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ABSTRACT

Capacity Estimation and Code Design Principles for Continuous Phase Modulation

(CPM). (May 2003)

Aravind Ganesan, B.Tech., Indian Institute of Technology, Madras

Chair of Advisory Committee: Dr. Krishna R. Narayanan

Continuous Phase Modulation is a popular digital modulation scheme for

systems which have tight spectral efficiency and Peak-to-Average ratio (PAR) con-

straints. In this thesis we propose a method of estimating the capacity for a Con-

tinuous Phase Modulation (CPM) system and also describe techniques for design of

codes for this system. We note that the CPM modulator can be decomposed into

a trellis code followed by a memoryless modulator. This decomposition enables us

to perform iterative demodulation of the signal and improve the performance of the

system. Thus we have the option of either performing iterative demodulation, where

the channel decoder and the demodulator are invoked in an iterative fashion, or a

non-iterative demodulation, where the demodulation is performed only once followed

by the decoding of the message.

We highlight the recent results in the estimation of capacity for channels with

memory and apply it to a CPM system. We estimate two different types of capac-

ity of the CPM system over an Additive White Gaussian Noise (AWGN). The first

capacity assumes that optimum demodulation and decoding is done, and the second

one assumes that the demodulation is done only once. Having obtained the capacity

of the system we try to approach this capacity by designing outer codes matched to

the CPM system. We utilized LDPC codes, since they can be designed to perform

very close to capacity limit of the system. The design complexity for LDPC codes



iv

can be reduced by assuming that the input to the decoder is Gaussian distributed.

We explore three different ways of approximating the CPM demodulator output to a

Gaussian distribution and use it to design LDPC codes for a Bit Interleaved Coded

Modulation (BICM) system. Finally we describe the design of Multi Level Codes

(MLC) for CPM systems using the capacity matching rule.
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CHAPTER I

INTRODUCTION

Continuous Phase Modulation (CPM) is a digital phase modulation technique which

constrains the phase of the carrier to be continuous over signalling intervals. The

phase pulse (p(t))of CPM describes how the transition takes place between the sig-

nalling intervals. This constraint on the phase implies that the CPM is a modulation

with memory. Due to the smooth phase transitions M -ary CPM has better spectral

efficiency than other phase modulation schemes like M -PSK. Also since the peak to

average power ratio of CPM is the best possible value (0dB) it is popular in appli-

cations which have stringent peak-to-average power ratio constraints. Apart from

these benefits, CPM modulator can be decomposed into an outer encoder (Contin-

uous Phase Encoder - CPE) and a memoryless modulator, this fact can be used to

improve the performance of the system by performing iterative demodulation.

The decomposition of the CPM also allows us to explore different realizations of

CPM easily. In the equivalent representation of CPM, the input information stream

is passed to the CPE, whose output is then mapped to the transmitted signal by a

memoryless modulator. The number of unique signals that can be transmitted during

any signalling interval is determined by the characteristics of the phase pulse p(t) and

is independent of the nature of CPE. Thus by changing the nature of the CPE we can

obtain different realizations of the CPM. Although the signal set of these different

realizations of CPM are the same, the performance of these CPM systems is different

due to differences in the overall mapping of the input sequence to the signal waveform.

Different communication systems can be compared using the Bit Error Rate

The journal model is IEEE Transactions on Automatic Control.
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(BER) performance as the criteria. The BER performance of a practical communica-

tion system is augmented by using a channel code which introduces redundancy into

the transmitted message and has the capability to correct certain kinds of errors. The

redundancy in the output messages implies that there are some sequence of symbols

that are not produced by the encoder. Systems with a channel code followed by a

modulator are called constrained modulation systems.

An important quantity that represents the system limit is the capacity of a

channel. Capacity of a channel, or a system viewed as an equivalent channel, is the

maximum rate at which information can be reliably transmitted over the channel.

The knowledge of capacity of a given channel helps us to compare the simulated

performance of the designed system with the theoretical limit. This gives us an

indication of whether any further improvement can be made to the system through

better design.

The computation of the capacity of a system involves maximizing the mutual

information between the input to a channel and its output over all possible input

distributions. Due to the inherent memory introduced in the modulation (due to

the continuous phase constraint) the CPM system can be viewed as a channel with

memory. The capacity of a channel with memory and constrained inputs cannot

be easily computed. We are unaware of any published results on the capacity for

CPM systems. Currently the performance measure used is the cut-off rate [1], but

with Turbo-codes and Low Density Parity Check (LDPC) codes performing better

than the cut-off rate, we need a better measure of performance. Recently there have

been some developments in the capacity estimation for Inter Symbol Interference

(ISI) channel ([2],[3],[4]), which is a channel with memory. The computation of the

capacity for CPM systems is based on these recent developments.

Since the CPM system can be decomposed into an outer encoder (CPE) and a
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memoryless modulator, the system with an Error Correcting Code (ECC) and CPM

can be viewed as a serially concatenated system. This motivates us to apply iterative

techniques to the demodulation, where the decoder and the demodulator exchange

extrinsic information between each other. The optimum detector for CPM is an

Maximum A-posteriori Probability (MAP) algorithm like BCJR [5] algorithm. This

further facilitates the soft information exchange between the demodulator and the

outer code.

The constrained capacity of a system is the maximum information rate that can

be transmitted over the channel in conjunction with a channel ECC. This capacity can

be achieved by using a good channel code which performs well over the given channel.

The rate of a code is defined as the ratio of the number of input symbols to the output

symbols processed by the code. In order to achieve the capacity of the system the

code needs to have its rate equal to the capacity and be able to perfectly decode the

messages corrupted by the channel. In practice a code with a given rate will not per-

form the same with different channels, i.e. a code that decodes messages perfectly for

a Phase Shift Keying (PSK) system over Additive White Gaussian (AWGN) channel

might perform poorly for a CPM system over AWGN channel. The code hence not

only needs to have the rate equal to the capacity of the system but also needs to be

designed by taking the channel output characteristics into consideration.

Codes which are designed as described above are said to be matched to the

channel. LDPC codes have gained popularity due to the availability of analytical

tools which help us in predicting the performance of these codes over a large number

of channels. For example Density Evolution (DE) technique developed by Richardson

[6], allows us to analyze the performance of the belief propagation algorithm over a

large number of channels. There have also been developments in algorithms which

search for good codes for LDPC codes. These techniques have been used to design
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codes for simple channels. The extension to channels like higher order CPM require

new algorithms which take into account the characteristics of the modulation like

dissimilar bit distribution.

Matched Bit Interleaved Coded Modulation (MBICM) and Multilevel coding

(MLC) are two popular code design techniques which are used to design systems

to approach the capacity of the system. The idea behind conventional MBICM is

to design a single component binary code whose performance is optimum for the

given channel. With MBICM the input bits are encoded using the designed code

of appropriate rate, the output codeword is then interleaved at the bit level and

the interleaved codewords are mapped to M -ary symbols by grouping appropriate

number of bits together. We will propose new design procedure to optimally design

codes using irregular LDPC codes. Thus with the knowledge of a channel’s output

distribution we can design capacity approaching codes by following certain design

principles. The design procedure relies on representing the output distribution of the

channel with equivalent channels. We will explore different ways of representing the

channel and investigte the differences between the various methods.

Multilevel coding is a code design approach which jointly optimizes the coding

and modulation to achieve significant coding gains. It is applied to higher order

(typically 2L) modulation schemes. In such a modulation scheme, each signal point

is associated with a length L binary address. The input data is then split into L

streams, and each stream is encoded by a component encoder with rate Ri for each

i = 1 . . . L. Thus the channel can be broken down into L component channels. It

has been shown in [7] that the the transmission over the channel can be separated

in to parallel transmission of L binary bits over equivalent channels at each level i,

provided that the bits at the lower levels (0, 1, . . . , i − 1) are known. The capacity

design rule requires the code rates Ri to be equal to the capacity of the equivalent
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channel at level i, which is equal to the capacity of the channel with the knowledge of

the bits at levels 0, 1, . . . , i− 1. Due to the complexity of estimating the capacities of

the equivalent channels this design procedure has not been properly applied to M -ary

CPM systems.

In this thesis we first estimate two different lower bounds on capacity for a M -

ary CPM scheme based on some recent developments in the capacity estimation for

channels with memory ([2],[3],[4] [8]). The two capacities we are interested in are the

independent and identically distributed (i.i.d) capacity - Ciid and the non-iterative or

one-shot demodulation capacity - Cni. The i.i.d. capacity estimates the capacity as-

suming that the inputs to the modulator are independent and identically distributed

from a finite set. This limit can be achieved in practice by Maximum Likelihood (ML)

decoding. Due to the practical difficulties in performing Maximum Likelihood (ML)

decoding/demodulation, we typically employ iterative demodulation/decoding tech-

niques to achieve capacity. We will show that iterative technique can perform well by

designing systems which perform very close to capacity. Since iterative demodulation

requires substantially higher complexity, we need to know the capacity degradation

due to non-iterative demodulation, i.e. when the demodulation is performed only

once. We call the threshold of the system for which the demodulation is performed

only once as the non-iterative capacity of the system.

Having obtained the capacity estimates for this system, we propose practical

design techniques which try to achieve capacity. We will consider the design of LDPC

codes that are matched to the channel using MBICM and MLC techniques. The

design procedure involves the tracking of the message densities in the decoder which

involves the convolution of densities. This is a computationally intensive procedure

and the design process can be efficiently implemented by making the assumption that

the message passed to the decoder is Gaussian distributed. The output of the CPM
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demodulator for higher order modulation schemes is not Gaussian distributed. In

this thesis we consider three different ways of approximating the demodulator output

to a Gaussian distribution.

The organization of this thesis is as follows. In Chapter II gives an introduction to

CPM and describes the system setup and the notation used in this thesis. We review

the decomposition approach to CPM and illustrate how it can be exploited to perform

iterative demodulation. In Chapter III we briefly review LDPC codes. We review the

construction of these codes along with the encoding and decoding algorithm for these

codes. We briefly explain how the codes can be designed. In Chapter IV we review

the different definitions of capacity and introduce the mathematical expressions used

to evaluate them. We then show how these quantities can be estimated. In Chapter

V we describe the design techniques to obtain codes for iterative and non-iterative

demodulation. We concentrate on MBICM and MC design techniques and design

codes for BICM technique for iterative and non-iterative demodulation. We also

present the simulation results for the performance of the BICM codes for iterative

and non-iterative demodulation and the equivalent capacity estimate for MLC. Finally

in Chapter VI we present the conclusion.
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CHAPTER II

CONTINUOUS PHASE MODULATION

A. Continuous Phase Modulator as a Digital Modulator

Digital transmission of data offers offers a lot of advantages over analog forms of

transmission like error protection, compression, etc. Since most of the physical media

are not conducive to direct transmission of digital data, the transmission of digital

data over such a medium, like a wireless channel or a copper cable, requires the use

of a digital modulator. A digital modulator converts the discrete time digital data

into an analog waveform which can be transmitted over the analog channel. The

conversion of digital sequence into analog waveform is known as modulation and the

reverse process is known as demodulation. The analog waveform over which the

information is transmitted is called the carrier. The information is embedded in the

carrier by making detectable changes to the characteristics of the pure waveform. The

Different digital modulation schemes differ in the way the carrier is altered by the

digital signal.

Digital phase modulation schemes use the phase of the carrier to carry the infor-

mation. Phase Shift Keying (PSK) and Frequency Shift Keying (FSK) are two main

types of phase modulation. In PSK the input sequence selects the phase of the signal

at each signalling interval from a finite set of values. In FSK, the input sequence

changes the frequency of the signal around the carrier frequency by discrete values.

Since the instantaneous frequency of a signal is obtained by taking the derivative of

the phase, FSK can also be viewed as a modulation scheme in which the phase of the

signal is changed through a linear function. This function is referred to as the phase

modulating function and an example is shown in Fig. 1.
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CPM is a form of digital phase modulation where the phase of the carrier is

kept continuous between signaling intervals. If the phase modulation function is a

linear function of time, within the signalling interval, then the scheme is referred to

as Continuous Phase Frequency Shift Keying (CPFSK). In general the phase modu-

lation function need not be linear function of time. CPM modulator can be viewed

as a finite state machine whose state is defined by the accumulated phase at the

start of the signaling interval and whose output is dependent on the current state

and the input symbol. The finite state machine model of CPM helps us view the

modulation process as a path through a phase trellis as shown in Fig. 2. Due to

the phase continuity of the carrier signal CPM has high spectral efficiency. The spec-

tral efficiency can be improved by making use of a smooth phase modulating function.

Time 
Ts

2
π

Fig. 1. Phase modulating function
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B. System Model

A general M -ary CPM system can be represented by a block diagram as shown in

Fig. 3.

The input to the system is a binary sequence Xb = [Xb 0, Xb 1, . . . , Xb Nb−1] of

length Nb, which is mapped to an M -ary data sequence X = [X0, X1, .., Xns−1] of

length Ns where Xi ∈ [0, 1, · · · , (M − 1)]. If M = 2A , Nb = Ns × A. The modulator

operates at a symbol rate T and transmits the pass-band signal s(t,X) given by

s(t,X) =

√
2E

T
cos(2πfot + ϕ(t,X) + ϕ0), t ≥ 0 (2.1)
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and

ϕ(t,X) = 2πh
∞∑

i=0

Xif(t− iT ) , t ≥ 0 (2.2)

h is the modulation index, ϕ0 is the initial phase and f(t) is the phase pulse of the

system, which has the following properties :

f(t) =





0 t ≤ 0

1
2

t ≥ LT
(2.3)

L is a positive integer which represents the duration of the phase pulse.

A CPFSK system is a full response CPM (i.e. L=1) with a linear phase change,

i.e.

f(t) =
t

2T
0 ≤ t < T

. The modulation index h is 1/M . The phase notation used in this thesis is the true

(physical) phase. With the above conditions, the system has M allowed states at each

time instant (total of 2×M states of which only half are allowed at a given time). If

the tilted phase representation ([9] , [10]) is used then the total number of states at

any given time interval will be M . Each active state has M possible transitions during

every signaling interval corresponding to M different input symbols. Each of these

transitions is associated with a signal, and we denote the set of signals transmitted

in even or odd signaling interval as SE and SO respectively and the union of these

signals by ST (ST = SO ∪ SE). ST has 2 ×M ×M signals. The signals in the odd

and even time instances differ only by a constant phase offset.

The output of the channel represented in continuous time is y(t) = s(t,X)+n(t)

where n(t) is a white Gaussian process. Using Gram Schmidt Ortho-normalization,

the system can also be represented using a vector notation, as described in section D.

Using the vector representation the channel output is represented as Y n = Sn + Zn

1 < n < Ns. The received signal is processed by the demodulator to produce the
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symbol likelihoods η(n) = [Prob(Xn = 0), P rob(Xn = 1), . . . , P rob(Xn = M − 1)] for

each discrete time instant n ∈ [1, 2, . . . , Ns].

The M -ary CPM modulator works at the symbol level with its input symbol al-

phabet belonging to the set = [0, 1, . . . , (M−1)]. As we are interested in concatenating

CPM nodulator with an outer binary code we need to map the output bits of the outer

code to M -ary symbols through a mapper which is a bijective function. Although

the capacity of the system does not depend on the mapping strategy used, optimum

decoding for most concatenated systems has very high complexity and hence we use

iterative demodulation/decoding as an alternative. Because of this, the mapping of

bits to symbols has an effect on the performance of iterative demodulation/decoding,

and the mapper should be designed carefully.

To obtain a good mapping we look at the distance spectrum of the signal at each

time interval. The mapper then tries to map bits to symbols in such a way that the

signals which are closest to each other differ by the least number of bit positions.

This ensures that the bit errors at the output of the demodulator are minimized. For

example in the case of 8-ary CPFSK the signals corresponding to adjacent symbols

(eg. [0,1] , [3,4]) have the smallest distance. One of the mapping that maps symbols,

closest to each other, to bits which differ in only one position is given in table I.

C. Equivalent Representations

The continuity imposed on the phase of the signal means that CPM has memory

inherently built into it. The fact that CPM exhibits memory was used in the alter-

native representation of the CPM modulator [11]. This representation allows us to

view the CPM modulator as an outer encoder (Continuous Phase Encoder - CPE),

which is a finite state machine, followed by a memoryless modulator. This allows us
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Table I. Mapping for 8-PSK

Bits Symbol

000 4

001 5

010 7

011 6

100 3

101 2

110 0

111 1

to study the encoding (CPE) operation independent of the signal mapping and allow

us to form different realization of the CPM. For CPFSK the finite state machine can

be realized as a convolutional encoder over the ring of integers modulo-M [11].

We investigate the properties of two realizations of the CPM - one with a recursive

CPE and the other with a non-recursive CPE. The CPEs for the two realizations are

shown in Fig. 4. The inputs to the CPE is an M -ary data sequence X the two

outputs of the encoder are mapped by the memoryless modulator, which has the

same signal set (ST ) for all realizations of the CPE. The memoryless modulator maps

the outputs of the CPE to to a signal Si ∈ ST . Equation (2.1) leads to the the

CPM realization as shown in (4a) which has a recursive CPE which has been studied

extensively ([12],[13]) in a serial concatenated coding structure. Although the non-

recursive realization (4b) is well known it has not been widely used in concatenated

schemes. We will study the two realizations in detail and analyze their performance

in the context of a constrained system.
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D. Signal Space Representation

The demodulation of the CPM signal is usually done by extracting the sufficient

statistics from the received signal. It can be shown that for the MLSE demodulator,

for AWGN channels, the sufficient statistics are the output of the correlators which

are matched to the ortho-normal basis functions of the input signal space. The ortho-

normal basis functions of the CPM signal set for small alphabet size can be easily

derived using the Gram-Schmidt ortho-normalization technique.

As discussed earlier, the CPM can be decomposed into a CPE and a memoryless

modulator. The CPE introduces memory into the modulation and its output is then

mapped to a signal s(t) ∈ ST where ST is the set of all possible signals that can be

transmitted by the memoryless modulator. A Gram-Schmidt ortho-normalization of

the signals ST can be performed to yield d ortho-normal functions. The transmitted

signal on each transition can then be projected on to the ortho-normal basis functions

to obtain a vector representation of the signal. The transmission then can be easily

modelled as a discrete-time vector channel (of dimension d) with the input signal

represented as the projection, Si = [Si,1, Si,2, . . . , Si,d], of the signal Si(t) on the

ortho-normal basis functions. The AWGN channel can be modelled as the addition

of i.i.d. Gaussian white noise of variance σ2 to each component of the transmitted

vector, where

σ2 =
1

2 Es

N0

=
1

2 Eb

N0
R

and

Es

N0

is the Signal to Noise Ratio (SNR).
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E. Demodulation

The decomposition of the CPM into a finite state machine (CPE) and a memoryless

modulator makes it clear that the optimum soft output demodulator for CPM system

is a Maximum A-posteriori Probability (MAP) algorithm like the Bahl-Cocke-Jelinek-

Raviv (BCJR) algorithm [5].

The BCJR algorithm can be applied to the output of a Markov chain pro-

cess corrupted by AWGN to produce aposteriori probabilities on the input symbols

(P (Xi), Xi ∈ X) and hence can be applied to CPM system. We detail the algo-

rithm in Appendix A. The probabilities of the symbols need to be converted to bit

probabilities and then passed to the channel decoder.

The BCJR algorithm can also make use of apriori probabilities of the symbols.

This helps us in iterative demodulation, where the extrinsic information (for symbols

or bits) from the channel decoder is converted to symbol probabilities and fed to the

demodulator as a-priori information. This forms the basis of an iterative demodula-

tion system.



17

CHAPTER III

LOW DENSITY PARITY CHECK CODES

Low Density Parity Check were first proposed by Gallager [14] and rediscovered re-

cently [15],[16],[17]. LDPC codes are a class of block codes with special construc-

tion and decoding methods. Any codeword x of a linear code follows the property

HxT = 0T, where H is the Parity Check Matrix (PCM). These codes are called Low

Density Parity Check codes since the parity check matrix associated with these codes

is filled with low fraction of non-zero values. The degree of the row or column is the

number of non-zero entries in the given row or column of the PCM. LDPC codes are

analyzed as an ensemble of codes with a given degree distribution ρ and λ which spec-

ify the check and variable node degree distribution. In this chapter we will describe

the construction of these codes and explain their encoding and decoding operations.

A. Construction of LDPC Codes

In this section we will introduce the construction of LDPC codes. The performance

of the LDPC codes is analyzed on an ensemble of codes with parity check matrices

specified by the row and column degree profiles (ρ(x) and λ(x) respectively). The

degree profile (node prospective) enumerates the fraction of nodes with different de-

grees. For example LDPC codes with row degree profile ρ(x) =
∑degρ

i=1 ρix
i−1, has ρi

fraction of degree i nodes. Once the degree profile has been optimized for a given

channel, the encoder and decoders are designed from the degree profiles.

These codes can be easily analyzed through the bipartite representation intro-

duced by Luby et al [18]. Any PCM can be represented as a bipartite graph. For

example the PCM shown in Table II can be represented as in Fig. 5. The bipartite

graph consists of two types of nodes connected through edges. The nodes on the
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Table II. Example of a parity check matrix

1 0 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 1 0 1 1 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 1 1 0 1 0 0 1

left hand side of the graph represent the coded (variable) bits and the nodes on the

right hand side of the graph represent the check conditions imposed by the PCM.

The edge connecting a variable node and a check node indicates the participation of

the variable node in the parity check represented by the check node. The degree of a

node can be interpreted as the number of edges connected to it. The decoding of the

LDPC codes can be achieved through a message passing algorithm, which iteratively

exchanges messages between the variable and check nodes.

The performance of the codes can be analyzed through the density evolution

algorithm, which predicts the convergence of the message passing algorithm under the

assumption of a cycle free graph. The cycle free assumption is necessary to guarantee

that the incoming messages to a node are independent. The cycle free nature of the

graph requires infinite length code word length. In practice for finite length codeword,

the performance of the code can be improved by designing graphs with large minimum

cycle lengths. The graphs are usually designed by random construction. A simple

constraint on the graph is to make sure that no two edges are connected to the same

set of nodes. This constraint is sufficient when the code-word length is sufficiently

large.
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B. Encoding Operation

Since LDPC codes are block codes, the encoding operation is performed through the

generator matrix (G), i.e. for an (N, K) block code, the input information sequence

of length K (x) and the output sequence of length N (c) are related by c = xG.

The LDPC codes are designed through the PCM (H), hence we need to derive

the generator matrix from the PCM. Consider a LDPC code with input informa-

tion sequence length of K and output code-word length of N , when its PCM ex-

pressed in the systematic form , i.e. as H = [I | P ], the generator matrix has the

form G = [−P T | I], where P is a N −K ×K matrix and I is an identity matrix of

size N−K.

The PCM for an LDPC code is randomly constructed; because of this, it is

not necessarily in the systematic form. Hence we need to convert the PCM into

the systematic form through Gaussian elimination. Since we are interested in fairly

long code-word lengths, in general the Gaussian elimination is a computationally

intensive operation. Since LDPC codes are linear codes, where in sum of any two

code-words is also a code-word, the performance of the codes can be analyzed by

considering the transmission of any one code word. The encoding operation can be

avoided by assuming that the input to the encoder is an all zeros sequence, which is

mapped to the all zeros sequence. This assumption can be extended to other systems

concatenated to the encoder if those systems are also linear. In this thesis we are

interested in concatenating the LDPC code with a CPM system, which is a non-linear

system. We will need to take care of the non-linear nature of the CPM system by

converting flipping the all zeros sequence to a random sequence and transmitting the

random sequence through the CPM, and undoing this bit operation at the output of

the demodulator.
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C. Decoding Operation

For the general block codes, the decoding is performed by a combination of forming

hard decisions, x̂, on the demodulator output, then computing the parity check bits

p through p = x̂H and finally obtaining the error bit positions using a lookup table.

The complexity and the memory requirement for the decoder increases exponentially

with increasing code-word length. Since the code-word length of a LDPC code is typ-

ically large, the decoding algorithm described above will prove to be computationally

intensive and have very large memory requirements. Also since the decoder uses only

the hard decisions, the performance can be improved by using an algorithm that can

use the soft decisions provided by the demodulator.

The message passing algorithm makes use of the soft information of the coded

bits. The message passing algorithm involves the exchange of processed information

between the variable and check nodes. Each node receives extrinsic information from

edges connected to it and then processes the information according to its type and

then passes back the extrinsic information through the edges.

The operation performed at the edges depends on its type. In this thesis we

will deal with binary LDPC codes with sum-product decoding. For binary LDPC

decoding its convenient to represent the messages exchanged between the nodes as

Log Likelihood Ratio (LLR), which is the logarithm of the ratio of probability of bit

being equal to 1 (P1) and probability of bit being equal to 0 (P0).

The variable nodes represents the coded bit, and the edges connected to the node

carry messages for the same bit. Since the messages incident on the node represent the

same bit, the operation at the variable node is arithmetic addition of the messages.

Since the messages exchanged through the edges have to be extrinsic messages, the

sum of LLRs should not involve the incoming message on that edge. Therefore the
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Fig. 6. Operation at the variable node

updated message for an edge connected to a variable node of degree dv is

v =
dv−1∑

i=0

ui (3.1)

where v is the output message, u0 is the LLR for the bit obtained from the channel

and ui i = 1 . . . dv−1 are the input messages from all the edges of the bipartite graph

connected to the variable node except the edge on which the message is updated. Fig.

6 shows this operation graphically.

The check node represents the parity check constraint imposed by the PCM. The

incident edges represent different coded bits and hence the messages cannot be simply

added arithmetically. It can be shown that the output message u of a degree dc check
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u = coth (   tanh( v  ) )
i

Fig. 7. Operation at the check node

node with incident messages vi i = 1 . . . dc is

u = coth
dc−1∏

i=0

tanh vi (3.2)

where the product is carried over all the edges except the edge carrying the updated

messages. Fig. 7 shows this operation graphically.

In sum-product decoding, at the start of decoding, the edges in the graph initially

carry no messages. The channel provides the estimate for the coded bits, the decoding

then starts with the processing at the variable nodes. The updated messages are then

processed at the check nodes and the extrinsic message is sent back to the variable
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nodes and the procedure repeated a fixed number of times. The iterations can be

stopped if the hard decisions on the coded bits x̂ satisfy the condition x̂H = 0. If the

decoded bits do not satisfy the above condition, then a decoder failure is indicated.
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CHAPTER IV

CAPACITY ESTIMATION

A. Capacity Definition

The channel capacity is the maximum rate at which information can be transmitted

with a single use of the channel with arbitrarily low probability of error. It is usually

expressed as bits per second per hertz (bps/hz). The capacity of the channel is a

useful measure as it tells us the highest rate at which information can be reliably

transmitted. The information theoretic definition of capacity helps us calculate the

channel capacity. For a memoryless channel with input X and output Y , the capac-

ity is the maximum of the mutual information between X and Y (I(X; Y )), over all

possible distributions of X. The channel capacity is completely specified by X, Y

and the conditional distribution fY (y | x). But in general, for arbitrary channels,

the calculation of the capacity through the above equation is difficult, because the

maximization of the mutual information has to be carried over all possible input dis-

tributions (fX(x)). The channel capacity of some memoryless channels like Additive

White Gaussian Channel (AWGN) with continuous input, Binary Symmetric Chan-

nel (BSC) which has discrete inputs and outputs, can be computed easily, since the

properties of the channel make it easy to find the distribution that maximizes the

mutual information.

For channels with memory the information theoretic definition of capacity is

maximum of

lim
n→∞

1

N
I(XN

1 ; Y N
1 )

, over all possible distributions of the input sequence XN
1 , where the notation N

1

denotes a partial sequence of X consisting of elements 1, . . . , N . The capacity of such
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a system is hard to compute even by making further simplifying assumptions. In this

section we will see how this expression can be estimated.

First, we provide a more formal definition of the capcity of a channel with mem-

ory. For a channel with M -ary inputs X = XN
1 = (X1, X2, . . . , XN) and outputs

Y = Y N
1 = (Y 1, Y 2, . . . , Y N) the capacity of a channel is then defined as

C = lim
n→∞

1

N
sup

Pr(XN
1 =xN

1 )

I(XN
1 ; Y N

1 )

The maximization in the above expression needs to be performed over all possible

distributions of the sequence XN
1 . As N → ∞ this maximization procedure will be

practically impossible to compute. Instead of this we will compute the information

rate of the channel under an assumed distribution. We will assume that the input to

the channel is usually independent and identically distributed (i.i.d.) and compute

the information rate of the system under such an input distribution (Pr(XN
1 ) =

∏N
i=1 Pr(Xi)). This information rate is referred to as i.i.d. capacity Ciid.

This capacity (Ciid) can be achieved by a system with a channel code with rate

equal to the capacity of the channel and a jointly optimum detector. Such a system

has very high complexity and we will show that iterative demodulation can come close

to the capacity with reasonable complexity. To further limit the complexity of the

system, we are also interested in the non-iterative capacity of the system with i.i.d.

inputs. This is the capacity of the system assuming that the input to the channel is

a sequence of M -ary i.i.d. symbols and demodulation is performed only once. This

capacity will help us in quantifying the loss in performance by using a sub-optimum

detector where the demodulation is performed only once.

Most of the channel codes are designed to correct signals which are uncorrelated.

Since the output of the demodulator (which is a BCJR algorithm) is correlated we

assume that correlation is removed by the interleaver at the input of the decoder.
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Fig. 3 shows this interleaver being combined with the bits to symbol mapper. This

interleaving is done either at the symbol level or at the bit level. In the former

case the interleaver follows the bits to symbol mapper, where as in the latter case the

interleaver precedes the bits to symbol mapping. The two different capacity estimates

are referred to as symbol interleaved non-iterative capacity Cs
ni and bit-interleaved

non-iterative capacity Cb
ni.

B. IID Capacity Calculation

The i.i.d. capacity of the CPM system is the maximum information rate supported by

a given channel given that the inputs to the modulator are i.i.d. Since the channel is

symmetric the input distribution that maximizes the rate is the uniform distribution.

We need to calculate

Ciid = sup
Pr(XN

1 =xN
1 )=ΠN

i=1Pr(Xi=xi)

I(X; Y )

where I(X; Y ) can be estimated as

I(X; Y ) = lim
N→∞

1

N
I(XN

1 ; Y N
1 )

where Pr(Xi = xi) = 1
M

. From the definition of mutual information we have I(X; Y ) =

h(Y ) − h(Y | X). From our system model we know that Y n = Sn + Zn , hence

h(X | Y ) is nothing but h(Z) as the modulator maps X uniquely to S. Therefore all

we need to do is estimate is h(Y ) = 1
N

h(Y N
1 ). For this we use the method followed

in [2] where the authors have estimated the capacity of a binary input channel with

memory. This method essentially uses the forward recursion of a BCJR algorithm

to estimate the channel output entropy h(Y ). The algorithm can be applied to any

channel that can be represented as a finite state machine with additive noise, such as
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CPM modulator.

We know that h(Y N
1 ) can be estimated as −E[log(Pr(Y N

1 ))]. Thus we can com-

pute Pr(Y N
1 ) for many realizations of the input XN

1 and channel ZN
1 and take the

average value of −[log(Pr(Y n
1 ))] as the estimate of h(Y ). But we know from Shannon-

McMillan-Breimann theorem [19], that for a stationary ergodic finite state hidden

Markov process χ that

1

N
log(Pr(χN

1 )) → h(χ)

with probability one. Thus with a long simulation we can estimate h(Y) with a single

input realization X and channel realization Z.

To estimate h(Y N
1 ) we make use of the forward recursion of the BCJR algorithm.

We note from Appendix (A) that for a system which can be represented as a finite

state machine with ΘM states, defining αn(m) as Pr(Θn = m,Y n
1 ) and γn(x,m′,m)

as P (Θn = m,Y n, Xn = x | Θn−1 = m′), we can obtain the recursion (normalized

form)

α′n(m) =
∑

m,m′
γn(m′,m)× α′n−1(m

′)× λn for 1 ≤ n ≤ N

where

λ(n) =
1∑

m,m′ γn(m′,m)× α′n−1(m
′)

The initialization for this recursion sets the α′s for the starting state to a known

value. In our analysis we always start from the state zero and hence

α0(i) =





0 ∀ i 6= 0

1 for i = 0

We can now estimate Pr(Y) as the sum of the un-normalized values of αN for each
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state. i.e.

log(Pr(Y)) = log(
Θm∑

m=1

αn(m)) (4.1)

= lim
N→∞

1

N

N∑

i=1

log(λi)

Thus by choosing a sufficiently large value of N we can obtain a good estimate

of h(Y ). Having obtained h(Y ) the capacity can now be calculated as Ciid = h(Y )−
h(Z). If in our system Z is an d-dimensional AWGN vector, then h(Z) = d log(2πeσ2)

and hence

Ciid = lim
n→∞

1

N

N∑

i=1

log(λi)− d log(2πeσ2)

.

C. Symbol and Bit Interleaved Non-iterative Demodulation Capacity

The capacity estimate derived in the section B corresponds to a system which uses

a jointly optimal receiver. This is typically achieved in practice by a system which

iterates between the outer code and the demodulator. Iterations between the demod-

ulator and the outer decoder leads to higher computational complexity. To reduce the

computational complexity we may decide to employ a suboptimal system in which the

BCJR algorithm for the demodulator is invoked only once. The capacity estimate of

such a system would help us in quantifying the loss in performance in using a subopti-

mal system. We define the capacity of this system as the non-iterative demodulation

capacity - Cni.

We note that although the output of the demodulator is correlated due to the

BCJR algorithm, the presence of an ideal interleaver removes this correlation. The

interleaving is done either at the symbol or bit level, leading to the two capacities

- symbol interleaved non-iterative capacity (Cs
ni) and bit interleaved non-iterative
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capacity Cb
ni respectively. The equivalent channel for the symbol interleaved system

has inputs X = (X1, X2, . . . , XN) and outputs η = (η
1
, η

2
, . . . , η

N
), where η is the

vector of log likelihoods of the M -ary symbols.

The capacity of the equivalent channel is defined as

Cs
ni = sup

Pr(Xn
1=xn

1)=Πn
i=1

Pr(Xi=xi)
I(X; η) (4.2)

We will compute I(X; η) as I(X; η) = H(X) − H(X | η). Since the channel

is symmetric with respect to the input symbols, the input i.i.d., Pr(Xi = xi), that

maximizes the capacity is uniform distribution with

Pr(Xi = xi) =
1

M
∀ i

. Therefore H(X) is equal to A where M = 2A. H(X | η) is computed as

∫

η∈<M
f(η) H(X | η)

, where we need to estimate Pr η the distribution of η. This can be done by observing

the output of the demodulator η
i
for i = 1 · · ·N . This is equivalent to defining Cs

ni

of the system as

Cs
ni = lim

N→∞
1

N
sup

Pr(XN
1 =xN

1 )=ΠN
i=1

Pr(Xi=xi)

n∑

i=1

I(Xi; ηi
)

where we calculate the value of H(X | η) at each value of η and form the expectation,

instead of first estimating the p.d.f. of η and then take the expectation of H(Xn; η
n
).

Both these methods converge to H(X | η) as N → ∞. To compute H(X | η) we

note that Y N
1 is a sufficient statistic for η

i
and hence I(Xn; η

n
) = I(Xn; Y N

1 ) and

H(Xn | ηn
) = H(Xn | Y N

1 ). All we need to do now is estimate

lim
N→∞

1

N

N∑

n=1

H(Xn | Y N
1 ) (4.3)



31

We know that the BCJR algorithm computes Pr(Xi | Y N
1 ) and hence we can

estimate (4.3) by computing

H(Xn | Y N
1 ) =

M−1∑

m=0

−Pr(Xn = m | Y N
1 ) log2(Pr(Xi = m | Y N

1 ))

for each n and take the average as N → ∞. Having computed H(X) and H(X | η)

can form the estimate of Cs
ni as H(X)−H(X | η).

The bit interleaved non-iterative capacity calculation assumes the presence of a

bit level interleaver between the data sequence Xb and the modulator. Cb
ni can be

calculated by applying the above definition to a system with output [η1
b , η

2
b , . . . , η

A
b ],

which are LLRs of the bits [X1, X2, . . . , XA] obtained from the symbol likelihood.

Cb
ni is defined as

Cb
ni = sup

Pr(Xn
1=xn

1)=Πn
i=1

Pr(Xi=xi)

A∑

k=1

I(X; ηk
b ) (4.4)

where I(X; ηk
b ) is computed as H(X)−H(X | ηk

b ) and

H(X | ηk
b ) = E[(Pr(Xk = 0) log(Pr(Xk = 0)) + Pr(Xk = 0) log(Pr(Xk = 0)))]

D. Capacity Results

The capacity calculation for full response binary, 4-ary and 8-ary CPFSK systems,

with the modulation index = 1/2, 1/4 and 1/8 respectively, was done using the

methods described above. The capacity estimates are plotted in Figs. 8 to 11. These

capacity plots can be used to compare the performance of a system with the theoretical

limit. For example, in a system that uses 8-ary CPFSK with modulation index 1/8

and has binary decoder, we can see from the graph that the per bit Signal to Noise

Ration(SNR) Eb/N0 required for a rate equal to 2 bps/hz is around 3.2dB for the ideal

demodulator. On the other hand a system that uses the non-iterative demodulation,

which is sub-optimum, requires about 3.7dB which means that the loss due to the
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sub-optimum detection is around 0.5dB.
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CHAPTER V

CODE DESIGN

Having obtained the estimates for the capacity of CPM system we will now focus on

designing channel codes which will approach the capacity limit. We will discuss two

code design principles that were investigated. The first design principle is Matched

Bit Interleaved Coded Modulation(MBICM) which can be either applied to a system

which employs iterative or non-iterative demodulation. The second is Multilevel

Coding (MLC) which can be applied to higher order modulation schemes and requires

iteration between the channel code and the demodulator.

The idea behind conventional MBICM is to use a single component binary code

which is designed so that the performance is optimum for the given channel. With

MBICM the input bits are encoded using the code of appropriate rate. The out-

put codeword is then interleaved at the bit level and mapped to M -ary symbols by

grouping appropriate number of bits together. MBICM has been used to design bi-

nary ECC for channels like BPSK and binary CPFSK [20] where the output of the

demodulator can be modelled easily. In case of higher order modulation, like 8-ary

CPFSK, the properties of the bits to symbol mapper causes the output distribution

of the different levels of the bits vary at different levels. For example, if we use the

mapping given in Table I, the output bit Log Likelihood Ratio (LLR) of the three

levels are distributed as shown in Fig. 12. This nature of the bit distributions (prob-

ability distribution function) needs to be incorporated when designing good codes. In

this thesis we investigate different ways of representing the distributions and incor-

porating them in the code design procedure. Thus with the knowledge of a channel’s

output distribution we can design capacity approaching codes by following certain

design principles.
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Fig. 12. Distribution of LLR output of the demodulator

Multilevel coding is one of the code design approach which jointly optimizes the

coding and modulation to achieve significant coding gains. It is applied to higher

order (typically 2L) modulation schemes. In such a modulation scheme, each signal

point is associated with a length L binary address. The input data is then split into

L streams, and each stream is encoded by a component encoder with rate Ri for each

i = 1 . . . L. Thus the channel can be broken down into L component channels. It has

been shown in [7] that the the transmission over the channel can be separated in to

parallel transmission of L binary bits over equivalent channels at each level i provided

that the bits at the lower levels (0, 1, . . . , i− 1) are known. The capacity design rule

requires the code rates Ri to be equal to the capacity of the equivalent channel at

level i, which is equal to the capacity of the channel with the knowledge of the bits at

levels 0, 1, . . . , i− 1. So far there has been no way to estimate the equivalent capacity

at the different levels for CPM systems. We will show how these capacities can be
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estimated for these systems.

A. Matched Bit Interleaved Coded Modulation (MBICM)

Matched Bit Interleaved Coded Modulation involves designing a single binary encoder

and decoder which is matched to the channel. The term matched refers to the fact

that the design of the code incorporates the nature of the distribution of the channel

outputs in its optimization procedure. Due to the availability of design algorithms

for LDPC codes we will focus on adapting these algorithms for CPM concatenated

system. Fig. 13 shows the block diagram for a MBICM system. The bits from the

binary source are encoded by the binary encoder. The outputs are mapped to M -

ary symbols and modulated and sent over the channel. The demodulator produces

reliabilities on the symbols which are converted to bit reliabilities which are processed

by the decoder. In non-iterative demodulation the demodulation is performed only

once, where as in iterative demodulation the demodulation is repeated. If the decoder

is an iterative decoder the demodulation is repeated after a fixed number of decoder

iterations. The dotted line shows the feedback of the extrinsic information to the

demodulator from the decoder.

1. MBICM code design with LDPC codes

LDPC codes are block codes which have a randomly generated Parity-Check Matrix

(PCM) discovered by Gallager [14] , [21]. In this thesis we will design LDPC codes

based on differential evolution algorithm used in [22]. The differential evolution ar-

rives at an optimized degree profile by evaluating the performance of different profiles

through density evolution developed by Richardson and Urbanke [23]. This algorithm

iteratively computes the densities of the messages and can be used to compute the
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threshold. Differential evolution generates random degree profiles subject to certain

constraints like rate , maximum left and right degrees. These random profiles per-

formance can be analyzed using the density evolution algorithm. The best degree

profiles are mutated to obtain other profiles, whose performance is then evaluated

through the density evolution algorithm. This procedure is repeated a number of

times and the profile with the lowest bit error rate is used for simulation.

2. Density evolution with Gaussian approximation

Density evolution based analysis of LDPC codes with Gaussian approximation can

be used to compute the threshold of a given LDPC code ensemble. The Gaussian

approximation for density evolution assumes that the messages (LLR) passed along

the edges are Gaussian distributed with certain mean and whose variance is twice

the mean. This approximation makes it easier to analyze the evolution of the density

since the distribution of the messages is now described simply by the means of the

mixture Gaussian. We will briefly explain how the density evolution can be applied

to our system.

Consider an LDPC code with the edge degree distribution λ(x) and ρ(x) and

maximum left and right node degrees Dl and Dr respectively. Let the random vari-

ables u and v represent the output messages from the check node and variable node

respectively. Density evolution with Gaussian approximation tracks the means of

messages passed from degree i variable nodes (mq
u,i) and degree j check nodes (mq

v,j)

for each stage of iteration q. Since the operations performed at the variable and

check nodes are known we can compute the mean of the output extrinsic information

given the input mean. We approximate the channel output LLRs using an equiva-

lent mixture of Gaussian distributions which will be discussed in section 3. Thus the
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demodulator output can be expressed as

Ng∑

i=1

fi N (µi, 2µi)

. The mean of the output messages of the degree i variable nodes are represented by

mq
v,i,k k = 1 . . . Ng, where k denotes the index of the Gaussian mixture component

from which the node receives its input message from the channel. Then

mq
v,i,k = µk + (i− 1)mq−1

u (5.1)

Thus v is distributed as
∑Ng

k=1

∑
i=1 Dlλi fi N (µq

v,i,k, 2µ
q
v,i,k). For v distributed as

N (x, 2x) we define φ(x) = 1− E(tanh(v/2)) hence

E(tanh(
uq

2
)) = 1−

Ng∑

k=1

Dl∑

i=2

λi fi φ(mv,i,k) (5.2)

Since for a degree j node, E(tanh(uq

2
)) = E(tanh(vq

2
))j−1, we have for the qth

iteration

mq
u,j = φ−1[1− (1−

Ng∑

k=1

Dl∑

i=2

λi fi φ(mv,i,k))
j−1] (5.3)

Thus the expected value of mq
u,j is given by mq

u =
∑Dr

j=2 ρjµ
q
u,j. The density

evolution equation can then be written as

mq
u =

Dr∑

j=2

ρj φ−1[1− (1−
Dl∑

i=2

Ng∑

k=1

λi fk φ(µk + (i− 1)mq−1
u ))j−1] (5.4)

After fixing the operating SNR, number of iterations (Q) and a value of mean

(µmax) above which the code is assumed to have converged, we can iterate the equation

(5.4) up to Q times and if the value of the mean exceeds (µmax) we can conclude that

the given profile is a good profile.

The above algorithm can be used to check the convergence of the decoder when
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there is no iteration between the decoder and the demodulator. In case of itera-

tive demodulation, the decoder and the demodulator exchange extrinsic information

between them. The performance of the iterative demodulator can be evaluated by

modifying the above algorithm slightly. Instead of letting the decoder iterate on its

own, the decoder is allowed to iterate Nl times. The extrinsic information from the

decoder at the end of Nl iteration is passed to the demodulator and the state of the

demodulator is stored in memory. The decoder works on the coded binary inputs

to the demodulators and produces reliabilities on these bits. Since the demodulator

works at the symbol level, the extrinsic information on the bits has to be converted

to symbol likelihood through the inverse mapping function. These symbol likelihoods

are then used as a − priori probabilities of the symbols in the demodulator. The

demodulation is repeated with the channel signal output and the symbol a − priori

information. A new set of equivalent means are then estimated from the new output

and the density evolution process is continued from the saved state.

3. Representing modulator output distribution

Due to the higher order CPM modulation and the mapping strategy, the distribution

of the LLR at the output of the demodulator is no longer Gaussian. The density

evolution with Gaussian approximation on the other hand expects its input to be

described in terms of Gaussian distributions. In this thesis we investigate three dif-

ferent means of representing the arbitrarily distributed output as a sum of Gaussian

densities.

The output code word is a sequence of ones and zeros which is dependant on the

input information bits and the generator matrix of the LDPC code. The demodulator

produces reliabilities on the input bits as LLR , which is the logarithm of the ratio of

p0 and p1 where pi is the probability of the bit being equal to i, i = 0, 1. Normalized
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LLR is the LLR multiplied by ai where a0 = 1, a1 = −1. Since the LDPC code is

a linear code the performance of the code can be estimated by assuming that the

code word is a sequence of all zeros. This property helps us to avoid generating code

words from random information bit sequence. The high computational complexity

of the encoding operation can be avoided by assuming that the input bit sequence

is always an all zero sequence, which due to the linearity is encoded to the all zeros

code word. But since the CPM modulator-demodulator system is a non-linear sys-

tem in our simulation we need to transmit random bits to correctly model system

performance. This normalization procedure allows us to use random coding bits to

be transmitted through the modulator and converts the reliabilities on these random

bits to reliabilities if the all zeros sequence was transmitted.

We need to represent the distribution of this normalized LLR using a mixture of

Ng normal distributions -
∑Ng

i=1N (µi, 2µi). We have designed codes with two different

types of approximations for an M -ary modulation scheme in which M = 2A. In the

first method we represent the distribution by A Gaussian distributions whose means

are equal to the mean of the LLRs at the A bit levels. In the second method we match

the distribution by finding fi and µi such that such that
∑Ng

i=1 fi N (µi, 2µi) matches

the output distribution of the demodulator. In the third method we compute the

capacity of the channel looking at L levels of the bit, and then approximate each

level with a Gaussian channel with mean LLR µi which has the same capacity as that

channel.

a. Matching with sample means

This is the simplest form of approximating the distribution of the messages passed

from the demodulator. The output of the demodulator at each level is shown in Fig.

14. It is clear that the output distribution is not Gaussian distributed. In this method
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Fig. 14. Distribution of LLR output of demodulator at different bit positions

we choose one Gaussian distribution for each level of the M -ary modulator and the

mean of the normalized LLRs is taken as the mean of the Gaussian distribution at

each level. Thus in case of 8-ary CPFSK we will have three means µi where

µi =

∑N
k=1 llri

k

N

and fi = 1/3, i = 1 . . . 3, where llri
k is the LLR for the kth bit at the ith level.

We will compare the matching of distributions using sample means and mutual

information in section c. The figure on page 47 shows a sample distribution of the

demodulator and the approximated Gaussian distribution and the matching through

mutual information for the different levels of the 8-ary CPM system. As seen from the

figure, the distribution represented by the sample means has smaller fraction of LLR

values near the cross-over region (close to the x = 0 axis) than the actual distribution.

The decoder performance is largely dictated by values which are less than zero. This
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Fig. 15. Matching of distribution using mixture Gaussian distributions with 5 compo-

nents

means that the estimated distribution will provide a slightly optimistic estimate of

the threshold, when compared to the actual distribution.

b. Matching through mixture density

In this method we will approximate the composite output of the demodulator using

a mixture of Gaussian densities. The LLRs at the output of the demodulator are

no longer separated into L levels, and the combined distribution is processed by an

Expectation Maximization (EM) algorithm [24] which produces Ng pairs of (fi, µi)

such that
∑Ng

i=1 fi ×N(µi, 2µi) matches the output of the demodulator. Where the

number of Gaussian components in the distribution is equal to Ng. For our system a

value of 5 was sufficient to closely match the distribution. Fig. 15 and 16 show the

matching of the distribution using 5 and 20 components respectively. As seen from

the figure, both mixture distributions match the output of the demodulator.
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Fig. 16. Matching of distribution using mixture Gaussian distributions with 20 com-

ponents

c. Matching through mutual information

The last method investigated is the matching of the distribution through mutual

information. In this method we replace each level with an equivalent AWGN channel

whose capacity is equal to the mutual information at that level. The idea behind

this method is to replace the channel at each level with an equivalent channel instead

of matching the actual distribution of the channel. We expect this method to be

more accurate than the first method. Fig. 17 to 19 shows the distribution of the

LLRs at the 3 levels for 8-ary CPFSK against the distribution of the equivalent

channels and the matching through sample means. As seen from the figure, the

distribution represented by the mutual information matches the distribution of LLR

values near the cross over region (close to the x = 0 axis). We expect that the

estimated distribution will provide a a more accurate estimate of the threshold, when
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Significant Bit (LSB)

compared to the distribution matched through the sample means.

4. Optimized degree profiles

We obtain some optimized degree profile for iterative and non-iterative demodula-

tion using the three methods outlined in this section and the differential evolution

algorithm. The means of the equivalent Gaussian distribution are passed to the dif-

ferential evolution algorithm and the best profile is selected as discussed in section

2.

First we present the profiles obtained for non-iterative demodulation. The op-

timization was performed for 8-ary CPFSK with the mapping described in section

B. For the optimization the maximum number of iterations was fixed at 300 and the

maximum right degree was 15 and the maximum left degree was 25. For the simu-
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lation the length of the LDPC code was fixed at 100000 bits, since the modulation

scheme maps 3 bits to each symbol, the number of symbols transmitted was kept at

33334. The target code rate was 2/3. The minimum value of Eb/N0 required for reli-

able transmission can be found to be 3.7dB from the capacity curve for non-iterative

capacity plot for 8-ary CPFSK system as shown in Fig. 10.

Table III shows the degree profile obtained from the optimization program that

uses the sample means of the LLR as the means of the equivalent Gaussian distribu-

tion. Fig. 20 shows the BER curve obtained through simulation. The threshold for

this code was found to be 4.3dB by using density evolution algorithm for the code

with the given profile.

Table IV shows the degree profile obtained from the optimization program that

uses the matching of LLR distribution using mixture Gaussian densities. Fig. 21

shows the BER curve obtained through simulation. The threshold for this code was

found to be 4.1dB by using density evolution algorithm for the code with the given

profile.

Table V shows the degree profile obtained from the optimization program that

matches the distribution of the LLR through mutual information of the LLR distri-

butions at each bit position to equivalent Gaussian distributions. Fig. 22 shows the

BER curve obtained through simulation. The threshold for this code was found to

be 4.1dB by using density evolution algorithm for the code with the given profile.

For the optimization for iterative demodulation, the maximum number of itera-

tions was fixed at 300 and the maximum right degree was 15 and the maximum left

degree was 25, after every 10 LDPC iterations, the extrinsic means were passed to the

demodulator and new equivalent means used for further density evolution. For the

simulation the length of the LDPC code was fixed at 100000 bits, since the modula-

tion scheme maps 3 bits to each symbol, the number of symbols transmitted was kept
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Table III. Profile for non-iterative demodulation using matching sample means

x λx y ρy

3 0.348424 14 0.338365

4 0.024834 15 0.661635

5 0.152702

6 0.131878

7 0.056686

8 0.027028

10 0.030159

11 0.017783

12 0.018564

17 0.014683

18 0.016285

21 0.010515

25 0.150450
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Fig. 20. Performance of non-iterative demodulation, code designed using matching

through sample means, codeword length = 100000, maximum number of it-

erations = 150
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Table IV. Profile for non-iterative demodulation using matching distribution using

Gaussian mixture

x λx y ρy

2 0.168565 14 0.523416

3 0.129567 15 0.476584

4 0.094297

5 0.071966

6 0.015794

7 0.059866

8 0.053016

9 0.030805

10 0.015902

14 0.016801

17 0.011078

25 0.332341
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Fig. 21. Performance of non-iterative demodulation, code designed using matching

through Gaussian mixture, codeword length = 100000, maximum number of

iterations = 150
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Table V. Profile for non-iterative demodulation, code designed using matching through

mixture distribution

x λx y ρy

2 0.175104 14 0.955328

3 0.159987 15 0.044672

4 0.085880

5 0.032303

6 0.028370

7 0.058345

8 0.025296

9 0.023208

10 0.019155

11 0.045910

12 0.021402

13 0.013459

14 0.015011

25 0.296571
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Fig. 22. Performance of non-iterative demodulation, code designed using matching

through mutual information, codeword length = 100000, maximum number

of iterations = 150
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Table VI. Profile for iterative demodulation, code designed using matching through

mutual information

x λx y ρy

2 0.201292 14 0.752598

3 0.149273 15 0.247402

4 0.025528

5 0.017135

6 0.051927

7 0.060836

8 0.050813

9 0.026362

11 0.032148

12 0.010875

14 0.014388

16 0.016431

18 0.011393

25 0.331600

at 33334. The target code rate was 2/3. The minimum value of Eb/N0 required for

reliable transmission can be found to be 3.2dB from the capacity curve for iterative

capacity plot for 8-ary CPFSK system as shown in Fig. 10.

Table VI shows the degree profile obtained from the optimization program. Fig.

23 shows the BER curve obtained through simulation. The threshold for this code was

found to be 3.7dB by using density evolution with Gaussian approximation algorithm

for the code with the given profile.
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Fig. 23. Performance of iterative demodulation, code designed with matching through

mutual information, codeword length = 100000, maximum number of itera-

tions = 150, demodulation iterated every 10 LDPC iteration
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B. Multilevel Coding

Multilevel coding (MLC) [25] is a code design principle which tries to jointly optimize

the channel coding and the modulation so as to provide better performance. There are

many ways to design MLC codes. We will discuss the MLC design for a 2A-ary code

using capacity design rule. This involves protecting the A bit positions independently

using codes with carefully chosen rate for each bit position.

1. System model

Fig. 24 shows the block diagram for a MLC system. The decoding technique usually

employed is Multi Stage Decoding (MSD) where each bit position j is decoded with

decision fed from the 1, . . . , j−1 bit positions into the demodulator. In our analysis we

have assumed that hard decisions are fed back to the demodulator. The demodulator

effectively sees a better channel at higher levels assuming that the decisions fed in

are right. It can be shown that the performance of a MLC with MSD is optimum

if the rates of the codes at each level are chosen to be equal to the capacity of the

equivalent channel at each level (Cj) [25]. Thus the design of a MLC then reduces to

estimating the capacity of each level with feedback from the lower levels, and then

designing codes with rates equal to the estimated capacity.

Since the demodulation of the CPM is done using a BCJR algorithm using the

trellis as shown in Fig. 25, we can estimate the capacities Cj of each level by modifying

the trellis using the the bits fed to the demodulator. This means that, since the

MSD in MLC assumes that the information fed from the lower levels is correct, the

transitions, in the trellis, for which the input bits are not equal to the feedback bits

are deleted from the trellis as shown in Fig. 26. The capacity can then be estimated

by following a procedure similar to the estimation of IID non-iterative capacity with
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Fig. 25. Trellis for demodulation of full response 8-ary CPFSK

the modified trellis.

2. Equivalent capacity estimation

We will now formally derive the expressions required for the estimation of the capacity

of the CPM system. Consider a M(= 2A)-ary CPM system which will be concatenated

with a MLC to obtain an overall rate of r bit/sec/hz. This capacity can be achieved

with a signal to noise ratio (Eb/N0) which can be found from the IID capacity curve

for the constrained M -ary modulation. Fixing the operating SNR equal to this value,

we need to estimate the rate of the A binary codes, one for each level. As mentioned

earlier the rate of a code at any level is equal to the capacity of the equivalent channel
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with information fed from the lower levels. Thus the rate of the code at each level l

can then be found as

rl = I(Y ; Xl−1 | X0, X1, . . . , Xl−2) = h(y | X0, X1, . . . , Xl−2)

−h(y | X0, X1, . . . , Xl−1) (5.5)

The information rates are calculated by using techniques described in section B.

The estimation of P (Y ) now needs to be performed using the modified trellis. For

example at Eb/N0 = 3.25dB the rates for the three levels of 8-ary CPM evaluated to

0.4826, 0.7554 and 0.7595 for the levels 1, 2 and 3 respectively. These individual rates

sum up to 1.9975 which is close to the i.i.d. capacity as expected.



63

CHAPTER VI

CONCLUSION

The knowledge of the information capacity rates supported by the system helps us

to compare the system performance to the theoretical limits. Since the CPM system

is a channel with memory, the computation of the capacity for these systems is not

trivial. In this thesis we have applied some recently developed techniques in capacity

estimation, of channels with memory, to the CPM system. The capacities computed

in this thesis assume that the inputs to the CPM system are i.i.d. sequences. The

first capacity estimate was for systems that are detected using optimum detectors.

Since the optimum detectors for a CPM system concatenated with a outer error

correction code has large complexity, we propose the use of iterative demodulation

technique to approach this capacity. Another capacity that is of practical interest is

the non-iterative capacity, which applies to systems that demodulate the signal only

once.

The system modeled in this thesis consists of an outer binary ECC concatenated

with a CPM modulator. Since the CPM systems with higher modulation order (4−
ary, 8 − ary) require its input to be a symbol of corresponding order, we require

the use of a mapper that maps the bits to symbols. Although the performance of

the optimum detector for CPM is independent of the mapping strategy, it is not the

same case with the sub-optimum detector. We therefore compute two different non-

iterative capacities, one assuming that the interleaving is done at the symbol level,

the other assuming that the interleaving is performed at the bit level. Also, making

use of the decomposition approach to CPM systems, we obtain two realizations of

the CPM, one that has recursive nature and the other that has non-recursive nature.

We then calculate the different capacities of the two different realizations of CPM.
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The capacities of the system indicate the theoretical limits of performance for

the system under consideration. Having computed the capacities we try to approach

them by designing codes that are matched to the system. The two design principles

explored in this thesis are Matched Bit Interleaved Coded Modulation (MBICM) and

Multilevel Coding (MLC). For MBICM we concentrate on designing binary LDPC

for iterative and non-iterative demodulation schemes. The design algorithm used in

this thesis is based on the Differential Evolution algorithm. For MLC we illustrate

how the rates for the different levels can be estimated by modifying the procedure to

estimate the capacity of the system.

The MBICM technique uses a single binary encoder that has been designed to

operate well for the given modulation scheme. The output of the encoder is mapped

to symbols of appropriate modulation order and modulated. The resulting signal

is sent over the channel and channel output is demodulated at the receiver. The

symbol likelihood estimates are converted to bit Log Likelihood Ratios (LLR) and

sent to the decoder. The design of the encoder requires the distribution of the LLR

to be represented within the code design algorithm. The computational complexity

of the design algorithm can be decreased dramatically, if we assume that the LLR is

Gaussian distributed. In this thesis we considered three different ways of representing

the LLR distribution. The output LLR of the CPFSK demodulator is not Gaussian

distributed and hence we explore different ways of equivalently representing the LLR

distribution in order to reduce the complexity of design process. The first method

approximates the actual densities of the different bit levels to a Gaussian distribution

whose mean is equal to the sample mean of the LLRs at the respective bit levels. The

second procedure approximated the LLR distribution of all the bits taken together

with a mixture Gaussian density. The last method approximated the distribution

of the different LLR of different bit position with Gaussian distribution that had
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the same mutual information as the distribution at a given level. By looking at

the actual distributions and the approximated distributions we expected the codes

designed though the first method to be more optimistic than those designed through

the other methods. This is because the means estimated using the first method make

the distribution of the LLR appear better than they actually are. This conclusion

was confirmed by simulating the codes designed using the above-mentioned methods.

In case of MLC, we need to separate design encoders for the different bit positions

in the modulation. Detection is performed through Multi Stage Decoding, where the

signal is demodulated and the bits that belong to the lowest level are decoded. The

decoded bits are then fed back to the demodulator and the demodulation is repeated

with the assumption that the decoded bits do not have any errors. This is repeated

till all levels are decoded. The different bit levels can be viewed as equivalent channels

which have knowledge of the bits at lower levels. The capacity design rule requires

the rate of the encoders at different levels be equal to the capacity of the equivalent

channel at that level. In order to estimate the capacity at different levels, we modified

the capacity estimation algorithm to make use of the feedback of the bit values at

the lower levels. The equivalent capacities can then be used to design LDPC codes

of appropriate rates and used as component encoders for a MLC system.
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APPENDIX A

BCJR ALGORITHM

Consider a general system with ΘM states and input sequence to the encoder X =

(X1, X2, . . . , XK) , Xi belongs to a set with finite alphabets (M in case of M -ary

CPM). Let the output of the modulator be modeled as a sequence of vectors denoted

by SN
1 = S = (S1, S2, . . . , SN). The channel output sequence is denoted by Y N

1 = Y =

(Y 1, Y 2, . . . , Y N). The input symbol at discrete time t (Xt) causes the state of the

system to change from Θt−1 to Θt for which the encoder output is St and the channel

output is Y t. The algorithm defines the following quantities: γt(x,m′,m) = Pr(Θt =

m,Y t, Xt = x | Θt−1 = m′) , αt(m) = Pr(Θt = m,Y t
1) and βt(m) = Pr(Y N

t+1 | Θt =

m).

We will first see how γt’s can be computed

γt(x, m′,m) = Pr(Θt = m,Y t, Xt = x | Θt−1 = m′) (A.1)

= Pr(Xt = x | Y t, Θt = m, Θt−1 = m′) Pr(Y t | Θt = m, Θt−1 = m′)

Pr(Θt = m | Θt−1 = m′) (A.2)

= Pr(Xt = x | Θt = m, Θt−1 = m′) Pr(Y t | Θt = m, Θt−1 = m′)

Pr(Θt = m | Θt−1 = m′) (A.3)

The first term is 1 or 0 depending on the input bit corresponding to the transition

from state m′ to m. The second term is the probability with which Y t is received

given that the transition from m′ to m occurred. This is equivalent to the probability

of receiving Y t if St was transmitted on the channel, i.e. Pr(Y t | St). The third term
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is the apriori probability of the transition m′ to m. The computation of γ mainly

involves the computation of the second term. For an AWGN channel with variance

σ2 the second term is given by

Pr(Yt | Xt) = Pr(Yt | St) =
1

(
√

2πσ)n
exp−‖Y t − St‖2

2σ2
(A.4)

where Y t and St are the received and transmitted signals in vector space notation

and ‖.‖ is the norm of the vector. Let γt(m
′,m) =

∑
x γt(x,m′,m).

The efficient computation of α and β is done by the following recursions (in nor-

malized form) :

α′t(m) =

∑
m′ α′t−1(m

′) γt(m
′,m)∑

m

∑
m′ α′t−1(m

′) γt(m′, m)
(A.5)

β′t(m) =

∑
m′ β′t+1(m

′) γt+1(m,m′)∑
m

∑
m′ α′t(m′) γt+1(m′,m)

(A.6)

where
∑

m′ is summation over all m′ ∈ ΘM . The values of α0(m) and βN(m) are

initialized depending on the initial state of the encoder and the termination of the

trellis.

Once γ, α′, β′ have been computed the likelihoods for symbols can be computed

by

L(Xt = x) = log (

∑
m,m′ α′t−1(m

′)γt(x,m′,m)β′t(m)
∑

x

∑
m,m′ αt−1(m′) γt(x,m′,m) βt(m)

) (A.7)
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