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Abstract—Synthetic image generation provides the ability to
efficiently produce large quantities of labeled data, which ad-
dresses both the data volume requirements of state-of-the-art
vision systems and the expense of manually labeling data. How-
ever, systems trained on synthetic data typically under-perform
systems trained on realistic data due to mismatch between the
synthetic and realistic data distributions. Domain Randomization
(DR) is a method of broadening a synthetic data distribution
to encompass a realistic data distribution and provides better
performance when the exact characteristics of the realistic data
distribution are not known or cannot be simulated. However,
there is no consensus in the literature on the best method of
performing DR. We propose a novel method of ranking DR
methods by directly measuring the difference between realistic
and DR data distributions. This avoids the need to measure
task-specific performance and the associated expense of training
and evaluation. We compare different methods for measuring
distribution differences, including the Wasserstein and Fréchet
Inception distances. We also examine the effect of performing
this evaluation directly on images and features generated by an
image classification backbone. Finally, we show that the ranking
generated by our method is reflected in actual task performance.

I. INTRODUCTION

The use of synthetic data for solving computer vision tasks
has gained popularity due to the ease and speed of generating
large-scale synthetic datasets, compared to collecting and
annotating real data. Synthetic data generation is especially
beneficial in cases where collecting data in the real-world is
challenging. For example, to gather data for an autonomous
driving task, we would typically have to navigate a variety of
environments under different weather conditions long enough
to capture the range of cars on the road. This data acquisition
process is extremely time-consuming and expensive.

Synthetic data generation allows us to produce substantial
amounts of annotated examples, which are crucial when us-
ing data-hungry deep neural networks (DNNs) [1]. However,
solely using synthetic images to train DNNs commonly leads
to poor performance when deployed in the real-world. We
generally attribute the poor performance to domain shift,
where our training domain (synthetic) differs from our testing
domain (real-world). Several works in domain adaptation
have tackled this problem [2]–[5]. Recently, an inexpensive
way to achieve transfer from synthetic-to-real, particularly
in several robotics applications [6]–[14], is through Domain
Randomization (DR).

Fig. 1: Sample Data from Different domains

The key idea is to generate variation in the synthetic dataset
by randomizing various simulator parameters such as textures,
illumination, number of objects, object poses, or camera
positions. The common intuition behind this is that during
inference on real images, the real images would have similar-
ities to some subset of the synthetic training distribution [7].
Fig. 1 shows the differences between synthetic, DR synthetic,
and real-world data. Unlike some generative models, where the
goal is to attempt to match the target distribution [15], DR is
not trying to produce synthetic images indistinguishable from
real-world images.

While this augmentation process of randomizing simulator
parameters has demonstrated the potential for transfer from
synthetic-to-real [7], [8], it is unclear which particular DR
method is most appropriate for an arbitrary task.

Currently, there is no universal approach for DR. Take,
for example, the task of predicting objects’ positions on a
table. Assuming we know the shape of the objects but not
the textures, we can sample from a distribution of textures
to augment our synthetic training data with varied textures to
localize the objects.

While some would opt to randomize the objects’ textures in
a scene using flat RGB colors, others would use more complex
patterns or additional noise applied to the textures. [11], [17],
[19]–[21]. We expect the resulting network trained using DR
synthetic data to perform well when evaluated using real-
world data. However, the training process may be hindered
by inefficiently sampling DR data.

We address this challenge by proposing a method for
quantifying the differences between the DR synthetic and
target distributions, where the synthetic samples are from
distributions on the simulator inputs.

We achieved this by estimating the Wasserstein, and Fréchet
Inception distances (FID) in the image and feature space, be-



Texture Randomization Techniques [16] [17] [18] [19] [14] [20] [10] [21] [12] [22] [8] [11] [7] [6] [23] [24] [25] [13] [9]

Flat RGB
Gradient RGB
Patterns (Checkerboard)
Patterns (Striped)
Patterns (Other)
Additional Noise (Perlin)
Real Images

TABLE I: Table showing texture randomization techniques applied in current literature. The heavily favored approach is to
use Flat RGB textures, in which each texture is a single RGB color sampled from a predetermined distribution.

tween realistic images and synthetic images that have modified
textures based on the commonly used texture randomization
methods in Table I.

Flat RGB

Flat RGB
Perlin

Gradient RGB

Gradient RGB
Perlin

Checkerboard Striped Zig-Zag

Checkerboard
Perlin

Striped
Perlin

Zig-Zag
Perlin

Fig. 2: Sample textures from our augmentation routine derive
from the various techniques currently applied within DR
literature from Table I.

The textures applied are non-patterned (Flat RGB, Gradi-
ent RGB), patterned (Checkerboard, Striped, Zig-Zag), and
dominant noise (Perlin noise [26] applied to the previous
textures), as seen in Fig. 2. By evaluating texture random-
ization techniques on a localization task, we show patterned
textures result in the highest performance. We find that task
performance, Wasserstein, and FID estimates in the feature
space of ImageNet weights produce similar rankings.

Our main contributions are summarized below:
• We propose a novel method of quantifying differences

between DR data distributions from samples, using neural
networks.

• We demonstrate that the method is capable of ranking
the different augmentations and is reflected in the perfor-
mance of an object localization task.

• Based on the produced ranking, generated without any
task-based training, we recommend using more complex
patterned textures when generating DR synthetic data.

II. RELATED WORK

Use of Synthetic Data. Since data-driven deep learning
approaches started gaining popularity, generating synthetic
data has been seen as a more efficient alternative to manually
collecting and labeling real-world data. Synthetic datasets
have been made available for solving various tasks such as
autonomous driving [27]–[29], object detection [30], [31], seg-
mentation [32]–[34], and robotic manipulation [9]. However,
systems trained on existing synthetic datasets [35], [36] have

shown limited ability to generalize to data that differs from the
synthetic source, as the variety needed may not be present.

A practitioner may hand-design datasets for a task through
the simulator and renderer configuration. However, realistic
simulation can be computationally expensive [16], [36], [37].
Designing the environments typically requires expert knowl-
edge of the domain to ensure that generated data is useful
in solving the task. In this paper, we aim to utilize synthetic
texture randomization routines and quantify the influence of
the generated samples on a given task.
Domain Randomization and Domain Adaptation. Domain
Adaptation has shown success at tackling the problem of
adapting networks trained on a source domain to an unseen
target domain [2], [38]–[41]. Several of these works make use
of Generative adversarial networks’ (GANs) [15] architecture
to modify a given input’s appearance.

For example, Shrivastava et al. [2] addressed synthetic data’s
unrealistic appearance by refining the synthetic images using
unlabeled real-world images to enhance realism for solving
gaze and hand pose estimation. Such an approach typically
relies on having access to a large amount of real data, such as
approximately 214K images from the MPIIGaze dataset [42]
in the case of gaze estimation.

DR utilizes the rendering engine and simulator to randomize
parameters such as textures, illumination, object positions,
and camera positions, resulting in a greater variety in the
dataset. This approach to augmenting the synthetic data is an
inexpensive way to improve transfer from synthetic to real in
tasks such as manipulation [7], [18], [20], [21], [23], [24],
pose estimation [16], [43], object detection [11], [19], and
segmentation [17].

The user typically selects the rendering parameters, which
are commonly sampled from a uniform distribution. While
this may eventually lead a given model to learn from a
heavily augmented dataset, the naive sampling of the rendering
parameters may result in an inefficient data distribution for
a given task. This sampling approach would include very
slight variations, and the addition of inefficient data would
be computationally wasteful and may hinder performance.

Existing literature does not perform a thorough comparative
analysis of potential augmentations and typically relies on
ablation studies to demonstrate the effects on a given task. For
example, Table I shows that most implementations apply Flat
RGB, despite the range of possible augmentation techniques.
We show that measuring the distance between distributions
in an image classification feature space provides insights on



task-based performance – a novel approach in the context of
DR.

Our work highlights the importance of selecting more
favorable augmentations by establishing a correlation between
different augmentations, measures of differences between data
distributions, and localization task performance.
Measuring Distance Between Distributions. Quantifying
distance between different distributions is an integral part of
several machine learning processes, particularly in generative
models. For example, the primary objective of Variational
Autoencoders (VAEs) [44] and GANs [15], [45], [46] is to
replicate a given data distribution.

VAEs use KL-Divergence in Equation (1) to measure the
distance between two continuous probability distributions P
and Q.

DKL(P ||Q) =

∫
x

P (x)log

(
P (x)

Q(x)

)
dx (1)

DKL = 0 when P (x) = Q(x). As the KL-Divergence is
asymmetric, an issue arises in the instance where Q(x) ≈ 0
and P (x) > 0, as the distance measure may tend to infinity.

The standard GAN uses the Jensen-Shannon divergence
between Pdata (the original data distribution) and Pg (the
model’s generated distribution), both defined on a compact
data space χ.

DJS(Pdata||Pg) =
1

2
DKL

(
Pdata||

Pdata + Pg
2

)
+

1

2
DKL

(
Pg||

Pdata + Pg
2

)
(2)

Jensen-Shannon Divergence (JSD) in Equation (2) being
symmetric and bounded by [0, 1] allows for smoother training
for the generative models. However, if the distributions are
far apart, the estimate is less meaningful as an indicator of the
sample quality of a generator G [45]. The first implementation
of the Wasserstein-GAN (WGAN) presented a comparison of
established approaches to quantifying distance in distributions
such as JSD and Wasserstein metric as a loss function. The
comparison shows a correlation between lower error produced
by the Wasserstein metric as a loss function and better sample
quality from a given Generator G [45]. Because JSD saturates
at ln(2), it becomes less useful at measuring distances when
the distributions become far apart.

The use of the Wasserstein distance in Equation (3) ad-
dresses JSD’s issue as a less meaningful metric. Where
Π(Pdata, Pg) denote the set of all joint distributions γ(x, y)
with marginals Pdata and Pg , the Wasserstein distance is:

W (Pdata, Pg) = inf
γ∈Π(Pdata,Pg)

E(x,y)∼γ [||x− y||] (3)

To estimate the Wasserstein distance, the discriminator must be
Lipschitz continuous. There are several different ways works
have enforced a Lipschitz constraint on the discriminator, each
with varying results. Initially, with WGANs, weight clipping

enforced the constraint [45], while others implemented a
gradient penalty [46]. Implementing the Lipschitz constraint
on the discriminator remains an open problem, and in turn,
affects the accuracy of the estimate. The variations in enforcing
the Lipschitz constraint on the discriminator prevents direct
quantitative comparison between individual methods. Here, we
are interested in ranking the different texture randomization
methods.

III. METHOD

This section discusses the approach taken for measuring the
distances between distributions in the image space and distri-
butions of extracted features. We describe how we validate our
findings using an object localization task on realistic images.

To estimate the distance between distributions, we investi-
gate the use of the Wasserstein and Fréchet Inception distances
between two distributions. The following subsections describe
the approaches taken for the image and feature space.

A. Image Space

With the Wasserstein distance, we use a modified im-
plementation of WGAN-GP [46] and replace the generated
samples with DR samples to the WGAN-GP critic. We use
the computed Wasserstein distance to rank the various texture
randomization methods from the lowest to highest distances.

We evaluate this ranking on an object localization task,
where the goal is to predict the 3D position of an object of
interest using VGG-16 [47]. In the image space, we use the
same VGG-16 architecture implementation found in one of the
seminal DR works by Tobin et al. [6].

B. Feature Space

Pre-trained backbones are widely available to bootstrap
learning for new tasks. The availability of pre-trained back-
bones makes it possible to measure the distance between
distributions in feature space from existing networks already
trained on a large amount of data.

In the feature space, we estimate the Wasserstein and
Fréchet Inception distances based on features extracted from
the Conv5 block in a ResNet-50 [48] model. Fig. 3 shows the
proposed approach for quantifying the distances between dis-
tributions. When exploring the feature space, we use ResNet-
50 as the feature extractor as it is a widely accepted and robust
model for extracting feature vectors [13], [17], [48], [49]. We
show that the different texture randomization methods’ ranking
reflects the performance for solving an object localization task
in the feature space.
Domain Randomization. In this work, we focus on texture
randomization, as textures are considered one of the most
important decision criteria in neural networks and the most
heavily used in robotics DR applications. [6]–[8], [10]–[12],
[14], [17]–[25], [50]. We implement all the methods used in
current DR literature in Table I.

We use a custom simulator to perform physics simulation
and rendering for our experiments, which allows us to generate
physically plausible scenes, and control rendering parameters
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Fig. 3: Flow of data for estimating the Wasserstein distance and FID from two feature vector distributions.

during experimentation. We implemented the texture genera-
tion methods shown in Table I and can apply the resulting
textures, such as those seen in Fig. 2, to the objects in
scenes. Illumination is fixed, and object poses are shared
across datasets, such that the differentiating factor between
samples are the textures applied to the objects.
Quantifying Differences in Distributions. As we are dealing
with unknown distributions when using raw images and in the
feature space, we estimate the FID and Wasserstein distance
using neural networks from distribution samples.

We use WGAN-GP instead of the original WGAN because
of a more robust method of enforcing Lipschitz-Continuity
[45], [46]. Due to the gradient penalty term in WGAN-GP
restricting the norm of the gradient of the discriminator, we
expect the implementation to affect the Wasserstein distance
estimate, but not affect the ranking (ordering of the different
texture randomization methods). We use a modified version to
replace the generated samples with the randomized simulated
data.
Quantifying Differences in Distributions – Feature Space.
We subsequently modify the WGAN-GP’s discriminator to
take the input shape of each of the feature vectors tested.

As a comparison, we compute the distance between feature
vectors between Pr and Paug using FID [51]. FID is regularly
used in generative models to measure the quality of the gen-
erated samples compared to the original distribution. Equation
(4) shows the computation, where Pr is the real-textured, real-
equivalent dataset, with mean and covariance (mr, Cr) and
Paug is the augmented domain randomized synthetic dataset
with mean and covariance (maug, Caug).

d2((maug, Caug), (mr, Cr)) = ||maug −mr||22
+ Tr(Caug + Cr − 2(CaugCr)

1
2 ) (4)

Using FID means we no longer need to train a discriminator
to estimate the distance between distributions. However, we
are assuming that the distributions are Gaussian and must
process the entire dataset to estimate the covariance matrices,
which can be computationally expensive for large feature
vectors.
Localization Task. To validate the ranking generated by the
Wasserstein distance and FID, we train an object detector to

localize an object in a scene in terms of its 3D spatial position,
(x, y, z). In the image space, we replicate the VGG-16 archi-
tecture from one of the original approaches to DR by Tobin
et al. [6], [47] and in the feature space, we use a modified
version of ResNet-50 [48]. The standard convolutional layers
are used, with the addition of three fully connected layers. We
use the MSE loss between the predicted object positions and
ground truth using the Adam optimizer [52] with a learning
rate of 1e− 4.

IV. EXPERIMENTS

First, we compared real-equivalent synthetic and DR syn-
thetic RGB images in the image space. Here, we considered
the original, unmodified, textures to be our real-equivalent
distribution. Next, we measured the distance between distri-
butions in feature space in real-equivalent and DR synthetic
images using real-world image backgrounds from the NYU
Depth V2 dataset [53]. The NYU Depth V2 dataset comprises
real-world RGB images from a variety of indoor scenes,
and the addition of real-world image backgrounds forces the
network to use the foreground rather than the background.
The following subsections describe the experiments in further
detail.

A. Quantifying Differences in Distributions in Image Space

For the synthetic datasets, we chose objects from the YCB
dataset [54], as seen in Fig. 4. Using the YCB dataset gives
us access to high-resolution scans of the objects’ real-world
texture and their meshes. This allowed us to modify desired
parameters in the simulator.

We generated synthetic RGB images of size 320x240x3.
The object of interest is the Cheez-It box, where the poses
used are physically plausible and sampled from a Gaussian
distribution of mean 0 and a standard deviation of 0.05 m
around the center of the table. A sample of the synthetic
(real-equivalent) and DR synthetic Cheez-It box dataset can
be seen in Fig. 4. Each of the augmentation methods applied
contains the same poses, camera position, background, and
illumination. This ensures that the distance measured is related
to the applied textures. We generated 3,000 images for the
training set and 3,000 images for the test set for each of the
augmentation methods applied. Colors and original patterns



between Perlin and non-Perlin textures are shared. For exam-
ple, the same initial colors for Flat RGB are used for Flat
RGB Perlin. This is to analyze the effects of dominant noise
on the initial textures used.

To quantify the difference in distributions in the image
space, we used WGAN-GP to estimate the Wasserstein dis-
tance on raw RGB images, where the inputs to the WGAN-GP
critic are the real-equivalent synthetic data (assumed to be our
real distribution here) and the DR synthetic data.

Fig. 4: Sample of the synthetic data (real-equivalent) and
DR synthetic data used. Poses are shared across datasets,
with the main differentiating factor being the textures applied
to the Cheez-It box. The camera position, illumination, and
background remain fixed.

Results from Quantifying Differences in Distributions in
Image Space. Results from estimating the Wasserstein dis-
tance from the ten different randomization techniques on raw
RGB images are shown in Fig. 5.
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Fig. 5: Wasserstein distance estimate using different texture
randomization techniques. We compute the estimate between
real-equivalent synthetic and DR synthetic RGB images with
black backgrounds. We see three distinct groupings between
patterned (Checkerboard, Striped, Zig-Zag), non-patterned
(Flat RGB and Gradient RGB) and dominant noise (Perlin).

Here, we find three distinct groupings between non-complex
(Flat RGB and Gradient RGB), complex (Checkerboard, Zig-
Zag, Striped), and dominant noise (Perlin noise). This suggests

that the type of texture augmentation affects the distance esti-
mates on raw images. To determine whether these differences
are meaningful, we train on a localization task to see if the
same rankings hold.

We trained a localization network on real-equivalent syn-
thetic images and DR synthetic images with a modified VGG-
16 architecture to use 3 FC layers. The network was trained
with a batch size of 50, a learning rate of 1e− 4, and Adam
optimizer [52]. The results from the task-based network are
shown in Fig. 6.
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Fig. 6: Localization task when trained on DR synthetic images,
and tested on real-equivalent synthetic images with black
backgrounds. MSE is between the predicted and ground truth
positions of the object on the table.

In this instance, the selection of augmentations for fixed,
static backgrounds, illumination, and camera had little impact.
The high variance means it is not possible to distinguish
between rankings as clearly as in the Wasserstein distance
estimates. We see that the localization task’s mean error
follows the same ranking as the Wasserstein estimate, with
similar groupings based on the means only. However, the
variance is too large to conclude a strong correlation between
the Wasserstein estimate and the mean error of the localization
task. Given the datasets used, and the task at hand, the
augmentation techniques applied would perform similarly.
Realistic Backgrounds. We explored quantifying the dif-
ferences in distributions using real-world backgrounds from
the NYU Depth V2 dataset [53]. The modification replaced
previous black backgrounds with real-world indoor scenes
from the NYU Depth V2 dataset. Previous synthetic datasets
were re-used to keep consistent poses and texture random-
izations across previous experiments. No backgrounds are
shared between the real-equivalent and DR synthetic datasets.
A sample of the modified datasets can be seen in Fig. 7.

When estimating the Wasserstein distance using the mod-
ified real-world backgrounds on raw images, we do not
get clear separations in ranking based on the augmentation
techniques used, as seen in Fig. 8. Furthermore, there is a
more significant variance in the distance estimates compared
to the fixed black background datasets. We find that estimating



(a) Real-equivalent Data (b) DR Synthetic - Flat RGB

Fig. 7: Sample images from the real-image background
dataset. The previous black backgrounds have been replaced
with backgrounds from NYU Depth V2 dataset to lessen
learning information based on the background rather than the
foreground.

the Wasserstein distance on raw RGB images, with real-world
backgrounds, to be less reliable in providing a clear ranking
between the different texture randomization techniques.
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Fig. 8: Wasserstein estimate does not provide clear separations
in augmentation techniques when operating with raw images
using real-world backgrounds. We are only able to clearly dis-
tinguish between techniques involving non-Perlin and Perlin
noise.

B. Quantifying Differences in Distributions in Feature Space

Operating on raw RGB images and real-world backgrounds
did not appear to provide a clear ranking when applying
the different texture randomization techniques. We explored
quantifying the differences in distributions between two fea-
ture vectors from the same modified real-world background
datasets, via Wasserstein distance and FID.
Extracting Features We investigated the effects of measuring
the distance between distributions in feature space by using a
ResNet-50 model [48], and analyzed the Wasserstein estimates
from the Conv5 layer, before flattening, of the network.

Given the dataset and representation size, computation on
FID is expensive. To reduce computational expense, we re-
duced the dimensionality for 3000 samples using 10 random
projections to get the variance of the estimates; this may
result in some loss of information. Each of the augmentation
techniques uses the same 10 projection matrices to ensure fair
comparisons.
Results from Quantifying Differences in Distributions in
Feature Space. When looking at the feature space at the
Conv5 block, using pre-trained ImageNet weights, we see
more apparent separations between the various texture ran-
domization techniques applied, as shown in Fig. 9. The ranking
of augmentation techniques is more easily determined.
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Fig. 9: Wasserstein distance between real-equivalent and DR
synthetic data with backgrounds from NYU V2 dataset when
operating in the feature space. The distance is measured using
distributions of feature vectors extracted from a ResNet-50
backbone. When operating in the feature space, we are able
to more clearly distinguish between the various augmentation
techniques.

Comparison with Localization Task. When training the
localization task for each of the augmentation techniques using
random weights, we see more distinct separations between
them. Here, we used the ResNet-50 network for the task,
with the addition of 3 FC layers. We performed a z-test to
evaluate statistical significance, with a null hypothesis that the
mean is equal between two given augmentation techniques at
α = 0.05. The test yields a p-value of < 0.05 for Zig-Zag and
Striped with Perlin, and a p-value < 0.001 for the remaining
augmentation pairs.

After ranking the localization task performance and compar-
ing it to the FID and Wasserstein distance, we see a correlation
between task performance and estimates in the feature space at
the Conv5 block, as shown in Fig. 10. This is particularly the
case when comparing task performance with FID, showing less
variance in the estimate. Both Wasserstein and FID produce
clear distinctions between complex and non-complex textures,
and selecting a more complex texture with lower estimates,
results in better task performance.



With the addition of Perlin noise, the estimates generally
follow the same trend, though the introduction of noise in-
creases the difficulty in quantifying the underlying distribu-
tions, as shown in Fig. 10. In the cases of Zig-Zag Perlin
and Gradient RGB Perlin, for example, both Wasserstein and
FID rankings disagree with the localization ranking. This
disagreement indicates that the approach is less robust when
comparing task performance with textures containing Perlin
noise.

Our findings are consistent with those of Borrego et al.
[11], where the authors found that the use of more complex
textures such as patterns in the texture augmentations used
for object detection aids performance, while the use of non-
complex textures such as Flat RGB provides the least impact
on improving performance.
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Fig. 10: Comparison of localization task, Wasserstein and FID
estimate in feature space. Values are normalized and sorted by
lowest mean error in the localization task. Effects of additional
noise increases the difficulty in obtaining a clear ranking. In
general, the addition of dominant Perlin noise appears to aid
performance, as well as using patterned textures.

V. DISCUSSION

Given a collection of commonly applied texture randomiza-
tion methods, we quantify the differences in the distributions
of the feature space and find clear rankings between the tech-
niques when working with augmentations without additional
noise as shown in Fig. 10. We rank methods by Wasserstein
distance/FID estimates and by task error. We find that low
Wasserstein and FID estimates are associated with lower task
error. By Wasserstein/ FID, Zig-Zag (patterned) is best (lowest
ranking) and Flat RGB (non-patterned) is worst. Sorting by
mean task error, Zig-Zag is best (lowest task error), and
Gradient RGB is worst.

We show that selecting the augmentation according to the
Wasserstein ranking produces the best task performance for
object localization. In this case, we recommend that prac-
titioners use Zig-Zag textures for augmentation. Patterned
textures are more favorable as opposed to non-patterned when

randomizing the objects’ textures, which is reflected in the
final task performance.

However, we find that the addition of dominant Perlin noise
increases the difficulty in attaining a clear ranking, particularly
with FID. We see the FID estimates amongst patterned and
non-patterned are similar, which may allude to the dominant
noise overpowering the underlying texture pattern.

Here we demonstrated an effective means of ranking DR
methods by quantifying differences between data distributions
from samples using an estimate of the Wasserstein distance
and FID. Furthermore, we predicted the final task ranking with
good agreement, without task-based training and evaluation.
This technique is not specific to a particular task, and could
be used as a criterion for selecting randomization types for
novel tasks given a small amount of real data.
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