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Ordering leads to multiple fast tracks in simulated col-
lective escape of human crowds†

Chen Cheng,a Jinglai Li,b and Zhenwei Yao∗c

Elucidating emergent regularities in intriguing crowd dynamics is a fundamental scientific problem
arising in multiple fields. In this work, based on the social force model, we simulate the typical
scenario of collective escape towards a single exit and reveal the striking analogy of crowd dy-
namics and crystallisation. With the outflow of the pedestrians, crystalline order emerges in the
compact crowd. In this process, the local misalignment and global rearrangement of pedestrians
are well rationalized in terms of the characteristic motions of topological defects in the crystal.
Exploiting the notions from the physics of crystallisation further reveals the emergence of multiple
fast tracks in the collective escape.

1 Introduction
Collective motion of pedestrians is a common phenomenon in
various daily scenarios of urban life, and once driven by life-
threatening panic, overcrowding and stampede may lead to fa-
talities1–10. Understanding crowd dynamics is thus crucial for
achieving safety and efficiency at both individual and collective
levels11–14. Observations show that the majority of pedestrians
walk in groups15, and the size of free-forming groups conforms
to Poisson distribution, indicating the existence of statistical regu-
larity in complicated crowd behaviours16–18. Collective phenom-
ena, such as oscillational behaviour19 and the fast-is-slower20,21

and stop-and-go22–24 effects, are experimentally observed 12,25.
Quantitative measurement of pedestrian flows further reveals an
analogy with the Navier-Stokes equations that originally describe
dynamics of fluids26,27. The phenomenological fluid-dynamic ap-
proach captures macroscopic behaviours of crowd dynamics by
averaging the behaviours of neighbouring individuals28,29.

Further scrutiny of individual pedestrians could provide valu-
able microscopic information that yields insights into the intrigu-
ing crowd dynamics12,18,30–34. Following this idea, a social force
model (SFM) has been proposed to simulate the motion of hu-
man crowds1,12,35. The basic idea underlying the SFM is to treat
pedestrians as particles with a simplified will. Specifically, this
model features a mixture of both physical and socio-psychological
forces influencing the walking behaviour of pedestrians, and it
has the unique advantage of incorporating new forces as our un-

a School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240,
China.
b School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT,
UK.
c School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao
Tong University, Shanghai 200240, China. E-mail: zyao@sjtu.edu.cn

derstanding of pedestrians is advanced1,12,15. Much has been
learned about the law of crowd dynamics by applying the SFM in
various situations3,12,15,36.

While the SFM could conveniently provide detailed dynami-
cal information of crowd motion by specifying proper values of
model parameters12, the challenge is to exploit the simulated
data from a suitable perspective for revealing the underlying reg-
ularities. In this work, we resort to the analogy of crowd dy-
namics and crystallisation process37–39, and gain insights into
the intriguing collective motion. Specifically, we simulate the
typical scenario of collective escape towards a single exit using
the generalized social force model that incorporates the random
behaviours of pedestrians. Our simulations show the rapid or-
dering of the initially randomly distributed pedestrians. In the
compact “crystallised” crowd, local misalignments emerge at ran-
dom sites, which are recognised as topological defects in two-
dimensional crystal37,40. With the outflow of pedestrians, the
microscopic crystalline structure underlying the crowd is under
persistent transformation, which exactly corresponds to the char-
acteristic annihilation and glide motion of topological defects in
the crystal. From the striking analogy between crowd dynam-
ics and crystallisation process, and in combination with statistical
analysis, we demonstrate the emergence of multiple fast tracks
resulting from the spontaneously formed crystal structure in the
escaping crowd. This work reveals the regularities in crowd dy-
namics from the perspective of crystallisation, and may provide
useful information for understanding crowd behaviours in evacu-
ation.

2 Model and method

We simulate the crowd dynamics of pedestrians based on the
SFM12. It assumes a mixture of physical and socio-psychological
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forces influencing the crowd behaviour by considering personal
motivations and environmental constraints. In this model, each
pedestrian i of mass mi and velocity vi tends to move by a desired
speed vp

i along a certain direction ep
i during the acceleration time

τi. The resulting personal desire force F p is:

F p = mi
vp

i ep
i − vi

τi
. (1)

Here, we note that the pedestrians are polarised to proceed to-
wards the exit, since the desired direction of motion always points
to the exit in the model. Furthermore, pedestrians psychologically
tend to keep a social distance between each other and avoid hit-
ting walls. This is modelled by introducing “interaction force” f i j
between pedestrians i and j and f iW between pedestrian i and the
wall, respectively. The total interaction force is

F int = ∑
j(6=i)

f i j +∑
W

f iW . (2)

Combining eqn (1) and (2), we obtain the acceleration equation

mi
dvi

dt
= mi

vp
i (t)e

p
i (t)− vi(t)

τi
+ ∑

j(6=i)
f i j +∑

W
f iW . (3)

The position vector ri(t) is updated by the velocity vi(t) = dri/dt.

The interaction force f i j between pedestrian i and j is spec-
ified as follows. With the distance di j = ||ri − r j|| between the
two pedestrians’ centres of mass, the psychological tendency of
pedestrian i to stay away from pedestrian j is described by a re-
pulsive interaction force Aiexp[(ri j − di j)/Bi]ni j, where Ai and Bi

are constants, indicating the strength and the range of the in-
teraction, and ni j = (n1

i j,n
2
i j) = (ri− r j)/di j is the normalised di-

rectional vector pointing from pedestrian j to i. The pedestri-
ans touch each other if their distance di j is smaller than the sum
ri j = ri + r j of their radius ri and r j. In our model, we specify
a uniform value for the size of each pedestrian (see Table 1)12.
While in reality the size of human body among the crowd is not
uniform, previous work on 2D crystallisation shows that the size-
polydispersity effect must be strong enough to disrupt the crys-
talline order38. The factor of size polydispersity among adult
pedestrians is thus ignored in this work. Inspired by granular in-
teractions, two additional forces are included in the model, which
are essential for understanding the particular effects in panicking
crowds: a “body force” k(ri j − di j)ni j counteracting body com-
pression and a “sliding friction force” κ(ri j − di j)∆vt

jit i j imped-
ing relative tangential motion, if pedestrians i and j are close
enough. Here t i j = (−n2

i j,n
1
i j) means the tangential direction and

∆vt
ji = (v j−vi) ·t i j the tangential velocity difference, while k and κ

are large constants, representing the bump and the friction effect.
In summary, the interaction force f i j between pedestrians i and j
is given by

f i j ={Aiexp[(ri j−di j)/Bi]+ kg(ri j−di j)}ni j

+κg(ri j−di j)∆vt
jit i j,

(4)

where the indicator function g(ri j−di j) is zero for ri j−di j < 0 and
it is equal to ri j−di j otherwise.

The interaction with the walls is treated analogously. By denot-
ing diW as the distance to wall W , niW as the direction perpendic-
ular to it, and t iW as the direction tangential to it, we have

f iW ={Aiexp[(ri−diW )/Bi]+ kg(ri−diW )}niW

−κg(ri−diW )(vi · t iW )t iW .

(5)

In the implementation of the SFM for large-scale systems, the
most time-consuming part is to compute the interaction forces.
For a N-particle system, the maximum number of pairwise in-
teractions is N(N− 1)/2, which leads to O(N2) time complexity.
In this work we adopt the cell-list method41 to avoid repeated
calculation of pairwise interactions and thus significantly reduce
the time complexity from O(N2) to O(N)42. The cell-list method
achieves this goal by dividing the physical space of the system
into equal grids called cells. Each particle is assigned to a specific
cell. In a two-dimensional system, each cell has eight neighbour-
ing cells and a cell together with its eight neighbouring cells are
called a cell neighbourhood (see Fig. 1). For each particle, we
only need to calculate the interacting forces between the parti-
cles within the cell neighbourhood.

Fig. 1 Schematic plot of the simulation scenario. Pedestrians are de-
picted by dots and walls are depicted by blue lines with an open door in
the right wall. Red grids are introduced to implement the cell-list method
for efficiently computing the interaction forces. See the main text for more
information.

3 Results and discussion
In this work we use the SFM to study a typical scenario of collec-
tive escape towards a single exit (see Fig. 1). Initially, N pedestri-
ans are randomly distributed in a square room of side length H0,
and the parameter values used in our simulation are presented in
Table 1, which largely follow Ref.12. For simplicity, the values for
mi, vp

i , τi, ri, Ai and Bi for each pedestrian are taken to be identi-
cal. The moment when the crowd start to run towards the exit is
denoted as t = 0. In our simulation, the state of motion is updated
according to eqn (3) by the time step ∆t. In particular, the inter-
action forces between pedestrians are computed by the cell-list
method. The edge length of each cell is set to be 2r+5B to ensure
that the contribution from the next nearest neighbouring cells is
negligibly small. The escape time for individual pedestrians is de-
noted as Tes, and the evacuation time for all the pedestrians to

2 | 1–8Journal Name, [year], [vol.],
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leave the room is denoted as Tev.

Table 1 List of parameters.

Variable Value Description
H0 30m side length of the room
N 1000 number of pedestrians
m 80kg mass of pedestrians
vp 1.0m/s desired velocity
τ 0.5s acceleration time
r 0.3m radius of pedestrians
A 2×103 N interaction strength
B 0.08m interaction range
k 1.2×105 kg/s2 bump effect
κ 2.4×105 kg/(m · s) friction effect
∆t 0.001s time step in simulation

3.1 Collective escape statistics
We analyze several statistics regarding escape of the pedestrians.
First, the simulations allow us to track the instantaneous collec-
tive escape rate, which is defined as the percentage of the pedes-
trians who have successfully exited the room: Nout/N where Nout

is the number of escaped pedestrians. The rate Nout/N is plotted
against time t in Fig. 2(a). The black curve is the average in-
stantaneous escape rate over 6000 independent simulations with
random initial conditions, and the red dashed curves show the re-
sults of several randomly selected sample simulation trials. From
the figure, we see that, despite of the highly nonlinear behav-
iors of individual pedestrians, the collective escape rate exhibits a
rather linear dependence on time over a long duration, indicating
a steady outflow of pedestrians. The escape curve becomes satu-
rated only at the end of the escape event, and the plateau lasts for
a relatively short duration. The evacuation time Tev of indepen-
dent simulations is also analyzed statistically, and the results are
shown in Fig. 2(b). The histogram of Tev is approximately a nor-
mal distribution. The curve of the collective escape rate Nout/N
and the histogram of the evacuation time Tev imply the existence
of statistical regularities underlying the highly complicated indi-
vidual motions of pedestrians.

3.2 Formation of multiple fast tracks
In this section we further explore the escape dynamics of the
crowd by examining the motion of individual pedestrians. In par-
ticular we are interested in this question: Where are the relatively
safer spots in the collective running of the pedestrians towards the
exit? To address this question, we focus on a group of pedestri-
ans within a narrow annulus around the exit, and track the es-
cape time of these pedestrians. The selected pedestrians are indi-
cated by red dots, as shown in Fig. 3. The distance between these
pedestrians and the exit is approximately equal. In simulations,
the annulus is created by drawing two adjacent circles centered
at the door with the radii R1 and R2, respectively. The annulus is
then equally divided into a number of zones. The spanning angle
of each zone is specified to ensure that each zone is occupied by
pedestrians. We perform abundant independent simulations with
random initial conditions.

By statistical analysis of the escape time of these pedestrians,
we identify the safe spots where pedestrians spend the least time

(a)

(b)

Fig. 2 Statistical analysis of the instantaneous escape rate in a typical
scenario of collective escape towards a single exit. The escape rate is
defined as the ratio Nout/N, where Nout is the number of pedestrians leav-
ing the room. (a) Plot of Nout/N versus time. The black solid curve is the
average instantaneous escape rate over 6000 independent simulations
with random initial conditions. The escape rates of randomly picked sim-
ulation runs are also plotted in red dashed curves. (b) The distribution of
the evacuation time Tev for the 6000 simulations.

to escape. The lower panel in Fig. 3(a) shows anisotropic feature
in the escape of crowd. The average escape time strongly depends
on the angle φ , which is defined in the upper panel in Fig. 3(a).
Remarkably, 〈Tes〉 reaches a deep minimum at φ = 90◦. The av-
erage escape time of the pedestrians near φ = 90◦ is only about
a fourth of those near the wall. Therefore, the pedestrians who
are initially along the axis perpendicular to the door spend sig-
nificantly less time to escape than those near the wall. Note that
analysis of the empirical data of individual crowd escape events
also shows the anisotropy feature in the distributions of escape
time, density and velocity in typical room evacuations21,43.

With the continuous outflow of the pedestrians, the crowd
spontaneously form a compact circular configuration, as shown
in Fig. 3(b)- 3(d). Note that no clogging occurs at the exit in
our system due to the relatively low desired speed (vp = 1.0m/s);
clogging may occur at high speed (vp > 1.5m/s)12. The local min-
ima developed on the 〈Tes〉-φ curves in Fig. 3(b) - 3(d) correspond
to the relatively safe spots. Remarkably, with the outflow of the
pedestrians, the trajectories of these safe spots constitute three
straight lines along the specific angles of φ = 30◦, 90◦ and 150◦,
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(a) (b) (c) (d)

Fig. 3 Emergence of multiple fast tracks resulting from the spontaneously formed crystal structure in the escaping crowd. Typical snapshots of crowd
configuration in the escape process are presented in the upper figures. The average escape time 〈Tes〉 of the pedestrians within the annulus between
R1 = 13.5m and R2 = 12.5m (indicated by red dots) is shown in the corresponding lower figures; the smaller annulus in (d) is between R1 = 7.5m
and R2 = 6.5m; the averaging procedure is over 6000 independent simulations with random initial conditions and the error bars are obtained from 50
independent values of 〈Tes(φ)〉. φ indicates the location of the pedestrian in the annulus. As the crowd is crystallised to a triangular lattice, valley
structures emerge in the 〈Tes(φ)〉 curve, which are identified as the fast tracks.

as indicated by the green lines in the upper panels in Fig. 3. These
lines are recognized as the fast tracks in the collective escape of
the crowd.

Here, it is natural to ask if the anisotropic feature of escape
time originates from the φ -dependent trajectories of pedestrians.
To check this point, we examine the dependence of 〈L〉/L0 on the
angle φ . 〈L〉 is the mean actual length of the trajectory over in-
dependent simulation runs, and L0 is the length of the straight
line connecting the initial and final positions of a pedestrian at
a specific angle φ . The actual trajectories of the pedestrians at
φ = 15◦ and φ = 90◦ are indicated by the green and red curves in
Fig. 5(a). The plot of 〈L〉/L0 versus the angle φ is presented in
Fig. 5(b). From the 〈L〉/L0 curves, which correspond to the four
cases in Fig. 3, we see that the local minima do not match the
angles of the fast tracks. As such, the emergence of the optimal
angles could not be understood by the trajectory-based analysis.
We are therefore led to examine the system from a new perspec-
tive.

3.3 The perspective of crystallisation and topological de-
fects

The special angles of the fast tracks revealed in the preceding sec-
tion provide an important clue. The appearance of these discrete
fast tracks may be related to a global order developed in the com-
pact packing of pedestrians.

To reveal the positional order of the pedestrians, we treat each
pedestrian as a point and perform Delaunay triangulation of in-
stantaneous crowd configuration by establishing bonds between

each pedestrian and the nearest neighbours37,40. This technique
has been widely used to quantitatively analyze crystalline struc-
tures37,40. An example of Delaunay triangulation is shown in
Fig. 5(a). We see the regular arrangement of pedestrians in the
form of a 2D triangular lattice; each vertex represents a pedes-
trian. Such a triangular lattice is disturbed by defects as indi-
cated by colored dots. Specifically, the red and blue dots rep-
resent pedestrians for whom the number of nearest neighbours
(i.e., the coordination number) deviates from six. Note that in a
perfect triangular lattice, the coordination number for each ver-
tex is always six. These coloured dots therefore indicate the local
disruption of the crystalline order. They are known as topological
defects, since they cannot be eliminated by continuous deforma-
tion of the medium37,40. A vertex with coordination number 5
and 7 are named five- and seven-fold disclinations, respectively.
These disclinations are elementary topological defects in crystal
lattice.

Interestingly, like electric charges, the disclinations carry topo-
logical charge that reflects their intrinsic property. Specifically,
the topological charge of an n-fold disclination is q = (6− n)π/3.
Charge q is positive if n < 6 and negative if n > 6. According to
elasticity theory, topological charges of the same sign repel and
unlike signs attract, which is analogous to electric charges38,40.
The five-fold (red dots) and seven-fold (blue dots) disclinations
tend to form pairs known as dislocations, as shown in Figs. 4(b)-
4(d).

In connection with our system, the complicated process of
achieving crystalline order in the compact crowd could be clar-
ified by the concept of topological defects. With the outflow of
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(a) (b) (c) (d)

Fig. 4 Crystallisation process in the collective escape. (a) Temporal variation of the six-fold bond-orientational order parameter 〈Φ6〉. The error bars
are obtained from 100 independent simulations. The vertical dashed line indicates the time when the three fast tracks appear. (b)-(d) Glide motion
of the disclocation as indicated by the green arrow in consecutive instantaneous configurations. The red and blue dots represent five- and seven-fold
disclinations, respectively. A dislocation consists of a pair of five- and seven-fold disclinations.

pedestrians, the microscopic crystalline structure underlying the
crowd is under persistent transformation. Simulations show that
this dynamical process exactly corresponds to the characteristic
annihilation and glide motion of topological defects in the crys-
tal. Annihilation of positive and negative topological charges re-
duces the number of defects and leads to ordered arrangement
of pedestrians. Furthermore, dislocations are abundantly gener-
ated near the exit with the outflow of pedestrians, and they tend
to glide swiftly towards the boundary of the crowd. These two
processes are crucial for achieving the crystallised state out of
the initially highly disordered configuration38,39. In Figs. 4(b)
- 4(d), we show that the dislocation as indicated by the green ar-
row swiftly glides along the direction that is perpendicular to the
line connecting the five- and seven-fold disclinations40. In this
typical scenario of glide motion, it takes about 2.7 seconds for
the dislocation to move from the position at Fig. 4(b) to that at
Fig. 4(d). In contrast, it takes about 8.4 seconds for a pedestrian
of typical speed of 1m/s to cover the same distance.

The crystallisation process could be characterized by the six-
fold bond-orientational order parameter37

Φ6 =
1
N

N

∑
i=1
| 1
nb

nb

∑
j=1

exp(i6θi j)|, (6)

where nb is the coordination number of the particle i, θi j is the
angle between the line connecting the particles i and j and some
chosen reference line, and N is the total number of particles. Note
that, to characterize the interior crystalline order, a few layers of
particles near the boundary and the exit are excluded in the cal-
culation for the order parameter. The temporal variation of 〈Φ6〉
is presented in Fig. 4(a); the error bars are obtained by statisti-
cal analysis of 100 independent simulations. The vertical dashed
line indicates the time when the three fast tracks appear. This ob-
servation indicates the strong connection of the emergence of the
three fast tracks and the full development of the crystalline order.

In the crystallised configuration of pedestrians, the principal
axes of crystal are invariant regardless of the microscopic motions
of topological defects. In fact, the transformation of the global
crystalline structure which could modify the orientations of the

principal crystallographic axes, requires the appearance of iso-
lated disclinations; this is a highly energetically costly process38.
In simulations, we observe that the orientations of the fast tracks
are always along the three specific directions in the entire evacu-
ation process. The central fast track that is perpendicular to the
wall emerges even before the crystalline order is developed, as
shown in Fig. 3(a). And in general it does not correspond to the
principal axes of the crystal. The other two fast tracks make an
angle of π/3 with respect to the central one; this specific angle
is a signature of the triangular lattice. The stability of the global
crystalline order well explains the invariance of the orientations
of the fast tracks. To conclude, the formation of the fast tracks
in the collective escape of human crowds has strong connection
with the global crystalline order developed in the configuration
of pedestrians.

3.4 Effects of uncertainty in human behaviours

As mentioned earlier, the motion of pedestrians is unambiguously
determined by the physical and socio-psychological forces. How-
ever, the behaviours of pedestrians in a crowded environment
could exhibit some degree of uncertainty as affected by fluctu-
ating psychological state and rapidly varying local environment.
We model the uncertainties in human behaviour by incorporating
a random force into the model. Here, we emphasize that adding
a noise term to the original deterministic SFM also provides an
opportunity to test the robustness of the model. The generalized
social force model is

mi
dvi

dt
= mi

vp
i (t)e

p
i (t)− vi(t)

τi
+ ∑

j(6=i)
f i j +∑

W
f iW + f N

i , (7)

in which the noise term f N
i is given by

f N
i = c

mvp

τ
εi. (8)

The white noise εi follows a two-dimensional Gaussian distribu-
tion N(0, I2). This approach takes into account the flexible usage
of space by pedestrians, which is essential to reproduce the empir-
ical observations in a natural and robust way 2. The prefactor c in
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(a)

(b)

Fig. 5 Statistical analysis of single pedestrian trajectories. (a) Trajec-
tories of typical pedestrians (see the red and green curves) in the crys-
tallised crowd. Crystallographic defects are indicated by coloured dots.
See the main text for more information. (b) Plot of 〈L〉/L0 versus the
angle φ . 〈L〉 is the mean actual length of the trajectory over 2000 inde-
pendent simulations with random initial conditions, and L0 is the length of
the straight line connecting the initial and final positions of a pedestrian
at a specific angle φ .

eqn (8) reflects the relative strength of the noise force in compar-
ison with the personal desire force. Note that eqn (7) represents
a particular active Brownian dynamics44. The active force orig-
inates from the tendency for each pedestrian to move towards
the exit, and the noise term is for modelling the uncertainties
in human behaviour. While the values of the parameters in the
model are specified according to Ref.12 by comparison with ex-
periments, the variation of these parameters implies the richness
in the collective dynamics of the active agents. The investigation
of eqn (7) as a model of active Brownian dynamics in the param-
eter space is beyond the scope of this work.

To systematically investigate the effect of the random be-
haviour of pedestrians, we vary the strength of the noise by tuning
the value of c in eqn.(8). Crystallisation phenomenon is observed
uniformly as the value of c is increased from 0.1 up to 100. The
plot of 〈Tes〉 versus φ under varying c is presented in Fig. 6(a). For

reference, the noise-free case of c = 0 is also plotted. Figure 6(a)
shows that adding a modest noise force does not qualitatively al-
ter the behaviours of the system, suggesting the robustness of the
model. When the value of c is as large as 100, the crowd exhibits
global migration which obscures the concept of fast tracks. We
also notice that the collision of the crowd with the wall leads to a
density wave propagating through the entire system. See Supple-
mental Materials for the videos of the simulated crowd dynamics
at c = 0, c = 10, and c = 100 using the parameters in Table 1.

3.5 Dilemma of escape strategy

We proceed to discuss the scenario of collective escape if all the
pedestrians know and adopt the strategy of running towards the
central fast track. To address this issue, we add a tendency force
on each pedestrian towards the line of the central fast track, and
update the crowd configuration by

mi
dvi

dt
= mi

vp
i (t)e

p
i (t)− vi(t)

τi
+ ∑

j(6=i)
f i j +∑

W
f iW + f T

i . (9)

For simplicity, f T
i is designed to be the gradient of a quadratic

potential Ui =
1
2 bd2

i , where di is the vertical distance from the
pedestrian i to the central horizontal line. The tendency force
increases linearly with di. b is the controlling parameter for
the strength of the tendency force. By writing b in the form of
b = 2c′mvp/H0τ, the relative strength of the tendency force is
controlled by c′. The plot of 〈Tes〉 vs φ is presented in Fig. 6(b).
Increasing c′ leads to the elevation of the curves. It indicates that
when all the pedestrians adopt the escape strategy, the average
evacuation time increases. Nevertheless, the relatively safe spots
are still located along the central line; the relative advantage of
the central line is reduced.

Finally, we emphasize that the results presented in this work
are derived from the theoretical SFM without considering rele-
vant factors in reality, such as the situation of injury and the intel-
ligent adaption of pedestrians to local environment. And we em-
phasize that the results derived in this work that is based on the
SFM are subject to experimental examination. Here, we briefly
discuss the social force model itself. This model has proven a
powerful tool to simulate complicated crowd dynamics by incor-
porating the socio-psychological element into the force model.
However, the socio-psychological forces in the model can be dis-
putable. It is natural to inquire to what extent the subtle psychol-
ogy and action of pedestrians upon various external stimuli can
be characterised by these forces. Our simulations suggest that the
emergent statistical law underlying the crowd dynamics is unaf-
fected by the modest random variation of individual behaviour.
This observation provides good evidence on the reliability of the
statistical laws derived from the model. But under larger fluc-
tuations of individual behaviours, such as non-local migration of
pedestrians, one has to revise the forces. A direction of interest
is to design smart rules of motion that endow the particles with
more free will; the spirit of combining the physical and socio-
psychological elements may be retained in the new model45.
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(a)

(b)

Fig. 6 Plot of the average escape time 〈Tes〉 of the pedestrians within the annulus

over 2000 independent simulations with random initial positions at varying condi-

tions. The record of the escape time starts at t = 56s for comparison with Fig. 3(c).

(a) Increasing the uncertainty in decision-making, as modelled by the noise level in

the model, does not affect the basic valley structures in the 〈Tes(φ)〉 curve. (b) In-

cluding the tendency of pedestrians towards the central fast track boosts the global

risk. See the main text for more information.

4 Conclusion

In summary, by conducting symmetric simulations with the so-
cial force model, we have revealed the ordering driven multiple
fast tracks in collective escape of human crowds, and clarified the
underlying mechanism by the exploiting the striking analogy of
crowd dynamics and crystallisation. Notably, the emergent topo-
logical defects and their characteristic dynamics play a crucial
role for shaping the global crystalline order and creating the fast
tracks. It is important to emphasize that, it is not our intention
to advocate any specific model of crowd dynamics. Although our
analysis in this work is based on the simulation results of SFM, we
conjecture, however, that the analysis methods proposed as well
as the link between crowd dynamics and crystallisation are not
dependent on SFM. To this end, it is of interest to explore such a
link using other popular crowd dynamics models46,47 and further
validate our analysis. Moreover, we appreciate that the proposed
mechanism interpretation needs to be further validated by experi-
mental studies, and we believe that such mechanism may provide
useful information towards more efficient crowd evacuation man-
agement.
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