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In this paper, we will investigate how radiality occurs in topological spaces by 
considering neighbourhood bases generated by nests. We will define a new subclass 
of radial spaces that contains LOTS, GO-spaces and spaces with well-ordered 
neighbourhood bases, called the independently-based spaces. We show that first-
countable spaces are precisely the independently-based, strongly Fréchet spaces and 
we give an example of a Fréchet–Urysohn space that is neither independently-based 
nor strongly Fréchet.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Radial spaces were first introduced in [1] under the name of stark folgenbestimmt, and were characterised 
in that paper as the pseudo-open images of LOTS (Linearly Ordered Topological Spaces). They are a natural 
generalisation of Fréchet–Urysohn spaces. Although we have an external characterisation of these spaces 
via certain quotients of LOTS, the author felt it was insufficient to truly gain an appropriate understanding 
for these spaces. Thus, the author wished to find an internal characterisation that would lead to a deeper 
understanding of radiality.

The most common examples of radial spaces are LOTS, GO-spaces (Generalised Ordered spaces) and 
spaces with well-ordered neighbourhood bases (e.g., first-countable spaces). These can be viewed as having 
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neighbourhoods generated by nests (sets linearly ordered by inclusion). It is these spaces which we shall 
generalise from to create the class of independently-based spaces. These spaces have a clear picture of 
convergence and although they don’t coincide with radial spaces (as we will show), a slight weakening 
of the definition does give such a characterisation of radiality in terms of a type of neighbourhood base 
generated by subspaces that have well-ordered neighbourhood bases at the point in question. Briefly, these 
neighbourhood generators describe the ‘paths of convergence’ to the point.

In the next section, we will introduce some terminology and basic results we shall need. In Section 3, 
we will introduce the class of spaces called the independently-based spaces that have neighbourhoods gen-
erated by nests in an appropriate way. We will show that all GO-spaces and well-based spaces (spaces 
with well-ordered neighbourhood bases) are independently-based and that independently-based spaces are 
radial. Moreover, the property of being independently-based is hereditary. In Section 4, we will give a char-
acterisation of radiality using a different kind of neighbourhood generator and prove that first-countable 
spaces are precisely the independently-based, strongly Fréchet spaces. To finish with, we will construct a 
Fréchet–Urysohn space that is neither independently-based nor strongly Fréchet.

We will not be assuming any separation axioms in this paper. For more on radial spaces and related 
convergence properties, see [2–4].

2. Preliminaries

Below are some definitions that are required for this paper.

Definition 2.1.

• A net is a function f from a directed set (D, ≤) to a set X. If X is a (topological) space then we say 
that f converges to x ∈ X, denoted by f → x, if for every neighbourhood U of x, there exists d ∈ D

such that for all d′ ≥ d, f(d′) ∈ U . It is said to cluster at x if for all neighbourhoods U of x and d ∈ D, 
there exists a d′ ≥ d such that f(d′) ∈ U .

• A transfinite sequence is a net with well-ordered domain. We will use the notation (xα)α<λ for the 
transfinite sequence f with domain (λ, ∈), where λ is an ordinal and for all α < λ, f(α) = xα.

• We say that a (topological) space X is radial at a point x if for every subset A of X that contains x
in its closure, there is a transfinite sequence converging to x whose range lies in A. If a space is radial 
everywhere then we call it a radial space.

• A space X is strongly Fréchet at a point x if for every decreasing sequence (An)n<ω of subsets of X with 
x ∈

⋂
n<ω An, there exists a sequence (xn)n<ω that converges to x such that xn ∈ An for all n < ω. If 

a space is strongly Fréchet everywhere then we call it a strongly Fréchet space.
• A space X is said to be well-based at x if x has a neighbourhood base well-ordered by ⊇. Such a 

neighbourhood base is said to be well-ordered neighbourhood base and if X is well-based at every point 
it is called a well-based space.

• A transfinite sequence is said to converge strictly to a point x in a space if it converges to x and x is 
not in the closure of any of the initial segments of the transfinite sequence.

• A nest is a non-empty set linearly ordered by inclusion.
• For a linearly ordered set (X, <), we define its cofinality to be the least ordinal α such that there exists 

a cofinal map f : (α, ∈) → (X, <). This will be denoted by cf(X, <).
• For a point x in a space X, we denote its neighbourhood filter by NX

x , or Nx when the space is 
unambiguous. We define its neighbourhood core to be the intersection of all neighbourhoods of x. This 
will be denoted by Nx. Note that in a T1-space, Nx = {x}.

• A point x in a space X is quasi-isolated if Nx is open (or equivalently, Nx is a neighbourhood of x).
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See [5] for any undefined notions.
The following lemma shows that we can impose further restrictions on the transfinite sequences that are 

witnesses to radiality.

Lemma 2.2. Let X be a space, x ∈ X be radial and let A ⊆ X be given such that x ∈ A. Then there exists a 
regular cardinal λ ≤ |X| and an injective transfinite sequence (xα)α<λ contained in A that converges strictly 
to x.

Proof. If A ∩Nx 	= ∅, pick y ∈ A ∩Nx and define λ := 1, x0 := y. Now suppose otherwise, so by radiality 
there exists an ordinal λ and a transfinite sequence (xα)α<λ that converges to x. Choose λ minimal and 
note that if λ is not regular then there is an γ < λ and a strictly increasing, cofinal map g : γ → λ, so 
(xg(α))α<γ converges to x; this is a contradiction by the minimality of λ. Hence λ is regular.

Let α < λ be given and suppose x ∈ {xβ : β < α}. Then by the work above, there exists a regular 
cardinal κ and a transfinite sequence (yβ)β<κ contained in {xβ : β < α} that converges to x. By minimality 
κ ≥ λ > |α| ≥ |{yβ : β < κ}|, so by regularity there exists a B ⊆ κ unbounded such that for all 
α, β ∈ B, yα = yβ . Thus (yα)α<B converges to x and so ymin(B) ∈ A ∩Nx, which is a contradiction. Hence 
x /∈ {xβ : β < α} and thus (xα)α<λ converges strictly to x. Moreover, for all α < λ

{xβ : β < λ}\{xβ : β < α} 	= ∅.

For every α < λ, define by transfinite recursion:

g(α) := min
({

β < λ : ∀γ < α, β > g(γ) and xβ 	= xg(γ)
})

Then g : λ → λ is strictly increasing and (xg(α))α<λ is injective and converges strictly to x. Furthermore, 
injectivity implies that λ ≤ |X|. �
3. Independently-based spaces

The inspiration for this new class of spaces comes from asking the question what makes certain spaces 
radial, particularly in relation to neighbourhood bases generated by families of nests.

Definition 3.1 (Nest system). For a non-empty family of nests C = (Ci)i∈I , we define its mesh to be:

M(C) :=
{⋂

i∈I

Ci : ∀i ∈ I, Ci ∈ Ci
}

If it is understood that each of the nests consists of subsets of some fixed set X, then for each i ∈ I we 
define the i-th spoke of C to be SX(C, i) :=

⋂
j∈I\{i}

⋂
Cj , where this will equal X if I = {i}. We will omit 

the subscript when there is no ambiguity.
Let X be a space, x ∈ X be given and let C = (Ci)i∈I be a family of nests of neighbourhoods of x. We 

shall call C a nest system for x if M(C) is a neighbourhood base for x.

It is known (see [2]) that well-based spaces are radial since each point has a neighbourhood base which 
is a nest and the transfinite sequences needed are easily constructed from these. What about spaces with 
neighbourhoods generated by two nests? Consider the Tychonoff plank X := (ω + 1) × (ω1 + 1), where 
each factor is topologised by the linear ordinal ordering. Define A := ω × ω1 and note that (ω, ω1) ∈ A. 
However, if (xα)α<λ is a transfinite sequence contained in A that converges to (ω, ω1) then (π1(xα))α<λ and 
(π2(xα))α<λ converge to ω and ω1 respectively, where πi is the projection map from X to its ith-factor. It 
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is easily seen that such a transfinite sequence cannot exist since ω is first-countable in ω + 1 and ω1 is a 
p-point (every countable intersection of neighbourhoods is a neighbourhood) in ω1 +1. Thus X is not radial 
at (ω, ω1), but it still has a neighbourhood base generated by two nests.

However, every LOTS is radial and each point in a LOTS has a nest system consisting of at most two 
nests. The main difference is that each neighbourhood (a, b) of x in a LOTS can be split into two parts, 
(a, x] and [x, b), each acting independently of the other in the sense that A = A ∩ (a, x]∪A ∩ [x, b) and both 
(a, x] and [x, b) are well-based at x. LOTS are the inspiration for the definition of this new class of spaces:

Definition 3.2 (Independently-based). Let X be a space, x ∈ X and let C = (Ci)i∈I be a nest system for x. 
We say that C is an independent nest system for x if it also satisfies the following condition:

∀C ∈
∏
i∈I

Ci,
⋂

ran(C) =
⋃
i∈I

(
C(i) ∩ S(C, i)

)

A space will be called independently-based if each of its points has an independent nest system.

To justify this definition and the motivation preceding it, we will now show that well-based and GO-spaces 
are independently-based, which in turn are radial. We will first need the following lemma:

Lemma 3.3. Let X be a space, Y ⊆ X and let y ∈ Y have an independent nest system with respect to X. 
Then y has an independent nest system with respect to Y .

Proof. Pick an independent nest system C = (Ci)i∈I for y with respect to X. For every i ∈ I, define 
Di := {C ∩ Y : C ∈ Ci}. Then D := (Di)i∈I is a non-empty family of nests of Y -neighbourhoods of y and 
M(D) = {U ∩ Y : U ∈ M(C)} is a neighbourhood base for y with respect to Y , so D is a nest system 
for y with respect to Y . Furthermore, let D ∈

∏
i∈I Di be given, so there exists a C ∈

∏
i∈I Ci such that 

D(i) = C(i) ∩ Y for every i ∈ I. Then:

⋂
ran(D) =

(⋂
ran(C)

)
∩ Y =

(⋃
i∈I

(
C(i) ∩ SX(C, i)

))
∩ Y =

⋃
i∈I

(
D(i) ∩ SY (D, i)

)

Thus D is independent. �
Corollary 3.4. The property of being independently-based is hereditary.

Theorem 3.5. Every well-based space is independently-based.

Proof. Let X be a well-based space and let x ∈ X be given. Then there exists a well-ordered neighbourhood 
base B0 for x. Thus B = (Bi)i∈1 is obviously an independent nest system for x, so X is independently-
based. �
Theorem 3.6. Every LOTS is independently-based.

Proof. Let (X, <) be a linearly ordered set that is unbounded above and below and endow X with the order 
topology inherited from <. Let x ∈ X be given and define:

C0 :=
{
(y,∞) : y < x

}
C1 :=

{
(−∞, y) : y > x

}

Then C = (Ci)i∈2 is a family of nests of neighbourhoods of x. Note that:
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M(C) =
{
(y, z) : y < x < z

}
S(C, 0) = (−∞, x]

S(C, 1) = [x,∞)

Hence C is a nest system for x. Moreover, for every y < x and z > x:

(y,∞) ∩ (−∞, z) = (y, z) = (y, x] ∪ [x, z) =
(
(y,∞) ∩ S(C, 0)

)
∪
(
(−∞, z) ∩ S(C, 1)

)

Therefore C is independent and hence X is independently-based.
Now suppose that (X, <) is not unbounded above and below and extend it to a linearly ordered set (Y, <)

that is unbounded above and below; this can be achieved by considering the following linear order sum, 
where ω∗ is the reverse order of ω with the ordinal order:

Y := ω∗ + (X,<) + ω

Then by the work above, Y is independently-based when endowed with the order topology. Thus the subspace 
topology on X is also independently-based by Corollary 3.4. However, this subspace topology coincides with 
the original order topology, so it follows that X is independently-based. �
Corollary 3.7. Every GO-space is independently-based.

Proof. This follows from the previous theorem and Corollary 3.4. �
Now we will show that every independently-based space is radial. The following lemma on spokes is 

needed first.

Lemma 3.8. Let X be a space, x ∈ X and let C = (Ci)i∈I be a nest system for x. Then for all distinct 
i, j ∈ I, S(C, i) ∩ S(C, j) = Nx.

Proof. Let i, j ∈ I be distinct. Then since M(C) is a neighbourhood base for x:

S(C, i) ∩ S(C, j) =
( ⋂

k∈I\{i}

(⋂
Ck

))
∩
( ⋂

l∈I\{j}

(⋂
Cl
))

=
⋂
k∈I

(⋂
Ck

)

= Nx. �
Theorem 3.9. Every independently-based space is radial.

Proof. Let X be an independently-based space and let A ⊆ X, x ∈ A be given. Then there exists a 
C = (Ci)i∈I an independent nest system for x. Assume for every i ∈ I, there exists a Ci ∈ Ci such that 
Ci ∩ S(C, i) ∩A = ∅. Then:

(⋂
i∈I

Ci

)
∩A =

(⋃
i∈I

(
Ci ∩ S(C, i)

))
∩A = ∅

This is a contradiction as 
⋂

i∈I Ci is a neighbourhood of x. Therefore there exists an i ∈ I such that for 
all C ∈ Ci, C ∩ S(C, i) ∩ A 	= ∅. Define λ := cf(Ci, ⊇), so there exists a C : λ → Ci strictly increasing with 
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cofinal range in (Ci, ⊇). Then for all α < λ, there exists an xα ∈ C(α) ∩ S(C, i) ∩ A. Let C ′ ∈
∏

j∈I Cj be 
given. Then there exists an α < λ such that C(α) ⊆ C ′(i). Hence for all β ∈ λ\α:

xβ ∈ C(β) ∩ S(C, i) ∩A ⊆ C(α) ∩ S(C, i) ∩A ⊆
⋂

ran
(
C ′)

Therefore (xα)α<λ → x and hence X is radial. �
An alternative characterisation of independently-based spaces is given by glueing together neighbour-

hoods from subspaces.

Definition 3.10. If X is a topological space with a point x and subspace S such that Nx ⊆ S and S is 
well-based at x. Then we say that S is a spoke of x in X. [Note that the spokes of a nest system for a point 
are indeed spokes for that point.]

Let X be a space, x ∈ X and let S = (Si)i∈I be a non-empty family of spokes of x. Then we say that S
is a spoke system for x if {

⋃
i∈I Ui : ∀i ∈ I, Ui ∈ NSi

x } is a neighbourhood base for x. Furthermore, if for all 
distinct i, j ∈ I, Si ∩ Sj = Nx, then we say that S is independent.

We can easily translate back and forth between independent systems of nests and spokes:

Theorem 3.11. Let X be a space and let x ∈ X be given.

1. Let C = (Ci)i∈I be an independent nest system for x. Then S := (S(C, i))i∈I is an independent spoke 
system for x.

2. Let S = (Si)i∈I be an independent spoke system for x, so for all i ∈ I there exists a well-ordered 
neighbourhood base Bi for x with respect to Si. For all i ∈ I, define:

Ci :=
{
B ∪

⋃
j∈I\{i}

Sj : B ∈ Bi

}

Then C := (Ci)i∈I is an independent nest system for x.

Proof. 1. For each i ∈ I, define λi := cf(Ci, ⊇), so there exists an Fi : (λi, <) → (Ci, ⊇) strictly increasing 
and cofinal. Define Bi :={Fi(α) ∩S(C, i) : α < λi}. Then Bi is a well-ordered neighbourhood base for x with 
respect to S(C, i). Let C ∈

∏
i∈I Ci be given and for every i ∈ I, choose αi < λi such that Fi(αi) ⊆ C(i). 

Then:

⋂
ran(C) ⊇

⋂
i∈I

Fi(αi) =
⋃
i∈I

(
Fi(αi) ∩ S(C, i)

)

Therefore {
⋃

i∈I Bi : ∀i ∈ I, Bi ∈ Bi} is a neighbourhood base for x in X. Hence by Lemma 3.8, S is an 
independent spoke system for x.

2. If I is a singleton then trivially C = (Ci)i∈I is an independent nest system for x. Suppose not and for 
each i ∈ I, choose Bi ∈ Bi. Then for all k ∈ I:

Sk ∩
⋂
i∈I

(
Bi ∪

⋃
j∈I\{i}

Sj

)
= Bk ∩ Sk = Bk ⇒

⋂
i∈I

(
Bi ∪

⋃
j∈I\{i}

Sj

)
=

⋃
i∈I

Bi

Hence C is a nest system for x. Note that for all i ∈ I:
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S(C, i) =
⋂

j∈I\{i}

(⋂
Cj
)

=
⋂

j∈I\{i}

((⋂
Bj

)
∪

⋃
k∈I\{j}

Sk

)
=

⋂
j∈I\{i}

((⋃
k∈I

Sk

)∖
(Sj\Nx)

)

=
(⋃

k∈I

Sk

)∖(( ⋃
j∈I\{i}

Sj

)∖
Nx

)
= Si

Choose for every i ∈ I, Bi ∈ Bi. Then:

⋂
i∈I

(
Bi ∪

⋃
j∈I\{i}

Sj

)
=

⋃
i∈I

Bi =
⋃
i∈I

((
Bi ∪

⋃
j∈I\{i}

Sj

)
∩ Si

)
=

⋃
i∈I

((
Bi ∪

⋃
j∈I\{i}

Sj

)
∩ S(C, i)

)

Therefore C is independent. �
4. Neighbourhood characterisation of radiality

The obvious question to ask is whether every radial space is independently-based. If we weaken the 
condition for independence slightly, then we do indeed have a characterisation of radiality.

Theorem 4.1. Let X be a space and let x ∈ X be given. Then the following are equivalent:

1. X is radial at x.
2. X has a spoke system for x.
3. X has a spoke system (Si)i∈I for x such that for all distinct i, j ∈ I, x /∈ (Si ∩ Sj)\Nx.

Proof. Assume X has a spoke system (Si)i∈I for x, so for all i ∈ I there is a well-ordered neighbourhood 
base Bi at x with respect to Si. Let A ⊆ X be given such that x ∈ A and suppose for all i ∈ I, there exists 
a Bi ∈ Bi such that Bi ∩ A = ∅. Then (

⋃
i∈I Bi) ∩ A = ∅, which is a contradiction. So there is an i ∈ I

such that x ∈ A ∩ Si
Si . As x is well-based in Si, it follows that there exists a transfinite sequence in A ∩ Si

converging to x. Therefore X is radial at x.
Now suppose X is radial at x. For clarity, the rest of this proof will use a function notation (e.g. f , g, h,

etc.) rather than a sequence notation (e.g. (xα)α<λ) for transfinite sequences. If x is quasi-isolated then 
define I := {0}, Y0 := Nx. Suppose otherwise and define:

T :=
{
f ∈

⋃{
λ(X\Nx) : λ is a regular, non-zero cardinal and λ≤ |X|

}
: f →x strictly and f is injective

}

A :=
{
F ⊆ T : ∀f, g ∈ F distinct, f−1[ran(f) ∩ ran(g)

]
is bounded in dom(f)

}

By Tukey’s Lemma there exists a maximal F ∈ A. For all f ∈ F , define Sf := Nx ∪ ran(f).

Claim. For every f ∈ F , Bf := {f [dom(f)\α] ∪Nx : α ∈ dom(f)} is a well-ordered neighbourhood base for 
x in Sf .

Proof. Let f ∈ F , U ⊆ X be open such that x ∈ U . As f → x, there exists an α ∈ dom(f) such 
that f [dom(f)\α] ⊆ U . By definition, Nx ⊆ U . Now let β ∈ dom(f) be given. Then since f → x strictly, 
x /∈ f [β], so x ∈ (X\f [β])◦ and moreover (X\f [β])◦∩Sf ⊆ f [dom(f)\β] ∪Nx. Therefore Bf is a well-ordered 
neighbourhood base for x with respect to Sf . �

Let f, g ∈ F be distinct, so there exists an α ∈ dom(f) such that ran(f) ∩ ran(g) ⊆ f [α]. Then by the 
previous claim there exists a neighbourhood U of x such that U ∩ Sf = f [dom(f)\α] ∪ Nx. In particular, 
as f is injective, U ∩ f [α] = ∅, so x /∈ f [α]. However (Sf ∩ Sg)\Nx = ran(f) ∩ ran(g), so x /∈ (Sf ∩ Sg)\Nx.
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Finally, for all f ∈ F , pick αf ∈ dom(f) and define:

U :=
⋃
f∈F

(
f
[
dom(f)\αf

]
∪Nx

)

Suppose U is not a neighbourhood of x. Then by Lemma 2.2 there exists a regular cardinal λ ≤ |X| and 
an injective transfinite sequence f : λ → X\U that converges strictly to x. Let g ∈ F be given. Then since 
ran(f) ⊆ X\U and for every β ∈ dom(g)\αg, g(β) ∈ U , it follows that g−1[ran(f) ∩ ran(g)] ⊆ αg and 
hence x /∈ ran(f) ∩ ran(g), as g converges strictly to x. Thus f−1[ran(f) ∩ ran(g)] is bounded in λ also. By 
maximality of F , f ∈ F , which is a contradiction as f(αf ) ∈ U . Therefore U ∈ Nx. Furthermore, for all 
V ∈ Nx and h ∈ F , as h → x, there exists a βh ∈ dom(h) such that h[dom(h)\βh] ∪Nx ⊆ V and so:

⋃
h∈F

(
h
[
dom(h)\βh

]
∪Nx

)
⊆ V

Therefore (Sf )f∈F is a spoke system for x. �
This characterisation is the best we can achieve, since for any topological space, first-countability is 

equivalent to being independently-based and strongly Fréchet, as we now show.

Lemma 4.2. ([6, Proposition 5.11, Theorem 5.23]) Every topological space is strongly Fréchet at each of its 
first-countable points.

Lemma 4.3. Let X be a topological space, x ∈ X be given such that x has a finite, independent spoke system 
whose spokes are first-countable at x. Then X is first-countable at x.

Proof. Let S = (Si)i∈I be such a spoke system. For each i ∈ I, choose a countable neighbourhood base Bi

for x with respect to Si. Define B := {
⋃

i∈I Bi : ∀i ∈ I, Bi ∈ Bi}. Then B is a countable neighbourhood base 
for x with respect to X, since I is finite. Therefore x is first-countable in X. �
Theorem 4.4. Let X be a topological space, x ∈ X be given such that x is independently-based and strongly 
Fréchet. Then x is first-countable.

Proof. Suppose otherwise. Then there exists an independent spoke system (Si)i∈I for x and without loss of 
generality, assume that x is not quasi-isolated in each Si. As x is strongly Fréchet, it must be first-countable 
in each Si, so I must be infinite by the previous lemma. Choose J = {in : n < ω} ⊆ I, where each in
is distinct from the others, and define for every n < ω, Bn := (

⋃
m≥n Sim)\Nx. As Si 	= Nx and x is not 

quasi-isolated in Si, it follows that (Bn)n<ω is descending sequence of subsets of X and x ∈
⋂

n<ω Bn. Since 
x is strongly Fréchet, there exists a sequence (xn)n<ω that converges to x such that xn ∈ Bn for each n < ω

and thus there exists a unique jn ∈ ω\n such that xn ∈ Sijn
. Hence for all m < ω, {xn : n ∈ ω} ∩Sim is finite, 

so there exists Um a Sim-neighbourhood of x missing all the xn’s. Then U := (
⋃

m<ω Um) ∪ (
⋃

i∈I\J Si) is a 
neighbourhood of x and U ∩ {xn : n < ω} = ∅, which is a contradiction. Therefore x is first-countable. �
Corollary 4.5. Let X be a topological space [and let x ∈ X be given]. Then X is first-countable [at x] if and 
only if X is independently-based and strongly Fréchet [at x].

An example of a strongly Fréchet space that isn’t first-countable is the one-point compactification of 
an uncountable discrete space (see [6, Example 5.12]). By the previous corollary, such a space cannot be 
independently-based. We have now answered the question posed at the beginning of this section:
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Theorem 4.6. There exists a Fréchet–Urysohn (and thus radial) space that isn’t independently-based.

The previous corollary could be viewed as saying that independently-based, Fréchet–Urysohn spaces and 
strongly Fréchet spaces are ‘orthogonal’. However, they are not ‘complementary’. We will now construct 
a Fréchet–Urysohn space that is neither independently-based nor strongly Fréchet. This construction will 
demonstrate several techniques to reflect properties from one spoke system to another. The following lemma 
and corollary will aid our proof.

Lemma 4.7. Let X be a space, x ∈ X be given and let (Si)i∈I be a spoke system for x. Let (xn)n<ω be 
contained in X\Nx and cluster at x. Then there exists an i ∈ I such that (xn)n<ω has a subsequence lying
in Si that converges to x.

Proof. Define R := {xn : n ∈ ω} and assume that for every i ∈ I, there is no subsequence of (xn)n<ω

contained in Si that converges to x. Let i ∈ I be given, so there exists a well-ordered neighbourhood base Bi

for x with respect to Si and suppose x ∈ R ∩ Si. Then by Lemma 2.2, there exists a regular cardinal λ and 
a strictly increasing, cofinal chain (Bi,α)α<λ in (Bi, ⊇). If λ = 1 then as NSi

x = NX
x = Nx ⊆ Yi, it follows 

that Bi,0 = Nx, which is a contradiction. If λ is uncountable then for all n < ω, there exists an αn < λ such 
that xn /∈ Bi,αn

. Define α := sup({αn : n < ω}) < λ. Then Bi,α ∩ R = ∅, which is a contradiction. Hence 
λ = ω.

Define by recursion for all n < ω:

g(n) := min
({

k < ω : k > sup
(
g[n]

)
and xk ∈ Bi,n

})

Then (xg(n))n<ω is contained in Si and converges to x, which is a contradiction. Therefore there exists an 
ni < ω such that Bi,ni

∩ R = ∅. Hence (
⋃

i∈I Bi,ni
) ∩ R = ∅. This is a contradiction as (xn)n<ω clusters 

at x. Thus there is an i ∈ I such that Si contains a subsequence of (xn)n<ω converging to x. �
Corollary 4.8. Let X be a space, x ∈ X be given and let (Si)i∈I , (Tj)j∈J be spoke systems for x. Let i ∈ I

be given and define:

Ki :=
{
j ∈ J : x ∈ (Si ∩ Tj)\Nx

}

Assume:

1. (Tj)j∈J is independent.
2. χ(x, Si) = ℵ0.

Then Ki is finite.

Proof. Suppose Ki is infinite and let (An)n<ω be a well-ordered neighbourhood base for x with respect to Si. 
Then by assumption, for all n < ω, there exists a jn ∈ J and xn ∈ (An ∩ Tjn)\Nx such that for all distinct 
m, n < ω, jm 	= jn. Then (xn)n<ω → x and in particular clusters at x, so by the previous lemma there 
exists a g : ω → ω strictly increasing and a j ∈ J such that (xg(n))n<ω → x and {xg(n) : n < ω} ⊆ Tj . By 
independence, it follows that there is an n < ω such that j = jn, which is a contradiction since f−1[Tj ] = {j}. 
Therefore Ki is finite. �
Theorem 4.9. There exists a Fréchet–Urysohn space that is neither independently-based nor strongly Fréchet.

Proof. Let | · | be the Euclidean norm on R2 and for each x ∈ R
2 and ε > 0, let B(x, ε) denote the open 

ε-ball around x given by the norm. Denote the origin by 0 and for every x ∈ R
2\{0}, define:
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Sx :=
{
y ∈ R

2 : |y − x| = |x|
}

∀n ∈ N
+, Bx,n := B

(
0, n−1) ∩ Sx

B :=
{ ⋃

x∈R2\{0}
Bx,nx

: ∀x ∈ R
2\{0}, nx ∈ N

+
}

Endow R2 with the unique topology with neighbourhood base B at 0 and all other points are isolated. 
Denote this space by X. Let x, y ∈ R

2\{0} be distinct. Then since distinct circles intersect in at most two 
points, there exists an ny ∈ N

+ such that By,ny
∩ Sx = {0}. Thus for all n ∈ N

+:

(
Bx,n ∪

⋃
y∈R2\{0,x}

By,ny

)
∩ Sx = Bx,n

Hence {Bx,n : n ∈ N
+} is a neighbourhood base for 0 with respect to Sx, so Sx is well-based at 0. Therefore 

(Sx)x∈R2\{0} is a spoke system for 0, so by Theorem 4.1 X is radial. Furthermore, since {B(0, n−1) : n ∈ N
+}

is a pseudobase for 0 in X, the only transfinite sequences that converge to the origin are either eventually 
constant or have length ω, so X is Fréchet–Urysohn.

Note that N0 = {0} and for all x ∈ R
2\{0}, χ(0, Sx) = ℵ0.

Suppose 0 has an independent spoke system (Ti)i∈I and for all i ∈ I, let Ci be a well-ordered neighbour-
hood base for 0 with respect to Ti. Without loss of generality, we may assume that 0 is not isolated in Ti

for all i ∈ I. We first aim to show that we can refine (Sx)x∈R2\{0} to be independent. Define:

∀i ∈ I, Ki :=
{
x ∈ R

2\{0} : 0 ∈ (Sx ∩ Ti)\{0}
}

∀x ∈ R
2\{0}, Lx :=

{
i ∈ I : 0 ∈ (Sx ∩ Ti)\{0}

}
∀F ⊆ R

2\{0}, A(F ) :=
{
x ∈ R

2\{0} : |Sx ∩ F | ≥ 3
}

Then by Corollary 4.8, Lx is finite for all x ∈ R
2\{0}. Now let x ∈ R

2\{0} be given and for all n < ω, pick 
xn ∈ Bx,n\{0}, so (xn)n<ω → 0. By Lemma 4.7, there is an i ∈ I such that (xn)n<ω has a subsequence 
lying in Ti. Thus i ∈ Lx 	= ∅. By a similar argument, Ki is also non-empty for every i ∈ I. Also note that 
through any three distinct points, there is at most one circle passing through all of them, so A(F ) is finite 
for finite F ⊆ R

2\{0}.

Claim 1. Ki is finite for every i ∈ I.

Proof. Note that for all i ∈ I, χ(0, Ti) = ℵ0, since X is Fréchet–Urysohn and Ti is well-based at 0. Let 
i ∈ I be given and let (Cn)n<ω be a cofinal increasing sequence in (Ci, ⊇). Suppose Ki is infinite and 
choose for every n < ω an xn ∈ Ki and yn ∈ ((Cn ∩ Sxn

)\{0})\ 
⋃

x∈A({yj :j<n}) Sx such that for all distinct 
m, k < ω, xm 	= xk. Then (yn)n<ω → 0 and in particular clusters at 0, so by Lemma 4.7 there exists a 
g : ω → ω strictly increasing and y ∈ R

2\{0} such that (yg(n))n<ω → x and {yg(n) : n < ω} ⊆ Sy. Then 
y ∈ A({yj : j < g(3)}), so yg(3) /∈ Sy, which is a contradiction. Therefore Ki is finite. �
Claim 2. For all x ∈ R

2\{0}, there exists an α′
x ∈ N

+ such that for all distinct x, y ∈ R
2\{0}, Bx,α′

x
∩

By,α′ = {0}.

y
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Proof. Let x ∈ R
2\{0} be given and suppose that for all n ∈ N

+, there exists an xn ∈ (Bx,n\{0})\ 
⋃

i∈Sx
Ti. 

Then (xn)n<ω → 0, so by Lemma 4.7 there exists a j ∈ I such that (xn)n<ω has a subsequence lying in 
Tj that converges to 0. Then j ∈ Lx, which is a contradiction. Thus there exists an αx ∈ N

+ such that 
Bx,αx

⊆
⋃

i∈Sx
Ti.

Let x, y ∈ R
2\{0} be distinct such that {0} 	= Bx,αx

∩By,αy
⊆

⋃
i∈Sx

⋃
j∈Sy

(Ti ∩ Tj). Then there exists 
an i ∈ Lx and j ∈ Ly such that Ti ∩ Tj 	= {0} and so i = j ∈ Tx ∩ Ty. Thus y ∈ Ki ⊆

⋃
k∈Lx

Kk and 
therefore Fx := {y ∈ R

2\{0, x} : Bx,αx
∩ By,αy

	= {0}} is finite. Since distinct circles intersect in at most 
two points, there exists an α′

x ∈ N
+\αx such that for all y ∈ Fx, Bx,α′

x
∩ By,αy

= {0}. As Bx,α′
x
⊆ Bx,αx

, 
we are done. �

Therefore (Bx,α′
x
)x∈R2\{0} is an independent spoke system for 0. We will now show that this leads to a 

contradiction. Define:

Z :=
{
x ∈ R

2 : |x| > 1
}

=
⋃

n∈N+

{
x ∈ R

2 : |x| > 1 and α′
x = n

}

By the Baire category theorem there exists an n ∈ N
+ such that Y := {x ∈ R

2 : |x| > 1 and α′
x = n} is not 

nowhere dense in the Euclidean topology. Thus there exists an open, non-empty subset U of R2 such that 
U ∩ Y is dense in U with respect to the Euclidean topology. Pick x ∈ U , so there exists an ε ∈ (0, 1) and a 
θ ∈ R such that B(x, ε) ⊆ U and x = |x|(cos(θ), sin(θ)). By continuity of sin, there exists a δ ∈ (−π/2, π/2)
such that for all a ∈ (−δ, δ):

∣∣sin(a)
∣∣ < ε

4n|x|(|x| + ε)

Define L := {λ · x : λ ∈ R}, which is closed in R2. Note that

V :=
{
c
(
cos(ϕ), sin(ϕ)

)
: c ∈ (|x| + ε/2, |x| + ε), ϕ ∈ (θ − δ, θ + δ)

}

is open in R2 and (U ∩V )\L is a non-empty open subset of U with respect to the Euclidean topology. Thus 
there exists a c ∈ (|x| + ε/2, |x| + ε) and ϕ ∈ (θ − δ, θ + δ) such that y := c(cos(ϕ), sin(ϕ)) ∈ (V ∩ Y )\L. 
Define ρ : R2 → R

2, (x, y) �→ (−y, x), which is the anticlockwise rotation about the origin by π/2 radians. 
Also define:

z := 2(y • ρ−1(x))
|x− y|2 ρ(y − x)

By the choice of y, it follows that y • ρ−1(x) = |x||y| cos(π/2 ± (θ − ϕ)) and z 	= 0. Hence:

|z| ≤ 2|x|(|x| + ε)| sin(θ − ϕ)|
ε/2 <

1
n

Now let z = (z1, z2), x = (x1, x2), y = (y1, y2). Then:

2(y • ρ−1(x))
|x− y|2 = 2(y1x2 − y2x1)

(x1 − y1)2 + (x2 − y2)2

z1 = 2(y1x2 − y2x1)(x2 − y2)
(x1 − y1)2 + (x2 − y2)2

z2 = 2(y1x2 − y2x1)(y1 − x1)
2 2
(x1 − y1) + (x2 − y2)
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⇒ z2
1 + z2

2 = 4(y1x2 − y2x1)2

(x1 − y1)2 + (x2 − y2)2

= 2 · 2(y1x2 − y2x1)
(x1 − y1)2 + (x2 − y2)2

(
(x2 − y2)x1 + (y1 − x1)x2

)

= 2(z1x1 + z2x2)

⇒ (z1 − x1)2 + (z2 − x2)2 = z2
1 + z2

2 + x2
1 + x2

2 − 2(z1x1 + z2x2)

= x2
1 + x2

2

Therefore |z − x| = |x|, so z ∈ Bx,n. Since ρ is an isometry:

2(x • ρ−1(y))
|y − x|2 ρ(x− y) = 2(ρ−1(x) • ρ−2(y))

|x− y|2
(
−ρ(y − x)

)
= z

So by symmetry z ∈ By,n, which is a contradiction. Hence 0 has no independent spoke system and therefore 
X is not independently-based.

Finally, we’ll prove that X is not strongly Fréchet. This proof will use similar techniques to that of 
Claim 1. Choose by recursion, for every m, n < ω:

σm(n) ∈ B(m+1,0),n+1
∖(⋃{

Sx : τ ∈ mω, x ∈ A
({

σk

(
τ(k)

)
: k < m

})}
∪ {0}

)

Thus (σm)m<ω is a sequence of sequences converging to x. For all m < ω, define:

Cm :=
⋃

m≤m′<ω

ran(σm′)

Note that x ∈
⋂

m<ω Cm. Assume X is strongly Fréchet, so there exists a sequence σ that converges to x
such that σ(n) ∈ Cn for all n < ω. By Lemma 4.7, we may assume, without loss of generality, that there 
exists a z ∈ R

2\{0} such that ran(σ) ⊆ Sz. Note that {S(m+1,0)\{0} : m < ω} is a disjoint family, so the 
sequences (σm)m<ω have disjoint ranges. Hence for each n < ω, there exists a unique mn < ω such that 
σ(n) ∈ ran(σmn

), so there is an ln < ω such that σ(n) = σmn
(ln). Choose a, b, c < ω such that ma, mb, mc

are distinct and pick an n < ω such that mn > max({ma, mb, mc}). Define:

τ : mn → ω, k �→
{
lk if k ∈ {ma,mb,mc}
0 otherwise

Then σ(d) = σmd
(ld) = σmd

(τ(d)) for d ∈ {a, b, c}, so z ∈ A({σk(τ(k)) : k < mn}) and thus σ(n) =
σmn

(ln) /∈ Sz, which is a contradiction. Therefore X is not strongly Fréchet. �
We now conclude with a few open questions concerning independently-based spaces and spoke systems.

Question 4.10. Is there a ‘natural’ characterisation of radial spaces in terms of nests?

Question 4.11. Do independently-based spaces coincide with a subclass of radial spaces with stronger con-
vergence properties?

Question 4.12. How do we characterise strongly Fréchet spaces in terms of spoke systems?
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