to � is called a colimit for the functor F . It consists of an object r 2 C and a natural

transformation � : F �! �r which is universal among all natural transformations � : F �! �c.

139

Remark B.39. Since �c is the constant functor, each natural transformation � : �c �! F consists

of one arrow �i : c! Fi for each i 2 J making the diagrams

c
�i�! Fi

??y1c
??yFu

c
�j
�! Fj

commute for each i; j 2 J , where u : i! j is any arrow in J . It is useful to depict these diagrams

with the c's identi�ed as follows:

Fi

Fu
��

c

�i

��������

�j

�� Fj

Because of their visual appearance, a natural transformation � : �c ! F is called a cone to the

base F from the vertex c.

Hence, a limit of F : J ! C consists of an object Lim(F) 2 C and a cone � : �Lim(F) ! F

to the base F from the vertex Lim(F) which is universal; that is, for any cone � : �c ! F to the

base F from the vertex c, there is a unique arrow t : c! Lim(F) with �i = �it for every i 2 J . We

say � is the limiting cone or universal cone to F .

Remark B.40. Since �c is the constant functor, each natural transformation � : F �! �c consists

of arrows �i : Fi �! c making the diagrams

Fi
�i�! c

??yFu
??y1c

Fj
�j
�! c

commute for each i; j 2 J , where u : i ! j is any arrow in J . It is useful to view these diagrams

with the c's identi�ed as follows:

140

Fi

Fu
��

�i

		�
��

��
��

�

Fj
�j

�� c

Because of their visual appearance, a natural transformation � : F ! �c is called a cone from the

base F to the vertex c.

Hence, a colimit of F : J ! C consists of an object Colim(F) 2 C and a cone � : F !

�Colim(F) from the base F to the vertex Colim(F) which is universal; that is, for any cone

� : F ! �c from the base F to the vertex c, there is a unique arrow t : Colim(F)! c with �i = t�i

for every i 2 J . We say � is the limiting cone or universal cone from F .

The following comes from [4].

De�nition B.41. A diagram D in a category C is a directed graph whose vertices i 2 I are labeled

by objects Ri in C and whose edges i �! j are labeled by morphisms in HomC(Ri; Rj). The

underlying graph is called the scheme of the diagram.

As in [4], we can de�ne cones and limits in terms of diagrams instead of functors.

De�nition B.42. A family of morphisms (fi : A ! Ri)i2I with common domain A is a cone for

D, provided that for each arrow d : Ri ! Rj in D, the diagram

Ri

d

��

A

fi
����������

fj

�� Rj

commutes. A limit for D is a cone for D with the universal property that any other cone for D

uniquely factors through it.

141

B.13.1. Products and Coproducts. Recall from De�nition 3.4 in [6] that a category is said to be

complete if all of its morphisms are identities. The following comes from page 69 in [8].

De�nition B.43. If J is a discrete category, then a functor F : J ! C is a J-indexed family

of objects aj in C, while a cone with vertex c and base aj is just a J-indexed family of arrows

fj : c �! aj. A universal cone pj :
Q
j aj �! aj thus consists of an object

Q
j aj , called the product

of the factors aj and of arrows pj, called the projections of the product, with the following universal

property: To each J-indexed family (i.e. cone) fj : c �! aj there is a unique f : c �!
Q
j aj with

pjf = fj for each j 2 J .

B.13.2. Equalizers and Coequalizers. The following comes from page 70 in [8].

De�nition B.44. If J is the category with precisely two objects and two non-identity arrows from

the �rst object to the second, then a functor F : J ! C is a pair f; g : a ! b of parallel arrows in

C. A limit object of F is called an equalizer (or di�erence kernel) of f and g.

Note that any equalizer e is monic by the uniqueness of a limit.

B.13.3. Pullbacks and Pushouts. The following comes from page 71 in [8].

De�nition B.45. Let J be the category with precisely three objects and having precisely two non-

identity arrows, with one from the �rst object to the second, and the other from the third to the

second. Then a functor F : J ! C is a pair of arrows in C with a common codomain a. A cone

over F is a pair of arrows h,k from some c 2 C making the diagram

c
k
�! d

??yh
??yg

b
f
�! a

142

commute. A universal cone is a commutative square of this form and is called a pullback square,

and the vertex c of the square is called a pullback. The pullback of a pair of equal arrows is called

the kernel pair of f .

As in [6], h is said to be a pullback of g along f . If g is a monomorphism, h is commonly called

an inverse image of g along f . The dual notion of a pullback is a pushout.

De�nition B.46. A category is called regular if it has �nite limits, coequalizers, and if the pullback

of a regular epimorphism is always a regular epimorphism.

The following is Theorem 21 in [4].

Theorem B.47. The categories P and C are regular.

B.14. Completeness and Cocompleteness. The following is De�nition 23.1 in [6].

De�nition B.48. Let C be a category.

(1) If I is a category, then C is said to be I-complete (or to have I-limits) provided that every

functor D : I �! C has a limit.

(2) C is said to be complete provided that C is I-complete for each small category I.

(3) C is said to be �nitely complete (or to have �nite limits) provided that C is I-complete for

each �nite category I.

The corresponding dual notions are Iop-cocomplete, cocomplete, and �nitely cocomplete.

The following is Theorem 23.8 in [6].

Theorem B.49. For any category, C, the following are equivalent:

(1) C is complete.

(2) C has multiple pullbacks and terminal objects.

(3) C has products and pullbacks.

143

(4) C has products and inverse images.

(5) C has products and �nite intersections.

(6) C has products and equalizers.

(7) C has products, equalizers, and intersections of regular subobjects.

(8) C is �nitely complete and has inverse limits.

B.15. Projective and Injective Objects. The following comes from Theorems 12.15 and 12.16

in [6].

Theorem B.50. An object P is C-projective provided that for each C-epimorphism B
f
�!C and

each morphism P
g
�!C, there exists a morphism P

h
�!B making the triangle

P
h

��
g

��
B

f

�� C

commute. By duality, an object Q is C-injective provided that for each C-monomorphism C
f
�!B

and each morphism C
g
�!Q, there exists a morphism B

h
�!Q such that the triangle

C
f

��

g

��

B

h��
Q

commutes.

B.16. Separators and Coseparators. The following comes from Theorems 12.15 and 12.16 in [6].

Theorem B.51. A C-object S is a C-separator if and only if whenever A
f
�!B and A

g
�!B are

distinct C-morphisms, there exists a C-morphism S
x
�!A such that S

x
�!A

f
�!B 6= S

x
�!A

g
�!B.

By duality, a C-object C is a C-coseparator if and only if whenever A
f
�!B and A

g
�!B are

distinct C-morphisms, there exists a C-morphism B
x
�!C such that A

f
�!B

x
�!C 6= A

g
�!B

x
�!C.

144

APPENDIX C

MAPLE CODE FOR PLOTTING PRECODES

Let A be a precode. This section gives Maple code for representing and plotting A. It also gives
code for constructing Aop, A#, AI, and A��.

We plot precodes using the plots and plottools packages. Thus, we need to include these packages
using the following commands.

> with(plots):
> with(plottools):

We represent precodes using a custom data structure. We create this structure using the following
command.

> new_precode(A):

We add plaintext and codetext elements to the precode using the add plain() and add code()
commands, respectively. For example, the commands

> add_plain(A,fp1,p2g):
> add_code(A,fc1,c2,c3g):

add the elements p1 and p2 to PA and add c1, c2, and c3 to CA. We add edges to the precode
using the add edge() command. For example, the command

> add edge(A,[[p1,c2,e]])

adds to the precode A a directed edge from p1 to c2; that is, it adds (p1; c2) to eA. The
command

> add edge(A,[[p1,c2,d]])

adds to the precode A a directed edge from c2 to p1; that is, it adds (c2; p1) to dA. The
command

> add edge(A,[[p1,c2,s]])

adds both edges to A. It is important to note that the command

> update vdata(A)

must be executed after the vertices and edges have been de�ned to update the rest of the data in
the precode data structure. We can use the eval(A) command to display the structure of A.

For example, if we construct A using the commmands
> new_precode(A):
> add_plain(A,fp1,p2g):
> add_code(A,fc1,c2,c3g):
> add_edge(A,[[p1,c2,e],[p1,c3,d],[p2,c2,s],[p1,c1,e],[p1,c1,d]]):
> update_vdata(A):

then the command

> eval(A)

produces the following output.

TABLE([PData = TABLE([p1 = [1; 1; 1]; p2 = [0; 0; 1]]);
CList = vector([TABLE([]); TABLE([]); TABLE([1 = c3]); TABLE([]); TABLE([1 = c1]);
TABLE([1 = c2]); TABLE([]); TABLE([])]);
PNum = vector([0; 0; 0; 0; 1; 0; 0; 1]); CNbrs = TABLE([c1 = p1; c2 = p1; p2; c3 = p1]);
CNum = vector([0; 0; 1; 0; 1; 1; 0; 0]);
EData = TABLE([(p1; c2) = [1; 0]; (p1; c1) = [1; 1]; (p1; c3) = [0; 1]; (p2; c2) = [1; 1]]);
C = c1; c2; c3; P = p1; p2;
CData = TABLE([c1 = [0; 0; 1]; c2 = [1; 0; 1]; c3 = [0; 1; 0]]);
E = [p1; c2]; [p1; c3]; [p2; c2]; [p1; c1]; PNbrs = TABLE([p1 = c1; c2; c3; p2 = c2]);

145

PList = vector([TABLE([]); TABLE([]); TABLE([]); TABLE([]);
TABLE([1 = p2]); TABLE([]); TABLE([]); TABLE([1 = p1])])]);

Algorithm C.1. In this procedure, we create a precode data structure A. A is a table with entries
de�ned as follows:

P is the set of plaintext elements.
C is the set of codetext elements.
PData is a table indexed by the elements in P . It is initialized by executing update vdata(A).
For a plaintext element p, A[PData][op(p)] is a three-member list such that
A[PData][op(p)][1] = 1 if p is part of an encode edge which is NOT in the converse of the

decode relation. It is 0 otherwise.
A[PData][op(p)][2] = 1 if p is part of a decode edge which is NOT in the converse of the

encode relation. It is 0 otherwise.
A[PData][op(p)][3] = 1 if p is part of an encode edge which is also in the converse of the

decode relation. It is 0 otherwise.
CData is a table indexed by the elements in C. It is initialized by executing update vdata(A).
For a codetext element c, A[CData][op(c)] is a three-member list such that
A[CData][op(c)][1] = 1 if c is part of an encode edge which is NOT in the converse of the

decode relation. It is 0 otherwise.
A[CData][op(c)][2] = 1 if c is part of a decode edge which is NOT in the converse of the

encode relation. It is 0 otherwise.
A[CData][op(c)][3] = 1 if c is part of an encode edge which is also in the converse of the

decode relation. It is 0 otherwise.
PNum is an eight element array initialized by update vdata(A).
A[PNum][P3 � (4) + P2 � (2) + P1 + 1] contains the number of p for which
A[PData][op(p)] = [P1; P2; P3]. In particular,

A[PNum][8] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 1; 1].
A[PNum][7] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 1; 0].
A[PNum][6] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 0; 1].
A[PNum][5] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 0; 0].
A[PNum][4] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 1; 1].
A[PNum][3] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 1; 0].
A[PNum][2] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 0; 1].
A[PNum][1] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 0; 0].

CNum is an eight element array initialized by update vdata(A) de�ned analogously to PNum
to enumerate the codetext elements of each type.

PList is an eight element array initialized by update vdata(A)such that
A[PList][P3 � (4) + P2 � (2) + P1 + 1] contains the number of p for which
A[PData][op(p)] = [P1; P2; P3]. In particular,

A[PList][8] contains the number of plaintext elements p for which A[PData][op(p)] = [1,1,1].
A[PList][7] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 1; 0].
A[PList][6] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 0; 1].
A[PList][5] contains the number of plaintext elements p for which A[PData][op(p)] = [1; 0; 0].
A[PList][4] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 1; 1].
A[PList][3] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 1; 0].
A[PList][2] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 0; 1].
A[PList][1] contains the number of plaintext elements p for which A[PData][op(p)] = [0; 0; 0].

CList is an eight element array initialized by update vdata(A) de�ned analogously to PList
to list the codetext elements of each type.

PNbrs is a table indexed by the elements in P: It is updated by each call to add edge().
For a plaintext element p; A[PNbrs][op(p)] is the set of the codetext elements adjacent to p:

146

CNbrs is a table indexed by the elements in C: It is updated by each call to add edge().
For a plaintext element c; A[CNbrs][op(c)] is the set of the plaintext elements adjacent to c.

E is the set of edges.
Each edge is of the form [p; c]; where p is a plaintext element and c is a codetext element.

EData is a table indexed by the elements in E: It is initialized by each call to add edge(A).
For an edge [p; c]; A[EData][p; c] is a two-member list such that
A[EData][p; c][1] = 1 if (p; c) is in the encode relation of A. It is 0 otherwise.
A[EData][p; c][1] = 2 if (c; p) is in the decode relation of A. It is 0 otherwise.

new precode:=proc(A) local i;
A:=table():
A[P]:=fg:
A[C]:=fg:
A[E]:=fg;
A[PData]:=table():
A[CData]:=table():
A[EData]:=table():
A[PNbrs] := table():
A[CNbrs] := table():
A[PNum] := array(1..8);
A[CNum] := array(1..8);
A[PList] := array(1..8);
A[CList] := array(1..8);
eval(A);

end proc:

Algorithm C.2. This procedure adds the plaintext elements in the set p set to the precode A.

add plain:=proc(A,p set::set) local i;
#Add the plaintext elements to P.
A[P] := fop(A[P]),op(p set)g;
#Add the corresponding entries to the table PNbrs.
for i from 1 to nops(p set) do

A[PNbrs][p set[i]]:=fg;
end do;
eval(A);

end proc:

Algorithm C.3. This procedure adds codetext elements in the set c set to the precode A.

add code:=proc(A,c set::set) local i;
#Add the codetext elements to C.
A[C] := fop(A[C]),op(c set)g;
#Add the corresponding entries to the table CNbrs.
for i from 1 to nops(c set) do

A[CNbrs][c set[i]]:=fg;
end do;
eval(A);

end proc:

Algorithm C.4. This procedure adds the edges in the list e list to the precode A. An edge in e list
has the form [p; c; type]; where p is a plaintext element in A; c is a codetext element in A; and type
is either s; e; or d.

147

If type = s; then (p; c) is in the encode relation of A; and (c; p) is in the decode relation of A: If
type = e; then (p; c) is in the encode relation of A: If type = d; then (c; p) is in the decode relation
of A:

The following variables are used in this procedure:

Num is the number of entries in e list.
edge is an entry in e list.
p is the plaintext element in edge.
c is the codetext element in edge.
edge type is the edge type.
i is a loop index.

add edge:=proc(A,e list::listlist) local Num, edge, p, c, edge type,i;
Num := nops(e list);
for i from 1 to Num do

edge := e list[i];
p := edge[1];
c := edge[2];
edge type := edge[3];
Make sure the edge contains valid endpoints.
if not member(p,A[P]) or not member(c,A[C]) then

print(\Error: edge", edge, \contains invalid vertices.");
print(\Plaintext:",A[P],\Codetext:",A[C]);
return;

end if;

Make sure the set of neighbors is correct.
A[PNbrs][p]:=fop(A[PNbrs][p]),cg;
A[CNbrs][c]:=fop(A[CNbrs][c]),pg;

#Add the edge entry if it is not present.
if not member([p,c],A[E]) then

A[E] := fop(A[E]), [p,c]g;
A[EData][p,c]:=[0,0];

end if;

#Update the edge entry.
if edge type = e then

A[EData][p,c][1]:=1;
elif edge type = d then

A[EData][p,c][2]:=1;
else

A[EData][p,c]:=[1,1];
end if;

end do;
eval(A);

end proc:

Algorithm C.5. This procedure updates the plaintext and codetext data for the precode A: It should
be executed once all the edges have been added to A.

148

The following variables are used in this procedure:

Num is the number of entries in e list.
p is a plaintext element.
c is a codetext element.
edge is an edge in A.
edge type contains the edge type.
The list [P1; P2; P3] contains A[PData][p].
The list [C1; C2; C3] contains A[CData][c].
index contains C3 � (4) + C2 � (2) + C1 + 1 or P3 � (4) + P2 � (2) + P1 + 1:
i is a loop index.

update vdata:=proc(A) local edge type,edge,p,c,P1,P2,P3,C1,C2,C3,index,i;
#Initialize the data.
for i from 1 to 8 do

A[PList][i]:=table();
A[CList][i]:=table();
A[PNum][i]:=0;
A[CNum][i]:=0;

end do;
for i from 1 to nops(A[P]) do

A[PData][A[P][i]]:=[0,0,0];
end do;
for i from 1 to nops(A[C]) do

A[CData][A[C][i]]:=[0,0,0];
end do;

#Update the vertex data.
for i from 1 to nops(A[E]) do

edge := A[E][i];
p := edge[1];
c := edge[2];
edge type := A[EData][p,c];
if edge type = [1,1] then

There is a non-directed edge (type s) incident on p and c.
A[PData][p][3] := 1;
A[CData][c][3] := 1;

elif edge type = [1,0] then
There is an edge of type e incident on p and c.
A[PData][p][1] := 1;
A[CData][c][1] := 1;

else
There is an edge of type d incident on p and c.
A[PData][p][2] := 1;
A[CData][c][2] := 1;

end if;
end do;

Classify each codetext element based on the type of edges incident on it.
That is, update A[CNum] and A[CList].
for i from 1 to nops(A[C]) do

149

c := A[C][i];
C1 := A[CData][c][1];
C2 := A[CData][c][2];
C3 := A[CData][c][3];
Find the value (+1) of the binary number represented by C3 C2 C1.
index := C3*(4)+C2*(2)+C1+1;
A[CNum][index] := A[CNum][index] + 1;
A[CList][index][A[CNum][index]]:=c;

end do;

Classify each plaintext element based on the type of edges incident on it.
That is, update A[PNum] and A[PList].
for i from 1 to nops(A[P]) do

p := A[P][i];
P1 := A[PData][p][1];
P2 := A[PData][p][2];
P3 := A[PData][p][3];
Find the value (+1) of the binary number represented by P3 P2 P1.
index := P3*(4)+P2*(2)+P1+1;
A[PNum][index] := A[PNum][index] + 1;
A[PList][index][A[PNum][index]]:=p;

end do;
eval(A);

end proc:

Algorithm C.6. This procedure returns a copy of the precode A.

The following variables are used in this procedure:
H will contain the copy of A.
edge is an edge in A:
edge type contains the edge type.
i is a loop index.

copy precode:=proc(A) local H,type,edge,i;

new precode(H): #Create the precode.
add plain(H,A[P]); #Add the plaintext elements to H.
add code(H,A[C]); #Add the codetext elements to H.

#Add the edges to H.
for i from 1 to nops(A[E]) do

edge := A[E][i];
type := A[EData][op(edge)];
if type = [1,1] then

#The edge is of type s.
add edge(H,[[edge[1],edge[2],s]]);

elif type = [1,0] then
#The edge is of type e.
add edge(H,[[edge[1],edge[2],e]]);

else
#The edge is of type d.
add edge(H,[[edge[1],edge[2],d]]);

end if;

150

end do;

#Update the vertex data.
update vdata(H);
return H;

end proc:

C.1. The Plotting Algorithms. The following procedures are used to plot a precode.

Algorithm C.7. This procedure orders the vertices in A to produce a more eye-pleasing plot.

The following variables are used in this procedure:

P List will contain the ordered list of plaintext elements.
C List will contain the ordered list of codetext elements.
P contains the list of plaintext elements yet to be handled.
c is a codetext element.
Nbrs is the list of plaintext elements adjacent to c.
NumNbrs is the number of elements in Nbrs:
The list [P1; P2; P3] contains A[PData][Nbrs[k]] (k runs from 1 to NumNbrs).
index contains P3 � (4) + P2 � (2) + P1 + 1:
PList is an array of 8 elements such that PList[index] contains

the elements in P which are incident on c:
i; j; and k are loop indices.

plot order:=proc(A) local c,P,PList,C List,P List,Nbrs,NumNbrs,P1,P2,P3,i,j,k,index;

PList := array(1..8);
C List := [];
P List := [];
P:=A[P];

j represents the type of codetext element to be handled.
Recall the de�nitions of A[CNum] and A[CList].
for j from 8 to 1 by -1 do

Loop on each codetext element of the current type.
for i from 1 to A[CNum][j] do

c := A[CList][j][i];
C List := [c,op(C List)];
for k from 1 to 8 do

PList[k] := [];
end do;
Nbrs := A[CNbrs][c];
NumNbrs := nops(Nbrs);

Loop on the plaintext elements adjacent to c.
for k from 1 to NumNbrs do

Make sure Nbrs[k] hasn't been handled already.
if member(Nbrs[k],P,'m') then

P:=subsop(m=NULL,P);
P1 := A[PData][Nbrs[k]][1];
P2 := A[PData][Nbrs[k]][2];
P3 := A[PData][Nbrs[k]][3];

151

Find the value (+1) of the binary number represented by P3 P2 P1.
Add Nbrs[k] to the appropriate list based on its type.
index := P3*(4)+P2*(2)+P1+1;
PList[index] := [Nbrs[k],op(PList[index])];

end if;
end do;
Form P List from the 8 lists in PList.
for k from 8 to 1 by -1 do

P List := [op(PList[k]),op(P List)];
end do;

end do;
end do;

Add the isolated plaintext elements to the list.
P List := [op(P),op(P List)];
return P List,C List;

end proc:

Algorithm C.8. This procedure plots the graph of the precode A based on the order speci�ed by
plot order(A): The parameter title string gives the string with which the plot will be labeled and
type speci�es whether the plot should be a STRIP chart or a BIPARTITE GRAPH (see below).

The following are the variables used in this procedure:

STRIP is a constant with value 0 representing a strip chart display.
BIPARTITE GRAPH is a constant with value 1 representing a bipartite graph display.

S contains plot order(A).
P contains S[1]; the list of plaintext elements in order.
C contains S[2]; the list of codetext elements in order.

PL is the set of plaintext elements. It has length NumPL.
CO is the set of codetext elements. It has length NumCO.
E contains the edge list. It has length NumE.

Height is the height of the graph.
Width is the width of the graph.
x1 contains the x-coordinate of the left plaintext column

(the only plaintext column if the plot is a BIPARTITE GRAPH).
x2 contains the x-coordinate of the codetext column.
x3 contains the x-coordinate of the right plaintext column in a STRIP chart plot.
yp step contains the vertical distance between each plaintext vertex.
yc step contains the vertical distance between each codetext vertex.
yp contains the y-coordinate of the current plaintext vertex.
yc contains the y-coordinate of the current codetext vertex.

PPoints is a table indexed by the plaintext elements which contains the y-coordinate of
each vertex.

CPoints is a table indexed by the codetext elements which contains the y-coordinate of
each vertex.

Points Structures will contain the POINTS plot structures necessary to display the vertices.
Points List is a list of coordinates used to create the POINTS plot structures.

152

Curves Structures will contain the CURVES plot structures necessary to display the edges.
Text Structures will contain the TEXT plot structures necessary to display the labels on

the vertices.
plain label offset gives the x-o�set of the label for the plaintext elements in the �rst column.

V P lot will contain the plot of the precode.
edge contains the current edge.
i and j are loop indices.

precode plot:=proc(A,title string,type) local S,P,C,PL,NumPL,CO,NumCO,E,NumE,Height,Width,
x1,x2,x3,yp,yc,yp step,yc step,PPoints,CPoints,Points List,Text Structures,Points Structures,
Curves Structures,VPlot,edge,i,j,STRIP,BIPARTITE GRAPH,plain label o�set;

STRIP := 0;
BIPARTITE GRAPH := 1;

Initialize the variables.
S:=plot order(A);
P:=S[1];
C:=S[2];

PL:=A[P];
NumPL := nops(PL);
CO:=A[C];
NumCO := nops(CO);
E:=A[E];
NumE := nops(E);

PPoints := table();
CPoints := table();
Text Structures := [];
Points Structures := [];
VPlot := [];

We now initialize the coordinates of the plot.
Height:=max(NumCO,NumPL);

x1 contains the x coordinate of the left plaintext column.
x2 contains the x coordinate of the codetext column.
x3 contains the x coordinate of the right plaintext column in a STRIP chart plot.
x1:=0.0;
x2:=Height/2.0;
x3:=Height;
if type = STRIP then

Width := x3;
else

Width := x2;
end if;
plain label o�set := 0.05*Width;

We now initialize yp step and yc step.
if NumPL = Height then

153

The number of plaintext vertices is greater than or equal to the number of
codetext elements.
yp step := 1;
if NumCO = Height then

yc step:=1;
else

yc step:=(Height-1)/(NumCO+1);
end if;

else
The number of plaintext vertices is less than the number of codetext elements.
yc step:=1;
yp step:=(Height-1)/(NumPL+1);

end if;

We now initialize yp and yc.
if NumCO = Height then

The number of codetext vertices is greater than or equal to the number of
plaintext elements.
yc:=0;
Since the plaintext and codetext elements are not usually the same, it is aesthetically
pleasing to ensure that the plaintext and codetext elements are not aligned horizontally.
if NumPL = Height then

yp:=0.5;
else

yp:=yp step;
end if;

else
The number of codetext vertices is less than the number of plaintext elements.
yc:=yc step;
yp:=0;

end if;

The following segment initializes CPoints and the POINTS and TEXT plot structures
necessary to plot the codetext elements.
Points List := [];
for i from 1 to nops(C) do

CPoints[C[i]]:=yc;
Points List := [op(Points List),[x2,yc]];
Text Structures:=[op(Text Structures),TEXT([x2,yc],convert(C[i],string),

ALIGNBELOW,ALIGNRIGHT,FONT(TIMES,ROMAN,10))];
yc:=yc+yc step;

end do;
Points Structures := [op(Points Structures),POINTS(op(Points List),SYMBOL(DIAMOND))];

The following segment initializes PPoints and the POINTS and TEXT plot structures
necessary to plot the plaintext elements.
Points List := [];
for i from 1 to nops(P) do

PPoints[P[i]]:=yp;
Points List := [op(Points List),[x1,yp]];
Text Structures := [op(Text Structures),

154

TEXT([x1-plain label o�set,yp],convert(P[i],string), ALIGNBELOW,
ALIGNRIGHT,FONT(TIMES,ROMAN,10))];

if type = STRIP then
Points List := [op(Points List),[x3,yp]];
Text Structures := [op(Text Structures),

TEXT([x3,yp],convert(P[i],string), ALIGNBELOW,
ALIGNRIGHT,FONT(TIMES,ROMAN,10))];

end if;
yp:=yp+yp step;

end do;
Points Structures :=[op(Points Structures),POINTS(op(Points List),SYMBOL(CIRCLE))];

Build the CURVES plot structure necessary to plot the edges.
Curves Structures := [];
for i from 1 to NumE do

edge := E[i];
yp := PPoints[edge[1]];
yc := CPoints[edge[2]];
if A[EData][op(edge)] = [1,1] then

edge is undirected.
if type = STRIP then

Curves Structures := [op(Curves Structures),CURVES([[x1,yp], [x2,yc], [x3,yp]],
THICKNESS(2),LINESTYLE(1), COLOR(RGB,1.0,0.0,0.0))];

else
Curves Structures := [op(Curves Structures),

CURVES([[x1,yp], [x2,yc]], THICKNESS(2),LINESTYLE(1))];
end if;

elif A[EData][op(edge)] = [1,0] then
edge is an encode edge
if type = STRIP then

Curves Structures := [op(Curves Structures),
CURVES([[x1,yp],[x2,yc]], THICKNESS(2), LINESTYLE(1))];

else
Curves Structures := [op(Curves Structures),

arrow([x1,yp],[x2,yc],.01, .1,.05,color=cyan)];
end if;

else
edge is a decode edge
if type = STRIP then

Curves Structures := [op(Curves Structures),
CURVES([[x2,yc],[x3,yp]], THICKNESS(2), LINESTYLE(1))];

else
Curves Structures := [op(Curves Structures),

arrow([x2,yc],[x1,yp],.01, .1,.05,color=cyan)];
end if;

end if;
end do;

Put the pieces together to form the plot.
VPlot := [op(VPlot),PLOT(op(Points Structures),op(Text Structures),

TEXT([Width/2.0,Height],title string,ALIGNBELOW,

155

FONT(TIMES,ROMAN,14)),op(Curves Structures),AXESSTYLE(NONE))];
display(VPlot,view=[-plain label o�set..Width,0..Height]);

end proc:

In our example above, the commands
> precode_plot(A,"Strip Chart",0);
> precode_plot(A,"Bipartite Graph",1);

produce the output in Figure 30.

Strip Chart

p1p1

p2p2

c2

c1

c3

Bipartite Graph

p1

p2

c2

c1

c3

Figure 30. The Plots Produced by the Precode Plot() Procedure

Algorithm C.9. This procedure displays the synoptic codebook matrix of the precode A based on
the order speci�ed by plot order(A):

The following are the variables used in this procedure:

E contains the edge list. It has length NumE:
PList; CList contain plot order(A):
PList contains the list of plaintext elements in order. It has length NumP:
CList contains the list of codetext elements in order. It has length NumC:

PPoints is a table indexed by the plaintext elements which contains the y-coordinate of each vertex.
CPoints is a table indexed by the codetext elements which contains the y-coordinate of each vertex.
yp contains the y-coordinate of the current plaintext vertex.
yc contains the y-coordinate of the current codetext vertex.
Curves Structures will contain the CURVES plot structures necessary to display the table lines.
Text Structures will contain the TEXT plot structures necessary to display the vertex labels and

matrix entries.
edge contains the current edge.
i and j are loop indices.

synoptic plot:=proc (A) local E, NumE, PList, NumP, CList, NumC,PPoints, CPoints,
edge, yp, yc, Text Structures,Curves Structures, i, j;

E:=A[E];
NumE := nops(E);
PList,CList := plot order(A);
PPoints := table();

156

CPoints := table();
NumC := nops(CList);
NumP := nops(PList);

Text Structures := [];
for i from 1 to NumP do

PPoints[PList[i]]:=i;
Text Structures:=[op(Text Structures), TEXT([0,i],convert(PList[i],string),

ALIGNABOVE,ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,0.0,0.0,0.0))];
end do;
for i from 1 to NumC do

CPoints[CList[i]]:=i;
Text Structures:=[op(Text Structures), TEXT([i,0],convert(CList[i],string),

ALIGNABOVE,ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,0.0,0.0,0.0))];
end do;

Curves Structures := [CURVES([[0.5,0.5],[0.5,NumP+0.25]],THICKNESS(1), LINESTYLE(1)),
CURVES([[0.5,0.5],[NumC+0.25,0.5]],THICKNESS(1), LINESTYLE(1))];

for i from 1 to NumP do
for j from 1 to NumC do

yp := PPoints[PList[i]];
yc := CPoints[CList[j]];
edge := [PList[i],CList[j]];
if member(edge, E, 'k') then

if A[EData][op(edge)] = [1,1] then
Text Structures:=[op(Text Structures),TEXT([yc,yp],'`11`',ALIGNABOVE,

ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,1.0,0.0,0.0))];
elif A[EData][op(edge)] = [1,0] then

Text Structures:=[op(Text Structures),TEXT([yc,yp],'`10`',ALIGNABOVE,
ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,0.0,0.75,0.0))];

else # A[EData][op(edge)] = [0,1]
Text Structures:=[op(Text Structures),TEXT([yc,yp],'`01`', ALIGNABOVE,

ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,0.0,0.0,1.0))];
end if;

else
Text Structures:=[op(Text Structures),TEXT([yc,yp],'`00`', ALIGNABOVE,

ALIGNLEFT,FONT(TIMES,ROMAN,12),COLOR(RGB,0.0,0.0,0.0))];
end if;

end do;
end do;
display([PLOT(op(Text Structures),op(Curves Structures),AXESSTYLE(NONE))],
view=[0.0..NumC+0.5,0.0..NumP+0.5]);

end proc:

In our example above, the command

> synoptic_plot(A);

produces the output in Figure 31.

157

101101

110000

c2c1c3

p1

p2

Figure 31. The Output Produced by the Synoptic Plot() Procedure

C.2. The Companion of a Precode. Recall De�nition A.5.

Algorithm C.10. This procedure creates the companion of A. Recall that if A = (P;C; e; d), then
its companion is the precode (P;C; e ; d).

The following are the variables used in this procedure:

H will contain the companion of A.
edge contains the current edge.
type contains the edge type (i.e. [1; 0] for an encode edge, etc.).
i is a loop index.

cpn:=proc(A) local H,type,edge,i;

#Create the precode.
new precode(H):
add plain(H,A[P]); # Add the plaintext set.
add code(H,A[C]); # Add the codetext set.

Add the edges.
for i from 1 to nops(A[E]) do

edge := A[E][i];
type := A[EData][op(edge)];
if type = [1,1] then

#The edge is of type s.
add edge(H,[[edge[1],edge[2],s]]);

elif type = [1,0] then
#The edge is of type e.
add edge(H,[[edge[1],edge[2],d]]);

else
#The edge is of type d.
add edge(H,[[edge[1],edge[2],e]]);

end if;
end do;
update vdata(H);

158

return H;
end proc:

In our example above, the command

> precode_plot(cpn(A),"Companion",0);

produces the output in Figure 32.

Companion

p1p1

p2p2

c2

c1

c3

Figure 32. The Plot of the Precode Produced by the Cpn() Procedure

C.3. The Opposite of a Precode. Recall De�nition A.7.

Algorithm C.11. This procedure creates the opposite of A. Recall that if A = (P,C,e,d), then its
opposite is the precode (C,P,e,d).

The following are the variables used in this procedure:

H will contain the opposite of A.
edge contains the current edge.
type contains the edge type (i.e. [1; 0] for an encode edge, etc.).
i is a loop index.

opp:=proc(A) local H,type,edge,i;

#Create the precode.
new precode(H):
add plain(H,A[C]); # Add the plaintext set.
add code(H,A[P]); # Add the codetext set.

Add the edges.
for i from 1 to nops(A[E]) do

edge := A[E][i];
type := A[EData][op(edge)];
if type = [1,1] then

#The edge is of type s.
add edge(H,[[edge[2],edge[1],s]]);

elif type = [1,0] then
#The edge is of type e.

159

add edge(H,[[edge[2],edge[1],d]]);
else

#The edge is of type d.
add edge(H,[[edge[2],edge[1],e]]);

end if;
end do;

update vdata(H);
return H;

end proc:

In our example above, the command

> precode_plot(opp(A),"Opposite",0);

produces the output in Figure 33.

Opposite

c2c2

c1c1

c3c3

p1

p2

Figure 33. The Plot of the Precode Produced by the Opp() Procedure

C.4. The Smash of a Precode. Recall the de�nition of the \smash" of a precode.

Algorithm C.12. This procedure is used both to determine if the plaintext elements incident on
the codetext element cv need to be \smashed" (when forming the smash of A) and to determine if
cv must be split (when forming the split of A). The procedure returns true if cv is a codetext vertex
for which there exist distinct plaintext elements p1 and p2 so that (p1; cv) is in the encode relation
of A and (cv; p2) is in the decode relation of A: It returns false otherwise.

The following are the variables used in this procedure:

Nbrs contains the list of vertices (\neighbors") adjacent to cv: It has length NumNbrs:
type j will contain the type of an edge indexed by j (i.e. type j = A[EData][Nbrs[j]; cv]).
type k will contain the type of an edge indexed by k (i.e. type k = A[EData][Nbrs[k]; cv]).
j and k are loop indices.

smash needed:=proc(A,cv) local Nbrs,NumNbrs,j,k,type j,type k;

Nbrs:=A[CNbrs][cv];
NumNbrs := nops(Nbrs);

160

We check to see if cv is a codetext element which is adjacent to at least 2 plaintext
vertices.
if member(cv,A[C]) and NumNbrs > 1 then

We choose one of the adjacent vertices.
for j from 1 to NumNbrs do

We choose another of the adjacent vertices.
for k from j+1 to NumNbrs do

We now see if there are edges connecting
these two vertices \through" cv.
if member([Nbrs[j],cv],A[E]) and member([Nbrs[k],cv],A[E]) then

type j := A[EData][Nbrs[j],cv];
type k := A[EData][Nbrs[k],cv];
If one of the edges is undirected, we must return true.
if (type j=[1,1]) or (type k=[1,1]) then

return true;
else

If the edges match up properly, we must return true.
if (type j=[1,0] and type k=[0,1]) or (type j=[0,1] and type k=[1,0]) then

return true;
end if;

end if;
end if;

end do;
end do;

end if;
return false;

end proc:

Algorithm C.13. This procedure returns the precode formed from A by \smashing" (i.e. identi-
fying) the plaintext elements incident on the codetext vertex cv.

The following are the variables used in this procedure:

H is the returned precode.
Nbrs contains the list of vertices (\neighbors") adjacent to cv: It has length NumNbrs.
NewP contains the list of plaintext elements for H .
edge contains the current edge;
type is the edge type.
p is the plaintext vertex in edge; and c is the codetext vertex in edge.
i and j are loop indices.

smash c:=proc(A,cv) local H,Nbrs,NumNbrs,edge,type,p,c,i,j,NewP;

Nbrs:=A[CNbrs][cv];
NumNbrs := nops(Nbrs);

new precode(H): #Create the precode.
#We �rst add all the codetext vertices in A to H.
add code(H,A[C]);

#We remove all the vertices in Nbrs from A[P] except the �rst.
NewP := A[P];

161

for i from 2 to NumNbrs do
member(Nbrs[i], NewP, 'k');
NewP := subsop(k=NULL,NewP);

end do;
add plain(H,NewP);

#We now add the necessary edges to H.
for i from 1 to nops(A[E]) do

edge := A[E][i];
p := edge[1];
c := edge[2];
type := A[EData][p,c];

If p is part of the plaintext set we're smashing (the neighbors of cv),
then we must replace p with the representative (�rst) plaintext
element in the set.
for j from 1 to NumNbrs do

if p = Nbrs[j] then
p := Nbrs[1];

end if;
end do;
#We need to see if the edge is directed or undirected.
if type = [1,1] then

add edge(H,[[p,c,s]]):
elif type = [1,0] then

add edge(H,[[p,c,e]]):
else

add edge(H,[[p,c,d]]):
end if;

end do;
update vdata(H);
return H;

end proc:

Algorithm C.14. This procedure creates the smash of the precode A. Recall that the smash of
A is the precode whose vertices are the equivalence classes of an equivalence relation E on P; and
its edges are induced by the edges in A: The relation E is de�ned to be the smallest equivalence
relation containing the relation R, where R is the relation on P de�ned so that (p1; p2) is in R
if and only if there exists some cv in C such that p1 and p2 are adjacent (neighbors) of cv and
smash needed(A; cv) is true. Note that the smash of A has the same codetext set as A.

The following are the variables used in this procedure:

S is a temporary variable which will ultimately contain the smash of A.
N is a table indexed by the vertices of S which contains the vertices which are the \neighbors"

of each vertex.
Nbrs contains the list of vertices (\neighbors") adjacent to the codetext element c[i]:

It has length NumNbrs:
c is a codetext element.
i is a loop index.

smash:=proc(A) local S,c,Nbrs,NumNbrs,N,i;

162

S:=copy precode(A);
N:=S[CNbrs];
We construct S iteratively by \smashing" the plaintext elements incident on each
codetext vertex for which smash needed() returns true.
for i from 1 to nops(S[C]) do

c := S[C][i];
Nbrs := N[c];
NumNbrs := nops(Nbrs);

We check to see if c has at least two plaintext elements incident on it.
If not, no smashing will be necessary.
if NumNbrs > 1 then

if smash needed(S,c) then
S:=smash c(S,c);
N:=S[CNbrs];

end if;
end if;

end do;

return S;
end proc:

In our example above, the command

> precode_plot(smash(A),"Smash",0);

produces the output in Figure 34.

Smash

p1p1

c1

c2

c3

Figure 34. The Plot of the Precode Produced by the Smash() Procedure

C.5. The Split of a Precode. Recall Algorithms 7.2 and 7.19.

Algorithm C.15. This procedure returns the precode formed from A by \splitting" the codetext
element cv: The user has the option of splitting in either the usual or the \bald" sense. If the
parameter bald is true, we split in the bald sense.

The following are the variables used in this procedure:

H is the returned precode.

163

E contains the edge list of A: It has length NumE.
P contains the set of plaintext elements. It has length NumP .
C contains the set of codetext elements. It has length NumC.
N is a table indexed by the vertices of A which contains the vertices which are the \neighbors"

of each vertex.
Nbrs contains the list of vertices ("neighbors") adjacent to the codetext element c1:

It has length NumNbrs.
edge contains the current edge.
type is the edge type (i.e. [1,0] for an encode edge, etc.).
p is the plaintext element and c is the codetext element in edge.
PData is a list of the vertices incident on cv.
EData is a table indexed by the elements in PData such that EData[p] contains the edges incident on
p and cv.

PType is a list such that PType[i] is the type of the vertex PData[i].
If there is only an encode edge incident on PData[i]; then PData[i] is of type [1; 0].
If there is only a decode edge incident on PData[i]; then PData[i] is of type [0; 1].
If there are both, then PData[i] is of type [1; 1].

Type1 is true if either PType[i] = [1; 0] or Type3 > 1. It is false otherwise.
Type2 is true if either PType[i] = [0; 1] or Type3 > 1. It is false otherwise.
Type3 is the number of i for which PType[i] = [1; 1].
i; j; and k are loop indices.

split c:=proc(A,cv,bald) local H,N,Nbrs,NumNbrs,edge,p,c,type,EData,PData,PType,
Type1,Type2,Type3, i,j,k;

new precode(H):
N:=A[Nbrs];
Nbrs:=N[cv];
NumNbrs := nops(Nbrs);
EData := table();
PData :=[];
PType := table();

#We �rst add all the plaintext elements in A[P] to H.
add plain(H,A[P]);
We also initialize EData.
for i from 1 to nops(A[P]) do

EData[A[P][i]] := [];
end do;

#We add all the codetext elements in A[C] to H except cv.
member(cv, A[C], 'k');
add code(H,subsop(k=NULL,A[C]));

for i from 1 to nops(A[E]) do
edge := A[E][i];
p := edge[1];
c := edge[2];
type := A[EData][p,c];

#if the edge isn't incident on cv, add it to H.

164

if c <> cv then
if type = [1,1] then

add edge(H,[[p,c,s]]):
elif type = [1,0] then

add edge(H,[[p,c,e]]):
else

add edge(H,[[p,c,d]]):
end if;

else
#The edge is incident on cv. Add it to the table, and we'll deal with it later.
if not member(p, PData) then

PData := [op(PData),p];
end if;
EData[p]:=[op(EData[p]),edge];

end if;
end do;

for i from 1 to nops(PData) do
We now determine what types of edges are incident on cv. If there is only an
encode edge incident on PData[i],then PData[i] is of type [1,0]. If there is only
a decode edge, then PData[i] is of type [0,1]. If there are both, then PData[i]
is of type [1,1].
PType[i] := [0,0];
for j from 1 to nops(EData[PData[i]]) do

edge := EData[PData[i]][j];
type := A[EData][op(edge)];
if type = [1,1] then

PType[i] := [1,1];
elif type = [1,0] then

PType[i][1] := 1;
else

PType[i][2] := 1;
end if;

end do;
end do;

We now determine what types of codetext elements we must add to the precode.
If there is a plaintext element of type [1,0] or if there is more than one of type
[1,1], we need to add a codetext element of the form cv in.
If there is a plaintext element of type [0,1] or if there is more than one of type
[1,1], we need to add a codetext element of the form cv out.
Type1 := false;
Type2 := false;
Type3 := 0;
for i from 1 to nops(PData) do

if PType[i] = [1,0] then
Type1 := true;

elif PType[i] = [0,1] then
Type2 := true;

else #PType[i] = [1,1]
Type3 := Type3 + 1;

165

end if;
end do;

if Type1 = true then
add code(H,fcat(cv, in)g);

end if;
if Type2 = true then

add code(H,fcat(cv, out)g);
end if;
if not bald and Type3 > 1 then

add code(H,fcat(cv, in)g);
add code(H,fcat(cv, out)g);

end if;

for i from 1 to nops(PData) do
#We now add the appropriate edges to H.
p := PData[i];
for j from 1 to nops(EData[p]) do

edge := EData[p][j];
if A[EData][op(edge)] = [1,1] then

#The edge is undirected.
add code(H,fcat(p,cv)g);
add edge(H,[[p,cat(p,cv),s]]):
#If the user wants to split in the usual sense, we must add more edges.
if not bald then

if Type1 = true or Type3 > 1 then
add edge(H,[[p,cat(cv, in),e]]):

end if;
if Type2 = true or Type3 > 1 then

add edge(H,[[p,cat(cv, out),d]]):
end if;

end if;
else

#The edge is directed.
if A[EData][op(edge)] = [1,0] then

add edge(H,[[p,cat(cv, in),e]]):
if PType[i]=[1,1] then

add code(H,fcat(p,cv)g);
add edge(H,[[p,cat(p,cv),e]]):

end if;
else

add edge(H,[[p,cat(cv, out),d]]):
if PType[i]=[1,1] then

add code(H,fcat(p,cv)g);
add edge(H,[[p,cat(p,cv),d]]):

end if;
end if;

end if;
end do;

end do;
update vdata(H);

166

return H;
end proc:

Algorithm C.16. This procedure creates the split of the precode A: If the parameter bald is true,
we form the \bald" split of A. Otherwise, we form the usual split.

The following are the variables used in this procedure:

S is a temporary variable which will ultimately contain the split of A.
N is a table indexed by the vertices of S which contains the vertices which are the \neighbors"

of each vertex.
c is the current codetext element.
Nbrs contains the list of vertices (neighbors) adjacent to c: It has length NumNbrs.
i is a loop index.

split:=proc(A,bald) local S,c,N,Nbrs,NumNbrs,i;

S:=copy precode(A);
N:=S[CNbrs];
We construct S iteratively by \splitting" each codetext element for which
smash needed() returns true.
for i from 1 to nops(S[C]) do

c := S[C][i];
Nbrs := N[c];
NumNbrs := nops(Nbrs);
We check to see if c has at least two plaintext elements incident on it.
If not, no splitting will be necessary.
if NumNbrs > 1 then

#We will check to see if c needs to be split.
#Note that the smash needed procedure does the appropriate check.
if smash needed(S,c) then

#Let's split c.
S:=split c(S,c,bald);
N:=S[CNbrs];

end if;
end if;

end do;
return S;

end proc:

In our example above, the commands
> precode_plot(split(A,false));
> precode_plot(split(A,true));

produce the output in Figure 35.

Algorithm C.17. This procedure creates the ed-split of the precode A as in Algorithm 7.1.

The following are the variables used in this procedure:

S is a temporary variable which will ultimately contain the split of A.
N is a table indexed by the vertices of S which contains the vertices which are the \neighbors"

of each vertex.

167

Split

p2p2

p1p1

p2c2

c1

c3

c2_in

Bald Split

p2p2

p1p1

p2c2

c1

c3

c2_in

Figure 35. The Plots of the Precodes Produced by the Split() Procedure

c is the current codetext element.
Nbrs contains the list of vertices (neighbors) adjacent to the codetext element c:

It has length NumNbrs:
i is a loop index.

split ed:=proc(A) local S,c,N,Nbrs,NumNbrs,E list,D list,i,j;

N:=A[CNbrs];
new precode(S);
add plain(S,A[P]);

We construct S iteratively by \splitting" each codetext element for which
smash needed() returns true.
for i from 1 to nops(A[C]) do

c := A[C][i];
Nbrs := N[c];
NumNbrs := nops(Nbrs);
We will check to see if c needs to be split. Note that the smash needed procedure
does the appropriate check.
if NumNbrs > 1 and smash needed(A,c) then

add code(S,fcat(c, in)g);
add code(S,fcat(c, out)g);
E list := [];
D list := [];
for j from 1 to NumNbrs do

if A[EData][Nbrs[j],c][1]=1 then
E list := [op(E list),[Nbrs[j],cat(c, in),e]];

end if;
if A[EData][Nbrs[j],c][2]=1 then

D list := [op(D list),[Nbrs[j],cat(c, out),d]];
end if;

end do;
add edge(S,E list);
add edge(S,D list);

else

168

add code(S,fcg);
for j from 1 to NumNbrs do

if A[EData][Nbrs[j],c]=[1,1] then
add edge(S,[[Nbrs[j],c,s]]);

elif A[EData][Nbrs[j],c]=[1,0] then
add edge(S,[[Nbrs[j],c,e]]);

else
add edge(S,[[Nbrs[j],c,d]]);

end if;
end do;

end if;
end do;
update vdata(S);
return S;

end proc:

In our example above, the command

> precode_plot(split_ed(A),"ED-Split",0);

produce the output in Figure 36.

ED-Split

p1p1

p2p2

c1

c2_out

c3

c2_in

Figure 36. The Plot of the Precode Produced by the Split ED() Procedure

C.6. Parametrizations. Recall the Algorithms given in Section 8.

Algorithm C.18. This procedure creates the parametrization (F;G) of the precode A given in
Algorithm 8.2.

The following are the variables used in this procedure:

F and G are temporary variables which will ultimately contain the parametrization of A.
NewC will contain the set of codetext elements for F and G.
p is a plaintext element and c is a codetext element.
type is the type of the edge [p; c].
i and j are loop indices.

169

param basic:=proc(A) local F,G,NewC,p,c,type,i,j;

new precode(F);
new precode(G);

We now construct the plaintext and codetext sets for F and G.
add plain(F,A[P]);
add plain(G,A[C]);
NewC:=fg;
for i from 1 to nops(A[P]) do

for j from 1 to nops(A[C]) do
NewC := fop(NewC),cat(A[P][i],A[C][j])g;

end do;
end do;
add code(F,NewC);
add code(G,NewC);

We now construct the edge sets for F and G.
for i from 1 to nops(A[E]) do

p := A[E][i][1];
c := A[E][i][2];
type := A[EData][p,c];
if type=[1,1] then

[p,c] is of type s.
add edge(F,[[p,cat(p,c),s]]);
add edge(G,[[c,cat(p,c),s]]);

elif type=[0,1] then
[p,c] is of type d.
add edge(F,[[p,cat(p,c),d]]);
add edge(G,[[c,cat(p,c),e]]);

else
[p,c] is of type e.
add edge(F,[[p,cat(p,c),e]]);
add edge(G,[[c,cat(p,c),d]]);

end if;
end do;
update vdata(F);
update vdata(G);
return F,G;

end proc:

Algorithm C.19. This procedure creates the parametrization (F;G) of the precode A given in
Algorithm 8.5.

The following are the variables used in this procedure:

F and G are temporary variables which will ultimately contain the parametrization of A.
H contains the ED-split of A.
NewC will contain the set of codetext elements for F and G.
edge is the current edge.
type is the edge type.
p is a plaintext element and c is a codetext element.

170

N is F [CNbrs].
Nbrs is the list of neighbors of c: It has length NumNbrs:
root is the root name of the codetext element; i.e., if c = a out, then root = a.
i and j are loop indices.

param ed split:=proc(A) local F,G,H,NewC,N,Nbrs,NumNbrs,edge,type,p,c,root,i,j;

H:=split ed(A);
#We construct NewC. It will contain the codetext elements in H which are not isolated.
#
NewC:=H[C];
for i from 1 to nops(H[C]) do

c := H[C][i];
if nops(H[CNbrs][c]) = 0 then

Remove c.
member(c,NewC,'k');
NewC:=subsop(k=NULL,NewC);

end if;
end do;

#We construct F.
new precode(F):
add plain(F,A[P]);
add code(F,NewC);
for i from 1 to nops(H[E]) do

edge := H[E][i];
p := edge[1];
c := edge[2];
type := H[EData][p,c];
if type = [1,1] then

#The edge is of type s.
add edge(F,[[p,c,s]]);

elif type = [1,0] then
#The edge is of type e.
add edge(F,[[p,c,e]]);

else
#The edge is of type d.
add edge(F,[[p,c,d]]);

end if;
end do;
update vdata(F);

#We construct G.
new precode(G);
add plain(G,A[C]);
add code(G,NewC);

Construct the edges for G.
N := F[CNbrs];
for i from 1 to nops(NewC) do

c := F[C][i];

171

if length(c) > 3 then
if substring(c,-3..-1) = in then

root := substring(c,1..-4);
elif substring(c,-4..-1) = out then

root := substring(c,1..-5);
else

root := c;
end if;

else
root := c;

end if;
Nbrs := N[c];
NumNbrs := nops(Nbrs);
for j from 1 to NumNbrs do

type := F[EData][Nbrs[j],c];
if type=[1,1] then

#[Nbrs[j],c] is of type s.
add edge(G,[[root,c,s]]);

elif type=[0,1] then
#[Nbrs[j],c] is of type d.
add edge(G,[[root,c,e]]);

else
#[Nbrs[j],c] is of type e.
add edge(G,[[root,c,d]]);

end if;
end do;

end do;
update vdata(G);
return F,G;

end proc:

Algorithm C.20. This procedure creates the parametrization (F;G) of the precode A given in
Algorithm 8.12.

The following are the variables used in this procedure:

F and G are temporary variables which will ultimately contain the parametrization of A:
NewC will contain the set of codetext elements for F and G.
edge is a edge.
type is the edge type.
p is a plaintext element.
c is a codetext element.
c name is the name of an element to be added to NewC which generates either the encode
or decode edges incident on c in A.

N is A[CNbrs]:
Nbrs is the list of neighbors of c: It has length NumNbrs.
In Set contains the set of plaintext elements adjacent to c via an encode edge in A:
Out Set contains the set of plaintext elements adjacent to c via a decode edge in A:
In Sets Table is a table indexed by the elements of A[C] such that In Sets Table[c] contains the

name of the element in NewC which induces the encode edges incident on c.
Out Sets Table is a table indexed by the elements of A[C] such that Out Sets Table[c] contains the

name of the element in NewC which induces the decode edges incident on c.

172

i and j are loop indices.

param min ed:=proc(A) local F,G,NewC,In Set,Out Set,In Sets Table, Out Sets Table,p,c,c name,
N,Nbrs,NumNbrs,edge,type,i,j;

N := A[CNbrs];
In Sets Table := table();
Out Sets Table := table();

Initialize the plaintext sets for F and G.
new precode(F);
new precode(G);
add plain(F,A[P]);
add plain(G,A[C]);

#We construct NewC, the set of codetext elements for F and G.
NewC:=fg;
for i from 1 to nops(A[C]) do

c := A[C][i];

#We now construct the In Set and Out Set for c.
In Set := fg;
Out Set := fg;
Nbrs := N[c];
NumNbrs := nops(Nbrs);
for j from 1 to NumNbrs do

type := A[EData][Nbrs[j],c];
if type[1]=1 then

#We have an encode edge.
In Set := fop(In Set),Nbrs[j]g;

end if;
if type[2]=1 then

#We have a decode edge.
Out Set := fop(Out Set),Nbrs[j]g;

end if;
end do;

If In Set is not empty, we add i (In Set) to NewC and set In Sets Table[c] = i (In Set).
if nops(In Set) > 0 then

c name := cat(i ,convert(In Set,symbol));
NewC := fop(NewC),c nameg;
In Sets Table[c]:=c name;

end if;
If Out Set is not empty, we add o (Out Set) to NewC and set
Out Sets Table[c] = o (Out Set).
if nops(Out Set) > 0 then

c name := cat(o ,convert(Out Set,symbol));
NewC := fop(NewC),c nameg;
Out Sets Table[c]:=c name;

end if;
end do;

173

add code(F,NewC);
add code(G,NewC);

#We add the edges to F and G.
for i from 1 to nops(A[E]) do

edge := A[E][i];
p := edge[1];
c := edge[2];
type := A[EData][p,c];
if type[1] = 1 then

(p,c) is an encode edge in A.
add edge(F,[[p,In Sets Table[c],e]]);
add edge(G,[[c,In Sets Table[c],d]]);

end if;
if type[2] = 1 then

(c,p) is a decode edge in A.
add edge(F,[[p,Out Sets Table[c],d]]);
add edge(G,[[c,Out Sets Table[c],e]]);

end if;
end do;
update vdata(F);
update vdata(G);
return F,G;

end proc:

Algorithm C.21. This procedure creates the parametrization (F;G) of the precode A given in
Algorithm 8.22.

The following are the variables used in this procedure:

F and G are temporary variables which will ultimately contain the parametrization of A.
NewC will contain the set of codetext elements for F and G.
edge is an edge.
type is the edge type.
p is a plaintext element.
c is a codetext element.
N is A[CNbrs]:
Nbrs is the list of neighbors of c: It has length NumNbrs:
In contains the set of plaintext elements adjacent to c via an encode edge in A:
Out contains the set of plaintext elements adjacent to c via a decode edge in A:
In Set is a table indexed by the elements of A[C] such that In Set[c] contains the set In for c:
Out Set is a table indexed by the elements of A[C] such that Out Set[c] contains the set Out for c:
Set Of In Sets is a set of sets. It contains all of the values that In assumes.
Set Of Out Sets is a set of sets. It contains all of the values that Out assumes.
In Sets Table is a table indexed by the elements in Set Of In Sets:
In Sets Table[In] contains the list of all the codetext elements c for which In = In Set[c].

Out Sets Table is a table indexed by the elements in Set Of Out Sets.
Out Sets Table[Out] contains the list of all the codetext elements c for which Out = Out Set[c].

C In contains In Sets Table[In Set[c]].
C Out contains Out Sets Table[Out Set[c]].
e Name is a table indexed by the elements in A[C] such that
e Name[c] is the name of the element in NewC which will generate the encode edges incident

174

on c in A.
d Name is a table indexed by the elements in A[C] such that
d Name[c] is the name of the element in NewC which will generate the decode edges incident
on c in A:

out not done is a Boolean indicating whether or not d Name[c] has been set.
i and j are loop indices.

param min:=proc(A) local F,G,NewC,In,Out,C In,C Out,Set Of In Sets,Set Of Out Sets,
In Set,Out Set,In Sets Table,Out Sets Table,e Name,d Name,out not done,p,c,N,Nbrs,
NumNbrs,edge,type,i,j;

N := A[CNbrs];
In Set := table();
Out Set := table();
e Name := table();
d Name := table();
In Sets Table := table();
Out Sets Table := table();
Set Of In Sets := fg;
Set Of Out Sets := fg;
NewC:=fg;

Initialize the plaintext sets for F and G.
new precode(F);
new precode(G);
add plain(F,A[P]);
add plain(G,A[C]);

Construct the codetext set for F and G.
for i from 1 to nops(A[C]) do

c := A[C][i];
In := fg;
Out := fg;
Nbrs := N[c];
NumNbrs := nops(Nbrs);
for j from 1 to NumNbrs do

type := A[EData][Nbrs[j],c];
if type[1]=1 then

(Nbrs[j],c) is an encode edge in A.
In := fop(In),Nbrs[j]g;

end if;
if type[2]=1 then

(c,Nbrs[j]) is a decode edge in A.
Out := fop(Out),Nbrs[j]g;

end if;
end do;

In Set[c] := In;
Out Set[c] := Out;

Add c to In Sets Table[In].

175

if member(In, Set Of In Sets) then
In Sets Table[In]:=[op(In Sets Table[In]),c];

else
Set Of In Sets := fop(Set Of In Sets),Ing;
In Sets Table[In]:=[c];

end if;
Add c to Out Sets Table[Out].
if member(Out, Set Of Out Sets) then

Out Sets Table[Out]:=[op(Out Sets Table[Out]),c];
else

Set Of Out Sets := fop(Set Of Out Sets),Outg;
Out Sets Table[Out]:=[c];

end if;
end do;

We construct the codetext set for F and G.
for i from 1 to nops(A[C]) do

c := A[C][i];
In := In Set[c];
Out := Out Set[c];
C In := In Sets Table[In];
C Out := Out Sets Table[Out];
out not done := true;

if nops(In) > 0 then
In is not empty.
if nops(In)=1 and In=Out and nops(C In)=1 and nops(C Out)=1 then

c is a member of L as de�ned in the algorithm.
NewC := fop(NewC),cg;
e Name[c]:=c;
d Name[c]:=c;
out not done := false;

else
NewC := fop(NewC),cat(i ,convert(In,symbol))g;
e Name[c]:=cat(i ,convert(In,symbol));

end if;
end if;
if nops(Out) > 0 and out not done then

Out is not empty and c is not a member of L as de�ned in the algorithm.
NewC := fop(NewC),cat(o ,convert(Out,symbol))g;
d Name[c]:=cat(o ,convert(Out,symbol));

end if;
end do;
add code(F,NewC);
add code(G,NewC);

Construct the edges for F and G.
for i from 1 to nops(A[E]) do

edge := A[E][i];
p := edge[1];
c := edge[2];

176

type := A[EData][p,c];
if type[1] = 1 then

add edge(F,[[p,e Name[c],e]]);
add edge(G,[[c,e Name[c],d]]);

end if;
if type[2] = 1 then

add edge(F,[[p,d Name[c],d]]);
add edge(G,[[c,d Name[c],e]]);

end if;
end do;
update vdata(F);
update vdata(G);
return F,G;

end proc:

177

APPENDIX D

MAPLE CODE FOR COUNTING CODES AND PRECODES

This section gives Maple code for counting codes and precodes up to isomorphism. It implements
the formulae in Sections 4 and 5. We use the combinat package, so we include it via the following
command.

> with(combinat);

D.1. Counting Bipartite Graphs up to M-Equivalence. Recall De�nition 3.10.

Algorithm D.1. This procedure counts the number of (m;n) bipartite graphs up to M-equivalence,
where M = (M [1]; :::;M [k]) is a partition of m. Recall that two (m;n) bipartite graphs are M-
equivalent if they di�er from each other by a permutation of the form ab, where a is a permutation
of m of type M and where b is a permutation of n. Recall also that a is of type M if a is in
SM [1] � : : :� SM [k], where Sj denotes the symmetric group on j symbols.

For each 1 � i � k, we let J [i] be a list of the partitions of M [i]. Each such partition represents
one of the possible cycle structures for the elements of SM [i] (the symmetric group onM [i] elements).

We let JZ [i] be the list of length jJ [i]j such that for each 1 � j � jJ [i]j, JZ [i][j] contains the list
of length m which represents the cycle structure shared by the permutations of type J [i][j]; that is,
for each 1 � q � m, JZ [i][j][q] contains the number of times q appears in the partition J [i][j]. For
example, if m = 8, M [i] = 7, and J [i][j] = [1; 1; 2; 3], then JZ [i][j] = [2; 1; 1; 0; 0; 0; 0; 0]. Finally,
we let JN [i] be the list of length jJ [i]j such that JN [i][j] is the number of permutations in SM [i] with
cycle structure JZ [i][j].

Now, note that there are Q = jJ [1]j � jJ [2]j � � � jJ [k]j possible cycle structures for the elements
in SM [1] � : : : � SM [k]. We let LZ and LN be lists of length Q. For each 1 � j � Q;LZ [j]
contains a list of length m which represents one of the possible cycle structures for the elements in
SM [1] � : : :� SM [k]. That is, for each 1 � q � m, LZ [j][q] contains the number of cycles of length
q in the corresponding permutation. Each entry in LN contains the number of permutations of the
type represented by the corresponding entry in LZ .

We let K be a list of the partitions of n. Each such partition represents one of the possible
cycle structures for the elements of Sn. We let KZ be the list of length jKj such that for each
1 � j � jKj, KZ [j]contains the list of length n which represents the cycle structure shared by the
permutations of type K[j]; that is, for each 1 � q � n, KZ [j][q] contains the number of times q
appears in the partition K[j]. Finally, we let KN be the list of length jKj such that KN [j] is the
number of permutations in Sn with cycle structure KZ [j].

By Corollary 3.17, the number of (m;n) bipartite graphs up to M-equivalence is given by the
following formula:

1

M [1]! �M [2]! � � �M [k]! � n!

X
1�a�Q

X
1�b�jKj

0
@LN [a] �KN [b]

0
@ Y

1�r�m

Y
1�t�n

2(r;t)�LZ [a][r]�KZ[b][t]

1
A
1
A

The variables used in this procedure are de�ned as follows:

m;n;M; a; b; r; t; J;K;MLen = jM j;KLen = jKj; JNum = JN ; JIndex = JZ ;KNum = KN ,
and KIndex = KZ are all as de�ned above.

i; j; k; l; w, and v are loop indices.
hj (which corresponds to h(j) in Harary) is the number of permutations corresponding to the

current partition.

178

x and y are temporary variables.
cnt contains the number of times the current k appears in the current partition.
Exponent contains the exponent (r; t) � LIndex[a][r] �KIndex[b][t] for the current r; t; a, and b.
Factor contains the current partial product in the formula above.
NumGraphs contains the number of graphs counted so far.
bipartite:=proc(m,n,M) local J, K, JNum, LNum, KNum, MLen, KLen,JIndex, LIndex,

KIndex, i, j, k, l, w, v, a, b, r, t, x, y, hj,cnt, Num, NumGraphs, Exponent, Factor;

Initialize the J data.
MLen := nops(M); J := array(1..MLen):
JNum := array(1..MLen):
JIndex := array(1..MLen):
for k from 1 to MLen do

J[k] contains the partitions of M[k].
J[k] := partition(M[k]);
Initialize JIndex and JNum with arrays to be �lled below.
JIndex[k] := array(1..nops(J[k]));
JNum[k] := array(1..nops(J[k]));

end do;

Initialize the K data.
K:=partition(n);
KLen := nops(K);
KNum:=[];
KIndex:=[];

Process the J data.
for k from 1 to MLen do

Loop on the number of partitions of M[k]. Each partition represents a possible
cycle decomposition of the permutations in S M[k]. For example, if M[k]=5,
then the partition [1,1,1,2] represents permutations in S M[k] whose unique
cycle decomposition has 3 cycles of length 1 and 1 cycle of length 2.
for j from 1 to nops(J[k]) do

Add a new entry to JIndex[k] of the form [0,...,0] (m zeros).
Although JIndex[k] will have at most M[k] nonzero terms, we use m entries so
that the length is uniform. This will make the processing we do later easier.
JIndex[k][j] := [seq(0,i=1..m)];

hj will contain the number of permutations in S M[k] which have cycle
decomposition corresponding the partition J[k].
hj:=1;
x contains the number of elements from which we may choose to build the current
cycle. It is initially M[k]. It will decrease as we count the number of ways
to construct each cycle.
x:=M[k];

#Loop once for each entry in the current partition.
for i from 1 to nops(J[k][j]) do

y := J[k][j][-i];

179

cnt contains the number of entries in J[k][j] with value y, that is, the number
of cycles with length y in the cycle decomposition. Recall that -i references
the ith-to-last element in the list.
cnt:=0;
if i < nops(J[k][j]) then

#This is not the last entry in the partition.
for l from i to nops(J[k][j]) while (J[k][j][-l]=y) do

#There is another entry in J[k][j] with value y.
cnt:=cnt+1;

There are (x choose y) ways to choose the y elements for the current
cycle. There are (y-1)! possible cycles containing each choice of y
elements ((y-1)! is the number of circular orderings of y elements).
For example, if y = 3 (corresponding to a cycle of length 3 in the
permutation corresponding to this partition), then there are 2!
possible cycles containing the 3 particular elements chosen. Thus,
the factor contributed to hj for this cycle is (x choose y)*(y-1)!
hj:=hj*numbcomb(x,y)*(y-1)!;

After we've chosen y elements from f1,...,xg, we must eliminate them
from the pool.
x:= x-y;

end do;

if cnt >= 1 then
We had multiple cycles of length y, and we've handled them in the above
loop, so skip past them.
i:=l-1;

However, we've overcounted by the number of ways of ordering the cycles
of the same type. For example, if we had 3 cycles of length 2, we've
counted each combination of 3 such cycles 3! times. We must correct
this.
hj:=hj/cnt!;

end if;
else

#This is the last entry in the partition.
hj:=hj*numbcomb(x,J[k][j][1])*(J[k][j][1]-1)!;

end if;

#In some cases, cnt might still be 0. This is incorrect.
JIndex[k][j][y] := max(cnt,1);

end do;

#Add the number of permutations corresponding to this partition to the JNum list.
JNum[k][j] := hj;

end do; # End of loop indexed by j.
end do; # End of loop indexed by k

We now �nish processing the J data by combining the information from each of the
JIndex[k] into one list LIndex, and similarly for LNum.

180

LIndex and LNum are arrays. We need to treat them as lists.
We set LIndex := JIndex[1] and LNum := JNum[1]. We'll add the entries
for k from 2 to MLen below.
LIndex := convert(JIndex[1],listlist);
LNum := convert(JNum[1],listlist);

for k from 2 to MLen do
We will use the existing terms in LIndex along with the terms in JIndex[k] to add
updated terms to LIndex. We will then remove all of the old LIndex terms from
the front of LIndex. We will do similarly for LNum.
Num := nops(LIndex);
for w from 1 to Num do

for v from 1 to nops(J[k]) do
LIndex contains N 1*...*N (k-1) entries, where N i=nops(J[i]) is the number
of partitions of M[k]. Each entry corresponds to a product permutation in
S M[1] x ... x S M[k-1], which is the product of one permutation
corresponding to a partition of M[1], one corresponding to a partition of M[2], etc.
Each entry in LIndex contains a list of the number of cycles of each length in
the corresponding permutation.

J[k][v] contains a partition of M[k], and JIndex[k][v] contains a list of the
number of cycles of each length in the permutations represented by J[k][v].

The number of cycles of a given length in the product of the permutations
represented by LIndex[w] and JIndex[k][v] is the sum of the number of cycles
of that length in each of those permutations.
(Note: Here is where it pays to let those lists all be of length m.)
LIndex := [op(LIndex),[seq(LIndex[w][i]+JIndex[k][v][i],i=1..m)]];

The number of product permutations that can be formed using one permutation
of the type speci�ed in LIndex[w] and one permutation of the type
speci�ed in JIndex[k][v] is the product of the number of permutations of
type LIndex[w] and the number of permutations of type JIndex[k][v].
LNum := [op(LNum),(LNum[w]*JNum[k][v])];

end do;
end do;

We now strip the old terms from LIndex and LNum.
LIndex := subsop(seq(i=NULL,i=1..Num),LIndex);
LNum := subsop(seq(i=NULL,i=1..Num),LNum);

end do;

We now process the K data. (See the above loop for comments.)
Loop on the number of partitions of n.
for j from 1 to KLen do

#Add a new entry to KIndex of the form [0,...,0]
KIndex := [op(KIndex),[seq(0,i=1..n)]];
hj:=1;
x:=n;

181

#Loop once for each entry in the current partition
for i from 1 to nops(K[j]) do

cnt:=0;
if i < nops(K[j]) then

#This is not the last entry in the partition.
for l from i to nops(K[j]) while (K[j][-l] = K[j][-i]) do

cnt:=cnt+1;
hj:=hj*numbcomb(x,K[j][-l])*(K[j][-l]-1)!;
x:= x-K[j][-i];

end do;

if cnt >= 1 then
i:=l-1;
hj:=hj/cnt!;

end if;
else

#This is the last entry in the partition.
hj:=hj*numbcomb(x,K[j][1])*(K[j][1]-1)!;

end if;
KIndex[j][K[j][-i]] := max(cnt,1);

end do;

KNum := [op(KNum),hj];
end do;

#This loop computes the number given by the formula using the data collected above.
NumGraphs := 0;

#This loop corresponds to Alpha in the formula.
for a from 1 to nops(LIndex) do

#This loop corresponds to Beta in the formula.
for b from 1 to KLen do

Factor:=1;
#This loop corresponds to r in the formula.
for r from 1 to m do

#This loop corresponds to t in the formula.
for t from 1 to n do

#Compute the exponent for this r and t.
Exponent:=gcd(r,t)*LIndex[a][r]*KIndex[b][t];

#Update the partial product.
Factor:=Factor*(2^Exponent);

end do;
end do;

#Update the partial sum.
NumGraphs:=NumGraphs+(LNum[a]*KNum[b]*Factor);

end do;
end do;

#Scale as in the formula.

182

NumGraphs := NumGraphs/(mul(M[k]!,k=1..nops(M))*n!);
end proc:

Algorithm D.2. This procedure counts the number of (m;n) bipartite graphs for which NONE of
the n vertices of the second color are isolated up to M-equivalence, where M is a partition of m
(see the comments in bipartite(m;n;M) for the de�nition of M-equivalence). Then number of such
graphs is given by the following formula in Corollary 3.19:

bipartite strict(m;n;M) = bipartite(m;n;M)�
X

1�k�n

bipartite strict(m; (n� k);M)

The variables used in this procedure are de�ned as follows:

k is a loop index
NumGraphs contains the number of graphs counted so far.

bipartite strict:=proc(m,n,M) local k, NumGraphs;

if n = 0 then
bipartite strict(m,0,M) = 1 (the graph with no edges).
NumGraphs := 1;

else
#bipartite strict(m,n,M)=bipartite(m,n,M)-sum f1 <= k <= ngbipartite strict(m,(n-k),M).
#Since bipartite strict(m,0,M) = 1, we let k run to n-1 and then subtract 1.
NumGraphs := bipartite(m,n,M)-add(bipartite strict(m,n-k,M),k=1..(n-1));
Now subtract o� the code with no edges.
NumGraphs := NumGraphs - 1;

end if;

NumGraphs;
end proc:

Algorithm D.3. This procedure counts the number of (m;n) bipartite graphs with no isolated
vertices (that is, (m;n) bipartite graphs which are both 1-strict and 2-strict) up to isomorphism.
Let B(m;n) represent Bipartite Strict(m;n). Then, as in Theorem 3.20, the formula is

B(m;n) = bipartite(m;n)�
X

1�j�(m�1)

X
1�k�(n�1)

B(j; k)�
X

1�j�(m�1)

B(j; n) �
X

1�k�(n�1)

B(m; k);

where B(m; 0) = 0 = B(0; n).

The variables used in this procedure are de�ned as follows:

NumGraphs contains the number of graphs counted so far.

Bipartite Strict:=proc(m,n) local NumGraphs;

#If m = 0 or n = 0, Bipartite Strict(m,n) = 0.
if m = 0 or n = 0 then

NumGraphs := 0;
else

183

NumGraphs := bipartite(m,n,[m])
- add(add(Bipartite Strict(j,k),k=1..(n-1)), j=1..(m-1))
- add(Bipartite Strict(j,n), j=1..(m-1))
- add(Bipartite Strict(m,k), k=1..(n-1));

end if;
NumGraphs;

end proc:

D.2. Counting Mixed Bipartite Graphs up to Isomorphism. Recall De�nition 3.21.

Algorithm D.4. This procedure counts the number of (m;n) mixed bipartite graphs up to isomor-
phism.

Let A = Sm�� � ��Sn; let jr(a) denote the number of cycles of length r in the cycle decomposition
of a in Sm; and let jt(b) denote the number of cycles of length t in the cycle decomposition of b in
Sn. Then the number of (m;n) mixed bipartite graphs up to isomorphism is given by the following
formula in Theorem 3.23 and Notation 3.24:

1

m!n!

X
(a;b)2A

Y
1�r�m;1�t�n

2(2�(r;t)�jr(a)�jt(b))

The variables used in this procedure are de�ned as follows:

m and n are parameters corresponding to the m and n above.
a; b; r, and t are loop indices corresponding to the a; b; r and t in the above formula.
i; j; k, and l are loop indices.
hj (which corresponds to h(j) in Harary) is the number of permutations corresponding to the

current partition.
Exponent contains the exponent ((r; t)J(r)j t(b)) for the current r; t; a, and b.
Factor contains the current partial product in the formula above.
J contains a list of the partitions of m.
JLen is the number of partitions of m.
JNum is a list such that JNum[j] is the number of permutations in Sm corresponding to the

partition J [j] of n.
JIndex is a list such that JIndex[j] contains the list of length m such that JIndex[j][k]

contains the number of times k appears in the partition J [j]:
For example, if m = 7 and J [j] = [1; 1; 2; 3], then JIndex[j] = [2; 1; 1; 0; 0; 0; 0].

K contains a list of the partitions of n.
KLen is the number of partitions of n.
KNum is a list such that KNum[j] is the number of permutations in Sn corresponding to the

partition K[j] of n.
KIndex is a list such that KIndex[j] contains the list of length n such that KIndex[j][k]

contains the number of times k appears in the partition K[j].
(See the description of JIndex for an example.)

x and y are temporary variables.
cnt contains the number of times the current k appears in the current partition.

(See the de�nition of JIndex).
NumGraphs contains the number of graphs counted so far.

mixed bipartite:=proc(m,n) local J, K, JNum, KNum, JLen, KLen,
JIndex, KIndex, i, j, l, a, b, r, t, x, y, hj, cnt, NumGraphs,
Exponent, Factor;

184

Initialize the J data.
J:=partition(m);
JLen := nops(J);
JNum:=[];
JIndex:=[];

Initialize the K data.
K:=partition(n);
KLen := nops(K);
KNum:=[];
KIndex:=[];

Process the J data.
Loop on the number of partitions of m.
for j from 1 to JLen do

Add a new entry to JIndex of the form [0,...,0] (m zeros).
JIndex := [op(JIndex),[seq(0,i=1..m)]];

hj will contain the number of permutations in S m which have cycle decomposition
corresponding to the partition J[j].
hj:=1;
x contains the number of elements from which we may choose to build the current
cycle. It is initially m. It will decrease as we count the number of ways to construct
each cycle.
x:=m;

#Loop once for each entry in the current partition
for i from 1 to nops(J[j]) do

y := J[j][-i];

cnt contains the number of entries in J[j] with value y, that is, the number of
cycles with length y in the cycle decomposition. Recall that -i references the
ith-to-last element in the list.
cnt:=0;
if i < nops(J[j]) then

#This is not the last entry in the partition.
for l from i to nops(J[j]) while (J[j][-l] = J[j][-i]) do

#There is another entry in J[j] with value y.
cnt:=cnt+1;

There are (x choose y) ways to choose the y elements for the current cycle.
There are (y-1)! possible cycles containing each choice of y elements since
(y-1)! is the number of circular orderings of y elements.
For example, if y = 3 (corresponding to a cycle of length 3 in the permutation
corresponding to this partition), then there are 2! possible cycles containing
the 3 particular elements chosen. Thus, the factor contributed to hj for this
cycle is (x choose y)*(y-1)!
hj:=hj*numbcomb(x,y)*(y-1)!;

After we've chosen y elements from f1,...,xg, we must eliminate them

185

from the pool.
x:= x-y;

end do;

if cnt >= 1 then
We had multiple cycles of length y, and we've handled them in the above loop,
so skip past them.
i:=l-1;

However, we've overcounted by the number of ways of ordering the cycles of
the same type. For example, if we had 3 cycles of length 2, we've counted each
combination of 3 such cycles 3! times. We must correct this.
hj:=hj/cnt!;

end if;
else

#This is the last entry in the partition.
hj:=hj*numbcomb(x,J[j][1])*(J[j][1]-1)!;

end if;
JIndex[j][y] := max(cnt,1);

end do;

#Add the number of permutations corresponding to this partition to the JNum list.
JNum := [op(JNum),hj];

end do;

We now process the K data. (See the above loop for comments.)
Loop on the number of partitions of n.
for j from 1 to KLen do

#Add a new entry to KIndex of the form [0,...,0]
KIndex := [op(KIndex),[seq(0,i=1..n)]];
hj:=1;
x:=n;

#Loop once for each entry in the current partition
for i from 1 to nops(K[j]) do

y := K[j][-i];
cnt:=0;
if i < nops(K[j]) then

#This is not the last entry in the partition.
for l from i to nops(K[j]) while (K[j][-l] = y) do

cnt:=cnt+1;
hj:=hj*numbcomb(x,y)*(y-1)!;
x:= x-y;

end do;

if cnt >= 1 then
i:=l-1;
hj:=hj/cnt!;

end if;
else

#This is the last entry in the partition.

186

hj:=hj*numbcomb(x,K[j][1])*(K[j][1]-1)!;
end if;
KIndex[j][y] := max(cnt,1);

end do;

KNum := [op(KNum),hj];
end do;

This loop computes the number given by the formula using the data collected above.
NumGraphs := 0;
This loop corresponds to Alpha in the formula.
for a from 1 to JLen do

This loop corresponds to Beta in the formula.
for b from 1 to KLen do

Factor:=1;
This loop corresponds to r in the formula.
for r from 1 to m do

This loop corresponds to t in the formula.
for t from 1 to n do

Compute the exponent for this r and t.
Exponent:=2*gcd(r,t)*JIndex[a][r]*KIndex[b][t];
Update the partial product.
Factor:=Factor*(2^Exponent);

end do;
end do;

Update the partial sum.
NumGraphs:=NumGraphs+(JNum[a]*KNum[b]*Factor);

end do;
end do;

Scale as in the formula.
NumGraphs := NumGraphs/(m!*n!);

end proc:

D.3. Counting S Codes. Recall De�nition 4.2.

Algorithm D.5. This procedure counts the number of (m;n) strictly S codes. By Lemma 4.5, this
is simply the number of partitions of n into m nonnegative parts; that is, the number of partitions
of n into m or fewer parts.

The variables used in this procedure are de�ned as follows:

J contains a list of the partitions of n.
j is a loop index.
NumCodes contains the number of strictly S codes counted so far.

s strict:=proc(m,n) local J,j,NumCodes;

J:=partition(n);

NumCodes:=0;

187

Loop on the number of partitions of n.
for j from 1 to nops(J) do

if nops(J[j]) <= m then
NumCodes := NumCodes + 1;

end if
end do;
NumCodes;

end proc:

Algorithm D.6. This procedure counts the number of (m;n) S codes. By Lemma 4.5,

s(m;n) =
X

1�i�n

s strict(m; i):

The variables used in this procedure are de�ned as follows:

i is a loop index.
NumCodes contains the number of strictly S codes counted so far.

s:=proc(m,n) local i,NumCodes;

NumCodes:=0;

i contains the number of o columns present.
for i from 1 to n do

NumCodes := NumCodes + s strict(m,i);
end do;
NumCodes;

end proc:

D.4. Counting E and D Codes. Recall De�nition 4.2.

Algorithm D.7. This procedure counts the number of (m;n) E (or D) codes. As in Lemma 4.6
this is the number of (m;n) bipartite graphs minus 1.

The variables used in this procedure are de�ned as follows:

NumCodes contains the number of E codes.

e:=proc(m,n) local NumCodes;

NumCodes := bipartite(m,n,[m]) - 1;

end proc:

Algorithm D.8. This procedure counts the number of (m;n) strictly E (or D) codes. As in
Lemma 4.6 this is the number of (m;n) 2-strict bipartite graphs.

The variables used in this procedure are de�ned as follows:

NumCodes contains the number of strictly E codes.

188

e strict:=proc(m,n) local NumCodes;

NumCodes := bipartite strict(m,n,[m]);

end proc:

D.5. Counting SE and SD Codes. Recall De�nition 4.8.

Algorithm D.9. This procedure counts the number of (m;n) SE (or SD) codes. By Lemma 4.13,

se(m;n) = 0 if n < 2

and
se(m;n) =

X
1�c�(n�1)

X
J

(bipartite (m; c;K(J))� 1)

for n � 2; where the second sum is over all partitions J of s = n� c such that jJ j � m and where
K(J) is the partition of m formed by tacking on at most one term to the partition M(J) of jJ j
which tracks the number of times each value in J appears.

The variables used in this procedure are de�ned as follows:

fc is the number of \free" codetext elements; i.e., those which aren't of type s.
s = n� fc is the number of s columns in the matrix representation of the code.
J contains a list of the partitions of n� fc.
Each partition represents the types of s components in the current code.

For example, if J [j] = [1; 1; 3], there are two S components each incident on one codetext
element, and one S component incident on three codetext elements.

p = jJ j is the number of entries in the current partition of n� fc, i.e., the number of
connected s components in the current code. In the above example, p = 3. We use the
letter p for \plaintext", since there is precisely one plaintext element in each
s component.

fp is the number of "free" plaintext elements; i.e., those which aren't part of the
s components.

K tracks the number of each di�erent type of s component in J [j].
For J [j] = [1; 1; 3], K = [2; 1], indicating two components of one type and one of
another type.

i; j are loop indices.
Cnt; Factor; and s are temporary variables.
NumCodes contains the number of SE codes counted so far.

se:=proc(m,n) local J,K,p,fc,fp,i,j,NumCodes,Cnt,Factor,s;

NumCodes := 0;
if n < 2 then

return(0);
end if;

fc is the number of \free" columns, i.e., the columns which are not the s columns.
They will be e or o columns. Since we need at least one s column, fc can be at most n-1.
for fc from 1 to n-1 do

s:=n-fc;
J:=partition(s);

189

#Loop on the number of partitions of s.
for j from 1 to nops(J) do

We need to determine the number of each type of S component. For example, if
J[j]=[1,1,3], there are two S components each incident on one plaintext element,
and one S component incident on three plaintext elements. Thus, we construct
K=[2,1] to represent this.

p is the number of s components. fp=m-p is the number of \free" plaintext
vertices, that is, plaintext vertices which are not part of an s component.
p := nops(J[j]);
fp := m-p;

There must be one plaintext entry for each entry in J[j] since each entry in
J[j] is supposed to represent an s component, and each s component is attached
to a distinct plaintext vertex. Thus, we must disregard any partition in J
with more than m parts.
if p <= m then

We now construct K for this partition.
Cnt := 1;
K := [];
for i from 2 to p do

if J[j][i] = J[j][i-1] then
Cnt := Cnt + 1;

else
K := [op(K),Cnt];
Cnt := 1;

end if;
end do;

K := [op(K),Cnt];

#We construct a partition of m to send to bipartite().
if fp <> 0 then

K:=[op(K),fp]
end if;

We need to be sure to subtract the code with no edges since it represents a
code with no e edges.
NumCodes:=NumCodes+bipartite(m,fc,K)-1;

end if;
end do;

end do;
NumCodes;

end proc:

Algorithm D.10. This procedure counts the number of (m;n) strictly SE (or SD) codes. By
Lemma 4.13,

190

se strict(m;n) = se(m;n)�
X

1�k�(n�1)

se strict(m;n� k):

The variables used in this procedure are de�ned as follows:

NumCodes is the number of strictly SE codes counted so far.

se strict:=proc(m,n) local i,j,k,l,NumCodes;

if n = 1 then
NumCodes := 0;

else
NumCodes := se(m,n)-add(se strict(m,n-k),k=1..(n-1));

end if;
NumCodes;

end proc:

D.6. Counting SED Codes. Recall De�nition 4.8.

Algorithm D.11. This procedure counts the number of (m;n) SED codes. Let bi s(i; j) denote
bipartite strict(i; j). By Lemma 4.14,

sed(m;n) = 0 if n < 3

and

sed(m;n) =
X

1�c�(n�1)

X
J

X
1�e�(n�s�1)

X
1�d�(n�s�e)

(bi s (m; e;K(J)) � bi s (m; d;K(J))) for n > 3;

where the second sum is over all partitions J of s = n� c such that jJ j � m and where K(J) is the
partition of m formed by tacking on at most one term to the partition M(J) of jJ j which tracks the
number of times each value in J appears.

The variables used in this procedure are de�ned as follows:

fc is the number of \free" codetext elements; i.e., those which aren't of type s.
s = n� fc is the number of s columns in the matrix representation of the code.
J contains a list of the partitions of n� fc. Each partition represents the types of s

components in the current code. For example, if J [j] = [1; 1; 3], there are two S components
each incident on one codetext element, and one S component incident on three codetext
elements.

p = jJ j is the number of entries in the current partition of n� fc, i.e., the number of
connected s components in the current code. In the above example, p = 3. We use the
letter p for \plaintext", since there is precisely one plaintext element in each s component.

fp is the number of \free" plaintext elements; i.e., those which aren't part of the s
components.

K tracks the number of each di�erent type of s component in J [j].
For J [j] = [1; 1; 3], K = [2; 1], indicating two components of one type and one of
another type.

i; j; e, and d are loop indices.
Cnt; Factor, and s are temporary variables.
NumCodes contains the number of SED codes counted so far.

191

sed:=proc(m,n) local J,K,p,fc,fp,i,j,NumCodes,Cnt,Factor,s,e,d;
NumCodes := 0;
if n < 3 then

return(0);
end if;
fc is the number of \free" columns, i.e., the columns which are not the s columns.
They will be e, d, or o columns. Since we need at least one s column, fc can be at
most n-1.
for fc from 1 to n-1 do

s:=n-fc;
J:=partition(s);
#Loop on the number of partitions of s.
for j from 1 to nops(J) do

We need to determine the number of each type of S component. For example, if
J[j]=[1,1,3], there are two S components each incident on one plaintext element,
and one S component incident on three plaintext elements. Thus, we construct
K=[2,1] to represent this. p is the number of s components.
fp is the number of \free" plaintext vertices, that is, plaintext
vertices which are not part of an s component.
p := nops(J[j]);
fp := m-p;
There must be one plaintext entry for each entry in J[j] since each entry in J[j]
is supposed to represent an s component, and each s component is attached to a
distinct plaintext vertex. Thus, we must disregard any partition in J with more
than m parts.
if p <= m then

We now construct K for this partition.
Cnt := 1;
K := [];
for i from 2 to p do

if J[j][i] = J[j][i-1] then
Cnt := Cnt + 1;

else
K := [op(K),Cnt];
Cnt := 1;

end if;
end do;

K := [op(K),Cnt];
#We construct a partition of m to send to bipartite().
if fp <> 0 then

K:=[op(K),fp]
end if;
We loop on the number of e vertices. We need at least one e vertex.
Since we must have at least one d vertex, e can be at most n-(s+1).
for e from 1 to n-s-1 do

We loop on the number of d vertices. We need at least one d vertex.
The remaining n-(s+e+d) vertices are the o columns. We only need to loop for
d <= e since for d > e, the number of sed codes with d codetext elements of
type \d" and e of type \e" is the same as the number with d elements of

192

type \e" and e elements of type \d" (by symmetry). Thus, if d <> e, we
just need to double the count.
for d from 1 to n-s-e while d <= e do

if d = e then
NumCodes := NumCodes + (bipartite strict(m,e,K)^2);

else
NumCodes := NumCodes +(2*bipartite strict(m,e,K)*bipartite strict(m,d,K));

end if;
end do;

end do;
end if;

end do;
end do;
NumCodes;

end proc:

D.7. Counting ED Codes. Recall De�nition 4.8.

Algorithm D.12. This procedure counts the number of (m;n) ED codes. By Lemma 4.11,

ed(m;n) = 0 if n < 2

and

ed(m;n) =
X

0�j�(n�2)

X
1�k�(n�j�1)

(e strict (m; k) � e strict (m;n� j � k)) if n � 2:

The variables used in this procedure are de�ned as follows:

i and j are loop indices
NumCodes is the number of ED codes counted so far.

ed:=proc(m,n) local i,j,NumCodes;

NumCodes := 0;
j will run through the number of o columns. This will be at most n-2 since we require
at least one d and one e column.
for j from 0 to n-2 do

i will run through the number of e columns. Since there are j o columns, there can
be at most n-(j+1) e columns.
for i from 1 to n-j-1 do

We add the number of codes with i e columns and n-j-i d columns. Since i is the
actual number of e columns, we must use e count instead of e full count.
We must similarly use e count for the d columns as well.
NumCodes := NumCodes + (e strict(m,i)*e strict(m,n-j-i));

end do;
end do;
NumCodes;

end proc:

193

D.8. Counting All Codes. We now put it all together.

Algorithm D.13. This procedure counts the number of (m;n) codes up to isomorphism. By The-
orem 4.10,

code(m;n) = o(m;n) + s(m;n) + 2 � e(m;n) + 2 � se(m;n) + ed(m;n) + sed(m;n):

The variables used in this procedure are de�ned as follows:

O = o(m;n)
S = s(m;n)
E = e(m;n)
SE = se(m;n)
ED = ed(m;n)
SED = sed(m;n)
NumCodes is the number of codes counted so far.

code:=proc(m,n,printag) local NumCodes,O,E,S,SE,ED,SED;

#If m = 0 or n = 0, there is only one code.
if m = 0 or n = 0 then

if (printag = true) then
printf(\%s %dn n",\The total is",1);

end if;
return(1);

end if;

There is only one O code{the code with no edges.
O := 1;
if (printag = true) then

printf(\%s %dn n", \O is ", O);
end if;

S := s(m,n);
if (printag = true) then

printf(\%s %dn n", \S is ", S);
end if;

E is also the number of D codes.
E := e(m,n);
if (printag = true) then

printf(\%s %dn n", \E=D is ", E);
end if;

SE is also the number of SD codes.
SE := se(m,n);
if (printag = true) then

printf(\%s %dn n", \SE=SD is ", SE);
end if;

ED := ed(m,n);
if (printag = true) then

194

printf(\%s %dn n", \ED is ", ED);
end if;

SED := sed(m,n);
if (printag = true) then

printf(\%s %dn n", \SED is ", SED);
end if;

NumCodes := O + S + 2*E + 2*SE + ED + SED;
if (printag = true) then

printf(\%s %dn n", \The total is", NumCodes);
else

NumCodes;
end if;

end proc:

D.9. Computing Compositions. The following is needed to count janiform codes.

Algorithm D.14. This procedure computes all of the 4-compositions of n. It returns them in a
list of lists C. Let X denote a nonzero entry and 0 represent a zero entry. Then C satis�es the
following conditions:

C[1] contains the compositions of the form [X;X;X;X] and [X;X;X; 0].
C[2] contains the compositions of the form [X;X; 0; X] and [X;X; 0; 0].
C[3] contains the compositions of the form [X; 0; X;X] and [X; 0; X; 0].
C[4] contains the compositions of the form [0; X;X;X] and [0; X;X; 0].
C[5] contains the compositions of the form [X; 0; 0; X] and [X; 0; 0; 0].
C[6] contains the compositions of the form [0; X; 0; X] and [0; X; 0; 0].
C[7] contains the compositions of the form [0; 0; X;X] and [0; 0; X; 0].
C[8] contains the compositions of the form [0; 0; 0; X].

The variables used in this procedure are de�ned as follows:

C is the list described above.
N is a list of 4-compositions of n.
NNum is the number of elements in N .

jan composition4:=proc(n) local C,N,NNum;

C[1] contains the compositions of the form [X,X,X,X].
C[1]:=[op(composition(n,4))];

N:=composition(n,3);
NNum := nops(N);
C[1] contains the compositions of the form [X,X,X,0].
C[1] := [op(C[1]),seq([N[i][1],N[i][2],N[i][3],0],i=1..NNum)];

C[2] contains the compositions of the form [X,X,0,X].
C[2] := [seq([N[i][1],N[i][2],0,N[i][3]],i=1..NNum)];

C[3] contains the compositions of the form [X,0,X,X].
C[3] := [seq([N[i][1],0,N[i][2],N[i][3]],i=1..NNum)];

195

C[4] contains the compositions of the form [0,X,X,X].
C[4] := [seq([0,N[i][1],N[i][2],N[i][3]],i=1..NNum)];

#Construct the compositions with 2 nonzero entries.
N:=composition(n,2);
NNum := nops(N);
C[2] contains the compositions of the form [X,X,0,0].
C[2] := [op(C[2]),seq([N[i][1],N[i][2],0,0],i=1..NNum)];

C[3] contains the compositions of the form [X,0,X,0].
C[3] := [op(C[3]),seq([N[i][1],0,N[i][2],0],i=1..NNum)];

C[4] contains the compositions of the form [0,X,X,0].
C[4] := [op(C[4]),seq([0,N[i][1],N[i][2],0],i=1..NNum)];

C[5] contains the compositions of the form [X,0,0,X].
C[5] := [seq([N[i][1],0,0,N[i][2]],i=1..NNum)];

C[6] contains the compositions of the form [0,X,0,X].
C[6] := [seq([0,N[i][1],0,N[i][2]],i=1..NNum)];

C[7] contains the compositions of the form [0,0,X,X].
C[7] := [seq([0,0,N[i][1],N[i][2]],i=1..NNum)];

#Construct the compositions with 1 nonzero entry.
C[5] contains the compositions of the form [X,0,0,0].
C[5] := [op(C[5]),[n,0,0,0]];

C[6] contains the compositions of the form [0,X,0,0].
C[6] := [op(C[6]),[0,n,0,0]];

C[7] contains the compositions of the form [0,0,X,0].
C[7] := [op(C[7]),[0,0,n,0]];

C[8] contains the compositions of the form [0,0,0,X].
C[8] := [[0,0,0,n]];

op(C);
end proc:

D.10. Counting Janiform Codes. Recall De�nition A.9.

Algorithm D.15. This procedure counts the number of (m;n) janiform codes up to isomorphism.
By Theorem 4.20,

X
M;N

Bipartite Strict (M [2]; N [2]) � Bipartite Strict (M [3]; N [3]) ;

where the sum is taken over all nonnegative compositions M = (M [1];M [2];M [3];M [4]) and N =
(N [1] = M [1]; N [2]; N [3]; N [4]) of m and n, respectively, such that M [j] and N [j] are either both

196

zero or both nonzero for each j 2 f1; 2; 3g. We note that E(i; j) = Bipartite Strict for i; j = 0 and
for i; j 2 Z+.

The variables used in this procedure are de�ned as follows:

M and N contain lists of lists of compositions of m and n, respectively.
MNum and NNum contain the length of the lists M [i] and N [i], respectively.
StartIndex is the smallest positive integer such that M [StartIndex] and N [StartIndex]

are nonempty lists.
i; j; and k are loop indices.
NumCodes contains the number of codes counted so far.

janiform code:=proc(m,n) local M, N, MNum, NNum, i, j, k, StartIndex, NumCodes;

if m = 0 or n = 0 then
return(0);

end if;

M and N contain the nonnegative 4-compositions of m and n, respectively, such that
M[i] and N[i] contain a list of partitions such that M[i][j] and N[i][k] satisfy
M[i][j][q] and N[i][k][q] are both zero or both nonzero for each q in f1,2,3g.
M := jan composition4(m);
N := jan composition4(n);

if m > 2 and n > 2 then
#Each M[i] and N[i] list contains at least one element.
StartIndex := 1;

elif m = 1 or n = 1 then
We know that either M[1],M[2],M[3], and M[4] are empty or N[1], N[2], N[3], and N[4]
are empty. Thus, we need to start with index 5.
StartIndex := 5;

else # m = 2 or n = 2
#We know that either M[1] or N[1] is empty. Thus, we need to start with index 2.
StartIndex := 2;

end if;

NumCodes := 0;
for i from StartIndex to 8 do

MNum := nops(M[i]);
NNum := nops(N[i]);
for j from 1 to MNum do

for k from 1 to NNum do
if M[i][j][1] = N[i][k][1] then

NumCodes := NumCodes + Bipartite Strict(M[i][j][2],N[i][k][2])
+ Bipartite Strict(M[i][j][3],N[i][k][3]);

end if;
end do;

end do;
end do;
NumCodes;

end proc:

197

D.11. Counting Self-Companion Codes. Recall De�nition A.5.

Algorithm D.16. This procedure counts the number of (m;n) self-companion codes up to isomor-
phism. By Theorem 4.16, the number is s(m;n).

The variables used in this procedure are de�ned as follows:

NumCodes contains the number of precodes.

self companion code:=proc(m,n) local NumCodes;

if m = 0 or n = 0 then
return(1);

end if;

NumCodes := s(m,n);
end proc:

D.12. Counting Self-Opposite Codes. Recall De�nition A.7.

Algorithm D.17. This procedure computes all of the nonnegative 4-compositions of n. It returns
them in a list C.

The variables used in this procedure are de�ned as follows:

C is the list described above.
N is a list of 4-compositions of n.
NNum is the number of elements in N .

composition4:=proc(n) local C,N,NNum;

C contains the compositions of the form [X,X,X,X].
C :=[op(composition(n,4))];

N:=composition(n,3);
NNum := nops(N);
Add the compositions of the form [X,X,X,0].
C := [op(C),seq([N[i][1],N[i][2],N[i][3],0],i=1..NNum)];

Add the compositions of the form [X,X,0,X].
C := [op(C),seq([N[i][1],N[i][2],0,N[i][3]],i=1..NNum)];

Add the compositions of the form [X,0,X,X].
C := [op(C),seq([N[i][1],0,N[i][2],N[i][3]],i=1..NNum)];

Add the compositions of the form [0,X,X,X].
C := [op(C),seq([0,N[i][1],N[i][2],N[i][3]],i=1..NNum)];

#Construct the compositions with 2 nonzero entries.
N:=composition(n,2);
NNum := nops(N);
Add the compositions of the form [X,X,0,0].
C := [op(C),seq([N[i][1],N[i][2],0,0],i=1..NNum)];

198

Add the compositions of the form [X,0,X,0].
C := [op(C),seq([N[i][1],0,N[i][2],0],i=1..NNum)];

Add the compositions of the form [0,X,X,0].
C := [op(C),seq([0,N[i][1],N[i][2],0],i=1..NNum)];

Add the compositions of the form [X,0,0,X].
C := [op(C),seq([N[i][1],0,0,N[i][2]],i=1..NNum)];

Add the compositions of the form [0,X,0,X].
C := [op(C),seq([0,N[i][1],0,N[i][2]],i=1..NNum)];

Add the compositions of the form [0,0,X,X].
C := [op(C),seq([0,0,N[i][1],N[i][2]],i=1..NNum)];

#Construct the compositions with 1 nonzero entry.
Add the compositions [n,0,0,0],[0,n,0,0],[0,0,n,0], and [0,0,0,n].
C := [op(C),[n,0,0,0],[0,n,0,0],[0,0,n,0],[0,0,0,n]];
C;

end proc:

Algorithm D.18. This procedure counts the number of (m;m) self-opposite codes up to isomor-
phism. By Theorem 4.21,

X
M

E (M [2];M [3]) ;

where the sum is taken over all nonnegative compositions M = (M [1];M [2];M [3];M [4]) of m such
that M [2] and M [3] are either both zero or both nonzero. (Note that when i; j = 0, then E(i; j) = 1,
and when i; j > 0, E(i; j) = Bipartite Strict(i; j)).

The variables used in this procedure are de�ned as follows:

M contains lists of lists of compositions of m.
MNum contains the length of the lists M [i].
i is a loop index.
NumCodes contains the number of codes counted so far.

self opposite code:=proc(m) local M, MNum, i, NumCodes;

if m = 0 then
return(1);

end if;

M contains the nonnegative 4-compositions of m.
M := composition4(m);
MNum := nops(M);

NumCodes := 0;
for i from 1 to MNum do

Recall that we must ignore the composition M[i] if one of M[i][2] and M[i][3] is zero
and the other is nonzero. Recall also that E(i,j)=Bipartite Strict(i,j) if i,j > 0,

199

and E(i,j)=1 if i,j = 0.
if (M[i][2] > 0) and (M[i][3]) > 0 then

NumCodes := NumCodes
+ Bipartite Strict(M[i][2],M[i][3]);

elif (M[i][2] = 0) and (M[i][3]) = 0 then
NumCodes := NumCodes + 1;

end if;
end do;
NumCodes;

end proc:

D.13. Counting All Precodes. We now count all precodes up to isomorphism.

Algorithm D.19. This procedure counts the number of (m;n) precodes up to isomorphism. By
Lemma 5.1, the number is mixed bipartite(m;n).

The variables used in this procedure are de�ned as follows:

NumPrecodes contains the number of precodes.

precode:=proc(m,n) local NumPrecodes;

if m = 0 or n = 0 then
return(1);

end if;

NumPrecodes := mixed bipartite(m,n);
end proc:

D.14. Counting Self-Companion Precodes. Recall De�nition A.5.

Algorithm D.20. This procedure counts the number of (m;n) self-companion precodes up to iso-
morphism. By Theorem 5.2, the number is bipartite(m;n).

The variables used in this procedure are de�ned as follows:

NumPrecodes contains the number of precodes.

self companion precode:=proc(m,n) local NumPrecodes;

if m = 0 or n = 0 then
return(1);

end if;
NumPrecodes := bipartite(m,n,[m]);

end proc:

D.15. Counting Janiform Precodes. Recall De�nition A.9.

Algorithm D.21. This procedure counts the number of (m;n) janiform precodes up to isomor-
phism. By Theorem 5.3, the number is code(m;n).

The variables used in this procedure are de�ned as follows:

200

NumPrecodes contains the number of precodes.

janiform precode:=proc(m,n) local NumPrecodes;

NumPrecodes := code(m,n,false);
end proc:

D.16. Counting Self-Opposite Precodes. Recall De�nition A.7.

Algorithm D.22. This procedure counts the number of (m;m) self-opposite precodes up to iso-
morphism. By Theorem 5.4, the number is bipartite(m;m).

The variables used in this procedure are de�ned as follows:

NumPrecodes contains the number of precodes.

self opposite precode:=proc(m) local NumPrecodes;

if m = 0 then
return(1);

end if;
NumPrecodes := bipartite(m,m,[m]);

end proc:

201

VITA

TRAE DOUGLAS HOLCOMB
2918 Mountain High Dr.
San Marcos TX 78666

(512) 353-1322

EDUCATION

Ph.D. in Mathematics, Texas A&M University, May 2002.
M.S. in Applied Mathematics, University of Colorado at Colorado Springs, August 1997.
B.S. in Computer Science, Southwest Texas State University, December 1991.

PUBLICATIONS

G. R. Blakley, I. Borosh, T. Holcomb, and A. Klappenecker, Categorical code constructions, in
preparation.

J. Haefner and T. Holcomb, The picard group of a structural matrix algebra, Linear Algebra and
Its Applications 304 (2000), 69-101.

