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Mycobacterium tuberculosis (Mtb), the causative agent of the

disease tuberculosis, is a recognised global health concern.

The efficacy of the current treatment regime is under threat due

to the emergence of antibiotic resistance, directing an urgent

requirement for the discovery of new anti-tubercular agents

and drug targets. The mycobacterial cell wall is a well-validated

drug target for Mtb and is composed of three adaptive

macromolecular structures, peptidoglycan, arabinogalactan

and mycolic acids, an array of complex lipids and

carbohydrates. The majority of the enzymes involved in cell wall

synthesis have been established, whilst studies directed

towards the mechanisms of remodelling and recycling have

been neglected. This review briefly describes mycobacterial

cell wall synthesis, and focuses on aspects of remodelling and

recycling, thus highlighting opportunities for future research.
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Introduction
Mycobacterium tuberculosis (Mtb), the pathogen responsible

for tuberculosis (TB), is a leading cause of global mortal-

ity, contributing to approximately 1.4 million deaths in

2018 [1]. This worldwide burden has directed an impetus

towards innovations in diagnostics, new therapies and

healthcare provisions. However, the emergence of

multi-drug resistant (MDR) and extensively drug resis-

tant (XDR) strains of Mtb threatens these advances,

driving the demand for further research into the biochem-

istry and pathogenicity of Mtb, with a view to discover

novel anti-tubercular drugs and targets [2]. A defining

characteristic of all mycobacteria is their cell envelope,

which is a validated drug target of a number of first-line

and second-line TB therapies [3]. As a result, it has been
Current Opinion in Microbiology 2021, 60:58–65 
the subject of intensive research over the past two dec-

ades. Developments in genomic and molecular techni-

ques have enabled the majority of the structural elements

and biosynthetic pathways of the Mtb cell wall to be

resolved. The most recent evidence has revealed that

mycobacteria have the machinery to recycle their cell

envelope, opening up the possibility of discovering a

plethora of undefined enzymes [4��,5,6]. This review

focuses on the current understanding of the structure,

biosynthesis, remodelling and recycling of the mycobac-

terial cell envelope. The information gleaned from such

studies could prove invaluable for drug discovery efforts

in the on-going fight against Mtb.

Mycobacterial cell wall architecture
The mycobacterial cell wall is a unique macromolecular

structure, sharing a few similarities with Gram-positive and

Gram-negative bacteria. It is essential for cell viability,

playing roles in structural integrity and pathogenicity [3].

The mycobacterial cell wall is intricate in architecture,

composed of a core mycolyl-arabinogalactan-peptidogly-

can complex (mAGP). Inner and outer-membranes are

intercalated with non-covalently linked glycophospholi-

pids, such as phosphatidyl-myo-inositol mannosides

(PIMs), and the derivatives lipomannan (LM) and lipoar-

abinomannan (LAM), and other solvent extractable lipids,

including diacyl-trehalose (DAT), polyacyl-trehalose

(PAT), phthiocerol dimycocerosate (PDIM), and sulfogly-

colipid (SGL) [3]. Proteins, such as porins, traverse the

hydrophobic outer membrane, enabling the transport of

hydrophilic solutes. A capsule of polysaccharides and pro-

teins makes up the outermost layer. A schematic represen-

tation of this extensive cell envelope is shown in Figure 1.

Peptidoglycan synthesis, remodelling and
recycling
Peptidoglycan is a polymer of alternating N-acetylgluco-
samine (GlcNAc) and N-acetylmuramic acid (MurNAc)/N-
glycolylmuramic acid (MurNGlyc) residues, with peptide

side chains that cross-link adjacent glycan chains. The

biosynthesis of peptidoglycan, summarised in Figure 2,

has long been established (reviewed in Maitra 2019) [7].

More recently, there has been a shift in focus towards

elucidating: (i) the recruitment and modulation of enzymes

at specific cellular locations during different growth phases

and infection, (ii) the roles of enzymes in virulence, and (iii)

the discovery of new inhibitors targeting peptidoglycan

synthesis.
www.sciencedirect.com
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Figure 1

Current Opinion in Microbiology

Mycobacterial cell wall architecture.

A schematic representation of the mycobacterial cell wall, highlighting the key features. Abbreviations: mycobacterial inner membrane (MIM),

mycobacterial outer membrane (MOM), phosphatidyl-myo-inositol mannosides, (PIMs, with acylation sites Ac1/Ac2), lipomannan (LM),

lipoarabinomannan (LAM), mannosylated lipoarabinomannan (ManLAM), diacyl-trehalose (DAT), polyacyl-trehalose (PAT), phthiocerol

dimycocerosate (PDIM), and sulfoglycolipid (SGL). An outer membrane protein has been included (green) to depict how solutes traverse the

hydrophobic layer.
For instance, L,D-transpeptidation has gained much inter-

est. Ldt2 [8–14], Ldt3 [15,16] and Ldt5 [17] have been

biochemically characterised with known substrates and

inhibitors. Furthermore, the spatial activity of L,D-trans-

peptidation has also been addressed; incubation of cells

with Ldt-specific fluorescent substrate probes showed

preferential labelling of the poles and septum before

the sidewalls [18]. This intensive research highlights

the importance of these enzymes, particularly from the

perspective of inhibitor discovery [9,10,16,19]. Classical

transpeptidation by Penicillin Binding Proteins (PBPs)

has also received renewed interest, especially since the

validated inhibition of the b-lactamase, BlaC [20–23],

which has re-established the potential of b-lactam
www.sciencedirect.com 
antibiotics as a treatment for TB [24,25]. Many PBPs

have redundant roles in vitro, however, they have critical

roles for survival and virulence within the host. This is

exemplified by PBPA and the transglycosylase RodA,

which regulate cell length in vitro but are essential for

survival and granuloma formation during infection [26].

Peptidoglycan is a dynamic structure and its integrity relies

on co-ordination between enzymes involved in synthesis,

remodelling and recycling, to enable a plethora of cellular

processes, such as cell division, resuscitation and pathoge-

nicity. The Mtb genome encodes for enzymes that are able

to cleave the major covalent bonds in peptidoglycan,

including glycosidases, amidases, endopeptidases and
Current Opinion in Microbiology 2021, 60:58–65
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Figure 2
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Peptidoglycan biosynthesis, remodelling and recycling.

Peptidoglycan biosynthesis has been reviewed in detail [7]. Enzymes involved in peptidoglycan synthesis (no symbol), remodelling (*) and recycling

(**) are shown in bold type. Question marks (?) indicate a predicted enzyme function.
carboxypeptidases (Figure2) [27].Thegenetic multiplicity

of the Mtb remodelling enzymes implies functional redun-

dancy. For example, one of the five Mtb D,L-endopepti-

dases, RipA, is the major septal hydrolase in cell division,

and has been shown to be non-essential for viability in vitro,
where other endopeptidases, such as RipB, could compen-

sate; depletion of ripA and ripB inhibits growth of Mtb [28�].
However, RipA has been shown to be essential for persis-

tence in an infection model, indicating that the remodelling

enzymes have very specific individual roles, not necessarily

observed in in vitro studies, to allow for adaptations to

environmental conditions. These specific functions are

gradually being revealed for other remodelling enzymes.

This includes the lytic transglycosylases, also known as

resuscitation promotion factors (Rpfs). It has long been

established that they promote resuscitation from dor-

mancy, but recently they have also been shown to be

involved in mycobacterial biofilm formation [29]. Follow-

ing cleavage by the remodelling enzymes, there is limited

release of the peptidoglycan fragments for immune system

stimulation [4��].
Current Opinion in Microbiology 2021, 60:58–65 
Peptidoglycan recycling in mycobacteria has long

remained debatable. Almost all mycobacteria lack homo-

logues of the established recycling genes from other

bacteria, with the exception of nagA and nagZ/lpqI
[4��]. Biochemical analyses of the corresponding proteins,

along with earlier efforts, such as the characterisation of

UspC, the solute binding protein of the essential amino-

sugar transporter UspABC, provide the first bona fide
evidence to support mycobacterial peptidoglycan recy-

cling [6]. The cytoplasmic mycobacterial NagA catalyses

the deacetylation of N-acetylglucosamine-6-phosphate

(GlcNAc-6-P) to glucosamine-6-phosphate (GlcN-6-P),

which can be shunted back either into cell wall biosyn-

thesis (GlmM and GlmU) or into glycolysis [5]. This

suggests that uptake of the GlcNAc moiety of peptido-

glycan does exist, but whether this is a fragment of

peptidoglycan or its single sugar form is yet to be eluci-

dated. Recent evidence has shown that the N-acetylglu-
cosaminidase, LpqI, is capable of cleaving the glycosidic

bond between GlcNAc–MurNAc fragments [4��]. It has

been proposed that further metabolism of the MurNAc
www.sciencedirect.com
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moiety liberates lactate, which can be used as a sole

carbon source. Together, this information gives credence

to peptidoglycan recycling in mycobacteria (Figure 2),

opening up the potential to discover novel metabolic

pathways.

Arabinogalactan synthesis and remodelling
Arabinogalactan, a branched heteropolysaccharide, is

covalently attached to the peptidoglycan layer, together

forming an integral part of the cell wall. The chemical

architecture of arabinogalactan and its biosynthesis, as

shown Figure 3, is described in a detailed review [3].

Until recently, with limited reports of an endo-D-arabi-

nase [30,31], there was little evidence to support arabi-

nogalactan remodelling and recycling. However, a recent

study by Shen et al. has identified an exo-b-D-galacto-
furanose hydrolase, Rv3096, termed GlfH1, which

hydrolyses the recurrent terminal b-(1,5) and b-(1,6)-
galactofuranose linkages of the galactan chain of arabi-

nogalactan [32��]. This evidence provides a basis for

future research into arabinogalactan remodelling and

recycling from a biochemical and structural perspective.

Phosphatidyl-myo-inositol mannosides,
lipomannan and lipoarabinomannan synthesis
and remodelling
Embedded in the inner and outer membranes of the cell

envelope are the glycolipids phosphatidyl-myo-inositol
mannosides (PIMs), lipomannan (LM) and lipoarabino-

mannan (LAM). These major cell wall constituents

exhibit immunomodulatory activities and also contribute

to TB pathogenesis [33]. Their structures and biosynthe-

sis have been reviewed extensively [3,34] and are detailed

in Figure 3.

To date, there is little information in the literature

regarding the remodelling and recycling of PIMs, LM

and LAM. Studies have shown that differences in the

ratios of these glycolipids can determine virulence and

the outcome of an infection, which could be controlled at

the synthetic level or by theoretical remodelling and

recycling activities that are yet to be established [35].

The mannan and arabinomannan moieties of LM and

LAM are major constituents of the mycobacterial capsule;

arabinomannan has been detected in Mtb in vivo and in
vitro, to varying degrees [36]. This suggests that there is

an undefined enzyme responsible for releasing the poly-

saccharides from their respective lipid anchors.

The observed heterogeneity of mannan and arabino-

mannan chain lengths in capsular material, as well as

in LM and LAM, suggests the presence of novel

glycoside hydrolases. To support this notion, almost

two decades ago, an enzyme, Rv0648, was shown to

exhibit a-mannosidase activity [37]. Although no fur-

ther information regarding this enzyme has been

reported, an endo-a-(1-6)-D-mannanase has recently
www.sciencedirect.com 
been characterized from Bacillus circulans [38�], and

is used to degrade environmental sources of mannose

polymers (from plants and fungi). This could further

facilitate the discovery of similar enzymes in mycobac-

teria. The mannosidase activity, along with the endog-

enous arabinose activity previously discussed, suggests

that at least some remodelling and recycling does exist,

although it may not be extensive.

Mycolic acid biosynthesis, remodelling and
recycling
Mycolic acids make up the outermost layer of the myco-

bacterial cell wall. These unique, long chain a-alkyl-
b-hydroxy fatty acids are composed of a C24–C26 saturated

a-chain and a meromycolate chain up to C56; the two

chains are synthesised by two discrete pathways, FAS-I

and FAS-II, as detailed in Figure 4 and reviewed in Batt

et al. [39]. MmpL3, along with recently identified acces-

sory proteins, including TtfA [40�], is responsible for the

transport of mycolates across the membrane in the form of

trehalose monomycolate (TMM). Mycolates are then

attached to arabinogalactan by the mycolyltransferases

of the Antigen 85 complex, or to another TMM, forming

trehalose dimycolate (TDM).

The thickness of the Mtb cell wall changes during differ-

ent phases of growth and infection, where remodelling

and recycling of the impermeable lipid layer is important

in the response to host defences, chemotherapeutic

treatments and nutrient availability [41]. Consequently,

structural and compositional differences are observed in

mycobacteria grown in vitro and in vivo. This is exempli-

fied by recent research on Mycobacterium abcessus, which

shows that the cell surface lipids undergo significant

remodelling under infection-relevant growth conditions

[42]. Lipids are valuable carbon sources, and Mtb has the

ability to uptake and metabolise host-derived fatty acids

and cholesterol [43]. Similar to the cholesterol multi-

protein importer Mce4, a related ABC-binding cassette

transporter, Mce1, has been implicated in fatty acid

import and recycling of mycolic acids [44]. Disruption

of the mce1 operon leads to increased de novo fatty acid

biosynthesis [45] and free mycolic acids [46,47]. The mce1
operon is repressed during the first eight weeks of infec-

tion in a mouse model [48], where nutrient starvation

could then trigger Mce1 expression, enabling free myco-

lic acids to be used as a carbon source.

Following import, fatty acids can be shuttled to the

b-oxidation pathway (Figure 4) to generate acetyl-CoA,

which can then feed-back into mycolic acid biosynthesis,

or into central metabolism in the tricarboxylic acid cycle.

Recent evidence suggests that long-chain acyl-CoAs

could bypass the b-oxidation pathway and be transferred

directly to FAS-II biosynthesis using catalytically inactive

(but classified as) enoyl-CoA hydratases, such as EchA6

[49]. Recycling in this way would enable significant
Current Opinion in Microbiology 2021, 60:58–65
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Figure 3

(a)

(b)

Current Opinion in Microbiology

Arabinogalactan, PIMs, LM, LAM and ManLAM biosynthesis and remodelling.

(a) The synthesis of arabinogalactan and (b) synthesis of the glycolipids, PIMs, LM, LAM and ManLAM. Arabinogalactan and glycolipid

biosynthesis are the subjects of a recent comprehensive review [3]. Abbreviations: phospho-a-D-ribosyl-1-pyrophosphate (pRpp), decaprenol-1-

monophosphate 5-phosphoribose (DPPR), decaprenol-1-phosphoribose (DPR), decaprenylphosphoryl-D-arabinose (DPA), D-arabinose in furanose

ring form (D-Araf), D-galactose in furanose ring form (D-Galf), L-rhamnose in pyranose ring form (L-Rhap), D-mannose in pyranose ring form

(D-Manp), phosphatidyl-myo-inositol mannosides, (PIMs, with acylation sites Ac1/Ac2).

Current Opinion in Microbiology 2021, 60:58–65 www.sciencedirect.com
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Figure 4

Current Opinion in Microbiology

Mycolic acid biosynthesis and recycling.

Intermediate chain-length fatty acids and mycolic acids can be recycled through the b-oxidation pathway and trehalose taken up and used

directly in the synthesis of TMM/TDM (trehalose monomycolate/dimycolate). The synthesis of mycolic acids has been described in a detailed

review [39].
energy conservation. For the recycling of free mycolic

acids, they first need to be hydrolysed from either arabi-

nogalactan or trehalose (TMM or TDM). A hydrolase of

TDM, Rv3451, has been identified [50], which is induced

during nutrient starvation, making its role in mycolic acid

recycling plausible. This opens up the possibility of

discovering a hydrolase of TMM, where the liberated

trehalose can also be recycled by the LpqY-SugA-SugB-

SugC ABC transporter, which is specific for the uptake of

trehalose [51]. The ability of Mtb and mycobacteria to

recycle these rich carbon sources contributes to their

success in persistent infections and requires further

investigation.

Conclusion
Mycobacterial cell wall architecture and biosynthesis are

largely elucidated and mechanistic insights into recycling

are gradually becoming available. Importantly, available

evidence shows for at least some genes, there are differ-

ences in essentialities and roles of the enzymes in vivo and

in vitro. This information has, and will continue to prove

instrumental in the development of treatment strategies

against Mtb. Currently, two of the drugs in the front-line
www.sciencedirect.com 
TB treatment regimen, isoniazid and ethambutol, target

cell wall biosynthesis and are effective against active Mtb
infections. Although, there are no reported drugs target-

ing cell wall recycling, this process is important for the

viability of Mtb in persistent populations. Therefore,

concomitantly targeting cell wall biosynthesis and recy-

cling could be invaluable in TB treatment, inhibiting

both active and latent forms of Mtb. To fulfil this aspira-

tion, a collaborative response of pioneering methods in

drug discovery combined with the comprehensive under-

standing of the pathogenicity and biochemistry of the

microorganism, will prime the future response in this on-

going battle against Mtb.
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