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ABSTRACT: The combination of nucleophilic nitrenoids and π-
acid catalysis has emerged as a powerful tool in heterocycle
synthesis. Accessing more varied heterocycle-substitution patterns
by maintaining the same reaction pathways across different alkynes
remains a challenge. Here we show that Au(I) catalysis of
isoxazole-based nitrenoids with alkynyl thioethers provides
controlled access to (3 + 2) annulation by a regioselective addition
β to the sulfenyl group. The reaction with isoxazole-containing
nitrenoids delivers sulfenylated pyrroles and indoles as single
regioisomers bearing useful functional groups and structural
variety.

KEYWORDS: gold, pyrroles, nitrenoid, annulation, thioether, indole

N-nucleophilic nitrenoids have proved to be versatile
surrogates for nitrene-containing 1,3-dipoles, providing

modular and expedient access to a variety of densely
functionalized N-heterocycles by a formal (3 + 2) cyclo-
addition to gold-activated alkynes.1 Most of these annulations
were first realized with ynamides,2 and to date there are only a
few specific instances where those same transformations have
been achieved with other types of alkynes.2j,3 As the alkyne
substitution pattern is directly translated into the product,
retaining the same transformation across different alkyne types
would greatly expand the potential of these convergent
annulation methods for complex molecule synthesis. A
challenge lies in finding alkynes that are sufficiently reactive
and do not change how the reaction pathway evolves while
providing useful substitution patterns.
The use of isoxazole-based N-nucleophilic nitrenoids is

illustrative: The groups of Ye2f and Hashmi2j demonstrated the
potential of using isoxazoles and [2,1]benzisoxazoles, respec-
tively, to assemble pyrroles and indoles through a formal (3 +
2) cycloaddition across C-aryl ynamides (Figure 1b). Several
groups have subsequently established that a tremendous
variety of heterocyclic structures can be formed when these
nitrenoids are combined with differently substituted alkynes.4

Because the alkyne structure affects the nature of the
intermediate α-imino gold carbene B and the pathways
through which it can evolve (Figure 1a), even relatively
small changes can divert the pathway away from formal (3 + 2)
cycloaddition (Figure 1c).
Few reports have addressed gold-catalyzed intermolecular

reactions with alkynyl thioethers, and the majority have

reported nucleophilic addition α to the sulfur,5 invoking a
dominant gold ketenethionium character. However, a recent
study from our group using N-acylpyridinium aminides
showed that, in the presence of a Au(III) precatalyst, the
outcomes matched selective attack at the β-position of alkynyl
thioethers.3b We reasoned that if this latter route was generally
accessible from other types of nitrenoids, especially those
accessed using Au(I) catalysis, then a more generalized
approach for (3 + 2)-type annulations with nitrenoids could
be realized. Replicating this reactivity would ensure that the
aurated carbon is substituted by the sulfenyl group throughout
the reaction manifold, potentially facilitating a more consistent
reactivity profile that tolerates modifications elsewhere. Sulfur-
substituted heterocycles are desirable, not least in medicinal
chemistry.6,7 The increasing number of C−S functionalization
methods renders them potentially useful substrates for further
elaboration.8 The prospective utility of sulfenylated pyrrole and
indole products combined with the diversity of reaction
pathways that can be accessed from (benz)isoxazoles identified
them as ideal systems for probing the wider utility of alkynyl
thioethers in nitrenoid-based annulations.
During our studies Ye and co-workers reported the Zn(II)-

catalyzed reaction of alkynyl thioethers with isoxazoles, where
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selective α-addition led to sulfur-substituted β-keto enamides
with 1,2-S migration (Figure 1d).9 Here we show that the
Au(I)-catalyzed reaction of alkynyl thioethers with isoxazoles
and [2,1]benzisoxazoles proceeds regioselectively by β-
addition to access the formal (3 + 2) cycloaddition pathway.
We found that using alkynyl thioether 1a and 3,5-

dimethylisoxazole 2a gave rise to regioselective formation of
the 3-sulfenylated pyrrole 3a under gold catalysis. The finalized
conditions employ a 1:2 stoichiometry of 1a to 2a in 1,1,1-
trifluorotoluene at 80 °C in the presence of [IPrAu(CH3CN)]-
SbF6 in a capped vial and no measures taken to exclude air and
moisture (Scheme 1; see the Supporting Information for an
optimization survey). No reaction was seen in the absence of
catalyst or on replacing it with a strong Brønsted acid, while
gold(I) and gold(III) catalysts with other ligand combinations
were less effective. The noncoordinating counterions tetrakis-
[3,5-bis(trifluoromethyl)phenyl]borate and hexafluoroantimo-
nate were optimal in comparison to weakly coordinating
alternatives. Only a small reduction in yield is seen at lower
temperatures or with a lower stoichiometry of 2a.
The effects of different S-substituents on the annulation

were tested (Scheme 1). While an S-phenyl substituent stalled
the process, presumably due to its rigid steric bulk, S-
benzylated systems were reactive (3c,d). 1,5-Enynyl thioether
1e gave solely the pyrrole (3e), despite the potential for

intramolecular cyclopropanation at an intermediate α-imino
gold carbene.4k The S-alkynyl thioester 1f degraded under the
reaction conditions, but the 2-(ethynylthio)acetate derivative
1g afforded pyrrole 3g.
The wider scope of the annulation was then explored

(Scheme 2). The reaction was largely invariant to steric bulk at
the C-terminus of the alkynyl thioether, allowing ortho and
diortho substitution (3h−j). A single-crystal X-ray diffraction
analysis confirmed the structure of 3j. Electron-donating
substituents on the aryl group are beneficial but not required
(3h−q). An aryl fluoride and an aniline derivative worked well,
as did heteroaromatic groups such as indole and thiophene
(3m−p). Alkyl-substituted alkynyl thioethers reacted slug-
gishly but did give the desired 3-sulfenylated pyrroles 3r,s in
serviceable yields.
An unsymmetrical acetylene disulfide reacted to give the 2,3-

bis-sulfenyl pyrroles as a mixture of regioisomers 3t,t′. The
regioselective preference correlates to the relative reactivity
seen on changing the sulfenyl group in alkynyl thioethers (cf.
Scheme 1, 1a,b), the major product arising from C−N bond
formation β to the smaller sulfenyl group, although the
regioisomer 3t′ was formed despite the recalcitrance of 1b.
Neither triisopropylsilyl nor terminal alkynyl thioethers gave
productive reactions (1u,v, see Supporting Information).
A variety of differently substituted isoxazoles proved to be

compatible with the reaction. 3-Sulfenylated pyrroles can be
prepared with alkyl, aryl, and vinyl groups at the 5-position
(3u−3af), and with aldehydes (3x), amides (3y,z), and aryl- or
alkyl-substituted carbonyl groups at the 4-position (3u−w,ac−
af). No reaction was seen with the electronically deactivated 3-
(perfluorophenyl)-5-phenylisoxazole and 3-phenyl-5-
(trifluoromethyl)isoxazole (not shown). The use of isoxazol-
5-amines had not previously been reported under gold
catalysis,10 while Liu reported non-pyrrole-forming pathways
when unsubstituted isoxazoles were reacted with propiolate
derivatives.4b,c The formation of pyrroles (3x−z) from both of
these systems illustrates the consistent reaction outcomes
obtained in gold-catalyzed reactions of alkynyl thioethers with
nitrenoids. The reaction tolerates a range of functionalities,
including 1° and 3° aromatic amines (3n,y,z), a free hydroxyl
group (3ac), an ester (3ad), and an aryl halide (3af).
The wider generality of alkynyl thioethers was established

using anthranil 4 as the nitrenoid to deliver 3-sulfenyl-7-acyl
indole motifs 5a−f by the formal (3 + 2) cycloaddition
pathway. 3-Sulfenyl indoles have shown some medicinal
potential with activity against HIV11 and inhibition of tubulin
polymerization.12 As anthranil and the products coeluted, the
alkynyl thioether was used in excess (see the Supporting

Figure 1. Divergent outcomes for the reaction of alkynes and
isoxazoles under π-acid catalysis.

Scheme 1. Pyrrole Formation from Alkynyl Thioethers: S-
Substituent
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Information). A competition experiment showed that anthranil
4 is less reactive than isoxazole 2a (see the Supporting
Information).
Reactions with 3,4,5-trisubstituted isoxazoles 6a,b were

investigated (Scheme 3). Reactions with isoxazoles 6a,b saw
formation of the N-acylated pyrrole 7 and deacylative
annulation product 9, respectively, as has been precedented
in ynamide reactions.13 Reactivity unique to alkynyl thioethers
was also elucidated with the formation of desulfenylated 3-
acylated pyrroles 8a,b.
The practicality of the annulation protocol is demonstrated

by its ready upscaling, which proceeded smoothly under
noninert conditions to give 3a on a gram scale (Scheme 4).
Selective oxidations of the resulting pyrrole 3a into its sulfonyl
and sulfinyl forms (10 and 11) were effective.14 Treating 11
with triflic anhydride in the presence of base led to
protodesulfinylation and the formation of trisubstituted pyrrole
12. The direct use of triflic acid15 gave a dirtier reaction and
only traces of 12. However, Brønsted acid mediated
desulfenylation of the sulfide 3d also gave 12. Such acid-

mediated desulfuration reactions permit chemoselective
reduction of the sulfenyl group in the presence of the ketone

Scheme 2. Au(I)-Catalyzed Synthesis of Pyrroles and Indoles from Alkynyl Thioethersa

aReactions unless stated otherwise were run in capped vials with no precautions against air or moisture with alkynyl thioethers (1.0 equiv), 2a−l
(2.0 equiv), [IPrAu(CH3CN)]SbF6 (5 mol %), and PhCF3 (0.1 M) at 80 °C. The crystal structure of 3j is shown with ellipsoids drawn at the 50%
probability level. bReaction at 50 °C; 53% of 3n at 80 °C. c1H NMR spectroscopic analysis of the reaction mixture elucidated a 43% yield of 3t and
19% of the putative 3t′. The regioisomerism of 3t was confirmed by 1H NOESY. d4 equiv of isoxazole. e0.4 mmol of 1a with 0.2 mmol of 2i. f4 was
used as the limiting reagent to 1.

Scheme 3. Au(I)-Catalyzed Reactions of Alkynyl Thioethers
with 3,4,5-Trisubstituted Isoxazolesa

aAll reactions were run in capped vials with no precautions against air
or moisture, using 1a (1.0 equiv), 6a or 6b (2.0 equiv),
[IPrAu(CH3CN)]SbF6 (5 mol %), and PhCF3 (0.1 M), at 80 °C.
The crystal structure of 8a is shown with ellipsoids drawn at the 50%
probability level.
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and enable the nitrenoid chemistry to be used to access non-
heteroatom-substituted pyrroles. Initial attempts to achieve
metal-catalyzed C−S activation for cross-coupling have so far
been unsucessful with these elaborated pyrroles.
The isotopically labeled substrate 13C-1l was prepared in

order to determine whether there was any skeletal rearrange-
ment of the alkynyl thioether backbone during or after
annulation. 1,2-Sulfenyl migrations have been reported in π-
acid mediated reactions that invoke carbenoid character,5a−d

while methylthio-substituted pyrroles have been shown to
undergo Brønsted acid mediated isomerization.16 The single
pyrrole isotopomer 13C-3l was formed under the standard
conditions. A combination of HMBC and NOESY experiments
was used to confirm the regiochemical outcome on 3l/13C-3l
and that the connectivity of the alkynyl thioether was
maintained (Scheme 5). A small amount of the enriched β-
keto enamide 13C-13 was also isolated. This outcome is in
concordance with the pathway reported by Ye under Zn(II)
catalysis9 and provides labeling evidence for the 1,2-S-
migration step.
A general mechanism is proposed on the basis of these

observations and literature precedent (Scheme 5). The 13C-
labeling experiment is consistent with slippage to either end of
the triple bond being energetically accessible: α-addition,
matching a gold ketenethionium type activation A1 invoked in
the majority of Au(I)-catalyzed reactions of alkynyl thioethers,
is the minor pathway and is not viable for the formation of
pyrrole. This pathway leads to β-ketoenamide D. The β-
addition pathway is more productive (A → E), and we
postulate that a stabilizing S−Au interaction17 promotes
irreversible gold carbene formation. This pathway is aided
by, but not dependent upon, the presence of more electron
rich alkyne substituents (Scheme 2), which would further
distort the π-complex toward a nascent Au−S interaction A2.18

The resulting α-imino α′-sulfenyl gold carbene F undergoes
cyclization and aromatization to pyrrole I. When C-4-
substituted isoxazoles are used, in addition to established
deacylative mechanisms (H → J/K),2h,3c an unprecedented
desulfenylation can follow 1,5-acyl migration,4b leading to all-
carbon substituted pyrroles (H → M).
In conclusion, alkynyl thioethers react with isoxazoles and

anthranils under gold catalysis and provide selective access to
the formal (3 + 2) cycloaddition pathway. This pathway is
maintained across reactants with broad structural and func-

tional group changes. As a result, these readily accessed
substrates can be used to deliver convergent and modular
access to sulfenylated pyrroles and indoles. The practical and
straightforward protocol has been demonstrated on a multi-
millimole scale. Initial investigations into the annulation with
trisubstituted isoxazoles also reveal reactivity unique to alkynyl
thioethers. One-step access to all-carbon-substituted pyrroles
establishes the intriguing potential of using a sulfenyl moiety as
a traceless directing and alkyne-activating group for heterocycle
synthesis. The observed outcomes and an isotopic labeling
study match a β-selective addition to the alkynyl thioether. In
contrast to α-selective approaches, such as from ubiquitously
employed ynamides, the gold carbene character is developed
adjacent to the heteroatom group and not the other, variable,
alkyne substituent. If gold-catalyzed reactions of alkynyl
thioethers and nitrenoids consistently proceed through the
putative α-imino α′-sulfenyl gold carbene, then this can
provide the basis of a unifying (3 + 2) cycloaddition strategy
for heterocycle synthesis.
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Scheme 4. Scale-up Annulation and Selective Oxidation of a
3-Sulfenyl Pyrrole

Scheme 5. 13C-Labeling Experiment and Outline
Mechanism
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Crystallographic data for 8a (CIF)
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