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Abstract: Not only can waste rubber enhance the properties of concrete (e.g., its dynamic damping
and abrasion resistance capacity), its rational utilisation can also dramatically reduce environmental
pollution and carbon footprint globally. This study is the world’s first to develop a novel machine
learning-aided design and prediction of environmentally friendly concrete using waste rubber, which
can drive sustainable development of infrastructure systems towards net-zero emission, which
saves time and cost. In this study, artificial neuron networks (ANN) have been established to
determine the design relationship between various concrete mix composites and their multiple
mechanical properties simultaneously. Interestingly, it is found that almost all previous studies on the
ANNs could only predict one kind of mechanical property. To enable multiple mechanical property
predictions, ANN models with various architectural algorithms, hidden neurons and layers are built
and tailored for benchmarking in this study. Comprehensively, all three hundred and fifty-three
experimental data sets of rubberised concrete available in the open literature have been collected.
In this study, the mechanical properties in focus consist of the compressive strength at day 7 (CS7),
the compressive strength at day 28 (CS28), the flexural strength (FS), the tensile strength (TS) and
the elastic modulus (EM). The optimal ANN architecture has been identified by customising and
benchmarking the algorithms (Levenberg–Marquardt (LM), Bayesian Regularisation (BR) and Scaled
Conjugate Gradient (SCG)), hidden layers (1–2) and hidden neurons (1–30). The performance of the
optimal ANN architecture has been assessed by employing the mean squared error (MSE) and the
coefficient of determination (R2). In addition, the prediction accuracy of the optimal ANN model has
ben compared with that of the multiple linear regression (MLR).

Keywords: ANN; mechanical properties; environmentally friendly concrete; rubberised concrete;
MLR; sustainable concrete

1. Introduction

Rubber or elastomer is a common material and is widely used as an essential material
in the manufacture of tires. Because the demand for rubber has continued to increase
over time, the global consumption of rubber in 2017 was 13,225 thousand metric tons of
natural rubber and 15,189 thousand metric tons of synthetic rubber [1]. The generation
of waste rubber in the EU is estimated to be more than 1.43 billion tons per year and
has been growing at a rate comparable to the EU’s economic growth. Nearly 5 billion
tires, including stacked tires, will have been discarded by 2030 [2]. Thus, the utilisation
of waste rubber resources is seen as an effective method for reducing their adverse effects
on the environment, maintaining natural resources and reducing the demand for storage
space [3]. At present, the main methods for the disposal of waste rubber are incineration
and burial. There is a detrimental effect on the environment when waste rubber is burned
because of the emissions of carbon dioxide and cyanide. According to the American Rubber
Manufacturers Association Report, only approximately 5.5% of waste rubber is used for
civil engineering. If more waste rubber is reused, more resources can be saved and negative
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effects on the environment can be reduced. As the primary source of waste rubber, scrapped
tires, being an important waste material, have been studied and examined in relation to
the field of construction [4]. The application of discarded automobile rubber tires in the
civil engineering industry can be traced back to the last century. Waste rubber tires mainly
ended up in landfill or were used as cushioning materials until the 1960s when rubber tires
began to be used on a large scale in the construction industry due to the increasing amount
of waste and enhanced environmental protection plans [5]. Therefore, waste rubber is
now used as a substitute for aggregates (as either fine or coarse aggregates). When using
discarded rubber tires to wholly or partially replace fine aggregates, the resulting concrete
is lighter in weight. By using rubber tires instead of coarse aggregates, the elasticity and
energy absorption capacity of the concrete are increased accordingly [6,7]. Moreover, the
shrinkage of rubberised concrete increases with the increase in rubber sand content [8].
Research articles have shown a growth in the noise reduction coefficient with an increase in
rubber replacing sand. Therefore, replacing aggregates with waste rubber in concrete at an
opportune ratio not only supports the improvement of the performance of the concrete but
also avoids the environmental pollution and waste of resources caused by conventional
treatments [9,10]. The use of waste rubber can help engineers and stakeholders achieve a
system’s zero emission status in a faster and safer manner. This practice will fundamentally
underpin the United Nation’s sustainable development goals (SDGs) as well as the “race
to zero” campaign.

Although there is a huge potential in the substitution of aggregates with waste rubber,
the weakness in the mechanical properties and the durability of concrete due to the poor
performance of rubber in bonding cement particles has been mentioned [11–14]. Thus,
various methods for improving the durability and the mechanical properties of concrete
have been proposed. For instance, the following treatments of rubber have been employed
to improve the compressive strength of rubberised concrete: water soaking and washing,
utilising rubber particles with large sizes, NaOH treatment, treatment with acetone or
ethanol [15,16]. Furthermore, an innovative method, compression concrete casting, has
been proposed to improve the compressive strength and elastic modulus of rubberised
concrete. When 20% of the coarse aggregates in compressed concrete samples was replaced
with rubber particles, the compressive strength and elastic modulus of the concrete were
enhanced by 35% and 29%, respectively [17,18]. Regarding the flexural strength, the
splitting tensile strength and the elastic modulus, the methods of water washing, water
soaking and coating with cement paste were seen to enhance these properties. In order to
obtain rubberised concrete with promising workability, rubber particles were added into a
mixer with other concrete components, with the exception of water for dry mixing, and
then water was added as the other components were mixed homogeneously [16].

Machine learning is often referred to as being part of the artificial intelligence used to
analyse data to make smart decisions [19]. It is a method of realising artificial intelligence
which has the ability to learn and predict data [20]. By adopting machine learning, it is
possible to predict the performance of rubberised concretes that have different compositions.
Machine learning can be developed by a variety of algorithms which are commonly
classified into four different learning types according to their learning style: supervised,
unsupervised, semi-supervised and reinforcement learning [21]. Supervised learning is
suitable for data that have features and labels. In other words, data are provided to predict
the labels. Unsupervised learning is only used in features with no labels, which means
that data are provided to look for hidden structures. The difference between the above
two styles is that supervised learning only uses labelled sample sets for learning, while
unsupervised learning only uses unlabeled sample sets. For semi-supervised learning,
some of the data are unlabelled, but most of it is labelled. Compared to supervised
learning, the cost of semi-supervised learning is lower, but it can achieve higher accuracy.
Reinforcement learning also uses unlabeled data, but it is possible to see whether it is
getting closer or further away from the correct answer. In engineering design, computer-
aided methods such as machine learning and data statistics have been effectively used and
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can provide powerful benefits [22], especially when dealing with materials with complex
variables and high uncertainty, such as composite materials [23]. A number of studies have
shown that machine learning models have been widely applied and used as valuable tools
for the prediction of the mechanical properties of concrete [24–26].

An artificial neuron network (ANN), a type of machine learning, is a simplified
mathematical model that can simulate the function of natural biological neural networks
to learn from past experience for solving new problems [27,28]. Since a large amount
of data, such as compositions and properties of concrete, needs to be processed, the
ordinary statistical methods cannot be sufficiently applied to the prediction of concrete
properties. Furthermore, the prediction accuracy of the ordinary statistical methods may
not be satisfied without proper algorithmic support. Based on previous experimental
results, ANN models were used for predicting the mix proportion of polymer concrete
to demonstrate the potential in saving time and costs [27,29]. Moreover, an ANN model
with one hidden layer and 11 hidden neurons was utilised for predicting the compressive
strength of concrete containing silica fume; 0.9724 of the R2 value indicating the high
prediction accuracy of the ANN model was obtained. An acceptable MSE value of the
ANN model employed for estimating the compressive strength and elastic modulus of
lightweight concrete was also acquired [30]. Therefore, it is clear that ANN can be selected
as the suitable training method for this study. According to the previous studies related to
the ANN for concrete property prediction, it can be found that the ANN was employed for
predicting only one output in almost all previous studies. However, in reality, multiple
mechanical properties are often required as part of engineering design and technical
specifications. If an ANN model can predict multiple outputs (i.e., mechanical properties)
with a satisfactory prediction accuracy, the optimal design and prediction of the concrete
properties can be established, resulting in a reduction in material wastes and unnecessary
costs. Thus, it is essential to automate the concrete design and prediction, which can
improve waste management strategies towards net-zero built environments.

A typical structure of the ANN is demonstrated in Figure 1. It usually consists of
three parts, the input layer, the output layer, and one or more hidden layers. Each layer
has different numbers of neurons linked together by connections. In order to improve
the accuracy of an ANN model, it is generally recommended to set one and two hidden
layers containing multiple neurons. Moreover, the weight consists of the sum of regression
coefficients and bias. The corresponding weight of layers can be added to each connection.
An ANN model can be optimised by adjusting the weight during the training process until
the error is reduced to an acceptable level [31]. Furthermore, the sigmoid function can
be applied as the active function to analyse the effect of input elements and the weight
on this element being processed [32]. For an ANN model, the number of hidden layers,
connections and neurons are confirmed by the complexity of the raw data. The more
complex the raw data are, the more hidden layers and neurons there are [33]. In order to
obtain a high-accuracy model, the number of hidden layers and neurons of the model can
be modified and compared in this study.

The aim of this research is to establish a novel machine learning apporach capable of
designing and predicting multiple mechanical properties of rubberised concrete with vari-
ous compositions. The ANN models are found to be capable of managing the complicated
relationships between the inputs and outputs and of designing rubberised concrete that en-
hances resource conservation and environment protection by decreasing the experimental
cost. Firstly, 335 experimental data sets of rubberised concrete properties with different
compositions have been collected from published articles in open literature. Subsequently,
the ANN models with different architectures (1–2 hidden layers and 1–30 hidden neu-
rons) have been designed utilising MATLAB. Then, the optimal ANN architecture can be
determined, followed by the performance evaluation. Finally, the prediction accuracy of
multiple linear regression (MLR) conducted in the comparative analysis section is com-
pared with that of the optimal ANN architecture capable of designing and predicting
multiple mechanical properties of rubberised concrete.
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Figure 1. The structure of the artificial neural network (ANN).

2. Materials and Methods
2.1. Data Collection

The data used in this research have been collected from published articles in the open
literature. In order to import data into the machine learning model in MATLAB, two items
of the data sets for the pre-treatment method of rubber have been replaced by digitisation
numbers described in Table 1. The data set size of the cement type and the ratio of rubber
replacement are listed in Tables 2 and 3, respectively.

Table 1. The representation of numbers for the pre-treatment rubber method.

Number Representation

1 No special treatment
2 Pre-treated with NaOH
3 Pre-coated with limestone

Table 2. The representation of numbers for the cement type.

Number Representation

1 Portland Cement of Grade 32.5
2 CEMI High Strength Portland Cement (52.5 MPa)
3 Ordinary Portland Cement grade 42.5
4 ASTM C150 I (Ordinary Portland Cement Type I)
5 Portland Cement (42.5 MPa)
6 ASTM C150 II (Ordinary Portland Cement Type II)
7 AS 3972 for Type GB (Blended) cement



Sustainability 2021, 13, 1691 5 of 26

Table 3. The replaced ratios of rubber and the cement type.

Data Set Size Cement Type Replacement by Rubber Reference

8 1 1%, 3%, 5%, 10%, 15%, 20% [34]
3 2 3%, 5%, 8% [35]
5 3 5%, 10%, 15%, 20%, 30% [36]
12 4 5%, 10%, 15%, 20% [37]
9 2 5%, 10%, 15% [38]
27 5 5%, 10%, 15%, 20%, 25%, 30% [39]
6 4 5%, 10%, 15% [40]
8 4 5%, 10%, 15%, 20% [41]
3 6 5%, 7.5%, 10% [42]
9 3 5%, 10%, 20% [43]
9 4 5%, 10%, 15% [40]
3 5 5%, 10%, 15% [44]
5 1 9%, 15%, 30%, 58.80%, 100% [45]
9 4 10%, 20%, 30% [46]
6 6 10% [47]
10 4 25%, 50%, 75%, 100% [48]
12 4 5%, 10%, 15%, 20% [49]
9 7 20% [50]
7 1 15%, 25%, 30%, 50%, 75%, [51]
48 4 2.5%, 5%, 10%, 15%, 25%, 50% [52]
24 1 5%, 10%, 15%, 25%, 30%, 40%, 50% [53]
9 1 10%, 20%, 30% [46]
11 4 5%, 10%, 15%, 20%, 40% [54]
5 4 5%, 10%, 15%, 20%, 30% [6]
5 5 20%, 40%, 60%, 80%, 100% [55]
15 5 5%, 10%, 15%, 20%, 25% [56]
4 4 10%, 20%, 30%, 40% [57]
16 4 5%, 10%, 15%, 20% [58]
4 3 4%, 4.5%, 5%, 5.5% [59]
53 4 5%, 10%, 15%, 20%, 25% [60]

The collected rubberised concrete data in this research have been mainly categorised
into three aspects: mandatory elements, characteristic elements and output elements as
described below.

• Mandatory Elements (ME)

In this research, ME includes the percentage of rubber replacement (RR), the particle
size of rubber (PSR), the proportion of fine aggregates (FA), the moisture content of fine
aggregates (MCFA), the particle size of fine aggregates (PSFA), the proportion of rubber (R),
the pre-treatment method of rubber (PR), the proportion of cement (C), the cement type
(CT), the proportion of water (W), the proportion of water-reducing admixture (WRM), the
proportion of coarse aggregates (CA), the particle size of coarse aggregates (CAPS), and
the water–cement ratio (WCR).

• Characteristic Elements (CE)

CE indicates the parameters which are not included in all data sets, such as the
proportion of slag (SG), the proportion of fly ash (FA) and the proportion of silica fume (SF).

• Output Elements (OE)

In this research, compressive strength at day 7 (CS7) and compressive strength at day
28 (CS28) of rubberised concrete, flexural strength (FS), splitting tensile strength (STS) and
elastic modulus (EM) are considered as OE.

According to the aforementioned data sets classification, ME, CE and OE are the inputs
and outputs of the ANN models accordingly. Table 4 shows the range of these parameters.
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Table 4. The range of the inputs and outputs.

Parameter Unit Minimum Maximum

RR (%) 1.00 100.00
PSR (mm) 0.00 21.50
FA (kg/m3) 0.00 1116.00

MCFA (%) 1.00 9.00
PSFA (mm) 2.00 5.00

R (kg/m3) 9.00 549.00
PR
C (kg/m3) 280.00 540.00

CT
W (kg/m3) 115.00 453.00

WRM (kg/m3) 0.00 15.00
SG (kg/m3) 0.00 165.00
FA (kg/m3) 0.00 156.00
SF (kg/m3) 0.00 362.80
CA (kg/m3) 0.00 1493.00

CAPS (mm) 6.00 20.00
WCR 0.25 0.70
CS28 (N/mm2) 0.37 79.10
CS7 (N/mm2) 0.20 48.30
FS (N/mm2) 0.04 10.65

STS (N/mm2) 0.15 14.80
EM (kN/mm2) 1.10 40.90

2.2. Data Processing
2.2.1. Data Normalisation

In this study, data normalisation is proposed to reduce the negative influence of singu-
lar sample data in the intermited data clusters. Moreover, implementing data normalisation
can avoid the overfitting problem. The reason is that different variables contain different
dimensions, which may generate impacts on the data analysis [61]. Applying the data
normalisation is able to limit data values within the range between zero and one that can
enhance the comparability of data. The inputs and outputs in this research have been
processed with the data normalisation method by utilising Equation (1) [62].

Xi =
X− Xmin

Xmax − Xmin
(1)

where, Xi denotes the normalised data, X indicates the experimental data, Xmax and Xmin
denote the maximum and minimum experimental data. By using the function, mapminmax,
installed in MATLAB, the data normalisation was conducted.

2.2.2. Data Importation

Three hundred and fifty-three data sets are introduced to the ANN models for pre-
dicting mechanical properties of rubberised concrete. All imported data sets are randomly
divided into three parts for training, validation and testing, respectively. The fixed alloca-
tion ratios of data sets between training, validation and testing aspects are 70%, 15% and
15%. The data sets for training are utilised for training models by modifying weights. The
validation sets are used to adapt the model selection, that is, to do the final optimisation
and determination of models, such as choosing the number of hidden neurons and hidden
layers; while the testing set is purely to prove the generalisation of the trained models.

The raw data have been divided into the inputs and outputs data and then were
imported into a workspace. Two data files are created in the workspace in this research, with
“Input data” being a 17 × 353 matrix representing static data which has been composed of
353 samples of 17 elements. For those data sets without characteristic elements, the missed
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data are replaced by zero. Meanwhile, “Output data” is a 5 × 353 matrix, representing
static data constituted of 353 samples of 5 elements.

2.3. The Optimum ANN Architecture Selection
2.3.1. Toolbox Selection

The neural net fitting toolbox installed in MATLAB has been selected as the training
application in this study. It is noted that the output elements are continuous variables,
which implies that a regression model is very suitable.

2.3.2. Hidden Layers and Neurons Determination

The numbers of hidden layers and neurons are essential to improve the accuracy of
ANN models. Redundant and insufficient hidden neurons may cause overfitting and un-
derfitting issues, respectively, due to inappropriate estimation of the relationship between
the inputs and the outputs [30]. Moreover, according to previous research, there are three
rules to assist in determining the appropriate number of hidden neurons [63,64].

• The number of hidden neurons should be between the size of the input layer and the
size of the output layer.

• The number of hidden neurons should be 2/3 of the size of the input layer plus 2/3 of
the size of the output layer.

• The number of hidden neurons should be less than double the size of the input layer.
• Besides, another method for determining neurons of ANN models is proposed in

Equations (2)–(4) [65–67].

Nh =

√
1 + 8Ni − 1

2
(2)

Nh = Ni − 1 (3)

Nh =
4Ni

2 + 3
Ni

2 − 8
(4)

where Nh denotes the neurons in the hidden layers and Ni indicates the neurons in the
numbers of inputs.

Based on the rules above, the number of hidden neurons in this research has been set
to 1, 5, 10, 15, 20, 25, 30 for each hidden layer and they are, respectively, substituted into
the ANN models. For the number of hidden layers, there is not any guidance on how to
specify it. Seven pertinent published articles related to the ANN architecture are listed in
Table 5. It can be observed that 1–3 hidden layers and 5–40 hidden neurons were employed
in the ANN models for predictions of concrete properties, respectively. It is clear that the
customisation of ANN models is necessary. Thus, one and two hidden layers have been
utilised in this research accordingly.

Table 5. ANN models of published articles.

ANN Architecture Output Statistical Index Ref

(2-5)-(4-6)-1 Compressive strength R, MSE [68]
16-40-1 Elastic modulus R2, RMSE, MAPE [69]
8-9-8-2 Tensile strength RMSE, R2, MAPE [32]
6-15-1 Compressive strength R2 [70]

8-17-17-17-1 1 Compressive strength R2, RMSE, MAPE [71]
6-10-1 Compressive strength R, R2, RMSE, MAPE [72]
4-5-1 Compressive strength R2, RMSE, MAE [73]

1 8-17-17-17-1 indicates “8” elements in the input layer, “1” element in the output layer and “17” hidden neurons
in each of three hidden layers.
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2.3.3. Algorithms Selection

Three algorithms are employed in this study to compare and indicate an optimal
performance of ANN models, such as the accuracy and the time consumption of trained
models. Levenberg–Marquardt (LM), Bayesian Regularisation (BR) and Scaled Conjugate
Gradient (SCG) algorithms are utilised in this study and the detailed information of the
algorithms are listed as follows.

• LM

LM is an algorithm that provides a solution of the numerical nonlinear minimisation.
The significance of LM algorithm is that it can simultaneously achieve the advantages of
the Gauss–Newton method and the gradient descent algorithm by changing parameters.
Furthermore, LM algorithm can improve the shortcomings of both algorithms. The LM
algorithm is a type of upgraded Newton method shown in Equation (5) [74–76].

xk+1 = xk − [JT J + uI]
−1

JTe (5)

where, I indicates the identity matrix, e represents the vector, J is a Jacobian matrix, xk
denotes the weight at epoch K, and u is a damping factor. In order to get more accurate
models, u can be increased or dropped according to the success or failure of steps, and then
the performance function can be enhanced.

• BR

BR algorithm is capable of reaching the generalisation by applying an excellent combi-
nation of weights and square errors on the basis of LM optimisation. Equation (6) can be
written to explain the objective function by employing the weights of networks [77].

F (w) = αEw + βED (6)

where, ED denotes the value of errors, Ew indicates the value of weights, and α and β
represent the function parameters. Moreover, in order to determine the optimal α and β
parameters, Equation (7) is proposed [78].

P (α, β|D, M) =
P (D|α, β, M)P (α, β| M)

P (D|M)
(7)

where, D stands for the distributed weight, M denotes the optimum architecture of net-
works, P (D|α, β, M), P (D|M) and P (α, β| M) indicate the likelihood function, the
normalisation parameter and the initial regularisation factor, respectively. The operating
processes of BR are as follows. Firstly, the optimum values of α and β are determined
by Equation (7). Thereafter, the parameters, α and β, are confirmed by employing Bayes’
theorem. Moreover, the optimum α and β are determined when the P (D|α, β, M) reaches
the maximum value. Subsequently, the optimum weight is confirmed according to the
minimum value of the Hessian matrix in LM operation. Finally, the values of α and β keep
changing simultaneously until the convergent of models is reached [74,78].

• SCG

SCG algorithm is a combination of LM and CG approaches [79]. With respect to the
gradient descent algorithms, a costly linear searching direction must be determined. The
response analysis of all data sets has to be repetitively conducted for multiple calculations
during each direction searching. The application of SCG does not require the implementa-
tion of a linear search in each iteration, which can dramatically save time [78,80].

By following the selection approach of hidden layers, neutrons and algorithms selec-
tion, a variety of tailored architectures of the ANN models in this study can be listed in
Table 6.
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Table 6. The parameters of various ANN architectures.

Parameter Value

Training function LM, BR, SCG
Hidden layer 1;2

Hidden neurons 1,5,10,15,20,25,30

Epochs 1000
Performance evaluation MSE, R2

Transfer function Tansig 1

Performance goal 0
1 Tansig: nonlinear hyperbolic tangent sigmoid function.

2.3.4. Performance Evaluation of ANN Architectures

In this study, customised combinations of different hidden neurons (1, 5, 10, 15, 20, 25,
30), hidden layers (1–2) and LM, BR and SCG algorithms have been employed. Furthermore,
each pattern of ANN architectures has been trained for five times to improve the accuracy
of models. In order to investigate the performance of the trained models in this study, two
statistical analyses named MSE and R2 are employed. MSE is the average value of the
cost function for minimising the sum of squared errors (SSE) during the linear regression
model fitting process. This represents the mean square error between the predicted and the
actual value. MSE value is calculated according to Equation (8) [68]. The lower MSE value
indicates a trained model with higher accuracy.

MSE =
1
n

n

∑
i=1

(y′i − yi)
2 (8)

where n is the number of samples, and (y′i − yi) is the result of the experimental value
minus the predicted value on the testing sets being processed.

Moreover, R2 value is employed as an assistance method to determine the performance
of trained models defined in Equation (9). R2 value exhibits the percentage of real value
changes, which can be influenced by the variation of the predicted value. The range of R2

value is from zero to one. Considering Equation (9), the numerator part represents the sum
of the squared difference between the real value and the predicted value, similar to MSE.
The denominator part represents the sum of the squared difference between the real value
and the mean [70]. If the result is 0, it means that the model fits poorly. If the result is 1,
it means that the model is error-free. Generally, the larger the R2 value is, the better the
model fitting effect is.

R2 = 1− ∑n
i=1(y′i − yi)

2

∑n
i=1 (yi − y)2 (9)

According to the aforementioned sections, the main steps to attain the optimum ANN
architecture selection are demonstrated in Figure 2.

Figure 2. Main steps of the optimum ANN architecture selection.
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3. Results and Discussion
3.1. Optimum ANN Architecture Determination

The optimal ANN architecture is confirmed by embarking on the ANN architecture
selection steps mentioned in the previous section. The MSE and R2 values of the test-
ing sets are defined as the performance evaluation index of all ANN architectures with
1–2 hidden layers and 1–30 hidden neurons, which are listed in Table A1. For instance, the
ANN architecture LM-17-1-1-5, can be explained as the architecture employing the LM
algorithm consisting of 17 input elements, five output elements, and one hidden neuron
in two hidden layers. Figures 3 and 4 visually illustrate MSE and R2 values of all ANN
architectures, respectively. The MSE value of all ANN architectures with one hidden layer
is demonstrated in Figure 3a. From Figure 3a, the MSE values of the ANN models with SCG
algorithm fluctuate around 20 within 30 hidden neurons. Furthermore, the MSE values of
the ANN with LM and BR algorithms moderately decrease from 26.4407 to 12.5805, and
from 23.1850 to 8.7459 when the hidden neurons are modified from one to ten and one
to fifteen, respectively, followed by a dramatic increase in the MSE value from 8.7459 to
29.3400, and from 12.5805 to 51.8540 within 30 neurons. Moreover, the MSE values of
all ANN architectures with two hidden layers are demonstrated in Figure 3b. Based on
Figure 3b, the MSE values of all ANN architectures with two hidden layers go through
slight drops within the first 15 hidden neurons in general. Thereafter, the MSE value of the
ANN models with LM, BR and SCG algorithms decreases from 21.5373 to 7.2420, 28.2334 to
9.1582 and 25.4727 to 11.6450 when the hidden neurons are changed from one to ten, one
to five and one to fifteen, respectively. Subsequently, the MSE values of the ANN with LM
and BR algorithms soar between 7.2420 and 30.3840, and between 9.1582 and 54.9310 from
ten to fifteen hidden layers and five to twenty hidden layers, respectively. Meanwhile, the
MSE value of the ANN model with SCG slightly increases from 11.6450 to 22.2361 between
15 and 30 hidden neurons. Afterwards, the MSE values of the ANN models with LM and
BR algorithms moderately drop from 30.3840 to 19.0260, and from 54.9310 to 39.5577 when
the hidden neurons are changed from 15 to 30, and from 20 to 30, respectively. It can be
concluded that the minimum MSE values of ANN architectures with one and two hidden
layers are 8.7459 and 7.2420 derived from LM-17-15-5 and LM-17-10-10-5, respectively. The
increasing MSE values of ANN models with various architectures can be attributed to two
problems: (i) the underfitting problem, and (ii) the overfitting problem. Considering the
underfitting problem, the learning capacity of ANN models is relatively low because the
numbers of the hidden layers or neurons of ANN models are rather insufficient to stimulate
the complicated relationships between the inputs and the outputs, then resulting in a weak
generalisation capacity of ANN models. On the contrary, the overfitting problem occurs
when the learning capacity of ANN models is overly high. In other words, every single da-
tum can be captured by ANN models. Thus, the MSE value of ANN models soars because
the generalisation capacity of ANN models decreases owing to the overfitting problem.

With regard to Figure 4a,b, the trend of changes in R2 value is observed to be the same
as the MSE value shown in Figure 3a,b. The maximum R2 value of ANN architectures
with one hidden layer and two hidden layers are 0.9626 and 0.9710 at LM-17-15-5 and
LM-17-10-10-5, respectively. It can be summarised that the ANN architecture with LM
algorithm, which consists of two hidden layers with ten neurons in each layer, shows the
lowest MSE value but the highest R2 value of 7.2420 and 0.9710, respectively. Thus, the best
ANN architecture for predicting multiple mechanical properties of rubberised concrete is
LM-17-10-10-5.

The optimal ANN architecture for predicting multiple mechanical properties of rub-
berised concrete has been determined by utilising different algorithms (LM, BR and SCG),
hidden layers (one and two layers) and hidden neurons (1, 5, 10, 15, 20, 25, 30) in this study.
Each of the ANN architectures contains 17 inputs and five outputs. The comparison of
each experimental and predicted mechanical property by employing the optimal ANN
architecture, LM-17-10-10-5, is exhibited in Figure 5. The R2 value indicates the capacity
of ANN models for predicting each mechanical property of rubberised concrete. The
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line charts demonstrate the difference between the experimental and the predicted value.
Regarding Figure 5a–d,i,j, the R2 values of CS7, CS28 and EM are 0.9552, 0.9641 and 0.9576,
respectively. The R2 value of these mechanical properties is recognised as a high prediction
accuracy. The R2 value of the ANN model, which predicts FS, is 0.8493 that is relatively
lower than that of the ANN models for predicting CS7, CS28 and EM. Moreover, the R2 of
the ANN model for predicting STS, 0.6545, is the lowest among all ANN models in this
study. Based on Figure 5h, the fitting line cannot coincide completely with the Y = T line.
Namely, there is a certain degree of deviation between the two lines. This phenomenon also
can be found in Figure 5g. For instance, the predicted STS is 5.70 MPa and 4.54 MPa, which
are significantly lower than the experimental STS of 8.00 MPa and 7.00 MPa at sample
256 and sample 225, respectively. This phenomenon can be attributed to the underfitting of
the model. The ANN model is too simple to explain the relationship between the inputs
and STS.

Figure 3. (a) The mean squared error (MSE) value of ANN architectures containing one hidden layer;
(b) the MSE value of ANN architectures containing two hidden layers.
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Figure 4. (a) The value of R2 ANN architectures containing one hidden layer; (b) The R2 value of ANN architectures
containing two hidden layers.
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Figure 5. (a) Experimental compressive strength at day 7 (CS7) vs. predicted CS7; (b) R2 value of the
model for predicting CS7; (c) experimental compressive strength at day 28 (CS28) vs. predicted CS28;
(d) R2 value of the model for predicting CS28; (e) experimental FS vs. predicted FS; (f) R2 value of
the model for predicting FS; (g) experimental STS vs. predicted STS; (h) R2 value of the model for
predicting STS; (i) experimental EM vs. predicted EM; (j) R2 value of the model for predicting EM.
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3.2. Comparative Analysis

In the previous section, the optimal ANN architecture has been selected as LM-17-10-
10-5 by comparisons using the MSE and R2 values. Linear regression has been commonly
utilised to simulate the complicated relationship between the dependent and independent
factors. To inspect the prediction accuracy of the optimal ANN architecture, MLR has been
adopted in this study. Therefore, the prediction accuracy of both methods is defined by
employing R2. The higher the R2 value, the better the prediction accuracy. The complicated
relationship between 17 inputs and five outputs is calculated by employing MLR, explained
in Equation (10) [30].

y = a0 + a1x1 + a2x2 + . . . + amxm (10)

where, y indicates the predicted mechanical properties, xm denotes the independent vari-
ables, a0 denotes the y-intercept, and am indicates the regression coefficients. The regression
coefficients are similar to the traditional regression models by applying the least square
method shown in Equation (10). Therefore, the best function can be identified by min-
imising the sum of squared errors between experimental and predicted values. MLR has
been conducted by employing “SPSS Statistics R27” in this study. The data sets are split
at a ratio 8:2 for training and testing. The R2 value of each predicted mechanical property
derived from MLR and the optimal ANN model are demonstrated in Table 7. According to
Table 7, the R2 values of MLR for predicting the CS7, CS28, FS, STS and EM of rubberised
concrete are 0.660, 0.673, 0.601, 0.460 and 0.773, respectively. It is evident that the R2 value
of MLR is relatively lower than that of the optimal ANN model. It can be interpreted
that the prediction accuracy of MLR for predicting mechanical properties of rubberised
concrete is lower than that of the ANN models. Wherein, the attention should be paid to
STS prediction of MLR. Note that the R2 value of MLR for STS prediction (around 0.460)
is much lower than those of the other prediction models for mechanical properties. The
reason can be attributed to the fact that the relationship between the inputs and the tensile
strength is nonlinear. Of interest, the same phenomenon occurs when STS is predicted by
employing ANN models.

Table 7. R2 value of multiple linear regression (MLR) and the ANN model.

Predicted Mechanical Properties MLR ANN (LM-17-10-10-5)

CS7 0.660 0.9552
CS28 0.673 0.9641

FS 0.601 0.8493
STS 0.460 0.6545
EM 0.773 0.9576

4. Conclusions

This study is the world’s first to establish a novel machine learning-aided design and
prediction of eco-friendly rubberised concrete, enhancing engineering applications for
sustainable infrastructures towards net-zero emission. The advanced machine learning
approach is capable of designing and predcting multiple attributes (i.e., mechanical proper-
ties) simultaneously, which is a key novelty of this study. This approach is more rational
and practical since, in reality, engineers need to satisfy all limit states criteria (for both
serviceability and ultimate conditions). To enable the study, a comprehensive collection of
353 data sets consisting of 17 input elements of pertinent rubberised concrete including its
five mechanical properties as outputs have been collected from all reputable sources in the
open literature, and have been processed for training and testing a variety of ANN models.
ANN models with 1–2 hidden layers, 1–30 hidden neurons and three types of algorithms
(LM, BR and SCG) have been designed, validated and evaluated by benchmarking the R2

values and MSE values. Subsequently, the optimal ANN architecture, which best predicts
the outcome, has been customised and obtained as LM-17-10-10-5. Then, the R2 value
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acting as the prediction accuracy index of MLR was compared with that of the optimal
ANN model. The conclusions can be drawn as follows:

• The ANN architecture with LM algorithm, two hidden layers and ten hidden neurons
in each hidden layer is the optimal option for simultaneously predicting multiple
mechanical properties of eco-friendly rubberised concrete.

• Based on the MSE (7.2420) and R2 (0.9710) values of the optimal ANN architecture,
excellent prediction accuracy of the machine learning can be attained.

• The R2 value of MLR is relatively lower than that of the optimal ANN model. This
traditionally implies that the prediction accuracy of the ANN model is relatively
higher than that of MLR.
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Appendix A

Table A1. MSE and R2 value of all ANN architectures.

Training Group ANN Architecture MSE Value Average Value R2 Value Average Value

LM-17-1-5

LM-17-1-5-1 19.608

23.1850

0.915

0.9026
LM-17-1-5-2 27.179 0.889
LM-17-1-5-3 23.363 0.906
LM-17-1-5-4 20.507 0.907
LM-17-1-5-5 25.268 0.895

BR-17-1-5

BR-17-1-5-1 24.124

26.4407

0.908

0.8955
BR-17-1-5-2 27.455 0.889
BR-17-1-5-3 26.468 0.889
BR-17-1-5-4 24.760 0.896
BR-17-1-5-5 29.395 0.895

SCG-17-1-5

SCG-17-1-5-1 28.627

20.1789

0.880

0.9166
SCG-17-1-5-2 28.075 0.882
SCG-17-1-5-3 13.612 0.946
SCG-17-1-5-4 13.645 0.944
SCG-17-1-5-5 16.935 0.930

www.risen2rail.eu


Sustainability 2021, 13, 1691 20 of 26

Table A1. Cont.

Training Group ANN Architecture MSE Value Average Value R2 Value Average Value

LM-17-5-5

LM-17-5-5-1 45.467

17.7134

0.816

0.9281
LM-17-5-5-2 15.738 0.937
LM-17-5-5-3 9.336 0.961
LM-17-5-5-4 7.743 0.973
LM-17-5-5-5 10.283 0.953

BR-17-5-5

BR-17-5-5-1 13.150

12.7931

0.932

0.9437
BR-17-5-5-2 11.543 0.955
BR-17-5-5-3 11.961 0.950
BR-17-5-5-4 16.931 0.931
BR-17-5-5-5 10.381 0.950

SCG-17-5-5

SCG-17-5-5-1 16.181

15.3224

0.927

0.9289
SCG-17-5-5-2 14.924 0.935
SCG-17-5-5-3 14.129 0.938
SCG-17-5-5-4 16.267 0.918
SCG-17-5-5-5 15.111 0.926

LM-17-10-5

LM-17-10-5-1 6.384

10.9459

0.973

0.9560
LM-17-10-5-2 12.171 0.948
LM-17-10-5-3 8.397 0.964
LM-17-10-5-4 17.776 0.933
LM-17-10-5-5 10.002 0.963

BR-17-10-5

BR-17-10-5-1 10.045

12.5805

0.956

0.9479
BR-17-10-5-2 12.745 0.946
BR-17-10-5-3 12.889 0.947
BR-17-10-5-4 12.937 0.945
BR-17-10-5-5 14.286 0.946

SCG-17-10-5

SCG-17-10-5-1 14.474

16.4983

0.940

0.9317
SCG-17-10-5-2 20.373 0.915
SCG-17-10-5-3 15.608 0.944
SCG-17-10-5-4 13.072 0.945
SCG-17-10-5-5 18.964 0.914

LM-17-15-5

LM-17-15-5-1 9.135

8.7459

0.965

0.9626
LM-17-15-5-2 9.664 0.958
LM-17-15-5-3 10.259 0.952
LM-17-15-5-4 6.710 0.973
LM-17-15-5-5 7.961 0.965

BR-17-15-5

BR-17-15-5-1 20.356

32.3697

0.919

0.8795
BR-17-15-5-2 40.857 0.861
BR-17-15-5-3 22.650 0.920
BR-17-15-5-4 40.554 0.858
BR-17-15-5-5 37.433 0.839

SCG-17-15-5

SCG-17-15-5-1 14.682

20.5665

0.946

0.9146
SCG-17-15-5-2 21.556 0.910
SCG-17-15-5-3 29.309 0.878
SCG-17-15-5-4 13.980 0.936
SCG-17-15-5-5 23.306 0.904

LM-17-20-5

LM-17-20-5-1 10.841

11.0165

0.954

0.9509
LM-17-20-5-2 14.187 0.946
LM-17-20-5-3 9.020 0.956
LM-17-20-5-4 8.129 0.968
LM-17-20-5-5 12.905 0.930
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Table A1. Cont.

Training Group ANN Architecture MSE Value Average Value R2 Value Average Value

BR-17-20-5

BR-17-20-5-1 47.893

48.5124

0.840

0.8315
BR-17-20-5-2 54.524 0.813
BR-17-20-5-3 36.495 0.865
BR-17-20-5-4 39.970 0.858
BR-17-20-5-5 63.679 0.781

SCG-17-20-5

SCG-17-20-5-1 22.263

17.2641

0.915

0.9315
SCG-17-20-5-2 13.949 0.946
SCG-17-20-5-3 21.249 0.914
SCG-17-20-5-4 17.420 0.935
SCG-17-20-5-5 11.439 0.948

LM-17-25-5

LM-17-25-5-1 8.471

11.267

0.970

0.9522
LM-17-25-5-2 10.370 0.957
LM-17-25-5-3 14.410 0.931
LM-17-25-5-4 10.994 0.950
LM-17-25-5-5 12.090 0.953

BR-17-25-5

BR-17-25-5-1 69.336

49.6730

0.761

0.8305
BR-17-25-5-2 59.611 0.811
BR-17-25-5-3 43.495 0.846
BR-17-25-5-4 35.384 0.864
BR-17-25-5-5 40.540 0.870

SCG-17-25-5

SCG-17-25-5-1 11.784

15.9628

0.944

0.9271
SCG-17-25-5-2 12.815 0.942
SCG-17-25-5-3 18.111 0.910
SCG-17-25-5-4 17.119 0.925
SCG-17-25-5-5 19.986 0.914

LM-17-30-5

LM-17-30-5-1 20.039

29.3399

0.909

0.8847
LM-17-30-5-2 24.060 0.904
LM-17-30-5-3 29.875 0.871
LM-17-30-5-4 36.002 0.855
LM-17-30-5-5 36.724 0.884

BR-17-30-5

BR-17-30-5-1 50.004

51.8540

0.828

0.8298
BR-17-30-5-2 54.383 0.819
BR-17-30-5-3 44.388 0.882
BR-17-30-5-4 52.017 0.824
BR-17-30-5-5 58.478 0.796

CG-17-30-5

SCG-17-30-5-1 19.643

21.8357

0.916

0.9115
SCG-17-30-5-2 20.886 0.904
SCG-17-30-5-3 17.442 0.925
SCG-17-30-5-4 23.130 0.919
SCG-17-30-5-5 28.078 0.894

LM-17-1-1-5

LM-17-1-1-5-1 23.061

21.5373

0.897

0.9078
LM-17-1-1-5-2 16.666 0.922
LM-17-1-1-5-3 15.999 0.940
LM-17-1-1-5-4 21.057 0.915
LM-17-1-1-5-5 30.904 0.865

BR -17-1-1-5

BR-17-1-1-5-1 28.043

28.2334

0.895

0.8914
BR-17-1-1-5-2 26.079 0.903
BR-17-1-1-5-3 29.380 0.889
BR-17-1-1-5-4 31.593 0.886
BR-17-1-1-5-5 26.073 0.884
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Table A1. Cont.

Training Group ANN Architecture MSE Value Average Value R2 Value Average Value

SCG -17-1-1-5

SCG-17-1-1-5-1 29.392

25.4727

0.884

0.8937
SCG-17-1-1-5-2 22.598 0.892
SCG-17-1-1-5-3 21.492 0.904
SCG-17-1-1-5-4 26.143 0.896
SCG-17-1-1-5-5 27.738 0.892

LM-17-5-5-5

LM-17-5-5-5-1 9.222

11.1077

0.958

0.9522
LM-17-5-5-5-2 11.546 0.945
LM-17-5-5-5-3 8.044 0.967
LM-17-5-5-5-4 14.946 0.933
LM-17-5-5-5-5 11.780 0.958

BR -17-5-5-5

BR-17-5-5-5-1 6.122

9.1582

0.980

0.9623
BR-17-5-5-5-2 7.082 0.974
BR-17-5-5-5-3 7.614 0.966
BR-17-5-5-5-4 6.123 0.973
BR-17-5-5-5-5 18.850 0.919

SCG -17-5-5-5

SCG-17-5-5-5-1 22.845

22.9340

0.912

0.9049
SCG-17-5-5-5-2 21.129 0.910
SCG-17-5-5-5-3 24.037 0.902
SCG-17-5-5-5-4 22.576 0.905
SCG-17-5-5-5-5 24.083 0.896

LM-17-10-10-5

LM-17-10-10-5-1 7.694

7.2420

0.970

0.9710
LM-17-10-10-5-2 6.067 0.974
LM-17-10-10-5-3 5.669 0.978
LM-17-10-10-5-4 8.088 0.964
LM-17-10-10-5-5 8.692 0.969

BR -17-10-10-5

BR-17-10-10-5-1 26.057

25.1978

0.906

0.9071
BR-17-10-10-5-2 18.578 0.927
BR-17-10-10-5-3 35.363 0.877
BR-17-10-10-5-4 25.603 0.906
BR-17-10-10-5-5 20.387 0.919

SCG -17-10-10-5

SCG-17-10-10-5-1 18.176

19.3592

0.934

0.9227
SCG-17-10-10-5-2 22.484 0.930
SCG-17-10-10-5-3 19.166 0.911
SCG-17-10-10-5-4 18.794 0.916
SCG-17-10-10-5-5 18.177 0.923

LM-17-15-15-5

LM-17-15-15-5-1 29.132

30.3840

0.892

0.8923
LM-17-15-15-5-2 40.439 0.861
LM-17-15-15-5-3 15.351 0.941
LM-17-15-15-5-4 34.254 0.884
LM-17-15-15-5-5 32.744 0.884

BR -17-15-15-5

BR-17-15-15-5-1 30.100

35.5664

0.908

0.8674
BR-17-15-15-5-2 48.677 0.824
BR-17-15-15-5-3 30.691 0.899
BR-17-15-15-5-4 43.835 0.791
BR-17-15-15-5-5 24.530 0.915

SCG -17-15-15-5

SCG-17-15-15-5-1 12.935

11.6450

0.942

0.9500
SCG-17-15-15-5-2 11.981 0.951
SCG-17-15-15-5-3 7.689 0.970
SCG-17-15-15-5-4 12.935 0.940
SCG-17-15-15-5-5 12.687 0.946



Sustainability 2021, 13, 1691 23 of 26

Table A1. Cont.

Training Group ANN Architecture MSE Value Average Value R2 Value Average Value

LM-17-20-20-5

LM-17-20-20-5-1 22.755

23.9056

0.903

0.9053
LM-17-20-20-5-2 29.075 0.885
LM-17-20-20-5-3 25.528 0.891
LM-17-20-20-5-4 25.748 0.911
LM-17-20-20-5-5 16.422 0.936

BR -17-20-20-5

BR-17-20-20-5-1 60.931

54.9310

0.795

0.8179
BR-17-20-20-5-2 45.471 0.857
BR-17-20-20-5-3 70.394 0.796
BR-17-20-20-5-4 42.445 0.829
BR-17-20-20-5-5 55.414 0.813

SCG -17-20-20-5

SCG-17-20-20-5-1 13.649

20.3014

0.939

0.9178
SCG-17-20-20-5-2 24.836 0.900
SCG-17-20-20-5-3 29.018 0.876
SCG-17-20-20-5-4 16.613 0.935
SCG-17-20-20-5-5 17.391 0.939

LM-17-25-25-5

LM-17-25-25-5-1 29.484

18.4144

0.899

0.9285
LM-17-25-25-5-2 18.306 0.930
LM-17-25-25-5-3 16.619 0.933
LM-17-25-25-5-4 13.342 0.941
LM-17-25-25-5-5 14.321 0.940

BR -17-25-25-5

BR-17-25-25-5-1 62.883

42.4919

0.768

0.8455
BR-17-25-25-5-2 48.863 0.804
BR-17-25-25-5-3 39.218 0.872
BR-17-25-25-5-4 35.220 0.882
BR-17-25-25-5-5 26.276 0.902

SCG -17-25-25-5

SCG-17-25-25-5-1 19.483

16.5416

0.926

0.9346
SCG-17-25-25-5-2 13.245 0.943
SCG-17-25-25-5-3 18.428 0.929
SCG-17-25-25-5-4 14.322 0.947
SCG-17-25-25-5-5 17.231 0.928

LM-17-30-30-5

LM-17-30-30-5-1 6.665

19.0260

0.975

0.9247
LM-17-30-30-5-2 21.629 0.918
LM-17-30-30-5-3 25.859 0.892
LM-17-30-30-5-4 6.398 0.975
LM-17-30-30-5-5 34.579 0.864

BR -17-30-30-5

BR-17-30-30-5-1 49.909

39.5577

0.823

0.8571
BR-17-30-30-5-2 31.449 0.874
BR-17-30-30-5-3 49.542 0.824
BR-17-30-30-5-4 31.739 0.893
BR-17-30-30-5-5 35.149 0.871

SCG -17-30-30-5

SCG-17-30-30-5-1 20.650

22.2361

0.908

0.9074
SCG-17-30-30-5-2 18.320 0.921
SCG-17-30-30-5-3 23.257 0.903
SCG-17-30-30-5-4 15.679 0.935
SCG-17-30-30-5-5 33.275 0.869
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