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TRUNCATION PRECONDITIONERS FOR STOCHASTIC
GALERKIN FINITE ELEMENT DISCRETIZATIONS\ast 

ALEX BESPALOV\dagger , DANIEL LOGHIN\dagger , AND RAWIN YOUNGNOI\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The stochastic Galerkin finite element method (SGFEM) provides an efficient alter-
native to traditional sampling methods for the numerical solution of linear elliptic partial differential
equations with parametric or random inputs. However, computing stochastic Galerkin approxima-
tions for a given problem requires the solution of large coupled systems of linear equations. There-
fore, an effective and bespoke iterative solver is a key ingredient of any SGFEM implementation. In
this paper, we analyze a class of truncation preconditioners for SGFEM. Extending the idea of the
mean-based preconditioner, these preconditioners capture additional significant components of the
stochastic Galerkin matrix. Focusing on the parametric diffusion equation as a model problem and
assuming affine-parametric representation of the diffusion coefficient, we perform spectral analysis of
the preconditioned matrices and establish optimality of truncation preconditioners with respect to
SGFEM discretization parameters. Furthermore, we report the results of numerical experiments for
model diffusion problems with affine and nonaffine parametric representations of the coefficient. In
particular, we look at the efficiency of the solver (in terms of iteration counts for solving the under-
lying linear systems) and compare truncation preconditioners with other existing preconditioners for
stochastic Galerkin matrices, such as the mean-based and the Kronecker product ones.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . stochastic Galerkin methods, parametric PDEs, iterative solvers, Krylov methods,
preconditioning, Gauss--Seidel approximation

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35R60, 65C20, 65F10, 65F08, 65N22, 65N30

\bfD \bfO \bfI . 10.1137/20M1345645

1. Introduction. Over the last two decades, many new challenging problems in
the field of computational partial differential equations (PDEs) have been motivated
by the rapidly developing area of uncertainty quantification. Efficient numerical solu-
tion of PDE problems with parametric or uncertain inputs is one of these challenges.
Several numerical methods have been developed and analyzed in this context. In
particular, the stochastic Galerkin finite element method (SGFEM) [14, 1, 15] has
emerged as an efficient and rapidly convergent alternative to traditional Monte Carlo
sampling. However, the implementation of the SGFEM requires the solution of huge
(although highly structured) linear systems. For realistic applications, such linear
systems can only be solved using iterative methods equipped with effective, bespoke
preconditioners. To that end, a range of linear algebra techniques have been em-
ployed including the multigrid and multilevel methods [18, 8, 25, 4, 19, 24, 9], domain
decomposition methods [27, 32, 33], hierarchical methods [22, 30, 31], and Krylov
methods [13, 22, 23, 16, 26, 34].

In this work, we focus on Krylov methods; in particular, for a parametric ellip-
tic PDE problem with solution approximated by the SGFEM, we employ iterative
methods of Krylov subspace type for which we design and analyze a suitable class of
preconditioners.
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TRUNCATION PRECONDITIONERS S93

As a model problem we consider the parametric steady-state diffusion equation
subject to homogeneous Dirichlet boundary conditions:

(1.1)
 - \nabla \cdot (a(\bfitx ,\bfity )\nabla u(\bfitx ,\bfity )) = f(\bfitx ), \bfitx \in \Omega , \bfity \in \Gamma ,

u(\bfitx ,\bfity ) = 0, \bfitx \in \partial \Omega , \bfity \in \Gamma ,

where \Omega \subset \BbbR d (d = 1, 2, 3) is a bounded (spatial) domain with Lipschitz polygo-
nal boundary \partial \Omega , f \in H - 1(\Omega ), and \Gamma :=

\prod \infty 
m=1 \Gamma m is the parameter domain with

bounded intervals \Gamma m \subset \BbbR , m \in \BbbN . We also note that \nabla denotes the spatial gradient
operator \nabla \bfitx .

The SGFEM applied to problem (1.1) generates approximations in tensor prod-
uct spaces X \otimes S, where X is a finite element space associated with the physical
domain \Omega , and S is a space of multivariate polynomials over a finite-dimensional
manifold \Gamma M \subset \Gamma (here, M \in \BbbN refers to the number active parameters in the
SGFEM approximation). A typical SGFEM discretization of problem (1.1) yields a
structured linear system Au = f with the coefficient matrix

A =

\left[     
A11 A12 \cdot \cdot \cdot A1N\bfity 

A21 A22 \cdot \cdot \cdot A2N\bfity 

...
...

. . .
...

AN\bfity 1 AN\bfity 2 \cdot \cdot \cdot AN\bfity N\bfity 

\right]     ,
where the blocks Aij are N\bfitx \times N\bfitx matrices with N\bfitx = dim(X) and N\bfity = dim(S). If
the parametric coefficient a(\bfitx ,\bfity ) in (1.1) is represented via a (truncated or infinite)
series expansion that is affine in parameters, e.g.,

a(\bfitx ,\bfity ) = a0(\bfitx ) +

\infty \sum 
m=1

am(\bfitx )ym, \bfitx \in \Omega , \bfity \in \Gamma ,

then it is well known (see, e.g., [21, Chapter 9]) that the system matrix A can be
written as a sum of Kronecker products:

(1.2) A = G0 \otimes K0 +

M\sum 
m=1

Gm \otimes Km.

Here, Gm \in \BbbR N\bfity \times N\bfity are the (parametric) matrices built from polynomial basis func-
tions in S, and Km \in \BbbR N\bfitx \times N\bfitx are the (spatial) stiffness matrices associated with
coefficients am(\bfitx ) in the series expansion of a(\bfitx ,\bfity ).

The numerical solution of stochastic Galerkin linear systems presents significant
challenges. On the one hand, it is evident from the structure of A indicated above
that such matrices can reach huge sizes very quickly. For example, if S is the space of
complete polynomials of degree \leq k in M parameters, then N\bfity =

\bigl( 
M+k

k

\bigr) 
grows very

fast with M and k. On the other hand, in the case of affine-parametric expansion
of the coefficient a(\bfitx ,\bfity ) as given above, the matrix A is block-sparse due to the
sparsity of matrices Gm in (1.2). This feature, however, is not guaranteed for other
parametric representations of a(\bfitx ,\bfity ) (see subsection 5.2 for one example of such a
representation). Thus, the availability of effective preconditioning techniques is of
paramount importance in order to enable the application of the SGFEM to a range
of parametric PDE problems.
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S94 ALEX BESPALOV, DANIEL LOGHIN, AND RAWIN YOUNGNOI

In an early effort to provide an efficient solver technique for stochastic Galerkin
linear systems, the mean-based preconditioner was proposed by Ghanem and Kruger
in [13] and subsequently analyzed by Powell and Elman in [23]. In the notation
employed above, this preconditioner is defined as

(1.3) P0 := G0 \otimes K0.

It has been shown that under certain standard boundedness conditions on the dif-
fusion coefficient a(\bfitx ,\bfity ), the performance of the conjugate gradient (CG) method
equipped with the preconditioner P0 is independent of the dimensions N\bfitx and N\bfity 

of the underlying spatial and parametric approximation spaces. This is essentially
due to the mean component a0(\bfitx ) strongly dominating other terms in the expansion
of a(\bfitx ,\bfity ). When this is not the case, the performance deteriorates and dependence
on N\bfity may arise (e.g., via dependence on the number M of active parameters and/or
the polynomial degree k of parametric approximations).

An alternative approach that takes into account contributions from all component
matrices in (1.2) was suggested by Ullmann in [34]. This preconditioner, which we
denote by P\otimes , is also defined as a Kronecker product:

(1.4) P\otimes := G\otimes K0,

where the matrix G \in \BbbR N\bfity \times N\bfity is constructed in order to minimize the Frobenius
norm of the difference between the system matrix and the preconditioner, i.e.,

G := argmin
Q

\| A - Q\otimes K0\| F .

While the eigenvalue bounds for the preconditioned system derived in [34] are not
sharp and one cannot generally expect the iteration counts of the P\otimes -preconditioned
CG to be independent of the dimension N\bfity of the parametric approximation space S,
the Kronecker product preconditioner P\otimes outperforms the mean-based preconditioner
P0, particularly in the case of the approximation space S comprising polynomials of
large degree k.

A preconditioning strategy that exploits the hierarchical structure of stochastic
Galerkin matrices was proposed by Soused\'{\i}k and Ghanem in [30]. In this strategy, the
inverses of submatrices are approximated by inverses of their diagonal blocks in the
action of a hierarchical symmetric block Gauss--Seidel preconditioner. This precon-
ditioner is further enhanced in [30] by performing the matrix-vector multiplications
in its action using only a subset of component matrices in (1.2) selected according to
the size of the norm of stiffness matrices Km. In particular, a monotonic decay of the
norms of Km effectively results in truncating the sum in (1.2). Extensive numerical
experiments for a model problem with truncated lognormal diffusion coefficient have
demonstrated the effectiveness and competitiveness of this combined preconditioning
strategy (called the truncated hierarchical preconditioning) in terms of both conver-
gence of iterations and computational cost. The results of these experiments have
also shown that truncated versions of the nonhierarchical symmetric block Gauss--
Seidel preconditioner and the approximate hierarchical Gauss--Seidel preconditioner
are largely comparable in terms of convergence of iterations.

In this paper, we study a preconditioning technique based on truncating the sum
of Kronecker products in (1.2) as follows:

Pr := G0 \otimes K0 +

r\sum 
m=1

Gm \otimes Km.
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TRUNCATION PRECONDITIONERS S95

We will refer to this class of solvers as truncation preconditioners. While it includes the
mean-based preconditioner as a special case, by capturing additional significant com-
ponents of the stochastic Galerkin matrix A one aims to improve the preconditioner's
performance retaining its optimality with respect to the discretization parameters
(i.e., N\bfitx , M and k). Truncation preconditioners of this type were considered in [17,
section 4.2] and analyzed therein for two extreme cases, namely, r = 0 and r =M - 1.
While the preconditioning matrix Pr has a block-diagonal structure in the case of
the tensor-product polynomial space S (with appropriately ordered basis functions;
see [17]), this property, in general, does not hold for the matrix Pr if S is the space of
complete polynomials. Therefore, in the latter case, considered in the present paper,
a practical implementation of the truncation preconditioner Pr requires an additional
technique to ensure efficient application of the action of P - 1

r on a given vector. To
this end, similarly to the strategy in [30], we propose to use a symmetric block Gauss--

Seidel approximation \widetilde Pr of the truncation preconditioner Pr.
Focusing on the case of affine-parametric representation of a(\bfitx ,\bfity ), our main

goal in this paper is to perform spectral analysis of the preconditioned matrices and
establish optimality of the preconditioners Pr and \widetilde Pr with respect to all discretization
parameters. By doing this we fill a gap in the theoretical analysis of preconditioning
techniques for the numerical solution of stochastic Galerkin linear systems.

The paper is structured as follows. In the next section we present a detailed
problem formulation, including specific assumptions on the parametric diffusion coef-
ficient a(\bfitx ,\bfity ), the variational formulation of (1.1), and the definitions and properties
of the matrices Aij , Gm, Km. In section 3, we introduce and analyze a class of pre-
conditioners Pr based on truncation of the series representation of the parametric
diffusion coefficient a(\bfitx ,\bfity ). A symmetric block Gauss--Seidel approximation to Pr is
introduced and analyzed in section 4. Section 5 includes a range of numerical results,
with conclusions and potential extensions summarized in section 6.

2. Problem formulation. In this section we outline some standard background
results and assumptions and introduce the variational formulation required for the
numerical solution of (1.1) via the SGFEM.

2.1. Functional analytic framework. Let ym \in \Gamma m be the images of inde-
pendent bounded random variables with cumulative density function \pi m(ym) and
probability density function pm(ym) = d\pi m(ym)/dym. The joint cumulative density
function and the joint probability density function of the associated multivariable
random variable \bfity \in \Gamma are defined, respectively, as

\pi (\bfity ) :=

\infty \prod 
m=1

\pi m(ym) and p(\bfity ) :=

\infty \prod 
m=1

pm(ym).

Without loss of generality, we assume for all m \in \BbbN that \Gamma m := [ - 1, 1]; addition-
ally, we assume that pm is even. Note that each \pi m is a probability measure on
(\Gamma m,\scrB (\Gamma m)), where \scrB (\Gamma m) is the Borel \sigma -algebra on \Gamma m. Accordingly, \pi is a proba-
bility measure on (\Gamma ,\scrB (\Gamma )), where \scrB (\Gamma ) is the Borel \sigma -algebra on \Gamma . Then L2

\pi m
(\Gamma m),

L2
\pi (\Gamma ) represent the weighted Lebesgue spaces with associated inner products

\langle f, g\rangle \pi m :=

\int 
\Gamma m

pm(ym)f(ym)g(ym)dym, f, g \in L2
\pi m

(\Gamma m),

\langle f, g\rangle \pi :=

\int 
\bfGamma 

p(\bfity )f(\bfity )g(\bfity )d\bfity , f, g \in L2
\pi (\Gamma ).
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S96 ALEX BESPALOV, DANIEL LOGHIN, AND RAWIN YOUNGNOI

Finally, a space relevant to the weak formulation of problem (1.1) is L2
\pi (\Gamma ;H

1
0 (\Omega )),

which is the space of strongly measurable functions v : \Omega \times \Gamma \rightarrow \BbbR such that

\| v\| L2
\pi (\bfGamma ;H1

0 (\Omega )) :=
\bigm\| \bigm\| \bigm\| \| v(\cdot ,\bfity )\| H1

0 (\Omega )

\bigm\| \bigm\| \bigm\| 
L2

\pi (\bfGamma )
:=

\biggl[ \int 
\bfGamma 

p(\bfity ) \| v(\cdot ,\bfity )\| 2H1
0 (\Omega ) d\bfity 

\biggr] 1/2
< +\infty ,

where H1
0 (\Omega ) is the usual Sobolev space of functions in H1(\Omega ) that vanish at the

boundary \partial \Omega in the sense of traces. It is known that L2
\pi (\Gamma ;H

1
0 (\Omega )) is isometrically

isomorphic to the following tensor product Hilbert space (see [28, Remark C.24]):

(2.1) V := L2
\pi (\Gamma )\otimes H1

0 (\Omega ).

We will use the space V to derive the variational formulation of problem (1.1) in
subsection 2.3 below. Before doing this, let us make some specific assumptions on the
parametric diffusion coefficient a(\bfitx ,\bfity ).

2.2. The parametric diffusion coefficient. We will assume that the diffusion
coefficient a is affine-parametric, i.e.,

(2.2) a(\bfitx ,\bfity ) = a0(\bfitx ) +

\infty \sum 
m=1

am(\bfitx )ym, \bfitx \in \Omega , \bfity \in \Gamma ,

with am \in L\infty (\Omega ), m \in \BbbN 0, and with the series converging uniformly in L\infty (\Omega ). The
representation (2.2) is motivated by the Karhunen--Lo\`eve expansion of a second-order
random field a with given mean \BbbE [a] and covariance function Cov[a](\bfitx ,\bfitx \prime ). In this
case, a(\bfitx ,\bfity ) is represented as in (2.2) with a0(\bfitx ) = \BbbE [a] and am(\bfitx ) =

\surd 
\lambda m\varphi m(\bfitx )

(m = 1, 2 . . .), where \{ (\lambda m, \varphi m)\} \infty m=1 are the eigenpairs of the integral operator\int 
\Omega 
Cov[a](\bfitx ,\bfitx \prime )\varphi (\bfitx \prime )d\bfitx \prime such that \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot > 0, and ym (m = 1, 2 . . .) are

the images of pairwise uncorrelated random variables with zero mean and unit vari-
ance (see, e.g., [14, section 2.3]).

As is the case for deterministic diffusion problems, the standard conditions for
well-posedness of the weak formulation of problem (1.1) are the positivity and bound-
edness of the diffusion coefficient a. In order to ensure that the coefficient a(\bfitx ,\bfity )
given by (2.2) satisfies these conditions, we assume that (cf. [28, Proposition 2.22])

(2.3) amin
0 \leq a0(\bfitx ) \leq amax

0 a.e. in \Omega 

for some constants 0 < amin
0 \leq amax

0 <\infty and that

(2.4) \tau :=
1

amin
0

\bigm\| \bigm\| \bigm\| \bigm\| \infty \sum 
m=1

| am| 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
< 1,

where \| \cdot \| \infty denotes the norm in L\infty (\Omega ). In this case, an elementary calculation
shows that

(2.5) 0 < amin \leq a(\bfitx ,\bfity ) \leq amax <\infty a.e. in \Omega \times \Gamma 

with amin := amin
0 (1 - \tau ) and amax := amax

0 + amin
0 \tau .

Remark 2.1. As an alternative to (2.4), one can make a weaker assumption:

(2.6) \widetilde \tau :=

\bigm\| \bigm\| \bigm\| \bigm\| a - 1
0

\infty \sum 
m=1

| am| 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
< 1.
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TRUNCATION PRECONDITIONERS S97

In this case, one has

(2.7) 0 < \widetilde amin \leq a0(\bfitx )(1 - \widetilde \tau ) \leq a(\bfitx ,\bfity ) \leq a0(\bfitx )(1 + \widetilde \tau ) \leq \widetilde amax <\infty a.e. in \Omega \times \Gamma 

with \widetilde amin := amin
0 (1 - \widetilde \tau ) and \widetilde amax := amax

0 (1 + \widetilde \tau ). We refer to [17, section 2.3] for a
detailed discussion of assumption (2.6) and its comparison to the one in (2.4).

2.3. Variational formulation and Galerkin approximations. Let V be de-
fined as in (2.1). The weak formulation of problem (1.1) reads as follows: find u\in V
such that

(2.8) A(u, v) = F(v) \forall v \in V,

where the bilinear form A : V \times V \rightarrow \BbbR and the linear functional F : V \rightarrow \BbbR are
defined by

A(v, w) :=

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

a(\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla w(\bfitx ,\bfity )d\bfitx d\bfity ,(2.9)

F(w) :=

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

f(\bfitx )w(\bfitx ,\bfity )d\bfitx d\bfity .

The boundedness of the parametric coefficient a (see (2.5) and (2.7)) implies a unique
solvability of (2.8) due to the Lax--Milgram theorem.

We discretize problem (2.8) by using the Galerkin projection onto a finite-dimen-
sional subspace of V constructed as a tensor product of finite-dimensional subspaces
of H1

0 (\Omega ) and L2
\pi (\Gamma ). Let us describe these subspaces in detail. Let \scrT h denote a

conforming, quasi-uniform partition of \Omega into simplices K of maximum diameter h.
We define

Xh := \{ \phi : \Omega \rightarrow \BbbR : \phi | K \in \BbbP q(K)\} \cap C0(\Omega ) \subset H1
0 (\Omega ),

where \BbbP q(K) denotes the space of polynomials of degree q defined on K. We will
assume that

Xh = span \{ \phi 1, \phi 2, . . . , \phi N\bfitx \} ,
where \phi j(\bfitx ) have local support and N\bfitx := dim(Xh).

Let us now introduce a polynomial subspace of L2
\pi (\Gamma ). To this end, for each

m \in \BbbN , we first consider the sequence \{ Pm
j (ym) : j \in \BbbN 0\} of univariate polynomials

that are orthonormal with respect to the inner product \langle \cdot , \cdot \rangle \pi m such that Pm
j is a poly-

nomial of degree j \in \BbbN 0. These polynomials form an orthonormal basis of L2
\pi m

(\Gamma m),
i.e., L2

\pi m
(\Gamma m) = span

\bigl\{ 
Pm
j : j \in \BbbN 0

\bigr\} 
. Moreover, they satisfy the following three-term

recurrence [12, Theorem 1.29]:

(2.10) cmj+1P
m
j+1(ym) = (ym  - amj )Pm

j (ym) - cmj P
m
j - 1(ym), j = 0, 1, 2, . . . ,

with Pm
 - 1(ym) = 0, Pm

0 (ym) = 1/cm0 , where amj , c
m
j are defined in terms of inner prod-

ucts involving the monic orthogonal polynomial counterparts to Pm
j (for details, see

[12, Chapter 1]). For our choice of intervals \Gamma m = [ - 1, 1], the recurrence coefficients
amj , c

m
j are bounded; in particular amj = 0 (since the measure \pi m is symmetric) and

there holds (see [12, Theorem 1.28])

(2.11) 0 < cmj \leq 1, m \in \BbbN , j = 0, 1, 2, . . . .

Consider now the index set of multi-indices \bfitalpha with finite support

\BbbI :=
\bigl\{ 
\bfitalpha = (\alpha 1, \alpha 2, . . .) \in \BbbN \BbbN 

0 : max(supp\bfitalpha ) <\infty 
\bigr\} 
,
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S98 ALEX BESPALOV, DANIEL LOGHIN, AND RAWIN YOUNGNOI

where supp\bfitalpha = \{ m \in \BbbN ; \alpha m \not = 0\} . For each multi-index \bfitalpha \in \BbbI , we define the
multivariate polynomial

\psi \bfitalpha (\bfity ) :=
\prod 

m\in supp\bfitalpha 

Pm
\alpha m

(ym).

The set \{ \psi \bfitalpha : \bfitalpha \in \BbbI \} is an orthonormal basis of L2
\pi (\Gamma ); see [28, Theorem 2.12]. Thus,

any finite index set \BbbI n \subset \BbbI induces a finite dimensional subspace span \{ \psi \bfitalpha : \bfitalpha \in \BbbI n\} 
of L2

\pi (\Gamma ). In this paper, we employ finite index sets of the following type:

\BbbI Mk := \{ \bfitalpha \in \BbbI : | \bfitalpha | \leq k and \alpha m = 0 \forall m > M\} , k \in \BbbN 0, M \in \BbbN ,

where | \bfitalpha | =
\sum 

m\in supp\bfitalpha \alpha m. We denote the corresponding finite-dimensional sub-

spaces of L2
\pi (\Gamma ) as

(2.12) SM
k := span

\bigl\{ 
\psi \bfitalpha : \bfitalpha \in \BbbI Mk

\bigr\} 
.

Thus, SM
k is the space of complete polynomials of degree \leq k in M variables; its

dimension is given by

N\bfity := dim(SM
k ) = card \BbbI Mk =

\biggl( 
M + k

k

\biggr) 
.

Furthermore, there exists a bijection \bfitkappa : \{ 1, 2, . . . , N\bfity \} \rightarrow \BbbI Mk , so that we can also
describe SM

k via the span SM
k = span

\bigl\{ 
\psi \bfitkappa (j) : 1 \leq j \leq N\bfity 

\bigr\} 
.

We can now define the following finite-dimensional subspace of V :

(2.13) VM
hk :=Xh\otimes SM

k = span
\bigl\{ 
\varphi ij(\bfitx ,\bfity ) :=\phi i(\bfitx )\psi \bfitkappa (j)(\bfity ) : 1\leq i\leq N\bfitx , 1\leq j\leq N\bfity 

\bigr\} 
.

The resulting discrete formulation of (2.8) reads as follows: find uMhk \in VM
hk such that

(2.14) A(uMhk, v) = F(v) \forall v \in VM
hk .

Using the definition of VM
hk in (2.13) we write the Galerkin approximation uMhk as

(2.15) uMhk(\bfitx ,\bfity ) =

N\bfitx \sum 
i=1

N\bfity \sum 
j=1

uij\varphi ij(\bfitx ,\bfity ).

The Galerkin projection onto the finite-dimensional space VM
hk defined via the choice of

finite index set \BbbI Mk can be shown to correspond to a discrete weak formulation involving
a truncation at m = M of the parametric diffusion coefficient a given in (2.2). More
precisely, if we let

aM (\bfitx ,\bfity ) := a0(\bfitx ) +

M\sum 
m=1

am(\bfitx )ym, \bfitx \in \Omega , \bfity \in \Gamma ,

then the associated bilinear form

AM (v, w) :=

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

aM (\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla w(\bfitx ,\bfity )d\bfitx d\bfity 

satisfies (see, e.g., [2, page A349])

(2.16) AM (v, w) = A(v, w) \forall v, w \in VM
hk .
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Using representation (2.15) of the Galerkin solution, and setting v = \varphi st in (2.14) for
s = 1, . . . , N\bfitx and t = 1, . . . , N\bfity , we obtain the following linear system:

N\bfitx \sum 
i=1

N\bfity \sum 
j=1

uijA(\varphi ij , \varphi st) = F(\varphi st).

This system becomes, using (2.16) and the separable form (2.13) of \varphi ij , \varphi st and of
each term in the series expansion (2.2) of the diffusion coefficient a(\bfitx ,\bfity ),

M\sum 
m=0

N\bfitx \sum 
i=1

N\bfity \sum 
j=1

uij

\int 
\Omega 

am\nabla \phi i \cdot \nabla \phi sd\bfitx 
\int 
\bfGamma 

ym\psi \bfitkappa (j)\psi \bfitkappa (t)pd\bfity =

\int 
\Omega 

f\phi sd\bfitx 

\int 
\bfGamma 

\psi \bfitkappa (t)pd\bfity ,

where we set y0 = 1. Therefore, the discrete formulation (2.14) yields a linear system
Au = f with block structure. Specifically, the coefficient matrix A, the solution vector
u, and the right-hand side vector f are given by

(2.17) A =

\left[     
A11 A12 \cdot \cdot \cdot A1N\bfity 

A21 A22 \cdot \cdot \cdot A2N\bfity 

...
...

. . .
...

AN\bfity 1 AN\bfity 2 \cdot \cdot \cdot AN\bfity N\bfity 

\right]     , u =

\left[     
u1

u2

...
uN\bfity 

\right]     , f =

\left[     
f1
f2
...

fN\bfity 

\right]     ,
respectively, where

Atj = \langle \psi \bfitkappa (j), \psi \bfitkappa (t)\rangle \pi K0 +

M\sum 
m=1

\langle ym\psi \bfitkappa (j), \psi \bfitkappa (t)\rangle \pi Km, t, j = 1, . . . , N\bfity 

with finite element (stiffness) matrices Km, m = 0, 1, . . . ,M , defined by

[Km]si :=

\int 
\Omega 

am\nabla \phi i \cdot \nabla \phi s d\bfitx , s, i = 1, . . . , N\bfitx ,

uj := [u1j u2j . . . uN\bfitx j ]
T
, j = 1, . . . , N\bfity ,

and

[ft]s := \langle 1, \psi \bfitkappa (t)\rangle \pi 
\int 
\Omega 

f\phi s d\bfitx , s = 1, . . . , N\bfitx , t = 1, . . . , N\bfity .

Using Kronecker products for matrices, it is convenient to write the coefficient matrix
A in the following compact form:

(2.18) A = G0 \otimes K0 +

M\sum 
m=1

Gm \otimes Km,

where

(2.19) [G0]tj := \langle \psi \bfitkappa (j), \psi \bfitkappa (t)\rangle \pi , [Gm]tj := \langle ym\psi \bfitkappa (j), \psi \bfitkappa (t)\rangle \pi 

for m = 1, . . . ,M and t, j = 1, . . . , N\bfity .
The stochastic Galerkin matrix A is symmetric and positive definite. Further-

more, as it follows from the theorem below, A is block sparse with no more than
2M + 1 nonzero block matrices per row.
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Theorem 2.1 ([21, Theorems 9.58 and 9.59]). Consider the matrices Gm defined
in (2.19) for m = 0, 1, . . . ,M . The matrix G0 is the N\bfity \times N\bfity identity matrix, and
each matrix Gm for m = 1, 2, . . . ,M has at most two nonzero entries per row. More
precisely,

[Gm]tj =

\left\{       
cm\gamma m+1 if \gamma m = \beta m  - 1 and \gamma \ell = \beta \ell \forall \ell \in \BbbN \setminus \{ m\} ,
cm\gamma m

if \gamma m = \beta m + 1 and \gamma \ell = \beta \ell \forall \ell \in \BbbN \setminus \{ m\} ,
0 otherwise,

where \bfitgamma = \bfitkappa (t), \bfitbeta = \bfitkappa (j), and cm\gamma m
are the coefficients arising in the three-term

recurrence (2.10) which defines the orthonormal polynomials Pm
j .

3. Truncation preconditioners. In this section, we consider a class of precon-
ditioners that are induced by bilinear forms associated with truncations of the series
representation of the parametric diffusion coefficient a (cf. [30, 17]). We will show
that these truncated bilinear forms are equivalent to the bilinear form arising in the
variational formulation of our PDE. The immediate consequence of this fact is that
the resulting truncation preconditioners will be optimal in some sense to be described
below (see Definition 3.4).

3.1. Equivalent bilinear forms and preconditioning. A generic approach
to preconditioner design for discretizations of variational problems is based on approx-
imating the bilinear forms arising in the formulation of the problem. For symmetric
and coercive problems, the well-known concept of equivalence of bilinear forms trans-
lates into spectral equivalence between the coefficient matrix and the preconditioner
induced by the approximating bilinear form; in turn, spectral equivalence enables
both the design and analysis of effective preconditioning techniques. We summarize
this approach in Proposition 3.3 below, which requires the following two definitions.

Definition 3.1. We say that positive definite symmetric bilinear forms A,B :
V \times V \rightarrow \BbbR are equivalent if there exist positive constants θ,Θ such that for all v \in V
there holds

θB(v, v) \leq A(v, v) \leq ΘB(v, v).

Definition 3.2. We say that symmetric positive definite matrices A,B \in \BbbR n\times n

are spectrally equivalent if there exist positive constants θ,Θ independent of n such
that for all v \in \BbbR n there holds

θvTBv \leq vTAv \leq ΘvTBv.

In this case, we write A \sim B.

Remark 3.1. The relation \sim is an equivalence relation. In particular, transitivity
will be relevant in our subsequent discussion.

Bilinear form equivalence is connected to the well-known concepts of operator and
spectral equivalence (see [6, 11]) as well as norm-equivalent preconditioners (see [20]).
In this context, the following result is key to our subsequent analysis.

Proposition 3.3. Let A,B denote positive definite symmetric bilinear forms on
V \times V which are equivalent. Let Vn = span \{ \varphi 1, . . . , \varphi n\} \subset V , and let A,B \in \BbbR n\times n

be defined as follows:

Aij = A(\varphi j , \varphi i), Bij = B(\varphi j , \varphi i).
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Then A \sim B and the spectrum of B - 1A satisfies

(3.1) \Lambda (B - 1A) \subset [θ,Θ],

where θ,Θ are the constants of equivalence for A,B.

The above result motivates the following definition.

Definition 3.4. Let A,B \in \BbbR n\times n satisfy (3.1) with constants \theta ,\Theta independent
of n. Then B is said to be an optimal preconditioner for A with respect to the problem
size n.

Preconditioner optimality translates into performance optimality. In particular,
it is well-known that the preconditioned CG algorithm applied to the linear system
Au = f with optimal preconditioner B converges in a number of steps independent
of n. Our aim is to construct optimal preconditioners with respect to the problem
size for the coefficient matrix in (2.17). We do this by first adapting the result of
Proposition 3.3 to the parametric elliptic problem (1.1). We will need the following
auxiliary result.

Lemma 3.5. Let p : \Gamma \rightarrow \BbbR +, and assume that bi : \Omega \times \Gamma \rightarrow \BbbR + (i = 1, 2) satisfy

0 < \beta min
i \leq bi(\bfitx ,\bfity ) \leq \beta max

i a.e. in \Omega \times \Gamma \ni (\bfitx ,\bfity ).

Define the bilinear forms Bi : V \times V \rightarrow \BbbR via

Bi(v, w) =

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

bi(\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla w(\bfitx ,\bfity )d\bfitx d\bfity , i = 1, 2.

Then the bilinear forms Bi are equivalent:

θB2(v, v) \leq B1(v, v) \leq ΘB2(v, v) \forall v \in V,

where

θ =
\beta min
1

\beta max
2

, Θ =
\beta max
1

\beta min
2

.

Proof. For any v \in V , we have

B1(v, v) =

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

\biggl( 
b1(\bfitx ,\bfity )

b2(\bfitx ,\bfity )

\biggr) 
b2(\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla v(\bfitx ,\bfity )d\bfitx d\bfity 

\leq 

\Biggl( 
ess sup

(\bfitx ,\bfity )\in \Omega \times \bfGamma 

b1(\bfitx ,\bfity )

b2(\bfitx ,\bfity )

\Biggr) \int 
\bfGamma 

p(\bfity )

\int 
\Omega 

b2(\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla v(\bfitx ,\bfity )d\bfitx d\bfity 

\leq \beta max
1

\beta min
2

B2(v, v).

The lower bound follows analogously.

The boundedness required in the above lemma for bi(\bfitx ,\bfity ) holds for the para-
metric diffusion coefficient a(\bfitx ,\bfity ) (see (2.5)). In the next subsection we show that
assumptions (2.3) and (2.4), which guarantee (2.5), also yield boundedness of trun-
cated expansions of the coefficient a(\bfitx ,\bfity ). That result will enable our main goal---the
analysis of truncation preconditioners for stochastic Galerkin matrices.
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3.2. Spectral analysis. In analogy with (2.4), we define

(3.2) \tau 0 := 0, \tau r :=
1

amin
0

\bigm\| \bigm\| \bigm\| \bigm\| r\sum 
m=1

| am| 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
, r \in \BbbN .

Note that (\tau r)r\in \BbbN 0
is a monotonic increasing sequence, which is bounded from above

(cf. (2.4)), i.e.,
0 \leq \tau r \leq \tau r+1 \leq \tau < 1, r \in \BbbN 0.

First, we establish the boundedness of truncated expansions of the parametric diffusion
coefficient a.

Lemma 3.6. Assume that (2.3) and (2.4) hold. Let r \in \BbbN 0, and define ar :
\Omega \times \Gamma \rightarrow \BbbR to be the finite sum

(3.3) ar(\bfitx ,\bfity ) := a0(\bfitx ) +

r\sum 
m=1

am(\bfitx )ym.

Then ar(\bfitx ,\bfity ) is positive and bounded almost everywhere in \Omega \times \Gamma .

Proof. The case r = 0 follows from the boundedness and positivity assump-
tions (2.3) on a0(\bfitx ). Consider now r \in \BbbN . Since | ym| \leq 1, using the definition (3.2)
of \tau r we obtain

| ar(\bfitx ,\bfity ) - a0(\bfitx )| =
\bigm| \bigm| \bigm| \bigm| r\sum 
m=1

am(\bfitx )ym

\bigm| \bigm| \bigm| \bigm| \leq r\sum 
m=1

| am(\bfitx )| \leq amin
0 \tau r a.e. in \Omega \times \Gamma .

Hence,

(3.4) a0(\bfitx ) - amin
0 \tau r \leq ar(\bfitx ,\bfity ) \leq a0(\bfitx ) + amin

0 \tau r

and using the boundedness of a0(\bfitx ) (see (2.3)), we get

(3.5) \eta min
r := amin

0  - amin
0 \tau r \leq ar(\bfitx ,\bfity ) \leq amax

0 + amin
0 \tau r =: \eta max

r a.e. in \Omega \times \Gamma .

The proof concludes by noting that \eta min
r > 0 since \tau r \leq \tau < 1 (cf. (3.2) and (2.4)).

Combining Lemmas 3.5 and 3.6, we obtain the following result.

Theorem 3.7. Let a : \Omega \times \Gamma \rightarrow \BbbR + be a parametric diffusion coefficient given
by (2.2), and let A : V \times V \rightarrow \BbbR be the associated bilinear form defined in (2.9).
Assume (2.3) and (2.4) hold. Let ar be given by (3.3), and define the associated
bilinear form as

Ar(v, w) :=

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

ar(\bfitx ,\bfity )\nabla v(\bfitx ,\bfity ) \cdot \nabla w(\bfitx ,\bfity )d\bfitx d\bfity .

Then A and Ar are equivalent for any r \in \BbbN 0.

Proof. By (2.5), the diffusion coefficients a is bounded. Furthermore, by Lem-
ma 3.6, the coefficient ar, r \in \BbbN 0, is bounded as well. Consequently, by Lemma 3.5,
the bilinear forms are equivalent. In particular,

θrAr(v, v) \leq A(v, v) \leq ΘrAr(v, v),

where

(3.6) θr :=
amin

\eta max
r

=
(1 - \tau )amin

0

amax
0 + amin

0 \tau r
, Θr :=

amax

\eta min
r

=
amax
0 + amin

0 \tau 

(1 - \tau r)amin
0

with \eta min
r and \eta max

r defined in (3.5).
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Remark 3.2. The equivalence of the bilinear form A0 associated with the pa-
rameter-free term a0(\bfitx ) in (2.2) and the bilinear form A is well known (see, e.g.,
[3, equation (2.5)]). Theorem 3.7 extends this result to the case of arbitrary finite
truncation of the affine-parametric coefficient a(\bfitx ,\bfity ).

Remark 3.3. The constants θr, Θr in (3.6) depend on \tau , amin
0 , amax

0 , and indirectly
on r via \tau r.

Theorem 3.7, combined with Proposition 3.3, indicates that the bilinear form Ar

induces a family of preconditioners for the SGFEM matrix A in (2.17). This is made
precise in the next theorem which is the main result of this section.

Theorem 3.8. Let A, Ar be defined as in Theorem 3.7, and assume (2.3) and (2.4)
hold. Let \{ \varphi ij\} be the tensor-product basis for the finite dimensional space VM

hk

in (2.13) and A = [A(\varphi ij , \varphi st)] be the associated SGFEM matrix. For a fixed r \in \BbbN 0

define the preconditioner Pr via

Pr := [Ar(\varphi ij , \varphi st)] .

Then Pr \sim A and the spectrum of P - 1
r A satisfies

(3.7) \Lambda (P - 1
r A) \subset [θr,Θr]

with θr, Θr defined in (3.6).

Remark 3.4. To obtain alternative spectral bounds under the assumption in (2.6),
we can define (cf. (3.2))

\widetilde \tau 0 := 0, \widetilde \tau r :=

\bigm\| \bigm\| \bigm\| \bigm\| a - 1
0

r\sum 
m=1

| am| 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
, r \in \BbbN .

Note that (\widetilde \tau r)r\in \BbbN 0
is a monotonic increasing sequence bounded from above by \widetilde \tau .

Then, instead of (3.5) we obtain by using (2.7)

1 - \widetilde \tau r
1+ \widetilde \tau a(\bfitx ,\bfity )\leq (1 - \widetilde \tau r)a0(\bfitx )\leq ar(\bfitx ,\bfity )\leq (1+\widetilde \tau r)a0(\bfitx )\leq 1+ \widetilde \tau r

1 - \widetilde \tau a(\bfitx ,\bfity ) a.e. in \Omega \times \Gamma .

This implies the equivalence of bilinear forms A, A0, Ar as follows:

(1 - \widetilde \tau r)A0(v, v) \leq Ar(v, v) \leq (1 + \widetilde \tau r)A0(v, v) \forall v \in V

and
1 - \widetilde \tau 
1 + \widetilde \tau r Ar(v, v) \leq A(v, v) \leq 1 + \widetilde \tau 

1 - \widetilde \tau r Ar(v, v) \forall v \in V.

Therefore, by Proposition 3.3, the following spectral bounds hold:

\Lambda (P - 1
0 Pr) \subset [1 - \widetilde \tau r, 1 + \widetilde \tau r] and \Lambda (P - 1

r A) \subset 
\biggl[ 
1 - \widetilde \tau 
1 + \widetilde \tau r , 1 + \widetilde \tau 1 - \widetilde \tau r

\biggr] 
.

The preconditioners Pr, which we will refer to as truncation preconditioners, are
induced by the bilinear form Ar, r \in \BbbN 0. Therefore, by (2.16), there holds Pr = A for
all r \geq M . In practice, the values of r are expected to be small in order to allow for
sparse approximations of A which can be efficiently implemented. Note also that Pr
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can be written as a sum of Kronecker products, just as was the case for the SGFEM
matrix A (cf. (2.18)):

(3.8) Pr = G0 \otimes K0 +

r\sum 
m=1

Gm \otimes Km.

The result of Theorem 3.8 indicates that the performance of the preconditioned
CG method will be independent of discretization parameters but may depend on the
choice of truncation parameter r. Since

A(v, v) = Ar(v, v) + R(v, v)

with

R(v, v) :=

\int 
\bfGamma 

p(\bfity )

\int 
\Omega 

(a(\bfitx ,\bfity ) - ar(\bfitx ,\bfity ))\nabla v(\bfitx ,\bfity ) \cdot \nabla v(\bfitx ,\bfity )d\bfitx d\bfity ,

a smallness assumption of the form

(3.9) | R(v, v)| \leq \varepsilon rA(v, v), 0 < \varepsilon r < 1,

would allow for the following equivalence of A and Ar:

(3.10) (1 - \varepsilon r)A(v, v) \leq Ar(v, v) \leq (1 + \varepsilon r)A(v, v).

Since

a(\bfitx ,\bfity ) - ar(\bfitx ,\bfity ) =

\infty \sum 
m=r+1

am(\bfitx )ym,

by the definition of R, assumption (3.9) holds for sufficiently large r. As a result, (3.10)
implies the following eigenvalue bounds:

\Lambda (P - 1
r A) \subset 

\biggl[ 
1

1 + \varepsilon r
,

1

1 - \varepsilon r

\biggr] 
.

This suggests that the closer ar approximates a, the tighter the preconditioned spec-
trum will be clustered around unity. We will investigate this conclusion numerically
in section 5.

4. Modified truncation preconditioners. Any practical implementation of
a preconditioner requires an efficient technique for applying the action of its inverse
on a given vector. Standard approaches include constructing sparse factorizations,
or employing multigrid or multilevel techniques; domain decomposition methods rep-
resent yet another approach. The potential for parallelism could also be a deciding
factor in the choice of solution method.

The preconditioner Pr introduced in the previous section is block-sparse, with
sparsity deteriorating with increasing r (cf. Theorem 2.1). In the case when r = 1,
the structure can be shown to be block-tridiagonal under a certain permutation---
this is not an ideal situation, as it requires additional techniques to ensure an efficient
application of the preconditioner. For this reason, we replace Pr with its corresponding
symmetric block Gauss--Seidel (SBGS) approximation:

(4.1) \widetilde Pr :=

\Biggl( 
G0 \otimes K0 +

r\sum 
m=1

Lm \otimes Km

\Biggr) 
(G0\otimes K0)

 - 1

\Biggl( 
G0 \otimes K0 +

r\sum 
m=1

LT
m \otimes Km

\Biggr) 
,
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where Lm + LT
m = Gm. The matrix \widetilde Pr thus represents a sparse approximation to

Pr involving block-triangular and block-diagonal matrices. In the remainder of this
section we prove that Pr \sim \widetilde Pr and provide complexity considerations, including a
discussion of implementation.

4.1. Analysis of SBGS approximation of \bfitP \bfitr . In this subsection we assume
that the ordering of multi-indices in the index set \BbbI Mk is such that the matrices Lm

in (4.1) have at most one nonzero entry per row and per column (this property holds,
e.g., for lexicographic or antilexicographic ordering as well as for ascending or de-
scending ordering by the total degree of the associated complete polynomials in SM

k ).
Let us define

(4.2) Sr :=

r\sum 
m=1

Lm \otimes Km, D0 := G0 \otimes K0

so that

(4.3) Pr

(3.8)
= D0 + Sr + ST

r

and

\widetilde Pr

(4.1)
= (D0 + Sr)D

 - 1
0 (D0 + ST

r ) = Pr + SrD
 - 1
0 ST

r .

Our spectral analysis focuses on deriving bounds for the generalized Rayleigh quotient

(4.4)
vT \widetilde Prv

vTPrv
= 1 +

vTSrD
 - 1
0 ST

r v

vT (D0 + Sr + ST
r )v

, v \in \BbbR N\bfitx N\bfity \setminus \{ 0\} .

Since the lower bound is 1, we restrict our attention to deriving an upper bound for
the second term on the right-hand side of (4.4), which we write using the change of

variable w = D
1/2
0 v as

\rho (w) :=
wT \widetilde Sr

\widetilde ST
r w

wT (I + \widetilde Sr + \widetilde ST
r )w

.

Here,

(4.5) \widetilde Sr := D
 - 1/2
0 SrD

 - 1/2
0 =

r\sum 
m=1

Lm \otimes \widetilde Km

with \widetilde Km := K
 - 1/2
0 KmK

 - 1/2
0 , using the fact that G0 = IN\bfity . Hence,

(4.6) \rho (w) \leq max
\bfw \not =\bfzero 

wT \widetilde Sr
\widetilde ST
r w

wTw
\cdot max
\bfw \not =\bfzero 

wTw

wT (I + \widetilde Sr + \widetilde ST
r )w

=
\sigma 2
max(\widetilde Sr)

\lambda min(I + \widetilde Sr + \widetilde ST
r )
,

where \sigma max(\cdot ) and \lambda min(\cdot ) denote, respectively, the largest singular value and the

smallest eigenvalue of a matrix. In the next lemma, we provide bounds for \sigma max(\widetilde Sr)

and \lambda min(I + \widetilde Sr + \widetilde ST
r ) in order to conclude the derivation of the upper bound on \rho .

Lemma 4.1. Suppose that (2.3) and (2.4) hold and \tau r is defined in (3.2). Let \widetilde Sr

be defined by (4.5). Then

(4.7) \lambda min(I + \widetilde Sr + \widetilde ST
r ) \geq 1 - \tau r
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S106 ALEX BESPALOV, DANIEL LOGHIN, AND RAWIN YOUNGNOI

and

(4.8) \sigma max(\widetilde Sr) \leq 
1

amin
0

r\sum 
m=1

\| am\| \infty .

Proof. Since

I+\widetilde Sr+\widetilde ST
r = I+

r\sum 
m=1

Gm\otimes \widetilde Km = D
 - 1/2
0

\biggl( 
D0+

r\sum 
m=1

Gm\otimes Km

\biggr) 
D

 - 1/2
0 =D

 - 1/2
0 PrD

 - 1/2
0 ,

the eigenvalues of I + \widetilde Sr + \widetilde ST
r are the eigenvalues of D - 1

0 Pr = P - 1
0 Pr. To find the

bounds on the spectrum of P - 1
0 Pr, recall the inequalities in (3.4) and the lower bound

for a0(\bfitx ) in (2.3), which together imply that

(1 - \tau r)a0(\bfitx ) \leq ar(\bfitx ,\bfity ) \leq (1 + \tau r)a0(\bfitx ) a.e. in \Omega \times \Gamma .

Hence, the bilinear forms A0 and Ar are equivalent, and by Proposition 3.3 there holds

(4.9) \Lambda (P - 1
0 Pr) \subset [1 - \tau r, 1 + \tau r] .

This proves (4.7).
On the other hand, since \sigma max defines a norm, we use the triangle inequality

to estimate

(4.10) \sigma max(\widetilde Sr) \leq 
r\sum 

m=1

\sigma max(Lm \otimes \widetilde Km) \leq 
r\sum 

m=1

\sigma max(Lm)\sigma max( \widetilde Km).

Now, \sigma 2
max(Lm) = \lambda max(LmL

T
m); since LmL

T
m is diagonal for every m (due to Lm

having at most one nonzero entry per row and per column), it follows that for all m

(4.11) \sigma max(Lm) = max
i,j

[Gm]ij \leq max
k

cmk \leq 1

with cmk being bounded by 1 (cf. Theorem 2.1 and inequalities (2.11)). Finally, since

the eigenvalues of \widetilde Km are the eigenvalues of K - 1
0 Km, we find that

\sigma max( \widetilde Km) = max
i

\bigm| \bigm| \lambda i(K - 1
0 Km)

\bigm| \bigm| \leq \| am\| \infty 
amin
0

,

and then inequality (4.8) follows from (4.10) and (4.11). This finishes the proof.

We summarize our discussion in the following result.

Proposition 4.2. Suppose that (2.3) and (2.4) hold and \tau r is defined in (3.2).

Let Pr be defined in (3.8) and let \widetilde Pr be its SBGS approximation (4.1). Then \widetilde Pr \sim Pr

and the spectrum of P - 1
r
\widetilde Pr satisfies

(4.12) \Lambda (P - 1
r
\widetilde Pr) \subset [1, 1 + \delta r],

where

(4.13) \delta r :=
1

1 - \tau r

\biggl( 
1

amin
0

r\sum 
m=1

\| am\| \infty 

\biggr) 2

.
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The proof of the upper bound in (4.12) is completed by substituting the esti-
mates (4.7), (4.8) into (4.6) and then using the resulting bound for \rho (w) in (4.4).

The following result is a straightforward consequence of Theorem 3.8, Proposi-
tion 4.2, and the transitivity of spectral equivalence.

Theorem 4.3. Let \widetilde Pr be the SBGS approximation (4.1) to Pr. Let θr,Θr be

defined in (3.6), and let \delta r be defined in (4.13). Then \widetilde Pr \sim A and the spectrum of\widetilde P - 1
r A satisfies

(4.14) \Lambda ( \widetilde P - 1
r A) \subset 

\biggl[ 
θr

1 + \delta r
, Θr

\biggr] 
.

4.2. Implementation. Complexity considerations. Our proposed solution
method for solving the linear system (2.14) is the preconditioned CG (PCG) method,
for which the main computational effort at each step comprises a matrix-vector prod-
uct with the matrix A and the solution of a linear system with the preconditioning
matrix. Since the main computational cost is associated with the latter operation, we
discuss this in detail. We will denote by F\ell (operation) the complexity, i.e., number
of flops required to perform an operation. The number of nonzeros of a matrix will
be denoted by nnz(\cdot ).

As indicated previously, the action of the inverse of Pr needs to be approximated
due to its sparse (but nondiagonal) block structure. We achieve this by replacing Pr

with its SBGS approximation \widetilde Pr. Let us consider the implementation of the action
of \widetilde P - 1

r onto a given vector v; for general r \in \BbbN 0, this can be achieved as follows
(see (4.2)--(4.3) for the definitions of the respective matrices):

1. solve (D0 + Sr)w = v;
2. solve (D0 + ST

r )z = D0w.
Both of the above steps involve the solution of a block-triangular system, with the
main computational cost arising from solving linear systems with the diagonal blocks
K0. Specifically, since Pr has at most 2r+ 1 nonzero block matrices per row, we find

F\ell ( \widetilde P - 1
r v) \approx (2rN\bfity )nnz(K0) + 2N\bfity F\ell (K

 - 1
0 b)

for some vector b of size N\bfitx . Below we consider two special cases.

4.2.1. Special case: \bfitr = 0. The preconditioner P0 is the mean-based precon-
ditioner introduced in [13]. The complexity associated with the action of the inverse
on a given vector is

F\ell (P - 1
0 v) = N\bfity F\ell (K

 - 1
0 b).

4.2.2. Special case: \bfitr = 1. The structure of Pr simplifies greatly when r =
1. In particular, G1 has a block-diagonal structure under a certain permutation [21,
section 9.5]:

G1 = diag(Tk+1, Tk, . . . , Tk, . . . , T1, . . . , T1),

where Tj \in \BbbR j\times j (j = 1, . . . , k + 1) are tridiagonal, with zero main diagonal. Note in
particular that T1 = 0. As a result, P1 will have a block-diagonal structure, where
each diagonal block is a block-tridiagonal matrix of size jN\bfitx . Specifically,

P1 =

k+1\bigoplus 
j=1

nj\bigoplus 
i=1

(I \otimes K0 + Tj \otimes K1) ,
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where, assuming M > 1,

nj =

\biggl( 
k +M  - j  - 1

M  - 2

\biggr) 
.

Given this structure, the complexity for the implementation of the action of \widetilde P - 1
1 on

a given vector v is

F\ell ( \widetilde P - 1
1 v) \approx 2

\left(  k+1\sum 
j=2

jnj

\right)  \bigl( nnz(K0) + F\ell (K - 1
0 b)

\bigr) 
+ n1F\ell (K

 - 1
0 b).

Under the assumption that F\ell (K - 1
0 b) dominates the computation, we deduce that

the implementation of \widetilde P1 is at most twice as expensive as the implementation of P0.

4.2.3. Kronecker preconditioner. We end this section with a discussion of
the complexity required for an implementation of the Kronecker preconditioner [34].
Since

P\otimes = G\otimes K0 = (G\otimes IN\bfitx )(IN\bfity \otimes K0) = (G\otimes IN\bfitx )P0,

the complexity is given by

F\ell (P - 1
\otimes v) = N\bfity F\ell (K

 - 1
0 b) +N\bfitx F\ell (G

 - 1d)

for some vector d of size N\bfity . Thus, the complexity exceeds that of P0 by a computa-
tional cost dependent on the sparsity of G. In particular, it was estimated in [34] that
this additional cost would amount to F\ell (G - 1d) \sim O((2M+1)2) operations, excluding
the cost of performing a Cholesky factorization of G.

5. Numerical experiments. In this section, we investigate the effectiveness of
the preconditioning strategies considered in sections 3--4. In particular, we verify the
theoretical optimality of truncation preconditioners Pr and \widetilde Pr (r \geq 1) with respect to
discretization parameters and compare their performance with that of the mean-based
preconditioner P0 and the Kronecker product preconditioner P\otimes defined in (1.4) (see
[34] for details and analysis).

We chose to use test problems satisfying the descriptions and assumptions in this
paper, as well as problems outside the theoretical framework. Thus, we solved model
problem (1.1) using the following choices of parametric diffusion coefficient:

\bullet a(\bfitx ,\bfity ) has the affine representation (2.2), with the coefficients am(\bfitx ) satis-
fying (2.3) and (2.4);

\bullet a(\bfitx ,\bfity ) is a lognormal diffusion coefficient, i.e., a(\bfitx ,\bfity ) = exp(b(\bfitx ,\bfity )), where
b(\bfitx ,\bfity ) is assumed to have the affine representation (2.2) but with unbounded
parameters ym (we note that this choice of coefficient a is not covered by our
theoretical analysis).

In all our tests, we chose \Omega = (0, 1)2 and f(\bfitx ) = 1. We used the MATLAB
toolbox S-IFISS [29] to generate SGFEM discretizations of our model problem for a
range of discretization parameters. We used uniform subdivisions of \Omega into square
elements of edge length h, with h ranging between 2 - 3 to 2 - 7. The discretization
parameters k,M had ranges 1 \leq k \leq 6, 1 \leq M \leq 8. We solved the resulting linear
systems using the PCG method with tolerance tol = 10 - 6 and zero initial guess.
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5.1. Test problem 1: Affine-parametric diffusion coefficient. For this test
problem, the diffusion coefficient a(\bfitx ,\bfity ) had the affine-parametric form (2.2), with the
coefficients am(\bfitx ) in the expansion chosen such that they exhibit either slow or fast
decay. As indicated at the end of section 3, this is expected to affect the performance
of the truncation preconditioners Pr. In particular, our numerical experiments will
highlight the dependence on the truncation parameter r.

Following [7, section 11.1], we select the expansion coefficients am(\bfitx ) (m \in \BbbN 0)
in (2.2) to represent planar Fourier modes of increasing total order, i.e.,

(5.1) a0(\bfitx )= 1, am(\bfitx )= \=\alpha m - \widetilde \sigma cos \bigl( 2\pi \beta 1(m)x1
\bigr) 
cos
\bigl( 
2\pi \beta 2(m)x2

\bigr) 
, \bfitx =(x1, x2)\in \Omega .

Here, \widetilde \sigma > 1, 0 < \=\alpha < 1/\zeta (\widetilde \sigma ), where \zeta denotes the Riemann zeta function, and \beta 1, \beta 2
are given by

\beta 1(m) = m - k(m) (k(m) + 1) /2, \beta 2(m) = k(m) - \beta 1(m)

with k(m) = \lfloor  - 1/2 +
\sqrt{} 
1/4 + 2m\rfloor . Furthermore, we assume the parameters ym

(m \in \BbbN ) in (2.2) to be the images of independent uniformly distributed mean-zero
random variables on \Gamma m = [ - 1, 1]. In this case, pm(ym) = 1/2, ym \in \Gamma m, and the
orthonormal polynomial basis of L2

\pi m
(\Gamma m) consists of scaled Legendre polynomials.

Note that with these settings, conditions (2.3) and (2.4) are satisfied with constants
amin
0 = amax

0 = 1 and \tau \leq \=\alpha \zeta (\widetilde \sigma ), respectively.
The choice \widetilde \sigma = 2 in (5.1) yields coefficients am with slow decay of the amplitudes

\=\alpha m - \widetilde \sigma , while the fast decay corresponds to the choice \widetilde \sigma = 4. In each case, we select the
factor \=\alpha such that \=\alpha \zeta (\widetilde \sigma ) = 0.9999, which gives \=\alpha \approx 0.6079 for \widetilde \sigma = 2 and \=\alpha \approx 0.9239
for \widetilde \sigma = 4. The magnitudes of the expansion coefficients am for increasing m for slow
and fast decay are displayed in Table 5.1.

While the magnitudes of am (m = 1, 2, . . .) (and hence, the importance of the
corresponding parameters ym, m = 1, 2, . . .) decay significantly faster for \widetilde \sigma = 4 (e.g.,
\| a1\| \infty \approx 16\| a2\| \infty for \widetilde \sigma = 4, whereas \| a1\| \infty \approx 4\| a2\| \infty for \widetilde \sigma = 2), we observe that
the magnitude of a1 is much closer to the magnitude of the mean field a0 in the case
of fast decay than in the case of slow decay. This suggests that for fast decay there
holds a(\bfitx ,\bfity ) \approx a1(\bfitx ,\bfity ), which in turn implies that equivalence (3.10) may hold for
r = 1 and with a small \varepsilon 1. We therefore expect the performance of P1 to be superior
in the fast decay case. This is indeed confirmed by the iteration counts in Table 5.2.
The results also confirm the optimal performance of Pr with respect to k.

A similar behavior can be observed also for the case where the preconditioners Pr

are replaced by their SBGS approximations \widetilde Pr. Table 5.3 diplays the corresponding
iteration counts for a range of r, as well as for the mean-based preconditioner P0 and
Kronecker preconditioner P\otimes , for both fast and slow decay cases.

The results in Tables 5.2 and 5.3 indicate that the iteration counts corresponding
to the approximations \widetilde Pr of the preconditioners Pr are higher. This is expected
given the theoretical deterioration of the spectral bounds in (4.14) as compared to

Table 5.1
Magnitudes \| am\| \infty of expansion coefficients (5.1) for test problem 1.

m 0 1 2 3 4 5 6

Slow decay (\widetilde \sigma = 2) 1.0000 0.6079 0.1520 0.0675 0.0380 0.0243 0.0169

Fast decay (\widetilde \sigma = 4) 1.0000 0.9239 0.0577 0.0114 0.0036 0.0015 0.0007
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Table 5.2
PCG iterations counts for test problem 1; h = 2 - 4,M = 8.

k
Fast decay Slow decay

P0 P1 P2 P3 P4 P5 P6 P0 P1 P2 P3 P4 P5 P6

1 13 4 3 3 2 2 2 10 6 4 4 4 3 3
2 16 5 4 3 3 2 2 12 7 5 5 4 4 3
3 21 6 4 3 3 2 2 14 7 6 5 4 4 4
4 24 6 4 3 3 3 2 15 8 6 5 4 4 4

the bounds in (3.7). However, all truncation preconditioners require fewer iterations
than their mean-based and Kronecker product counterparts. This improvement in
the iteration counts is more pronounced in the case of fast decay than in the case of
slow decay, which is consistent, in particular, with how the magnitudes of expansion
coefficients am change with m (see Table 5.1 and the associated discussion above).
For example, the numbers of iterations for the truncation preconditioner P1 (resp.,\widetilde P1) are less than those for the mean-based preconditioner P0 by factors of 3 to 4
(resp., by factors of about 2 to 2.5) in the case of fast decay. This is because in this
case, the expansion coefficient a1 has approximately the same magnitude as the mean
field. In the case of slow decay, however, both P1 and \widetilde P1 outperform P0 in terms of
the number of iterations only by a factor between 1.5 and 2. It is worth recalling here
that the computational cost for the truncation preconditioner \widetilde P1 is about twice the
cost of the mean-based preconditioner P0 (see subsection 4.2); thus, in terms of the

overall computational complexity, \widetilde P1 performs at least the same as P0; in the fast
decay case, the overall computational cost for modified truncation preconditioners is
significantly lower than that for P0.

If more expansion coefficients are retained in Pr (r \geq 2), then the iteration counts
naturally (and consistently) decrease; in particular, they decrease quicker in the case
of fast decay of coefficient amplitudes than in the case of slow decay of the amplitudes;
see Table 5.2. This is again in agreement with what one might expect and reflects
different decay patterns of \| am\| \infty in each of these cases, as shown in Table 5.1.

However, when applying the corresponding modified truncation preconditioners \widetilde Pr

(r \geq 2) and increasing the number r of retained expansion coefficients, the iteration
counts decrease very slowly (in the case of fast decay they even stagnate for r \geq 2 in
most cases); see Table 5.3. This indicates that no significant improvement is obtained
by including additional terms am in the definition of Pr.

The above set of experiments demonstrates that the modified truncation precondi-
tioners \widetilde Pr provide sufficiently accurate approximations of stochastic Galerkin matrices
and thus can be used as effective practical preconditioners for linear systems aris-
ing from SGFEM approximations of the model problem (1.1) with affine-parametric

Table 5.3
PCG iterations counts for test problem 1; h = 2 - 4,M = 8.

k
Fast decay Slow decay

P\otimes P0
\widetilde P1

\widetilde P2
\widetilde P3

\widetilde P4
\widetilde P5

\widetilde P6 P\otimes P0
\widetilde P1

\widetilde P2
\widetilde P3

\widetilde P4
\widetilde P5

\widetilde P6

1 12 13 7 6 6 6 6 6 9 10 6 5 5 5 5 5
2 16 16 8 7 7 7 7 7 12 12 7 6 6 6 5 5
3 20 21 9 9 8 8 8 8 14 14 8 7 6 6 6 6
4 24 24 10 9 9 9 9 9 15 15 9 7 7 6 6 6
5 26 27 11 10 10 10 10 10 16 16 9 7 7 7 6 6
6 29 29 12 11 11 11 11 11 17 17 10 8 7 7 7 7
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Table 5.4
PCG iterations counts for test problem 1 for various h and M , for k = 3.

Fast decay Slow decay

h
M = 4 M = 8 M = 4 M = 8

P0
\widetilde P1

\widetilde P2 P0
\widetilde P1

\widetilde P2 P0
\widetilde P1

\widetilde P2 P0
\widetilde P1

\widetilde P2

2 - 3 18 8 8 18 8 8 13 7 6 13 7 6

2 - 4 21 9 9 21 9 9 14 8 7 14 8 7
2 - 5 23 10 9 23 10 9 14 8 7 15 8 7
2 - 6 24 10 10 24 10 10 15 8 7 15 8 7
2 - 7 24 10 10 24 10 10 15 8 7 15 8 7

representation of the diffusion coefficient. Depending on the decay of magnitudes of
the expansion coefficients, one may choose larger values of r to improve the efficiency
of the solver (e.g., in the case of slow decay). However, in most cases, we recommend
to choose r = 1 or r = 2.

We end the discussion of our first test problem with a numerical confirmation of
optimality of the modified truncation preconditioners with respect to discretization
parameters h and M . We consider again the cases of fast (\widetilde \sigma = 4) and slow (\widetilde \sigma = 2)
decay of coefficient amplitudes \=\alpha m - \widetilde \sigma in (5.1) and employ three preconditioners: the

mean-based P0 and the modified truncation preconditioners \widetilde P1 and \widetilde P2. Note that
other modified truncation preconditioners (for r > 2) yield similar performance, and
the corresponding results are not included here. We chose to work with two values of
M \in \{ 4, 8\} and several uniform subdivisions into squares of side lengths ranging from
h = 2 - 3 to h = 2 - 7, while keeping fixed the polynomial degree k = 3. The results of
these computations are presented in Table 5.4. These results show that indeed, the
iteration counts do not change as M increases from 4 to 8 (for the same value of h)
and as the spatial mesh gets sufficiently refined (for the same value of M).

5.2. Test problem 2: Nonaffine parametric diffusion coefficient. Con-
sider again model problem (1.1), now with the following truncated lognormal diffusion
coefficient

(5.2) a(\bfitx ,\bfity ) := exp
\bigl( 
b(\bfitx ,\bfity )

\bigr) 
:= exp

\biggl( 
b0(\bfitx )+

N\sum 
m=1

bm(\bfitx )ym

\biggr) 
, \bfitx \in \Omega , \bfity \in \Gamma :=

N\prod 
m=1

\Gamma m,

where b0, bm \in L\infty (\Omega ) for all m = 1, . . . , N and the parameters ym \in \Gamma m := \BbbR 
are the images of independent normally distributed random variables with zero mean
and unit variance. Accordingly, pm now denotes the standard Gaussian probability
density function, and the joint probability density function is p(\bfity ) =

\prod N
m=1 pm(ym).

The well-posedness of weak formulation (2.8) in this case has been studied in [5].
As a polynomial basis of L2

\pi (\Gamma ) we choose the set of scaled Hermite polynomials
\{ \psi \bfitalpha : \Gamma \rightarrow \BbbR : \bfitalpha \in \BbbN N

0 \} orthonormal with respect to the inner product \langle \cdot , \cdot \rangle \pi . In this
basis, the diffusion coefficient (5.2) has the representation

a(\bfitx ,\bfity ) :=
\sum 

\bfitalpha \in \BbbN N
0

a\bfitalpha (\bfitx )\psi \bfitalpha (\bfity )

with (cf. [34, page 926])

(5.3) a\bfitalpha (\bfitx ) = \langle a(\bfitx , \cdot ), \psi \bfitalpha \rangle \pi = \BbbE [a(\bfitx , \cdot )]
\prod 

m\in supp\bfitalpha 

b\alpha m
m (\bfitx )
\surd 
\alpha m

\forall \bfitalpha \in \BbbN N
0 ,
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where

\BbbE [a(\bfitx , \cdot )] =
\int 
\bfGamma 

exp (b(\bfitx ,\bfity )) p(\bfity )d\bfity = exp

\biggl( 
b0(\bfitx ) +

1

2

N\sum 
m=1

b2m(\bfitx )

\biggr) 
> 0 a.e. in \Omega .

Let M < N . A Galerkin projection onto Xh \otimes SM
k (cf. (2.12)--(2.13)) yields a

linear system with coefficient matrix

(5.4) A =
\sum 

\bfitalpha \in \BbbI M2k

G\bfitalpha \otimes K\bfitalpha ,

where for all \bfitalpha \in \BbbI M2k we have defined

[G\bfitalpha ]tj :=
\bigl\langle 
\psi \bfitalpha \psi \bfitkappa (j), \psi \bfitkappa (t)

\bigr\rangle 
\pi 

for t, j = 1, . . . , N\bfity ,

[K\bfitalpha ]si :=

\int 
\Omega 

a\bfitalpha \nabla \phi i \cdot \nabla \phi s d\bfitx for s, i = 1, . . . , N\bfitx 

with a\bfitalpha given by (5.3). Note that all matrices G\bfitalpha have nonnegative entries; cf. [10,
Appendix A]. In particular, G\bfzero = I, where 0 = (0, 0, . . . , 0) \in \BbbI M2k. Furthermore, the
well-posedness of weak formulation implies that the matrix A is positive definite.

In order to define a family of truncation preconditioners for A, we introduce an
ordering of the terms in (5.4) based on the magnitude of a\bfitalpha . To that end, we assume,
without loss of generality, that all magnitudes \| a\bfitalpha \| \infty for \bfitalpha \in \BbbI M2k are distinct. Then,
the ordering is defined by the sequence

\bigl\{ 
\bfitalpha \ell : \ell = 0, 1, . . . , card \BbbI M2k  - 1

\bigr\} 
of all multi-

indices in \BbbI M2k such that
\| a\bfitalpha i\| \infty >

\bigm\| \bigm\| a\bfitalpha j

\bigm\| \bigm\| 
\infty , i < j.

Unlike in the affine case, this ordering is not sufficient to ensure positivity of the
truncated diffusion coefficient

(5.5) ar(\bfitx ,\bfity ) :=

r\sum 
\ell =0

a\bfitalpha \ell 
(\bfitx )\psi \bfitalpha \ell 

(\bfity ), 0 \leq r \leq card \BbbI M2k  - 1.

Consequently, the resulting truncation preconditioner

(5.6) Pr :=

r\sum 
\ell =0

G\bfitalpha \ell 
\otimes K\bfitalpha \ell 

is not guaranteed to be positive definite. However, as in the affine case, we replace
Pr by its SBGS approximation \widetilde Pr. As demonstrated in Proposition 5.1 below, the
modified truncation preconditioner \widetilde Pr is positive definite, provided that the mean
field a\bfzero (\bfitx ) = \BbbE [a(\bfitx , \cdot )] is included in the truncation (5.5). It is important to note

that the complexity associated with the action of \widetilde P - 1
r remains unchanged from the

affine case; cf. subsection 4.2.

Proposition 5.1. Let a be the lognormal diffusion coefficient given by (5.2). Let
0 \leq r \leq card \BbbI M2k  - 1, and assume that the truncated diffusion coefficient ar in (5.5)
satisfies \BbbE [ar] = \BbbE [a] = a\bfzero > 0 a.e. in \Omega . Then the truncation preconditioner Pr

given by (5.6) can be represented as

(5.7) Pr = D + L+ LT ,
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where D is a block-diagonal symmetric positive definite matrix and L is a strictly lower
block-triangular matrix. As a consequence, the SBGS approximation of Pr defined by

\widetilde Pr := (D + L)D - 1(D + LT )

is a symmetric positive definite matrix.

Proof. Denote by \BbbI even the set of multi-indices in \BbbI M2k with even entries, i.e.,

\BbbI even :=
\bigl\{ 
\bfitalpha = (\alpha 1, . . . , \alpha M ) \in \BbbI M2k; \alpha m is even for all m = 1, . . . ,M

\bigr\} 
.

Let \bfitalpha \in \BbbI even. It follows from (5.3) that a\bfitalpha (\bfitx ) \geq 0 a.e. in \Omega . Therefore, the stiffness
matrices K\bfitalpha for \bfitalpha \in \BbbI even are symmetric positive semidefinite; in particular, the
matrix K\bfzero is symmetric positive definite. Since all diagonal elements of the matrix
G\bfitalpha are nonnegative, each nonzero diagonal block of G\bfitalpha \otimes K\bfitalpha is a symmetric positive
semidefinite matrix. In particular, the block-diagonal matrix G\bfzero \otimes K\bfzero = I \otimes K\bfzero is
symmetric positive definite.

Now let \bfitalpha \in \BbbI M2k \setminus \BbbI even. In this case, all diagonal elements of the matrix G\bfitalpha are
zeros. Indeed, for any j = 1, . . . , N\bfity , one has

[G\bfitalpha ]jj =
\bigl\langle 
\psi \bfitalpha \psi \bfitkappa (j), \psi \bfitkappa (j)

\bigr\rangle 
\pi 
=
\bigl\langle 
\psi \bfitalpha , \psi 

2
\bfitkappa (j)

\bigr\rangle 
\pi 
= 0,

because there exists m\ast \in \{ 1, . . . ,M\} such that \alpha m\ast is odd and the associated uni-
variate Hermite polynomial is an odd function. Therefore, in this case, all diagonal
blocks of G\bfitalpha \otimes K\bfitalpha are zero matrices.

Overall, by combining the above observations and using the assumption that
\BbbE [ar] = \BbbE [a], we conclude that the diagonal blocks of the truncation preconditioner
Pr in (5.6) are symmetric positive definite matrices. This proves (5.7).

It is now easy to see that the SBGS approximation of Pr is a positive definite
matrix. Indeed, for any nonzero vector v there holds

vT \widetilde Prv = vT (D + L)D - 1(D + LT )v = wTD - 1w > 0

with nonzero w := (D + LT )v.

In numerical experiments, we set N = 20 and chose bm(\bfitx ) in (5.2) to be the
coefficients am(\bfitx ) in test problem 1 as defined in (5.1) with \widetilde \sigma = 2 and \=\alpha = 0.547.
In Table 5.5, for M = k = 6, we show first eight multi-indices in the sequence \{ \bfitalpha \ell \} 
and the corresponding coefficient magnitudes \| a\bfitalpha \ell 

\| \infty . We see that in this example,

Table 5.5
Multi-indices of first 8 largest magnitudes \| a\bfitalpha \| \infty for test problem 2; M = k = 6.

\ell \bfitalpha \ell \| a\bfitalpha \ell \| \infty 
0 (0,0,0,0,0,0) 3.20
1 (1,0,0,0,0,0) 1.75
2 (2,0,0,0,0,0) 0.68
3 (0,1,0,0,0,0) 0.44
4 (1,1,0,0,0,0) 0.24
5 (3,0,0,0,0,0) 0.21
6 (0,0,1,0,0,0) 0.19
7 (0,0,0,1,0,0) 0.11
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Table 5.6
PCG iterations counts for test problem 2; h = 2 - 4, M = 6.

k P\otimes P0
\widetilde P1

\widetilde P2
\widetilde P3

\widetilde P4
\widetilde P5

\widetilde P6

1 12 12 6 7 6 6 6 6
2 18 19 8 10 9 9 8 8
3 25 26 \bfone \bfzero 12 11 11 10 10
4 32 34 \bfone \bfthree 15 13 13 12 11
5 40 43 \bfone \bfseven 19 16 17 \bfone \bfthree \bfone \bftwo 
6 49 52 \bftwo \bffour 22 19 20 \bfone \bffour \bfone \bffour 

the coefficient with the largest magnitude is the mean field, i.e., a\bfitalpha 0 = a\bfzero . While the
distribution of indices inducing the ordering does not display any obvious pattern, we
note a fast decay with \ell in the magnitudes recorded, which is similar to the affine case.

Table 5.6 displays the PCG iteration counts corresponding to solving linear sys-
tems arising from SGFEM discretizations of the described test problem. We used the
following discretization parameters: h=2 - 4, M =6, and k\in \{ 1, . . . , 6\} . In our exper-

iments, we employed the modified truncation preconditioners \widetilde Pr with r \in \{ 1, . . . , 6\} ,
alongside the mean-based (P0) and Kronecker (P\otimes ) preconditioners. These exper-
iments included cases where preconditioners Pr defined by (5.6) were not positive
definite (in Table 5.6, the iteration counts for such cases are shown in boldface).

The results in Table 5.6 indicate that the numbers of iterations by the modified
truncation preconditioners are significantly lower than those corresponding to the
mean-based and Kronecker preconditioners (it is worth noting here that while the

computational cost for P0 and \widetilde Pr remains unchanged from the affine case, the cost
for P\otimes in this test problem will be significantly higher than in the affine case, due to
the density of the matrix G in (1.4) for the lognormal diffusion coefficient). For all
preconditioners, the experiments show that the iteration counts grow with k, although
this growth is much less pronounced for truncation preconditioners. Furthermore,
while we see only a negligible improvement with increasing r for k = 1, . . . , 4, this
becomes more pronounced for higher polynomial degrees (k = 5, 6).

6. Summary and future work. Efficient solution of large coupled linear sys-
tems is a key ingredient in successful implementation of the SGFEM. Truncation
preconditioners represent a competitive alternative to existing solvers relying on the
mean-based and Kronecker preconditioners. Our theoretical analysis shows that for
elliptic problems with affine-parametric coefficients, truncation preconditioners are
optimal with respect to discretization parameters. Our numerical experiments con-
firm this, while also demonstrating the improvement in the iteration count when
compared with the mean-based and Kronecker preconditioners.

On a practical note, the superior efficiency of considered solvers requires, cru-
cially, suitable fast (possibly parallel) implementation of the corresponding SBGS
approximations, which were also analyzed and shown to be optimal. For simplicity,
we considered a model diffusion problem, however, the analysis included in this work
can be extended in a straightforward manner to the general case of elliptic PDE with
parametric or uncertain inputs, under standard assumptions.

We have also applied truncation preconditioners in the case of nonaffine (specif-
ically, lognormal) diffusion coefficient. The numerical experiments suggest this is a
promising approach. Theoretical analysis of truncation preconditioners for this class
of parametric problems will be the focus of future research on the topic.
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