UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

A note on color-bias Hamilton cycles in dense graphs

Freschi, Andrea; Hyde, Joseph; Lada, Joanna; Treglown, Andrew

DOI:
10.1137/20M1378983

License:
None: All rights reserved

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
Freschi, A, Hyde, J, Lada, J \& Treglown, A 2021, 'A note on color-bias Hamilton cycles in dense graphs', SIAM Journal on Discrete Mathematics, vol. 35, no. 2, pp. 970-975. https://doi.org/10.1137/20M1378983

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Freschi, A. et al., 2021. A Note on Color-Bias Hamilton Cycles in Dense Graphs. SIAM Journal on Discrete Mathematics, 35(2), pp.970-975. Available at: http://dx.doi.org/10.1137/20m1378983.
© 2021 Society for Industrial and Applied Mathematics

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

A NOTE ON COLOR-BIAS HAMILTON CYCLES IN DENSE GRAPHS*

ANDREA FRESCHI ${ }^{\dagger}$, JOSEPH HYDE ${ }^{\dagger}$, JOANNA LADA ${ }^{\ddagger}$, AND ANDREW TREGLOWN ${ }^{\dagger}$

Abstract

Balogh, Csaba, Jing, and Pluhár [Electron. J. Combin., 27 (2020)] recently determined the minimum degree threshold that ensures a 2-colored graph G contains a Hamilton cycle of significant color bias (i.e., a Hamilton cycle that contains significantly more than half of its edges in one color). In this short note we extend this result, determining the corresponding threshold for r-colorings.

Key words. Hamilton cycles, color-bias, discrepancy
AMS subject classifications. $05 \mathrm{C} 35,05 \mathrm{C} 45,05 \mathrm{C} 15,05 \mathrm{C} 55$
DOI. 10.1137/20M1378983

1. Introduction. The study of color-biased structures in graphs concerns the following problem. Given graphs H and G, what is the largest t such that in any r-coloring of the edges of G, there is always a copy of H in G that has at least t edges of the same color? Note if H is a subgraph of G, one can trivially ensure a copy of H with at least $|E(H)| / r$ edges of the same color, so one is interested in when one can achieve a color-bias significantly above this.

The topic was first raised by Erdős in the 1960s (see [4, 6]). Erdős et al. [5] proved the following: for some constant $c>0$, given any 2 -coloring of the edges of K_{n} and any fixed spanning tree T_{n} with maximum degree Δ, K_{n} contains a copy of T_{n} such that at least $(n-1) / 2+c(n-1-\Delta)$ edges of this copy of T_{n} receive the same color. In [1], Balogh et al. investigated the color-bias problem in the case of spanning trees, paths, and Hamilton cycles for various classes of graphs G. Note all their results concern 2 -colorings and therefore were expressed in the equivalent language of graph discrepancy. The following result determines the minimum degree threshold for forcing a Hamilton cycle of significant color-bias in a 2 -edge-colored graph.

Theorem 1.1 (Balogh et al. [1]). Let $0<c<1 / 4$ and $n \in \mathbb{N}$ be sufficiently large. If G is an n-vertex graph with

$$
\delta(G) \geq(3 / 4+c) n
$$

then given any 2-coloring of $E(G)$ there is a Hamilton cycle in G with at least $(1 / 2+$ $c / 64) n$ edges of the same color. Moreover, if 4 divides n, there is an n-vertex graph G^{\prime} with $\delta\left(G^{\prime}\right)=3 n / 4$ and a 2 -coloring of $E\left(G^{\prime}\right)$ for which every Hamilton cycle in G^{\prime} has precisely $n / 2$ edges in each color.

In [7], Gishboliner, Krivelevich, and Michaeli considered color-bias Hamilton cycles in the random graph $G(n, p)$. Roughly speaking, their result states that if p is such that with high probability (w.h.p.) $G(n, p)$ has a Hamilton cycle, then in fact

[^0]w.h.p., given any r-coloring of the edges of $G(n, p)$, one can guarantee a Hamilton cycle that is essentially as color-bias as possible (see [7, Theorem 1.1] for the precise statement). A discrepancy (therefore color-bias) version of the Hajnal-Szemerédi theorem was proven in [2].

In this paper we give a very short proof of the following multicolor generalization of Theorem 1.1. We require the following definition to state it.

Definition 1.2. Let $t, r \in \mathbb{N}$ and H be a graph. We say that an r-coloring of the edges of H is t-unbalanced if at least $|E(H)| / r+t$ edges are colored with the same color.

Theorem 1.3. Let $n, r, d \in \mathbb{N}$ with $r \geq 2$. Let G be an n-vertex graph with $\delta(G) \geq\left(\frac{1}{2}+\frac{1}{2 r}\right) n+6 d r^{2}$. Then for every r-coloring of $E(G)$ there exists a d-unbalanced Hamilton cycle in G.

Note that n, r, and d may all be comparable in size. Further, Theorem 1.3 implies Theorem 1.1 with a slightly better bound on the color-bias. In the following section we give constructions that show Theorem 1.3 is best possible; that is, there are n-vertex graphs G with minimum degree $\delta(G)=(1 / 2+1 / 2 r) n$ such that for some r-coloring of $E(G)$, every Hamilton cycle in G uses precisely n / r edges of each color. The proof of Theorem 1.3 is constructive, producing the d-unbalanced Hamilton cycle in time polynomial in n.

Remark. After making our manuscript available online, we learned of simultaneous and independent work of Gishboliner, Krivelevich, and Michaeli [8]. They prove an asymptotic version of Theorem 1.3 (i.e., for sufficiently large graphs G) via Szemerédi's regularity lemma. They also generalize a number of the results from [1].
2. The extremal constructions. Our first extremal example is a generalization of a 2-color construction from [1].

Extremal Example 1. Let $r, n \in \mathbb{N}$ where $r \geq 2$ and such that $2 r$ divides n. Then there exists a graph G on n vertices with $\delta(G)=\left(\frac{1}{2}+\frac{1}{2 r}\right) n$, and an r-coloring of $E(G)$, such that every Hamilton cycle uses precisely n / r edges of each color.

Proof. The vertex set of G is partitioned into r sets V_{1}, \ldots, V_{r} such that $\left|V_{1}\right|=$ $\cdots=\left|V_{r-1}\right|=n / 2 r$, and $\left|V_{r}\right|=(r+1) n / 2 r$; the edge set of G consists of all edges with at least one endpoint in V_{r}. Now color the edges of G with colors $1, \ldots, r$ as follows:

- For each $i \in[r-1]$, color every edge with one endpoint in V_{i} and one endpoint in V_{r} with color i.
- Color every edge with both endpoints in V_{r} with color r (see Figure 1).

Observe that $\delta(G)=\left(\frac{1}{2}+\frac{1}{2 r}\right) n$, which is attained by every vertex in $V_{1} \cup \cdots \cup V_{r-1}$. For each $i \in[r-1]$, every vertex in V_{i} is only adjacent to edges of color $i,\left|V_{i}\right|=n / 2 r$ and $E\left(G\left[V_{1} \cup \cdots \cup V_{r-1}\right]\right)=\emptyset$. Hence every Hamilton cycle in G must contain precisely n / r edges of each color $i \in[r-1]$. Since a Hamilton cycle has n edges, every Hamilton cycle in G must also contain n / r edges of color r. Thus every Hamilton cycle in G uses precisely n / r edges of each color.

We also have an additional extremal example in the $r=3$ case.
Extremal Example 2. Let $n \in \mathbb{N}$ such that 3 divides n. Then there exists a graph G on n vertices with $\delta(G)=2 n / 3$, and a 3-coloring of $E(G)$, such that every Hamilton cycle uses precisely $n / 3$ edges of each color and every vertex in G is incident to precisely two colors.

Fig. 1. Extremal Example 1 for $r=3$.

Proof. Let G be the n-vertex 3 -partite Turán graph. So G consists of three vertex sets V_{1}, V_{2}, and V_{3}, such that $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=n / 3$, and all possible edges that go between distinct V_{i} and V_{j}. Color all edges between V_{1} and V_{2} red, all edges between V_{2} and V_{3} blue, and all edges between V_{3} and V_{1} green.

Clearly $\delta(G)=2 n / 3$ and every vertex is incident to precisely two colors. Let H be a Hamilton cycle in G and let r, b, and g be the number of red, blue, and green edges in H, respectively. Since all red and green edges in H are incident to vertices in $V_{1},\left|V_{1}\right|=n / 3$ and V_{1} is an independent set, we must have that $2 n / 3=r+g$. Applying similar reasoning to V_{2} and V_{3}, we have that $2 n / 3=b+r$ and $2 n / 3=g+b$. Hence $r=b=g=n / 3$. Thus every Hamilton cycle in G uses precisely $n / 3$ edges of each color.
3. Proof of Theorem 1.3. As in [1], we require the following generalisation of Dirac's theorem.

Lemma 3.1 (Pósa [9]). Let $1 \leq t \leq n / 2, G$ be an n-vertex graph with $\delta(G) \geq \frac{n}{2}+t$ and E^{\prime} be a set of edges of a linear forest in G with $\left|E^{\prime}\right| \leq 2 t$. Then there is a Hamilton cycle in G containing E^{\prime}.

Proof of Theorem 1.3. Recall that G is a graph on n vertices with $\delta(G) \geq\left(\frac{1}{2}+\right.$ $\left.\frac{1}{2 r}\right) n+6 d r^{2}$ for some integers $r \geq 2$ and $d \geq 1$. Consider any r-coloring of $E(G)$. Given a color c we define the function $L_{c}: E(G) \rightarrow\{0,1\}$ as follows:

$$
L_{c}(e):= \begin{cases}1 & \text { if } e \text { is colored with } c \\ 0 & \text { otherwise }\end{cases}
$$

Given a triangle $x y z$ and a color c, we $\operatorname{define}^{\operatorname{Net}_{c}(x y z, x y) \text { as follows: }}$

$$
\operatorname{Net}_{c}(x y z, x y):=L_{c}(x z)+L_{c}(y z)-L_{c}(x y)
$$

This quantity comes from an operation we will perform later where we extend a cycle H by a vertex z via deleting the edge $x y$ from H and adding the edges $x z$ and $y z$, to form a new cycle H^{\prime}. One can see that $\operatorname{Net}_{c}(x y z, x y)$ is the change in the number of edges of color c from H to H^{\prime}.

Since $\delta(G) \geq \frac{1}{2} n$, by Dirac's theorem, G contains a Hamilton cycle C. If C is d-unbalanced we are done, so suppose it is not. Let $v \in V(G)$. Since $d(v) \geq$ $\left(\frac{1}{2}+\frac{1}{2 r}\right) n+6 d r^{2}$, there are at least $\frac{n}{r}+12 d r^{2}$ edges e in C such that v and e span a triangle.

This can be seen in the following way. Let X be the set of neighbors of v and X^{+} be the set of vertices whose "predecessors" on C are neighbors of v, having arbitrarily chosen an orientation for C. We have

$$
n \geq\left|X \cup X^{+}\right|=|X|+\left|X^{+}\right|-\left|X \cap X^{+}\right| \geq n+\frac{n}{r}+12 d r^{2}-\left|X \cap X^{+}\right|
$$

Hence $\left|X \cap X^{+}\right| \geq \frac{n}{r}+12 d r^{2}$. Clearly each element in $X \cap X^{+}$yields a triangle containing v, thus giving the desired bound.

This property, together with the fact that C is not d-unbalanced (so contains fewer than $n / r+d$ edges of each color) immediately implies the following.

FACT 3.2. Let $v \in V(G), Y \subseteq V(G)$ with $|Y| \leq 5 d r^{2}$, and $x y$ be any edge in G that forms a triangle with v and is disjoint to $Y .{ }^{1}$ Then there is an edge zw on C vertex-disjoint to $x y$, and distinct colors c_{1} and c_{2} such that $v z w$ induces a triangle, $x y$ has color c_{1}, zw has color c_{2}, and $z, w \notin Y$.

Initially set $A:=\emptyset$. Consider an arbitrary $v \in V(G)$ and let x, y, z, w, c_{1}, c_{2} be as in Fact $3.2($ where $Y:=\emptyset)$, where $x y$ is chosen to be an edge of C that forms a triangle with v.

If there exists a color c such that $\operatorname{Net}_{c}(v x y, x y) \neq \operatorname{Net}_{c}(v z w, z w)$, then add the pair $(x y, z w)$ to the set A, and define $v_{1}:=v$. If there is no such color, then we must have that $\operatorname{Net}_{c_{1}}(v x y, x y)=\operatorname{Net}_{c_{1}}(v z w, z w)$ and so

$$
\begin{aligned}
L_{c_{1}}(v x)+L_{c_{1}}(v y)-L_{c_{1}}(x y) & =L_{c_{1}}(v w)+L_{c_{1}}(v z)-L_{c_{1}}(w z) \\
L_{c_{1}}(v x)+L_{c_{1}}(v y)-1 & =L_{c_{1}}(v w)+L_{c_{1}}(v z) \geq 0
\end{aligned}
$$

as $x y$ has color $c_{1}, w z$ has color c_{2} and $c_{1} \neq c_{2}$. Hence $v x$ or $v y$ is colored with c_{1}. Without loss of generality, let $v x$ be colored with c_{1}. By the same argument with color c_{2}, we may assume that, without loss of generality, $v w$ is colored c_{2}. Let c_{3} be the color of $v y$. Then $\operatorname{Net}_{c_{3}}(v x y, x y)=\operatorname{Net}_{c_{3}}(v z w, z w)$ and so

$$
\begin{gathered}
L_{c_{3}}(v x)+L_{c_{3}}(v y)-L_{c_{3}}(x y)=L_{c_{3}}(v w)+L_{c_{3}}(v z)-L_{c_{3}}(w z) \\
1=L_{c_{3}}(v z)
\end{gathered}
$$

as $v x$ and $x y$ are both colored with c_{1} and $v w$ and $w z$ are both colored with c_{2}. Hence c_{3} is also the color of $v z$ (see Figure 2). Since $c_{1} \neq c_{2}$, we may assume, without loss of generality, $c_{1} \neq c_{3}$.

Now we apply Fact 3.2 with x playing the role of $v, v y$ playing the role of $x y$, and $Y=\emptyset$. We thus obtain a color $c_{4} \neq c_{3}$ and an edge $w^{\prime} z^{\prime}$ on C that is vertex-disjoint from $v y$, so that $w^{\prime} z^{\prime}$ forms a triangle with x, and $w^{\prime} z^{\prime}$ is colored c_{4}. Note that by construction $\operatorname{Net}_{c_{3}}(x v y, v y)=-1$ while, as $c_{4} \neq c_{3}$, by definition $\operatorname{Net}_{c_{3}}\left(x w^{\prime} z^{\prime}, w^{\prime} z^{\prime}\right)=$ $L_{c_{3}}\left(x w^{\prime}\right)+L_{c_{3}}\left(x z^{\prime}\right)-0 \geq 0$. In this case we define $v_{1}:=x$ and add the pair $\left(v y, w^{\prime} z^{\prime}\right)$ to A.

[^1]

Fig. 2. A Hamilton cycle C for G. There is no color c with $\operatorname{Net}_{c}(v x y, x y) \neq \operatorname{Net}_{c}(v z w, z w)$ implying the color arrangement above.

Repeated applications of this argument thus yield sets $B:=\left\{v_{1}, v_{2}, \ldots, v_{d r^{2}}\right\}$ and a set A whose elements are pairs of edges from G so that

- all vertices lying in B and in edges in pairs from A are vertex-disjoint,
- for each $u=v_{i}$ in B there is a pair $(x y, z w) \in A$ associated with u, and a color c_{u} so that (i) $u x y$ and $u z w$ are triangles in G, (ii) $\operatorname{Net}_{c_{u}}(u x y, x y) \neq$ $\operatorname{Net}_{c_{u}}(u z w, z w)$. We call c_{u} the color associated with u.
Note that it is for the first of these two conditions that we require the set Y in Fact 3.2. At a given step of our argument, Y will be the set of vertices that have previously been added to B or lie in an edge previously selected for inclusion in a pair from A.

There is some color c^{*} for which c^{*} is the color associated with (at least) $d r$ of the vertices in B. Let B^{\prime} denote the set of such vertices of B; without loss of generality we may assume $B^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{d r}\right\}$. Let A^{\prime} denote the subset of A that corresponds to B^{\prime}. For each $i \in[d r]$, let $\left(x_{i} y_{i}, z_{i} w_{i}\right)$ denote the element of A^{\prime} associated with v_{i}. We may assume that for each $i \in[d r]$,

$$
\begin{equation*}
\operatorname{Net}_{c^{*}}\left(v_{i} x_{i} y_{i}, x_{i} y_{i}\right)>\operatorname{Net}_{c^{*}}\left(v_{i} z_{i} w_{i}, z_{i} w_{i}\right) \tag{1}
\end{equation*}
$$

Consider the induced subgraph G^{\prime} of G obtained from G by removing the vertices from B^{\prime}. Let E^{\prime} be the set of all edges which appear in some pair in A^{\prime}. As $\delta\left(G^{\prime}\right) \geq$ $n / 2+d r$, Lemma 3.1 implies that there exists a Hamilton cycle C^{\prime} in G^{\prime} which contains E^{\prime}. Let C_{1} be the Hamilton cycle of G obtained from C^{\prime} by inserting each v_{i} from B^{\prime} between x_{i} and y_{i}; let C_{2} be the Hamilton cycle of G obtained from C^{\prime} by inserting each v_{i} from B^{\prime} between z_{i} and w_{i}. For $j=1,2$, write E_{j} for the number of edges in C_{j} of color c^{*}. Note that (1) implies that $E_{1}-E_{2} \geq d r$. It is easy to see that this implies one of C_{1} and C_{2} contains at least $n / r+d$ edges in the same color, ${ }^{2}$ thereby completing the proof.
4. Concluding remarks. As mentioned in [5, section 7] there are many possible directions for future research. One natural extension of our work is to seek an analogue of Theorem 1.3 in the setting of digraphs.

[^2]Question 4.1. Given any digraph G on n vertices with minimum in- and outdegree at least $(1 / 2+1 / 2 r+o(1)) n$, and any r-coloring of $E(G)$, can one always ensure a Hamilton cycle in G of significant color-bias?

Note that the natural digraph analogues of our extremal constructions for Theorem 1.3 show that one cannot lower the minimum degree condition in Question 4.1.

Given an r-colored n-vertex graph G and nonnegative integers d_{1}, \ldots, d_{r}, we say that G contains a $\left(d_{1}, \ldots, d_{r}\right)$-colored Hamilton cycle if there is a Hamilton cycle in G with precisely d_{i} edges of the i th color (for every $i \in[r]$). Note that the proof of Theorem 1.3 (more precisely (1)) ensures that given a graph G as in the theorem, one can obtain at least $d r$ distinct vectors $\left(d_{1}, \ldots, d_{r}\right)$ such that G has a $\left(d_{1}, \ldots, d_{r}\right)$ colored Hamilton cycle. It would be interesting to investigate this problem further. That is, given an r-colored n-vertex graph G of a given minimum degree, how many distinct vectors $\left(d_{1}, \ldots, d_{r}\right)$ can we guarantee so that G contains a $\left(d_{1}, \ldots, d_{r}\right)$-colored Hamilton cycle?

In [2], the question of determining the minimum degree threshold that ensures a color-bias k th power of a Hamilton cycle was raised; it would be interesting to establish whether a variant of the switching method from the proof of Theorem 1.3 can be used to resolve this problem (for all $k \geq 2$ and r-colorings where $r \geq 2$).

Remark. Since a version of this paper first appeared online, Bradač [3] has used the regularity method to resolve this problem asymptotically for all $k \geq 2$ when $r=2$.

Acknowledgment. The authors are grateful to the referee for their careful review.

REFERENCES

[1] J. Balogh, B. Csaba, Y. Jing, and A. Pluhár, On the discrepancies of graphs, Electron. J. Combin., 27 (2020).
[2] J. Balogh, B. Csaba, A. Pluhár, and A. Treglown, A discrepancy version of the HajnalSzemerédi theorem, Combin. Probab. Comput., 30 (2021), pp. 444-459.
[3] D. Bradač, Powers of Hamilton Cycles of High Discrepancy Are Unavoidable, arXiv:2102. 10912, 2021.
[4] P. Erdős, Ramsey és Van der Waerden tételével Kapcsolatos Kombinatorikai Kédésekröl, Mat. Lapok., 14 (1963), pp. 29-37.
[5] P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós, Discrepancy of Trees, Stud. Sci. Math., 30 (1995), pp. 47-57.
[6] P. Erdős and J. H. Spencer, Imbalances in k-colorations, Networks, 1 (1971/72), pp. 379-385.
[7] L. Gishboliner, M. Krivelevich, and P. Michaeli, Colour-Biased Hamilton Cycles in Random Graphs, arXiv:2007.12111, 2020.
[8] L. Gishboliner, M. Krivelevich, and P. Michaeli, Discrepancies of Spanning Trees and Hamilton Cycles, arXiv:2012.05155, 2020.
[9] L. Pósa, On the circuits of finite graphs, Magyar. Tud. Akad. Mat. Kutat Int. Közl., 8 (1963/1964), pp. 355-361.

[^0]: *Received by the editors November 6, 2020; accepted for publication (in revised form) March 4, 2021; published electronically May 11, 2021.
 https://doi.org/10.1137/20M1378983
 ${ }^{\dagger}$ School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK (axf079@bham. ac.uk, jfh337@bham.ac.uk, a.c.treglown@bham.ac.uk).
 ${ }^{\ddagger}$ Merton College, University of Oxford, Oxford, OX1 2JD, UK (joanna.lada@merton.ox.ac.uk).

[^1]: ${ }^{1}$ Note sometimes in an application of this fact, $x y$ will be an edge of C, but other times not.

[^2]: ${ }^{2}$ This color may not necessarily be c^{*}.

