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A SUPERSOLUTIONS PERSPECTIVE ON HYPERCONTRACTIVITY

YOSUKE AOKI, JONATHAN BENNETT, NEAL BEZ, SHUJI MACHIHARA, KOSUKE MATSUURA,
AND SHOBU SHIRAKI

ABSTRACT. The purpose of this article is to expose an algebraic closure property of supersolutions
to certain diffusion equations. This closure property quickly gives rise to a monotone quantity
which generates a hypercontractivity inequality. Our abstract argument applies to a general Markov
semigroup whose generator is a diffusion and satisfies a curvature condition.

1. INTRODUCTION

We begin in the concrete setting of the Ornstein-Uhlenbeck semigroup (e)s>¢ defined by

(1) L) = [ Fe (1) ) da ),
where d > 1 and ~ is the standard gaussian probability measure on R? given by
by
d’Y(y) =e 2 (27T)d/2 .

The generator is the so-called number operator given by Lf(x) = Af(x) —x - Vf(z).

Theorem 1. Let 0o > ¢ >p > 1 and s > 0 be given by e%* = gj. Suppose u : (0,00) x R? — (0, 00)
is such that u(t,-)/?, 9 (u(t,)'/?), V(u(t,)/?), u(t,")"P|V(u(t, )'/?)|?> and A(u(t,-)'/?) are of
polynomial growth locally uniformly in time t > 0, and satisfies

Oyu > Lu.
Let i : (0,00) x RY — (0,00) be given by
(2) at,a)V = et (ult,)VP) (x).

Then ﬁ(tv ,)1/(1’ at(a(ta _)l/q), V(ﬁ(tv .)1/11)’ ﬁ(ta -)71/q|V(’lj(t, _)1/q)|2 and A(ﬁ(tv .)1/11) are Of pOlyno-
mial growth locally uniformly in time t > 0, and

Owu > Lu.

The main feature of this theorem is that supersolutions of the linear diffusion equation governed by
L are preserved under the transformation v +— w. Although the regularity conditions imposed on u
are of a more technical nature, some care has been exercised to ensure that they are strong enough for
the relevant terms in the statement of the theorem and its proof to be rigorously defined, and weak
enough so that the regularity conditions are themselves preserved under the transformation u — .
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In this regard, our theorem is compatible with the perspective taken in [4], where a framework for
generating monotone quantities for nonnegative solutions of linear heat equations was developed based
on algebraic closure properties of supersolutions.

The monotone quantity which most immediately arises from Theorem[lis contained in the following.

Corollary 2. Suppose u satisfies Oyu = Lu with initial data a bounded and compactly supported
nonnegative function on R%. Let Q : (0,00) — (0,00) be given by

o = [ (Huw)'m)’ @ ).

g—1

where 0o > q > p > 1 and e?* = —- Then Q is nondecreasing on (0, 00).

bS]

Taking  as in ([2), we have Q(t) = [ u(t, ) dy and by passing the time derivative through the integral,
we may quickly obtain Corollary Pl from Theorem[Il In turn, the monotonicity of Q) generates the well-
known hypercontractivity inequality enjoyed by the Ornstein—Uhlenbeck semigroup. Indeed, taking u
to satisfy 0yu = Lu with initial data fP, where f is a bounded and compactly supported nonnegative
function on R%, the dominated convergence theorem implies that

. o sL q
%%Q(t) =le f”Lq(y)
and
: _ q
tlggo Q(t) = HfHLp(V)-
In this manner, Theorem [ quickly yields Nelson’s famous hypercontractivity inequality

(3) le** FllLay < 1 lLee
whenever ¢ > p > 1 and s > 0 are such that

2s g—1
(4) e” = Pt
For such p and ¢, the time s given by () is critical since the operator e** is unbounded from
L?(v) to Li(y) for any smaller value of s. Nelson [16] first derived the inequality in (B]) in his
work on quantum field theory and later Gross [8] established an equivalence with certain log-Sobolev
inequalities. For further historical details and wider perspectives on the role played by this inequality
and its generalisations, we refer the reader to [7] and [9]. We also note that different proofs of the
hypercontractivity inequality based on monotone quantities may already be found in, for example,
work of Hu [10] and Ledoux [12].

L

The key argument on which our proof of Theorem [l is based may be applied, at least at a formal
level, in the significantly more general setting of Markov semigroups. We consider this to be our main
contribution in the current work and in order to expose this in the clearest manner, in the forthcoming
Section 2 we first present the abstract argument. The argument in Section 2] is used in Section [B] to
prove Theorem [ and Corollary Bl Finally, in Section @l make some further remarks concerning closure
properties associated with reverse hypercontractivity.

2. THE ABSTRACT ARGUMENT

2.1. Some preparation. The underlying setting is a o-finite measure space (F, &, 1) and a Markov
semigroup (Ps)s>0 given by

(5) Puf(x) = /E F(y) v (y)
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for € E, where v, , is a nonnegative probability measure (“transition kernel”). Associated to the
semigroup is the Markov generator L and we assume that the underlying measure y is invariant with
respect to L. All operations are assumed to be well-defined on an appropriate algebra of functions on
E. Associated to L are the carré du champ operator and the curvature operator given by

D(f.9) = 3 (E(f9) — fLg — gLf)
and
Ca(f,9) = 5(EL(f, ) = T(f, Lg) ~ (g, L)),
respectively. We set T'(f) = T'(f, f) and similarly for T's.

We say L is a diffusion if, for all C*° functions 1 on R", we have
(6) Lu(f) = D 0i(NLfi + D O (NT(fis fr),
j=1 jik=1
where f = (f1,..., fn), and of curvature ¢ € R if
(7) Ta(f) = cL(f).
These properties sufficd] for the following key property to hold.
Lemma 3. If L is a diffusion and of curvature c, then

(8) \Y F(Psf) < e_csps[ F(f)]

for all s > 0.

The above gradient bound is due to Bakry [I]. We also refer the reader to [2] and [II] for further
details regarding the abstract setting we are working in.

Remark. In the case of the Ornstein—Uhlenbeck semigroup P f = e f where L = A — -V, a simple
change of variables shows that (&) holds with

_ oz — y|? dy
dvs,e(y) = exp <_ 2(1— p2)> [2m(1 — p?)]4/2”

where p = e7%. Also, direct computations reveal that I'(f) = |[Vf|? and T'2(f) = |D?f|? + |[Vf|%
thus, (@) and (@) with ¢ = 1 hold. In this special case, the explicit formula () immediately implies
the key estimate ().

2.2. The closure property. Suppose co > ¢ > p > 1 and s is defined by e2¢ = %, where ¢ € R
is the curvature constant in (7). Let @ : (0,00) x R — (0,00) be given by
a(tv ‘T)l/q =P [u(tv ')1/;0](*%')

for (t,x) € (0,00) x RY. We shall prove here that d;u > Lu whenever u satisfies dyu > Lu; for
simplicity of the exposition, the following argument is based on certain formal considerations. For
instance, we shall make multiple use of the identity

(9) L(F) = APTULE 4 A = DFA20(f)
for A > 0. Observe that (@) formally follows from the diffusion property by taking 1 (f) = f* (or in a

rigorous sense in the case of the Ornstein—Uhlenbeck semigroup via direct computations).

n fact, if the diffusion property holds, then the curvature condition is equivalent to (&]).
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Proceeding via the representation formula (B and formally passing the time derivative through the
integral, we have

(10) dpu(t,z) = %a(tvx)l_l/qu[U(t, VP gt ) ().
Since u is a supersolution and by use of ([@) we get

Ovu(x) > gﬂ(gc)l_l/qu[ul/p_lLu](:zc)
p
= qui(z)" VP Lul 7] (2) + %a(x)l-l/qps [P0 () ().
Here we have dropped the dependence on the ¢ variable since all operators are now acting in the
spatial variable.

On the other hand, by a further application of (@),
Lu(z) = qu(x)' "VILPJu!7) () + (g — 1)a(z)' >/ 9T (P, [u/?])(z)
and, using that P; and L formally commute, we thus have

lﬂqu*l u— Lu](z iﬂxl/q P20 ()| (x) — (¢ — ut/P])(x
S @) o = Ll (w) = () L(w)l(z) = (g = DT (Ps[u’"P])(2).

However, by an application of Lemma [3] followed by the Cauchy—Schwarz inequality we have
(g = DL (P[u!?])(@) < (g = Ve > Pofu /) (@) Polu™/PT(u!/7)] ().
Applying the identityﬁ
1 _
(11) D'(u'/?) = u*PT(u)

p
2cs _ 4

and using the relation e ﬁ, it is clear from the above argument that d,u > Lu.

3. THE ORNSTEIN-UHLENBECK SEMIGROUP
In this section, we write P,f = e5Lf, where L = A — 2 -V, and By(x,y) = e %z + (1 — e~ 2%)1/2y.

3.1. Proof of Theorem [II To begin, we observe that u(t,x) is well-defined in a pointwise sense
since our assumptions on u mean that wu(t, -)1/ P is of polynomial growth for each fixed time.

In order to prove dyu > Lu, we run the argument in the previous section with ¢ = 1. Rigorous
justification of (0, at which point we passed the time derivative through the integral appearing in
@), is made using the fact that d;(u'/?) is of polynomial growth locally uniformly in time. Another
formal step in the argument is the commutativity property

Py[L(u"/?)](2) = LPs[u'/?](2).

Since L = A — z - V, we may rigorously justify this since V(u'/?) and A(u'/P) are of polynomial
growth locally uniformly in time ¢ > 0. Finally, we note that the term P;[u!/P=2T(u)](x) is well-
defined in a pointwise sense thanks to the assumption that u='/?|V(u!/?)|? is of polynomial growth
locally uniformly in time. This completes the verification of the formal steps in the argument in the
previous section.

2The identity I'(1p(u)) = 1’ (1)2T'(x) holds for smooth v as a result of the diffusion property (B) and thus ([I)) holds
in a formal sense by taking (u) = u!/P. In the case of the Ornstein-Uhlenbeck semigroup, (1) may be rigorously
verified by direct calculations.
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It remains to check that the regularity conditions imposed on u result in u satisfying analogous
regularity properties. Our assumption on u means that, for a fixed ¢ > 0, there is a natural number
N and compact interval I C (0,00) containing ¢ such that sup, . u(t',z)'/? <, (z)N for all z € RY.
Here, we are using the Japanese bracket notation (z) = (1 4 |x|?)!/2. Thus, clearly we have

(12) (e o)/ = [ B ) dv(0) S [ (Bl dr) S (@)
for each t' € I and z € R, and it follows that %'/ is of polynomial growth locally uniformly in time.

For 0;(u(t,-)'/?), the assumption that d;(u'/?) is of polynomial growth locally uniformly in time
means, by a routine application of the dominated convergence theorem,

0y (@) (¢, x) :/3t(ul/p)(f’=Bs(:v=y))dv(y)

for all ¢ in an appropriate compact interval, and now estimating in a similar manner to (I2)) reveals
that 9, (u(t, -)*/?) of polynomial growth locally uniformly in time. By similar considerations, the same
conclusion also holds for V(u'/9) and A(u'/9). Finally, by the Cauchnychwarz inequality

@ \ / W), Buoay)) doty)|
1/p /

T y))

and the fact that u~'/?|V(u!/?)|? is of polynomial growth 1oca11y uniformly in time can be easily seen
to induce the same property for u~1/4|V (u'/7)2.

3.2. Proof of Corollary [2. Suppose that f is bounded and nonnegative function with support inside
{x € R?: |z| < R}, and let u(t,r) = P;[fP](x). By Theorem [ it suffices to show that u(t,-)'/?,
O(u(t, )1/P), YV (u(t, )/P), u(t, ) ~Y/P |V (u(t,-)*/P)|? and A(u(t,-)*/?) are of polynomial growth locally
uniformly in time ¢ > 0. Indeed, if this is the case, then 9, > L where t(t, z)'/7 = P,(u(t,-)'/?)(x)
and therefore
Q)= Q"1 [ gt a) drta) = LU [ Litt.a)dn(w) 0.

Note that we may use the dominated convergence theorem to justify the interchange of the time
derivative and the integral in the above argument. Indeed, we know from Theorem [ that both
u(t,-)"/? and 9,(u(t,-)"/9) are of polynomial growth locally uniformly in ¢ > 0. By writing 0, =
qu'~1/99,(u'/7) and recalling that ¢ > 1, we see that the same property also holds for %, and this is
sufficient to justify the interchange of time derivative and integral.

It remains verify the regularity claimed hypotheses for u. We first note that u(t,z)"/? < || f]le
obviously follows from (). For d;(u!/P), we shall make use of the representation formula

where C(t) = [2m(1 — p(t)?)]~%? and p(t) = e~*. Using the assumption on the support of f, it easily
follows that

Opu(t,z)| Sk (1 - p(t)*) " (2)?ult, @)
and therefore, since 9; (u'/?) = %&T“ul/ P we see that 9;(u'/?) is of polynomial growth locally uniformly
int > 0. A similar argument reveals |Vu(t, )| Sr (1—p(t)?) " {z)u(t, ). From this we quickly obtain
that V(u'/P) is of polynomial growth locally uniformly in ¢ > 0 and, via the identity u~/?|V (u!/?)|> =
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1 2

2
Eul/ P %, the same conclusion too for u~/?|V(u!/P)|2. Finally, similar considerations show that

A(u'/?) is also of polynomial growth locally uniformly in ¢ > 0.

4. FURTHER REMARKS

A further appealing feature of our abstract argument in Section [2] is that it applies to exponents p
and ¢ in the setting of the reverse hypercontractivity inequality. In general, we let u be given by

Pulu(t,)/P)9(x)  if p,q # 0,
u(t,r) = { Pyle“t)]9(x) if p=0,q#0,
log Py [u(t,-)'/*](x) ifp#0,q=0.

Then, at least in a formal sense, the following closure properties hold:

Owu > Lu = 0w > Lu for 1 <p < q<oo,and for —co < ¢ <p<0,
(13) Ou<Lu = ou<Lu for0<g<p<l,
Ou<Lu = o> Lu for —co<g<0<p<l.

As a result, in each of the above cases, one may obtain the monotonicity of

[ (A i q#£0
Q) = { exp([a(t,")du) ifg=0

for solutions u of the diffusion equation d;u = Lu with nonnegative initial data.

The closure properties ([[3) for ¢ < p < 1 are associated with Borell’s reverse form of the hypercon-
tractivity inequality

(14) I1Psfllacey) > 1f e

for positive functions. For the Ornstein—Uhlenbeck semigroup, Borell [6] observed that a unified ap-
proach to both forward and reverse hypercontractivity inequalities may be taken, whereby one first
establishes a discrete “Boolean hypercontractivity inequality” (the forward form independently due
to Bonami [5] and Gross [8]) and then applies the central limit theorem. Both the forward and
reverse forms of the Boolean hypercontractivity inequality have also found numerous applications,
notably in various fields of computer science; the reader is encouraged to look at [13], [14] and [17] for
interesting examples and further references. We also remark that the theory of reverse hypercontrac-
tivity was significantly developed in recent work of Mossel-Oleszkiewicz—Sen [I5] along with a host of
applications.
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