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ABSTRACT
We develop a Bayesian Machine Learning framework called BINGO (Bayesian INference for
Galactic archaeOlogy) centred around a Bayesian neural network. After being trained on the
APOGEE and Kepler asteroseismic age data, BINGO is used to obtain precise relative stellar
age estimates with uncertainties for the APOGEE stars. We carefully construct a training set to
minimise bias and apply BINGO to a stellar population that is similar to our training set. We
then select the 17,305 stars with ages from BINGO and reliable kinematic properties obtained
from Gaia DR2. By combining the age and chemo-kinematical information, we dissect the
Galactic disc stars into three components, namely, the thick disc (old, high-[𝛼/Fe], [𝛼/Fe] &
0.12), the thin disc (young, low-[𝛼/Fe]) and the Bridge, which is a region between the thick
and thin discs. Our results indicate that the thick disc formed at an early epoch only in the
inner region, and the inner disc smoothly transforms to the thin disc. We found that the outer
disc follows a different chemical evolution pathway from the inner disc. The outer metal-poor
stars only start forming after the compact thick disc phase has completed and the star-forming
gas disc extended outwardly with metal-poor gas accretion. We found that in the Bridge region
the range of [Fe/H] becomes wider with decreasing age, which suggests that the Bridge region
corresponds to the transition phase from the smaller chemically well-mixed thick to a larger
thin disc with a metallicity gradient.

Key words: Galaxy: formation – Galaxy: abundances – asteroseismology

1 INTRODUCTION

The Galactic disc is traditionally separated into the geometric
thick and thin disc after Gilmore & Reid (1983) found from star
counts that the vertical density profile of the Milky Way was better
characterised by a superposition of two exponential profiles rather
than one. High-resolution spectroscopic studies of the solar neigh-
bourhood revealed also a bimodality in the chemistry of the disc,
with the [𝛼/Fe]-[Fe/H] distribution showing distinct high- and low-
[𝛼/Fe] components and a less prominent intermediate region (e.g.,
Fuhrmann 1998; Prochaska et al. 2000). Beyond the local disc,
recent large-scale spectroscopic surveys, such as the Apache Point
ObservatoryGalactic Evolution Experiment (APOGEE), confirmed
the existence of a similar high-[𝛼/Fe] sequence spanning a large ra-
dial and vertical extent of the Milky Way disc (e.g., Anders et al.
2014; Nidever et al. 2014; Hayden et al. 2015; Queiroz et al. 2019).
The high-[𝛼/Fe] disc also appears to be thicker and more centrally

★ E-mail: ioana.ciuca.16@ucl.ac.uk

concentrated than its low-[𝛼/Fe] counterpart (e.g., Bensby et al.
2011; Bovy et al. 2012; Cheng et al. 2012).

One of the first approaches to explain the chemical bimodality
seen in the Galactic disc is the two-infall model, a numerical chemi-
cal evolution model developed by Chiappini et al. (1997), Chiappini
et al. (2001), Grisoni et al. (2017), Spitoni et al. (2019). Chiappini
et al. (2001) suggested that the high-[𝛼/Fe], chemically homogenous
disc forms early during an intense star formation period dominated
by Type II supernovae (SNe II) following a rapid infall of primordial
gas. After a brief cessation in star formation, the second episode of
gas accretion takes place that lowers the metal content in the in-
terstellar medium due to the continuous infall of low metallicity
fresh gas. The low-[𝛼/Fe] disc then builds up gradually from lower
[Fe/H]. Bekki & Tsujimoto (2011) also follow a semi-analytical
approach to explain the existence of two distinct populations. In
their continuous star formation model, the high-[𝛼/Fe] sequence
up to around solar [Fe/H], i.e. the thick disc, forms early during a
rapid, intense star formation period. The thin disc then proceeds to
form gradually from the remaining gas with solar [Fe/H] and [𝛼/Fe]
mixed with the fresh primordial gas accreted after the formation

© 2020 The Authors
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of the thick disc.A sequence of increasing [Fe/H] and decreasing
[𝛼/Fe] builds up gradually. Still, this sequence is lower in [𝛼/Fe] as
Type Ia SNe can already enrich the environment at this time. Once
star formation reaches its peak and starts decreasing, a sequence
with decreasing [𝛼/Fe] and increasing in [Fe/H] follows along with
the same low-[𝛼/Fe] sequence.

More recent scenarios inspired by galactic dynamics proposed
that radial migration of kinematically hot stars formed in the inner
disc builds up a thick disc after moving outward in the disc (Schön-
rich & Binney 2009; Loebman et al. 2011; Roškar et al. 2013).
Radial migration is successful in explaining the age-metallicity and
metallicity-rotation velocity relation observed in the Milky Way.
However, there is still considerable debate regarding the efficiency
of radial migration in building a geometrically thick disc (e.g.,
Minchev et al. 2012; Grand et al. 2016; Kawata et al. 2017).

High-resolution numerical simulations also suggested several
thick and thin disc formation scenarios, including violent gas-rich
mergers at high-redshift (e.g., Brook et al. 2004; Grand et al. 2018,
2020), accretion of high-[𝛼/Fe] stars (Abadi et al. 2003; Kobayashi
&Nakasato 2011; Tissera et al. 2012), vertical heating from satellite
merging events (e.g., Quinn et al. 1993; Villalobos & Helmi 2008)
and turbulence in clumpy high-redshift gas-rich disc (Noguchi 1998;
Bournaud et al. 2009; Beraldo e Silva et al. 2020). The recent
popular view is that the thick disc formation precedes the thin disc
formation and the earlier disc was smaller and thicker, i.e. an inside-
out and upside-down formation of the disc (e.g., Brook et al. 2004,
2006; Bird et al. 2013). In Brook et al. (2012), the majority of
the thick-disc stars form as gas originating from a gas-rich merger
at high-redshift settles into a disc at the end of the merger epoch.
This early disc is kinematically hot and radially compact. Once
the chaotic phase of the star formation of the thick disk ends, the
younger, lower [𝛼/Fe] thin disc can gradually grow in an inside-
out fashion (e.g., Matteucci & Francois 1989) as gas is smoothly
accreting to the central galaxy. As in Brook et al. (2012), Noguchi
(2018) and Grand et al. (2018) suggested that chemical evolution
proceeds at different rates in the inner and outer disc, resulting in
more chemically evolved stars in the inner regions. Radial migration
can bring the thick disk stars formed in the inner disc to the outer
disc at redshift 𝑧 ∼ 0, so that we can observe the thick disc stars at
the solar neighbourhood (Brook et al. 2012; Minchev et al. 2013).

The Gaia mission (DR2, Gaia Collaboration et al. 2018) is
providing information to obtain the accurate position and motion
for more than a billion stars in the Milky Way. The APOKASC-2
catalogue (Pinsonneault et al. 2018), comprised of 6,676 evolved
stars in the APOGEE DR14 survey observed by the Kepler mission
(Borucki et al. 2010), provides the best asteroseismology informa-
tion to infer the age for giant stars, which is crucial for Galactic
archaeology. In this paper, we use a state-of-the-art machine learn-
ingmethod, a Bayesian neural network, trained on the APOKASC-2
data, to obtain reliable relative stellar age estimates for 17,305 care-
fully selected disc stars in the APOGEE data. We use the age,
chemistry and kinematical information to examine the formation
history of the Galactic disc by comparing our results with what is
expected from the formation scenarios of the thick and thin disc
suggested by the recent numerical simulations described above.

This paper is organised as follows. Section 2 describes the
Bayesian Machine Learning framework, called BINGO (Bayesian
INference for Galactic archaeOlogy), that we employ in the current
analysis.We discuss here how the biases in the training dataset affect
the performance of the neural network model and our approach to
minimise the bias in the subsequent inferences. In Section 3, we
present the results after applying BINGO to carefully selected stars

Figure 1. Schematics of a Bayesian neural network with 2 hidden layers.
Each connection between neurons has an associated weight and the neurons
in the the hidden and output layers have an associated bias. The connection
between neurons 𝑖 in the input layer and 𝑗 in the first hidden layer has the
associatedweight𝑤𝑖, 𝑗 and the neuron 𝑗 has a bias 𝑏1, 𝑗 . Eachweight and bias
parameters have an associated prior N(0, 1) . The dotted circle is a zoom-in
of the neuron 𝑗, and shows the transformation applied to the input data 𝑥𝑖 in
the first hidden layer of the network, namely 𝑥𝑖 → 𝑓 (Σ𝑖 (𝑤𝑖, 𝑗 𝑥𝑖) + 𝑏1, 𝑗 ) ,
where 𝑓 is the activation function. We use a rectified linear unit (ReLU)
activation function in our analysis.

Figure 2. Comparison between observed (target) logarithmic age of stars,
log(𝜏seismo) , derived with asteroseismology and the predicted log(𝜏pred) by
BINGO. The panels show the results when applying the model trained with
the age data augmented training set with the distance shuffling (Model A) to
the original test data (Test 1, see Sec. 2.2 for details). The light green circles
in the left panel show themodel prediction results against the observed target
age. The standard deviation in the prediction and observation are shown as
the grey lines. The right panel shows the difference between prediction and
target, which peaks at 0 with a standard deviation of 0.1 dex.

in the APOGEE survey. A brief discussion of our results is given in
Section 4. Finally, a summary of our findings is given in Section 5.

2 METHOD

In this paper, we introduce BINGO which is a Bayesian Machine
Learning framework to obtain stellar ages of evolved stars using pho-
tometric information from the second data release of the European
Space Agency’s (ESA) Gaia mission (Gaia DR2, Gaia Collabo-
ration et al. 2018) and the stellar parameter information from the

MNRAS 000, 1–11 (2020)
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fourteenth data release of the SDSS-IVAPOGEE-2 (Majewski et al.
2017). BINGO consists of a Bayesian neural network trained using
the asteroseismic age determined from <Δ𝜈> from the individual
radial-mode frequency from the Kepler light curve (Miglio et al.
2020).

Gaia DR2 provides astrometric information to obtain the po-
sition and proper motion for ∼ 1.3 billion stars with unprecedented
accuracy (Lindegren et al. 2018) as well as high-quality multi-band
photometry for a large subset of these stars (Riello et al. 2018; Evans
et al. 2018). For a selected type of stars with a G-band magnitude
between about 4 and 13 magnitudes, the mean line-of-sight ve-
locities measured with Gaia Radial Velocity Spectrometer (RVS),
line-of-sight velocities have also been provided inGaiaDR2 (Crop-
per et al. 2018; Sartoretti et al. 2018; Katz et al. 2019). We use the
photometric data from Gaia DR2 for BINGO, and the parallax and
proper motion information to derive the kinematic properties for
our sample of stars.

APOGEE is a spectroscopic survey in the near-infraredH-band
(15,200 Å-16,900 Å) with a high resolution of R ∼ 22,500, observ-
ing more than 200,000 stars (as of DR14) located primarily in the
disc and bulge of the Milky Way. In this work, we employ the cali-
brated stellar parameters such as effective temperature and surface
gravity as well as metal abundances obtained with the APOGEE
Stellar Parameters and Chemical Abundances Pipeline (ASCAP,
García Pérez et al. 2016) in the APOGEE DR14 survey (Abolfathi
et al. 2018). In addition, we use the 2MASS J, H, K photometry and
their associated uncertainties (Skrutskie et al. 2006) reported in the
APOGEE DR14 catalogue.

2.1 BINGO

Machine Learning has revolutionised the way we perform data anal-
ysis tasks in Astronomy, which has grown into a big data field with
the emergence of large surveys such as SDSS and Gaia. Neural net-
works are Machine Learning methods that can, in principle, model
any smooth map between a high-dimensional input data to a set
of desirable outputs. Depending on their architecture, neural net-
works can consist of one or more fully-connected layers, each with
a number of neurons that essentially take the input and transform
it through linear activation functions to an output of interest (also
known as feed-forward artificial neural networks). In supervised
learning, which BINGO uses, the parameters of the neural network,
e.g. weights that define the connection between neurons, are trained
and optimised to best reproduce the training set where the input and
output are known. Then, the trained neural network can be applied
to the data whose output is unknown with much less computational
cost than training.

In Bayesian Inference, the power of Bayes’ Law is that it allows
us to relate the probability of amodel given the data to a quantity that
is easier to understand, namely the probability we would observe
the data given the model and any background information, 𝐼, i.e.,

𝑝(𝑚𝑜𝑑𝑒𝑙 |𝑑𝑎𝑡𝑎, 𝐼) ∝ 𝑝(𝑑𝑎𝑡𝑎 |𝑚𝑜𝑑𝑒𝑙, 𝐼)𝑝(𝑚𝑜𝑑𝑒𝑙 |𝐼), (1)

where 𝑝(𝑚𝑜𝑑𝑒𝑙 |𝑑𝑎𝑡𝑎, 𝐼) is the posterior probability,
𝑝(𝑑𝑎𝑡𝑎 |𝑚𝑜𝑑𝑒𝑙, 𝐼) is the likelihood and 𝑝(𝑚𝑜𝑑𝑒𝑙 |𝐼) is the
prior. The posterior encompasses our state of knowledge about
a model given that we gather new data through the likelihood.
Following equation (1), Bayes’ Law can be applied to a neural
network to come up with a probability distribution over its model

parameters1 and construct a Bayesian Neural Network as done in
the pioneering work of Das & Sanders (2018) and Sanders & Das
(2018). This powerful synergy between Bayesian Inference and
Machine Learning allows us to naturally introduce uncertainty into
our machine learning approach, i.e. we can get an estimate of how
confident our neural network is of its predictions.

BINGO’s architecture consists of 2 fully connected layers with
16 neurons each (Fig. 1). We use the probabilistic programming
framework pymc3 (Salvatier et al. 2015) and its Magic Inference
Button, theNo-U-Turn-Sampler (NUTS) as theMCMCsampler.We
use a Gaussian prior ofN(0, 𝜎) for the weights and bias parameters
in the neural network, which effectively acts as L2 regularisation. It
is possible to optimise 𝜎 of the Gaussian prior, but it is computa-
tionally too expensive. Therefore, we adopt𝜎 = 1 for simplicity.We
use 4 chains that allow us to diagnose our samples and make sure
the samples returned from the NUTS sampler are drawn from the
target distribution. Once we have a posterior distribution over the
neural network parameters, we can then compute a distribution over
the network outputs by marginalising over the network parameters.
We note that this Bayesian Neural Network scheme assumes that all
the input features, such as the stellar parameters, are independent,
and cannot take into account the covariance between the inputs. It is
also worth noting that the neural network model depicted in Fig. 1 is
not identifiable (Pourzanjani et al. 2017). Hence, the naive MCMC
sampling of the network parameters suffers from the unidentifia-
bility of the parameters. Still, we have confirmed that the posterior
distribution of the target age prediction from the 4 different chains
are consistent with each other. Therefore, we are confident that our
age prediction, especially the mean of the prediction used in this
paper, does not suffer severely from unidentifiability. These known
challenges for BayesianNeural Networks remain caveats of BINGO,
upon which we hope to improve in a future study.

2.2 Building an effective training set

In this study, we employ a training set created from the APOKASC-
2 dataset with our derived asteroseismic age (Miglio et al. 2020).
The assumptions used to derive the asteroseismic ages that we are
using are given as R11 in Table 1 of Miglio et al. (2020). We select
only red clump stars (RC) with masses higher than 1.8 𝑀� and the
red giant branch (RGB) stars, for which the relative asteroseismic
ages are reliable. To construct our base training set, we use only
stars with high signal-to-noise (SNR) APOGEE spectra (SNR >
100), which leaves us with 2,915 stars. We then use the APOGEE
stellar parameters and photometry data, Teff , log 𝑔, [𝛼/M], [M/H]
2, [C/Fe], [N/Fe], G, BP, RP, J, H and K as the input features in
BINGO to map them to the common logarithm of the asteroseismic
age, 𝑙𝑜𝑔(𝜏), referred to as the target.

Because the original data comes from a limited Kepler field
data, our original training set has a known dependence of age and
metallicity on the distance (which affects photometry). Also, there
are not many young or old stars in our selected RGB and RC data.
To correct for the distance dependence, we randomly displace the
distance of stars between 0 and 10 kpc and then adjust the apparent

1 https://twiecki.io/blog/2016/07/05/

bayesian-deep-learning/
2 In APOGEE DR14, 𝛼-elements comprise of O, Mg, Si, S, Ca and Ti. We
used the ASPCAP measurements of [𝛼/M] and [M/H] as a proxy for [𝛼/Fe]
and [Fe/H], respectively. Correspondingly, we use the labels of [𝛼/Fe] and
[Fe/H] to refer to [𝛼/M] and [M/H].

MNRAS 000, 1–11 (2020)
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Figure 3. Predictions vs the target asteroseismic age in log(𝜏) . Left panel shows the result from a model trained on the age data augmented training set with
the distance shuffling (Model A) and applied to the distance shuffled test set (Test 2). The middle and right panel show the predictions for a model trained on
the original data (Model B) applied to the original (Test 1) and distance shuffled test data (Test 2), respectively. The standard deviation in the prediction and
asteroseismic age are shown as the grey lines. Model A predictions for Test 2 performs better than Model B prediction for Test 1. The model trained on the
original data and applied to the distance shuffle data, i.e. Model B prediction for Test 2, performs considerably worse as Model B has learned the distance
dependence of age and metallicity, which is erased in Test 2.

magnitude of the stars depending on the difference between the new
distance and the original distance. We do not change the extinc-
tion upon displacing the distance also to erase the dependence of
extinction on the distance. We refer to this technique as distance
shuffling.

Our training set contains a smaller number of young (age
< 2 Gyr) stars and very old (age > 12 Gyr) stars, and this imbalance
becomes more apparent when using log(𝜏) as our target variable for
BINGO. During training, the model learns to reproduce the target
variable only for a majority of intermediate age stars, which biases
the prediction toward the intermediate age irrespective of their true
age, and consequently leads to overpredicting the age of younger
stars and underpredicting the age of the very old stars, an effect also
known as regression dilution. To minimize the effect of this bias
and balance our training set, we effectively oversample the fewer
young stars and very old stars to balance the number of stars at
different log(𝜏). To this end, we first examine the distribution of
our original training set in log(𝜏). We then use a Kernel Density
Estimator (KDE) to approximate the distribution in log(𝜏), and for
each star, we find its probability under the KDE, which we refer
to as 𝑝𝑟𝑜𝑏. We then compute the inverse probability and round it
the nearest integer, N = [1/𝑝𝑟𝑜𝑏]. Following the distance shuffling
procedure described above, we randomly distance-shuffle each star
N times. This approach leads to some of the stars in the original
dataset to be sampled more than once. Since their distances and
hence their apparent magnitude are different, these “artificial" stars
become members of an augmented training set. Since we are us-
ing data augmentation, which is an established machine learning
technique, we refer to our approach as age data augmentation. The
final training set has 4,673 stars after performing the age data aug-

mentation technique on the training set data (80% of the original
data). Note that the data augmentation can reduce the uncertainties
in our predictions, because we artificially increase the number of
data points. Therefore, our uncertainties do not statistically reflect
the uncertainty in the measurement of the stellar age. In this paper,
however, our priority is to mitigate regression dilution with this sim-
ple data augmentation technique. This is another caveat of BINGO
in addition to the assumed independence of the input features and
the unidentifiability discussed above. In this paper, as described
later, we use the uncertainties only as the metric of confidence of
our prediction, and do not use the uncertainties for any quantitative
discussion. Hence, the discussion of this paper is unlikely to be
affected by these issues. We postpone the resolution of these issues
to a future study.

To evaluate the prediction accuracy of BINGO, we split our
original data of 2,915 stars into training (80 %, 2,331 stars) and
testing (20 %, 583 stars) data. To demonstrate the importance of
distance shuffling and age data augmentation, we consider two dif-
ferent trained models: Model A trained on the age data augmented
training set of 4,673 stars with the distance shuffling and Model B
trained on the original training set without the distance shuffling
or the age data augmentation. Then, we create a testing set, Test 1,
which is the 20% of the original data which are not used for training,
and Test 2 which is the same data as Test 1, but the distance has
been shuffled. Fig. 2 shows the predictions from Model A on Test 1
and the error associated with the prediction. The asteroseismic age
is well reproduced by the prediction from BINGO Model A, with a
standard deviation ∼ 0.1 dex. Note that the ages of some of old stars
are much older than the age of the Universe. This is because there

MNRAS 000, 1–11 (2020)
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is no prior of the maximum age considered in our asteroseismic age
measurement (Miglio et al. 2020).

Fig. 3 presents the predictions from Model A on Test 2 (left),
from Model B on Test 1 (middle) and Test 2 (right). There is little
difference between Model A on Test 1 (see Fig. 2 and Model A on
Test 2. This means that BINGO Model A can recover the age well
in application data which have no distance dependence in age or
metallicity. The middle panel of Fig. 2 shows that Model B trained
on the original dataset without the age data augmentation leads to a
systematic overprediction for the age of stars with the asteroseismic
age of log(𝜏seismo) < 0.5 dex and underprediction of the age for
stars with log(𝜏seismo) > 1.0 dex. This is because Model B is trained
mainly to reproduce the overwhelming number of stars with 0.5 <
log(𝜏seismo) < 1.0 dex and suffers from the regression dilution effect
mentioned above. The right panel of Fig. 3 shows the age prediction
of Model B on Test 2, which shows much worse recovery of the
asteroseismic ages with large uncertainties. This is because Model
B has learned the dependence of the age and metallicity on the
distance in the original training set. These results demonstrate why
it is important to erase the distance dependence in the training set
and keep the balance of the number of sample in the output label,
i.e., log(𝜏). We therefore use Model A in this paper.

2.3 RGB and high mass RC selection

Our training set consists of the specific population of RC stars with
a mass higher than 1.8 𝑀� and RGB stars in the limited Kepler
field. When we apply our trained model to the rest of APOGEE
data, we select only the same population as the population of the
training data. Hence, we train a 3-layer artificial neural network
on the original APOKASC-2 data to classify RC stars with a mass
higher than 1.8 𝑀� and RGB stars. For this classification task,
we train the model using Keras and TensorFlow (Abadi et al.
2016), which is much less computationally expensive than training
a Bayesian Neural Network. The selection function of APOKASC-2
is not the same as the rest of the APOGEE data. However, because
we need the stellar mass and the RC, RGB and AGB classification
for the training and validation data, we use theAPOKASC-2 data for
training and validation. We have constructed a classification neural
network to identify the RC stars with > 1.8 𝑀� and RGB stars using
our asteroseismic analysis of the APOKASC-2 data. We used the
input features of Teff , log 𝑔, [𝛼/Fe], [Fe/H], [C/Fe], [N/Fe], G, BP,
RP, J, H and K, and 2,948 positive, i.e. the high mass RC or RGB,
and 1,918 negative stars are used for the training. Similar strategies
are employed in Hawkins et al. (2018) and Ting et al. (2018) to
identify the RC stars.

We then use the trained neural network model to classify stars
in the APOGEE cross-matched with Gaia DR2 dataset (Sanders &
Das 2018). We also limit our data to having APOGEE spectra with
SNR > 100 and the 𝐾-band extinction smaller than 0.1 mag in the
APOGEE catalogue, because all of our training data has the 𝐾-band
extinction < 0.1 mag. We only select stars that have a probability
higher than 95 % of being classified as RC with higher mass than
1.8 𝑀� or RGB. We apply the BINGO Model A to this selected
data to get the posterior probabilities for log(𝜏).

Our strategy in this paper is to use the most reliable data only.
We therefore select stars with log(𝜏) age uncertainties less than
10 %. Note that the age uncertainties from BINGO indicate epis-
temic uncertainties of the model prediction, which can be smaller
than the observed uncertainty of the original asteroseismic age.
Also, to obtain reliable kinematic properties from the Gaia data,
we select the data with parallax uncertainties of 𝜋/𝜎𝜋 > 5.0. We

Figure 4. [𝛼/Fe] as a function of age coloured by metallicity, [Fe/H]. The
high-[𝛼/Fe] population ([𝛼/Fe]> 0.1 dex) is older and more metal-poor.

Figure 5. [Fe/H] as a function of age coloured by [𝛼/Fe]. The younger
population is more metal-rich than its older counterpart. Stars more metal-
poor than −0.5 dex are considerably old.

compute the distance using the Gaia parallax with the additional
systematic bias of parallax of 54 𝜇as (Schönrich et al. 2019), and se-
lect the stars in the limited volume of 7 < 𝑅 < 9 kpc and 𝑧 < 2 kpc,
where we assume the solar position at the Galactocentric distance
of 8 kpc and the vertical height of the Sun from the disc plane
of 0.025 kpc. We obtain kinematic properties using galpy (Bovy
2015). We have confirmed that our derived age and kinematics are
consistent with Sanders & Das (2018), except for the difference in
the absolute age scales, because we use a different asteroseismic age
scale for our training set (Miglio et al. 2020). As a result, we obtain
17,305 stars, which are used in the following sections.

3 RESULTS

In this section, we explore the relations between stellar age, chem-
istry and orbital properties for our sample of stars. Reliable relative
age estimates for a large number of stars obtained with BINGO
enable us to find that the inner and outer discs follow a different for-
mation and chemical evolution pathway. Our results provide further
evidence for an upside-down, inside-out formation of the Galactic
disc.
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Figure 6. The distribution of [𝛼/Fe] and [Fe/H] coloured by age for our sample of stars. We refer to the old high- and young low-[𝛼/Fe] populations as the
thick and thin disc, respectively, as highlighted in the left panel. The dotted triangle region in the left panel is referred to as the Bridge, and is a transition region
between the thick (high-𝛼 sequence with [𝛼/Fe] & 0.1 dex) and thin disc (low-[𝛼/Fe] sequence). An age gradient is apparent, as indicated by the near vertical
downward arrow, in a close-up of the Bridge region, shown in the right panel, and the range of [Fe/H] becomes wider, as indicated by the two near horizontal
arrows for the younger stars in the Bridge region.

3.1 The chrono-chemical map of disc stars

We first investigate the evolution of 𝛼-abundances, [𝛼/Fe], and
metallicity, [Fe/H], with age, 𝜏. Fig. 4 shows the enhancement in
[𝛼/Fe] as a function of age coloured by metallicity. The deficiency
of stars with age ∼ 1.5 Gyr arises because we select the RC stars
with mass > 1.8 𝑀� and there are considerably fewer RGB stars
with ages younger than 3Gyr. The high-[𝛼/Fe] “sequence" separates
clearly from the low-[𝛼/Fe] “sequence" in the age-[𝛼/Fe] space at
[𝛼/Fe] ∼ 0.1 dex, where there seems to be a population gap extend-
ing approximately 0.02 dex. The majority of the high-[𝛼/Fe] stars
([𝛼/Fe] > 0.1 dex) are generally older and more metal-poor than
the low-[𝛼/Fe] population. [𝛼/Fe] rapidly decreases with decreas-
ing age up to ∼ 10 Gyr. The age-[𝛼/Fe] relationship also appears to
be broader in [𝛼/Fe] at a fixed age for the high-[𝛼/Fe] population,
in qualitative agreement with Silva Aguirre et al. (2018). However,
considering the uncertainties of the age, this relationship is consid-
ered to be tight (Haywood et al. 2013; Snaith et al. 2015). A striking
feature of Fig. 4 is the young, lowmetallicity, high-𝛼 stars, also seen
in Chiappini et al. (2015), Martig et al. (2015), Silva Aguirre et al.
(2018). We discuss the origin of this population in more detail in
Section 3.3.

Fig. 5 shows the age-metallicity relationship coloured with
[𝛼/Fe]. While the old, high-[𝛼/Fe] stars exhibit a clear trend of
decreasing [Fe/H] with age, the younger, low-[𝛼/Fe] disc shows
a flat age-[Fe/H] relation up to ∼ 11 Gyr. For stars with [Fe/H] >
−0.5 dex, our results are qualitatively similar to those from previous
studies, such as Casagrande et al. (2011), Silva Aguirre et al. (2018)
and Mackereth et al. (2019). For the metal-poor and high [𝛼/Fe]
population, the tight trend observed between age and metallicity is
consistent with Bensby et al. (2005) and Haywood et al. (2013),
who analysed dwarf stars and used the isochrone age.

In Fig. 6 we examine the distribution in [𝛼/Fe] and [Fe/H]
coloured by age for the stars in our sample. Classically, this diagram
is used to identify the chemically defined thick (high-[𝛼/Fe]) and
thin (low-[𝛼/Fe]) disc stars. Using the age alongside the chemical
information, we define three regions in the [𝛼/Fe]-[Fe/H] space,
namely an old thick disc (high-[𝛼/Fe], low-[Fe/H]), young thin
disc (low-[𝛼/Fe], broad [Fe/H]) and the Bridge (high-[𝛼/Fe], high-

[Fe/H]). The Bridge stars3 are selected to lie within the triangle
region starting around ([Fe/H], [𝛼/Fe]) = (0.0, 0.12) dex. Anders
et al. (2018) suggested that the population of stars found in this
region had a different origin and history to the thick and thin disc
stars. Our results further suggest that the Bridge population appears
to be a transition region connecting the old thick and the young
thin disc. The right panel of Fig. 6 reveals a noticeable age gradient
within this population from the oldest, more [𝛼/Fe]-enhanced and
metal-rich stars to a younger population spanning a broader distri-
bution of metallicities from [Fe/H] = −0.5 to 0.5 dex. Although
this age gradient in the Bridge is tentative, we notice that a similar
trend is also seen in Delgado Mena et al. (2019) who studied 1,000
FGK dwarf stars from the HARPS-GTO programme and analysed
the isocrhone ages of these stars. Therefore, it is reassuring that the
trend shown in our asteroseismic-trained ages of giants is similar to
that based on the isochrone ages of dwarfs.

3.2 Chemo-kinematical analysis

To connect the observed stellar chemical properties to kinematic
properties, we compute the vertical action and the mean orbital
radius for our sample of stars using galpy in the fixed MWPoten-
tial2014 configuration (version 1.5, Bovy 2015). Although MW-
Potential2014 is time-independent and axisymmetric and cannot
capture disequilibrium effects present in the real disc, it is nonethe-
less a good and useful approximation for the purpose of this work.
Fig. 7 shows the distribution of [𝛼/Fe] and [Fe/H] as a function of
age and vertical action 𝐽𝑧 . The general trend is that 𝐽𝑧 is decreasing
with age, with the older population being significantly hotter than
the younger population. As also inferred from Fig. 6, Fig. 7 clearly
shows that the Bridge region starts appearing at age < 13 Gyr and
it spreads to lower [𝛼/Fe] and to a wider range of [Fe/H] with de-
creasing age as seen in the triangle features at [𝛼/Fe] < 0.12 dex
in the panels of 10 < 𝜏 < 12 Gyr. The lower panels of age lower
than 10 Gyr show the dominant population of the low-[𝛼/Fe] and

3 There are 1,682 stars in the Bridge, which represents approximately 10%
of the entire sample. Caution must be used when using this number as it can
be sensitive to the selection function.
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Figure 7. The distribution of [𝛼/Fe] and [Fe/H] coloured by the square root of the vertical action,
√
𝐽𝑧 , for the samples of stars within 8 different age bins.

The top four panels show [Fe/H]-[𝛼/Fe] relationship for the older stars (10 < 𝜏 < 16 Gyr), and the lower four panels present those for the younger stars (𝜏 <
10 Gyr). There is a kinematically hot population of young high-[𝛼/Fe] stars seen in the lower panels.

kinematically colder thin disc stars. The lower panels also reveal
a small population of kinematically hot, young stars, and as high
[𝛼/Fe] as the thick disc population in Fig. 6. To understand their
origin, we compare this population of stars with the thick disc stars
(high [𝛼/Fe] and old), and we discuss the results in Section 3.3.

To further examine whether or not there is a clear distinction
between the high andmetal-rich, low-[𝛼/Fe] sequence, we select the
high-metallicity ridge shown in the left panel of Fig. 8. The ridge
is considered to represent the most advanced chemical evolution
path of the stars born in the inner disc, 𝑅 < 6 kpc, (e.g., Schönrich
& Binney 2009), and in fact, as shown in the left panel of Fig. 9,
their mean orbital radius is always smallest among the same [𝛼/Fe]
population. For the stars within this high-metallicity ridge, we di-
vided the samples according to their [𝛼/Fe]. We measure the scale
height using a Markov-Chain Monte Carlo approach, where we fit
the 𝐽𝑧 distribution in each [𝛼/Fe] bin with an isothermal profile, i.e.,
𝑝(𝐽𝑧) ∼ exp (−𝐽𝑧/ℎ𝐽𝑧 ) (Binney 2010; Binney & McMillan 2011;
Ting & Rix 2019). We compute the scale height, ℎ𝐽𝑧 , and its un-
certainty in 13 selected bins using [𝛼/Fe]. The results, shown in the
right panel of Fig. 8, reveal a smooth decrease of 𝐽𝑧 with decreasing
[𝛼/Fe] and age indicated by colour. The derived ℎ𝐽𝑧 for the different
[𝛼/Fe] bins also show a smooth decrease with decreasing [𝛼/Fe].
The oldest stars are kinematically hotter and higher [𝛼/Fe]. This
result is consistent with an upside-down formation of the Milky
Way (Brook et al. 2012; Bird et al. 2013). Although it is subtle,
our results also suggest that the decrease in ℎ𝐽𝑧 with decreasing
[𝛼/Fe] happens more rapidly for the high-[𝛼/Fe], old population
than for the young population as can be seen from the changing
slope in the right panel of Fig. 8. The change of the slope happens
roughly at [𝛼/Fe] ∼ 0.12, where the Bridge region starts. Overall,
the high-[𝛼/Fe] thick disc is smoothly connected to the low-[𝛼/Fe]
thin disc population. This result indicates that the chemo-dynamical
evolution of the inner disc is smooth.

In Fig. 9, we show the relations between [𝛼/Fe], [Fe/H] and
age coloured by the mean radius of the stellar orbit, 𝑅m. From the
[𝛼/Fe]-[Fe/H] relationship, shown in the left panel, we infer that the
high-[Fe/H] ridge region selected in the left panel of Fig. 8 is mainly

populated by small 𝑅m stars, which is consistent with our view that
this region is tracing the chemical evolution of the inner disc. On
the other hand, it is known that the low [Fe/H] ([Fe/H] . −0.1),
low-[𝛼/Fe] population are not connected with the thick high-[𝛼/Fe]
population and show a distinct population (e.g., Hayden et al. 2015;
Queiroz et al. 2019). However, as we discussed in Figs. 6 and 7,
it is connected via the Bridge region. Interestingly, as seen in Fig.
7, the low-[Fe/H], low-[𝛼/Fe] stars only appear at age < 11 Gyr. In
addition, their 𝑅m is predominantly larger (𝑅m > 9 kpc). Hence, we
consider that the low-[Fe/H], low-[𝛼/Fe] stars formed at the outer
disc and their star formation startedwhen the disc grew large enough
to develop a wide range of [Fe/H], i.e. the metallicity gradient, at
the end of the transition period of the Bridge after the old thick disc
formation. As a result, the star formation and chemical evolution
path should be different from the inner disc, and the stars in the
outer disc do not originate in the thick disc formation phase.

This different path of the disc formation in the inner disc and
the outer disc is schematically described with the arrows in Fig. 9.
The arrows highlighted with “inner", “local" and “outer" indicate
the chemical evolution paths at the inner, local, i.e. solar radius, and
outer discs, respectively, inferred from our data. The middle panel
shows that low-[Fe/H] stars start forming later than the inner disc
and are systematically younger than the thick disc, which is formed
only in the inner disc. The right panel shows that the lower-[Fe/H]
outer thin disc stars are higher [𝛼/Fe]. This is seen as a positive
[𝛼/Fe] radial gradient in the thin disc (e.g., Hayden et al. 2015).

3.3 The young high-[𝛼/Fe] stars

The lower panels of Fig. 7, consisting of stars younger than 10 Gyr,
reveal the existence of a population of kinematically hot, high-
[𝛼/Fe] stars. To understand their origin, we look at the distribu-
tion in 𝑅m and 𝐽𝑧 between stars with [𝛼/Fe] > 0.12 dex and old
(log(𝜏[Gyr]) > 1.0) and stars with [𝛼/Fe] > 0.12 dex and young
(log(𝜏[Gyr]) < 0.8). As shown in Fig. 10 the two groups of stars
overlap significantly in both 𝑅m and 𝐽𝑧 distributions. Fig. 11, where
we compared between [𝛼/Fe] > 0.12 dex stars and young stars
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Figure 8. Left panel: the distribution of [𝛼/Fe] and [Fe/H] coloured by the square root of the vertical action,
√
𝐽𝑧 . The ridge selection in the left panel represents

the highest metallicity track in the [Fe/H]-[𝛼/Fe] space. Right panel: the [𝛼/Fe]-
√
𝐽𝑧 relationship coloured by age in the ridge region highlighted in the left

panel. We overlay the scale heights (black dots) and uncertainties (error bars) measured by fitting an isothermal profile to the distribution of 𝑝 (𝐽𝑧 ) in 13 bins
in [𝛼/Fe]. Analysis of the high-[Fe/H] ridge shows that 𝐽𝑧 smoothly decreases with [𝛼/Fe] and age.

(0.2 < log(𝜏[Gyr]) < 0.5) having [𝛼/Fe] < 0.1 dex, shows that the
two populations differ greatly in their kinematical properties.

These results indicate that the young high-[𝛼/Fe] population
originated from the old high-[𝛼/Fe], i.e. old thick disc, population
rather than the low-[𝛼/Fe] thin disc population. Their hot kinematics
implies that the high-[𝛼/Fe] stars identified as young using the ages
given by BINGO have originated from the star-forming gas disc
which is as kinematically hot as the gas disc that created the old
high-[𝛼/Fe] stars. Such a highly turbulent gas disc only existed at the
early epoch of the old high-[𝛼/Fe] thick disc formation. Therefore,
it is likely that these [𝛼/Fe] stars identified as young formed at
the early epoch, but they are identified as young stars most likely
because they are the merger of old binary stars (Jofré et al. 2016),
which has lowered their [C/N] abundance (Izzard & Halabi 2018)
and biased the age estimator. Although we cannot establish when
the merger took place, we can conclude from their hot kinematics
that the high-[𝛼/Fe] stars that appear young originated from the old
high-[𝛼/Fe] thick disc stars.

By combining the age information with the chemistry and
kinematics, we can constrain the origin of the kinematically hot
young high-[𝛼/Fe] population. Our results are in agreement with
Silva Aguirre et al. (2018), Miglio et al. (2020), who also found
similar kinematical properties between young high-[𝛼/Fe] stars and
young low-[𝛼/Fe]. We confirmed their results with a larger number
of 69 young high-[𝛼/Fe] stars. Miglio et al. (2020) also found a
higher fraction of young (over-massive) high-[𝛼/Fe] population in
RC stars than RGB stars, and discussed that this is consistent with
a scenario that these young [𝛼/Fe] stars are the merged binaries,
becausemore binaries are expected to have undergone an interaction
around the tip of RGB than fainter RGB.

4 IMPLICATIONS FOR THE DISC FORMATION AND
EVOLUTION

Our results suggest a formation scenario for the Galactic disc that
involves distinct star formation and chemical evolution pathways of
the inner and outer discs. In the inner disc, the thick disc forms early
on from chemically well-mixed and turbulent gas, which can be, for
example, associated with gas-rich mergers (e.g., Brook et al. 2004),
cold gas flow accretion (e.g., Kereš et al. 2005; Dekel & Birnboim

2006; Brooks et al. 2009; Ceverino et al. 2010; Fernández et al.
2012) or, most likely, a complex interplay of both (e.g., Grand et al.
2018, 2020). Such a thick disc formation scenario can explain the
clear and tight age-[𝛼/Fe] (Fig. 4), age-[Fe/H] (Fig. 5) and [Fe/H]-
[𝛼/Fe] sequence (Fig. 6) for the old high-[𝛼/Fe] thick disc stars.

After the formation of the old high-[𝛼/Fe] thick disc, in the
inner region there could be a smooth chemodynamical evolution
from high-[𝛼/Fe] to low-[𝛼/Fe] and increasing metallicity as indi-
cated by the “inner" pathway in Fig. 9. There is no distinct epoch
of thick and thin disc formation, as seen in the ridge region of
Fig. 8. Instead, the thicker to thinner disc transition happens in a
smooth manner as stars continue to form with lower 𝐽𝑧 from the
dense cold gas continuously present at this radius (Brook et al.
2012; Grand et al. 2018). The smooth transition between the thick
and thin discs in the inner region naturally arises in multi-zone
semi-analytical chemo-dynamical evolution models (e.g., Schön-
rich & Binney 2009; Schönrich & McMillan 2017), where stars
keep forming from the left-over gas of the high-[𝛼/Fe] sequence.

A smooth transition between the formation of the thick and
thin discs in the inner region is also suggested as the “centralised
starburst pathway" in Grand et al. (2018). Using the high-resolution
Auriga cosmological simulations of the Milky Way (Grand et al.
2017), Grand et al. (2018) propose the “centralised starburst path-
way"model that can explain the single sequence of the [𝛼/Fe]-[Fe/H]
distribution in the inner disc seen in the APOGEE data of Hayden
et al. (2015) (see also Palla et al. 2020). In their model, a major
gas-rich merger and cold gas accretion at an early epoch initiates
a short period of intense star formation in the inner region during
which the thick disc forms with higher [𝛼/Fe]. Once Type Ia SNe
become significant in chemical enrichment after the peak of star
formation in ∼ 1 Gyr timescale, more metal-rich low-[𝛼/Fe] thin
disc stars continuously form from the left-over less turbulent gas
in the inner disc. As a result, there is no gap in the formation of
the thick and thin disc and a single sequence of [𝛼/Fe]-[Fe/H] is
expected in the inner disc. Then, we can observe such inner disc
stars in our data due to radial migration (e.g., Brook et al. 2012;
Minchev et al. 2013; Kawata et al. 2018; Renaud et al. 2020), which
brings them within 7 < 𝑅 < 9 kpc.

Our results also suggest that the star formation and chemical
evolution in the outer disc starts after the thick disc phase. When
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Figure 9. The distribution in [𝛼/Fe] vs [Fe/H] (left panel), [Fe/H] vs age (middle panel), and [𝛼/Fe] vs age (right panel) coloured by mean orbital radius, 𝑅m.
The “inner", “local" and “outer" arrows indicate the schematic chemical evolution paths at the inner (𝑅m ∼ 6 kpc), local, i.e. solar radius (𝑅m ∼ 8 kpc), and
outer discs (𝑅m ∼ 10 kpc), respectively. The metal-poor, outer disc stars follow a different chemical evolution pathway than the inner disc. These evolutionary
paths are shown to describe qualitative trends of the chemical evolution at the different radii of the Galactic disc, and are not meant to indicate the chemical
evolution paths quantitatively.

the thick-disc like, gas-richmerger- and/or cold accretion-dominant,
turbulent star formation ends, the galactic halo may have grown
enough for the hot gas accretion mode to become dominant (Brooks
et al. 2009; Noguchi 2018). Then, the violent cold gas accretion
stops, and the gas disc can grow in an inside-out fashion, as fresh
low [Fe/H] gas is accreted smoothly from the hot halo gas. The disc
rapidly grows large enough to develop a negative metallicity gradi-
ent as seen in the Bridge region of Fig. 6, unlike for the turbulent
small thick disc phase, where the metals are well mixed, and no
metallicity gradient can develop. Hence, the metal-poor outer disc
developed after the thick disc formation, as indicated by the arrow
of the “outer" disc chemical evolution pathway in Fig. 9.

The Bridge region in Fig. 6 shows that the range of [Fe/H]
becomes wider for the younger stars, as indicated by the arrows
in the left panel of Fig. 6. We consider that the Bridge region is
where the thin disc formation begins, and the disc is developing
a metallicity gradient with younger stars forming with a broader
range of [Fe/H]. Radial migration brings stars formed in the inner
disc and outer disc to the solar neighbourhood, which is where
the stars in our samples lie (but see also Vincenzo & Kobayashi
2020; Khoperskov et al. 2021, who claim that radial migration is
not very efficient). As a result, we can observe the mixed chemical
distribution from pathways in the inner and outer discs (Schönrich
& Binney 2009) . The high metallicity ridge highlighted in Fig. 8
represents the chemical evolution of the inner disc. The low-[Fe/H]
and low-[𝛼/Fe] stars came from the outer disc. As a result, we
observe the two sequences of the high- and low-[𝛼/Fe] stars in our
sample (Brook et al. 2012; Grand et al. 2018). This is consistent
with what is seen in the previous observational studies (e.g. Hayden
et al. 2017; Feuillet et al. 2019). Our results provide more robust
trends with more reliably measured relative ages.

Consequently, the stars currently around the solar radius fol-
low the so-called two-infall model (Grisoni et al. 2017; Spitoni
et al. 2019), although the high-[𝛼/Fe] populations are formed in
the inner disc and brought to the solar neighbourhood likely by ra-
dial migration. On the other hand, if we could select only the stars
formed locally, the star formation starts at a later epoch from lower
metallicity gas, when the star-forming disc becomes as large as the
solar radius. In other words, the stars started forming locally around
the solar radius from the second infall of gas, whose metallicity is
lower, because of the dilution with the metal-poor gas accreted from
the halo (Calura & Menci 2009; Spitoni et al. 2019; Buck 2020).
The scenario is also consistent with what is suggested by Snaith
et al. (2015) and Haywood et al. (2016, 2019). In fact, by private
communication with Misha Haywood after the submission of the

first version of this paper, we realised that our schematic view in
Fig. 9 is consistent with Fig. 6 of Haywood et al. (2019), except that
they considered that the outer low-[𝛼/Fe] stars formed earlier than
the inner low-[𝛼/Fe] stars.

5 SUMMARY

In this paper, we determine precise relative stellar age estimates for
17,305 evolved stars in the APOGEEDR14 survey using a Bayesian
Neural Network trained on the APOKASC-2 asteroseismic dataset.
To minimize the bias in our age inference, we erase the distance
dependence of metallicity and age in our training set by randomly
displacing the distance of the stars. We also augment the dataset
by over-sampling young and very old stars, to obtain a balanced
training data and minimize the effect of regression dilution. Using
the chemo-kinematical information, we separate the Galactic disc
into three components, the thick and thin discs and the Bridge in
the [Fe/H]-[𝛼/Fe] distribution. The thick disc population is older
and higher-[𝛼/Fe] ([𝛼/Fe] & 0.12) than the thin disc. We argue that
the Bridge population connects the thick disc and thin disc phases
smoothly, rather than being part of the traditional thick disc. We
also find an unusual population of young and high-[𝛼/Fe] stars.
However, we found that their kinematic properties are similar to the
old high-[𝛼/Fe] stars, which suggests that their origin must be the
same as the old high-[𝛼/Fe] stars. They are identified as young stars
likely due to the merger of binary stars which decreased [C/N] and
led to the predicted young ages.

To further investigatewhether or not there is a smooth transition
between the formation of the thick and thin disc in the inner region,
we select a high-metallicity ridge region in the [Fe/H]-[𝛼/Fe] plane
that follows a continuously increasing [Fe/H] and decreasing [𝛼/Fe]
sequence. We examined the variation of 𝐽𝑧 with [𝛼/Fe] and age and
concluded that, while there seems to be a hint of a sudden decrease in
𝐽𝑧 around [𝛼/Fe]∼ 0.12 dex, 𝐽𝑧 smoothly decreases with [𝛼/Fe] and
also with age. We find that the oldest stars are kinematically hotter
and enhanced in 𝛼-abundances than the younger stars.We found that
the high-metallicity ridge is dominated by the stars from the inner
disc and traces the continuous chemical evolution of the inner disc,
𝑅 < 6 kpc. The formation of the thick disc is expected to happen
in a compact disc, i.e. only in the inner disc, and a turbulent period
of intense chemical mixing leads to the relatively tight sequence
in the distribution of [𝛼/Fe] and [Fe/H] for the old stars. From our
results, we infer that the inner disc continuously forms stars from the
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Figure 10. The distribution in 𝑅m (left panel) and
√
𝐽𝑧 (right panel) for

old (log(𝜏 [Gyr]) > 1.0) stars with [𝛼/Fe] > 0.12 dex, shown in red, and
young (log(𝜏 [Gyr]) < 0.8) stars with [𝛼/Fe] > 0.12 dex, shown in blue.
The two populations have similar kinematics.

Figure 11. The distribution in 𝑅m (left panel) and
√
𝐽𝑧 (right panel) for stars

with [𝛼/Fe] > 0.12 dex, shown in red, and young (0.2 < log(𝜏 [Gyr]) <

0.5) stars with [𝛼/Fe] < 0.1 dex, shown in blue. The kinematical properties
differ between the two populations.

left-over gas after the thick disc formation phase and the subsequent
accreting gas, and develop high-[Fe/H] and low-[𝛼/Fe] stars.

We also found that the outer low-[Fe/H] and low-[𝛼/Fe] stars
are significantly younger than the inner high-[𝛼/Fe] ([𝛼/Fe] &
0.12 dex) stars. We argue that the outer metal-poor disc stars form
after the end of cold-mode dominated violent thick disc formation
phase. This likely corresponds to the transition from the cold to hot
mode of the gas accretion due to the halo mass growth (Noguchi
2018; Grand et al. 2018).

In light of these results, we argue that the inner and outer discs
of the Milky Way follow different chemical evolution pathways.
After the violent thick disc formation phase ends, the thin disc
formation starts with a smaller disc which is as small as the thick
disc, and then the thin disc grows in an inside-out fashion.As the disc
is growing with a supply of accreting low-[Fe/H] gas, metallicity
gradients naturally arise, with the outer disc being more metal-
poor than the inner disc. We found that the Bridge region shows a
broader range of [Fe/H] with decreasing age, and suggest that the
Bridge region is where the thin disc formation begins, and the disc
is developing a metallicity gradient.

The recent work of Grand et al. (2020) suggested that the last
significant merger of Gaia-Enceladus-Sausage (GES, Brook et al.
2003; Belokurov et al. 2018; Haywood et al. 2018; Helmi et al.
2018) was a gas-rich merger that was essential in forming the thick
disc. This picture is also consistent with what we found in this paper
because this gas-rich merger can induce a violent starburst in the

inner disc due to the dissipation of the gas during the merger. If
the GES merger was the last significant merger, then the thin disc
phase could start after the GES merger settled. If this scenario is
true, the end of the GESmerger could correspond to the high-[𝛼/Fe]
tip ([𝛼/Fe] ∼ 0.12 dex, [Fe/H] ∼ 0.0 dex) of the Bridge region of
Fig. 6. After that, the thin disc grew inside-out from the smooth
accretion of the low metallicity gas from the hot halo gas. Although
this is admittedly pure speculation, we could test this hypothesis if
we measured the relative difference in ages between the GES, the
GES merger remnants (e.g., Chaplin et al. 2020; Montalbán et al.
2020), high-[𝛼/Fe] thick disc and the Bridge. Measuring the age
difference of stars precisely represents the holy grail of Galactic
archaeology, as it allows us to improve our understanding of stellar
evolution and probe deeper into the formation and evolution history
of the Milky Way.
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M., Mikolaitis Ŝ., Worley C. C., 2017, MNRAS, 472, 3637

Hawkins K., Ting Y.-S., Walter-Rix H., 2018, ApJ, 853, 20
Hayden M. R., et al., 2015, The Astrophysical Journal, 808, 132
Hayden M. R., Recio-Blanco A., de Laverny P., Mikolaitis S., Worley C. C.,
2017, A&A, 608, L1

HaywoodM., Di Matteo P., Lehnert M. D., Katz D., Gómez A., 2013, A&A,
560, A109

Haywood M., Lehnert M. D., Di Matteo P., Snaith O., Schultheis M., Katz
D., Gómez A., 2016, A&A, 589, A66

HaywoodM., DiMatteo P., LehnertM.D., SnaithO., Khoperskov S., Gómez
A., 2018, ApJ, 863, 113

Haywood M., Snaith O., Lehnert M. D., Di Matteo P., Khoperskov S., 2019,
A&A, 625, A105

HelmiA., BabusiauxC., KoppelmanH.H.,Massari D., Veljanoski J., Brown
A. G. A., 2018, Nature, 563, 85–88

Izzard R. G., Halabi G. M., 2018, arXiv e-prints, p. arXiv:1808.06883
Jofré P., et al., 2016, A&A, 595, A60
Katz D., et al., 2019, Astronomy & Astrophysics, 622, A205
Kawata D., Grand R. J. J., Gibson B. K., Casagrande L., Hunt J. A. S., Brook
C. B., 2017, MNRAS, 464, 702

Kawata D., et al., 2018, MNRAS, 473, 867
Kereš D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2
Khoperskov S., Haywood M., Snaith O., Di Matteo P., Lehnert M., Vasiliev
E., Naroenkov S., Berczik P., 2021, MNRAS, 501, 5176

Kobayashi C., Nakasato N., 2011, ApJ, 729, 16
Lindegren L., et al., 2018, Astronomy & Astrophysics, 616, A2
Loebman S. R., Roškar R., Debattista V. P., Ivezić Ž., Quinn T. R., Wadsley
J., 2011, ApJ, 737, 8

Mackereth J. T., et al., 2019, Monthly Notices of the Royal Astronomical
Society, 489, 176–195

Majewski S. R., et al., 2017, AJ, 154, 94
Martig M., et al., 2015, MNRAS, 451, 2230
Matteucci F., Francois P., 1989, MNRAS, 239, 885
Miglio A., et al., 2020, arXiv e-prints, p. arXiv:2004.14806
Minchev I., Famaey B., Quillen A. C., Dehnen W., Martig M., Siebert A.,
2012, A&A, 548, A127

Minchev I., Chiappini C., Martig M., 2013, A&A, 558, A9
Montalbán J., et al., 2020, arXiv e-prints, p. arXiv:2006.01783
Nidever D. L., et al., 2014, ApJ, 796, 38
Noguchi M., 1998, Nature, 392, 253
Noguchi M., 2018, Nature, 559, 585
Palla M., Matteucci F., Spitoni E., Vincenzo F., Grisoni V., 2020, MNRAS,
498, 1710

Pinsonneault M. H., et al., 2018, ApJS, 239, 32
Pourzanjani A., Jiang R., Petzold L., 2017, in NIPS Workshop on Bayesian
Deep Learning.

Prochaska J. X., Naumov S. O., Carney B. W., McWilliam A., Wolfe A. M.,
2000, AJ, 120, 2513

Queiroz A. B. A., et al., 2019, arXiv e-prints, p. arXiv:1912.09778
Quinn P. J., Hernquist L., Fullagar D. P., 1993, ApJ, 403, 74
Renaud F., Agertz O., Read J. I., Ryde N., Andersson E. P., Bensby T., Rey
M. P., Feuillet D. K., 2020, arXiv e-prints, p. arXiv:2006.06011

Riello M., et al., 2018, A&A, 616, A3
Roškar R., Debattista V. P., Loebman S. R., 2013, MNRAS, 433, 976
Salvatier J., Wiecki T., Fonnesbeck C., 2015, arXiv e-prints, p.
arXiv:1507.08050

Sanders J. L., Das P., 2018, Monthly Notices of the Royal Astronomical
Society, 481, 4093–4110

Sartoretti P., et al., 2018, Astronomy & Astrophysics, 616, A6
Schönrich R., Binney J., 2009, MNRAS, 399, 1145
Schönrich R., McMillan P. J., 2017, MNRAS, 467, 1154
Schönrich R., McMillan P., Eyer L., 2019, MNRAS, 487, 3568
Silva Aguirre V., et al., 2018, MNRAS, 475, 5487
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Snaith O., Haywood M., Di Matteo P., Lehnert M. D., Combes F., Katz D.,
Gómez A., 2015, A&A, 578, A87

Spitoni E., Silva Aguirre V., Matteucci F., Calura F., Grisoni V., 2019, A&A,
623, A60

Ting Y.-S., Rix H.-W., 2019, ApJ, 878, 21
Ting Y.-S., Hawkins K., Rix H.-W., 2018, ApJ, 858, L7
Tissera P. B., White S. D. M., Scannapieco C., 2012, MNRAS, 420, 255
Villalobos Á., Helmi A., 2008, MNRAS, 391, 1806
Vincenzo F., Kobayashi C., 2020, MNRAS, 496, 80

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–11 (2020)

http://dx.doi.org/10.1093/mnras/sty982
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478..611B
http://dx.doi.org/10.1051/0004-6361:20040332
https://ui.adsabs.harvard.edu/abs/2005A&A...433..185B
http://dx.doi.org/10.1088/2041-8205/735/2/L46
https://ui.adsabs.harvard.edu/abs/2011ApJ...735L..46B
http://dx.doi.org/10.1093/mnras/staa065
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.4716B
http://dx.doi.org/10.1111/j.1365-2966.2009.15845.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.2318B
http://dx.doi.org/10.1111/j.1365-2966.2011.18268.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.1889B
http://dx.doi.org/10.1088/0004-637X/773/1/43
https://ui.adsabs.harvard.edu/abs/2013ApJ...773...43B
http://dx.doi.org/10.1126/science.1185402
https://ui.adsabs.harvard.edu/abs/2010Sci...327..977B
http://dx.doi.org/10.1088/0004-637X/707/1/L1
https://ui.adsabs.harvard.edu/abs/2009ApJ...707L...1B
http://dx.doi.org/10.1088/0067-0049/216/2/29
https://ui.adsabs.harvard.edu/abs/2015ApJS..216...29B
http://dx.doi.org/10.1088/0004-637X/753/2/148
https://ui.adsabs.harvard.edu/abs/2012ApJ...753..148B
http://dx.doi.org/10.1086/374306
https://ui.adsabs.harvard.edu/abs/2003ApJ...585L.125B
http://dx.doi.org/10.1086/422709
https://ui.adsabs.harvard.edu/abs/2004ApJ...612..894B
http://dx.doi.org/10.1086/499154
https://ui.adsabs.harvard.edu/abs/2006ApJ...639..126B
https://ui.adsabs.harvard.edu/abs/2006ApJ...639..126B
http://dx.doi.org/10.1111/j.1365-2966.2012.21738.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426..690B
http://dx.doi.org/10.1088/0004-637X/694/1/396
https://ui.adsabs.harvard.edu/abs/2009ApJ...694..396B
http://dx.doi.org/10.1093/mnras/stz3289
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.5435B
http://dx.doi.org/10.1111/j.1365-2966.2009.15440.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.400.1347C
http://dx.doi.org/10.1051/0004-6361/201016276
http://adsabs.harvard.edu/abs/2011A%26A...530A.138C
http://dx.doi.org/10.1111/j.1365-2966.2010.16433.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.2151C
http://dx.doi.org/10.1038/s41550-019-0975-9
https://ui.adsabs.harvard.edu/abs/2020NatAs.tmp....7C
http://dx.doi.org/10.1088/0004-637X/752/1/51
https://ui.adsabs.harvard.edu/abs/2012ApJ...752...51C
http://dx.doi.org/10.1086/303726
https://ui.adsabs.harvard.edu/abs/1997ApJ...477..765C
http://dx.doi.org/10.1086/321427
https://ui.adsabs.harvard.edu/abs/2001ApJ...554.1044C
http://dx.doi.org/10.1051/0004-6361/201525865
https://ui.adsabs.harvard.edu/abs/2015A&A...576L..12C
http://arxiv.org/abs/1804.09369
http://dx.doi.org/10.1093/mnras/sty2776
http://dx.doi.org/10.1093/mnras/sty2776
http://dx.doi.org/10.1111/j.1365-2966.2006.10145.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.368....2D
http://dx.doi.org/10.1051/0004-6361/201834783
https://ui.adsabs.harvard.edu/abs/2019A&A...624A..78D
http://dx.doi.org/10.1051/0004-6361/201832756
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...4E
http://dx.doi.org/10.1088/0004-637X/749/2/181
https://ui.adsabs.harvard.edu/abs/2012ApJ...749..181F
http://dx.doi.org/10.1093/mnras/stz2221
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.1742F
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.1742F
https://ui.adsabs.harvard.edu/abs/1998A&A...338..161F
http://dx.doi.org/10.1051/0004-6361/201832865
https://ui.adsabs.harvard.edu/abs/2018A&A...616A..11G
http://dx.doi.org/10.3847/0004-6256/151/6/144
https://ui.adsabs.harvard.edu/abs/2016AJ....151..144G
http://dx.doi.org/10.1093/mnras/202.4.1025
https://ui.adsabs.harvard.edu/abs/1983MNRAS.202.1025G
http://dx.doi.org/10.1093/mnras/stw601
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459..199G
http://dx.doi.org/10.1093/mnras/stx071
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467..179G
http://dx.doi.org/10.1093/mnras/stx3025
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.3629G
http://dx.doi.org/10.1093/mnras/staa2057
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.1603G
http://dx.doi.org/10.1093/mnras/stx2201
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.3637G
http://dx.doi.org/10.3847/1538-4357/aaa08a
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...20H
http://dx.doi.org/10.1088/0004-637x/808/2/132
http://dx.doi.org/10.1051/0004-6361/201731494
https://ui.adsabs.harvard.edu/abs/2017A&A...608L...1H
http://dx.doi.org/10.1051/0004-6361/201321397
http://adsabs.harvard.edu/abs/2013A%26A...560A.109H
http://dx.doi.org/10.1051/0004-6361/201527567
https://ui.adsabs.harvard.edu/abs/2016A&A...589A..66H
http://dx.doi.org/10.3847/1538-4357/aad235
https://ui.adsabs.harvard.edu/abs/2018ApJ...863..113H
http://dx.doi.org/10.1051/0004-6361/201834155
https://ui.adsabs.harvard.edu/abs/2019A&A...625A.105H
http://dx.doi.org/10.1038/s41586-018-0625-x
https://ui.adsabs.harvard.edu/abs/2018arXiv180806883I
http://dx.doi.org/10.1051/0004-6361/201629356
https://ui.adsabs.harvard.edu/abs/2016A&A...595A..60J
http://dx.doi.org/10.1051/0004-6361/201833273
http://dx.doi.org/10.1093/mnras/stw2363
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464..702K
http://dx.doi.org/10.1093/mnras/stx2464
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473..867K
http://dx.doi.org/10.1111/j.1365-2966.2005.09451.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.363....2K
http://dx.doi.org/10.1093/mnras/staa3996
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.5176K
http://dx.doi.org/10.1088/0004-637X/729/1/16
https://ui.adsabs.harvard.edu/abs/2011ApJ...729...16K
http://dx.doi.org/10.1051/0004-6361/201832727
http://dx.doi.org/10.1088/0004-637X/737/1/8
https://ui.adsabs.harvard.edu/abs/2011ApJ...737....8L
http://dx.doi.org/10.1093/mnras/stz1521
http://dx.doi.org/10.1093/mnras/stz1521
http://dx.doi.org/10.3847/1538-3881/aa784d
https://ui.adsabs.harvard.edu/abs/2017AJ....154...94M
http://dx.doi.org/10.1093/mnras/stv1071
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.2230M
http://dx.doi.org/10.1093/mnras/239.3.885
https://ui.adsabs.harvard.edu/abs/1989MNRAS.239..885M
https://ui.adsabs.harvard.edu/abs/2020arXiv200414806M
http://dx.doi.org/10.1051/0004-6361/201219714
https://ui.adsabs.harvard.edu/abs/2012A&A...548A.127M
http://dx.doi.org/10.1051/0004-6361/201220189
https://ui.adsabs.harvard.edu/abs/2013A&A...558A...9M
https://ui.adsabs.harvard.edu/abs/2020arXiv200601783M
http://dx.doi.org/10.1088/0004-637X/796/1/38
https://ui.adsabs.harvard.edu/abs/2014ApJ...796...38N
http://dx.doi.org/10.1038/32596
https://ui.adsabs.harvard.edu/abs/1998Natur.392..253N
http://dx.doi.org/10.1038/s41586-018-0329-2
https://ui.adsabs.harvard.edu/abs/2018Natur.559..585N
http://dx.doi.org/10.1093/mnras/staa2437
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.1710P
http://dx.doi.org/10.3847/1538-4365/aaebfd
https://ui.adsabs.harvard.edu/abs/2018ApJS..239...32P
http://dx.doi.org/10.1086/316818
https://ui.adsabs.harvard.edu/abs/2000AJ....120.2513P
https://ui.adsabs.harvard.edu/abs/2019arXiv191209778Q
http://dx.doi.org/10.1086/172184
https://ui.adsabs.harvard.edu/abs/1993ApJ...403...74Q
https://ui.adsabs.harvard.edu/abs/2020arXiv200606011R
http://dx.doi.org/10.1051/0004-6361/201832712
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...3R
http://dx.doi.org/10.1093/mnras/stt788
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433..976R
https://ui.adsabs.harvard.edu/abs/2015arXiv150708050S
https://ui.adsabs.harvard.edu/abs/2015arXiv150708050S
http://dx.doi.org/10.1093/mnras/sty2490
http://dx.doi.org/10.1093/mnras/sty2490
http://dx.doi.org/10.1051/0004-6361/201832836
http://dx.doi.org/10.1111/j.1365-2966.2009.15365.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399.1145S
http://dx.doi.org/10.1093/mnras/stx093
http://adsabs.harvard.edu/abs/2017MNRAS.467.1154S
http://dx.doi.org/10.1093/mnras/stz1451
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.3568S
http://dx.doi.org/10.1093/mnras/sty150
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.5487S
http://dx.doi.org/10.1086/498708
https://ui.adsabs.harvard.edu/abs/2006AJ....131.1163S
http://dx.doi.org/10.1051/0004-6361/201424281
https://ui.adsabs.harvard.edu/abs/2015A&A...578A..87S
http://dx.doi.org/10.1051/0004-6361/201834188
https://ui.adsabs.harvard.edu/abs/2019A&A...623A..60S
http://dx.doi.org/10.3847/1538-4357/ab1ea5
https://ui.adsabs.harvard.edu/abs/2019ApJ...878...21T
http://dx.doi.org/10.3847/2041-8213/aabf8e
https://ui.adsabs.harvard.edu/abs/2018ApJ...858L...7T
http://dx.doi.org/10.1111/j.1365-2966.2011.20028.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420..255T
http://dx.doi.org/10.1111/j.1365-2966.2008.13979.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.391.1806V
http://dx.doi.org/10.1093/mnras/staa1451
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496...80V

	1 Introduction
	2 Method
	2.1 BINGO
	2.2 Building an effective training set
	2.3 RGB and high mass RC selection

	3 Results
	3.1 The chrono-chemical map of disc stars
	3.2 Chemo-kinematical analysis
	3.3 The young high-[/Fe] stars

	4 Implications for the disc formation and evolution
	5 Summary

