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ABSTRACT 

Antistaling Properties of Amylases, Wheat Gluten and CMC on Corn Tortilla. 

(May 2003) 

Francisco Javier Bueso Ucles, B.Sc., Escuela Agricola Panamericana (Zamorano); 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee:   Dr. Lloyd W. Rooney 
 Dr. Ralph D. Waniska 
 

Antistaling properties of enzymes (xylanase, bacterial maltogenic and conventional 

α-amylases), CMC and vital wheat gluten on corn tortillas were evaluated during storage 

for up to 21 days. Effect of storage time (0-21 days) and temperature (-40, -20, 3, 10 and 

21 oC) on tortilla staling was evaluated with or without additives. 

Addition of 275-1650 AU of ICS maltogenic amylase effectively reduced 

amylopectin retrogradation without reducing tortilla yields, but did not improve tortilla 

flexibility.  

The combination of 825 AU of ICS amylase (to interfere with intra-granular 

amylopectin re-crystallization) and 0.25% CMC (to create a more flexible inter-granular 

matrix than retrograded amylose) produced less stiff, equally flexible and less chewy 

tortillas than 0.5% CMC. 

Corn tortilla staling followed the basic laws that control aging in starch-based semi-

crystalline systems such as starch gels, bread and other baked products. Amylopectin re-

crystallization was the driving force behind the staling of corn tortillas. Increasing levels 

of re-crystallized amylopectin measured by DSC correlated significantly with increased 

tortilla stiffness and reduction in tortilla rollability, pliability and rupture distance during 

storage.  

Re-crystallization of amylopectin in fresh tortillas was not detected. It increased 

rapidly during the first 24 hr reaching a plateau after 7 days storage. The level of 

amylopectin re-crystallization on tortillas showed a bell-shaped trend along the 

evaluated storage temperature range with a maximum around 7 oC. 
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However, a negative linear relationship of peak pasting viscosity with storage 

temperature of tortilla extracts without additives after 21 days suggests other compounds 

besides amylopectin affect tortilla staling. Thus, interfering with amylopectin re-

crystallization is not the only way to retard staling. 

Further research is required to optimize the addition of maltogenic amylases in 

continuous processing lines that use fresh masa instead of nixtamalized corn flour, to 

determine how these amylases interfere with amylopectin re-crystallization and to 

elucidate if amylose retrogradation continues during storage and plays a role in tortilla 

staling. 
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CHAPTER I 

 

INTRODUCTION 

Corn tortillas have found their place in the North American mainstream diet thanks in 

part to the widespread popularity of Mexican and Southwestern cuisines. Tortilla 

versatility for serving and re-warming is another powerful reason for its popularity (TIA 

2002). Consumers demand tortillas, which are soft with optimum flexibility and 

rollability, while rigid, firm and less rollable tortillas are undesirable (Guo 1998). 

Consumers also prefer tortillas that remain soft and rollable for a long period of time. 

Corn tortillas made without additives stale fast, especially within the first 12 hr of 

storage, becoming rigid and dry. Commercial tortillas have a shelf life of approximately 

25-60 d under refrigeration, thanks to the addition of gums (such as carboxy-methyl 

cellulose, CMC) that preserve flexibility and mold inhibitors that delay spoiling. This 

prolonged shelf life comes with a price: a significant change in tortilla flavor (tasteless 

or bitter), aroma (off-odors) and texture (rubbery).  

So far, studies on corn tortilla staling agree that there is not a single additive able to 

produce tortillas with a shelf stability of at least 30 d without a significant decrease in 

quality. Most of these studies suggest testing additives that interfere with amylopectin 

retrogradation in combination with others that are able to maintain masa machinability 

and tortilla textural and sensory quality. 

Starch retrogradation is considered a time/temperature-dependent polymer re-

crystallization process. Many constitutive models have been developed to describe the 

viscoelastic behavior of synthetic polymers based on their molecular structure, and to 

explain how crystallization of molecules leads to polymer aging. This study aims to 

apply these molecular models to elucidate if some anti-staling ingredients work by 

interfering with the retrogradation of amylopectin in corn tortillas during storage or by 

some other mechanism.1 

                                                 
This thesis follows the style and format of Cereal Chemistry. 
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Goal Objective 

Improve the texture and shelf-stability of commercial corn tortillas by understanding 

the mechanisms behind the anti-staling properties of CMC, amylases and vital wheat 

gluten with the help of polymer aging theory. 

 

Specific Objectives 

1. Evaluate the anti-staling properties of bacterial maltogenic and non-maltogenic 

amylases on corn tortillas. 

2. Determine the combination of CMC, amylase and vital wheat gluten that provides 

the softest, more flexible and less rubbery tortilla texture, and the longest shelf-

stability. 

3. Determine the effect of storage temperature on the staling rate of tortillas. 



 3

CHAPTER II 

 

LITERATURE REVIEW 

Corn Tortillas 

Tortillas are flat, unleavened breads made from either corn or wheat. Corn tortillas, or 

"tlaxcallim," were the principal food of the meso-american civilizations. Today, corn 

tortillas are made from either corn cooked in a lime-based solution or by re-hydrating 

nixtamalized corn flour to produce masa, sheeting, forming and baking. (TIA  2002). 

 
The Corn Tortilla Market 
 

According to TIA (2002), tortilla is the fastest growing segment of the baking industry 

worldwide. North American and European tortilla markets continued to grow in 2002, 

with US sales estimated at more than $6 billion, up from $4.4 billion in 2001. 

Approximately 44% ($2.64 billion) of US sales correspond to corn tortillas and 56% 

($3.36 billion) to wheat tortillas. However, a survey conducted by Aspex Research in the 

U. S. on 2000 confirmed that corn tortilla sales have been consistently growing faster 

than wheat tortilla sales during the past five years, indicating that eventually corn 

tortillas will outsell wheat tortillas.  

Corn table tortillas production has grown 57% within the last four years, with 

California being responsible for 39% of the U.S. total production (TIA 2002), followed 

by Texas, Colorado, Illinois, New Mexico and Georgia (Mabin 1999). The Tortilla 

Industry Association estimates that every U. S citizen consumes one tortilla per day. 

The growing popularity of tortillas is attributed to the "bread-like" acceptance of 

tortillas by non-Hispanic cultures, and low costs, versatility, and healthy ingredients 

(Mabin 1999). Recent surveys indicate that corn tortilla consumers (specially Hispanics) 

want a “fresher” and “less rubbery” product, with fewer preservatives and a “just cooked 

flavor and aroma”. However, they also demand a long shelf life under refrigeration. 

Several processors (Mission Foods, etc) have endeavored in commercializing “fresher” 

tortillas (low preservatives) with lower shelf life (3-10 instead of 25-60 days) with not-so 
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profitable results (TIA 2002). Logistic obstacles, such as having a good chain of retailers 

close to the biggest markets have hampered this approach. 

 

Starch and Starch Granule Organization 

Starch consists of two main polysaccharides, amylose and amylopectin. Both 

polysaccharides are based on chains of 1-4 linked α-D-glucose but whereas amylose is 

essentially linear, amylopectin is highly branched containing on average one branch 

point, which is 1-6 linked for every 20-25 straight chain residues. Most starches, corn 

included, contain between 20 and 25% amylose although some waxy starches contain 

very little, if any, amylose (<1%) (Parker and Ring 2001). 

Typical molecular weights of extracted amylose are 105 to 106. In aqueous solution 

the amylose molecule behaves as a flexible coil with a hydrodynamic radius of 7-22 nm 

(Buleon et al.. 1998). 

Amylopectin is one of the largest biopolymers known with typical molecular weights 

being in the region of 108 g/mol and a hydrodynamic radius of 21-75 nm. The branching 

of amylopectin is not random (Thompson 2000). There is a bimodal population of chains 

with two main populations with peak DP of 12-14 and 45 (Hizuruki 1985). The short 

chain fraction is the most abundant by weight and number. 

The structure of different amylopectins is generally characteristic of a particular 

species. Current models (Buleon et al. 1998) of amylopectin structure depict short linear 

chains, 10 to 20 units long, arranged in clusters on longer chains, with the longer chains 

spanning more than one cluster. Typically, the cluster model is a two dimensional 

representation of a structure which must pack in the starch granule to account for a 

density of 1.5 g/cm3. 

The starch granule is a very complex macromolecular assembly whose exact structure 

has not been yet fully elucidated. Starch occurs naturally as water-insoluble granules 

whose form is characteristic of its botanical origin. When viewed under polarized light 

the granules are birefringent. As the radial refractive index is larger than the tangential 

refractive index a preferred radial distribution of chains is indicated (Buleon et al. 1998). 



 5

The starch granule is partially crystalline with crystallinities in the region of 30% 

being reported. A number of crystalline forms are known, the A form (Imberty et al. 

1988) which is found in most cereal starches, including corn, consists of starch double 

helices packed in a monoclinic array. The B form (Wu and Sarko 1978), which is found 

in tubers, high amylose and retrograded cereal starches, is a more highly hydrated and 

open structure, consisting of double helices packed in an hexagonal array. 

As waxy starches, containing only amylopectin, still have crystalline granules the 

participation of amylopectin chains within the crystalline domains is indicated. 

Examination of the products of acid etching of the starch granules has shown that the 

length of chain participating in the crystalline domains is comparable to the short chain 

fraction of amylopectin. Hence the suggestion that it is the short chains (DP 12-20) of 

amylopectin which form the double helices that originate the crystalline areas of the 

starch granule (Guilbot and Mercier 1985). 

X-ray and neutron scattering experiments on starch granules have revealed a model of 

repeating amorphous and crystalline layers (Jenkins et al. 1998, 1993). A recent 

interpretation of this proposed lamellar structure is that the amylopectin forms a side 

chain liquid crystal structure (Waigh et al. 2000). Some areas that remain a focus of 

discussion are how is the amylose arranged, what is the significance of the variability of 

amylopectin structure, and the lengths of the chains of amylopectin, to its organization in 

the granule (Parker and Ring 2001). 

 

Production of Corn Tortillas with Nixtamalized Corn Flour 

Traditionally, corn tortillas are made by nixtamalizing the grain (cooking and steeping 

in a calcium hydroxide solution), washing and grinding with volcanic stones to produce 

masa. The masa may be fine or coarse, depending on the product characteristics, and it is 

sheeted and then baked in a three-tier oven. Lately, the use of nixtamalized corn flour 

(NCF) for production of tortillas has increased dramatically, due to advantages such as 

product flexibility, uniformity in the product, reduction in equipment and labor costs, 

and reduced sewage costs (Serna-Saldivar 1996). 



 6

Nixtamalized corn flour, also known as dry masa flour (DMF), is the product of 

controlled grinding and particle size formulation of corn that has been alkaline-cooked, 

washed, ground and dried. Flour is sieved into various particle sizes and reformulated 

according to particular specifications. 

The re-hydrated NCF is less cohesive and elastic than fresh masa because of 

additional drying and grinding performed on the NCF process, which produces more 

mechanically damaged, gelatinized and retrograded starch in the intermediate and 

smaller particle size fractions. Therefore, products made from NCF stale at a faster rate 

than products made with fresh ground masa (Gomez et al. 1991). Addition of 

hydrocolloids, such as sodium carboxy-methyl cellulose (CMC) at 0.25-0.5% levels to 

NCF has helped overcome these deficiencies (Serna-Saldivar 1996). 

NCF is normally reconstituted with water to produce masa and then processed into 

tortillas following the traditional sheeting and baking procedure (Almeida-Domínguez 

1996). Tortillas are then cooled using wire belts and packaged in low-density 

polyethylene bags in stacks of 30 or 50 units. In Texas and the West Coast, the most 

popular package sizes are 50, 36 and 100 tortillas per bag, in that order (TIA 2002). 

Corn starch changes during tortilla processing with NCF 

Starch granules in raw corn exhibit birefringence. After nixtamalization, the majority 

of the starch granules are swollen, adhered to other granules, and exhibit partial or total 

birefringence. At this point, only 2% of starch is fully gelatinized and 15-25% is 

damaged (Gomez et al. 1991). 

Masa grinding disrupts the grain structure, releasing starch granules from the 

endosperm cells and dispersing cellular components and starch polymers. Masa is a 

network of solubilized starch polymers supporting dispersed, native and partially 

gelatinized starch granules, cell fragments, and lipids (Gomez et al. 1990). Further starch 

damage (32-36 %) and gelatinization (<5%) occur during grinding due to a combination 

of previously damaged and swollen starches, high water content (51%), physical shear 

and warm to high temperatures (50-60 oC) (Gomez et al. 1992). 
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Additional drying and grinding performed on the NCF process produces more 

mechanically damaged, gelatinized and retrograded starch in the intermediate and 

smaller particle size fractions (Gomez et al. 1991) than in fresh masa. The net effect is a 

reduction in the total amount of enzyme-susceptible starch (29%) in NCF compared to 

fresh masa (55%). This factor becomes important when determining optimum levels of 

addition of amylases in NCF versus fresh masa. 

Tortilla baking results in grain components being set into a three dimensional 

structure. Starch granules and endosperm pieces are glued together by amylose, protein, 

lipids and cell wall components (continuous phase). Starch gelatinization occurs during 

the 45-60 sec of baking time, making tortillas reach an internal temperature close to 91-

93 oC (Aida et al. 1996) and yielding tortillas with approximately 12.5% gelatinized 

starch (Gomez  et al. 1992) and 60% enzyme-susceptible starch . 

 

Staling of Corn Tortillas 
The process and mechanism of staling differs between maize tortillas and bread. 

Textural changes in tortillas occur faster. However, these textural changes can be 

reversed when tortillas are reheated. This is the reason why tortillas can be stored for 

long periods of time. Bread, on the other hand, becomes stale more slowly and these 

changes are only partially reversible upon reheating. Starch retrogradation is the most 

important reason for loss of tortilla texture, while in bread moisture migration from 

gluten to starch is also responsible for staling. Higher starch concentration and lower fat 

content of tortillas are also responsible for the increased staling rate compared to bread 

(Campas-Baypoli et al. 2002). 

The quality of a corn tortilla changes dramatically within the first 24 hr and then 

shows smaller changes for the reminder of its shelf life (Fernandez et al. 1999, 

Limanond et al. 2001). Tortilla staling is identified by a gradual decrease in rollability 

and pliability, a gradual increase in firmness, and a more friable and brittle structure 

(Friend et al. 1992).  The increase in firmness has probably been used to the largest 

extent to quantify staling in corn tortillas (Suhendro 1997; Quintero-Fuentes 1999; 

Yeggy 2000; Limanond et al. 2001). 
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Starch plays a significant role in staling and retrogradation of corn tortillas (Fernandez 

et al. 1999). The re-crystallization of gelatinized starch, also called starch retrogradation, 

is believed responsible for the texture changes that take place during the storage of corn 

tortillas and other starch-based systems. Most researchers attribute the changes in 

firmness of tortillas mainly to the physicochemical reactions of the starch components, 

specially the amylopectin fractions (Schoch and French 1947, Kulp and Ponte 1981). 

Therefore, anti-staling agents are substances that interfere in one way or another with the 

re-association of amylose, amylopectin or both. 

During baking, starch granules gelatinize, that is their native crystalline structure is 

disrupted, but still maintains their granular identity (Hugh-Iten et al. 1999). The two 

starch polymers, amylose and amylopectin, tend to separate due to their thermodynamic 

immiscibility (Kalichevski and Ring 1987). Phase separation of the two starch polymers 

leads to the accumulation of amylose within the starch granules, but also in the 

intergranular space in the form of double helices (Conde-Petit et al. 1998). 

Right out of the oven, amylose retrogrades very quickly, stabilizing the initial 

structure forming a more rigid, insoluble network. This process is thermo-reversible at 

153 oC (Ring et al. 1987). Therefore, amylose retrogradation cannot be reversed even 

after normal reheating. 

Retrogradation of amylopectin involves a crystallization process of the outer branches 

(DP 12-20). On examination of the behavior of amylopectins from different botanical 

sources it was observed that the bigger the abundance of the short chain fraction of 

amylopectin the greater the tendency to retrograde and crystallize was (Kalichevski et al. 

1990). Wheat amylopectin, which has a relatively short, short chain fraction, shows a 

reduced tendency to retrograde than corn amylopectin (Shi and Seib 1992). Schiraldi et 

al. (1996) found that enthalpies of the endothermic transition for corn tortillas stored for 

2 h were similar to the enthalpies of bread stored for 24 h at a similar temperature, 

indicating a faster retrogradation in tortilla than in bread. 

In maize, amylopectin retrogradation was found proportional to the amount of short 

chains having a DP of 16-30 and inversely proportional to the level of short chains with 
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a DP of 6-11 (Shi and Seib 1995). Treatment of starch with alpha and beta amylases 

shortens the short chain fraction and reduces the rate of retrogradation. 

In contrast to amylose, the crystallization of amylopectin is a slow process 

continuing over several days or weeks (Miles et al. 1985). While re-crystallized 

amylopectin melts in the temperature range 45-64 oC (Campas-Baypoli et al. 2002), 

amylose crystallites do so only at much higher temperatures (120-170 oC) (Eerlingen, 

Jacobs & Delcour, 1994). 

Amylopectin binds water and associates slowly, developing more perfect crystals than 

amylose, as staling progresses (Gudmundsson 1994), but after 24 hr storage yields 

brittle, less flexible tortillas (Fernandez et al. 1999). Since most normal starches are 70-

80% amylopectin, their gelatinization and retrogradation processes are dominated by the 

non-equilibrium melting and recrystallization behavior of amylopectin, although 

combinations due to amylose are observed (Levine and Slade 1991). 

Retrogradation produces crystalline forms that are different in nature from those 

present in the native starch granules. This is confirmed by changes in X-ray diffraction 

pattern from A-pattern in native cereal starches to a B-pattern in retrograded starches 

(Collison 1968).  

Amylopectin re-crystallization is associated with the development of stiffness of the 

product and typically, at high water contents such as in tortillas, takes days or weeks to 

reach a plateau value (Suhendro 1997, Fernandez et-al 1999, Limanond et al. 2001). At 

the end of this time the extent of crystallinity of the amylopectin is comparable to that 

found in the native starch granule (around 30%) (Parker and Ring 2001). 

The rigid crystalline (retrograded amylopectin) and the amorphous mobile 

components exist simultaneously in the system even after a relatively long storage time, 

where retrogradation reaches equilibrium. These observations are in agreement with the 

“fringed micelle” model used widely to describe partially crystalline synthetic polymers 

(Wunderlich 1976) and later to describe starch gels (Levine and Slade 1988). 
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Time and Temperature Dependence of Starch Retrogradation 

The magnitude of staling is a function of aging time and temperature. The 

retrogradation phenomenon has been described as a non-equilibrium polymer 

crystallization process in starch-water polymer melts (Levine and Slade, 1990). Theories 

of polymer crystallization may provide fundamental understanding and further modeling 

of the retrogradation process of corn tortillas. 

The rate of retrogradation of gelatinized waxy maize starch (Farhat et al. 2000), white 

bread (Russell 1985), cakes (Guy et al. 1983) and corn tortilla (Limanond et al. 2001) 

show a “bell-shaped” dependence on storage temperature in a range between Tg and Tm 

of the product. This behavior is in agreement with the general theory of crystallization, 

where the effect of temperature on the rate of crystallization is the result of its net effect 

on the nucleation and propagation rates, as reviewed by Levine and Slade (1990). 

Maximum rate of retrogradation for cakes was at 25 oC (Guy et al. 1983), for corn 

tortillas was at 13 oC (Limanond et al. 2001) and for bread occurred at 4 oC (Russell 

1985). Compared to storage at room temperature, storage of starch gels containing 45-

50% water (like corn tortillas) at low temperatures but still above the glass transition 

temperature (Tg  ~ -5 oC), increase retrogradation, especially during the first days of 

storage (Gudmunsson 1994). Storage at freeze temperatures below Tg virtually inhibits 

re-crystallization (Gudmunsson 1994) Higher temperatures (above 32 – 40 oC) 

effectively reduced retrogradation of wheat starch gels (Colwell et al. 1969) and corn 

tortillas (Limanond et al. 2001). 

When a tortilla is baked in the oven, it transforms into an amorphous, rubbery 

material. A fresh tortilla, right out of the oven is a partially crystalline system due to 

retrograded amylose (Campas-Baypoli et al. 2002). Apart from the amorphous phase 

(amylopectin) it contains crystal nuclei (retrograded amylose) in the rubbery matrix 

(continuous phase). Below its Tg (-23 oC, according to Limanond et al. 2001) the 

amorphous phase is glassy, the composite material, therefore, will show the same aging 

behavior as a purely amorphous polymer.  
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Unlike amorphous polymers, however, semi-crystalline polymers age (re-crystallize) 

at temperatures above the Tg.  Since the polymer chains adhere to the filler particles 

(amylopectin crystal nuclei created during retrogradation), the segmental mobility near 

the particle’s surface will be reduced. Only far away from the particles, the mobility and 

other properties of the rubbery matrix will be equal to those of the pure rubber (tortilla in 

the oven). This implies that the glass transition of semi-crystalline materials (tortilla) 

will be broadened. The amorphous regions will have the same Tg as the fresh tortilla, but 

that of areas including crystallized (retrograded) regions will be higher (Struik 1978). 

The broadening of the glass transition temperature explains why above the Tg of the 

bulk amorphous polymer (non-retrograded amylopectin) the composite possesses 

considerable viscoelasticity accompanied with aging. In conclusion, aging occurs in a 

wide range of temperatures above Tg and below Tm. When the polymer ages, its stress 

relaxation curve shifts along the time scale and the stiffness of the material increases 

(Struik 1978, Limanond et al. 2001). 

Limanond et al. (2001) studied the crystallization rate of corn tortillas in the 6-35 oC 

storage temperature range. The crystallization rate (k) from the modified Avrami-

nucleation model increased from 6 to 20 oC and started decreasing from 20 to 35 oC. The 

maximum crystallization was observed at 12.3 oC based on stiffness data from stress 

relaxation tests. As is known, the temperature dependence of the rate of formation of 

nuclei and the rate of crystal growth of polymer crystallization are bell shaped. Since the 

sub-ambient storage temperatures were much closer to the T’g (-23 oC) than to Tm (90 
oC) it was concluded that the tortilla crystallization process is strongly nucleation-

limited. 

In other words, tortillas stale at a slower rate when stored at room temperature (25 oC) 

than when refrigerated (4 oC). Limanond et al. (2001) states that the glass transition 

temperature of tortillas due to amylopectin crystallization increased from 39 to 48 oC 

after 48 hours of storage at room temperature. Most likely, this is the melting 

temperature of amylopectin increasing during storage, although Roos (1995) has 
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suggested that increasing crystallinity in partially crystalline polymers increases the 

glass transition temperature of amorphous regions. 

Tg is affected by the history of the sample (rate of cooling, time under storage, etc.), 

and depends upon its material composition and water content. The presence of large 

molecules like gums, improve tortilla flexibility by lowering the Tg (Cauvain 1998). 

Torres et al. (1993), found that the addition of CMC to wheat-flour tortillas containing 

20% sorghum flour significantly decreased staling.  

 

Antistaling Agents 

Previous studies on corn tortilla shelf stability agree there is no single additive that 

significantly delays staling without causing a detriment in tortilla texture or its sensory 

quality. 

Carboxymethylcellulose (CMC) 

Sodium carboxymethylcellulose (CMC) is currently the most popular antistaling agent 

used in commercial tortillas. CMC is a linear, long chain, cold or hot water-soluble, 

anionic, chemically modified, cellulose ether (Keller 1986). 

Purified cellulose from wood or cotton (DP 1000-2000) is converted to alkali 

cellulose by adding NaOH, a catalyst of the subsequent etherifying reaction using 

chloroacetic acid. In a cellulose molecule there are three hydroxyl groups available for 

etherifying per anhydrous glucose unit (AGU). The average number of hydroxyls 

substituted per AGU in a CMC molecule is known as the degree of substitution (DS), a 

key aspect in characterizing cellulose ethers solubility. With three OH groups present, 

the maximum DS is three. CMCs with low DS (0.7) provide thixotropy to aqueous 

systems (Feller and Wilt 1990). 

Most polymers have a product code that is related to their major properties. For 

example, CMC 7HF from Aqualon has a DS of about 0.7 (indicated by the 7), a high 

viscosity (H) at 1% concentration (1500-2500 mPa.s) and a fine particle size (F). 

CMC has a lower DP than cellulose, ranging from 50 (low viscosity) to 1000 (high 

viscosity). CMC 7HF has a 910 DP so it is considered a high viscosity polymer. The 
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crystallinity of cellulose tends to be destroyed by treatment with alkali, so CMC is 

amorphous and rarely exhibits crystalline morphology or the fiber structure of cotton 

(Feller and Wilt 1990). 

Solutions of the polymer are stable in the range of pH 4 to 10 (pH of commercial 

tortilla is 4.7-5.5). CMC is highly soluble in water due to its anionic character and 

possesses excellent temperature stability, which makes it suitable for baking (Feller and 

Wilt 1990). 

When added in aqueous solutions at concentrations of 0.25% or higher CMC chains 

overlap causing formation of an amorphous network structure. With higher polymer 

concentration the polymer-polymer interactions (entanglements) become the main factor 

influencing the rheology of the CMC solution (Florjancic et al. 2002). 

When CMC is mixed with a gel-forming material with tendency to cross-linking such 

as Xanthan gum, the rheological properties of the resulting network will depend on the 

relative concentrations of both polymers. 

When low levels of Xanthan are mixed with CMC, the presence of linear unbranched 

CMC chains inhibits formation of extended junction (cross-linked) zones and induces 

the formation of small clusters of xanthan as a dispersed phase, surrounded with 

entangled (amorphous) CMC chains. 

At a high content of Xanthan, the dispersion of small gel clusters display solid-like 

behavior at low stresses, and its rheological properties cannot be easily distinguished 

from those of weak gels (Florjancic et al. 2002). This example might be useful in 

understanding the way CMC maintains flexibility of tortillas by mixing with amylose in 

the continuous phase. Both molecules are essentially linear and have similar molecular 

weights (4.35 x 105 g/mol for CMC 7HF). However, amylose tends to re-crystallize very 

fast and CMC does not. 

The recommended level for corn tortillas varies from 0.25-0.5% (Serna Saldívar et al. 

1990). CMC improves tortilla texture, eliminates stickiness of packaged tortillas, 

increases yield and improves freeze-thaw stability. Suhendro (1997), Quintero-Fuentes 

(1999) and Yeggy (2000) reported that CMC increases rollability and extensibility of 
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tortillas during storage. However, tortillas with 0.5% CMC tend to have a rubbery 

texture regarded as undesirable by some consumers (Quintero-Fuentes 1999). It is 

believed that CMC does not retard starch retrogradation of tortillas during storage. 

Instead, it creates a more flexible structure in the tortilla. 

Vital wheat gluten 

Wheat gluten has been evaluated as an antistaling agent in corn tortillas. Yau et al. 

(1994), after testing a series of additives added to wet masa, reported that a mixture of 

0.5% CMC, 2% gluten and 3% sorbitol extended storage stability of tortillas to 12 days; 

compared to a three-day shelf life of control and 7 days for tortillas with 0.5% added 

CMC. Apparently, gluten modified the structure of masa and baked corn tortillas and 

had a synergistic interaction with CMC and starch. Gluten incorporation over 2% 

increased the number and size of burned spots in corn tortillas. 

Lipids and surfactants 

Polar lipids, e.g. monoglycerides, and related compounds are known to have an anti-

staling effect on bread and extend its shelf life (Krog and Jensen 1970). There is 

evidence that interactions of amylopectin and lipids are negligible (Kugimiya et al. 

1982). Lipids/surfactants retard retrogradation in bread by complexing with leached 

amylose on the surface of starch granules and possibly by acting as a barrier against 

water transport (D’Appolonia and Morad 1981). Studies on the antistaling properties of 

lipids in corn tortillas are scarce (Arambula-Villa 2001, Bueso et al. 2001). Arambula-

Villa (2001) found that tortillas with 0.5% non-polar corn masa lipid fraction were more 

rollable than control after 24 h of storage. However Bueso et al. (2001) did not find a 

significant anti-staling effect of neutral lipids in corn tortillas when added at levels up to 

2%. Higher levels of lipids significantly reduced tortilla pliability. 

Barley Flour and β-glucans 

β-Glucans consist of linear unbranched polysaccharides of linked β-(1-3)- and β-(1-4)-

D-glucopyranose units that form “worm-like” cylindrical molecules containing up to 

250,000 glucose residues (6 x 104 – 6 x 106 MW). β-Glucans, especially low molecular 

weight ones (6 x 104 – 9 x 104 MW), tend to form thermo-reversible, pseudoplastic gels 
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by entanglement and cross-linking; as shorter chains rearrange easier to maximize 

linkages. These arrangements make β-glucans more soluble in water than cellulose 

(Jezquel 1998).  Dehulled barley contains 33 g/kg dm of β-Glucans , while corn and 

sorghum have 1g/kg dm. 

The potential of β-glucans from barley as anti-staling agents is being studied. Corn 

tortillas with 20% barley flour showed higher rupture distance (extensibility) than 

control tortillas after 9 days of storage at 4 oC (Mitre-Dieste 2001). Anti-staling 

properties of purified β-glucans is currently being evaluated. 

Defatted soy flour 

Reheated tortillas with 5% native defatted soy flour and 0.5% CMC stored for three 

weeks under refrigeration (4 oC) have shown significantly higher flexibility (subjective 

bending test), extensibility (rupture distance) and required less force to rupture than the 

control. Soy extracts and isolates were less effective anti-staling agents than native soy 

flour. Tortillas with native soy flour developed more air tunnels during baking. During 

storage, soy flour appeared to interfere with tortilla retrogradation, maintaining the 

flexibility of the continuous phase matrix and limiting crumb contraction. 

Soy protein molecules are believed to combine with the retrograded amylose matrix to 

make it more flexible (Suhendro et al. 2001). Tortillas with 5% soy flour had acceptable 

sensory properties but tended to have more brown spots than tortillas with 0.5% CMC or 

without additives. 

Conventional vs. maltogenic amylases 

According to the classification of amylases, the α-amylase family (glycoside 

hydrolase family 13) is one of five structural families of starch-degrading hydrolases and 

includes endo-type enzymes specifically catalyzing the cleavage of the internal α-D-1, 

four glycosidic bonds of starch, and various oligosaccharides. Pullulanase cleaves the 

internal α-D-1, 6 glycosidic bonds of the substrate pullulan and amylopectin. 

Glucoamylases and β-amylases are exo-type enzymes cleaving glucose and maltose 

units, respectively, from the non-reducing end of starch materials by hydrolyzing α-D-1, 

4 glycosidic bonds (Kim et al. 1999). 
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Several groups of starch-hydrolyzing enzymes are known to harbor more than single 

enzyme activity. One group of these, maltogenic amylases, exhibit unique characteristics 

that are different from other α-amylases in that they exhibit (i) a dual activity of α-D-1, 

4 and α-D-1, 6-glycosidic bond cleavages that yield maltose; (ii) an activity of α-D-1, 4- 

to α-D-1, 3-, α-D-1, 4-, or α-D-1, 6-transglycosylation that generates oligosaccharides 

of DP 3-6; and (iii) an activity of cleaving acarbose, a pseudo-tetrasaccharide 

competitive inhibitor of α-amylases (Kim et al. 1999). 

Some of these properties of maltogenic amylases, if not all, are shared by two other 

amylolytic enzymes with different names, including neopullulanases and 

cyclomaltodextrinases, both of which are homologous to maltogenic amylases with 

sequence identity of 40-86%. These three groups of amylases have intra-cellular activity 

in bacteria (Bacillus sp. and Thermus sp) and fungi (A. oryzae and P. expansum), unlike 

typical commercial α-amylases and pullulanases from Bacillus subtilis (Fresh-N from 

EDC) and Aspergillus (Enzeco from EDC) which have extra-cellular activity (Park et 

al. 2000). 

The three groups of versatile amylases are high molecular weight (62-90 kDa for the 

monomers) amylases because of a unique addition of 130 residues at the N terminus 

compared with the conventional α-amylases containing the single activity of 

hydrolyzing α-D-1, 4-glucosidic bonds. This addition is the binding site for 

cyclodextrins and branched oligosaccharides, and the host for transglycosylation (Kim et 

al. 1999). 

Maltogenic amylases like Novamyl (from Bacillus stearothermophilus, 67 kDa per 

monomer) are normally in dimeric form in aqueous solution (Abe et al. 1996) unlike 

conventional α-amylases. 

Maltogenic amylases prefer cyclodextrins (CDs) to starch or pullulan as substrates in 

that the hydrolysis of CDs (six to eight glucose units) is 100 times faster than that of 

starch and pullulan (Kim et al. 1999).  Large substrates, like amylopectin or starch, are 

assumed to be accessible only for a wide and shallow active site as found in 

conventional α-amylases or maltogenic amylase monomers, while the small compact 
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substrates malto-oligosaccharides (DP 2-7) or CDs fit into the catalytic site of dimeric 

maltogenic amylases (Kim et al. 1999). Therefore, maltogenic amylases specific for 

cleavage of amylopectin should be produced with a higher proportion of the monomeric 

form. 

Amylase activity is expressed in activity units (AU), defined as the amount of enzyme 

(g or mg) necessary to release 1 g or mg of glucose equivalents from the substrate per 

unit of time (hr or 30 min) (Doyle et al. 1999). 

Maltogenic amylases as antistaling agents 

Glycosyl hydrolases (amylases) can act as antistaling agents (Kulp and Ponte 1981).  

The addition of amylases retards the firming of bread (Martin and Hoseney 1991) and 

inhibits the retrogradation of amylopectin as measured by DSC (Defloor and Delcour 

1999). Dragsdorf and Varriano-Marston (1980) found that reduced firmness of bread 

with amylases supplementation correlated with decreased levels of starch crystallinity. 

Amylases hydrolyze α-1,4 linkages within the amorphous region of the starch matrix 

during baking (Zobel and Senti 1959). Conventional α-amylases derived from bacterial 

(Bacillus subtilis) or fungal (Aspergillus oryzae) sources are not well suited for this 

purpose due to excessive or insufficient thermo stability, respectively (Hebeda et al. 

1990). 

Two different theories may explain why enzymes extend shelf-stability in baked 

products: 1) The shortening of amylopectin chain length by enzymes reduce 

retrogradation tendencies of amylopectin (Boyle and Hebeda 1990) and 2) It is the 

oligosaccharides (DP 2-7) produced by the enzymes that are themselves antistaling 

agents  (Martin and Hoseney 1991). 

In a detailed examination of the retrogradation of maize amylopectins retrogradation 

was directly proportional to the amount of chains of DP 16-30 and inversely proportional 

to the level of chains of DP 6-11 (Shi and Seib 1995). Treatment of starch with β-

amylase (an exo-acting enzyme) shortened amylopectin chains and reduced the rate of 

retrogradation (Wursh and Gumy 1994). However, Gerrard et al. (1997) contend that 
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staling rate was not related to the presence of dextrins in a specific size class and that 

these dextrins are just symptomatic of a modification to the starch that retards staling. 

Barley malt (Suhendro 1997), bacterial (Suhendro 1997, Quintero-Fuentes 1999), and 

fungal α-amylases (Aida et al. 1996, Suhendro 1997) have been evaluated as antistaling 

agents on corn tortillas. Aida et al. (1996) found that addition of a conventional fungal 

α-amylase blend (10 AU g-1) extended shelf life of corn tortillas according to 75 

panelists. However, Suhendro (1997) reported that low levels (0.0005%) of either 

bacterial or fungal amylases had a detrimental effect on masa characteristics and 

machinability, as well as tortilla rollability. Therefore, additive (s) that can increase 

viscosity and create a new network of viscoleastic structure to compensate for the 

weakened structure affected by the enzymes were needed. Suhendro (1997) found that a 

combination of 0.25-1% CMC and 0.005-0.01% barley malt produced masa with 

improved machinability and tortillas with better rollability than control after 12 days of 

storage. 

Intermediate temperature stability (ITS) maltogenic enzymes, which have an optimum 

temperature range of 65-80 oC, were effective as antistaling agents for wheat dough 

systems (Hebeda et al. 1991). Maltogenic amylases have been tailored by genetic 

engineering to exhibit its maximal activity at about 80 oC, but with a level of 60% 

activity at room temperature (Fitter et al. 2001). This type of enzyme would be adequate 

for the tortilla system, since the rest period of masa and baking time are very short (10 

min and 1 min, respectively) compared to bread. Therefore, the enzyme should 

hydrolyze amylopectin during the rest period at a higher rate than regular enzymes and 

could be inactivated before the tortilla comes out of the oven. 

Novamyl 1500 MG removes oligosaccharides in the DP 2-7 range from amylopectin 

and amylose; it does not cause gumminess as other bacterial amylases. Miranda (1999) 

used Novamyl 1500 MG at levels of 0.04 % (600 maltogenic amylase units, MAU, per 

kg of NCF) in corn tortillas. Novamyl activity was optimum at pH 5 and tortillas stored 

under refrigeration were more rollable and pliable than control; but they required more 

extension force to break. Miranda (1999) suggested that combinations of amylase and 
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other additives, such as CMC and wheat gluten should reduce tortilla staling to a larger 

extent than using amylase alone. 

Suhendro (1997) suggested that interaction effects between potential additives (gums, 

amylase, shortening, emulsifiers and gluten) that can improve corn tortilla texture need 

evaluation. 

 
Methods for Studying Starch Retrogradation 
 Methods to study starch retrogradation can be classified as: (1) macroscopic 

techniques, i. e. those methods which monitor alterations in certain physical properties as 

manifestations of retrogradation, for example, mechanical and textural changes 

(rheological techniques, sensory evaluation of texture, DSC and light scattering), and (2) 

molecular techniques, which study changes in starch polymer conformation or water 

mobility in starch gels at molecular levels (X-ray diffractometry, nuclear magnetic 

resonance spectroscopy) (Karim et al. 2000). 

Subjective and objective methods are commonly used to monitor changes in corn 

tortilla texture during storage and to monitor the effects of additives (CMC, barley malt, 

gluten, α-amylases and waxy cereal flours) (Suhendro 1997, Quintero-Fuentes 1999, 

Yeggy 2000). Suhendro (1997) developed and evaluated five objective corn tortilla 

texture measurement techniques (objective rollability, bending, tensile strength, puncture 

and stress relaxation). The objective rollability, bending and tensile techniques were 

simple and fast to run and correlated well to subjective rollability and flexibility scores. 

These techniques were sensitive to differences in corn tortilla texture due to storage time 

and additives. 

The tensile technique only takes 15 s to run. In contrast, the stress-relaxation 

technique required a longer time to run (180 s). However, stress relaxation provided 

fundamental information on the viscoelastic properties of corn tortillas, which was not 

provided by the other techniques. Yeggy (2000) found that energy dissipated, a 

viscoelastic behavior parameter obtained from the stress relaxation test, correlated 

significantly with the subjective bending and pliability parameters and objective texture 

techniques. Guo (1998) recommended the 7-element Maxwell model to fit experimental 
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data when evaluating corn tortilla under tension. Stiffness (Pa), relaxation moduli and 

energy dissipated (J/m3) were the best parameters to predict the texture properties of 

corn tortilla.  

Limanond et al. (2001) measured changes in tortilla viscoelasticity of corn tortillas 

during storage with stress relaxation. Tortillas received a 3% strain (linear viscoelasticity 

region) and force (N) required to maintain the strain was recorded for 180 s. Final 

stiffness (Y), also known as Young’s equilibrium modulus was calculated with the 7-

element Maxwell model and fed into the Avrami-nucleation model to estimate the rate 

(k) and degree of crystallization (X) of corn tortillas over a 3-day storage period at 

different temperatures (6-35 oC).  The stress relaxation technique successfully detected 

textural differences between corn tortillas at various storage times and temperatures. The 

Avrami-nucleation model with final stiffness data was adequate to describe the staling of 

tortillas at the practical temperature range (6-30 oC). 

 

3k-p Fractional Factorial Experiments 

The main justification for using three-level fractional factorial designs is run size 

economy. Take, for example, the 33 designs in 27 runs. Unless the experiment is not 

costly, it is more efficient to use one-third of the 33 design (Wu and Hamada 2000). 

  

Response Surface Analysis 

Modeling curvature effects can be very important when the objective of an experiment 

is to identify the combination of levels of the quantitative factors that leads to an 

optimum response. Response surface experiments can be used for this purpose (Neter et 

al. 1996).  Response surface designs are generally used in the latter stages of an 

investigation, when five or fewer factors (ingredients, conditions) are under 

investigation. 

Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques useful for design, development, and formulation of new products, as well as 

in the improvement of existing products. Many product design and improvement involve 
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formulation problems, in which two or more ingredients are mixed together. In such 

cases, the response variables of interest (tortilla rollability, stiffness, etc) in the product 

are a function of the proportions of the different ingredients used in its formulation 

(enzymes, gums, gluten, etc). This is a special type of response surface problem called a 

mixture problem (Myers and Montgomery 2002). 

In general, the experimenter is concerned with a product involving a response y that 

depends on the controllable input variables ξ1, ξ2, ξ3….ξk. 

The relationship is 

 Y = f (ξ1, ξ2, ξ3….ξk) + ε (1) 

Where the form of the true response function f is unknown and perhaps very 

complicated, and ε is a term that represents other sources of variability not accounted for 

in the surface response model f. “ε” will be considered as statistical error, assuming it to 

have a normal distribution with mean zero and variance σ2. 

The variables ξ1, ξ2, ξ3….ξk in equation (1) are usually called the natural variables, 

because they are expressed in the natural units of measurement (grams, degrees Celsius, 

Activity Units, etc). In RSM work it is convenient to transform natural variables to 

coded variables x1, x2, x3,…., xk, which are dimension-less with mean zero and the same 

spread or standard deviation (-1,1). 

Successful use of RSM is critically dependent upon the experimenter’s ability to 

develop a suitable approximation for f. Usually; a low-order polynomial in some 

relatively small region of the independent variable space is appropriate. In many cases, 

either a first-order (linear) or a second-order (quadratic) model is used. 

The first-order model is more suitable when the experimenter is interested in 

approximating the true response surface over a relatively small region of the independent 

variable range in a location where there is little curvature in f. 

Often the curvature in the true response surface is strong enough that the linear model 

(even with the interaction term included) is inadequate. The second order (quadratic) 

model is widely used in RSM because it is very flexible, so it will often work well as an 

approximation to the true surface response. Also, there is considerable practical 
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experience indicating that they work well in solving real response surface problems 

(Myers and Montgomery 2002). 

 

Central Composite Designs 

The central composite designs (CCD) are without a doubt the most popular class of 

second-order designs used in RSM. It was introduced by Box and Wilson (1951). 

A CCD consists of the following three parts: 

a) nf cube points (or corner points) with xi = -1,1 for i = 1,…., k. They form the 

factorial portion of the design. 

b) nc center points with xi = 0 for i = 1,…., k. 

c) 2k star points (or axial points) of the form (0,…, xi,…, 0) with xi = α, -α for i = 

1,…,k. 

How small can a fractional factorial design of the form 2k-p for the factorial portion be 

so that the resulting CCD is a second-order design? The total number of parameters in a 

second order model is (k+1)(k+2)/2. Therefore the total number of distinct design points 

in a CCD, N = nf +2k +1, must be at least (k+1)(k+2)/2.  

For k = 3 (amylase, CMC and gluten), either the 23-1 or the 23 design can be chosen 

for the factorial portion. If the 23-1 design is chosen, then nf = 4 and N = 4 +2(3) + 1 = 11 

experimental units in the CCD. Since (k+1)(k+2)/2 = 10 for k = 3, this CCD covers the 

minimum number of experimental units required to calculate the parameters of a second-

order model (Wu and Hamada 2000). 
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CHAPTER III 

 

MATERIALS AND METHODS 

Raw Materials 

The raw materials used in this study are listed in table I. 

Table I 

Sources of Raw Materials and Range of Levels Used in Formulas 

Ingredient g/kg NCF (dry basis) 

Nixtamalized corn flour (NCF) 

(Tortilla #4 with no additives. Minsa, Red Oak, IA) 

1000 g 

Fumaric acid powder ( Balchem Co. Slate Hill, NY) 4 

Potassium sorbate ( ADM Arkady, Olathe, KS) 5 

Vital wheat gluten ( Midwest Grain Products Inc., 

Atchinson, KS) 

0-20 

Novamyl 1500 MG, bacterial maltogenic amylase 

(Novozymes North America, Franklinton, NC) 

0.08-0.4 

Bacterial maltogenic amylase (Innovative Cereal Systems, 

Wilsonville, OR) 

0.08-0.4 

Fresh-N (Enzyme Development Co, NY, NY) 0.15 

Xylanase (Enzyme Development Co, NY, NY) 0.15 

 

Enzymes 

Two maltogenic amylases (Novamyl® from Novozymes and an ICS amylase), one 

conventional bacterial amylase (Fresh-N) and one Xylanase (Enzeco Xylanase S200) 

were evaluated as anti-staling agents in this study. 

A detailed description of the maltogenic amylases can be seen in table II. 
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Table II 

Characteristics of Maltogenic Amylases 

Enzyme Origin Mol 

Mass 

Activity Optimum aSubstrate 

Preference 

  (kDa) AU/g (oC) pH  

Novamyl Bacillus 

stearothermophilus 

69 1500 55 6 CD=MD>SS 

ICS Bacillus subtilis 69 11,000 40 6 CD=MD>SS 
aCD, cyclodextrin, referring to the ∀-, ∃-, and (-CD; MD, maltodextrin; and SS soluble starch. 

 

Fresh-N® is a conventional heat resistant ∀-amylase from Bacillus subtilis with an 

activity of 1000 AU/g. Recommended dosages are 0.1-0.4 g/kg NCF 

Enzeco Xylanase BSX® is a xylanase preparation derived from B. subitlis. It is a 

powder standardized to 12,000 BXU/g. Its primary use is in baking and milling. 

Recommended levels are 0.1-0.9 g/kg NCF. Total arabinoxylan content of corn (43 g/kg 

dm) is lower than wheat (61-66 total and 11.8 g/kg dm soluble) and barley (76 total and 

4.8 g/kg dm soluble). 

CMC 

Sodium carboxymethylcellulose (CMC) used in this study, with the trade name 

Blanose® 7HF cellulose gum, is a commercial product of Aqualon. The molecular mass 

determined by the producer is 4.35x 105 g/mol, with a degree of substitution in the range 

of 0.65-0.90, pH of 6.5-8.5, sodium fraction of 7-8.9% and an average viscosity of 2500 

mPa.s at a 1% concentration (Florjancic et al. 2002). 

 

Tortilla Preparation 

Tortillas were prepared in the Cereal Quality Laboratory Pilot Plant at Texas A&M 

University. One kg of nixtamalized corn flour (NCF) was mixed with 5 g potassium 

sorbate, 4 g fumaric acid, CMC, amylases and vital wheat gluten for 5 minutes at low 

speed in a 20 qt mixer (Model A-200, Hobart, Troy, OH). Distilled water (1.2 kg/kg 
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NCF) was added and masa was formed with a hook for 30 s at low speed and 90 s at 

medium speed. 

Masa was equilibrated in a polyethylene bag for 10 min before sheeting into 15 cm 

diameter, 30 g disks (Model CH4-STM, Superior Food Machinery, Inc., Pico Rivera, 

CA). 

Tortillas were baked in a gas-fired three-tier (320 oC top, 270 oC middle and 220 oC 

bottom oC) oven (Model C-0440, Superior Food Machinery, Pico Rivera, CA) for 60 s, 

cooled and stored in polyethylene bags at temperatures ranging from –40 to 21 oC, 

depending on the type of study. 

 

Starch Stabilization of Tortillas 

Tortillas were stabilized with methanol for Differential Scanning Calorimetry (DSC) 

testing. A sample of 100 g of tortilla was mixed with 250 ml of methanol in a blender 

and ground for 2 min at maximum speed. The ground sample was filtered with vacuum 

using filter paper (Whatman #2) to remove the excess methanol. Another rinse with 250 

ml of methanol for 2 min, followed by filtering was performed before drying the 

stabilized sample at 50 oC for 3 h in a forced-air oven. Stabilized samples were stored at 

–40 oC until DSC testing. 

 

Moisture and pH of Corn Tortillas 

The moisture content of tortillas was determined by grinding the tortilla in a coffee 

grinder (Model KS M2, Braun Inc., Lynnfield, MA) for 45 sec, and drying 4 g of ground 

sample to constant weight in a forced-air oven at 105 oC for 48 hr (a variation of AACC 

method #44-15A 1995). The pH of tortillas was determined by using method #02-52 

(AACC 1995). 
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Subjective Texture Evaluation of Tortillas 

Subjective rollability and pliability of tortillas was evaluated 20 min, 1, 7, 14 and up 

to 21 d after baking.  

Rollability was performed by rolling a tortilla around a 1 cm diameter dowel, and 

estimating the extent of cracking and breaking with a five-point subjective scale, defined 

as 1 = unrollable, 2 = breaks on one side and cracks on the other, 3 = breaks on one side, 

4 = cracks on one side only, 5 = rolls without cracking or breaking. 

Squeezing a tortilla inside the palm of one hand, holding it for 2 s and then releasing it 

evaluated pliability. The five-point scale was defined as 1 = complete crumbling, 2 = 

almost total crumbling, 3 = a lot of cracking, no crumbling, 4 = isolated cracks and 5 = 

completely pliable (no cracks). 

 

Objective Texture Evaluation of Tortillas 

Stress relaxation (Limanond et al. et al. 2001) and 1-D extensibility (Suhendro et al. 

1999) were performed on tortillas using a Texture Analyzer (model TA-XT2i, Texture 

Tech. Corp., Scarsdale, NY). 

1-D extensibility 

 A tortilla strip (70*35 mm) was held between two tensile grips, with one end attached 

to the analyzer platform and the other end attached to the analyzer arm (Suhendro et al. 

1999). The distance between the tensile grips was calibrated at 21.8 mm. During the test, 

the tortilla was pulled until it broke apart. The extensibility method was run using 

Texture Expert software in tension mode with the return to start option. The maximum 

force (N) and distance (mm) required to break apart the tortilla was calculated. 

Stress relaxation  

The stress relaxation method developed by Guo (1998) and modified by Limanond et 

al. et al. (2001) was used to determine the changes on final stiffness (Pa) and energy 

dissipated (µJ/m3) of tortillas during storage as a function of time and temperature. 

A uniform tortilla strip (70 x 35 mm taken from the center of a baked tortilla) was 

clamped between two grips, with one end attached to the Texture Analyzer platform and 
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the other end attached to the Texture Analyzer arm. The distance between the two arms 

was set to 21.8 mm. The Texture Analyzer system was set in the tension mode and the 

samples were tested at 3% strain levels (linear viscoleasticity region) for 180 sec. Pre 

and post-test speed was reduced to 0.5 mm/sec (compared to the 2 mm/sec speed used 

by Limanond et al. 2001) to avoid tortilla cracking in samples stored more than 3 d after 

baking. Test speed was 0.1 mm/sec. 

The stress relaxation data (force as a function of time) were transformed into 

relaxation modulus, E, and then fitted to a generalized Maxwell model with seven 

parameters using a modification of the Matlab program developed by Spadaro (1996) 

and Guo et al.. (1999). Data were the transformed into compliance, stiffness and energy 

dissipated using Matlab software version 6.1 (Matlab 2001). 

Further transformation into stiffness, Y, was carried out using Matlab Software 

(Matlab 2001): 

Y(t) = σij = (1/V) ∫V σ22dV, 

ε ij     (1/V) ∫V ε22dV 

Where σij is the homogenized stress; ε ij   is the homogenized strain; V is the volume 

of the tortilla sample; σ22 and ε22 are the normal stress and strain acting in the plane 

perpendicular to x2 in the direction of x2, respectively (Insert figure). Stiffness is the 

ratio of homogeneous stress to the homogeneous strain, which may be referred to as the 

“modulus of elasticity” or “Young’s modulus”. This parameter indicates the hardness of 

materials. The higher value corresponds to a harder (firmer) material (more solid-like). 

 

Differential Scanning Calorimetry (DSC) 

Thermal analysis of methanol-stabilized samples of corn tortillas was performed in a 

Differential Scanning Calorimeter (Perkin Elmer, Norwalk, CN, Model DSC-1). Starch-

stabilized tortilla extract samples (4 mg) were re-hydrated 20 min before heating with 8 

mg of water and hermetically sealed in aluminum pans. Then the samples were heated at 

a rate of 10 oC/min from –40- to 100 oC. 
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The parameters evaluated were: ∆H (enthalpy of water and amylopectin crystal fusion 

in J/g), peak water and amylopectin melting temperature (Tp in oC), tortilla midpoint 

glass transition temperature (Tg). 

 

Empirical Viscosity (RVA analysis) 

Slurries (15% solids) of residues of 20 min and 21-day old tortillas extracted with 

methanol and dried at 50 oC for 3 hr were evaluated for pasting properties using a Rapid 

Viscoanalyzer (Model 3C, Newport Scientific, Narabenn, Australia). Samples were 

evaluated in duplicates. Slurries were held at 50 oC for 2 min, then heated to 95 oC at a 

rate of 7.5 oC/min, held at 95 oC for 4 min and cooled down back to 50 oC at a 7.5 
oC/min rate. Total testing time was 22 min. 

 

Experimental Designs 

This study consisted of three separate but sequentially connected experiments. The fist 

one aimed to determine the optimum type and concentration of amylase that provides the 

best antistaling performance without compromising sensory quality and tortilla yields. 

The second study evaluated antistaling properties of combinations of additives (bacterial 

maltogenic amylase with CMC or wheat gluten). The third study determined the storage 

temperature at which corn tortillas stale the fastest. 

Experiment 1: Optimizing addition of amylases and CMC 

This experiment consisted of three phases: 

Phase 1: maltogenic amylases evaluation 

Two intermediate-temperature bacterial amylases (Novamyl 1500 MG and ICS 

maltogenic amylase) were evaluated at 4 concentrations (0, 0.4, 0.3, and 0.15 g/kg of 

NCF) in combination with three levels of CMC (0, 0.25 and 0.5% based on NCF 

weight). The provider’s recommended concentration of Novamyl was 0.3-0.4 g/kg of 

NCF (450-600 AU/kg of NCF), whereas for the ICS amylase was 0.075-0.15 g/kg of 

NCF (825-1650 AU/kg of NCF). The 2 (amylase type) x 4 (amylase conc.) x 3 (CMC 
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level) factorial was arranged in a randomized complete block design (RCBD) with three 

replications (processing days). 

Tortillas were produced following the procedure described previously and stored at 

room temperature (21 oC) for 7 days. Tortillas were evaluated for subjective (rollability 

and pliability in triplicates) and objective texture (1-D extensibility) in quintuplicates 20 

min, 5 h, 1 and 7 days after baking. Stress relaxation was also performed on tortillas in 

triplicates 20 min, 5 and 24 hr after baking. 

Phase 2: comparison of maltogenic and non maltogenic amylases. 

Two bacterial maltogenic amylases (Novamyl and ICS) were compared with a fungal 

conventional amylase (Fresh-n) and a xylanase for antistaling properties at two 

concentrations (0 and 0.15 g/kg of NCF) in combination with 0.25% CMC. Tortillas 

with no additives, or with 0.25% and 0.5% CMC only were used as controls. The 

experimental design was a RCBD with two replications (processing days). 

Tortillas were produced following the procedure described previously and stored at 

room temperature (21 oC) for 7 days. Tortillas were evaluated for subjective (rollability 

and pliability in triplicates) and objective texture (1-D extensibility) in quintuplicates 20 

min, 5 h, 1 and 7 days after baking. Stress relaxation was also performed on tortillas in 

triplicates 20 min, 5 and 24 hr after baking. 

Phase 3: comparison of maltogenic amylases at equal number of AU 

Novamyl and ICS bacterial maltogenic amylases were evaluated for antistaling 

properties at four levels (0, 75, 150 and 225 activity units/kg NCF) in combination with 

0.25% CMC. Tortillas with no additives, or with 0.5% CMC only were used as controls. 

Tortillas were produced following the procedure described previously and stored at 

room temperature (21 oC) for 7 days. Tortillas were evaluated for subjective (rollability 

and pliability in triplicates) and objective texture (1-D extensibility) in quintuplicates 20 

min, 1, 14 and 21 days after baking. 
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Experiment 2: Antistaling properties of combinations of additives 

Three concentrations of ICS maltogenic amylase (0, 825 and 1650 AU/kg of NCF), 

three levels of CMC (0, 0.25 and 0.5%) and three levels of vital wheat gluten (0, 1 and 

2%) were evaluated for antistaling properties in an incomplete factorial design with three 

replications (processing days). 

Eleven treatment combinations (Table III) were selected following a Central 

Composite Design (CCD). The full control treatment (no additives) was added to the 

CCD in order to have a starting point for comparisons. 

 

Table III 

Treatment Combinations Used for Evaluating Antistaling Properties of Maltogenic 

Amylase with CMC and/or Vital Wheat Gluten in a Central Composite Design 

Treatment CMC (%) ICS Amylase (AU) Gluten (%) 

1 0.25 0 1 

2 0.25 1650 1 

3 0.25 825 0 

4 0.25 825 2 

5 0 825 1 

6 0.5 825 1 

7 0.5 0 0 

8 0 0 2 

9 0 1650 0 

10 0.5 1650 2 

11 0.25 825 1 

12 0 0 0 
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Tortillas were produced following the procedure described previously and stored at 

room temperature (21 oC) for 14 days. Tortillas were evaluated for subjective (rollability 

and pliability in triplicates) and objective texture (1-D extensibility in quintuplicates and 

stress relaxation in triplicates) 20 min, 5 hr, 1, 7 and 14 days after baking. 

Tortilla samples obtained from all treatments 20 min, 5 hr, 1, 7 and 14 days after 

baking were stabilized with methanol as previously described for DSC analysis. 

Data was analyzed using response surface methodology (RSM) to generate second 

order regression models using SAS version 8. 

Experiment 3: Temperature dependence of tortilla staling rate 

Tortillas made with a combination of 1650 AU of ICS maltogenic amylase and 0.25% 

CMC were evaluated in comparison with control tortillas (no additives) and tortillas with 

0.5% CMC only under five storage temperatures (-40, -20, 3, 10 and 21 oC). A split plot 

design with two replications was used to conduct the experiment. The main plots were 

the storage temperatures and the treatments were designed as the sub-plots. 

Tortillas were produced following the procedure described previously and stored at 

the respective temperature for 21 days. Tortillas were stored individually in polyethylene 

bags at –20 oC in a Hotpoint refrigerator freezer (GE, model CTX21EAXFRWH,) with a 

22 ft/min air flow, while a So-Low freezer (model PR120-12, Environmental Equipment 

Co., Cincinnati, Ohio) with an air flow of 8 ft/min was used for storage at –40 oC. 

 Tortillas were evaluated for subjective (rollability and pliability in triplicates) and 

objective texture (stress relaxation in triplicates) 20 min1, 7 and 21 days after baking. 

Frozen tortilla samples were microwaved for 10 sec to remove ice from the surface and 

then allowed to equilibrate to room temperature (21 oC) for 1 hr before performing 

texture evaluations. 

Tortilla samples obtained from all treatments 20 min, 5 hr, 1, 7 and 21 days after 

baking were starch-stabilized with methanol as previously described for DSC analysis. 

RVA analysis was performed on 20 min and 21-day old tortilla extracts. 
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Statistical Analysis 

Statistical analyses were performed using SAS version 8. Analysis of variance for 

experiments 1 and 3 was performed using PROC GLM, while RSM for experiment 2 

was performed with PROC RSREG. 

Tukey’s means separation test was performed with the MEANS statement and the 

Tukey option (α = 0.05%). Tukey’s Honest Significant Difference (HSD) was used for 

treatment comparisons in graphs and tables. 
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CHAPTER IV 

 

OPTIMIZING ADDITION OF ENZYMES AND CMC TO CORN TORTILLAS 

 

Evaluation of Maltogenic Amylases 

No significant differences in tortilla moisture content were observed among 

treatments. Average tortilla moisture content was 47.1% and the CV was 0.83%. 

Addition of amylases did not significantly change tortilla pH. Average tortilla pH was 

5.42 with a CV of 0.67%. 

Tortilla yield (CV = 8.4%) was significantly affected by amylases and CMC (Fig. 1). 

In general, tortilla yields (control mean = 1 kg/kg NCF) were lower than the industry 

standard due to problems with the oven belts that caused tortilla folding and cracking. 

Tortilla yield was significantly increased by adding 0.25% CMC compared to the 

control. Increasing CMC level to 0.5% did not significantly increase tortilla yield 

compared to 0.25% CMC. 

Novamyl maltogenic amylase significantly reduced tortilla yield when 350 MAU or 

more were added. However, addition of 0.25% CMC or more allowed using up to 600 

MAU of Novamyl without significant reductions in tortilla yield. 

ICS maltogenic amylase reduced tortilla yield significantly when 1650 MAU or more 

were added compared to the control. Addition of 0.25% CMC did not prevent significant 

reductions in tortilla yield, but 0.5% did. Up to 3500 MAU of ICS amylase could be 

added to tortillas without significant reductions in tortilla yield when 0.5% CMC was 

added. 

Neither 75 nor 150 AU of maltogenic amylases (Novamyl and ICS) combined with 

0.25% CMC were enough to significantly decrease tortilla rupture force after 21 days of 

storage compared to the control (Appendix A.1, A.2 and A.4). However, significant 

improvements in tortilla rollability, pliability (Appendix A.3) and rupture distance were 

observed compared to the control. The combination of ICS amylase and 0.25% CMC 

produced significantly more rollable and pliable tortillas than 0.5% CMC.  
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Fig. 1. Effect of Novamyl and ICS maltogenic amylases on corn tortilla yield. 
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These results suggest the improvements in tortilla texture were due mostly to the 

addition of 0.25% CMC and that amylases were not effective in softening the tortilla 

(reducing rupture force) when added at levels up to 150 AU. However 75 AU of ICS 

amylase improved tortilla flexibility (rollability, pliability and rupture distance) when 

combined with 0.25% CMC compared to 0.5% CMC and control. 

A combination of 0.25% CMC and 225 AU of ICS maltogenic amylase was more 

effective in maintaining rollability of tortillas stored for 21 days than 0.5% CMC (Fig. 

2). The combination of 0.25% CMC and 225 AU of Novamyl maintained tortilla 

rollability better than the control but not as well as 0.5% CMC or the combination of 

0.25% CMC and 225 AU of ICS amylase. 

After 21 days of storage at room temperature, none of the treatments prevented the 

drop of tortilla pliability below the acceptable level (score = 4). However, combinations 

of 0.25% CMC and 225 AU of amylase (Novamyl and ICS) preserved tortilla pliability 

as well as 0.5% CMC and better than the control after 21 days of storage (Fig. 3). 

Tortillas with 225 AU of ICS amylase were significantly more pliable than tortillas with 

225 of Novamyl when 0.25% CMC was present. 

Tortillas stored for 21 days required significantly more force to rupture (mean = 13.3 

N) than fresh tortillas (mean = 3.5 N). Only the combination of 0.25% CMC and 225 AU 

of ICS amylase produced tortillas with significantly lower rupture force than the control 

(Fig. 4). This combination also produced tortillas with lower rupture force than the 

combination of 0.25% CMC and 225 AU of Novamyl.  

Tortilla rupture distance also decreased dramatically after 21 days of storage (mean 

fresh tortilla = 10.4 mm vs. mean after 21 days = 2 mm). However, 0.5% CMC and a 

combination of 0.25% CMC and 225 AU of ICS amylase were equally effective in 

producing tortillas with significantly higher rupture distance than the control (Fig. 5). 
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Fig. 2. Effect of 225 AU maltogenic amylase (Novamyl or ICS) and 0.25% CMC on the 

rollability of tortillas stored 21 days at room temperature. 
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Fig. 3. Effect of 225 AU maltogenic amylase (Novamyl or ICS) and 0.25% CMC on the 

pliability of tortillas stored 21 days at room temperature. 
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Fig. 4. Effect of 225 AU maltogenic amylase (Novamyl or ICS) and 0.25% CMC on the 

rupture force of tortillas stored 21 days at room temperature. 
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Fig. 5. Effect of 225 AU maltogenic amylase (Novamyl or ICS) and 0.25% CMC on the 

rupture distance of tortillas stored 21 days at room temperature. 

 

 



 40

 

 

Maltogenic vs. Non Maltogenic Enzymes 

No significant differences in tortilla moisture content, pH or yield were observed 

when adding enzymes (0.15g/kg of NCF) and/or CMC (Table IV).  The model explained 

differences among treatments poorly (Moisture R2 = 0.66; pH R2 = 0.42 and Yield R2 = 

0.59). Coefficients of variation (CV) were low for tortilla moisture content (1.67%), pH 

(2.2%) and yield (9.15%). 

 

TABLE IV 

Effect of CMC and Enzyme Combinations on Tortilla Yield, Moisture and pH 

Treatment Combination Moisture pH Yield 

CMC ( %) Enzyme  (AU/kg NCF) (%)  (kg/kg NCF) 

0 0 47.0 4.84 1.14 

0.25 0 47.7 4.73 1.01 

0.5 0 47.6 4.66 1.09 

0 Novamyl (225) 47.7 4.79 1.04 

0 ICS (225) 46.9 4.73 1.10 

0 Fresh-N (225) 46.4 4.64 1.18 

0 Xylanase (1800) 47.0 4.72 1.05 

0.25 Novamyl (225) 46.4 4.81 1.06 

0.25 ICS (225) 47.2 4.75 1.14 

0.25 Fresh-N (225) 47.9 4.74 1.24 

0.25 Xylanase (1800) 47.9 4.61 1.29 

HSD (α=0.05)* 1.7 0.25 0.29 

* Tukey’s Honest Significant Difference for means separation.
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Fig. 6. Effect of enzymes and CMC on the rollability of tortillas stored 7 days at room 

temperature. 
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Fig. 7. Effect of enzymes and CMC on the pliability of tortillas stored 7 days at room 

temperature. 
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Rollability of control tortillas stored for 7 days was below the optimum (score = 4).  

Addition of 0.25-0.5% CMC maintained tortilla rollability above the optimum (Fig. 6). 

Enzymes did not improve rollability of tortillas stored 7 days compared to the control. 

Furthermore, addition of 225 AU of Fresh-N significantly reduced tortilla rollability 

when combined with 0.25% CMC compared to tortillas made with only 0.25% CMC. 

Similarly, 0.25% CMC made tortillas significantly more pliable than control after 7 

days of storage (Fig. 7). Tortillas with 0.5% CMC were the most pliable after seven days 

of storage.  Enzymes, except for Fresh-N, did not significantly improve pliability of 7-

day old tortillas compared to the control. Only a combination of 225 AU of Novamyl 

and 0.25% CMC produced tortillas with higher pliability than tortillas with 0.25%. 

Tortillas with 0.25-0.5% CMC did not significantly reduce rupture force of tortillas 

stored 7 days compared to the control (Fig. 8). Maltogenic amylases (225 AU of 

Novamyl and ICS) were the only enzymes that significantly reduced tortilla rupture 

force after 7 days of storage compared to the control or to tortillas with 0.25-5% CMC. 

Tortillas with 225 AU of ICS amylase required significantly less force to rupture than 

tortillas with 225 AU of Novamyl after 7 days of storage. No positive interaction was 

observed between maltogenic amylases and CMC in reducing tortilla rupture force. 

Rupture distance of tortillas stored for 7 days was significantly increased only by 

0.5% CMC compared to the control (Fig. 9). Enzymes did not increase tortilla rupture 

distance. Furthermore, 225 AU of ICS maltogenic amylase significantly decreased 

tortilla rupture distance compared to the control. Combinations of individual enzymes 

with 0.25% CMC did not significantly increase tortilla rupture force compared to 

tortillas with 0.25% CMC only. 
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Fig. 8. Effect of enzymes and CMC on rupture force of tortillas stored 7 days at room 

temperature. 
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Fig. 9. Effect of enzymes and CMC on rupture distance of tortillas stored 7 days at room 

temperature. 
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Discussion 

Commercial tortillas with 0.5% CMC, unlike tortillas made without additives can be 

stored under refrigeration (4 oC) for at least a month. Addition of 0.5% CMC improves 

masa cohesiveness and machinability (Gomez et al. 1991) and maintains tortilla 

flexibility during storage (Suhendro 1997; Quintero-Fuentes 1999; Yeggy 2000). 

Tortillas with 0.5% CMC became more rubbery and have a chewier texture than tortillas 

without additives (Quintero-Fuentes 1999).  

Figure 1 shows that 0.25% CMC was needed to increase tortilla yields compared to 

the control and 0.5% did not contribute to further yield increases.  Masa with 0.5% CMC 

was stickier than control and stuck more frequently to the oven belts than masas with 

0.25% or no CMC. Therefore, gains in masa yield due to increased water holding 

capacity provided by 0.5% CMC were shadowed by greater tortilla loses by folding in 

the oven and subsequent non-uniform baking. 

Addition of maltogenic amylases was limited to 1650 AU for ICS and 350 AU for 

Novamyl due to significant reductions in tortilla yields (Fig. 1). Hydrolytic activity of 

these enzymes at the above-mentioned levels during masa formation and the rest period 

(17 min) was enough to reduce the cohesiveness of masa, increase the number of 

cracked tortillas during baking and consequently reduce tortilla yields. 

Addition of 0.25%-0.50% CMC prevented reductions in tortilla yield when using 

more than 350 AU of Novamyl or above 1650 AU of ICS amylase. However, 

undesirable tortilla mushiness and sweetness was detected on tortillas at or above these 

levels. 

Subsequent tests proved that there was no need to use such high levels of maltogenic 

amylases to obtain significantly softer tortillas after a week or more of storage at room 

temperature. 

Addition of 225 AU of maltogenic amylases (Novamyl or ICS) significantly reduced 

tortilla rupture force compared to control and tortillas with 0.25-0.5% CMC after one 

week of storage (Fig. 4 and 8). Both amylases (at 225 AU/ kg of NCF) required only 18 

min to effectively hydrolyze starch and produce tortillas with a reduced tendency to 
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harden during storage. The higher hydrolytic activity of ICS maltogenic amylase than 

Novamyl at room temperature (Table II) might explain why tortillas with ICS amylase 

required significantly less force to rupture than tortillas with Novamyl after one week of 

storage. 

The fact that 225 AU of Fresh-N, a conventional intermediate–temperature bacterial 

α-amylase, were unable to reduce tortilla rupture force in tortillas like 225 AU of 

maltogenic amylases suggests the basis of the anti-staling properties of maltogenic 

amylases is their particular ability to remove oligosaccharides (DP 2-7) from 

amylopectin (Boyle and Hebeda 1990). It could also mean that maltogenic amylases had 

a higher hydrolytic activity than Fresh-N at room temperature. 

Lower rupture force does not exactly translate into higher tortilla flexibility, rollability 

or pliability. Tortillas with 0.5% CMC stored for one week or more were perfectly 

rollable (Fig 2, 6), significantly more pliable (Fig. 3,7) and extensible (higher rupture 

distance) than control tortillas (Fig. 5, 9), despite requiring a similar amount of force to 

rupture (Fig 4, 8). On the other hand, tortillas with maltogenic amylases required less 

force to rupture (were “softer”) but were not significantly more extensible (more 

rollable, pliable and requiring more distance to rupture) than control. 

Therefore, the anti-staling properties of CMC may be related to its ability to create a 

flexible amorphous matrix in the continuous phase of tortillas and not to interfering with 

amylopectin retrogradation during storage. The increased flexibility and cohesiveness of 

tortillas with CMC explains why they require more force to rupture without being 

harder, more brittle or less flexible than the control. Since tortillas with 0.5% CMC are 

regarded as “rubbery and chewy”, addition might be limited to 0.25%. 

This study supports the idea of combining 0.25% CMC with 225-1650 AU of ICS 

maltogenic amylase as a way of producing softer, less chewy and more flexible tortillas 

than 0.5% CMC after a week of storage at room temperature.  
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CHAPTER V 

 

ANTISTALING PROPERTIES OF CMC, MALTOGENIC AMYLASE AND 

VITAL WHEAT GLUTEN 

  

Masa Quality 

All treatment combinations produced masas with optimum cohesiveness and without 

excessive stickiness. Therefore, masas were sheetable. 

 

Tortilla Moisture, pH and Yield 

Tortilla moisture content varied significantly (P< 0.05) among treatments (Table V, 

Appendix Table B.1). The second order model fit to observed data was low for moisture 

content (R2 = 0.40). The coefficient of variation for tortilla moisture content was very 

low (1.42%), indicating precise measurements. Addition of gluten and the interaction of 

CMC and maltogenic amylase significantly reduced tortilla moisture content compared 

to the control (Table I). Tortillas with no additives (control) had significantly higher 

moisture content than other treatments, except for the combination of 0.25% CMC, 825 

AU of amylase and 1% gluten.  

Appendix B.1 and Table I show that tortilla pH was similar for all treatments  (P = 

0.51), with an overall mean value of 4.83 and a CV of 7.2%. The second order model fit 

was very low (R2 = 0.18). 

Tortilla yield varied significantly among treatments (P<0.001) and the second order 

model explained observed data well (R2 = 0.77), considering that an incomplete factorial 

design was used. Coefficient of variation was adequate (9.4 %). As expected, only the 

addition of CMC significantly increased tortilla yield  (Appendix B.1 and Table V) 

compared to control. This increase in yield was caused by improved masa machinability 

that produced more acceptable tortillas, since moisture content of tortillas with CMC 

was actually lower than control tortillas. Addition of 0.5% CMC normally increases 

masa water absorption and produces tortillas with increased moisture content compared 
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to control (Serna-Saldivar 1990, Quintero-Fuentes 1999), so these results are 

contradictory with past observations. Tortilla yields in this study were also lower than 

the industry standard due to tortillas folding and cracking in the oven belts. Addition of 

1650 AU of maltogenic amylase did not significantly reduce tortilla yield (Table V) 

compared to control. 

 

TABLE V 

Effect of CMC, Maltogenic Amylase and Wheat Gluten Combinations on Tortilla 

Yield, Moisture and pH 

Treatment Combination Moisture pH Yield 

CMC ( %) Amylase (MAU) Gluten (%) (%)  (kg/kg NCF) 

0 0 0 48.5 4.84 0.93 

0 0 2 47.1 4.88 0.99 

0 825 1 47.3 4.84 1.03 

0 1650 0 47.6 4.85 0.94 

0.25 0 1 47.7 4.85 1.02 

0.25 825 0 47.7 4.91 1.15 

0.25 825 1 48.1 4.87 1.04 

0.25 825 2 46.7 4.84 1.09 

0.25 1650 1 47.7 4.83 1.09 

0.5 0 0 47.3 4.89 1.05 

0.5 825 1 47.4 4.91 1.10 

0.5 1650 2 47.3 4.94 1.04 

HSD (α=0.05)* 0.6 0.16 0.10 

* Tukey’s Honest Significant Difference for means separation. 

 

In general, all treatment combinations evaluated produced equal or higher tortilla 

yields than the control, despite having significantly lower moisture contents.  

 



 50

Changes in Tortilla Texture During Storage 

Subjective texture evaluations 

Tortillas from all treatments received the highest score (5) for pliability and rollability 

20 min after baking (Appendix Tables B.3 and B.4). However, after 14 days of storage, 

highly significant differences in tortilla rollability (Fig. 10, Appendix Tables B.2 and 

B.3) and pliability (Fig. 10, Appendix Tables B.2 and B.4) were observed among 

treatments. The second order regression model explained changes due to addition of 

anti-staling agents in tortilla pliability (R2 = 0.73) better than in tortilla rollability (R2 = 

0.60). This suggests that the subjective tortilla pliability test is more sensitive to textural 

differences than rollability. Coefficient of variation for tortilla rollability was 12.1% and 

for pliability was 19.2%, which indicates that the evaluator was more precise testing 

rollability than pliability. 

Only the addition of CMC produced tortillas with significantly higher rollability than 

control after 14 days of storage at room temperature (Appendix Tables B.2). Maltogenic 

amylase did not reduce tortilla rollability when 1650 AU or less were added (Appendix 

B.3 and Fig. 10), indicating that starch breakdown was limited to the extent of not 

affecting tortilla flexibility and cohesiveness significantly. On the other hand, addition of 

at least 1% vital wheat gluten produced tortillas with significantly lower rollability than 

control after 14 days of storage (Fig. 10). When added in combination with CMC and 

amylase, wheat gluten did not significantly increase tortilla rollability during storage 

compared to treatments with combinations of CMC and amylase only. Therefore, vital 

wheat gluten at 1% level was ineffective in preserving of tortilla rollability by itself, and 

did not show a positive interaction with CMC and maltogenic amylase. 
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Fig. 10. Rollability of tortillas stored 14 days containing maltogenic amylase, CMC and 

vital wheat gluten. 
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Optimum tortilla rollability (> 4.75) was obtained when combining at least 0.25 % 

CMC and 825 AU of amylase or more (Fig.10). 

When added alone CMC and maltogenic amylase were effective in preserving tortilla 

pliability after 14 days of storage compared to the control (Fig.11, Appendix Table B.4). 

Tortillas with up to 1% wheat gluten showed significantly higher pliability than control 

after 14 days of storage. Higher levels of gluten did not significantly increase pliability. 

CMC added alone produced tortillas with higher pliability than control after 14 days 

of storage only when levels above 0.2% were used. To produce tortillas with a pliability 

score of 2 or higher, 0.5% CMC was needed if added alone (Fig. 11, Appendix Table 

B.4). 

Addition of up to 825 AU of maltogenic amylase alone significantly increased 

pliability compared to control after 14 days of storage (Fig. 11), but not to similar levels 

than 0.5% CMC. Higher levels of amylase added alone did not significantly increase 

pliability, and Fig. 11 actually suggests a detrimental effect if more than 825 AU are 

added without CMC. 

Combinations of 550-1100 AU of amylase and 1% gluten produced tortillas with 

pliability statistically similar to tortillas with 0.5% CMC, suggesting a synergy between 

the softening effect of the maltogenic amylase and the flexible matrix-building effect of 

gluten. However, only combinations of 0.5% CMC plus 550-1100 AU of amylase 

produced tortillas with a pliability score above 2 and significantly higher than 0.5% 

CMC alone (Fig. 11). This means that CMC was a better flexible-matrix builder than 

vital wheat gluten when interacting with the softening effect of amylase on retrograded 

starch, therefore producing more pliable tortillas after two weeks of storage. 

Objective texture evaluations 

Tortilla hardness: rupture force vs. stiffness 

Appendix B.5 shows that significant differences in the amount of force required to 

rupture tortillas 20 min after baking were found among treatments (P<0.001). The model 

R2 was 0.56 and the overall coefficient of variation was 8%, indicating that the 

repeatability of the rupture force measurement is good. 
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Fig. 11.  Pliability of tortillas stored 14 days containing maltogenic amylase, CMC and 

vital wheat gluten. 
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Only 0.5% CMC added alone increased rupture force significantly in tortillas coming 

out of the oven compared to the control (Table VI, Appendix B.5). Neither maltogenic 

amylase nor wheat gluten working alone significantly changed tortilla rupture force 20 

min after baking. However a significant interaction between CMC and amylase indicates 

that amylase had a softening effect on freshly baked tortillas only when CMC was 

present (Table VI, Appendix B.5). These small changes in texture had no significant 

effect on fresh tortilla rollability and pliability (20 min after baking). 

TABLE VI 

Effect of CMC, Maltogenic Amylase and Wheat Gluten Combinations on Stiffness 

and Rupture Force of Tortilla 20 Min After Baking 

Treatment Combination Rupture Force Stiffness 

CMC ( %) Amylase (MAU) Gluten (%) (N) (x 106 Pa) 

0 0 0 2.84 0.21 

0 0 2 3.01 0.22 

0 825 1 2.91 0.19 

0 1650 0 3.05 0.23 

0.25 0 1 3.04 0.19 

0.25 825 0 2.91 0.19 

0.25 825 1 2.99 0.24 

0.25 825 2 3.32 0.22 

0.25 1650 1 3.04 0.24 

0.5 0 0 3.70 0.21 

0.5 825 1 3.58 0.23 

0.5 1650 2 3.29 0.25 

HSD (α=0.05)* 0.40 0.07 

* Tukey’s Honest Significant Difference for means separation. 
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The stress relaxation test agreed with subjective texture measurements. It did not 

detect significant differences (P = 0.47) in tortilla stiffness among treatments 20 min 

after baking (Table VI, Appendix B.9). This also suggests that the 1-D extensibility 

indicator of hardness (rupture force) is more sensitive to smaller differences in tortilla 

texture than stiffness generated by the stress relaxation test. Model R2 for stiffness was 

consequently very low (0.17) and the coefficient of variation very high (28 %) compared 

to tortilla rupture force measurements. 

As expected, highly significant differences in tortilla texture among treatments were 

observed after 14 days of storage when measuring rupture force and stiffness (P<0.001) 

(Fig. 12 and 13; Appendix Tables B.6 and B.10). Here, stiffness explained differences in 

tortilla texture among treatments better than rupture force (R2 stiffness = 0.85 vs. R2 

rupture force = 0.63) and was more consistent (CV stiffness = 9.7% vs. CV rupture force 

=12.4%). 

CMC, maltogenic amylase and gluten changed rupture force and stiffness of 14-day 

old tortillas significantly (Appendix Tables B.7 and B.11) compared to the control.  

Maltogenic amylase accounted for most of these differences. 

Tortillas with 0.5% CMC had similar rupture force than control regardless of the 

amylase level (Fig. 12). Reductions in tortilla rupture force when CMC was added at 

0.25% were not significant.  

The response surface model suggests that addition of at least 550 AU of maltogenic 

amylase significantly reduced tortilla rupture force (Fig. 12) 14 days after baking 

compared to the control. No significant interaction in rupture force between CMC and 

amylase was observed. This means that rupture force of tortillas was reduced by the 

amylase to the same extent regardless of the level of CMC added. 

Significant reductions in tortilla rupture force were obtained by adding at least 1% 

wheat gluten. Reductions in tortilla rupture force were comparable for 1650 AU of 

amylase and 2% wheat gluten (Fig 12). This suggests that amylase and gluten were 

equally effective at producing softer tortillas after 14 days storage.  
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Fig. 12.  Rupture force of tortillas stored 14 days containing maltogenic amylase, CMC 

and vital wheat gluten. 
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Fig. 13.  Final stiffness of tortillas stored 14 days containing maltogenic amylase, CMC 

and vital wheat gluten. 
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When amylase and wheat gluten were combined, further reductions in tortilla rupture 

force were observed compared to the control and to treatments with only one of either 

additive, specially when gluten was added up to 1% mixed with up to 825 AU of 

amylase. Higher levels of gluten (> 1%) appeared to counteract the softening effect of 

amylase on tortillas when more than 825 AU were added. 

Stiffness values confirmed the trends found with rupture distance. CMC, maltogenic 

amylase and wheat gluten significantly changed tortilla stiffness compared to control 

after 14 days of storage (Fig. 13, Appendix Tables B.10 and B11). However, the 

individual and combined effects of additives on tortilla firmness were more clearly seen 

with stiffness data than with rupture distance.  Like rupture force, most of the variation 

in tortilla stiffness among treatments was generated by amylase level. 

CMC significantly increased tortilla stiffness when added alone at levels over 0.25% 

compared to the control (Fig. 13). According to the response surface model, 275 AU of 

maltogenic amylase was enough to significantly decrease stiffness of 14 day-old 

tortillas. No significant interaction between amylase and CMC was observed for tortilla 

stiffness (Fig. 13). This means that tortilla stiffness always increased when CMC was 

added at higher levels, regardless of the level of amylase used. 

Vital wheat gluten (1% or more) significantly decreased tortilla stiffness after 14 days 

of storage compared to the control (Fig. 13), confirming observations with rupture force 

data. However, unlike the rupture force data, the reduction in tortilla stiffness by 

amylase was significantly more dramatic than that of gluten. Stiffness is a better index of 

tortilla hardness than rupture force, since extensible materials (CMC, gluten) require a 

lot of force to break without being hard or brittle.  

Addition of more than 1% gluten caused a subsequent reversal in the softening effect 

of amylase (increased stiffness from that point on) on tortillas when 825 AU or more 

was used, confirming the trend observed with rupture force. 
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Effect of additives on amylopectin retrogradation: DSC analysis 

In fresh tortillas (20 min after baking), no native endothermic peak was detected by 

DSC in the 45 –65 oC temperature range (Appendix Fig. B.1) for any treatment. Melting 

of re-crystallized amylopectin usually occurs within this temperature range in starch-

based products (Campas-Baypoli et al. 2002). 

An endothermic melting peak was detected by DSC in methanol-stabilized tortilla 

extracts after 14 days storage (Appendix Fig. B.1). Onset of amylopectin melting 

occurred at 50.3 oC, peaked at 57.4 oC and ended at 65.9 oC. CMC, amylase and gluten 

did not alter these temperatures significantly for 14 day-old tortillas (Appendix B.13). 

The endothermic amylopectin melting peak (peak value in mW and enthalpy in J/g) 

for tortillas stored 14 days was significantly reduced only by maltogenic amylase (Fig. 

14 and Appendix B.14). The response surface model suggests 0.4% or more CMC 

significantly increases enthalpy of amylopectin melting compared to the control (Fig. 

14). However, observed enthalpy values for tortillas with 0.5% were not significantly 

higher than control (Appendix Table B.15). 

Gluten did not significantly change the enthalpy of amylopectin melting (Fig. 14, 

Appendix Tables B.14 and B.15). Maltogenic amylase was the only anti-staling agent 

that effectively interfered with amylopectin re-crystallization in tortillas during storage. 

The presence of CMC and or gluten (Fig. 14 and Appendix B.14) did not affect amylase 

activity and the enthalpy value.  

Tortilla extensibility and flexibility: rupture distance vs. energy dissipated 

Energy dissipated (J/m3), an indicator of the tortilla viscous component obtained by 

stress relaxation, did not explain the variability in tortilla extensibility among treatments 

as well as the rupture distance indicator (obtained by the 1-D extensibility test) at any 

time evaluated (Table VII and Appendix Tables B.6, B.8, B.10 and B.12).  
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Fig. 14. Effect of ingredients on enthalpy of amylopectin melting of starch residues from 

tortillas stored 14 days. 
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Table VII 

Comparison of Energy Dissipated and Rupture Distance as Indicators of Changes 

in Tortilla Flexibility Due to CMC, Maltogenic Amylase and Wheat Gluten During 

Storage 

Indicator Storage Time Model  Pr > f R2 % CV 

Rupture Distance 20 Min <0.001** 0.55 13.9 

 14 Days <0.001** 0.37 18.0 

Energy Dissipated 20 Min 0.21 0.22 49.9 

 14 Days 0.33 0.19 68.3 

** Highly significant 
 

Therefore, tortilla rupture distance was the best indicator of the effect of CMC, 

amylase and gluten on extensibility of fresh and stored tortillas. 

In fresh tortillas (20 min after baking), only CMC (0.25% or more) significantly 

increased rupture distance, making tortillas more extensible than control (Appendix 

Tables B.5 and B.8). Gluten (2%), an additive which was supposed to make tortillas 

more extensible, did not significantly increase rupture distance compared to the control, 

while 1650 AU of amylase (a supposedly tortilla matrix weakener) did not significantly 

change tortilla rupture distance compared to control. However, a significant interaction 

between CMC and amylase was observed, indicating that an increase in the level of 

amylase while maintaining the level of CMC resulted in an increase in tortilla rupture 

force (extensibility) compared to using CMC alone. Amylase caused a more flexible and 

extensible CMC matrix in the tortilla continuous phase. 

Significant reductions in rupture distance (extensibility) were observed in tortillas 

stored 14 days (mean = 1.72 mm) compared to fresh ones (mean = 8.8 mm) due to 

staling. Again, CMC (0.25% or more) was the only additive that made tortillas 

significantly more extensible than control after 14 days of storage (Fig.15). 
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Fig. 15. Rupture distance of tortillas stored 14 days containing maltogenic amylase, 

CMC and vital wheat gluten. 
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Both amylase (550 AU or more) and gluten (1% or more) produced tortillas with 

significantly lower extensibility than the control when added alone. Amylase and gluten 

made tortillas softer but also less extensible. Combinations of amylase with CMC or 

gluten did not make tortillas significantly more extensible than the control after 14 days 

of storage. 
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Discussion 

Effect of additives on masa mixing and sheeting 

When masa for tortillas is produced using NCF, additives (CMC, wheat gluten and 

amylases) should normally be added as granular powders to facilitate mixing and 

storage. Nixtamalized corn flour for tortillas has a particle size distribution with a much 

lower proportion of particles that pass the 120 mesh (5.9%) than fresh masa (47%) 

(Gomez et al. 1992; Almeida-Dominguez 1996). This means that NCF is mostly 

comprised of pieces of endosperm and a small number of starch granules free of the 

protein matrix. 

Dry mixing of NCF with the additives dispersed particles of CMC, amylase and 

gluten. The effectiveness of the maltogenic amylase as an hydrolytic anti-staling agent 

depended not only on how much of it was added, but on how much enzyme-susceptible 

starch was present in the NCF, how close to damaged starch particles the amylase was 

after mixing and how much time the amylase was given to work from activation (dry 

mixing) to inactivation (when tortilla reaches approx. 85 oC during baking). For all 

treatments in this study, 18 min passed from the start of dry mixing until tortilla baking 

was completed. 

Hydration is the starting critical moment from the additive activation and tortilla 

structure formation points of view. ICS Amylase (MW = 69 kDa), being a much smaller 

molecule than CMC, wheat gluten and NCF particles (Florajancic et al. 2002; Gomez 

1986), will certainly be dispersed in the continuous matrix formed by both hydrated 

NCF particles, CMC and wheat gluten.  

Given that CMC has a higher affinity for water than the rest of the masa components, 

it is reasonable to believe that its linear molecules will tend to form an entangled 

amorphous matrix around hydrated NCF particles, therefore increasing the cohesiveness 

and flexibility of masa compared to the control and improving handling properties. 

Subjective masa texture observations and tortilla yield data (Table V) support this 

theory.  At least 0.25% CMC was necessary to significantly improve masa machinability 
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and consequently increase tortilla yields. Lower CMC levels might not provide enough 

molecules to entangle and create a sufficiently extended flexible network around 

hydrated NCF particles, free water, free starch and the other additives. 

Hydrated vital wheat gluten will also tend to form a cross-linked and entangled 

amorphous matrix in between NCF particles as it does in bread dough. However, 2% 

wheat gluten apparently was not enough to generate a matrix as cohesive and flexible as 

CMC in the masa. Lower hydration capacity of vital gluten compared to CMC might 

also have confined matrix development to certain clusters in masa. This might be the 

reason why gluten was unable to improve masa machinability similar to CMC (Table V). 

Even when CMC was added at the lowest level (0.25%) in combination with the 

highest gluten concentration (2%) it is likely that the CMC matrix predominated over the 

gluten matrix in masa. Combinations of gluten and CMC did not significantly improve 

tortilla yields compared to treatments with only CMC (Table V). Gluten matrix-forming 

activity might have been limited to areas engulfed by the predominant CMC matrix with 

scarce contribution to overall masa cohesiveness and flexibility (machinability).  

0.25-0.5% CMC is added commercially to improve reconstituted dry masa 

cohesiveness and to increase machinability and tortilla yields (Serna-Saldivar 1996). 

Less than 2% gluten was not a total or partial substitute for CMC. 

The maltogenic amylase dispersed in the aqueous phase acted on NCF particles. 

maltogenic amylase (1650 AU or less) did not affect handling properties of masa.  The 

relatively low proportion of enzyme-susceptible starch (30% in NCF vs. 55% in fresh 

masa) available (Gomez et al. 1991), and the short time allowed for enzyme activity (17 

min) before baking limits amylase activity in the masa. Therefore, dextrinization of 

starch was limited, there was no excessive water absorption and masas with amylase 

were equivalent to the control (Table V). Lower levels of amylases might be required 

when using fresh masa instead of NCF due to its higher level of enzyme-susceptible 

starch. 

 

 



 66

Effect of additives on fresh tortilla 

Baking of tortillas took approx. 60 s. During this period, the tri-dimensional structure 

of the tortilla was set. Gelatinization of starch occurred, amylopectin crystallinity 

disappeared and double helices of amylose leached from the granule to form a flexible, 

amorphous, insoluble network upon retrogradation in the inter-granular aqueous 

continuous phase (Fernandez et al. 1999). 

Addition of more than 0.25% CMC made fresh tortillas more elastic and cohesive 

than control, therefore requiring more extension force and distance to rupture (Table VI, 

Appendix B.5). Increase in fresh tortilla extensibility by adding CMC was not dramatic, 

since it was not detected by stress relaxation or by subjective rollability or pliability  

(Table VI, Appendix Tables B.3, B.4 and B.11). 

A significantly higher distance was required to rupture fresh tortillas when 0.25% 

CMC was added. Increasing levels of amylase facilitated the formation and expansion of 

a flexible CMC matrix by limited hydrolysis of the retrograded amylose matrix during 

masa formation and tortilla baking. 

Limited hydrolysis of amylose and amylopectin by 1650 AU of maltogenic amylase 

did not significantly weaken fresh tortilla structure to the point of reducing extensibility 

(lower rupture force and distance) compared to the control. 

Fresh tortillas with amylase were not significantly softer than control (Table II). 

Gomez et al. (1991) and Fernandez et al. (1999) proposed retrograded (cross-linked) 

amylose gel as the “glue” that binds and holds the fresh tortilla together. 

If that model is true, then maltogenic amylase activity did not significantly hydrolyze 

the amylose matrix during masa reconstitution and baking, and its anti-staling properties 

are not related to its activity on the amylose matrix. 

Wheat gluten did not change fresh tortilla texture significantly, suggesting a lower 

ability to form a flexible matrix than CMC (Table VI, Appendix Tables B.5 and B.7). 

Furthermore, addition of vital wheat gluten should be limited to no more than 1%, since 

higher levels introduced a noticeable “wheat” flavor to the tortilla and produced a higher 
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number of brown spots on the tortilla surface. This confirms the findings of Yau et al. 

(1994) and Miranda (1999). 

Effect of additives on tortilla staling 

A tortilla with acceptable texture should have a rollability and pliability score of at least 

4, require no more than 4 N or 7 mm of extension to break. Stiffness values should be 

lower than 0.5x106 Pa and energy dissipated at least 1x10-3 J/m3. These values 

correspond to tortillas without additives stored for four hr at room temperature. 

DSC analyses of fresh tortillas (20 min after baking) were unable to detect an 

endothermic melting peak corresponding to native or retrograded amylopectin within the 

45-70 oC temperature range in any sample (Appendix Fig. B.1). DSC results suggest that 

amylopectin in tortillas lost its crystallinity during baking and was in an amorphous state 

20 min after baking. No significant amylopectin re-crystallization (retrogradation) had 

occurred 20 min after baking and tortillas were perfectly rollable and pliable. This 

supports the theory that tortilla staling, just like bread staling, is a process dominated by 

the non-equilibrium re-crystallization of amylopectin (Levine and Slade 1991). 

The appearance of a detectable endothermic melting peak at 57 oC in all tortilla 

samples stored for 14 days (Appendix Fig. B.1) further confirms the theory that 

correlates amylopectin re-crystallization with tortilla staling. Control tortillas stored for 

14 days were significantly less rollable and less pliable than fresh tortillas to the point of 

being unacceptable (scores below 4). 

Only maltogenic amylase significantly reduced amylopectin enthalpy of melting 

compared to the control. Since increasing levels of amylase also reduced tortilla stiffness 

and rupture force (Fig. 12 and 13), it can be concluded that the anti-staling properties of 

ICS maltogenic amylase rely on preventing the intra-granular re-crystallization of 

amylopectin in tortillas during storage. Boyle and Hebeda (1990) proposed that the 

reduction in length of amylopectin outer branches by removal of malto-oligosaccharides 

(DP 2-7) during mixing and baking was the mode of action of anti-staling maltogenic 

amylases. A higher proportion of short outer branches of amylopectin (DP 6-11) have 

been associated with reduced retrogradion in maize starches (Shi and Seib 1995). 
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Furthermore, no significant differences were found in the onset, peak and end 

temperatures of amylopectin melting due to amylase addition compared to the control 

and other treatments. This suggests that anti-staling properties of maltogenic amylase 

rely on reducing the degree of re-crystallization of amylopectin, and not in forcing the 

formation of a less perfect crystal structure with a lower melting point or a wider melting 

range. 

Martin and Hoseney (1991) proposed malto-oligosaccharides have anti-staling 

properties for bread. However, Gerrard et al.  (1997) contends that malto-

oligosaccharides of DP 2-7 have no role as antistaling agents and are just by-products of 

maltogenic amylase activity on amylopectin. The role of malto-oligosaccharides 

generated by amylase activity in preventing amylopectin re-crystallization needs to be 

elucidated. 

As little as 275 AU of ICS amylase were enough to produce a significant reduction in 

the enthalpy of amylopectin melting and, consequently produced softer tortillas (lower 

stiffness) than the control after 14 days of storage.  

CMC and gluten did not reduce amylopectin enthalpy compared to the control in 

tortillas stored 14 days, confirming that their anti-staling properties do not rely on 

preventing amylopectin re-crystallization inside or outside the starch granule. As 

suggested in previous studies (Gomez et al. 1991; Suhendro 1997; Miranda 1999 and 

Quintero-Fuentes 1999), CMC and gluten most likely delay staling by creating a more 

flexible matrix than amylose alone in the tortilla inter-granular space. 

Tortilla extensibility (Fig. 15) and subjective texture tests (Fig. 10 and 11) support the 

need for a two-way approach in delaying tortilla staling by using combinations of 

amylase (to reduce amylopectin re-crystallization) and an amorphous, matrix-forming 

additive (CMC) to counteract the collateral damage caused by the hydrolytic activity of 

amylase on the inter-granular amylose matrix and provide a more flexible “tortilla 

skeleton”. A combination of 0.25% CMC and 275-825 AU of maltogenic ICS amylase 

was found to produce tortillas with better texture. Tortillas were softer than control; and 

less chewy and equally flexible than tortillas with 0.5% CMC. 
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Based on the “fringed micelle” model developed for partially crystalline polymers 

(Wunderlich 1976) and adopted by food scientists such as Slade and Levine (1988) for 

starch gels and other starch-based products, a fresh tortilla could be viewed as a partially 

crystalline system with an amorphous phase (comprised of gelatinized starch granules 

full of amorphous amylopectin and remaining retrograded amylose) and a surrounding 

semi-crystalline but flexible matrix formed by retrograded amylose clusters and 

amorphous entangled amylose molecules. Amylopectin re-crystalliztation inside the 

starch granule during storage reduces the amorphous areas in the tortilla structure, 

increases rigidity and shrinks the overall structure. This may force the flexible amylose 

matrix to fail when the tortilla is rolled or squeezed. 

When only amylases are used the intra-granular phase (amylopectin) tends to remain 

amorphous or become less crystalline over storage producing softer tortillas, but also 

reduces the flexibility of the amylose matrix by breaking down its molecules. By adding 

a network-forming additive immune to amylase activity (CMC, gluten, soy flour and 

beta-glucans), the loss of flexibility of the inter-granular amylose phase caused by 

amylase may be restored or improved. Mitre-Dieste (2002) reported that addition of 20% 

barley flour made corn tortillas more extensible than control after 9 days of storage 

under refrigeration. 

Florjancic et al. (2002) reports that 0.25% CMC, when added in aqueous solutions, is 

enough to cause the formation of an amorphous matrix network structure. At higher 

CMC levels its polymer-polymer interactions (entanglements) become the main factor 

influencing the rheology of the system. Tortilla rupture force and distance data (Fig. 3 

and 6) suggest the findings of Florjancic (2002) might be valid for explaining the anti-

staling properties of CMC on corn tortillas at the inter-granular level. 

A CMC and/or gluten network structure was generated during mixing and masa 

formation. The predominance of these amorphous networks over the partially crystalline 

matrix formed by a cross-linked polymer (amylose) during baking will depend on the 

relative concentrations of the polymers (Florjancic 2002), their chain length, tendency to 

cross-link, ionic charge and their temperature stability. 
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It is possible that a lower hydration capacity of vital wheat gluten compared to CMC 

and amylose molecules, coupled with lower heat stability explain the inability of gluten 

to maintain flexibility of tortillas as well as CMC at the levels evaluated in this study. 

Reductions in tortilla stiffness and extensibility by addition of 1% or more gluten might 

be caused by limited interference in the formation of the amylose network during baking 

at the inter-granular spaces. Similar effects have been seen by addition of 5% native soy 

flour to corn tortillas (Suhendro et al. 2001). When matrix-forming molecules are added 

in insufficient amounts to become the predominant continuous phase, they will be 

dispersed into clusters that will interfere with the amylose matrix at selected points. 

Tortillas with these additives (gluten or soy four) will be softer (shorter structure) but 

loss of extensibility during storage will not be reduced. 

Wheat gluten might be useful as a softening agent at levels up to 1% in commercial 

tortillas as long as the cost is lower than adding 275 AU of a maltogenic amylase per kg 

of NCF. Addition of at least 0.25% CMC would be necessary to preserve tortilla 

flexibility. 
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CHAPTER VI 

 

TEMPERATURE DEPENDENCE OF TORTILLA STALING RATE 

Masa Quality 

All three treatments produced masas with optimum cohesiveness and low stickiness. 

Therefore, masas were machinable and tortilla yields were not significantly different 

among treatments. 

 

Tortilla pH and Moisture Content 

Neither tortilla moisture content nor pH was significantly different among treatments 

(Table VIII). Moisture content CV was 1.22% and pH CV was 1.68%. 

 

TABLE VIII 

Effect of Maltogenic Amylase and CMC on Moisture Content and pH of Fresh 

Tortillas 

 

Treatment Moisture Content (%) pH 

Control 47.5 4.80 

0.5% CMC 47.5 4.89 

0.25% CMC + 1650 AU 47.4 4.90 

HSD (0.05 %) 0.68 0.10 

*Tukey’s minimum significant difference 

 

Effect of Storage Temperature on Tortilla Staling Rate 

Tortillas individually packaged in polyethylene bags froze (-3 oC) after 6 min of 

storage in a –40 oC freezer while tortillas stored at  –20 oC were frozen after 15 min of 

storage (Appendix Fig. C.1). It took two hr in both freezers for tortillas to reach the 

desired storage temperature (-20 and –40 oC respectively). 
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Subjective texture evaluations 

Significant changes in tortilla rollability and pliability were detected during storage 

(Appendix Table C.1, C.2, C.3 and C.4). As observed in previous studies, tortilla 

pliability was the most sensitive indicator of changes in tortilla texture due to additives, 

storage time and/or temperature. The R2 for tortilla rollability was 0.74 for the overall 

study and 0.81 at 21 days of storage, while the R2 for pliability was 0.91 overall and 0.87 

at 21 days. The evaluator however, appeared to be more precise in measuring tortilla 

rollability (overall CV = 12.3%, 21 days CV = 19.3%) than measuring pliability (overall 

CV = 16.7% , 21 days CV = 24.5%). Therefore, significant changes in tortilla texture 

due to treatments were detected with pliability after one day of storage at room 

temperature (Appendix C.4) while rollability differences were observed after 7 days 

(Appendix C.3). 

Rollability and pliability of fresh tortillas (measured 20 min after baking) received a 

perfect score (5) regardless of the treatment, indicating that treatments did not exert 

noticeable changes to the texture of fresh tortillas at least when determined by subjective 

evaluations. (Appendix Tables C.3 and C.4). 

No significant interaction was observed among additives and storage temperature 

(Appendix Tables C.1 and C.2) on tortilla rollability or pliability. This means the 

treatment that produced tortillas with the highest rollability and pliability did so 

regardless of the storage temperature. 

After one day of storage, only control tortillas showed significant reductions in 

rollability compared with fresh tortillas (Fig. 16, Appendix Table C.3) especially for 

storage at 10 oC. Tortillas with 0.5% CMC and tortillas with 0.25% CMC plus 1650 AU 

of maltogenic amylase remained perfectly rollable (no significant reductions were 

observed) regardless of the storage temperature after one day. 

Control tortillas stored for 7 days were significantly less rollable than fresh tortillas at 

every storage temperature evaluated (Fig. 16). Reductions in rollability were bigger 

when control tortillas were stored under refrigeration (3-10 oC) than at room (21 oC) or 

freezing temperatures (-20 oC or lower). Rollability of frozen control tortillas and of 
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tortillas stored at room temperature was similar after seven days of storage. Tortillas 

without additives staled faster at refrigeration temperatures; staling rate at freezing was 

similar to staling rate at room temperature. 

Tortillas with 0.5% CMC or with a combination of 0.25% CMC and 1650 AU of 

amylase showed significant reductions in rollability compared to fresh tortillas only 

when stored under refrigeration (3-10 oC). However, rollability of seven-day old tortillas 

with additives was significantly better than control tortillas stored under refrigeration 

(Fig. 16, Appendix Table C.3). Rollability of tortillas with 0.25% CMC and 1650 AU of 

amylase was similar to tortillas with only 0.5% CMC regardless of storage temperature, 

suggesting that both treatments are equally good in preserving rollability for a period of 

7 days. 

After 21 days of storage (Fig. 16 and Appendix Table C.3), control tortillas 

maintained an acceptable rollability (>4) only when stored frozen (< -20 oC). Storage 

under refrigeration (3-10 oC) accentuated the loss of rollability in control tortillas 

compared to room temperature. Control tortillas stored at 3 oC had the lowest rollability. 

Unlike control tortillas, tortillas with additives remained perfectly rollable after 21 

days when stored either frozen or at room temperature (Fig. 16, Appendix Table C.3).  

At refrigeration temperatures, rollability of tortillas with additives fell under the 

acceptable level (<4). However, tortillas with additives were significantly more rollable 

than control tortillas when stored either at room temperature or under refrigeration. 

Tortillas with 0.5% CMC stored for 21 days showed the lowest rollability when stored 

at 10 oC  (score = 2.75), unlike control tortillas which were least rollable when stored at 

3 oC (score = 2.00). At 10 oC, only tortillas with 0.25% CMC and 1650 AU amylase 

showed acceptable rollability after 21 days of storage. As storage temperature was 

reduced below 10 oC, rollability of tortillas with a combination of CMC and amylase 

decreased significantly and reached its lowest point at 3 oC (score = 3.25).  
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Fig. 16. Effect of storage temperature on rollability of tortillas with added CMC and 

maltogenic amylase after 1, 7 and 21 days. 
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Fig. 17. Effect of storage temperature on pliability of tortillas with added CMC and 

maltogenic amylase after 1, 7 and 21 days. 
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Significant reductions in pliability were observed in tortillas after just one day of 

storage compared to fresh tortillas regardless of the treatment (Fig. 17 and Appendix 

Table C.4). The bell-shaped relationship between storage temperature and tortilla 

pliability was visible for all treatments after just one day, compared to the rollability 

curve that was visible only after a week of storage. 

Storage temperatures below 21 oC significantly reduced pliability of tortillas with or 

without additives below the level of acceptability (score = 4) after one day of storage 

(Fig. 17, Appendix C.4). At room temperature, however, tortillas with additives stored 

for one day were significantly more pliable than the control, staying above the 

acceptable level.  Tortillas without additives were least pliable when stored at 3oC while 

tortillas with additives were least pliable at 10 oC. Loss of tortilla pliability under storage 

at freezing temperatures (<20 oC) was significantly higher than at room temperature but 

not as high as under refrigeration (3-10 oC) for treatments with less than 0.5% CMC. 

Tortillas with 0.5% CMC were more pliable than tortillas with the combination of 0.25% 

CMC and 1650 AU of amylase under refrigeration after one day of storage. 

After seven days of storage, pliability of tortillas significantly decreased compared 

with tortillas evaluated after one day of storage at room and refrigeration temperatures 

(Fig. 17). Reductions in pliability for frozen tortillas were significant only for tortillas 

with less than 0.5% CMC.  Again, storage at refrigeration temperatures produced 

tortillas with least pliability, treatment notwithstanding. After one week of storage, 

freezing preserved tortilla pliability better than room and refrigeration temperatures. 

Similar tendencies were observed for 7 and 21 days of storage (Fig. 17). Freezing 

preserved tortilla pliability better than storage at room temperature; refrigeration (3-10 
oC) caused the biggest losses in pliability. However, tortillas stored frozen at –40 oC 

were significantly more pliable than tortillas stored at any other temperature, especially 

when 0.5% CMC was added (Appendix Table C.4). CMC may have provided improved 

freeze-thaw stability to tortillas. 
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A combination of 0.25% CMC and 1650 AU of maltogenic amylase produced tortillas 

with higher pliability than control and tortillas with only 0.5% CMC stored at room 

temperature and under refrigeration (Fig. 17). 

Objective texture evaluations 

Significant changes in tortilla stiffness were observed during 21 days of storage (Fig. 

18 and Appendix Tables C.5, C.6 and C.7). The model explained differences in stiffness 

among treatments well (R2 = 0.94 overall and R2 = 0.91 at 21 days). Precision of the 

stress relaxation method to estimate stiffness of tortillas was good (CV= 11.2% overall, 

CV= 16% at 21 days). 

Storage temperature and additives significantly changed tortilla stiffness (Appendix 

C.5 and C.6). The temperature * additives interaction was also significant indicating that 

the effect of amylase and CMC was not the same on tortilla stiffness at different storage 

temperatures. 

Most of the variation in tortilla stiffness was due to storage time (Appendix C.5). 

When tortilla stiffness was evaluated 21 days after storage most of the differences 

among treatments were caused by storage temperature and then by the additives 

(Appendix Table C.6). 

Appendix Table C.7 shows stiffness significantly increased during storage at room 

temperature (21 oC), especially during the first week, and then reached a plateau.  

Fresh tortillas (20 min after baking) had similar stiffness regardless of the treatment 

(Appendix Table C.7). Differences in tortilla stiffness due to additives were significant 

after one day of storage (similar to tortilla pliability data), but they were more dramatic 

seven days after baking (Fig. 18). 

A combination of 0.25% CMC and 1650 AU of maltogenic amylase significantly 

reduced the stiffness of tortillas stored 21 days at room temperature compared to the 

control and to tortillas with 0.5% CMC. Control and 0.5% CMC tortillas had similar 

stiffness seven days of storage (Fig. 18). 
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Fig. 18. Effect of storage temperature on final stiffness of tortillas with added CMC and 

maltogenic amylase after 1, 7 and 21 days. 
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A bell-shaped curve was observed for tortilla stiffness dependence on storage 

temperature one day after baking (Fig. 18). Stiffness of tortillas stored frozen (t < -20 oC) 

showed similar stiffness than tortillas stored at room temperature (21 oC) after one day 

(Fig. 18 and Appendix Table C.7). Tortillas stored under refrigeration  (3-10 oC) were 

significantly stiffer than tortillas stored frozen or at room temperature.  

One-day old tortillas with a combination of 0.25% CMC and 1650 AU of maltogenic 

amylase were significantly less stiff than control tortillas at all storage temperatures, 

except for –20 oC (Fig. 18). Tortillas with 0.5% CMC were significantly less stiff than 

control tortillas only when storage was conducted under room and refrigeration 

temperatures. 

Stiffness of tortillas with 0.25% and 1650 AU amylase stored for 7 days was similar 

when stored frozen or at room temperature, and was only significantly higher when 

stored under refrigeration (Fig. 18 and Appendix Table C.7). 

Tortillas with no additives or with only 0.5% CMC were significantly less stiff when 

stored frozen than when stored at room temperature and stiffest when stored under 

refrigeration. Stiffness of tortillas without additives and of tortillas with 0.5% CMC was 

similar at all storage temperature evaluated seven days after baking. Tortillas with 0.25% 

CMC and 1650 AU amylase were significantly less stiff than control and tortillas with 

0.5% without regard to storage temperature. 

Tortillas became stiffer when stored at 10 oC for 21 days than at any other temperature 

evaluated (Fig. 18). Tortillas without additives and with 0.5% CMC became 

significantly stiffer after 7 days when stored at 10 oC, while tortillas with CMC and 

amylase did not. This indicates that amylase was more effective in producing less stiff 

tortillas than CMC even at the storage temperature with the highest stiffening rate 

(10oC). 
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DSC analysis 

DSC analysis of tortilla extracts methanol-stabilized 20 min after baking showed a re-

crystallized amylopectin melting peak at 57 oC, unlike the previous study, where no peak 

was observed (Appendix Table C.11).  

Storage temperature significantly changed melting enthalpy of re-crystallized 

amylopectin in tortillas during storage (Fig. 19, Appendix Tables C. 9, C.10, C11).  

Tortillas stored under refrigeration temperatures (3-10 oC) for more than a week showed 

higher enthalpy values than tortillas stored frozen or at room temperature (Fig. 19, 

Appendix Table C.11). Amylase reduced the enthalpy during amylopectin melting of 

tortillas stored at freezing and room temperatures for 21 days compared to control and 

0.5% CMC tortillas. However, under refrigeration temperatures this reduction was not 

statistically significant. 

RVA analysis 

Pasting viscosity of tortilla extracts progressively decreased as storage time increased 

(Fig. 20), which indicated significant starch retrogradation. 

RVA pasting viscosity of methanol-stabilized 21-day old tortilla extracts (Fig. 20 and 

Appendix Table C.12) showed a different relationship with storage temperature than 

other staling indicators used in this study. RVA pasting viscosity of 21-day old control 

tortilla extracts decreased as storage temperature increased. Pasting viscosity of 21-day 

old tortillas with CMC and/or amylase did not show a consistent temperature 

dependence trend (bell-shaped curve with a peak at 3-10 oC) as observed by subjective 

and objective texture measurement methods, and DSC analysis (Appendix Table C.12). 

RVA analysis however, showed that tortilla extracts with amylase that were stabilized 

after 21 days of storage developed higher pasting viscosities than control and 0.5% CMC 

tortillas. This confirms the antistaling properties of maltogenic amylase.  
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Fig. 19. Effect of storage temperature on amylopectin enthalpy of melting of tortillas 

with added CMC and maltogenic amylase after 1,7 and 21 days. 

 

 

 



 82

 

 

 

0 3 6 9 12 15 18 21

0
1100
2200
3300
4400
5500
6600
7700
8800
9900

11000

Vi
sc

os
ity

 (c
P)

0
1100
2200
3300
4400
5500
6600
7700
8800
9900

Pasting Time (min)

0 3 6 9 12 15 18 21
0

1100
2200
3300
4400
5500
6600
7700
8800
9900 Initial 

-20 oC 
3 oC
10 oC
21 oC 

0

50

100 

21 Days 

7 Days 

1 Day 

0

50

100 

50

100 

HSD = 170 cP

 

Fig. 20. Effect of storage temperature on pasting viscosity of 15% solids slurries of 

methanol-extracted residue of fresh, 1, 7, and 21-day old control tortillas measured with 

the RVA. 
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Changes in tortilla viscous component: energy dissipated 

Appendix Table C.8 shows that energy dissipated (J/m3) by tortillas decreased 

significantly during storage, and especially during the first 24 hr (1.22 x10-4 J/m3) 

compared to fresh tortillas (8.25 x10-4 J/m3). A staled tortilla shows more solid behavior 

and less viscous properties than a fresh tortilla, therefore dissipating less energy when 

deformed. 

Significant differences in energy dissipated, an indicator of viscous (flow) behavior in 

materials evaluated by stress relaxation, were observed among tortilla treatments until 7 

days of storage (Fig. 21, Appendix Table C.8). Energy dissipated was a less precise 

indicator of changes in tortilla texture (overall CV = 76%, at 21 days CV = 68%) than 

stiffness, pliability and rollability. The model R2 for Energy dissipated was 0.73 for the 

complete set of data and 0.41 for measurements taken 21 days after baking. 

Energy dissipated by tortillas decreased dramatically after just one day of storage and 

reached the lowest point after one week of storage at room temperature, with no 

significant changes occurring afterwards (Appendix Table C.8). Energy dissipated (ED) 

of fresh tortillas with 0.25% CMC and 1650 AU at room temperature was significantly 

higher than ED of tortillas with no additives and tortillas with 0.5% CMC. 

Tortillas stored for one day dissipated less energy during the stress relaxation test 

when stored under refrigeration (3-10 oC) than those stored frozen (-20 oC) or at room 

temperature (Fig 21). A combination of 0.25% CMC and 1650 AU of amylase produced 

tortillas that dissipated significantly more energy than control and 0.5% CMC after one 

day of storage under either refrigeration or room temperatures. 

Tortillas stored one and three weeks dissipated less energy when refrigerated than 

frozen (Fig. 21, Appendix table C.8). Seven and 21-day old tortillas with amylase and 

CMC dissipated more energy than other treatments only when stored frozen. When 

tortillas were stored for 7 to 21 days at room temperature or under refrigeration additives 

did not increase energy dissipation compared to the control. 
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Fig. 21. Effect of storage temperature on energy dissipated of tortillas with added CMC 

and maltogenic amylase after 1, 7 and 21days. 
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Discussion 

Results from this study support the findings of Limanond et al. (2001) stating the level 

of staling in corn tortillas is a function of not only time but also of storage temperature. 

Tortilla rollability and pliability, and stiffness and energy dissipated obtained by stress 

relaxation, and DSC showed a bell-shaped dependence on storage temperature from –40 

to 21 oC. Only pasting viscosity measured by RVA showed a linear inverse relationship 

with storage temperature, suggesting other tortilla compounds (besides amylopectin) 

may re-associate during storage 

Tortillas stored at –40 oC were not always consistent with this model, especially on 

objective texture measurements. Tortillas with and without additives reacted differently 

to freezing-thawing processes and confounded the effect of the –40 storage temperature. 

Also, temperature fluctuations in the –40 oC freezer occurred because of the air 

conditioning system of the building. Therefore, data from samples stored at –40 oC were 

not considered for this discussion. 

Results are in accordance with theories of crystallization reviewed by Levine and 

Slade (1991) for starch gels, and applied by different scientists to study the 

retrogradation of gelatinization of waxy maize starch (Farhart et al. 2000) and corn 

tortillas (Limanond et al. 2001).  

Corn masa (Fig. 22) and tortillas (Fig. 23 and 24), according to these theories, are 

semi-crystalline systems that, unlike amorphous polymers, age at temperatures above the 

Tg and below the Tm. Gomez et al. (1992) had already proposed graphic models of masa 

and tortilla structure (fresh and staled). Fig. 22, 23 and 24 use Gomez et al. (1992) 

framework and adds representations of retrograded amylose and CMC matrices in the 

intergranular space, and the hydrolytic activity of maltogenic amylases inside the starch 

granule. 

Staling of tortillas during storage has been attributed to the non-equilibrium re-

crystallization of amylopectin (Fernandez et al. 1999, Limanond et al. 2001). Also, 

amylopectin re-crystallization is the driving force behind tortilla staling. However, RVA 

data vindicates previous research that suggests other compounds such as amylose may 
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be involved in the staling process (Seetharaman et al. 2002), depending on its degree of 

dispersion in the intergranular tortilla matrix. 

Limanond et al. (2001) reported that tortilla Tg was –23 oC and amylopectin Tm was 

90 oC. However, DSC results support the findings of Campas-Baypoli et al. (2002) 

indicating that re-crystallized amylopectin melts in the 45-64 oC range with a peak at 57 
oC. 

Therefore, if tortillas age like a typical semi-crystalline system, staling should occur in 

the –23 oC to 57 oC range showing a maximum rate somewhere around the middle point 

of this range (17 oC). Staling below Tg (-23 oC) would be minimal due to lack of 

molecular mobility (Struik 1978). 

Limanond et al. (2001) estimated by linear regression that 13 oC was the temperature 

where maximum rate of corn tortilla retrogradation occurred. Her conclusion was that in 

tortilla staling, crystal nucleation predominated over crystal growth at least during the 

storage period she covered (12 days). This shifted the maximum staling rate closer to Tg 

than to Tm.  

Subjective rollability and pliability (Fig. 16 and 17), Energy dissipated (Fig 21) and 

DSC data (Fig. 19) indicated that maximum loss of flexibility of tortillas occurred during 

refrigerated storage (3-10 oC). Tortilla pliability and energy dissipated were particularly 

sensitive indicators, showing a bell-shaped curve along the temperature range as early as 

one day after baking but more clearly after seven days of storage (Fig. 17, 21). 

Tortilla stiffness (estimated by stress relaxation) was a more precise indicator of 

texture changes during storage than subjective tests and energy dissipated (higher model 

fit and lower % CV). Stiffness data of tortillas stored for one day confirmed a higher 

degree of staling in control tortillas stored under refrigeration. Stiffness data after one or 

three weeks of storage, however, clearly indicate that tortillas with or without additives 

stored at 10 oC became stiffer than at any other temperature evaluated. 
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Fig. 22. Structure of masa made with nixtamalized corn flour. 
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Fig. 23. Structure of a fresh tortilla. 
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Given the high correlation found between stiffness data and enthalpy of amylopectin 

melting in the previous study, it could be inferred that amylopectin retrogradation was 

maximized when tortillas were stored at 10 oC. However, the DSC (Fig. 19) showed that 

control tortillas reached maximum amylopectin retrogradation when stored at 7 oC for at 

least a week. 

Tortillas without additives stored at freezing temperatures (<-20 oC) for 21 days were 

more pliable (Fig. 17), less stiff (Fig. 19) and showed lower amylopectin melting 

enthalpy values than tortillas stored at room temperature. Freezing and thawing of 

tortilla samples might have damaged tortilla structure, therefore producing misleadingly 

lower stiffness values. However, the structural damage caused by freezing and thawing, 

if any, did not appear to be extensive enough to reduce pliability and rollability of 

control tortillas stored at –20 oC (Fig. 16-17). Therefore, results from this study suggest 

tortillas stored frozen (<-20 oC) staled less than tortillas stored under refrigeration or at 

room temperature. Further studies are required to confirm these findings. Estimation of 

staling in frozen tortillas should rely less on indirect textural techniques in favor of 

procedures that measure tortilla re-crystallization more directly (DSC, X-ray diffraction 

or ESEM microscopy). 

 Whatever the case, these results support the findings of Limanond et al. (2001) and 

the theory of crystallization of semi-crystalline materials (Struik 1978). Freezing 

temperatures close or below tortilla Tg limit the mobility of amylopectin and other 

amorphous molecules and therefore reduce their chance of getting close to each other to 

crosslink. 

Tortillas staled (became stiffer, less rollable and pliable, and had bigger enthalpies of 

amylopectin melting) during storage (Fig. 16-21) even when frozen at –40 oC. DSC 

analysis of fresh and 21-day old tortillas did not detect any glass transition in the –40 to 

45 oC range. This suggests that the Tg of corn tortillas might be well below the –23 oC 

proposed by Limanond et al. (2001) or that amylopectin is able to crosslink even below 

Tg and the crystallization theory of semi-crystalline polymers does not fully apply to 

corn tortillas. Further research is required in this area, taking special care of flash 
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freezing fresh tortillas (with liquid nitrogen) immediately after cooling to avoid staling 

during the time it takes the tortillas to reach freezer temperature (-20 or –40 oC) 

As for the effect of additives on tortilla staling at different storage temperatures, the 

combination of 0.25% and 1650 AU made 21 day-old tortillas more pliable, rollable and 

less stiff than the control when stored under refrigeration or at room temperature. 

Furthermore, this combination of additives reduced amylopectin re-crystallization (Fig. 

19) made tortillas less stiff and more pliable than tortillas with 0.5% CMC regardless of 

the storage temperature 21 days after baking (Fig. 17, 18). This confirms the 

effectiveness of maltogenic amylase as an anti-staling agent. 

Tortillas with 0.5% CMC were significantly more pliable than other treatments when 

stored frozen for 21 days because CMC gave them higher freeze-thaw stability than 

control and because amylase alone weakened the tortilla structure and made them more 

susceptible to crumble after one freeze-thaw cycle. 

The most practical conclusion of this study is that adding 0.25% CMC and 1650 AU 

of amylase is the best option to maintain tortilla softness and flexibility both at room 

temperature and under refrigeration for at least three weeks. This means prolonging the 

shelf-life of tortillas both in the supermarket (room temperature) and at home 

(refrigerated). 

As for the possibility of commercializing tortilla-based products without additives 

(anti-molding, anti-staling agents), freezing might be the only option to keep staling at a 

minimum. Even so, a modified starch or any other additive that provides freeze-thaw 

stability might be necessary. 

Tortillas behaved like a semi-crystalline system under storage. The fringed micelle 

model proposed for starch gels by Levine and Slade (1991) appears to work for corn 

tortillas too. 
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CHAPTER VII 

 

CONCLUSIONS 

The results from this study give a clearer picture of the mechanisms that lead to corn 

tortilla staling and how tortilla components, additives and external factors such as 

storage temperature and time accelerate or delay this process. 

Basic theories of staling of starch-based products seem to apply to the corn tortilla 

system, with some differences inherent to its particular nature. Results from this study 

support the theory that amylopectin re-crystallization is the driving force behind the 

staling of corn tortillas during storage. 

Re-crystallization of amylopectin as measured by DSC was similar to increased 

stiffness and reductions in tortilla rollability, pliability and extensibility over time and 

temperature. Re-crystallization of amylopectin in fresh tortillas was low or non 

detectable, it increased quickly during the first 24 hr and reached a plateau after 7 days 

of storage. Amylopectin re-crystallization also showed a bell-shaped trend with storage 

temperature with a maximum around 7 oC. 

Staling of corn tortilla follows the basic laws that control aging in semi-crystalline 

systems such as polymer melts, starch gels and other baked products. However, there are 

indications that these theories may not fully apply to corn tortillas. RVA data suggests 

other molecules (possibly amylose) tend to retrograde in a different fashion than 

amylopectin during storage. More research is required to determine the role of amylose 

in tortilla staling during storage and to establish the glass transition temperature of a corn 

tortilla as a starting point to confirm if tortillas stale below it. 

Even though amylopectin re-crystallization is the main force behind tortilla staling, 

this does not mean that interfering with this process is the only way to retard staling. 

Addition of 275-1650 AU of ICS maltogenic amylase effectively reduced amylopectin 

retrogradation, but was not able to maintain tortilla flexibility. 
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Delaying tortilla staling requires a two-pronged approach: interfering with 

amylopectin re-crystallization inside gelatinized starch granules and creating a more 

flexible inter-granular matrix than re-crystallized amylose provides (with CMC, ß-

glucans, pentosans or soybean proteins). The combination of 825 AU of ICS maltogenic 

amylase and 0.25% CMC appeared to do that. Tortillas with this combination of 

additives were softer, equally flexible and less chewy than tortillas with only 0.5% 

CMC. This combination of additives makes stored tortillas resemble more closely the 

original texture of a fresh tortilla without additives than using only 0.5% CMC. 

No single objective texture measurement test fully described the changes detected in 

tortilla texture during storage by subjective means. Tortilla rollability remains the basic 

subjective indicator of tortilla texture. However, changes in tortilla texture were detected 

faster using subjective pliability than rollability, and pliability correlated better with 

tortilla stiffness and enthalpy of amylopectin retrogradation. 

Tortilla rupture force was a misleading indicator of tortilla hardness. Tortillas with 

CMC required more force to rupture because they were more extensible and not because 

they were harder or more brittle. Tortilla final stiffness obtained by stress relaxation was 

a better indicator of tortilla hardness while rupture distance explained changes in tortilla 

extensibility better. 

For fast, empirical tortilla staling studies subjective pliability and rupture distance are 

recommended as the best indicators. For fundamental studies evaluating effects of 

additives at the molecular level, DSC enthalpy of amylopectin retrogradation or final 

stiffness should be measured. 
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TABLE A.1 
ANOVA Summary for Rupture Force and Distance Measured 20 min , 1, 14 and 21 

Days After Baking on Tortillas with Maltogenic Amylase (0,75 and 150 AU of 
Novamyl or ICS) and/or CMC 

 
Source Rupture Force (N) Rupture Distance (mm) 
 F Value Pr > F F Value Pr > F 
Model 81.15 <0.001** 89.5 <0.001** 
Additives 3.56 0.005 0.67 0.65 
Day 609.38 <0.001** 677.95 <0.001** 
Additives*Day 1.37 0.18 1.42 0.16 

* Statistically significant  
** Highly significant 
 
 
 

TABLE A.2 
ANOVA Summary for Rupture Force and Distance Measured 21 Days After 

Baking on Tortillas with Maltogenic Amylase (0,75 and 150 AU of Novamyl or ICS) 
and/or CMC 

 
Source Rupture Force (N) Rupture Distance (mm) 
 F Value Pr > F F Value Pr > F 
Additives 0.51 0.77 1.98 0.1187 

* Statistically significant  
** Highly significant 
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TABLE A.3 
Subjective Texture Measurements Evaluated 21 Days After Baking on Tortillas 

with Maltogenic Amylase (Novamyl or ICS) and/or CMC 
 

Treatment Combination Rollability Pliability 

CMC ( %) Amylase  (MAU) (1-5 scale) (1-5 scale) 

0 No 0 1 1 

0.5 No 0 4 2 

0.25 Novamyl 75 3.5 2 

0.25 Novamyl 150 3 2 

0.25 ICS 75 5 2.25 

0.25 ICS 150 4.5 2.25 

HSD (α=0.05)* 0.50 0.30 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE A.4 
Objective Texture Measurements Evaluated 21 Days After Baking on Tortillas with 

Maltogenic Amylase (Novamyl or ICS) and/or CMC 
 

Treatment Combination Rupture Force Rupture Distance

CMC ( %) Amylase  (AU) (N) (mm) 

0 No 0 12.96 1.88 

0.5 No 0 13.98 2.16 

0.25 Novamyl 75 13.28 1.62 

0.25 Novamyl 150 13.66 1.86 

0.25 ICS 75 13.44 2.34 

0.25 ICS 150 12.58 2.11 

HSD (α=0.05)* 0.93 0.21 

* Tukey’s Honest Significant Difference for means separation. 
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APPENDIX B 

 

ANTISTALING PROPERTIES OF COMBINATIONS OF ADDITIVES 
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TABLE B.1 
ANOVA Summary for Tortilla Moisture Content, pH and Yield  

Source Moisture (%) pH Yield (kg/kg NCF) 
 F 

Value 
Pr > F F 

Value
Pr > F F 

Value 
Pr > F 

Model 3.00 0.002* 0.95 0.506 5.72 <0.001** 
Block 3.39 0.041* 0.13 0.876 29.61 <0.001** 
CMC 1.09 0.343 1.23 0.299 4.26 0.027 
Amylase 0.65 0.526 0.30 0.739 1.34 0.282 
Gluten 6.35 0.003* 0.44 0.647 0.06 0.946 
CMC*Amylase 3.90 0.007* 2.02 0.104 0.71 0.596 
CMC*Amylase*Gluten 0.50 0.482 0.12 0.727 1.05 0.317 

* Statistically significant  
** Highly significant 
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TABLE B.2 
ANOVA Summary for Tortilla Rollability and Pliability Measured After 14 Days 

of Storage 
Source Rollability Pliability 
 F Value Pr > F F Value Pr > F 
Model 4.26 <0.001** 8.08 <0.001** 
Block 8.18 <0.001** 7.15 0.011* 
CMC 20.05 <0.001** 24.24 <0.001** 
Amylase 1.22 0.307 8.87 <0.001** 
Gluten 2.15 0.132 4.95 0.012* 
CMC*Amylase 0.93 0.459 3.43 0.018* 
CMC*Amylase*Gluten 0.51 0.479 0.15 0.458 

* Statistically significant  
** Highly significant 
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TABLE B.3 
Tortilla Rollability Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC 

( %) 

Amylase 

(MAU) 

Gluten 

(%) 

0 0.2 1 3 7 14 

0 0 0 5 5 4.92 4.17 3.67 3.88 

0 0 2 5 5 5 433 4.83 3.38 

0 825 1 5 5 5 4.92 4.92 3.25 

0 1650 0 5 5 5 4.67 4.5 4.12 

0.25 0 1 5 5 5 4.92 4.92 4.63 

0.25 825 0 5 5 5 4.83 492 4.88 

0.25 825 1 5 5 5 5 5 4.50 

0.25 825 2 5 5 5 5 4.83 4.75 

0.25 1650 1 5 5 5 5 4.67 4.50 

0.5 0 0 5 5 5 5 4.67 4.50 

0.5 825 1 5 5 5 5 5 4.63 

0.5 1650 2 5 5 5 5 5 5.00 

HSD (α=0.05)* 0.25 

* Tukey’s Honest Significant Difference for means separation. 



 110
 

 
 

TABLE B.4 
Tortilla Pliability Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC 

( %) 

Amylase 

(MAU) 

Gluten 

(%) 

0 0.2 1 3 7 14 

0 0 0 5 5 3.17 1.42 1.33 1 

0 0 2 5 4.92 3 1.75 1.42 1.13 

0 825 1 5 5 3.25 1.58 1.75 1.75 

0 1650 0 5 5 3.16 1.67 1.83 1.63 

0.25 0 1 5 5 3.92 2.25 1.67 1.75 

0.25 825 0 5 5 4 3.16 2.41 1.63 

0.25 825 1 5 5 4.42 2.17 2.67 2.63 

0.25 825 2 5 5 4.25 2.17 2.08 1.75 

0.25 1650 1 5 4.92 3.92 2.33 1.92 1.75 

0.5 0 0 5 5 4.33 3.41 2.33 2.00 

0.5 825 1 5 5 4.58 3.42 2.67 2.63 

0.5 1650 2 5 5 4.42 2.75 3.67 2.25 

HSD (α=0.05)* 0.50 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE B.5 
ANOVA Summary for Tortilla Rupture Force and Distance Measured 20 min 

After Baking 
 

Source Rupture Force (N) Rupture Distance (mm) 
 F Value Pr > F F Value Pr > F 
Model 8.77 <0.001** 8.55 <0.001** 
Block 2.00 0.161 6.08 0.016* 
CMC 38.28 <0.001** 39.17 <0.001** 
Amylase 0.77 0.465 0.23 0.796 
Gluten 0.36 0.695 1.34 0.266 
CMC*Amylase 5.66 <0.001** 3.24 0.016* 
CMC*Amylase*Gluten 1.72 0.193 2.03 0.158 

* Statistically significant  
** Highly significant 
 
 
 

TABLE B.6 
ANOVA Summary for Tortilla Rupture Force and Distance Measured After 14 

Days of Storage 
 

Source Rupture Force (N) Rupture Distance (mm) 
 F Value Pr > F F Value Pr > F 
Model 11.81 <0.001** 4.11 <0.001** 
Block 1.09 0.298 3.7 0.057 
CMC 16.56 <0.001** 17.11 <0.001** 
Amylase 29.07 <0.001** 0.73 0.486 
Gluten 16.62 <0.001** 0.26 0.769 
CMC*Amylase 1.01 0.408 0.41 0.802 
CMC*Amylase*Gluten 12.07 <0.001** 7.83 0.006* 

* Statistically significant  
** Highly significant 
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TABLE B.7 
Tortilla Rupture Force (N) Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC 

( %) 

Amylase 

(MAU) 

Gluten 

(%) 

0 0.2 3 14 

0 0 0 2.84 5.42 10.94 12.29 

0 0 2 3.01 4.83 7.91 9.01 

0 825 1 2.91 4.73 7.83 8.83 

0 1650 0 3.05 4.93 9.33 9.15 

0.25 0 1 3.04 5.11 8.66 9.33 

0.25 825 0 2.91 4.81 9.12 8.49 

0.25 825 1 2.99 5.13 8.09 8.85 

0.25 825 2 3.32 4.60 7.91 8.05 

0.25 1650 1 3.04 4.72 7.74 7.87 

0.5 0 0 3.70 6.92 11.64 12.24 

0.5 825 1 3.58 5.48 8.20 9.51 

0.5 1650 2 3.29 4.63 8.32 8.21 

HSD (α=0.05)* 1.3 N 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE B.8 
Tortilla Rupture Distance (mm) Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC 

( %) 

Amylase 

(MAU) 

Gluten 

(%) 

0 0.2 3 14 

0 0 0 6.93 3.08 1.88 1.87 

0 0 2 8.32 3.54 1.79 1.54 

0 825 1 7.48 3.49 1.62 1.51 

0 1650 0 8.00 3.49 1.82 1.56 

0.25 0 1 9.02 3.88 2.01 1.58 

0.25 825 0 8.61 3.89 1.93 1.48 

0.25 825 1 7.68 3.89 1.90 1.57 

0.25 825 2 8.77 4.34 1.75 1.76 

0.25 1650 1 8.83 4.06 1.90 1.67 

0.5 0 0 9.87 4.23 2.34 2.09 

0.5 825 1 11.50 4.19 2.06 2.00 

0.5 1650 2 10.40 4.54 2.35 2.03 

HSD (α=0.05)* 0.80  0.21 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE B.9 
ANOVA Summary for Tortilla Final Stiffness and Energy Dissipated Measured 20 

min After Baking 
 

Source Final Stiffness (Pa) Energy Dissipated (J/m3) 
 F Value Pr > F F Value Pr > F 
Model 0.99 0.472 1.36 0.209 
Block 0.37 0.547 3.65 0.061 
CMC 0.76 0.472 2.56 0.086 
Amylase 1.97 0.148 0.34 0.711 
Gluten 0.45 0.638 1.47 0.237 
CMC*Amylase 1.26 0.294 0.48 0.747 
CMC*Amylase*Gluten 0.06 0.804 2.00 0.612 

* Statistically significant  
** Highly significant 
 
 
 

TABLE B.10 
ANOVA Summary for Tortilla Final Stiffness and Energy Dissipated Measured 

After 14 Days of Storage 
 

Source Final Stiffness (Pa) Energy Dissipated (J/m3) 
 F Value Pr > F F Value Pr > F 
Model 27.06 <0.001** 1.17 0.328 
Block 29.11 <0.001** 4.98 0.029* 
CMC 10.18 <0.001** 0.40 0.674 
Amylase 85.81 <0.001** 0.08 0.921 
Gluten 40.29 <0.001** 0.12 0.886 
CMC*Amylase 4.95 0.002* 1.01 0.407 
CMC*Amylase*Gluten 3.29 0.074 3.75 0.058 

* Statistically significant  
** Highly significant 
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TABLE B.11 
Tortilla Final Stiffness (x 106 Pa) Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC ( %) Amylase (MAU) Gluten (%) 0 14 

0 0 0 0.21 3.39 

0 0 2 0.22 2.47 

0 825 1 0.19 2.43 

0 1650 0 0.23 2.30 

0.25 0 1 0.16 2.79 

0.25 825 0 0.19 2.51 

0.25 825 1 0.24 2.42 

0.25 825 2 0.22 1.95 

0.25 1650 1 0.24 2.11 

0.5 0 0 0.21 3.58 

0.5 825 1 0.23 2.15 

0.5 1650 2 0.25 2.00 

HSD (α=0.05)* 0.21 x 106 Pa 

* Tukey’s Honest Significant Difference for means separation. 
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 TABLE B.12 
Tortilla Energy Dissipated (x 10-4 J/m3) Measured During 14 Days of Storage 

 
Treatment Combination Days of Storage 

CMC ( %) Amylase (MAU) Gluten (%) 0 14 

0 0 0 23.7 2.0 

0 0 2 13.7 1.1 

0 825 1 16.9 1.1 

0 1650 0 20.2 1.2 

0.25 0 1 19.0 1.0 

0.25 825 0 20.6 1.0 

0.25 825 1 14.2 1.2 

0.25 825 2 20.7 1.5 

0.25 1650 1 18.3 1.4 

0.5 0 0 13.9 0.7 

0.5 825 1 10.7 1.3 

0.5 1650 2 15.1 1.3 

HSD (α=0.05)* 3.9 x 10-4 Pa 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE B.13 
ANOVA Summary for Amylopectin Onset, Peak and End Temperatures of Melting 

Measured by DSC on Tortillas  Stored 14 Days 
Source Onset (oC) Peak (oC) End (oC)) 
 F 

Value 
Pr > F F 

Value
Pr > F F 

Value 
Pr > F 

Model 0.99 0.482 3.20 0.004 1.15 0.358 
Block 4.04 0.050* 26.58 <0.001** 4.11 0.050* 
CMC 0.26 0.772 2.17 0.129 0.43 0.655 
Amylase 2.91 0.068 2.01 0.149 2.94 0.066 
Gluten 0.12 0.887 0.32 0.729 0.09 0.914 
CMC*Amylase 0.30 0.877 0.64 0.639 0.34 0.852 
CMC*Amylase*Gluten 0.01 0.971 0.22 0.642 1.37 0.249 

* Statistically significant  
** Highly significant 

 
TABLE B.14 

ANOVA Summary for Amylopectin Peak value and Enthalpy of Melting Measured 
by DSC on Tortillas Stored 14 Days 

Source Peak (mW) Enthalpy (J/g) 
 F Value Pr > F F Value Pr > F 
Model 2.79 0.009* 3.07 0.005* 
Block 3.52 0.068 9.62 0.004* 
CMC 2.45 0.101 2.81 0.074 
Amylase 10.43 <0.001** 6.37 0.004* 
Gluten 0.89 0.421 2.13 0.134 
CMC*Amylase 0.39 0.814 0.96 0.441 
CMC*Amylase*Gluten 0.86 0.356 0.72 0.401 

* Statistically significant  
** Highly significant 
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TABLE B.15 
Tortilla Amylopectin Melting Peak DSC Data Measured After 14 Days of Storage 
 

Treatment Combination Onset Peak Enthalpy 

CMC ( %) Amylase (MAU) Gluten (%) (oC) (J/g) 

0 0 0 51.0 57.3 0.68 

0 0 2 50.5 57.4 0.64 

0 825 1 48.7 57.2 0.62 

0 1650 0 51.6 57.3 0.52 

0.25 0 1 50.9 57.7 0.64 

0.25 825 0 49.5 57.1 0.60 

0.25 825 1 50.2 57.2 0.39 

0.25 825 2 48.9 57.5 0.41 

0.25 1650 1 50.7 57.3 0.44 

0.5 0 0 51.2 57.9 0.73 

0.5 825 1 48.9 57.3 0.44 

0.5 1650 2 52.0 57.9 0.28 

HSD (α=0.05)* 3.1 1.0 0.15 

* Tukey’s Honest Significant Difference for means separation. 
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Figure B.1 Melting peak of amylopectin in fresh and 14 day-old tortillas with no 
additives as recorded by DSC 
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APPENDIX C 

 

TEMPERATURE DEPENDENCE OF TORTILLA STALING RATE 
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Fig. C.1. Tortilla internal temperature drop during storage in –20 and –40 oC freezers. 
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TABLE C.1 
ANOVA Summary for Rollability and Pliability of Tortillas Stored at 

Temperatures between –40 and 21 oC  
 

Source Rollability Pliability 
 F Value Pr > F F Value Pr > F 
Model 2.89 <0.001** 9.81 <0.001** 
Block 12.42 <0.001** 1.49 0.22 
Temperature 6.71 <0.001** 20.84 <0.001** 
Additives 7.66 0.001* 8.98 <0.001** 
Additives*Temp 0.29 0.97 1.16 0.34 
Storage Days 16.59 <0.001** 126.10 <0.001** 
Additives*Days 1.58 0.17 1.65 0.15 
Temp*Days 3.76 <0.001** 5.99 <0.001** 
Add*Temp*Days 0.51 0.96 0.68 0.23 

* Statistically significant  
** Highly significant 

TABLE C.2 

ANOVA Summary for Rollability and Pliability of 21-Day Old Tortillas Stored at 
Temperatures between –40 and 21 oC  

 
Source Rollability Pliability 
 F Value Pr > F F Value Pr > F 
Model 3.84 0.008* 6.48 <0.001** 
Block 8.81 0.01* 4.35 0.06 
Temperature 8.45 0.001* 20.33 <0.001** 
Additives 4.24 0.04* 1.19 0.33 
Additives*Temp 0.82 0.60 1.14 0.39 

* Statistically significant  
** Highly significant 
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TABLE C.3 

Changes in Tortilla Rollability During 21 Days of Storage at Temperatures in the –

40 to 21 oC Range 

Treatment Days -40 oC -20 oC 3 oC 10 oC 21 oC 

0     5.00 

1 4.75 4.50 5.00 4.38 5.00 

7 4.25 4.37 3.87 3.75 4.50 

Control 

21 4.50 5.00 2.00 2.50 3.38 

0     5.00 

1 5.00 5.00 5.00 5.00 5.00 

7 5.00 5.00 4.38 4.38 5.00 

0.5% CMC 

21 4.88 4.88 3.75 2.88 5.00 

0     5.00 

1 5.00 4.75 5.00 5.00 5.00 

7 5.00 4.75 4.75 4.25 .00 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 21 5.00 5.00 3.25 4.00 4.88 

HSD (α=0.05)* 0.47 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE C.4 

Changes in Tortilla Pliability During 21 Days of Storage at Temperatures in the –

40 to 21 oC Range 

Treatment Days -40 oC -20 oC 3 oC 10 oC 21 oC 

0     5.00 

1 3.38 2.88 2.13 2.50 3.50 

7 2.50 3.00 2.00 1.50 2.38 

Control 

21 3.63 3.13 1.38 1.00 1.75 

0     5.00 

1 3.75 3.63 3.50 3.38 4.38 

7 4.50 4.38 2.25 1.88 3.00 

0.5% CMC 

21 4.50 3.63 1.13 1.38 1.88 

0     5.00 

1 3.25 3.38 3.00 2.50 4.38 

7 2.88 3.5 2.13 2.13 3.38 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 21 3.50 2.88 1.88 2.00 2.50 

HSD (α=0.05)* 0.45 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE C.5 

ANOVA Summary for Final Stiffness and Energy Dissipated of Tortillas Stored at 
Temperatures between –40 and 21 oC 

 
Source Final Stiffness (Pa) Energy Dissipated (J/m3) 
 F Value Pr > F F Value Pr > F 
Model 82.75 <0.001** 13.84 <0.001** 
Block 64.86 <0.001** 3.35 0.068 
Temperature 108.47 <0.001** 4.27 0.002* 
Additives 82.54 <0.001** 2.97 0.052 
Additives*Temp 3.60 <0.001** 0.43 0.90 
Storage Days 1294.83 <0.001** 253.08 <0.001** 
Additives*Days 10.41 <0.001** 1.40 0.22 
Temp*Days 23.60 <0.001** 1.89 0.04* 
Add*Temp*Days 0.06 0.01* 0.43 0.99 

* Statistically significant  
** Highly significant 
 
 
 

TABLE C.6 
ANOVA Summary for Final Stiffness and Energy Dissipated Measured After 21 
Days of Storage on Tortillas Maintained at Temperatures Between –40 and 21 oC  

 
Source Final Stiffness (Pa) Energy Dissipated (J/m3) 
 F Value Pr > F F Value Pr > F 
Model 20.51 <0.001** 1.48 0.099 
Block 0.21 0.65 0.10 0.75 
Temperature 102.32 <0.001** 5.35 <0.001** 
Additives 51.30 <0.001** 0.16 0.85 
Additives*Temp 4.59 <0.001** 1.17 0.33 

* Statistically significant  
** Highly significant 
 
 
 
 
 
 
 
 
 
 
 



 126
 

 
 

TABLE C.7 

Changes in Tortilla Final Stiffness (x106 Pa) During 21 Days of Storage at 

Temperatures in the –40 to 21 oC Range 

Treatment Days -40 oC -20 oC 3 oC 10 oC 21 oC 

0     0.37 

1 2.05 1.87 2.59 2.53 2.00 

7 2.45 2.51 3.86 3.99 3.30 

Control 

21 3.12 2.46 3.65 5.04 3.34 

0     0.35 

1 2.07 1.64 2.21 2.05 1.54 

7 2.72 2.33 3.62 3.35 3.16 

0.5% CMC 

21 2.44 2.26 3.93 4.31 3.20 

0     0.35 

1 1.62 1.73 2.05 2.00 1.41 

7 2.03 2.02 3.10 3.04 2.10 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 21 2.15 1.94 3.40 3.50 2.11 

HSD (α=0.05)* 0.33 x 106 Pa 

* Tukey’s Honest Significant Difference for means separation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 127
 

 
 

TABLE C.8 

Changes in Tortilla Energy Dissipated (x10-4 J/m3) During 21 Days of Storage at 

Temperatures in the –40 to 21 oC Range 

Treatment Days -40 oC -20 oC 3 oC 10 oC 21 oC 

0     8.25 

1 1.31 1.79 1.10 1.03 1.22 

7 1.7 1.30 0.61 0.69 0.82 

Control 

21 0.95 0.98 0.65 0.51 1.80 

0     8.27 

1 1.26 1.63 1.08 1.09 1.68 

7 0.94 1.09 0.60 0.79 0.70 

0.5% CMC 

21 1.41 1.25 0.54 0.63 0.93 

0     10.20 

1 1.80 1.58 1.37 1.38 1.92 

7 1.32 1.31 0.81 0.81 1.22 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 21 1.56 1.42 0.55 0.64 1.08 

HSD (α=0.05)* 0.42 x 10-4 J/m3 

* Tukey’s Honest Significant Difference for means separation. 



 128
 

 
 

TABLE C.9 
ANOVA Summary for Amylopectin Enthalpy and Peak Temperature of Melting of 

Tortillas Stored at Temperatures Between –40 and 21 oC 
 

Source Peak  Temperature (Pa) Enthalpy (J/g) 
 F Value Pr > F F Value Pr > F 
Model 17.08 <0.001** 91.07 <0.001** 
Temperature 147.51 <0.001** 25.91 <0.001** 
Additives 0.84 0.43 16.40 <0.001** 
Additives*Temp 2.08 0.05 9.23 <0.001** 
Storage Days 28.27 <0.001** 1562.69 <0.001** 
Additives*Days 0.66 0.69 12.37 <0.001** 
Temp*Days 18.87 <0.001** 10.04 <0.001** 
Add*Temp*Days 2.27 0.006* 4.46 <0.001** 

* Statistically significant  
** Highly significant 
 
 
 

TABLE C.10 
ANOVA Summary for Amylopectin Enthalpy and Peak Temperature of Melting 

Measured After 21 Days of Storage on Tortillas Maintained at Temperatures 
Between –40 and 21 oC  

 
Source Peak  Temperature (Pa) Enthalpy (J/g) 
 F Value Pr > F F Value Pr > F 
Model 29.99 <0.001** 15.92 <0.001** 
Temperature 101.31 <0.001** 21.06 <0.001** 
Additives 1.80 0.19 41.50 <0.001** 
Additives*Temp 1.37 0.28 6.95 <0.001** 

* Statistically significant  
** Highly significant 
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TABLE C.11 

Changes in Tortilla Amylopectin Enthalpy of Melting During 21 Days of storage at 

Temperatures in the –40 to 21 oC Range 

Treatment Days -40 oC -20 oC 3 oC 10 oC 21 oC 

0     1.48 

1 3.06 4.29 4.42 4.51 3.85 

7 5.32 4.09 5.34 5.05 4.98 

Control 

21 4.55 4.47 5.23 5.14 5.30 

0     1.75 

1 4.44 4.66 4.57 4.82 4.42 

7 4.74 4.28 5.65 5.19 5.12 

0.5% CMC 

21 5.11 5.11 5.30 5.54 4.61 

0     1.83 

1 4.11 4.06 4.27 3.93 3.56 

7 4.72 4.24 4.86 4.81 4.27 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 21 4.09 4.03 5.10 4.96 3.72 

HSD (α=0.05)* 0.22 J/g 

* Tukey’s Honest Significant Difference for means separation. 
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TABLE C.12 

Changes in Tortilla Peak Pasting Temperature and Viscosity During 21 Days of 

Storage at Temperatures in the –40 to 21 oC Range as Measured by the RVA 

 

Treatment 

Storage 

Temperature 

Paste Temperature (oC) Paste Viscosity (cP) 

 (oC) 20 Min 21 Days 20 Min 21 Days 

-40   68.4  2120 

-20  61.4  3157 

3  69.9  2545 

10  70.4  2641 

Control 

21 57.9 75.2 5292 1896 

-40   61.7  3870 

-20  61.5  3394 

3  59.5  4912 

10  61.0  4170 

0.5% CMC 

21 59.4 68.4 5586 3363 

-40   58.2  4740 

-20  57.9  5845 

3  62.0  4283 

10  58.9  5504 

0.25% CMC 

+ 

1650 AU 

ICS Amylase 

21 58.0 60.5 6844 5375 

HSD (α=0.05)* 1.21 170 

* Tukey’s Honest Significant Difference for means separation. 
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APPENDIX D 

 

FURTHER RESEARCH 
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FURTHER RESEARCH 

 

- Optimize addition of maltogenic amylase in corn tortillas produced with fresh 

masa as opposed to using NCF. Determine the best moment to mix (grinding step 

is suggested) and adequate concentration of amylase considering a continuous 

process. 

- Evaluate other types of CMC with lower viscosities than 7HF in order to reduce 

tortilla chewiness without compromising flexibility. 

- Evaluate combinations of maltogenic amylases (both fungal and bacterial) with 

other matrix forming additives that may be able to substitute CMC totally or 

partially (Beta-glucans, pentosans, etc) at a lower cost. Evaluate the effect of 

chain length, branching and tendency to cross-link. 

- Determine the mode of action of maltogenic amylases in preventing amylopectin 

re-crystallization. Use HPLC to determine the types of oligosaccharides 

produced by the amylase hydrolytic activity on amylose and amylopectin of corn 

tortillas. Then, add these oligosaccharides to tortillas to determine if re-

crystallization of amylopectin is reduced by hydrolysis of its outer branches or by 

interference. 

- Establish the role of amylose in corn tortilla staling. Use DSC to evaluate 

changes in the retrograded amylose-lipid (150 oC) complex during storage. 

Evaluate the effect of amylases, CMC and other anti-staling agents on the re-

crystallization of amylose. Sample and stabilize tortillas during baking and 

coming right out of the oven. 

- Determine tortilla Tg. Store tortillas at –60 to 4 oC and estimate tortilla Tg by 

DSC. With enough points within this temperature range it might be possible to 

find the temperature at which tortillas do not stale or at the very least extrapolate 

it to the point were tortilla re-crystallization rate becomes zero. 
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