

University of Birmingham

Fill your Boots: Enhanced Embedded Bootloader
Exploits via Fault Injection and Binary Analysis
Van Den Herrewegen, Jan; Oswald, David; Garcia, Flavio; Temeiza, Qais

DOI:
https://doi.org/10.46586/tches.v2021.i1.56-81

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Van Den Herrewegen, J, Oswald, D, Garcia, F & Temeiza, Q 2020, 'Fill your Boots: Enhanced Embedded
Bootloader Exploits via Fault Injection and Binary Analysis', IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2021, no. 1. https://doi.org/10.46586/tches.v2021.i1.56-81

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Jun. 2022

https://doi.org/10.46586/tches.v2021.i1.56-81
https://doi.org/10.46586/tches.v2021.i1.56-81
https://birmingham.elsevierpure.com/en/publications/a879b3bb-9fa5-4cc3-babc-9b9f67c83907

IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 1, pp. 56–81. DOI:10.46586/tches.v2021.i1.56-81

Fill your Boots: Enhanced Embedded Bootloader
Exploits via Fault Injection and Binary Analysis

Jan Van den Herrewegen1, David Oswald1, Flavio D. Garcia1 and
Qais Temeiza2

1 School of Computer Science, University of Birmingham, UK,
{jxv572,d.f.oswald,f.garcia}@cs.bham.ac.uk

2 Independent Researcher, qaiskhaled744@gmail.com

Abstract. The bootloader of an embedded microcontroller is responsible for guarding
the device’s internal (flash) memory, enforcing read/write protection mechanisms.
Fault injection techniques such as voltage or clock glitching have been proven successful
in bypassing such protection for specific microcontrollers, but this often requires
expensive equipment and/or exhaustive search of the fault parameters. When multiple
glitches are required (e.g., when countermeasures are in place) this search becomes of
exponential complexity and thus infeasible. Another challenge which makes embedded
bootloaders notoriously hard to analyse is their lack of debugging capabilities.
This paper proposes a grey-box approach that leverages binary analysis and advanced
software exploitation techniques combined with voltage glitching to develop a powerful
attack methodology against embedded bootloaders. We showcase our techniques with
three real-world microcontrollers as case studies: 1) we combine static and on-chip
dynamic analysis to enable a Return-Oriented Programming exploit on the bootloader
of the NXP LPC microcontrollers; 2) we leverage on-chip dynamic analysis on the
bootloader of the popular STM8 microcontrollers to constrain the glitch parameter
search, achieving the first fully-documented multi-glitch attack on a real-world target;
3) we apply symbolic execution to precisely aim voltage glitches at target instructions
based on the execution path in the bootloader of the Renesas 78K0 automotive
microcontroller. For each case study, we show that using inexpensive, open-design
equipment, we are able to efficiently breach the security of these microcontrollers and
get full control of the protected memory, even when multiple glitches are required.
Finally, we identify and elaborate on several vulnerable design patterns that should
be avoided when implementing embedded bootloaders.
Keywords: Embedded bootloader, fault-injection attacks, Return-Oriented Program-
ming, binary analysis

1 Introduction
Embedded microcontrollers are at the foundation of our ever-increasingly digital world,
steering innovation through data they collect and process. However, with their many
advantages and uses come new security concerns. A single vulnerability in an embedded
Microcontroller (µC) can lead to the compromise of all embedded systems using that
particular type of chip.

An embedded bootloader is available on nearly all µCs and typically has full access to
the chip’s flash/RAM memories and its peripherals before loading the user application.
Therefore, chip manufacturers integrate a security mechanism, which we call Code Readout
Protection (CRP) in this paper, in the bootloader to safeguard the integrity and secrecy
of the firmware binary (and all cryptographic secrets and intellectual property within it).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-07-15 Accepted: 2020-09-15 Published: 2020-12-03

https://doi.org/10.46586/tches.v2021.i1.56-81
mailto:jxv572@cs.bham.ac.uk,d.f.oswald@cs.bham.ac.uk,f.garcia@cs.bham.ac.uk
mailto:qaiskhaled744@gmail.com
http://creativecommons.org/licenses/by/4.0/

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 57

Because a variety of devices, ranging from automotive Electronic Control Units (ECUs) to
Internet of Things (IoT), often use the same or similar µCs, they also include the same,
generic bootloader—with no control over its development and no insight into its source
code. Hence, the users of µCs find themselves at the mercy of the quality of the chip
manufacturer’s internal security testing, if any such procedures are in place at all.

Thus, however strong security primitives a specific system is built on, a vulnerable
bootloader undoes all of this and makes the device susceptible to various attacks ranging
from firmware readout to a full device compromise. Hence, bootloader security is of utmost
importance for the integrity of the device and the secrecy of the firmware and the data
within it. In notoriously secretive sectors such as the automotive industry, being able to
extract firmware from ECUs allows for public scrutiny of the underlying security primitives,
which are often of proprietary nature and insecure [dHG18, MV15, MV13, WVdHG+20,
GOKP16]. The bootloader is the first piece of software that executes after reset and
enforces the chip’s CRP. Typically, it initialises essential peripherals (e.g., the internal
clock) and loads and executes the application firmware. However, most bootloaders provide
an external interface through a serial protocol, which typically uses an internal buffer to
write and receive messages, making them prone to well-studied software vulnerabilities such
as buffer overflows. These are aggravated by the lack of common mitigation techniques
on embedded chips and especially in the bootloader, which often resides in a restricted
memory area such as on-chip ROM and cannot be updated.

Hardware-based fault attacks induce a fault in on-chip computations, such as skipping
an instruction, by changing the physical operating environment of the chip, e.g., the supply
voltage. They do not rely on the presence of a software vulnerability. The literature covers a
wide spectrum of hardware-based fault injection methods: the most widely-used techniques
include voltage, optical, clock and electromagnetic fault injection. Optical fault attacks
require extensive preparation such as decapsulating the chip [SA02], while electromagnetic
fault attacks involve specialised hardware [CH17] and have a larger parameter space (e.g.,
probe positions). On the other hand, voltage fault injection (“glitching”) does not require
expensive lab equipment: open-source projects such as the Chipwhisperer [OC14] and
the Generic Implementation ANalysis Toolkit (GIAnT) [Osw16] significantly lower the
entry barrier for voltage glitching. A large amount of research has focused on devising
algorithm-specific techniques to recover keys when faults are injected into cryptographic
computations (cf. for instance [TMA11, BDL97, BS97, BBKN12, JT12]). Such research
usually assumes a specific fault model (e.g., a bit-flip in a certain part of a cipher’s
internal state), and ignores the details of how the faults actually influence the binary
code implementing the cryptographic algorithm. However, fault injection such as voltage
glitching can often accurately target one particular instruction or memory location, and
change the behaviour of normally secure code [MOG+20]. This makes bootloaders especially
susceptible to said attacks: if for example the comparison instruction that checks if CRP
is enabled can be manipulated, a single fault is sufficient to disable it. This in turn also
compromises all cryptographic secrets stored on the µC, without the need for key recovery
techniques specific to the implemented cipher. Still, finding the correct fault injection
parameters to “hit” a particular location (e.g., in the bootloader binary) is challenging in
a real-world attack scenario: most published attacks treat the µC and its firmware as a
black box, and thus have to resort to an (optimised) brute force search of the parameter
space [BFP19, CPB+13, PBJC14]. However, binary analysis of the bootloader binary could
significantly reduce the search space. On the one hand, static analysis, which statically
reconstructs the program control flow, reveals the possible bootloader execution paths to
the CRP check. On the other hand, dynamic analysis, which leverages the bootloader
execution, proves crucial in developing and testing CRP bypass exploits.

In this work, we draw on the target bootloader binaries to gain insight into the boot-
loader operation, and the enforcement of the CRP mechanism in particular. Furthermore,

58 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

we propose several novel methods that bridge the gap between binary analysis and fault
injection. We show that our approach enables complex attacks that would be infeasible
without analysis of the bootloader binary.

1.1 Our Contribution
Combining software and hardware vulnerabilities, we apply binary analysis techniques
on bootloaders of three different chips, which ultimately allow us to bypass their security
mechanisms with inexpensive, open-designed hardware. Our approach is widely applicable
and, unlike intrusive silicon-level attacks, scales well. Our research reveals several vulnerable
design and implementation patterns in a bootloader that makes it vulnerable to attacks in
this paper and in the general literature. The contributions of this work are as follows:

• We extract and analyse four embedded bootloaders by three different manufacturers
in detail. We show several software and hardware-based attacks on all bootloaders
to bypass the CRP mechanisms. We perform all attacks with low-cost, open-design
hardware, with a total cost of ∼ $ 250.

• We show how hardware-based fault injection through voltage glitching benefits from
static and dynamic binary analysis techniques. Several novel attack methods arise from
this approach, including the selection of glitch parameters based on the input-dependent
execution path. Furthermore, dynamic glitch profiling on the STM8 ultimately leads
to the—to our knowledge—first successful multi-glitch attack applied to a real-world
target.

• We demonstrate that software exploitation techniques such as Return-Oriented Pro-
gramming (ROP), originally developed to bypass stack protection mechanisms for
complex processors [Sha07] and later extended to embedded applications [FC08], are
also relevant for the bootloader security of simple, constrained µCs.

• We systematise the vulnerability classes identified in bootloaders and describe typical
anti-patterns that need to be avoided in the development of secure embedded bootloaders.
We explain these anti-patterns in Section 6 and reference them throughout the paper
as A1, A2, etc.

• All our tools, including the glitching hardware, will be made available as open source
under a permissive license to aid the development of countermeasures and enable
independent reproduction of our results1.

1.2 Responsible Disclosure
We disclosed the vulnerability in the LPC series bootloader (Section 3) to NXP, and they
acknowledged the issue. Although NXP previously had cautioned users about limitations
of using CRP 1, they updated their developer guidance and recommend to set CRP 2 or
3, where this exploit is not possible. We disclosed the vulnerability in the STM8 series
bootloader (Section 4) to ST, and they are currently evaluating the report. Finally, we did
not contact Renesas regarding the issue in the 78K0 bootloader (Section 5), because the
presence of a vulnerability was already reported in [BFP19].

1.3 Related Work
1.3.1 Hardware-based CRP bypass

Yuce et al. give an overview of commonly used types of hardware-controlled fault injection
attacks in [YSW18]. Bypassing CRP on µCs has been an active field of research for

1Source available at https://github.com/janvdherrewegen/bootl-attacks

https://github.com/janvdherrewegen/bootl-attacks

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 59

the past two decades, starting with the work presented in [Sko]. In 2002, Skorobogatov
et al. showed that they could change a single bit in an SRAM array on a PIC16F84
microcontroller using an off-the-shelf laser pointer [SA02] and use this effect to bypass
CRP. In [Sko10], Skorobogatov introduces flash memory bumping; a technique which
uses optical fault-injection to force the data bus into a known state. Skorobogatov used
this to extract read-protected memory from a NEC 78K0/S microcontroller and a Actel
ProASIC3 FPGA. Similarly, researchers have targeted the fuses containing the readout
protection bits with UV-C light [bun, OT17, SOR+14, Cesa, SA02]. In [OT17] Obermaier
et al. bypassed the CRP of the STM32F0 by injecting a fault to flip one bit in the 16-bit
value encoding the CRP level, which ranges from 0 to 2 (0 indicating protection disabled).
Because CRP level 2 and 1 only differ by one bit, they downgraded the security level to
CRP level 1, which enables the Serial Wire Debug (SWD) interface. The researchers then
discovered two additional vulnerabilities in SWD—a timing-based race condition and the
reconstruction of control flow based on SRAM contents—leading to a full attack on CRP 1.

Other research has shown that an attacker can disable CRP on chips through voltage
fault injection [BFP19, Lim19, Ger, Cesa, Cesb, RND, Kra, Gil, WVdHG+20]. By changing
the voltage level (i.e., glitching) at the time the chip evaluates or loads the CRP value,
they can bypass the protection mechanism and gain read/write access to the flash memory.
For instance, the CRP value is initially loaded from flash into the RAM in NXP LPC µCs,
and the respective checks can be manipulated through glitches [Ger] (anti-pattern A7).
Roth et al. show the practical challenges of voltage glitching attacks: extracting the
private key from an STM32-based hardware cryptocurrency wallet required a 3-month
profiling phase to determine the correct glitch parameters (offset, width and voltage, cf.
Section 2) through exhaustive search [RND]. Finally, Obermaier et al. analyse the security
of a real and several counterfeit STM32 chips, uncovering various software and hardware
vulnerabilities in the debug interface and chip design [OSM20].

To reduce the time for determining glitch parameters, several parameter optimisation
strategies for voltage glitching have been proposed in the literature. Carpi et al. investigate
several parameter search strategies on smartcards, of which a generic zoom-and-bound
approach proves the most effective, although a genetic algorithm also generates promising
results [CPB+13]. Picek et al. follow up on this in [PBJC14] and propose an improved
solution based on a genetic algorithm. Finally, in [BFP19], Bozzato et al. continue
along the same line and focus on the glitch shape in their genetic search strategy. Note
that all these strategies treat the chip under attack as a black box and do not take the
executed firmware binary into account, whereas the attacks we propose in this paper are
inconceivable without analysis of the bootloader.

1.3.2 Software-based CRP bypass

Bootloaders providing reprogramming functionality at the very least require code to
handle communication and to read/write flash memory. This has lead a number of
published software vulnerabilities. Temkin et al. found a stack overflow in the USB
code of NVIDIA’s Tegra bootloader, leading to code execution and CRP bypass [Tem].
Goodspeed et al. make use of the fact that the bootloader is placed at a fixed memory
location when blindly exploiting stack-based buffer overflows in embedded application
code [GF09]. Timing dependencies in the code that verifies a password protecting the access
to the bootloader (anti-pattern A5) have lead to the compromise of the M16C [q3k17] and
MSP430 [Goo08] µCs. Additionally, through single-stepping instructions and reading RAM
or register contents over a debug interface, researchers have bypassed the copy protection
of NRF51822 [Bro], STM32F0 [OT17] and STM32F1 [SO] chips (anti-pattern A2).

Even when the debug interface is properly protected, it has been shown that attackers
can recover sensitive data from RAM or data flash once the program flash is erased and
thus the readout protection reset [Lau, Goo09] (anti-pattern A4). Similarly, if the chip

60 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

allows erasing per flash sector, an attacker can overwrite the boot section with a program
that reads out the firmware [Mer10] (cf. Section 3.3 and anti-pattern A3).

1.4 Outline
This paper is structured as follows: Section 2 describes our fault injection setup and attacker
model. In Section 3, we present software vulnerabilities in the LPC1xxx bootloader, before
continuing with a complex multi-glitch fault attack in Section 4 enabled through dynamic
analysis. We show how symbolic execution benefits fault attacks in Section 5. We present
common anti-patterns occurring in vulnerable bootloaders in Section 6, before concluding
in Section 7.

2 Setup and Attacker Model
Hardware setup For the voltage glitch attacks we use a modified version of the
GIAnT [Osw16] for generating the glitch waveforms. A Raspberry Pi 3 interfaces with
the on-chip bootloader of the target µC over Universal Asynchronous Receiver Trans-
mitter (UART) (cf. Section 4) or Serial Peripheral Interface (SPI) (cf. Section 5). The
Raspberry Pi also sends the glitch parameters to the GIAnT over USB, which in turn
introduces a glitch on the chip’s VCC .

Glitch parameters Figure 1b illustrates the glitch parameters that we consider in this
paper together with our notation conventions. We refer to the normal operating voltage
as VCC , and the voltage of the glitch as VF . T0 denotes the offset in time of the first
glitch from the trigger point (e.g., chip reset or a command sent over the communication
interface), while W0 is the width of the first glitch. In case of multi-glitch attacks, T1 is
then the offset of the second glitch from the end of the first glitch, W1 the width of the
second glitch, etc. In case of attacks that use only a single glitch, we omit the indices and
simply use T and W for offset and width, respectively. Note that due to limitations of the
GIAnT, the time resolution of width and offset is 10 ns.

(a) Hardware setup for the voltage glitching
attacks.

T0 W0 T1 W1

Vcc

VF

Time

Vo
lta
ge

(b) Parameter conventions for voltage glitches.

Figure 1: The glitch setup and parameter conventions used throughout this paper.

Attacker model In this paper, we consider the hardware fault attacker as introduced
in [YSW18], who can change the execution flow by introducing faults but cannot alter
the bootloader binary. We assume that the adversary can obtain an identical, freely
programmable chip or development board to profile the attacks and retrieve the bootloader

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 61

code. Both assumptions are common in practice for embedded devices, where a physical
attacker (aiming at firmware recovery) is often part of the threat model and where
development kits for most µCs are readily available. We show for each chip in this paper
how an attacker can recover the bootloader binary by reading out the memory space in
which the bootloader resides. This is trivial for the LPC1xxx (cf. Section 3) and STM8 (cf.
section 4) bootloaders, which are always mapped in memory, while the 78k0 bootloader (cf.
Section 5) is mapped after writing to a specific flash register. Thus, we assume a capable
adversary can always recover the bootloader binary.

3 Finding software vulnerabilities through static and dy-
namic analysis: NXP LPC1xxx bootloader

In this section, we study the bootloader of the LPC1343 [NXPb] as an example of complex
bootloaders containing software vulnerabilities (that do not require voltage glitching).
We show how analysis of the bootloader binary is crucial for identifying and exploiting
said issues, in particular a vulnerability that gives the adversary control over the stack
and hence the program counter. We illustrate that the fixed memory layout facilitates
exploitation with ROP [Sha07, FC08] techniques, which so far have received relatively
little attention for embedded bootloaders.

The LPC1343 is from LPC1xxx family of NXP that encompasses a number of different
chips based on an ARM Cortex M3 core. The results in this section likely generalise to
other chips from this family as well. The LPC1343 bootloader implements two interfaces
to access the chip’s flash memory: (i) a character-oriented UART protocol and (ii) an
emulation of a USB storage medium containing a single file representing the flash memory
(cf. anti-pattern A10). We focus on UART, but note that the second interface also exposes
substantial attack surface that we leave for future research.

The bootloader implements a CRP mechanism with five different access levels (cf. anti-
pattern A8): NO_CRP, CRP 1, CRP 2, CRP 3, and an additional level called NO_ISP.
These levels increasingly restrict the available bootloader commands: while NO_CRP
gives full read/write access to the chip’s memories, CRP 1 prevents read access to memory,
restricts writes, and also disables the SWD interface. CRP 2 further restricts capabilities
to essentially only a full chip erase, while CRP 3 permanently disables all programming
functionality. NO_ISP disables the invocation of the bootloader, but leaves the SWD
interface active, which can still be used to debug the processor and read memory (cf.
anti-patterns A2, A9).

When CRP is enabled, the RAM region used by the bootloader (including the loaded
CRP value) is not writable through the bootloader’s “Write to RAM” command to protect
against straightforward disabling of CRP. However, in this section, we show that the
stack area in RAM is not protected on CRP 1, leading to a full bypass of the readout
protection. During the responsible disclosure process, NXP confirmed that the vulnerability
is present in all LPC1xxx series devices that do not incorporate a Memory Management
Unit (MMU). Concretely, based on the datasheets, we believe the following device series
to be vulnerable: (i) LPC800 (ii) LPC1100 (iii) LPC1200 (iv) LPC1300 (v) LPC1500
(vi) LPC1700 (vii) LPC1800 (note that some LPC1500/1700/1800 feature an MMU).

3.1 Analysis of the LPC1xxx Bootloader
The bootloader resides in the 16 kB ROM from address 0x1FFF0000 to 0x1FFF4000. We
extracted the bootloader by transmitting that memory range over UART on a profiling
device and loaded it into IDA Pro. We also used the bootloader’s “Read from RAM”
command for dynamically analysing the behaviour of the code when necessary.

62 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

0x10000000

0x10001FFF

0x10000300

0x10001FDF

256 byte stack

32 byte buffer

768 byte bootloader
working memory

0x10001EE0

Write-protected in
CRP 1 (actual impl.)Write-protected

(datasheet)
0x10000200

Figure 2: RAM memory layout of the LPC1343 bootloader, indicating write-protected
memory areas according to actual implementation and datasheet.

The RAM memory layout (see Figure 2) (esp. of the bootloader) deserves special
attention for finding and exploiting potential software vulnerabilities. Therefore, it is
described in detail in the following. We first discovered that the bootloader uses the lower
part of the chip’s RAM up to 0x10000300 as its working memory, as also mentioned in
NXP’s documentation [NXPb], while it reserves the top 32 byte of the RAM for the flash
programming commands. Addresses below the top 32 byte are allocated for the stack area.
The stack grows towards lower addresses with a maximum size of 256 byte.

We confirmed that the CRP level is configured with a specific 32-bit value stored at
address 0x2FC in the chip’s flash memory: 0x12345678 refers to CRP 1, 0x87654321 to
CRP 2, and 0x43218765 to CRP 3, while other values leave the chip unprotected (i.e.,
NO_CRP). Incidentally, this design anti-pattern A6 facilitates voltage glitching (cf. [Ger]),
as we further discuss in Section 6. After reset, the bootloader loads the programmed CRP
value from flash into RAM and uses the value in RAM for all subsequent CRP checks.

We then further statically analysed the bootloader commands, specifically the imple-
mentation of “Write to RAM” as shown in Listing 1. When the chip is configured in CRP
1, the “Write to RAM” command only proceeds if the target address is ≥ 0x10000200,
because memory below this address is used by the bootloader (and includes the buffered
CRP level). Note that the start address of the RAM is loaded from a “hidden” configuration
part of the flash as further described in [Dom16].

Interestingly, while the manual [NXPb, p. 329] claims that writes are permitted only
above 0x10000300 and that the bootloader uses RAM up to to 0x1000025B, the actual
implementation permits writes above 0x10000200, cf. Figure 2. We practically verified
that we are able to write above this bound. We also noticed that the bootloader uses
some variables located above 0x10000200 (specifically a pointer stored in 0x10000248
and referenced throughout the code). We have not further investigated whether this
behaviour can be exploited, but it appears likely that this mismatch between specification
and implementation could be misused.

1 ldr r2 , =0 x438 // stores 0 x10000000
2 ldr r3 , [sp , #0 x28 + var_18]
3 ldr r2 , [r2]
4 adds r2 , #0 xff
5 adds r2 , #0 xff
6 adds r2 , #0 x2 // add 0 x200
7 cmp r3 , r2
8 // continue if address >= 0 x10000200
9 bhs continue_writing

10 // else set error code
11 movs r4 , #0 x13

Listing 1: Check in the LPC bootloader for RAM write range starting at offset 0x1fff0d94

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 63

Crucially, we found that the implementation of “Write to RAM” does not protect the
stack: there are no checks at all if the target address is on the stack (i.e., ≥ 0x10001EE0).
An attacker can exploit this to bypass the protection in CRP 1 and invoke the otherwise
disabled “Read Memory” command, as further described in the following Section 3.2.

3.2 CRP 1 Bypass with Stack Overwrite
Because the stack is not write-protected, we can overwrite return addresses on it and
hence control the program counter. We use ROP techniques to chain different gadgets in
the bootloader to (i) jump into the “Read Memory” command and the (ii) jump back
to the main command handler. Returning to the main command handler code prevents
the bootloader from crashing and enables it to keep on receiving subsequent commands.
First, we determined that the topmost return address on the stack is at 0x10001f54 while
executing the “Write to RAM” command. We then write the following ROP chain, further
illustrated in Figure 3, to the stack, starting at that address:

• FB 0C FF 1F: return address with a location behind the CRP check inside the “Read
Memory” command handler (concretely, 0x1fff0cfa2). This code then dumps 900 byte
from a given starting address via the serial connection.

• When executed normally, the above code initially pushes seven registers (R1–R7) and
ends in a corresponding pop {r1, r2, r3, r4, r5, r6, r7, pc} instruction. We
therefore place seven 4-byte words on the stack. Crucially, the value later poped into
R3 controls the read target address (in the example ROP chain in Figure 3, this is set
to FC 02 00 00 to read the data starting at 0x2fc in flash).

• 7F 11 FF 1F: the control flow then returns to a gadget at 0x1fff117e, which executes
a pop {r4, pc} instruction. This is necessary to pad the overall stack layout (further
explained below).

• This is followed by a 4-byte value to be poped into R4, and then the return address to
proceed at:

• 81 0E FF 1F: this is a pop {r3, r4, r5, r6, r7, pc} gadget. Due to the above
padding, the remainder of the stack after this value is still in its original configuration
and not overwritten, because it already contains valid values for R3–R7 and a valid
return address (in the main handler).

Applying this exploit repeatedly with different target addresses, we successfully read
the complete flash and RAM within a few seconds. As the attack does not require voltage
glitching, it can be carried out using a standard UART-USB cable, which is widely available
for less than $ 5.

3.3 CRP 1 Bypass with Partial Flash Overwrite
In addition to the above vulnerability, LPC1xxx devices also allow the partial erasure
and overwrite of single flash sectors in CRP 1 (cf. anti-pattern A3). In an application
note, NXP states that “though it is unlikely, it is conceivable that an attacker with
knowledge about a system could partially overwrite firmware in such a way as to gain read
access to internal flash memory” [NXPa]. We confirmed that such an attack, akin to the
methods demonstrated for PIC18F chips by [Mer10, GdKGVM12], is indeed possible for
the LPC1343 and other similar chips from the LPC1xxx family. At high level, the attack
proceeds as follows:

2Because the bootloader uses Thumb mode, all return addresses are incremented by 1 on the stack, so
the written value is 0x1fff0cfb

64 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

0x1fff0e48	add	sp,	#0x14
0x1fff0e4a	pop	{r4,	r5,	r6,	
																r7,	pc}

0x1fff117e	pop	{r4,	pc}

0x1fff0e80	pop	{r3,	r4,	r5,	r6,
																r7,	pc}

0x1fff0cfa	str	r0,	[sp,#0x20	+	
																				var_1C]
...
0x1fff0d48	pop	{r1,	r2,	r3,	r4,	
																r5,	r6,	r7,	pc}	

0x1fff1060	b	cmd_handler

FB	0C	FF	1F
FF	FF	FF	FF
FF	FF	FF	FF
FC	02	00	00
BB	10	FF	1F
BB	10	FF	1F
BB	10	FF	1F
BB	10	FF	1F
7F	11	FF	1F
00	00	00	00
81	0E	FF	1F

...
previous

stack
content

...

Stack
0x1000
		1f54

Figure 3: ROP chain for bypassing readout protection of LPC bootloader and reading
900 byte from any start address (here: 0x2fc). The exploit is applied by invoking the
“Write to RAM” command as: W 268443476 172

1. The attacker overwrites one flash sector with dumper code padded by nop instructions,
which outputs the contents of all other sectors e.g., through a UART port.

2. The attacker then resets the device, and the original initially runs as normal. When a
jump or call references the overwritten sector, the dumper code is invoked.

3. The attacker then uses a second, identical device to overwrite a different sector with a
similar dumper to recover the contents of the sector overwritten in step 2.

We practically verified that this method can be applied to the LCP1343 configured in
CRP 1. However, this technique depends on the characteristics of the target program: it
only works if the attacker overwrites a sector that contains code that is executed during
the operation of the target program. A natural choice would be to use the boot sector,
however, this is not possible in case of the LPC bootloader: CRP 1 prevents erasure
and overwriting of sector 0. Therefore, the attacker has to potentially overwrite multiple
sectors one by one until a sector that contains executed code is found. Furthermore, if only
sector 0 contains active code, this method cannot be used to recover the flash contents,
while the attack from Section 3.2 is independent of the target program.

4 Glitching guided by dynamic analysis: The STM8 boot-
loader

ST’s STM8 series chips feature a bootloader which provides the user with read, write and
erase functionality [ST a]. It incorporates a readout protection mechanism to prevent an
attacker from connecting to the bootloader. In this Section, we analyse the embedded
bootloaders of two STM8 chips, namely the STM8L152C6 [ST c] and the automotive
STM8AF6266 [STM], the latter being used in car immobilisers, a security sensitive anti-
theft component [WVdHG+20]. As shown in [RND], where three researchers each spent
three months voltage glitching the bootloader of an STM32F2 chip before they eventually
succeeded, finding the correct glitch parameters to bypass readout protection is far from
trivial.

The lack of any feedback when voltage glitching the STM8 bootloader makes it an
even more challenging feat. Unlike other bootloaders (cf. e.g., Sections 3 and 5), which
allow certain commands and only restrict security-sensitive functionality such as flash
reads and writes, the CRP on the STM8 prevents any communication with the bootloader

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 65

if enabled. Hence, until the bootloader activates the serial interface and thus pulls the
UART receive pin high, we are completely in the dark as to what the injected glitch has
achieved. An attacker could employ power analysis or other side channels to determine
differences in instruction flow, however this typically requires many traces. Therefore,
we use a technique to facilitate bootloader glitching, which we call bootloader grey-box
glitching. By flashing security critical parts of the bootloader as a user application, we gain
an invaluable advantage to profile the glitches individually. We then use that information
to set up a complex double-glitch attack.

Because the bootloader is shared among all chips of the same version and likely more
(according to [ST a], there are only four versions of the STM8 bootloader, whereas there
are dozens of different STM8 chips), knowledge of its operation is invaluable when glitching
other similar chips.

Attack assumptions We assume that the chip under attack is programmed (e.g., the first
flash byte equals 0xAC or 0x80) and has the highest level of protection enabled (e.g., the
bootloader is disabled and readout protection is active). We would like to emphasise that
even though we only demonstrate this attack on the STM8AF6266 and STM8L152C6, we
believe the methodology would generalize to other STM8 chips with a different bootloader
version.

4.1 Bootloader Extraction and Analysis

_reset: sim
callr chk_empty
jrc chk_crp

_chk_bl: ld A, #0x480b
cp A, #0x55
jreq chk_crp

_chk_crp: ld A, #0x4800
cp A, #0xAA
jreq _SERIAL_BL jpf _ENTER_APP

chk_empty: ld A, #0x8000
cp A, #0x82
jreq _ret_0

cp A, #0xAC
jreq _ret_0

_ret_0: rcf
ret

_ret_1: scf
ret

_SERIAL_BL _ENTER_APP

(a) Entry point of the STM8L bootloader

_reset: sim
ld A, #0x8000
cp A, #0x82
jreq _chk_bl

cp A, #0xAC
jreq _chk_bl

jra _chk_crp

_chk_bl: ldw X, #0x487e
cpw X, #0x55aa
jreq _chk_crp

_chk_crp: ld A, #0x4800
cp A, #0xAA
jrne _SERIAL_BL

_SERIAL_BL _ENTER_APP

jra _ENTER_APP

(b) Entry point of the
STM8A bootloader

Figure 4: Control flow diagrams of the STM8L and STM8A bootloaders. Jumps are
displayed with a full line, whereas a dotted line implies a fallthrough path. Glitch paths
for each µC with first flash byte 82 are indicated in red.

We obtained the two bootloaders of the analysed STM8 chips by connecting to the
on-chip Serial Wire Interface Module (SWIM) [ST b] debug interface of a profiling device
and issuing a read command for the address range 0x6000–0x8000, which is the bootloader
ROM according to the datasheets. The CRP on the STM8 works as follows: two option
bytes, namely the CRP3 and Bootloader Enable (BL) bytes stored in EEPROM control
whether the bootloader activates or loads and executes the application code. If either the
chip is empty (according to the datasheet, an STM8 chip is deemed empty if the flash
byte on address 0x8000 does not equal 0x82 or 0xAC) or the BL byte is set to a certain
value4, the bootloader continues to check the CRP byte. Finally, if the CRP byte indicates
readout protection is disabled, the bootloader activates its serial interfaces (it supports

3ST refer to this byte as ROP, however to avoid any confusion with Return-Oriented Programming, we
will call it CRP in this paper

4cf. datasheet of particular STM8 chip for exact value of option bytes

66 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

both UART and SPI) and waits for further programming commands. From here on, we
will refer to this part of the bootloader as the serial bootloader. The serial bootloader
performs no further CRP checks and thus grants full read and write access to the firmware,
making the STM8 a suitable target for voltage glitching attacks.

Figure 4 depicts the control flow diagrams following the entry point of both the
STM8L152C6 and STM8AF6266 bootloaders. If the µC is blank, or the BL option byte is
set to 55(AA), it proceeds to check the CRP byte. The CRP on the STM8L152 is disabled if
this byte equals 0xAA, and only then the serial bootloader activates. On the STM8AF6266,
readout protection is only enabled if the CRP byte equals 0xAA (cf. anti-pattern A6).

4.2 Profiling Critical Bootloader Sections
Glitching a certain instruction on a µC often requires precision in the range of nanoseconds.
Thus, even for a single fault, exhaustively searching the entire glitch parameter space—
consisting of the glitch offset T , width W and voltage VF as well as the normal operating
voltage VCC—quickly leads to a state explosion. The STM8 incorporates Brown-Out
Reset (BOR) circuitry holding the chip under reset when VCC drops below a user specified
threshold (which they can set through an option byte in EEPROM). This threshold can
range from 1.8V to 3V, so in order to circumvent the BOR circuit altogether, we keep the
normal operating voltage at 3.3V, leaving us with three unknown parameters. The goal
of this phase is to optimise the glitch voltage and width by temporarily minimizing its
timing aspect.

4.2.1 Critical Bootloader Sections

First, we define a Critical Bootloader Section (CBS) as a logically coherent unit of basic
blocks which either check the BL or CRP option byte, or directly precede the serial
bootloader. The STM8 bootloader checks both option bytes at the very beginning of its
execution and does not continue unless BL is set and CRP is disabled. Thus, by design,
identifying the critical sections on this µC does not require extensive reverse engineering.

Next, to separately run and fault each CBS on the real µC hardware with dynamic
analysis capabilities, we insert the CBSs one by one into the custom user application stub
depicted in Listing 2 and flash it as a normal user application onto the µC. On chips
which are difficult to fault (e.g., the glitch only succeeds if both VF and W lie within
a narrow range which faults the instruction but does not reset the µC), this technique
significantly reduces the parameter space. The stub pulls a GPIO pin high before executing
the specific bootloader section on which we trigger the glitch, and indicates success by
pulling a different GPIO pin high. We define success as reaching a basic block which the
application would never enter in normal operation. As shown in Listing 2, a successful
glitch in the check_empty section would result in the scf instruction being reached (which
has been replaced in the template), indicating that the chip is empty and thus making the
bootloader progress into the check_CRP section.

1 PE_ODR |= 0x80 // generate trigger
2 chk_empty :
3 ld A, #0 x8000
4 cp A, #0 x82
5 jreq _ret_0
6 cp A, #0 xAC
7 jreq _ret_0
8 _ret_1 :
9 PE_ODR |= 0x01 // indicate success

10 _ret_0 :
11 ret

Listing 2: Flashing the check_empty CBS enabling the search for voltage and width
parameters

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 67

4.2.2 Reduced glitch parameter search

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
glitch voltage [V]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

su
cc

es
s r

at
e

[%
]

60ns
70ns
80ns
90ns
100ns
110ns
120ns
130ns

Figure 5: Success rate for glitching the _enter_app bootloader section (which immediately
precedes the serial bootloader) on the STM8A at a constant offset of 0.34µs

Intuitively, since the CBS executes immediately after the trigger, the offset search space
reduces significantly. This allows us to essentially focus on the glitch voltage and width,
which are mutually dependent: a deeper glitch, for example to VF = 0.5V, must be very
short (W ≈ 50 ns) in order not to reset the chip. Figure 5 shows the various width/voltage
pairs which produce a successful glitch in the _reset block in the STM8A bootloader.
Additionally, in this phase we get a rough estimate of the glitch success rate, however,
due to other influences such as the glitch timing, we do not achieve the same rate when
glitching the complete bootloader, as shown in Section 4.3.

4.3 Partially Attacking the Bootloader on Reset
In the second phase we move on to glitch the real bootloader, which poses several additional
challenges. Firstly, even though the STM8 datasheet states that the µC restarts with
an internal 2MHz clock, we have noticed that the bootloader writes the Clock Master
Divider Register (CK_DIVR), which controls the CPU frequency, just before loading the user
application. Hence, we still have to determine the actual reset frequency of the bootloader.
In a similar fashion to [RND], we achieved this by connecting a 30 Ω shunt resistor between
the Vss pin and the ground, in essence lifting the chip’s ground. This allows us to measure
the power consumption of the chip, which reveals the real clock frequency of the µC after
reset as shown in Figure 6. A second issue arises due to the built-in Power-On Reset (POR)
circuit, which generates a reset signal when the chip powers up. Hence, the bootloader
does not execute immediately once we pull the reset pin high. Again, as shown in Figure 6,
the power consumption gives us an estimate for when the bootloader starts operating and
thus reduces the offset search space significantly. With the glitch voltage and width set
to the values acquired in the first phase, we can now scan the offset search space. Before
moving on to a fully locked chip, we set the BL and CRP option bytes individually, such
that we only need one glitch to reach to the serial bootloader.

4.3.1 Comparison: STM8L vs. STM8A

Table 1 gives an overview of the various offsets leading to the serial bootloader on the
STM8L with all possible combinations of the first flash byte and one option byte set. All
glitches are aligned with either the rising or falling edge of a 2MHz clock from reset, which
can be attributed to a stable internal oscillator. In order to achieve a success rate above

68 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

0 10 20 30 40 50
Time [s]

0.00

0.05

0.10

0.15
Vo

lta
ge

 [V
]

reset high

bootloader start

glitch 1 glitch 2

USART high

Figure 6: Power consumption of the STM8L152 upon reset measured with a 30Ω shunt
resistor.

0.1%, the glitches need to fall within the vicinity of 20 ns of the given offsets, proving the
necessity of the earlier profiling phase.

Table 1: Glitch success rate and their offsets triggered on reset of the critical bootloader
sections of the STM8L. Glitch voltage and width kept constant at VF = 1.84V and
W = 50ns

CRP BL [8000] section T [µs] success rate [%]

AA 00

82
chk_empty 29.5 0.6
_chk_BL 35.75 0.1

AC
chk_empty 30.5 0.5

_chk_BL
36.25 0.1
36.75 0.1

00 55
82

_chk_CRP
38 0.6

AC 39 0.5

The bootloader code clarifies and helps predicting the glitch timing for different bytes
on address 0x8000. For instance, if the first flash byte equals 0xAC, the glitch on the CRP
byte check falls 1µs, or two clock ticks, later due to the execution of an additional basic
block in the check_empty subroutine. As to be expected due to a different internal design,
performing the same experiment on the STM8A does not yield exactly the same result.
Firstly, the reset time, e.g., the time it takes for the bootloader to start executing, on the
STM8 is roughly 78µs, opposed to 26µs on the STM8L. In addition, the internal oscillator
on the STM8A does not seem to be as stable as its STM8L counterpart, making the glitch
offsets fall more within a range of ∼ 6µs: glitches in the _reset section fall in the range
of 79.67µs–86.56µs, whereas glitching the _check_crp section is most successful in the
86.68–93.54µs range.

4.4 Full Double-Glitch Attack
Finally, once we have the correct parameters for the separate glitches, we have to combine
them to attack a fully locked chip. The main challenge is that we receive no feedback
until the USART_RX pin is pulled high indicating the activation of the serial bootloader.
Table 2 gives the final glitch parameters for the chips we have investigated. What stands
out is that the success rate for the double-glitch attack on the STM8L is substantially
lower than 0.0036%, which is what we would expect when combining both individual glitch
success rates. We attribute this peculiarity to the 3-stage pipeline on the STM8: the first
glitch makes the bootloader jump directly to the _chk_crp section after returning from
chk_empty, whereas in Section 4.2 the bootloader goes through the _chk_bl section first.
Thus, the pipeline content differs at the point of the _chk_crp glitch in both scenarios.
We repeated the partial attack for the µC with an ‘empty’ chip (e.g., with 00 as first flash
byte) and CRP enabled, and indeed, the individual glitch success rate for the _chk_crp
section in this scenario is 0.02%. For reference, 100k glitches, the average number of
attempts needed to bypass the CRP on STM8AF6266, takes ∼ 2.5min on our setup. Since

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 69

Table 2: Glitch parameters for fully locked STM8 chips with first flash byte 82 triggered
on reset.

chip T0 [µs] W0 [ns] T1 [µs] W1 [ns] succ. rate [%]
STM8L152C6 29.5 50 7.32 50 0.0001
STM8AF6266 80.75 120 3.91 120 0.001

the CRP check only occurs once at boot time, we reset the chip for each glitch attempt.
Given the final success rates for the double glitch attacks, we would like to emphasise
the difficulty of a black-box only approach (e.g., without inspecting the bootloader code)
to glitch the CRP check. Without knowledge of the execution path and time between
both target checks, a full search of the glitch parameters quickly leads to a state explosion.
The lack of feedback until both glitches succeed only aggravates this, making a strong
argument for our greybox approach.

5 Glitching guided by static analysis: Renesas 78K0 boot-
loader

From a program analysis perspective, the STM8 bootloaders described in Section 4 are
fairly straightforward to analyse, because their CBS executes immediately after reset,
and does not continue unless protection is disabled. In contrast, many other bootloaders
allow basic functionality and only restrict certain security sensitive commands if CRP
is active. Intuitively, glitching such bootloaders poses a number of different challenges.
First, the communication protocol and bootloader code are often intertwined, making
the identification of CBS (i.e., where we want to inject a glitch) non-trivial. Moreover,
different commands typically have their own unique handler code, making the glitch offset
dependent on the specific handler and the content of the command, among others. In this
section, we leverage symbolic execution to predict glitch offsets based on the execution
path taken in the command handler code of the Renesas 78K0 bootloader. The 78K0 is
a multi-purpose 8-bit low-power Renesas microcontroller which, similar to the STM8, is
often used as the central µC on certain automotive immobiliser systems [WVdHG+20].
We evaluate the effectiveness of our white-box technique and compare it to the black-box
attack by Bozzato et al. [BFP19].

5.1 78K0 Bootloader Extraction and Analysis
An external programmer can activate the bootloader on Renesas µCs by pulling the FLMD0
pin high on reset. Subsequently, it can select either SPI or UART communication modes to
interface with the on-chip bootloader [Rena]. The user can increase the level of security by
clearing individual bits in the security byte, which respectively turn on write, block erase,
chip erase and boot sector write protection on the 78K0 (cf. anti-patterns A8 and A9).
Regardless of the security configuration, the bootloader always allows executing certain
commands such as verify or checksum, which confirm and calculate a simple checksum
over blocks of 256 byte respectively. Other commands, like program or erase only succeed
if the respective security bit is 1. All flash-related bootloader commands take a 3 byte
start and end address as argument. With the 78K0 being an 8-bit µC, arithmetic on these
3 byte addresses is performed byte-wise.

The bootloader region is not mapped to memory during regular operation and thus
cannot be read from a normal application. However, Renesas provides a “flash self
programming library”, which users can include in their application to interface with on-
chip firmware that performs flash operations [Renc]. The library function FlashInit sets
the µC into flash programming mode by first writing 0xA5 to the FLMDPCMD register, which

70 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

enables the writing of flash-specific registers. Next, it enables the flash programming mode
by writing to the FLMDMCR register, which consequently maps the bootloader and on-chip
firmware in a memory region marked as “reserved” in the datasheet.

Attack strategy Bozzato et al. propose three attacks to read out the full firmware on
a 78K0 by exploiting several bootloader commands [BFP19]. A first attack glitches the
checksum and verify commands to operate on 4 bytes instead of the minimum allowed
256 bytes, which allows an attacker to guess 4 bytes of firmware per successful glitch. They
base the guess on a different glitch in the checksum command, which can leak bytes
individually though is not completely accurate (e.g., the address or value of the leaked
byte can be wrong). This is the only known attack on this µC which preserves the original
firmware completely. Since all of these commands require a start and end address to
operate on, all handlers initially call the same sanity check function. In contrast to Bozzato
et al., who employ a genetic algorithm to determine the best glitch offset in a black-box
manner [BFP19], we make use of the full knowledge of the bootloader binary.

5.2 Constraint-based Glitching
Symbolic execution is a widely used technique in software testing and program analy-
sis [Kin76]. A symbolic executor tracks constraints over the range of values symbolised
input variables can take along an execution path. It can use the constraints to generate
a viable input value that will cause the execution of that path in a concrete execution.
Logically, these constraints can also be used to verify if a given input value will cause the
execution of a particular path. We leverage the latter technique to statically create classes
of arguments which follow the same execution path through the targeted handler code, and
thus will result in the same glitch offset. Our technique operates on the assembly language
instructions, as opposed to lifting to an Intermediate Representation (IR). Unfortunately,
state-of-the-art symbolic execution engines such as Angr [SWS+16] and KLEE [CDE08]
do not provide out-of-the-box support for exotic architectures like the 78K0. However, the
main reason for this decision is to retain low-level information such as instruction cycles.
This proves crucial in predicting and classifying offsets for hardware-level attacks such as
voltage glitching.

5.2.1 Constructing argument equivalence classes

Our framework uses the bootloader control flow graph to statically calculate the constraints
along all paths through a certain command handler. The only prerequisites for our technique
are: (i) Extraction of the bootloader control flow graph from a disassembler such as IDA
Pro [Hex] or Ghidra [Nat]: the auto-analysis is usually adequate for simple serial protocols.
(ii) Identification of the targeted bootloader command handler code: since the bootloader
communicates through a serial interface, it typically suffices to follow the corresponding
serial interrupt handler to find this. The extensive use of constants (i.e., error codes) can
further help locate handler code. We then perform a depth-first search from the command
handler entry point to the target instruction. Since we are interested in the constraints
along the complete path, we recursively repeat this process for all calls along the path.
We mark the input variables to the command handler (cf. Appendix B) as symbolic and
record their constraints along each path. We propagate the arguments for each conditional
branch to check whether they originate from the initial input variables. Then, we use
a simple constraint solver (i.e., python-constraint) to obtain all viable paths through
the command handler and their respective constraints. We then define an argument’s
equivalence class within the handler as follows:

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 71

Definition 5.1. Given a function f with input arguments An, ..., A0, we define an equiv-
alence class on this function as the set of all arguments which result in the same execution
path through the function.

Finally, we use instruction cycle count information from the datasheet to calculate the
number of cycles a path, each corresponding to one argument equivalence class, takes.

5.2.2 Practical application on the 78K0 bootloader

A similar pattern emerges in the handler code for all flash related commands: at the very
start, each handler calls a function, shown in Listing 3, which processes both addresses
provided in the command buffer. Concretely, it calculates which 1 kB flash block each
address resides in and performs certain sanity checks on the arguments, e.g., if the end
address falls within the on-chip flash range and whether the start address is lower than
the end address.

1 int sanity_check (A0 , A1) {
2 ...
3 b0 = get_block_no (A0);
4 b1 = get_block_no (A1);
5 if (cmp_addr (A0 , Amax) > 0)
6 return -1;
7 if (cmp_addr (A0 , A1) > 0)
8 return -1;
9 return 0;

10 }

Listing 3: Pseudocode of the sanity_check function, with arguments A0 and A1 the start
and end address provided in the command buffer. Amax indicates the highest allowed flash
address on the chip.

Figure 7 depicts a simplified control flow graph of the function that calculates the block
number for a given flash address, called twice from within sanity_check. If the address
is non-trivial (i.e., not 0 or ffff), the code calculates the block number by merging the
two least significant bytes into two 8-bit registers, and dividing these by 0x8 and 0x80
consecutively. Unsurprisingly, a 16-bit division on an 8-bit µC takes considerably longer
than any other operation: on the 78K architecture, udivw completes after 25 clock cycles,
whereas a simple cmp takes 4 cycles. The cmp_addr function follows a similar pattern but
results in a smaller execution time difference, because it only compares its arguments byte
by byte, starting from the most significant byte, and thus does not include any overly
time-consuming operations such as division. For reference, we include the full assembly
code in Appendix A.

5.3 Exploitation and Evaluation
In both the checksum and verify handlers, the targeted length check takes place directly
after the code returns from the sanity_check function. Thus, applying our symbolic
execution technique to each command handler yields nine sets of arguments (with A1 =
A0 + 3, the smallest possible range on the 78K0) that result in a distinct execution path.
Figure 8 shows the actual glitch offsets of each of those sets and reveals the main advantage
of our technique compared to black-box predictions of a genetic algorithm: by basing the
glitch offsets on execution paths, we can accurately predict glitch offsets of other sets of
addresses by taking the execution cycles of each path into account.

Table 3 compares the cycle count for each equivalence class path through the checksum
command handler obtained by our technique with the actual glitch offsets. Our technique
calculates all viable execution paths from the start of the command handler to the basic
block indicating a parameter error. Firstly, we note that even though in absolute terms
the offset difference between classes is less than what we would expect from the cycle
difference (e.g., a difference of 12 cycles between 0004 and 0000 translates into a real offset

72 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

block_no: push bc
 cmp A0, 0xff
 bz b3

b2: cmp A1, 0x00
bz b4

b3: cmp A1, 0xff
bnz calc_blk

b4: mov a, 0x00
br b6

b5: mov a, 0x3f
br b6CALCULATE_BLOCK

b6: cmp A2, 0x00
bnz ret

 add a, 0x40

ret: pop bc
ret

Figure 7: Simplified control flow graph of the get_block_no function, which takes as
input a 3 byte address A = A2A1A0. To illustrate, we depict example execution paths for
the equivalence classes of 0x1004c and 0x5ff.

51
9.

0

51
9.

5

52
0.

0

52
0.

5

52
1.

0

52
1.

5

52
2.

0

52
2.

5

52
3.

0

52
3.

5

52
4.

0

52
4.

5

52
5.

0

52
5.

5

52
6.

0

52
6.

5

52
7.

0

52
7.

5

Glitch offset [s]

0.00

0.02

0.04

Su
cc

. r
at

e
[%

]

0x00fc
0x01fc
0x0004
0x0104
0x1ffc
0x1f04
0x0000
0x0100
0x1f00

Figure 8: Glitch success rate and offset of the checksum command for the first address of
each equivalence set. Glitch triggered on falling edge of the SPI clock pin on a 78K0/KC2
µC powered at 3V clocked by 8MHz internal oscillator. Glitch voltage and width constant
at 0V and 120 ns, respectively.

difference of 0.5µs instead of an expected 1.5µs @ 8MHz). This could be attributed to the
actual internal clock frequency, which depends on the input voltage, ambient temperature
and the manufacturing tolerances of the particular chip. However, taking this discrepancy
into account, the deltas of the real offsets and the calculated cycles are consistent. Only
paths with the least significant byte of the end address equal to ff diverge from this. We
attribute this to the glitch occurring on a different instruction to the other paths, due to
there being a specific check for this byte and thus facilitating the path to the target basic
block.

We compare our technique to the genetic algorithm published by Bozzato et al.
in [BFP19]. They inject arbitrary glitch waveforms and tailor a genetic algorithm to
optimise both the glitch offset and shape. As no source code is available for their approach,
we have to rely on the published performance characteristics, which include results for two
bootloader commands, namely checksum and verify. Table 4 summarises the results of
the comparison of our technique with the arbitrary waveform injection and a more generic
pulse injection, which resembles the GIAnT as used in our work. While we completely
focus on the timing aspect of the glitches, and leave the actual shape, voltage and glitch
width constant at VF = 0V and W = 120ns, our technique performs better than the
black-box approach with a normal pulse style glitch.

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 73

Table 3: Comparison of predicted number of cycles and actual glitch offset (first offset
with a glitch success rate above 3%) for each equivalence class for the checksum command.
Differences (∆T

∆c = Tn−T0
cn−c0

) are calculated from the offset T0 of the first encountered
equivalence class, 0004
equiv. class cycles (c) T [µs] ∆T

∆c equiv. class cycles (c) T [µs] ∆T
∆c

0004 454 519.49 n/a 0104 610 525.82 0.041
0000 466 519.97 0.040 0100 624 526.32 0.040
00fc 536 520.39 0.011 1f04 632 526.65 0.040
01fc 614 523.57 0.025 1f00 644 527.44 0.042
1ffc 642 524.63 0.027

Table 4: Success rates of different glitch search strategies on checksum and verify
commands. wvf and pulse use the same genetic algorithm, with the latter using a
pulse-shaped glitch and the former also optimising the glitch waveform.

method checksum verify
wvf [BFP19] 4.2% 6.8%
pulse [BFP19] 2.8% 3.7%
equiv [this paper] 3.2% 4.3%

As for the arbitrary waveform injection, as shown in Figure 8, our success rate only
surpasses 4.2% on 2% of the offsets, which appears to be the upper limit for our constant
voltage and width. Additionally, because the pattern shown in Figure 8 emerges in all
other flash-related handlers, glitching another command does not require searching for
the parameters again. Assuming a 5% success rate for guessing a byte (we have not
included this glitch since it is very similar to the described checksum attack), extracting
the firmware of an 8 kB chip would take ∼ 10 hours.

Discussion and limitations We would like to emphasise that, even though we only
demonstrate it on the 78K0 bootloader, this technique applies to many other µCs as
well. In a scenario where either the glitch offset is close to the trigger (e.g., in the range
µs), or where we can match a code section in the bootloader to an externally observable
anomaly (e.g., a faulty serial message checksum, which is always calculated on the contents
of the message), we can compute the code paths to the targeted area. In cases where
an initial search of the parameter space does not yield any positive results, or where the
bootloader is hardened against glitching attacks (e.g., by performing redundant checks),
a more fine-grained search is required. By statically calculating the possible execution
flows from a set point to a targeted section, we can reduce the offset search space and
shift our focus to other glitch parameters. However, for glitch offsets which occur too long
after a trigger, this technique can lead to a state explosion and will require heuristics to
reduce the number of possible paths. Finally, because we focus on the glitch timing, a
combination of our technique to accurately predict the offset and a different strategy to
optimise the remaining parameters might yield even better results.

6 Lessons Learned for Secure Bootloader Design
Bootloader vulnerabilities as presented in this paper are not easily mitigated. Both chip
manufacturers and their clients benefit from having the possibility to alter the flash memory
content of the chip in case of malfunction or a firmware upgrade. The bootloader is the ideal
candidate to incorporate this functionality. However, this requires a significantly larger
codebase, potentially leading to software vulnerabilities such as described in Sections 1.3
and 3. Even though hardware fault injection attacks are hard to prevent, manufacturers can

74 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

mitigate this risk by including extra components such as sensitive brownout detection [Gil]
or a randomised internal clock [KK99] in the chip design. However, these mitigations
undermine the overall performance of the chip and increase its costs, making a software-
based approach—which would only affect the bootloader performance—attractive. Thus,
in order to provide adequate reprogramming functionality without unnecessarily increasing
the attack surface, we give several anti-patterns aimed at supporting the development of
(more) secure bootloaders. These are design patterns we have observed both in our work
as in previous research which weaken the protection mechanisms and thus must be avoided
in an embedded bootloader.

A1 - Partial RAM write access in protected state: As shown in Section 3, µCs which
have multiple protection levels often permit limited debug access to the chip’s memory.
Chips without an MMU must ensure that all bootloader memory and the area accessible
to the user are separate. If no exploit mitigations are in place, a single compromise of the
stack can jeopardise the whole system.
A2 - Partial leakage of memory or registers: Certain µCs still provide read access to
RAM and/or registers when CRP is enabled. To exploit this issue, Obermaier et al.
introduced cold boot stepping, which reconstructs the control flow of a program based
on SRAM snapshots [OT17]. Furthermore, by single stepping a load instruction and
manipulating CPU registers, Brosch recovers the firmware of a Bluetooth µC [Bro].
A3 - Partial flash overwrite: Having write access to one sector essentially gives an attacker
read access to the chip. In addition to the attack described in Section 3.3, many systems
have been broken by overwriting a flash sector with a program that reads out the entire
memory of the chip [Mer10, GdKGVM12, WVdHG+20].
A4 - Incomplete or non-atomic chip erase: On many µCs, the CRP can be disabled
through a full chip erase. However, as shown in [Lau, Goo09], in some cases that chip
erase does not clear the full internal state (e.g., leaves RAM or data flash contents intact)
and hence allows to recover information such as cryptographic keys stored in unerased
memory. Furthermore, the erase process should be uninterruptible and atomic, that is to
say that the bootloader should only disable the CRP at the very end of the erase process.
A5 - Non-constant time code: Timing leakage on password-protected bootloaders such as
the Renesas M16C or TI MSP430 allows an attacker to recover the password byte-by-byte
and gain access to the full flash memory [Goo08, q3k17].
A6 - Default to unprotected: A comparison is easier to glitch if only specific value(s)
enable the readout protection. For example, the LPC1343 bootloader starts with disabled
protection unless a few specific values are read. Therefore, a much bigger range of glitches
can cause this desired effect, e.g., if a load is forced to all zero or all one.
A7 - Non-redundant check for readout protection: On µCs without hardware counter-
measures against fault injection, it is typically possible to bypass a single check with high
success rate, e.g., through voltage glitching. However, as evident from Section 4, the
success rate decreases exponentially with each redundant check.
A8 - Large number of protection levels: This can confuse developers as to exactly what
kind of protection each level relates to. It is not uncommon for developers to use a
manufacturer-provided IDE, which in turn could hide the CRP details to the user and
thus obscure which level is actually selected.
A9 - Separate On-Chip Debug (OCD) and CRP mechanisms: On many µCs such as the
Renesas V850, 78K0R and 78K0, or the TI MSP430, the readout protection mechanism is
unrelated to the OCD access, which the user needs to either secure in software [Renb] or
by blowing a fuse [Tex]. Due to this ambiguous setup, programmers can lose track of some
ways to access the on-chip memory, ultimately undoing all other protection measures.

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 75

A10 - Complex bootloader logic: Every feature of the bootloader’s communication pro-
tocol broadens the attack surface and thus entails more software exploitation risks. For
instance, the USB storage emulation of certain LPC µCs, which contains a FAT filesystem
implementation [NXPb], could contain more issues, whereas the STM8 does not allow
access to any bootloader commands if CRP is enabled. Besides, some Renesas µCs support
up to three (UART, single-wire UART and SPI) communication interfaces in the same
bootloader, which increases attack surface.

In addition to the above anti-patterns, there are other possible approaches and tradeoffs
to be taken into account for secure bootloader design. They include:

Bootloader read protection Some devices incorporate read protection of the bootloader
memory space, preventing readout of the bootloader binary. For instance, recent chips may
incorporate eXecute-Only-Memory (XOM), which utilises additional hardware to restrict
a certain memory area (e.g., the bootloader section) to instruction fetches and disallows
any read or write access. This would mitigate the attacks described in this paper, because
access to the bootloader binary is a prerequisite for each. However, Schink et al. analyse
several XOM implementations in [SO19] and bypass the restrictions in each case to recover
the protected code.

In-field & field-return analysis In certain scenarios, e.g., to perform dynamic in-field
testing or to determine the cause of device failure, the manufacturer requires privileged
access to the chip. This directly contradicts the proposed mitigations and anti-patterns,
which are intended to lock down the chip as much as possible. Specifically, the manufacturer
must balance anti-patterns A1 and A4 with leaving sufficient debug capabilities on the
chip for these scenarios. An appropriate solution, though going against A9, would be to
have a separate debug mechanism which only the manufacturer can access and is protected
when the device goes into production.

7 Conclusion
Voltage fault injection is a powerful technique that has been widely studied in the context of
cryptographic primitives, but comparatively little research has been done in the context of
traditional software security. This paper has brought advancements in binary analysis such
as symbolic execution and dynamic analysis into the low-level hardware security domain.
Furthermore, we also show that exploitation techniques like ROP apply in the context
of embedded bootloaders. We demonstrated that symbolic execution can be leveraged
to define argument equivalence classes based on their respective execution paths. This
gives us valuable insights into their execution times, which allows us to produce precisely-
targeted glitch offsets to aid the glitch parameter search as we demonstrated on the 78K0
bootloader. By flashing parts of the bootloader as application code and thus enabling
dynamic glitch profiling on the target hardware itself, we have presented here the first fully
documented multi-glitch attack against the widely used STM8 family of microcontrollers,
which gives full access to the device’s memory. The techniques presented in this paper
are applicable to other families of microcontrollers and can be fully implemented using
inexpensive open-designed hardware.

Acknowledgements
This research is partially funded by the Engineering and Physical Sciences Research
Council (EPSRC) under grants EP/R012598/1, EP/S030867/1, EP/R008000/1 and by the

76 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

European Union’s Horizon 2020 research and innovation programme under grant agreement
No. 779391 (FutureTPM).

References
[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault Injection

Attacks on Cryptographic Devices: Theory, Practice, and Countermeasures. Proceedings
of the IEEE, 100(11):3056–3076, 2012.

[BDL97] Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the Importance of Checking
Computations. In Proceedings of Eurocrypt’97, pages 37 – 51, 1997.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the Glitch: Op-
timizing Voltage Fault Injection Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):199–224, 2019.

[Bro] Kris Brosch. Firmware dumping technique for an ARM Cortex-M0 SoC . https://blog.
includesecurity.com/2015/11/NordicSemi-ARM-SoC-Firmware-dumping-technique.
html.

[BS97] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In Proceedings of the 17th Annual International Cryptology Conference on Advances in
Cryptology – CRYPTO’97, pages 513 – 525, 1997.

[bun] bunniestudios. Hacking the PIC 18F1320. https://www.bunniestudios.com/blog/?page_
id=40.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2008, December
8-10, 2008, San Diego, California, USA, Proceedings, pages 209–224, 2008.

[Cesa] Silvio Cesare. Adventures in glitching PIC microcontrollers to defeat firmware copy
protection. https://2015.kiwicon.org/the-con/talks/#e203.

[Cesb] Silvio Cesare. Defeating Firmware Copy Protection Using Glitching. https://www.youtube.
com/watch?v=UGlm_I-RI-U.

[CH17] Ang Cui and Rick Housley. BADFET: Defeating Modern Secure Boot Using Second-
Order Pulsed Electromagnetic Fault Injection. In 11th USENIX Workshop on Offensive
Technologies, WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017, 2017.

[CPB+13] Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico Menarini, Domagoj Jakobovic,
and Marin Golub. Glitch It If You Can: Parameter Search Strategies for Successful
Fault Injection. In Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Selected
Papers, pages 236–252, 2013.

[dHG18] Jan Van den Herrewegen and Flavio D. Garcia. Beneath the Bonnet: A Breakdown of
Diagnostic Security. In Computer Security - 23rd European Symposium on Research in
Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings,
Part I, pages 305–324, 2018.

[Dom16] Domen Puncer Kugler. LPC13xx Bootloader Reverse Engineering. https://github.com/
domenpk/lpc13xx_boot_analysis, Jan 2016.

[FC08] Aurélien Francillon and Claude Castelluccia. Code Injection Attacks on Harvard-
Architecture Devices. In Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008,
pages 15–26, 2008.

[GdKGVM12] Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult, and Milosch Meriac. Dismantling
iClass and iClass Elite. In 17th European Symposium on Research in Computer Security
(ESORICS 2012), volume 7459 of Lecture Notes in Computer Science, pages 697–715.
Springer-Verlag, 2012.

[Ger] Chris Gerlinsky. Breaking Code Read Protection on the NXP LPC-family Microcontrollers.
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_
on_NXP_LPC_Microcontrollers_slides.pdf.

[GF09] Travis Goodspeed and Aurélien Francillon. Half-Blind Attacks: Mask ROM Bootloaders
Are Dangerous. In Proceedings of the 3rd USENIX Conference on Offensive Technologies,
WOOT 2009, page 6, USA, 2009. USENIX Association.

https://blog.includesecurity.com/2015/11/NordicSemi-ARM-SoC-Firmware-dumping-technique.html
https://blog.includesecurity.com/2015/11/NordicSemi-ARM-SoC-Firmware-dumping-technique.html
https://blog.includesecurity.com/2015/11/NordicSemi-ARM-SoC-Firmware-dumping-technique.html
https://www.bunniestudios.com/blog/?page_id=40
https://www.bunniestudios.com/blog/?page_id=40
https://2015.kiwicon.org/the-con/talks/#e203
https://www.youtube.com/watch?v=UGlm_I-RI-U
https://www.youtube.com/watch?v=UGlm_I-RI-U
https://github.com/domenpk/lpc13xx_boot_analysis
https://github.com/domenpk/lpc13xx_boot_analysis
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 77

[Gil] Brett Giller. Implementing Practical Electrical Glitch-
ing Attacks. https://www.blackhat.com/docs/eu-15/materials/
eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf.

[GOKP16] Flavio D. Garcia, David Oswald, Timo Kasper, and Pierre Pavlidès. Lock It and Still
Lose It - On the (In)Security of Automotive Remote Keyless Entry Systems. In 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX, August 2016. USENIX
Association.

[Goo08] Travis Goodspeed. Cracking the MSP430 BSL. https://fahrplan.events.ccc.de/
congress/2008/Fahrplan/attachments/1191_goodspeed_25c3_bslc.pdf, 2008.

[Goo09] Travis Goodspeed. A 16 Bit Rootkit, and Second Generation Zigbee
Chips. https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/
BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf, 2009.

[Hex] Hex-Rays. IDA Pro. accessed: 2020/07/27.

[JT12] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography. Information
Security and Cryptography. Springer, 2012.

[Kin76] James C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
July 1976.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-Resistant Smartcard
Processors. In Scott B. Guthery and Peter Honeyman, editors, Proceedings of the 1st
Workshop on Smartcard Technology, Smartcard 1999, Chicago, Illinois, USA, May 10-11,
1999. USENIX Association, 1999.

[Kra] Kraken. Kraken Identifies Critical Flaw in Trezor Hardware Wallets. https://blog.kraken.
com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/.

[Lau] Adam Laurie. Atmel SAM7XC Crypto Co-Processor key recovery. https://adamsblog.
rfidiot.org/2013/02/atmel-sam7xc-crypto-co-processor-key.html.

[Lim19] LimitedResults. Pwn the ESP32 Forever: Flash Encryption and
Sec. Boot Keys Extraction. https://limitedresults.com/2019/11/
pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/, Novem-
ber 2019.

[Mer10] Milosch Meriac. Heart of Darkness - exploring the uncharted backwaters of HID iCLASS
security. Technical report, Bitmanufaktur GmbH, 2010.

[MOG+20] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In 41st
IEEE Symposium on Security and Privacy (S&P’20), 2020.

[MV13] Charlie Miller and Chris Valasek. Adventures in Automotive Networks and Control Units.
Def Con, 21:260–264, 2013.

[MV15] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger Vehicle.
Black Hat USA, 2015:91, 2015.

[Nat] National Security Agency (NSA). Ghidra. accessed: 2020/07/27.

[NXPa] NXP. AN10968: Using Code Read Protection in LPC1100 and LPC1300. https://www.
nxp.com/docs/en/application-note/AN10968.pdf.

[NXPb] NXP. UM10375: LPC1311/13/42/43 User manual. https://www.nxp.com/docs/en/
user-guide/UM10375.pdf.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-Source Platform
for Hardware Embedded Security Research. In Constructive Side-Channel Analysis and
Secure Design - 5th International Workshop, COSADE 2014, Paris, France, April 13-15,
2014. Revised Selected Papers, pages 243–260, 2014.

[OSM20] Johannes Obermaier, Marc Schink, and Kosma Moczek. One Exploit to Rule them All?
On the Security of Drop-in Replacement and Counterfeit Microcontrollers. In Yuval Yarom
and Sarah Zennou, editors, 14th USENIX Workshop on Offensive Technologies, WOOT
2020, August 11, 2020. USENIX Association, 2020.

[Osw16] David Oswald. Generic Implementation ANalysis Toolkit, 2016. available online at
https://sourceforge.net/projects/giant.

[OT17] Johannes Obermaier and Stefan Tatschner. Shedding too much Light on a Microcontroller’s
Firmware Protection. In 11th USENIX Workshop on Offensive Technologies, WOOT 2017,
Vancouver, BC, Canada, August 14-15, 2017, 2017.

https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://fahrplan.events.ccc.de/congress/2008/Fahrplan/attachments/1191_goodspeed_25c3_bslc.pdf
https://fahrplan.events.ccc.de/congress/2008/Fahrplan/attachments/1191_goodspeed_25c3_bslc.pdf
https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-SLIDES.pdf
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://adamsblog.rfidiot.org/2013/02/atmel-sam7xc-crypto-co-processor-key.html
https://adamsblog.rfidiot.org/2013/02/atmel-sam7xc-crypto-co-processor-key.html
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://www.nxp.com/docs/en/application-note/AN10968.pdf
https://www.nxp.com/docs/en/application-note/AN10968.pdf
https://www.nxp.com/docs/en/user-guide/UM10375.pdf
https://www.nxp.com/docs/en/user-guide/UM10375.pdf
https://sourceforge.net/projects/giant

78 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

[PBJC14] Stjepan Picek, Lejla Batina, Domagoj Jakobovic, and Rafael Boix Carpi. Evolving genetic
algorithms for fault injection attacks. In 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics, MIPRO 2014, Opatija,
Croatia, May 26-30, 2014, pages 1106–1111, 2014.

[q3k17] q3k. Renesas M16C programmer. https://github.com/q3k/m16c-interface, July 2017.

[Rena] Renesas Electronics. 78K0/Kx2 Flash Memory Programming.

[Renb] Renesas Electronics. 78K0/Kx2 User’s Manual: Hardware.

[Renc] Renesas Electronics. Code Flash Libraries (Flash Self Programming Libraries).

[RND] Thomas Roth, Dmitry Nedospasov, and Josh Datko. wallet.fail. https://fahrplan.events.
ccc.de/congress/2018/Fahrplan/events/9563.html.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, pages 2–12, 2002.

[Sha07] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-Libc without
Function Calls (on the X86). In Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pages 552–561, New York, NY, USA, 2007. ACM.

[Sko] Sergei P. Skorobogatov. Copy Protection in Modern Microcontrollers. https://www.cl.
cam.ac.uk/~sps32/mcu_lock.html.

[Sko10] Sergei Skorobogatov. Flash Memory ’Bumping’ Attacks. In Cryptographic Hardware and
Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, pages 158–172, 2010.

[SO] Marc Schink and Johannes Obermaier. Exception(al) Failure - Breaking the STM32F1
Read-Out Protection. https://blog.zapb.de/stm32f1-exceptional-failure/.

[SO19] Marc Schink and Johannes Obermaier. Taking a Look into Execute-Only Memory. In Alex
Gantman and Clémentine Maurice, editors, 13th USENIX Workshop on Offensive Tech-
nologies, WOOT 2019, Santa Clara, CA, USA, August 12-13, 2019. USENIX Association,
2019.

[SOR+14] Daehyun Strobel, David Oswald, Bastian Richter, Falk Schellenberg, and Christof Paar.
Microcontrollers as (In)Security Devices for Pervasive Computing Applications. Proceedings
of the IEEE, 102(8):1157–1173, 2014.

[ST a] ST Microelectronics. STM8 bootloader. https://www.st.com/content/ccc/resource/
technical/document/user_manual/e4/83/c1/d6/ee/d8/49/b8/CD00201192.pdf/files/
CD00201192.pdf/jcr:content/translations/en.CD00201192.pdf.

[ST b] ST Microelectronics. STM8 SWIM communication protocol and debug module.

[ST c] ST Microelectronics. STM8L151x4, STM8L151x6, STM8L152x4, STM8L152x6 datasheet.

[STM] STMicroelectronics. STM8AF Series.

[SWS+16] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, and Giovanni
Vigna. SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 138–157, 2016.

[Tem] Katherine Temkin. Vulnerability Disclosure: Fusée Gelée. https://github.com/Qyriad/
fusee-launcher/blob/master/report/fusee_gelee.md.

[Tex] Texas Instruments. MSP430 Programming With the JTAG Interface.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential Fault Analysis
of the Advanced Encryption Standard Using a Single Fault. In Claudio A. Ardagna and
Jianying Zhou, editors, Information Security Theory and Practice. Security and Privacy
of Mobile Devices in Wireless Communication, pages 224–233. Springer, 2011.

[WVdHG+20] Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald, Benedikt
Gierlichs, and Bart Preneel. Dismantling DST80-based Immobiliser Systems. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(2):99–127, Mar.
2020.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault Attacks on Secure Embedded
Software: Threats, Design, and Evaluation. J. Hardware and Systems Security, 2(2):111–
130, 2018.

https://github.com/q3k/m16c-interface
https://fahrplan.events.ccc.de/congress/2018/Fahrplan/events/9563.html
https://fahrplan.events.ccc.de/congress/2018/Fahrplan/events/9563.html
https://www.cl.cam.ac.uk/~sps32/mcu_lock.html
https://www.cl.cam.ac.uk/~sps32/mcu_lock.html
https://blog.zapb.de/stm32f1-exceptional-failure/
https://www.st.com/content/ccc/resource/technical/document/user_manual/e4/83/c1/d6/ee/d8/49/b8/CD00201192.pdf/files/CD00201192.pdf/jcr:content/translations/en.CD00201192.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/e4/83/c1/d6/ee/d8/49/b8/CD00201192.pdf/files/CD00201192.pdf/jcr:content/translations/en.CD00201192.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/e4/83/c1/d6/ee/d8/49/b8/CD00201192.pdf/files/CD00201192.pdf/jcr:content/translations/en.CD00201192.pdf
https://github.com/Qyriad/fusee-launcher/blob/master/report/fusee_gelee.md
https://github.com/Qyriad/fusee-launcher/blob/master/report/fusee_gelee.md

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 79

A Full assembly of the get_block_no and cmp_addr func-
tions from the 78K0 bootloader

1 get_block_no : push bc
2 cmp A0 , #0 FFh
3 bz _b3
4 cmp A1 , #00h
5 bz _b4
6 mov a, A0
7 xch a, X
8 mov a, A1
9 br calc_blk

10 _b4:
11 mov a, #00h
12 br _b6
13 _b3:
14 cmp A1 , #0 FFh
15 bnz enter_calc_blk
16 mov a, #3 Fh
17 br _b6
18 enter_calc_blk :
19 mov a, A0
20 add a, #01h
21 xch a, X
22 mov a, A1
23 addc a, #00h
24 calc_blk :
25 mov C, #08h
26 divuw C
27 mov C, #80h
28 divuw C
29 xch a, X
30 cmp A0 , #0 FFh
31 bnz _b6
32 dec a
33 _b6:
34 cmp A2 , #01h
35 bnz return
36 add a, #40h
37
38 return :
39 pop bc
40 ret

Listing 4: Assembly of the get_block_no function in the 78K0 bootloader. Registers a, b
and c are depicted in lower case, while the input address A = A2A1A0 (with each address
byte referencing a location in RAM) is given in uppercase

1 cmp_addr : mov a, A2
2 cmp a, B2
3 bc ret_0
4 bnz loc_874
5 mov a, A1
6 cmp a, B1
7 bc ret_0
8 bnz loc_874
9 mov a, A0

10 cmp a, B0
11 bc ret_0
12 bnz loc_874
13 ret_0 :
14 clr1 CY
15 ret
16 ret_1 :
17 set1 CY
18 ret

Listing 5: Assembly of the cmp_addr function in the 78K0 bootloader with input addresses
A = A2A1A0 and B = B2B1B0.

80 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis

B Example path through the checksum command handler
1 addr Instruction cycles
2
3 1aa8 call ! sanity_check_addr 7
4 892 set1 flash_getbyte_reg .03h 4
5 895 call ! sub_FE9 7
6 fe9 mov A, #0 FFh 4
7 feb call ! sub_103F 7
8 103f mov !d_resp_0 , A 8
9 1042 mov A, #01h 4

10 1044 mov !byte_FE14 , A 8
11 1047 ret 6
12 fee ret 6
13 898 movw HL , # msg_buffer_b1 8
14 89b mov A, [HL +03h] 8
15 89d mov addr_H , A 4
16 89f mov end_addr_H , A 4
17 8a1 mov A, [HL +04h] 8
18 8a3 mov addr_M , A 4
19 8a5 mov end_addr_M , A 4
20 8a7 mov A, [HL +05h] 8
21 8a9 mov addr_L , A 4
22 8ab mov end_addr_L , A 4
23 8ad call ! get_block_no 7
24 117d push BC 4
25 117e cmp addr_L , #0 FFh 6
26 1181 bz loc_1193 6
27 1193 cmp addr_M , #0 FFh 6
28 1196 bnz loc_119C 6
29 119c mov A, addr_L 4
30 119e add A, #01h 4
31 11 a0 xch A, X 2
32 11 a1 mov A, addr_M 4
33 11 a3 addc A, #00h 4
34 11 a5 mov C, #08h 4
35 11 a7 divuw C 25
36 11 a9 mov C, #80h 4
37 11 ab divuw C 25
38 11 ad xch A, X 2
39 11 ae cmp addr_L , #0 FFh 6
40 11 b1 bnz loc_11B4 6
41 11 b3 dec A 2
42 11 b4 cmp addr_H , #01h 6
43 11 b7 bnz loc_11BB 6
44 11 bb pop BC 4
45 11 bc ret 6
46 8b0 mov end_block_no_0 , A 4
47 8b2 mov A, [HL +00h] 8
48 8b4 mov addr_H , A 4
49 8b6 mov A, [HL +01h] 8
50 8b8 mov addr_M , A 4
51 8ba mov A, [HL +02h] 8
52 8bc mov addr_L , A 4
53 8be call ! get_block_no 7
54 117d push BC 4
55 117e cmp addr_L , #0 FFh 6
56 1181 bz loc_1193 6
57 1183 cmp addr_M , #00h 6
58 1186 bz loc_118F 6
59 118f mov A, #00h 4
60 1191 br loc_11B4 6
61 11 b4 cmp addr_H , #01h 6
62 11 b7 bnz loc_11BB 6
63 11 bb pop BC 4
64 11 bc ret 6
65 8c1 mov start_block_no , A 4
66 8c3 mov A, end_block_no_0 4
67 8c5 sub A, start_block_no 4
68 8c7 inc A 2
69 8c8 mov diff_block_no , A 4
70 8ca call ! comp_end_addr 7
71 85a mov A, end_addr_H 4
72 85c cmp A, max_flash_addr_H 6
73 85e bc loc_872 6
74 860 bnz loc_874 6
75 862 mov A, end_addr_M 4
76 864 cmp A, max_flash_addr_M 6

Jan Van den Herrewegen, David Oswald, Flavio D. Garcia and Qais Temeiza 81

77 866 bc loc_872 6
78 872 clr1 CY 2
79 873 ret 6
80 8cd bc loc_874 6
81 8cf mov A, addr_H 4
82 8d1 cmp A, end_addr_H 6
83 8d3 bc loc_8E7 6
84 8d5 bnz loc_8E5 6
85 8d7 mov A, addr_M 4
86 8d9 cmp A, end_addr_M 6
87 8db bc loc_8E7 6
88 8dd bnz loc_8E5 6
89 8df mov A, addr_L 4
90 8e1 cmp A, end_addr_L 6
91 8e3 bc loc_8E7 6
92 8e7 clr1 CY 2
93 8e8 ret 6
94 1aab bc error_5 6
95 1aad cmp addr_L , #00h 6
96 1ab0 bnz error_5 6

Listing 6: Example path through the checksum command handler for equivalence class fc.
Our technique marks input bytes ([HL + 00] , . . . , [HL + 05]) as symbolic and builds up
the constraints along the path.

