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ACCURATE AND EFFICIENT SPLITTING METHODS FOR
DISSIPATIVE PARTICLE DYNAMICS∗

XIAOCHENG SHANG†

Abstract. We study numerical methods for dissipative particle dynamics (DPD), which is a
system of stochastic differential equations and a popular stochastic momentum-conserving thermostat
for simulating complex hydrodynamic behavior at mesoscales. We propose a new splitting method
that is able to substantially improve the accuracy and efficiency of DPD simulations in a wide range
of the friction coefficients, particularly in the extremely large friction limit that corresponds to a
fluid-like Schmidt number, a key issue in DPD. Various numerical experiments on both equilibrium
and transport properties are performed to demonstrate the superiority of the newly proposed method
over popular alternative schemes in the literature.

Key words. stochastic differential equations, dissipative particle dynamics, splitting methods,
order of convergence, invariant measure, transport properties
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1. Introduction. Since its introduction by Hoogerbrugge and Koelman [25] at
the end of the last century and due to its algorithmic simplicity and modelling ver-
satility, DPD has become a popular stochastic momentum-conserving thermostat for
simulating complex hydrodynamic behavior at a mesoscopic level [23, 63]. Unlike in-
dividual molecules, DPD particles represent groups of fluid molecules and interact at
short range with a soft potential. The coarse-grained descriptions allow the use of time
and length scales that would otherwise be inaccessible by conventional molecular dy-
namics at microscales [5,20]. Therefore, DPD has been widely used in a large number
of complex fluids and soft matter applications, including colloids [29], blood [19], and
polymers [64] (see more applications in an excellent recent review [15] and references
therein).

1.1. Formulation of DPD. Originally updated in discrete time steps, DPD
was later reformulated by Español and Warren [14] as a proper statistical mechanics
model that is a system of Itō stochastic differential equations (SDEs). Consider an
N -particle system evolving in dimension d with position qi ∈ Rd, momentum pi ∈ Rd,
and mass mi ∈ R for i = 1, . . . , N , the equations of motion for DPD particles are
given by

dqi = m−1
i pidt ,(1.1a)

dpi =
∑
j 6=i

FC
ij(rij)dt− γ

∑
j 6=i

ωD(rij)(eij · vij)eijdt+ σ
∑
j 6=i

ωR(rij)eijdWij ,(1.1b)

where FC
ij is the conservative force acting along the line of centres, typically chosen

as [23]

(1.2) FC
ij(rij) =

{
aij(1− rij/rc)eij , rij < rc ;

0 , rij ≥ rc ,
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which is the derivative of the soft pair potential energy,

(1.3) ϕ(rij) =

{
aijrc (1− rij/rc)

2
/2 , rij < rc ;

0 , rij ≥ rc ,

where parameter aij represents the maximum repulsion strength between particles
i and j, rij = |qij | = |qi − qj | is the distance, and rc denotes a certain cutoff ra-
dius. Moreover, eij = qij/rij is the unit vector pointing from particle j to particle
i, vij = pi/mi − pj/mj denotes the relative velocity, and dWij = dWji represents
independent increments of the Wiener process with mean zero and variance dt. Pa-
rameters γ and σ, representing the dissipative and random strengths, respectively, and
position-dependent weight functions ωD and ωR are required to satisfy the following
fluctuation-dissipation relations for DPD:

(1.4) σ2 = 2γkBT , ωD(rij) =
[
ωR(rij)

]2
,

where kB is the Boltzmann constant and T is the equilibrium temperature. Note
that one of the two weight functions can be arbitrarily chosen, for instance, a popular
choice of ωR is

(1.5) ωR(rij) =

{
1− rij/rc , rij < rc ;

0 , rij ≥ rc ,

which fixes the other weight function ωD. It can then be easily shown that the
canonical ensemble is preserved with an invariant measure defined by the density

(1.6) ρβ(q,p) = Z−1 exp (−βH(q,p)) ,

where β−1 = kBT , Z is a suitable normalizing constant (i.e., the partition function),
and H denotes the Hamiltonian defined as

(1.7) H(q,p) =
∑
i

pi · pi
2mi

+ U(q) ,

where U is the potential energy

(1.8) U(q) =
∑
i

∑
j>i

ϕ(rij) .

Due to the pairwise (or symmetric) nature of the interactions between particles and
also the dependence on relative velocities, both linear and angular momenta are con-
served in DPD. Moreover, DPD is an isotropic Galilean-invariant thermostat that
preserves hydrodynamics [4, 48, 63]. Note that if the linear momentum is conserved,
the density (1.6) should be replaced by
(1.9)

ρβ(q,p) =
1

Z
exp(−βH(q,p))× δ

[∑
i

pi,x − πx

]
δ

[∑
i

pi,y − πy

]
δ

[∑
i

pi,z − πz

]
,

where π = (πx, πy, πz) is the linear momentum vector. A similar modification would
also be needed for the angular momentum conservation. However, the angular mo-
mentum will not be conserved if either periodic boundary conditions or Lees–Edwards
boundary conditions [32] are applied. Note also that it is highly nontrivial to show
the ergodicity of DPD, which has only been demonstrated in the case of high particle
density in one dimension by Shardlow and Yan [62].
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1.2. Schmidt number issue in DPD. The Schmidt number, Sc, is an impor-
tant quantity that characterizes the dynamical behavior of fluids. It is the ratio of the
kinematic viscosity ν (also called “momentum diffusivity”) to the diffusion coefficient
D, and in a typical fluid flow (e.g., water), momentum is expected to be transported
more rapidly than mass, leading to a Schmidt number of O(103). However, it has been
pointed out that the standard DPD formulation described in Section 1.1 (also known
as the “model B” in the language of [49]), with a standard set of parameters (e.g., [3]
with γ = 4.5), produces a gas-like Schmidt number of O(1), resulting in concerns
on the separation of the timescale for the propagation of hydrodynamic interactions
and that for diffusion [23]. More precisely, the Schmidt number associated with the
standard DPD formulation is approximated as

(1.10) Sc =
ν

D
≈ 1

2
+

(
2πγρdr

4
c

)2
70875kBT

,

where ρd is the particle density. Although we can easily see from the approximation
above that the most efficient way to increase the Schmidt number is to extend the
cutoff radius rc, it is also obvious that it could result in a substantial computational
overhead [18]. As discussed in [43], one could generate a larger viscosity by increasing
the stiffness of the conservative force or the particle density. However, the represented
length scale decreases in both approaches, thereby contradicting the intended coarse-
graining property of the DPD method. Alternatively, it has been suggested by Groot
and Warren in [23] that a larger value of the friction coefficient γ may be used,
although the authors also mentioned that the largest stepsize usable may have to be
reduced in order to maintain the temperature control. To this end, the aim of the
current article is to explore if it is possible to design novel numerical integrators that
would allow the use of large stepsizes in potentially very large friction limit, producing
a fluid-like Schmidt number, while maintaining good control of the temperature and
other important physical quantities. To the best of our knowledge, we are not aware
of such studies within the standard DPD formulation in the literature.

Although considerable effort has been devoted to developing accurate and efficient
numerical methods where large stepsizes can be used while maintaining good equilib-
rium properties, the corresponding Schmidt numbers were often gas-like. Following
early examinations on the performance of various DPD integrators [7, 11, 49, 69], a
number of popular methods (including the Lowe–Andersen (LA) thermostat [44], and
its variant, the Nosé–Hoover–Lowe–Andersen (NHLA) thermostat [65]) have been
systematically compared in two recent studies [39, 41]. In the current article, we
demonstrate that the accuracy and efficiency of DPD simulations can be substan-
tially improved in a wide range of the friction coefficients, especially in the extremely
large friction limit (i.e, γ = 450) that corresponds to a fluid-like Schmidt number
(i.e., Sc ≈ 1016). It is worth mentioning that the Schmidt number can be varied by
either modifying the weight function [18,71] or using alternative approaches (e.g., LA
and NHLA). However, in the current article we restrict our attention to the standard
DPD formulation as it is by far the most popular and studied approach.

1.3. Outline of the article. The rest of the article is organized as follows. In
Section 2, we first describe two popular integration methods for DPD, followed by the
derivations of a new promising scheme. We also theoretically demonstrate the order of
convergence for the newly proposed method that successively integrates the dissipative
and random forces based on interacting pairs. A variety of numerical experiments are
performed in Section 3 to compare all the schemes described in the article with a
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wide range of the friction coefficients (we restrict our attention to the extremely large
friction limit that corresponds to a fluid-like Schmidt number for transport properties,
e.g., shear viscosity, in Section 3.2.3). Our findings are summarized in Section 4.

2. Numerical methods for DPD. In discussing the numerical integration of
DPD, it is more convenient to rewrite the DPD system (1.1) to a more compact form:

dqi = m−1
i pidt ,(2.1a)

dpi = FC
i dt+ FD

i dt+ dFR
i ,(2.1b)

where FC
i , FD

i , and dFR
i respectively represent the total conservative, dissipative, and

random forces acting on particle i,

FC
i (q) =

∑
j 6=i

FC
ij(rij) = −∇qi

U(q) ,(2.2a)

FD
i (q,p) = −γ

∑
j 6=i

ωD(rij)(eij · vij)eij ,(2.2b)

dFR
i (q) = σ

∑
j 6=i

ωR(rij)eijdWij .(2.2c)

2.1. The velocity Verlet method. Despite the significant advancement of
numerical integrators for DPD in the past two decades (see a comprehensive review
of a large number of numerical methods and comparisons of several popular schemes
in [39]), the velocity Verlet (VV) method [7] remains one of the most popular DPD
integrators in popular software packages (e.g., LAMMPS [52] and DL MESO [54]) due
to its ease of implementation (particularly in parallel computing). The integration
steps of the VV method read

p
n+1/2
i = pni +

[
∆tFC

i (qn) + ∆tFD
i (qn,pn) + dFR

i (qn)
]
/2 ,(2.3a)

qn+1
i = qni + ∆tm−1

i p
n+1/2
i ,(2.3b)

pn+1
i = p

n+1/2
i +

[
∆tFC

i (qn+1) + ∆tFD
i (qn+1,pn+1/2) + dFR

i (qn+1)
]
/2 .(2.3c)

where ∆t is the integration stepsize and dWij in the random force (2.2c) is replaced

by
√

∆tRij with Rij being a normally distributed variable with zero mean and unit
variance. Note that all the forces in (2.2) need to be computed only once in (2.3c) and
are reused in the subsequent step, otherwise the factor associated with the random
force (i.e.,

√
∆t/2) would be different. The VV method is also known as MD-VV

in [69] and DL MESO, or the modified Verlet method in [61], and is equivalent to the
GW integrator of Groot and Warren [23] when the variable factor is fixed as one half
(i.e., λ = 1/2).

It is well known that the standard VV method in molecular dynamics is second
order [24, 37]. However, due to the presence of the dissipative and random forces in
DPD, only first order convergence to the invariant measure is expected in the DPD
context [61]. It is worth mentioning a variant of the VV method, that is, the DPD-VV
method [7], also included in DL MESO. DPD-VV only differs from VV in performing
an additional update of the dissipative forces at the end of the integration steps.
Although it has been claimed in [49] that the additional update could improve the
performance considerably (see also good overall performance of DPD-VV in [7,69]), we



SPLITTING METHODS FOR DPD 5

have observed in [39] that the performance of DPD-VV is rather similar to that of the
splitting method proposed by Shardlow [61]. Given that Shardlow’s splitting method
has been the most recommended DPD integrator in the literature [15, 42, 49], it was
often used to represent the standard DPD formulation in comparison studies [41,58].
Therefore, we will include it in our numerical experiments in Section 3, while excluding
DPD-VV.

2.2. Shardlow’s splitting method: DPD-S1. Splitting methods have been
widely used in a range of systems, including Hamiltonian dynamics [24,37], dissipative
systems [59], and stochastic dynamics [40,58]. It was Shardlow who first adopted and
systematically examined the techniques in the DPD context. More specifically, the
vector field of the DPD system (2.1) is decomposed into three parts, which we label
as A, B, and O:

(2.4) d

[
qi
pi

]
=

[
m−1
i pi
0

]
dt︸ ︷︷ ︸

A

+

[
0

FC
i

]
dt︸ ︷︷ ︸

B

+

[
0

FD
i dt+ dFR

i

]
︸ ︷︷ ︸

O

,

where the first two splitting pieces (A and B) represent the Hamiltonian (or deter-
ministic) part of the system and each of the pieces can be solved exactly, while the
remaining O part, with positions fixed, is an Ornstein–Uhlenbeck (OU) process. In
describing splitting methods, we use the formal notation of the generator of the dif-
fusion as in [12, 55, 67]. The generators for each part of the system may be written
out as follows:

LA =
∑
i

pi
mi
· ∇qi

,(2.5a)

LB =
∑
i

FC
i · ∇pi = −

∑
i

∇qiU(q) · ∇pi ,(2.5b)

LO =
∑
i

∑
j>i

LOi,j
,(2.5c)

where
(2.6)

LOi,j =

[
−γωD(rij)(eij · vij) +

σ2

2

[
ωR(rij)

]2
eij ·

(
∇pi −∇pj

)]
eij ·

(
∇pi −∇pj

)
.

The generator for the DPD system thus can be written as

(2.7) LDPD = LA + LB + LO .

Moreover, the flow map (or phase space propagator) of the system may be given by
the shorthand notation

(2.8) Ft = etLDPD ,

where the exponential map is used to formally denote the solution operator. Further-
more, approximations of Ft may be obtained as products (taken in different arrange-
ments) of exponentials of the various splitting terms. For instance, the phase space
propagation of Shardlow’s S1 splitting method [61], termed DPD-S1, can be written
as

(2.9) exp
(

∆tL̂DPD−S1

)
= exp

(
∆tL̂O

)
exp

(
∆t

2
LB

)
exp (∆tLA) exp

(
∆t

2
LB

)
,
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where exp (∆tLf ) denotes the phase space propagator associated with the correspond-
ing vector field f . Note that the steplengths associated with various operations are
uniform and span the interval ∆t. Therefore the B step in (2.9) is taken with a
steplength of ∆t/2, while a steplength of ∆t is associated with either the A or O step.
It is worth pointing out that, in dealing with pairwise interactions in the OU process,
it is desirable to further split the vector field O into each interacting pair. Therefore,
the propagation of the O part in (2.9) should be more explicitly defined as

(2.10) exp
(

∆tL̂O

)
= exp

(
∆tL̂ON−1,N

)
. . . exp

(
∆tL̂O1,3

)
exp

(
∆tL̂O1,2

)
.

Since the method of Brünger, Brooks, and Karplus (BBK) [9] used for successively
integrating each interacting pair in the O part has been shown to produce weak second
order approximations [61], the propagation associated with each interacting pair may
be given by

(2.11) exp
(

∆tL̂Oi,j

)
= exp

(
∆t
[
LOi,j

+O(∆t2)
])
.

where LOi,j
is defined in (2.6). Overall, the BBK method is successively used for

each interacting pair in the OU process (part O), followed by the velocity Verlet
method [47,70] for the Hamiltonian part where both A and B parts are solved exactly:
Step 1: for each interacting pair within cutoff radius (rij < rc), in a successive
manner [31],

p
n+1/4
i = pni −Kij(e

n
ij · vnij)enij + Jij ,(2.12a)

p
n+1/4
j = pnj +Kij(e

n
ij · vnij)enij − Jij ,(2.12b)

p
n+2/4
i = p

n+1/4
i + Jij −

Kij

1 + 2Kij

[
(enij · v

n+1/4
ij )enij + 2Jij

]
,(2.12c)

p
n+2/4
j = p

n+1/4
j − Jij +

Kij

1 + 2Kij

[
(enij · v

n+1/4
ij )enij + 2Jij

]
,(2.12d)

where Kij = γωD(rnij)∆t/2 and Jij = σωR(rnij)e
n
ij

√
∆tRn

ij/2.
Step 2: for each particle i,

p
n+3/4
i = p

n+2/4
i + (∆t/2)FC

i (qn) ,(2.13a)

qn+1
i = qni + ∆tm−1

i p
n+3/4
i ,(2.13b)

pn+1
i = p

n+3/4
i + (∆t/2)FC

i (qn+1) .(2.13c)

Note that the conservative force FC
i needs to be computed only once in (2.13c), where

the Verlet neighbor lists [70] are also updated. The interacting pairs needed in the
subsequent step can then be easily identified from the lists.

As a shorthand, we may term the DPD-S1 method (2.9) OBAB (similarly, the S2
method of Shardlow [61] would be equivalent to OBABO in the same language). It has
been shown in [11,61] that the accuracy of both methods are very close to each other
in a number of physical quantities. Given that the S1 method is more efficient than
S2 [61], in what follows only the S1 method will be examined as in [31,39,42,49,58,67].

2.3. The ABOBA method. Instead of using the BBK method as in DPD-
S1, it may be more desirable to integrate each interacting pair in the OU process
(part O) analytically as in the pairwise adaptive Langevin thermostat [41]. It is
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worth mentioning that the analytical solution of the OU process is often preferred in
Langevin dynamics [5, 10]. More precisely, for each interacting pair, i and j (j > i),
subtracting dvj from dvi and multiplying the unit vector eij on both sides yields

(2.14) mijdvij = −γωD(rij)vijdt+ σωR(rij)dWij ,

where mij = mimj/(mi + mj) is the “reduced mass” and vij = eij · vij . The above
equation is an OU process with the exact (in the sense of distributional fidelity)
solution [28]

(2.15) vij(t) = e−τtvij(0) +
σωR

mij

√
1− e−2τt

2τ
Rij ,

where τ = γωD/mij and vij(0) is the initial relative velocity. Thus the velocity
increment can be obtained as

(2.16) ∆vij = vij(t)− vij(0) = vij(0)
(
e−τt − 1

)
+
σωR

mij

√
1− e−2τt

2τ
Rij ,

and the corresponding momenta can be updated as follows:

pi ← pi +mij∆vijeij ,(2.17a)

pj ← pj −mij∆vijeij ,(2.17b)

which defines the propagator, exp(∆tLOi,j ), for each interacting pair.
Given that the BAOAB method is the best-performing method in terms of sam-

pling configurational quantities in Langevin dynamics [33–35] (see also a recent com-
prehensive study on its time correlations [57]), it is worth mentioning that a BAOAB
method in the DPD context can be easily constructed following the procedures in
Section 2.3. However, it is important to note that in the DPD context, when up-
dating the OU process in the BAOAB method, all the distances between (updated)
interacting pairs have to be recalculated, the cost of which is essentially the same as
another force calculation. In what follows we propose a new method, which we term
the ABOBA method, where the recalculation can be easily avoided with the help of
the Verlet neighbor lists. The propagator of the ABOBA method can be written as
(2.18)

exp
(

∆tL̂ABOBA

)
= exp

(
∆t

2
LA

)
exp

(
∆t

2
LB

)
exp

(
∆tL̂O

)
exp

(
∆t

2
LB

)
exp

(
∆t

2
LA

)
,

where the propagation of the O part is similarly defined as in (2.10) except each
interacting pair is solved exactly as demonstrated in this section. Note that one may
wish to reverse the order of the interacting pairs in the O part, which will affect
neither its overall performance nor the order of convergence to the invariant measure
(see more discussions in Section 2.4). The detailed integration steps of the ABOBA
method read:
Step 1: for each particle i,

q
n+1/2
i = qni + (∆t/2)m−1

i pni ,(2.19)

p
n+1/3
i = pni + (∆t/2)FC

i (qn+1/2) ,(2.20)
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Step 2: for each interacting pair within cutoff radius (rij < rc), in a successive
manner,

p
n+2/3
i = p

n+1/3
i +mij∆vije

n+1/2
ij ,(2.21a)

p
n+2/3
j = p

n+1/3
j −mij∆vije

n+1/2
ij ,(2.21b)

with

(2.22) ∆vij =
[
e
n+1/2
ij · vn+1/3

ij

] (
e−τ∆t − 1

)
+
σωR(r

n+1/2
ij )

mij

√
1− e−2τ∆t

2τ
Rn
ij ,

where τ = γωD(r
n+1/2
ij )/mij .

Step 3: for each particle i,

pn+1
i = p

n+2/3
i + (∆t/2)FC

i (qn+1/2) ,(2.23)

qn+1
i = q

n+1/2
i + (∆t/2)m−1

i pn+1
i .(2.24)

Note that the conservative force FC
i needs to be computed only once in (2.20), where

the Verlet neighbor lists are also updated. The interacting pairs needed in the subse-
quent step can then be easily identified from the lists. Note also that if we switch off
the O part, the ABOBA method reduces to the position Verlet method [47] for the
Hamiltonian part where again A and B parts are solved exactly.

Denoting the operator of part S as the sum of the operators of B and O parts
defined in Section 2.2 (i.e., LS = LB + LO), it is also possible to integrate each
interacting pair in the S part analytically as in the DPD-Trotter method [12, 55]. In
the same language as in ABOBA, the DPD-Trotter method would be equivalent to
SAS where each interacting pair in the S part is solved exactly in a successive manner.
Moreover, a similar method of ASA could be easily constructed. While, with a friction
coefficient of γ = 4.5, the performance of DPD-Trotter/SAS is very similar to that of
DPD-S1 as reported in [12,39], the ASA method performs much better. However, as
we increase the value of the friction coefficient, the performance of both SAS and ASA
methods deteriorate significantly as the influence of the conservative force becomes less
and less in both methods—in the limit of γ →∞, both methods effectively correspond
to the integrations of an ideal gas (sometimes termed “ideal DPD fluid” within the
DPD framework [69]). However, the conservative force plays a crucial role in guiding
the movements of the particles, and thus should not be “neglected”. Moreover, since
we are interested in the extremely large friction limit in order to achieve a fluid-like
Schmidt number (see more discussions in Section 1.2), we will include neither of the
methods for comparisons in the current article.

2.4. Accuracy of equilibrium averages. The framework of long-time Talay–
Tubaro expansion has been widely used in the analysis of the accuracy of ergodic
averages (with respect to the invariant measure) in stochastic numerical methods [1,
2, 13, 33–36, 40, 66]. While the DPD-S1 method (2.9) has been shown in [39] to have
second order convergence to its invariant measure, in what follows we adopt the
procedures to examine the order of convergence to the invariant measure of the newly
proposed ABOBA method described in the previous section.

For a given splitting method described by L = Lα + Lβ + · · ·+ Lζ , we define its

associated effective operator L̂† with stepsize ∆t as

(2.25) exp
(

∆tL̂†
)

= exp
(
∆tL†α

)
exp

(
∆tL†β

)
. . . exp

(
∆tL†ζ

)
,
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where L†α,L
†
β , . . . ,L

†
ζ represent the corresponding Fokker–Planck operator associated

with each subsystem. The effective operator L̂† can be viewed as a perturbation of
the exact Fokker–Planck operator L† = L†α + L†β + · · ·+ L†ζ for the whole system:

(2.26) L̂† = L† + ∆tL†1 + ∆t2L†2 +O(∆t3) ,

where perturbation operators L†1,L
†
2, . . . can be computed by using the Baker–Campbell–

Hausdorff expansion [24,37]. We also define the perturbed invariant measure ρ̂ associ-
ated with the numerical method as an approximation of the target invariant measure
ρβ :

(2.27) ρ̂ = ρβ
[
1 + ∆tf1 + ∆t2f2 + ∆t3f3 +O(∆t4)

]
,

where f1, f2, . . . are some correction functions. The average of each of those functions
with respect to the target invariant measure is zero, i.e., 〈fi〉 = 0. Subsequently,
substituting L̂† and ρ̂ into the stationary Fokker–Planck equation

(2.28) L̂†ρ̂ = 0

yields
(2.29)[
L† + ∆tL†1 + ∆t2L†2 +O(∆t3)

] (
ρβ
[
1 + ∆tf1 + ∆t2f2 + ∆t3f3 +O(∆t4)

])
= 0 .

Since the exact Fokker–Planck operator preserves the target invariant measure, i.e.,
L†ρβ = 0, we obtain

(2.30) L†(ρβf1) = −L†1ρβ

by equating first order terms in ∆t. Although we are able to compute the perturbation
operator L†1 by using the Baker–Campbell–Hausdorff expansion for any particular
splitting method, and subsequently its action on ρβ , it is generally very hard to solve
the above partial differential equation (2.30) in order to obtain the leading correction
function f1 in closed form (see examples in Langevin dynamics [33] and adaptive
Langevin dynamics [40]).

It is more convenient to work with the adjoint of the perturbed generator associ-
ated with a particular splitting method. For instance, in the ABOBA method (2.18),
we have
(2.31)

exp
(

∆tL̂†ABOBA

)
= exp

(
∆t

2
L†A
)

exp

(
∆t

2
L†B
)

exp
(

∆tL̂†O
)

exp

(
∆t

2
L†B
)

exp

(
∆t

2
L†A
)
,

where

(2.32) exp
(

∆tL̂†O
)

= exp
(

∆tL†O1,2

)
exp

(
∆tL†O1,3

)
. . . exp

(
∆tL†ON−1,N

)
.

With the help of the Baker–Campbell–Hausdorff expansion, the effective operator
associated with the overall method can be obtained as

(2.33) L̂†ABOBA = L†A + L†B + L†O + ∆tL†1,ABOBA +O(∆t2) ,

where

(2.34)
L†1,ABOBA =

1

2

[
L†O1,2

,L†O1,3

]
+

1

2

[
L†O1,2

+ L†O1,3
,L†O1,4

]
+ . . .

+
1

2

[
L†O1,2

+ L†O1,3
+ · · ·+ L†ON−2,N

,L†ON−1,N

]
.
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It can be easily shown that

(2.35) L†Oi,j
ρβ = 0 ,

and subsequently

(2.36) L†1,ABOBAρβ = 0 .

Therefore, the associated leading correction function in (2.30) must be zero, i.e.,

(2.37) f1,ABOBA = 0 .

Given that higher order perturbations in (2.27) are not equal to zero in general, we
have shown that the ABOBA method has second order convergence to its invariant
measure.

3. Numerical experiments. In this section, a variety of numerical experiments
are conducted to systematically compare the newly proposed ABOBA method with
alternative popular methods described in Section 2.

3.1. Simulation details. In our numerical experiments, we adopted a standard
set of parameters commonly used in algorithms tests as in [3,23]. Specifically, particle
mass mi, cutoff radius rc, and kBT were set to be unity. Although a particle density of
ρd = 4 was initially used in [23] and later adopted in a number of studies [49, 61,69],
a smaller value of ρd = 3 was later suggested for efficiency reasons and thus was
used throughout the current article. Subsequently, a repulsion parameter of aij =
75kBT/ρd = 25 was determined in order to match the compressibility of water [23].
Although a friction coefficient of γ = 4.5 was widely used in algorithms tests, the
corresponding Schmidt number was only Sc ≈ 0.6 according to (1.10)—a gas-like
Schmidt number (see more discussions in Section 1.2). While larger value of γ = 40.5,
which corresponds to Sc ≈ 8.7, was examined in [39, 41], even larger values of the
friction coefficient are needed to obtain fluid-like Schmidt numbers. Therefore, we
also included friction coefficients of γ = 200 and γ = 450, corresponding to Schmidt
numbers of Sc ≈ 201 and Sc ≈ 1016, respectively.

Moreover, a system of N = 500 identical particles was simulated in a cubic box
with periodic boundary conditions [5, 20], unless otherwise stated. While the initial
positions of the particles were independent and identically distributed (i.i.d.) with
a uniform distribution over the box, the initial momenta were i.i.d. normal random
variables with mean zero and variance kBT . Verlet neighbor lists [70] were used
wherever possible in order to reduce the computational cost as discussed in Section 2.

3.1.1. Equilibrium properties. Following [39, 41], we measured the “numeri-
cal efficiency”, defined as the ratio of the “critical stepsize” and the CPU time per step,
of each method and then scaled it to that of the benchmark VV method, unless other-
wise stated. The CPU time (in milliseconds) for the main integration steps (without
calculating any physical quantities) was the time taken (on a Lenovo ThinkStation
P330 Tiny) for the integration of a single time step of ∆t = 0.05 (averaged over
10,000 consecutive time steps). Note that Verlet neighbor lists [70] were again used
wherever possible. As in [39, 41], the critical stepsize was determined as the stepsize
that approximately corresponds to a 10% relative error in the computed configura-
tional temperature [3,8,53,68] (unless otherwise stated), an observable function that
depends solely on the positions. Moreover, the average of the computed configura-
tional temperature in the canonical ensemble is expected to be precisely the target
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Fig. 1. Double logarithmic plot of the relative error in the computed configurational
temperature (3.1) against stepsize by using various numerical methods of the DPD system
described in Section 2 with friction coefficients of γ = 4.5 (left) and γ = 40.5 (right). The
system was simulated for 1000 reduced time units but only the last 80% of the data were
collected to calculate the static quantity in order to make sure the system was well equilibrated.
Ten different runs were averaged to reduce the sampling errors. The stepsizes tested began at
around ∆t = 0.01 and were increased incrementally by 15% until all methods either started
to show significant relative errors or became unstable (e.g., the VV method on the right panel
at slightly over ∆t = 0.05). The dashed black line represents the second order convergence to
the invariant measure.

temperature:

(3.1) kBT =
〈∇iU(q) · ∇iU(q)〉
〈∇2

iU(q)〉
,

where ∇iU and ∇2
iU respectively represent the gradient and Laplacian of the poten-

tial energy U with respect to the position of particle i (see more discussions on the
configurational temperature in [39, 41]). It should be noted that since the canonical
momentum distribution is always Gaussian (and thus trivial to sample), as in Langevin
dynamics [35] we are far more interested in sampling configurational quantities. Thus
the configurational temperature (3.1) was chosen over the kinetic temperature that
depends solely on the momenta. Importantly, good control of the configurational
temperature appears to imply good performance in other physical quantities tested
in Section 3 (see more discussions on the reasoning in [39]). Moreover, it has been
recommended in [3] that the configurational temperature (3.1), as a verification of
equilibrium, should be measured and reported in DPD simulations.

In addition, we calculated the radial distribution function (RDF) [5, 20], often
denoted as g(r), which is another important configurational quantity in simulations,
characterizing the structure of the system.

3.1.2. Transport properties. A common and favourable approach to measure
transport coefficients in particle-based methods is to employ planar Couette flow as a
numerical “viscometer” [5,16] (see a detailed discussion on extracting transport coef-
ficients by a variety of approaches in [56]). As a nonequilibrium method, a simple and
steady shear flow is commonly generated in DPD via the well-known Lees–Edwards
boundary conditions [32] in order to measure the shear viscosity numerically [6,11,50]
(see also theoretical studies in [17, 23, 45, 46]). With Lees–Edwards boundary condi-
tions, the primary cubic box remains centered at the origin as with normal periodic
boundary conditions. However, a uniform shear velocity profile is generated with a
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Method Critical stepsize CPU time Scaled efficiency
VV 0.050 6.829 100.0%

DPD-S1 0.057 7.852 99.2%
ABOBA 0.116 7.742 204.6%

Table 1
Comparisons of the “numerical efficiency” of various numerical methods of the DPD

system with a friction coefficient of γ = 4.5. “Critical stepsize” is the stepsize beyond which
the numerical method starts to show pronounced artifacts (i.e., 10% relative error in the
computed configurational temperature according to the left panel of Figure 1). The numerical
efficiency of each method was scaled to that of the benchmark VV method.

Method Critical stepsize CPU time Scaled efficiency
VV 0.038 6.829 100.0%

DPD-S1 0.050 7.852 114.4%
ABOBA 0.116 7.742 269.3%

Table 2
Comparisons of the “numerical efficiency” of various numerical methods of the DPD

system with a large friction coefficient of γ = 40.5, corresponding to the right panel of
Figure 1. The format of the table is the same as in Table 1.

streaming velocity that corresponds to the location of particle i [16]

(3.2) ui = κ(qi · ey)ex = κ · qi, κ = κ ex ⊗ ey

where κ is the shear rate defined as κ ≡ κxy = dux/dy, with ux being the macroscopic
velocity in the x-direction, ex and ey respectively represent the unit vectors in the x-
and y-direction, κ denotes the transposed velocity gradient tensor, and ⊗ is the dyadic
product of two vectors. Note that Lees–Edwards boundary conditions are typically
only applied in the x-direction, while the other directions (y and z) remain with
periodic boundary conditions. Particular care should be taken when implementing
Lees–Edwards boundary conditions in pairwise thermostats, such as DPD, due to
the position-dependence on both dissipative and random forces, this issue has been
discussed in [41] in order to maintain correct velocity profiles especially in large friction
limits.

The Irving–Kirkwood stress tensor [26] subject to Lees–Edwards boundary con-
ditions can be written as

(3.3) σ = − 1

V

∑
i

mi (vi − ui)⊗ (vi − ui) +
∑
i

∑
j>i

qij ⊗ Fij

 ,
where V is the volume of the simulation box. While only the conservative force
should be accounted for Fij in Langevin dynamics since both the dissipative and
random forces are averaged out, all three components of the force should be included
for pairwise thermostats, including DPD. The shear viscosity can be extracted at
finite rates as

(3.4) η =
〈σxy〉
κ

,

where σxy represents the shear stress and is the off-diagonal xy-component of the
symmetric stress tensor σ (3.3). It is worth mentioning that the zero shear viscosity
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Fig. 2. Comparisons of the relative error in the computed configurational tempera-
ture (3.1) against stepsize by using various numerical methods of the DPD system with fric-
tion coefficients of γ = 200 (left) and γ = 450 (right). The format of the plots is the same
as in Figure 1. Note that the VV method on the left panel became unstable at slightly over
∆t = 0.01.

η0 = limκ→0 η can be obtained by extrapolation from (3.4). Note also that η0 can be
alternatively calculated by integrating the stress-stress autocorrelation function (i.e.,
the Green–Kubo formulas [22, 30]) as in [11]. However, it is well documented that
those equilibrium approaches are subject to significant statistical error and thus not
preferred in practice [5, 56].

The control of another important transport coefficient, the diffusion coefficient
D, which is proportional to the integral of the unnormalized velocity autocorrelation
function, has also been investigated. It appears that the accuracy of the approxima-
tion of the diffusion coefficient is highly sensitive to the stepsizes used, particularly in
the extremely large friction limit. That is, a very small stepsize has to be used in order
to achieve a reasonably accurate approximation of the diffusion coefficient. Since we
are more interested in using large stepsizes, the results of the diffusion coefficient will
not be presented.

3.2. Numerical results.

3.2.1. Configurational temperature. The configurational temperature con-
trol for a variety of methods described in Section 2 was compared in Figure 1. Accord-
ing to the dashed order line on both panels, we can see that all the methods tested
exhibit second order convergence to the invariant measure, although only first order
was expected for the VV method. Note that in some cases the errors appear to grow
more rapidly when approaching their respective stability thresholds—notably the VV
method on the right panel became unstable at slightly over ∆t = 0.05.

More specifically, in the friction limit of γ = 4.5 on the left panel of Figure 1, the
DPD-S1 method is only marginally more accurate than the VV method with a fixed
stepsize. Remarkably, the newly proposed ABOBA method achieves about one order
of magnitude improvement over both methods in terms of the numerical accuracy with
a fixed stepsize. The substantial improvement of ABOBA is quantified by measuring
the numerical efficiency with a fixed level of accuracy in Table 1. Note that the CPU
times per step of all the three methods are similar to each other (particularly between
DPD-S1 and ABOBA), indicating the methods have comparable complexities. (It is
worth mentioning that, according to Table 2 in [39] via the CPU time of the DPD-
S1 method, the complexity of ABOBA is also very similar to that of other DPD
integrators, including DPD-Trotter [12,55] and the Peters thermostat [51].) However,
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Method Critical stepsize CPU time Scaled efficiency
VV 0.007 6.829 100.0%

DPD-S1 0.044 7.852 546.7%
ABOBA 0.116 7.742 1461.7%

Table 3
Comparisons of the “numerical efficiency” of various numerical methods of the DPD

system with a very large friction coefficient of γ = 200, corresponding to the left panel of
Figure 2. The format of the table is the same as in Table 1.

Method Critical stepsize CPU time Scaled efficiency
DPD-S1 0.044 7.852 100.0%
ABOBA 0.116 7.742 267.4%

Table 4
Comparisons of the “numerical efficiency” of the DPD-S1 and ABOBA methods of the

DPD system with an extremely large friction coefficient of γ = 450, corresponding to the right
panel of Figure 2. The format of the table is the same as in Table 1 except the numerical
efficiency of ABOBA was scaled to that of DPD-S1.

with a fixed level of accuracy, the ABOBA method is able to use a much larger
stepsize, thereby achieving a more than 104% improvement over the benchmark VV
method, whose numerical efficiency is very similar to that of DPD-S1. Note also that
a 100% improvement in the numerical efficiency effectively doubles the performance.

The performance of various methods is largely similar in the large friction limit of
γ = 40.5 on the right panel of Figure 1 except the VV method appears to be slightly
more accurate than DPD-S1 with a relatively small stepsize until it starts to blow up
just over ∆t = 0.03. The ABOBA method again clearly outperforms both methods by
at least one order of magnitude—Table 2 confirms that ABOBA achieves an almost
170% improvement in the numerical efficiency over the benchmark VV method, while
DPD-S1 only slightly outperforms VV.

We also investigate the performance of various methods with larger friction co-
efficients in Figure 2 where second order convergence to the invariant measure was
again observed for all the methods tested except the VV method on the left panel,
corresponding to the very large friction limit of γ = 200. As in the case of γ = 40.5 in
Figure 1, it is possible that the error appears to grow more rapidly as the VV method
approaches its stability threshold just over ∆t = 0.01.

In the very large friction limit of γ = 200 on the left panel of Figure 2, with
a fixed level of accuracy it can be easily seen that both DPD-S1 and ABOBA can
use substantially larger stepsizes than that of VV. To be more precise according to
Table 3, a stepsize over six times as large as that of VV can be used for DPD-S1,
contributing to a more than 440% improvement in the numerical efficiency, while a
stepsize over 16 times as large can be used for ABOBA, leading to a remarkable more
than 1360% enhancement. Due to its extremely poor performance in the very large
friction limit of γ = 200, in what follows VV will not be included for comparisons in
that limit and beyond. In the extremely large friction limit of γ = 450 on the right
panel, ABOBA again comfortably outperforms DPD-S1, with a more than 160%
improvement according to Table 4.

3.2.2. Radial distribution function. Figure 3 compares the RDF that char-
acterizes the structure of the DPD system with a friction coefficient of γ = 4.5. The
RDF of DPD-S1 appears to show pronounced artifacts at around ∆t = 0.09 and to
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Fig. 3. (Color.) Comparisons of the radial distribution function (RDF), g(r), obtained
from the DPD-S1 method (left) and the ABOBA method (right) of the DPD system with
a friction coefficient of γ = 4.5. The solid black line is the reference solution obtained by
using the DPD-S1 method with a very small stepsize of ∆t = 0.001, while the colored lines
correspond to different stepsizes as indicated.
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Fig. 4. (Color.) Comparisons of the radial distribution function (RDF), g(r), obtained
from the DPD-S1 method (left) and the ABOBA method (right) of the DPD system with an
extremely large friction coefficient of γ = 450. The format of the plots is the same as in
Figure 3.

be heavily destroyed at around ∆t = 0.13. (The RDF of the VV method in this case
is very similar to that of DPD-S1 and thus we present only the results of DPD-S1 in
Figure 3.) Consistent with our findings on the left panel of Figure 1, larger stepsizes
can be used for ABOBA without compromising the control of the structure of the
system—with a stepsize as large as ∆t = 0.11, the RDF on the right panel of Figure 3
is almost indistinguishable from the reference solution, while only small deviations
were observed in the RDF with a stepsize of ∆t = 0.13.

Since the RDF controls of both DPD-S1 and ABOBA methods were very similar
with a wide range of large friction coefficients (e.g., γ = 40.5, γ = 200, and γ = 450),
only the results with the largest friction coefficient of γ = 450 were included in
Figure 4. Again consistent with our findings on the right panel of Figure 2, larger
stepsizes can be used for ABOBA while maintaining good control of the structure of
the system—while, with a stepsize of ∆t = 0.15, the RDF of ABOBA shows rather
small deviations from the reference solution, it is heavily destroyed for DPD-S1. It is
worth mentioning that in the large friction limit of γ = 40.5 (results not shown), the
performance of the methods also largely align with our observations on the right panel
of Figure 1, particularly, the VV method became unstable at slightly over ∆t = 0.05,
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Fig. 5. Comparisons of the relative error in the computed configurational temperature
(left) and shear viscosity (right) against stepsize by using both DPD-S1 and ABOBA methods
of the DPD system with a friction coefficient of γ = 450 and a shear rate of κ = 0.2 generated
by the Lees–Edwards boundary conditions. The format of the plots is the same as in Figure 1.
Note that in both cases the reference values were obtained by using the DPD-S1 method with
a very small stepsize of ∆t = 0.001.

at which point the RDF visibly deviates from the reference solution.
As expected in Section 2.3 and observed numerically, the computational cost (i.e.,

CPU time per step) of the BAOAB method in the DPD context is almost twice as
much as that of the ABOBA method. Therefore, unless at least twice as large a
stepsize can be used in BAOAB as that of ABOBA while maintaining the same level
of accuracy in physical quantities of interest, the numerical efficiency of the former
will be outperformed by the latter. We observed that the performance of BAOAB
in terms of RDF is very similar to that of ABOBA. Although BAOAB is able to
outperform ABOBA in the numerical efficiency based on the computed configurational
temperature with friction coefficients of γ = 200 and γ = 450 if the level of accuracy
required is low enough (e.g., less than 1%), overall we conclude that the ABOBA
method should be preferred. It is also worth mentioning that a superconvergence
(i.e., a fourth order convergence to the invariant measure) result observed only in the
BAOAB method in the large friction limit in Langevin dynamics [33,36] (see another
example in adaptive Langevin dynamics [40]) was not observed in the DPD context.
In order to ensure the BAOAB method is symmetric, one may modify the method
to be an BAOOAB-like method where notably the order of the interacting pairs in
either of the O parts needs to be reversed. However, in our numerical experiments we
observed that the performance of the BAOOAB method was very similar to that of the
BAOAB method—the superconvergence property was not observed in the BAOOAB
method either. It is also worth pointing out that solely replacing the BBK method by
the analytical solutions in the OU process of the DPD-S1 method has little impact on
its performance, which indicates that it is the ordering of the pieces in the ABOBA
method that makes more of the difference; nevertheless, the analytical solutions should
be preferred.

3.2.3. Shear viscosity. Since we are more interested in a fluid-like Schmidt
number when measuring transport coefficients, we restrict our attention to the ex-
tremely large friction limit of γ = 450 in this section. The Lees–Edwards boundary
conditions were applied in order to generate a simple and steady shear flow with a
shear rate of κ = 0.2. Note that since we are interested in the Newtonian regime, the
shear rate imposed should be sufficiently small as suggested in [50].
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Method Critical stepsize CPU time Scaled efficiency
DPD-S1 0.050 7.852 100.0%
ABOBA 0.116 7.742 235.3%

Table 5
Comparisons of the “numerical efficiency” of the DPD-S1 and ABOBA methods of the

DPD system with an extremely large friction coefficient of γ = 450 and a shear rate of
κ = 0.2, corresponding to the left panel of Figure 5. The format of the table is the same as
in Table 4.

Method Critical stepsize CPU time Scaled efficiency
DPD-S1 0.012 7.852 100.0%
ABOBA 0.022 7.742 185.9%

Table 6
Comparisons of the “numerical efficiency” of the DPD-S1 and ABOBA methods of the

DPD system with an extremely large friction coefficient of γ = 450 and a shear rate of
κ = 0.2, corresponding to the right panel of Figure 5. The format of the table is the same as
in Table 4 except the physical quantity of interest is the shear viscosity.

The configurational temperature control for both DPD-S1 and ABOBA methods
was assessed on the left panel of Figure 5. The performance of both methods is very
similar to the equilibrium case on the right panel of Figure 2. With a 10% relative
error in the configurational temperature, over twice as large a stepsize can be used
in ABOBA as that of DPD-S1, resulting in a more than 135% improvement in the
numerical efficiency according to Table 5.

The right panel of Figure 5 compares the performance of both methods in terms
of the shear viscosity control. The ABOBA method again clearly outperforms the
DPD-S1 method in terms of the numerical accuracy with a fixed stepsize. With a
10% relative error in the shear viscosity, almost twice as large a stepsize can be used
in ABOBA as that of DPD-S1, leading to an impressive almost 86% improvement in
the numerical efficiency according to Table 6.

4. Conclusions. We have proposed one promising splitting method of the DPD
system, namely the ABOBA method, which relies on solving each of the splitting
parts exactly. We have also demonstrated and numerically verified the second order
convergence to the invariant measure for ABOBA. Although only first order conver-
gence was expected for the VV method, second order convergence was observed in our
numerical experiments. While the VV method performs comparably with the DPD-S1
method with a friction coefficient of γ = 4.5, a standard choice in DPD simulations,
it has been demonstrated that it is not suitable for (much) larger friction coefficients
required for a fluid-like Schmidt number. Remarkably, the newly proposed ABOBA
method substantially outperforms both VV and DPD-S1 methods with a wide range
of the friction coefficients in all the physical quantities tested.

To be more precise, in terms of the configurational temperature control, ABOBA
is at least one order of magnitude more accurate than the benchmark VV method with
a fixed stepsize in each of the cases in Figures 1–2. Moreover, VV became unstable
easily (slightly over ∆t = 0.05 with γ = 40.5 and ∆t = 0.01 with γ = 200) as the fric-
tion coefficient was increased, which indicates that vanishingly small stepsizes have to
be used in the extremely large friction limit of γ = 450, effectively ruling it out espe-
cially for large-scale DPD simulations with a fluid-like Schmidt number. Furthermore,
ABOBA constantly outperforms the most recommended DPD-S1 method, achieving
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a more than 100% improvement (i.e., at least doubling the performance) in each of
the cases in Tables 1–5. As previously mentioned, good control of the configurational
temperature appears to lead to good performance in other physical quantities. In
all the comparisons of the radial distribution function, ABOBA again can use larger
stepsizes than that of DPD-S1 in order to maintain the same level of accuracy. The
performance of the ABOBA method is equally impressive in our nonequilibrium sim-
ulations driven by Lees–Edwards boundary conditions [32]; it achieves an almost 86%
improvement over DPD-S1 in the numerical efficiency based on the computed shear
viscosity, an important transport coefficient in nonequilibrium molecular dynamics.
This again illustrates the importance of optimal design of numerical methods.

Although the VV method has been substantially outperformed by the ABOBA
method, the parallelization of the latter (along with DPD-S1), due to the fact that the
interacting pairs in the OU process are solved successively, is not as straightforward
as that of the former. However, a similar task of parallelizing the DPD-S1 method
has been addressed by Larentzos et al. [31]—the procedures can be easily adopted for
parallelizing ABOBA.

Inspired by recent developments in adaptive thermostats [27,40,60] (their theoret-
ical foundations have recently been taken up in [38]), the so-called pairwise adaptive
Langevin (PAdL) thermostat has been proposed in [41]. PAdL is able to correct
for thermodynamic observables while mimicking the dynamical properties of DPD
and thus can be viewed as “adaptive DPD”. It has been demonstrated in [41] that
PAdL can also outperform popular numerical methods (including DPD-S1) for DPD
in both equilibrium and nonequilibrium settings. Since PAdL is not based on the
standard DPD formulation, it has not been included for comparisons in the current
article. However, it will be interesting to compare its performance with the outstand-
ing ABOBA method proposed in the current article. We leave further exploration of
this direction for future work. As Shardlow’s splitting method, the newly proposed
ABOBA method can also be applied in DPD with various fixed conditions [42]; it
is worth assessing the performance of the ABOBA method in those settings. It is
also worth investigating the performance of various methods in the case of DPD with
constraints [21].

Acknowledgments. The author thanks Richard Anderson, Michael Seaton,
Patrick Warren, and the anonymous referees for their valuable suggestions and com-
ments.

REFERENCES

[1] A. Abdulle, G. Vilmart, and K. C. Zygalakis, High order numerical approximation of the
invariant measure of ergodic SDEs, SIAM J. Numer. Anal., 52 (2014), pp. 1600–1622.

[2] , Long time accuracy of Lie–Trotter splitting methods for Langevin dynamics, SIAM J.
Numer. Anal., 53 (2015), pp. 1–16.

[3] M. P. Allen, Configurational temperature in membrane simulations using dissipative particle
dynamics, J. Phys. Chem. B, 110 (2006), pp. 3823–3830.

[4] M. P. Allen and F. Schmid, A thermostat for molecular dynamics of complex fluids, Mol.
Simul., 33 (2007), pp. 21–26.

[5] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Second Edition, Oxford
University Press, 2017.

[6] JA Backer, CP Lowe, HCJ Hoefsloot, and PD Iedema, Poiseuille flow to measure the
viscosity of particle model fluids, The Journal of Chemical Physics, 122 (2005), p. 154503.

[7] G. Besold, I. Vattulainen, M. Karttunen, and J. M. Polson, Towards better integrators
for dissipative particle dynamics simulations, Phys. Rev. E, 62 (2000), p. R7611.

[8] C. Braga and K. P. Travis, A configurational temperature Nosé–Hoover thermostat, J. Chem.
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[57] X. Shang and M. Kröger, Time correlation functions of equilibrium and nonequilibrium
Langevin dynamics: Derivations and numerics using random numbers, SIAM Rev., (2020).
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