
 
 

University of Birmingham

Estimating the burden of cardiovascular risk in
community dwellers over 40 years old in South
Africa, Kenya, Burkina Faso and Ghana
Wagner, Ryan G. ; Crowther, Nigel J. ; Micklesfield, Lisa K ; Boua, Romauld ; Nonterah,
Engelbert A. ; Mashinya, Felistas ; Mohamed, Shukri F; Asiki, Gershim ; Tollman, Stephen M;
Ramsay, Michèle ; Davies, Justine
DOI:
10.1136/ bmjgh-2020-003499

License:
Creative Commons: Attribution-NonCommercial (CC BY-NC)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Wagner, RG, Crowther, NJ, Micklesfield, LK, Boua, R, Nonterah, EA, Mashinya, F, Mohamed, SF, Asiki, G,
Tollman, SM, Ramsay, M & Davies, J 2021, 'Estimating the burden of cardiovascular risk in community dwellers
over 40 years old in South Africa, Kenya, Burkina Faso and Ghana', BMJ Global Health, vol. 6, no. 1, e003499.
https://doi.org/10.1136/ bmjgh-2020-003499

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Jun. 2022

https://doi.org/10.1136/ bmjgh-2020-003499
https://doi.org/10.1136/ bmjgh-2020-003499
https://birmingham.elsevierpure.com/en/publications/cfc3afa3-0583-4c17-981f-211b30c3601a


� 1Wagner RG, et al. BMJ Global Health 2021;6:e003499. doi:10.1136/bmjgh-2020-003499

Estimating the burden of cardiovascular 
risk in community dwellers over 40 
years old in South Africa, Kenya, 
Burkina Faso and Ghana

Ryan G Wagner  ‍ ‍ ,1 Nigel J Crowther,2,3 Lisa K Micklesfield  ‍ ‍ ,4 
Palwende Romauld Boua  ‍ ‍ ,5 Engelbert A Nonterah,6 Felistas Mashinya  ‍ ‍ ,7 
Shukri F Mohamed  ‍ ‍ ,8 Gershim Asiki,8 Stephen Tollman  ‍ ‍ ,1,9,10 
Michèle Ramsay,11 Justine I Davies1,12

Original research

To cite: Wagner RG, 
Crowther NJ, Micklesfield LK, 
et al. Estimating the burden 
of cardiovascular risk in 
community dwellers over 
40 years old in South Africa, 
Kenya, Burkina Faso and 
Ghana. BMJ Global Health 
2021;6:e003499. doi:10.1136/
bmjgh-2020-003499

Handling editor Seye Abimbola

►► Additional material is 
published online only. To view 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​
bmjgh-​2020-​003499).

MR and JID are joint senior 
authors.

Received 20 July 2020
Revised 26 November 2020
Accepted 25 December 2020

For numbered affiliations see 
end of article.

Correspondence to
Dr Ryan G Wagner;  
​Ryan.​Wagner@​wits.​ac.​za

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Introduction  Cardiovascular disease (CVD) risk factors 
are increasing in sub-Saharan Africa. The impact of these 
risk factors on future CVD outcomes and burden is poorly 
understood. We examined the magnitude of modifiable 
risk factors, estimated future CVD risk and compared 
results between three commonly used 10-year CVD 
risk factor algorithms and their variants in four African 
countries.
Methods  In the Africa-Wits-INDEPTH partnership for 
Genomic studies (the AWI-Gen Study), 10 349 randomly 
sampled individuals aged 40–60 years from six sites 
participated in a survey, with blood pressure, blood glucose 
and lipid levels measured. Using these data, 10-year 
CVD risk estimates using Framingham, Globorisk and 
WHO-CVD and their office-based variants were generated. 
Differences in future CVD risk and results by algorithm 
are described using kappa and coefficients to examine 
agreement and correlations, respectively.
Results  The 10-year CVD risk across all participants in 
all sites varied from 2.6% (95% CI: 1.6% to 4.1%) using 
the WHO-CVD lab algorithm to 6.5% (95% CI: 3.7% to 
11.4%) using the Framingham office algorithm, with 
substantial differences in risk between sites. The highest 
risk was in South African settings (in urban Soweto: 8.9% 
(IQR: 5.3–15.3)). Agreement between algorithms was low 
to moderate (kappa from 0.03 to 0.55) and correlations 
ranged between 0.28 and 0.70. Depending on the 
algorithm used, those at high risk (defined as risk of 10-
year CVD event >20%) who were under treatment for a 
modifiable risk factor ranged from 19.2% to 33.9%, with 
substantial variation by both sex and site.
Conclusion  The African sites in this study are at different 
stages of an ongoing epidemiological transition as 
evidenced by both risk factor levels and estimated 10-year 
CVD risk. There is low correlation and disparate levels 
of population risk, predicted by different risk algorithms, 
within sites. Validating existing risk algorithms or designing 
context-specific 10-year CVD risk algorithms is essential 
for accurately defining population risk and targeting 
national policies and individual CVD treatment on the 
African continent.

INTRODUCTION
It is estimated that the number of people on 
the African continent over the age of 65 years 
will be more than triple from 31.9 million in 
2019 to 101.4 million by 2050.1 One conse-
quence of this demographic transition is an 

Key questions

What is already known?
►► African countries continue to undergo distinct epide-
miological transitions, marked by increasing levels 
of cardiovascular disease (CVD).

►► Numerous CVD risk algorithms have been developed 
to estimate 10-year CVD risk using known CVD risk 
factors, with few studies exploring the application 
of these algorithms in contrasting settings on the 
African continent.

What are the new findings?
►► Estimated overall 10-year CVD risk for all partic-
ipants ranged from 2.6% to 6.5%, depending on 
the algorithm used, and was higher in men than in 
women.

►► A greater magnitude of risk factors and higher 10-
year CVD risk were found in both rural and urban 
South Africa compared with the east and west 
African sites.

►► Levels of 10-year CVD risk varied by algorithm, with 
little agreement and poor correlation between al-
gorithms within sites, and significant differences in 
correlation between sites.

What do the new findings imply?
►► Existing 10-year CVD risk algorithms need to be 
carefully validated, or recalibrated, to determine 
both individual and population level 10-year CVD risk 
specific to particular African environments.

►► Failure to apply the appropriate algorithm for the 
context will likely result in off-target policy, unnec-
essary cost and incorrect targeting of individuals for 
treatment.
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increase in the burden of non-communicable diseases 
(NCDs), estimated to result in 73% of all deaths globally.2 
In 2017, cardiovascular diseases (CVDs) accounted for 
43% of NCD deaths, or 17.8 million deaths worldwide,2 
with 75% of the global deaths due to CVD found in low/
middle-income countries (LMICs).3 Much of this burden 
is a consequence of the rising prevalence of modifiable 
risk factors, with 2017 Global Burden of Disease (GBD) 
reporting that half of all deaths globally can be attributed 
to four risk factors: hypertension, high blood glucose, 
smoking and high body mass index (BMI).4 In Africa, less 
is known and more needs to be done to understand the 
epidemiology of NCDs to allow for better health policy 
planning.5

Health systems in sub-Saharan Africa (SSA) are unpre-
pared for the manifest CVD consequences of risk factors 
such as diabetes and hypertension.6–8 Understanding 
both risk factor development and their consequences 
(myocardial infarction, stroke, peripheral vascular 
disease) is essential to ensuring an appropriate health 
system response to these conditions. Understanding 
differences between countries can engender learning 
and may assist policymakers in other countries to craft 
policies aimed at managing or preventing the rise in 
modifiable risk factors.

At the individual level, CVD risk predictor algorithms 
use information on risk factor status to determine future 
risk of CVD and inform appropriate prevention, clinical 
care and treatment. A number of algorithms have been 
developed, often based on data from populations living 
in western, high-income countries, with the Framingham 
CVD risk algorithm being one of the earliest. In recog-
nition of contextual variation, additional tools such as 
Globorisk and the WHO and International Society of 
Hypertension (WHO/ISH) and more recently the WHO 
CVD Risk Chart Working Group (WHO-CVD) algo-
rithms have been developed to account for regional-level 
and country-level differences in future risk. These have 
been incorporated into guidelines for the treatment of 
cardiometabolic disease.9 10 For improved applicability to 
LMIC settings, further developments have led to some 
of these algorithms not requiring blood-based laboratory 
results, and can derive risk using simple ‘office’ measures, 
such as BMI; Framingham, Globorisk and WHO-CVD all 
have versions with and without laboratory measurements.

In Africa, where different regions—and countries—are 
found to be at different stages of the epidemiological 
transition,11 it is likely that risk of future CVD will vary 
across populations. The use of risk predictor models at 
the population level can allow for comparisons between 
populations to estimate the future burden of CVD events, 
enable the focusing of resources towards preventing 
these diseases and ultimately, target interventions to miti-
gate this increasing risk. However, given the number of 
CVD risk predictor algorithms available, it is necessary 
to understand how these perform in disparate African 
countries to enable the choice of an algorithm that will 
best inform policy.

While CVD risk predictor algorithms have been widely 
used in high-income populations to examine the burden 
of future CVD events, very few population-based studies 
have taken place in Africa.12 13 No published work, to 
our knowledge, has compared CVD risk, using risk 
predictor algorithms, across different African countries 
based on population-based, epidemiologic data. Using 
data collected as part of the Africa-Wits-INDEPTH part-
nership for Genomic studies (the AWI-Gen Study), this 
analysis presents the magnitude of CVD risk factors expe-
rienced by individuals and the resultant 10-year CVD risk 
levels in six geographically diverse African sites from four 
countries, using common CVD risk predictor algorithms 
to highlight differences in future CVD risk across sites. 
Given their use in clinical settings10 and their incorpo-
ration into guidelines for treatment of cardiometabolic 
disease9 in Africa and country-specific predictions,14 15 
Framingham, Globorisk and WHO-CVD 10-year CVD risk 
algorithms were selected for this analysis.

METHODS
The data used in this study form part of the AWI-Gen 
Study and the methods used for the collection of these 
data are detailed in a recent publication by Ali and 
colleagues.16 We briefly summarise the study settings, 
participants and data collection methods relevant to the 
analysis below.

Study setting
Leveraging existing INDEPTH Health and Demographic 
Surveillance Sites (HDSS), the AWI-Gen Study recruited 
participants from six diverse SSA sites representing urban 
and rural settings in four countries: South Africa, Kenya, 
Ghana and Burkina Faso. The two rural South African 
sites (the Agincourt HDSS17 and Dikgale HDSS18) are 
located in the northeastern corner of South Africa and 
both are comprised of contiguous villages. The Soweto 
site,19 in comparison, run by the Developmental Pathways 
for Health Research Unit, is located in the urban Soweto 
township, adjacent to Johannesburg, the largest city in 
South Africa. The African Population Health Research 
Center HDSS20 is also an urban site, but based in two slum 
communities in Nairobi, Kenya. Finally, the west African 
sites are the Navrongo HDSS21 and the Nanoro HDSS.22 
The Navrongo HDSS, located in northern Ghana, covers 
the rural Kassena-Nankana east and west districts. The 
Nanoro HDSS, located in rural Burkina Faso, covers 24 
villages in the central-west region of the country.

Study participants
Participants aged 40–60 years were randomly selected 
from the population in each of the sites. Additionally, in 
the Agincourt HDSS, participants who had participated 
in previous studies were invited to participate (and a 
random sample was used to supplement this sample). 
In Soweto, participants were recruited from the existing 
‘Birth-to-Twenty plus’ cohort19 of caregivers, and a 
random, geographical-based, sampling frame was used 
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to supplement this sample. Pregnant women, first-degree 
relatives of existing participants and individuals with 
physical impairments preventing measurement of blood 
pressure were exclusion criteria for this study.

Data collection
Data collected from individuals consisted of a survey, 
anthropometric measures, blood pressure and fasting 
blood tests. We used data from the questionnaire on 
highest level of education attained (no formal educa-
tion, primary, secondary or tertiary education); socio-
economic status (socioeconomic status quintiles; deter-
mined by using a principle components analysis of the 
household assets, which were then categorised into 
quintiles for each of the six sites, with the quintiles then 
used to compare within and across sites23); whether 
participants were currently working; their marital status 
(categorised as never married or co-habited, married/
living with partner and divorced/widowed). Participants 
self-reported on treatment for a number of conditions, 
including diabetes, hypertension and dyslipidaemia, as 
well as whether they currently smoked tobacco. All survey, 
anthropometric and blood pressure data were captured 
by trained field staff with rigorous data quality control 
mechanisms in place.16

Collection of input variables for algorithms
Each algorithm required a number of input parameters 
to derive the estimated 10-year CVD risk. The process 
used for collecting these input parameters is described 
below. The results also include an analysis of the propor-
tion of the population with known risk factors. The meth-
odologies and definitions used to derive these risk factors 
are presented in online supplemental appendix 1.

Body mass index
Height was taken using a Harpenden stadiometer 
(Holtain, Wales) fixed to the wall; weight using a Physi-
cian Large Dial 200 kg capacity scale (Kendon Medical, 
South Africa). BMI was expressed as the weight (kg) 
divided by the square of the height (m2). Continuous 
BMI values were used in the algorithms.

Blood pressure measurement
Blood pressure was measured three times with patients 
seated at rest, with arm resting on a desk or table, at 2 min 
intervals, using a digital sphygmomanometer (Omron 
M6, Kyoto, Japan). Systolic and diastolic measurements 
were recorded in mm Hg. The final two measurements 
were averaged, with the average systolic blood pressure 
being used in the CVD risk modelling algorithms.

Serum analysis: lipids and glucose
Serum lipids and glucose were analysed using a Randox 
Plus clinical chemistry analyzer (Crumlin, UK) using 
colorimetric assays. Total cholesterol and high-density 
lipoprotein (HDL) results were presented in mmol/L 
and converted into mg/dL by multiplying the results in 

mmol/L by 18. Continuous total cholesterol and HDL 
values were used in the algorithms.

Individuals were dichotomised into those with diabetes 
(fulfilling the definition found in online supplemental 
appendix 1) or those without diabetes for input into the 
algorithms.

The analysis was restricted to individuals aged 40–60 
years old to allow comparison across sites. Individuals 
with missing data were excluded from the analysis; in 
addition, individuals with total cholesterol levels less than 
HDL levels were also excluded from the analysis.

Cardiovascular risk prediction
Ten-year risk of cardiovascular events was predicted for 
each individual using the Framingham cardiovascular 
risk score (predicting coronary death, myocardial infarc-
tion, coronary insufficiency, angina, ischaemic stroke, 
haemorrhagic stroke, transient ischaemic attack, periph-
eral artery disease, heart failure)24; Globorisk (risk of 
fatal or non-fatal CVD defined as death from ischaemic 
heart disease, sudden cardiac death, death from stroke 
or non-fatal coronary disease or stroke)25 and the WHO-
CVD cardiovascular risk score (predicting 10-year risk 
of a fatal or non-fatal myocardial infarction or stroke 
(termed CVD in this algorithm)).14 Each of the three 
algorithms had both a ‘lab’ variant and an ‘office’ variant. 
Age, sex and current smoking status were used in all algo-
rithms and their office or lab variant. In addition to these 
inputs, the Framingham office algorithm, the Globorisk 
office algorithm and the WHO-CVD office algorithm 
required the BMI of the individual. All three lab algo-
rithms required total cholesterol measurements, with the 
Framingham lab algorithm also requiring HDL.14 Both 
Framingham algorithms (office and lab) and WHO-
CVD algorithms (office and lab) also required diabetes 
status, with both Framingham algorithms (office and 
lab) also requiring current hypertension treatment status 
(dichotomised into whether a person self-reported to be 
on anti-hypertensive treatment or not). Online supple-
mental table 1 presents details on the input variables and 
output predictions of each algorithm. The resulting CVD 
risk score was then categorised in each algorithm into 
low, moderate and high (<10%, 10%–20% and >20%, 
respectively).

Definition of high-risk individuals under clinical management
In order to highlight the practical implications of using 
different 10-year CVD risk algorithms, we undertook 
a subanalysis to estimate the proportion of algorithm-
determined high-risk individuals (those having a 
10-year CVD risk score of >20% as determined by each 
algorithm) who were currently under clinical manage-
ment. Self-reported information on whether or not a 
participant was currently on pharmacological treatment 
for a number of conditions, including diabetes, hyper-
tension and dyslipidaemia was collected during the 
household survey. A dichotomous variable was derived, 
with individuals who self-reported as currently taking 
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medication for any of these three conditions consid-
ered to be under clinical management to reduce their 
cardiovascular risk (‘under clinical management’). The 
number of high-risk individuals under clinical manage-
ment was then divided by the total number of high-risk 
individuals per algorithm and the results presented as 
the proportion of high-risk individuals under clinical 
management.

Statistical analysis
All analyses were carried out in Stata V.14 and the 
Stata package whocvdrisk.14 Continuous variables are 
presented as median and IQR and categorical variables 
as percentages. χ2 and t-tests were used to compare asso-
ciations and the differences between group averages, 
respectively. Both inter-rater agreement (using the 
kappa statistic) and correlation (using the Spearman 
correlation) between different algorithms are reported. 
Agreement was defined as poor/fair, moderate, substan-
tial or excellent when the kappa was found to be <0.40, 
0.41–0.60, 0.61–0.80 or 0.81–1.0, respectively.26 Addi-
tionally, the Fisher’s z-score was calculated to compare 
correlation coefficients across different sites. P values 
<0.05 were considered significant.

Patient and public involvement
Each site undertook a process of community engagement 
and each participant in the study provided informed, 
written consent in the language of their choice (gener-
ally the local language).

RESULTS
A sample of 10 703 individuals aged 40–60 years were 
enrolled into the study. Of these, 354 (3.3%) individuals 
were excluded from the analysis due to missing data, 
yielding 10 349 individuals for analysis. Women comprised 
54.6% (n=5654) of the sample and the median age of the 
overall sample was 50 years (IQR: 45–55). Nanoro partic-
ipants accounted for 20% of the sample, while Navrongo 
and Nairobi both contributed 19%; Soweto, Agincourt 
and Dikgale contributed 18%, 13% and 11%, respec-
tively.

Table 1 presents the sociodemographic characteristics 
by site. Education was found to vary considerably across 
sites, with the vast majority of participants from rural 
Burkina Faso and rural Ghana self-reporting no formal 
education (83% and 71%, respectively), whereas the 
majority of participants from the other four sites had 
received primary or secondary education.

Table 1  Sociodemographic variables by study site, AWI-Gen baseline data

Country
(site name)

Burkina Faso 
(Nanoro) 
n=2057

Ghana 
(Navrongo) 
n=1977

South Africa 
(Dikgale) 
n=1149

South Africa 
(Agincourt) 
n=1358

South Africa 
(Soweto) 
n=1878

Kenya 
(Nairobi) 
n=1930

Urban or rural Rural Rural Rural Rural Urban Urban

Sex (% women) 1027 (50%) 1069 (54%) 797 (69%) 822 (61%) 888 (47%) 1050 (54%)

Age, in years (mean; SD) 50 (6) 51 (6) 50 (6) 51 (6) 49 (6) 48 (5)

Marital status

 � Never married 17 (1%) 19 (1%) 294 (25%) 127 (9%) 301 (19%) 82 (4%)

 � Married/living with partner 1788 (87%) 1455 (74%) 595 (52%) 919 (68%) 781 (50%) 1287 (67%)

 � Divorced/widowed 245 (12%) 502 (25%) 270 (24%) 312 (23%) 491 (31%) 560 (29%)

Highest level of education

 � No formal education 1693 (83%) 1389 (71%) 94 (8%) 376 (28%) 10 (1%) 146 (8%)

 � Primary 237 (12%) 376 (19%) 380 (33%) 537 (40%) 672 (40%) 1101 (57%)

 � Secondary 95 (5%) 169 (9%) 634 (55%) 366 (27%) 854 (52%) 657 (34%)

 � Tertiary 18 (1%) 36 (2%) 41 (4%) 79 (6%) 148 (9%) 26 (1%)

Current employment

 � Yes 2028 (99%) 1237 (63%) 433 (38%) 455 (36%) 1124 (60%) 1816 (94%)

Socioeconomic quintiles

 � First quintile 333 (16%) 368 (19%) 147 (13%) 210 (15%) 205 (12%) 232 (12%)

 � Second quintile 401 (20%) 354 (18%) 260 (23%) 322 (24%) 438 (25%) 431 (22%)

 � Third quintile 399 (19%) 382 (19%) 150 (13%) 170 (13%) 290 (17%) 445 (23%)

 � Fourth quintile 380 (19%) 464 (23%) 252 (22%) 322 (24%) 336 (19%) 396 (21%)

 � Fifth quintile 536 (26%) 408 (21%) 340 (30%) 334 (25%) 469 (27%) 426 (22%)

AWI-Gen, Africa-Wits-INDEPTH partnership for Genomic studies.

by copyright.
 on F

ebruary 9, 2021 at B
arnes Library M

edical S
chool. P

rotected
http://gh.bm

j.com
/

B
M

J G
lob H

ealth: first published as 10.1136/bm
jgh-2020-003499 on 21 January 2021. D

ow
nloaded from

 

http://gh.bmj.com/


Wagner RG, et al. BMJ Global Health 2021;6:e003499. doi:10.1136/bmjgh-2020-003499 5

BMJ Global Health

Cardiovascular risk factors
Examining five cardiovascular risk factors (BMI ≥25 kg/
m2, current tobacco use, diabetes, high blood pressure 
and dyslipidaemia) that contribute to the CVD algo-
rithms, we found that the number of CVD risk factors 
differed significantly between sites, with individuals 
from rural West African sites having fewer risk factors on 
average than individuals from the rural and urban South 
African and urban Kenyan sites, with the averages ranging 
from 1.0 (SD: 0.57) in Nanoro, rural Burkina Faso to 2.5 
(SD: 0.76) in Soweto, urban South Africa. Importantly, 
more than 80% of participants at all of the sites had at 
least one risk factor, with more than 65% of participants 
from the three South African sites having two or more 
risk factors. Nine participants (0.48%) from the urban 
Soweto site and one participant (0.05%) from the urban 
Nairobi site were found to have all five measured risk 
factors (figure  1). The average number of risk factors 
also significantly differed between the sexes (p<0.001) in 
the three South African sites and the Nairobi site, with 
women having the same or higher average number of 
risk factors in all sites but the rural Burkina Faso site.

10-Year CVD event risk
The average 10-year risk of cardiovascular events by site, 
risk calculator and sex is presented in table 2. The scores 
derived using each risk calculator varied, as would be 
expected, given both the different input variables used 
in the algorithm and the different outputs that each 
has been developed to predict. In most cases, the Fram-
ingham office algorithm resulted in the highest 10-year 
risk scores, followed by Framingham lab algorithm, Glob-
orisk office, Globorisk lab and WHO-CVD office and 
WHO-CVD lab (online supplemental table 2).

Generally, participants from the Soweto site had the 
highest 10-year risk of cardiovascular events followed 
by the rural South African sites (Agincourt and then 
Dikgale) with the Framingham and WHO-CVD algo-
rithms, but not the Globorisk office and labs (see online 
supplemental table 2). The estimated 10-year risk in 
men was greater than that in women using each of the 

algorithms, sometimes more than three times higher as 
in the case of Nanoro using the Framingham BMI algo-
rithm; however, the difference between sexes varied 
substantially by algorithm (table 2).

Furthermore, there was considerable variation in esti-
mated risk between the same calculators using either the 
office or lab version, with the office version for each of 
the three algorithms providing higher overall population 
risk scores than the lab version (table 2).

Level of population risk
When using the pre-defined thresholds of low, moderate 
and high 10-year CVD risk, the proportion of the popula-
tion (as total, or by sex) considered to be at high risk varied 
within sites depending on the algorithm used (figure 2). 
Considering the entire study population, Framingham 
office predicted the largest proportion of individuals at 
high or moderate risk, followed by Framingham lab, then 
Globorisk office, Globorisk lab, then WHO-CVD office 
with WHO-CVD labs. The pattern was similar to the total 
at individual sites, with some differences by total popula-
tion and when results were considered by sex (figure 2). 
Using the WHO-CVD office and lab algorithms, only five 
and seven individuals, respectively, were identified in the 
whole study sample as high risk.

Level of population at risk under clinical management
In examining those determined to be at high risk for a 
cardiovascular event in the next 10 years (here defined as 
a risk score >20%), we found varying levels of individuals 
who self-reported as being under clinical management 
for hypertension, diabetes and dyslipidaemia by risk algo-
rithm (table 3).

By site, Agincourt and Dikgale had higher proportions 
of high-risk individuals defined using any algorithm 
under clinical management (ranging from 20% to 100%), 
while Nanoro, Nairobi and Navrongo had lower propor-
tions (ranging from 0% to 40%). These wide ranges were 
due in part to the low numbers of individuals identified 
as high-risk. Soweto generally experienced the highest 
levels of ‘high’ 10-year CVD risk in men and some of the 
lowest proportions of men under clinical management.

Regardless of the algorithm used, high-risk women were 
found to have higher levels of treatment than men, with 
these differences in treatment levels most pronounced 
when using the Framingham BMI and Framingham lipid 
algorithms. Only using the WHO-CVD algorithms were 
>50% of high-risk men found to be on treatment in any 
one site; using all other algorithms, between 0% and 
46.9% of high-risk men reported being on treatment.

Agreement between algorithms
Agreement (kappa) and correlation between algorithms 
across all sites and in individual sites are shown in table 4 
and online supplemental tables 3 and 4. Comparing the 
three existing CVD risk algorithms and their variants 
across the combined sites, moderate or substantial agree-
ment was found between the ‘office’ and ‘lab’ versions of 

Figure 1  Distribution of risk factors (BMI ≥25 kg/m2; current 
tobacco use, diabetes, hypertension or dyslipidaemia) by 
site. BMI, body mass index.
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the three algorithms, with the strongest agreement seen 
between the Globorisk office and lab algorithms; correla-
tion was also strongest between these algorithms (kappa: 
0.64 (95% CI: 0.62 to 0.67); Spearman’s: 0.74). Between 
different algorithms, poor agreement was found, except 
between Framingham (both office and lab algorithms) 
and Globorisk (both office and lab algorithms) where 
moderate agreement (kappa ranging from 0.41 (95% 
CI: 0.39 to 0.43) to 0.55 (95%CI: 0.53 to 0.57)) across 
sites was found. Poorest agreement and correlation were 
found between the Framingham office algorithm and 
the WHO-CVD lab (kappa: 0.03 (95% CI: 0.03 to 0.04); 
Spearmen’s: 0.28) (table 3). Generally, the same agree-
ment and correlation patterns between algorithms were 
seen when examining individual sites (online supple-
mental table 3).

The correlation and agreement of algorithms between 
sites also showed substantial differences (online 

supplemental table 4). The greatest differences were 
seen between the South African sites or Nairobi with the 
west African sites (Navrongo and Nanoro).

DISCUSSION
Relying on three commonly used 10-year CVD risk 
predictor algorithms and their variants,13 27 administered 
to a large cohort of ageing individuals residing in six SSA 
sites, this study found high levels of modifiable CVD risk 
factors with substantial variation and little agreement in 
predicted 10-year CVD risk across both the algorithms 
and the sites. This work furthermore highlights substan-
tial differences in the levels of self-reported treatment of 
individuals identified to be at high risk, depending on 
the algorithm used to estimate risk—given the health 
service resource implications of this finding, it represents 
an important policy and clinical treatment consideration.

Table 2  Median (IQR) of overall population risk per algorithm by site and by sex, AWI-Gen baseline data

Median 
(IQR)

Framingham 
(office) Framingham (lab) Globorisk (office) Globorisk (lab)

WHO-CVD 
(office) WHO-CVD (lab)

Nanoro

Men 8.1% (5.5–11.4) 5.8% (3.8–8.4) 5.1% (3.2–7.7) 4.7% (2.7–7.1) 2.6% (1.7–3.9) 2.6% (1.6–3.8)

Women 2.6% (1.8–4.1) 1.9% (1.3–2.9) 2.8% (1.9–4.1) 2.2% (1.4–3.4) 1.7% (1.1–2.6) 1.6% (1.0–2.4)

All 4.8% (2.6–8.5) 3.4% (1.9–6.2) 3.6% (2.3–6.0) 3.1% (1.9–5.4) 2.1% (1.3–3.3) 2.0% (1.2–3.1)

Navrongo

Men 10.6% (7.0–15.0) 6.5% (4.3–10.3) 7.3% (4.9–10.6) 6.6% (4.2–9.8) 3.5% (2.2–5.1) 3.1% (2.0–4.7)

Women 4.0% (2.7–6.1) 2.7% (1.8–4.4) 5.3% (3.6–8.0) 4.3% (2.8–7.0) 2.5% (1.6–3.6) 2.2% (1.4–3.3)

All 6.3% (3.7–11.3) 4.2% (2.4–7.3) 6.2% (4.1–9.3) 5.3% (3.4–8.3) 2.9% (1.9–4.3) 2.6% (1.7–3.9)

Dikgale

Men 12.8% (7.9–20.6) 9.3% (5.7–15.8) 8.7 (4.6–14.5) 7.8% (4.1–13.9) 4.1% (2.6–6.4) 3.9% (2.4–5.9)

Women 5.6% (3.2–9.4) 4.3% (2.5–7.0) 4.4% (2.3–7.4) 3.3% (1.7–5.6) 3.1% (1.9–4.6) 2.8% (1.7–4.2)

All 7.3% (4.0–12.3) 5.4% (3.0–9.3) 5.2% (2.8–9.3) 4.1% (2.1–7.4) 3.3% (2.1–5.1) 3.0% (1.8–4.7)

Agincourt

Men 12.4% (7.7–17.9) 8.6% (5.3–13.1) 9.3% (5.1–14.6) 8.0% (4.0–12.8) 4.2% (2.7–6.1) 3.7% (2.3–5.4)

Women 6.4% (3.7–10.4) 4.7% (2.7–8.0) 5.0% (2.5–8.2) 3.7% (1.9–6.2) 3.4% (2.1–5.0) 3.1% (1.9–4.6)

All 8.3% (4.8–13.8) 6.1% (3.5–10.1) 6.4% (3.2–10.4) 4.9% (2.4–8.6) 3.8% (2.3–5.4) 3.3% (2.0–4.8)

Nairobi

Men 8.2% (5.6–12.4) 6.3% (4.2–9.9) 3.6% (2.4–5.4) 3.4% (2.2–5.2) 3.0% (2.0–4.7) 2.9% (1.9–4.5)

Women 3.4% (2.2–5.7) 2.9% (1.7–4.8) 1.5% (0.6–2.4) 1.3% (0.8–2.2) 1.9% (1.3–2.9) 1.8% (1.2–2.8)

All 5.4% (3.1–9.4) 4.3% (2.5–7.4) 2.3% (1.3–3.9) 2.1% (1.1–3.7) 2.4% (1.5–3.7) 2.2% (1.4–3.6)

Soweto

Men 13.1% (8.4–19.7) 9.8% (6.0–14.8) 9.4% (5.1–15.6) 8.1% (4.4–13.7) 4.5% (2.8–6.9) 3.9% (2.5–5.9)

Women 5.7% (3.8–8.9) 6.0% (3.5–9.9) 4.7% (2.6–7.9) 3.3% (1.7–5.6) 3.1% (2.0–4.8) 2.7% (1.7–4.1)

All 8.9% (5.3–15.3) 7.9% (4.7–12.8) 6.6% (3.5–11.8) 5.2% (2.7–10.3) 3.8% (2.4–5.8) 3.3% (2.01–5.1)

Total

Men 10.1% (6.6–15.5) 7.1% (4.6–11.4) 6.2% (3.6–10.6) 5.7% (3.2–9.7) 3.5% (2.2–5.3) 3.2% (2.0–4.9)

Women 4.2% (2.6–7.3) 3.3% (1.9–6.0) 3.6% (1.9–6.3) 2.8% (5.0–1.5) 2.5% (1.6–3.9) 2.2% (1.4–3.5)

All 6.5% (3.7–11.4) 4.9% (2.7–8.7) 4.6% (2.5–8.2) 3.8% (2.0–7.1) 2.9% (1.8–4.5) 2.6% (1.6–4.1)

population 10-year CVD risk <3% 3%–6% >6%–9% >9%–13% >13%

AWI-Gen, Africa-Wits-INDEPTH partnership for Genomic studies; CVD, cardiovascular disease.
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Variation in CVD risk by site and sex
While variation between the algorithms was observed in 
this study, general trends by algorithms persist, allowing 
us to compare estimated risk across sites. The results 
highlight varying levels of 10-year CVD risk by region, 
with lowest levels of estimated risk observed in the rural 
west African sites, higher levels in the urban Nairobi site 
and highest levels in the three South African sites. It is 
important to note that the rural South African sites had 
populations with higher levels of estimated risk than the 
urban Nairobi site across algorithms, which is perhaps 
surprising given the urban context of the Nairobi setting 
compared with the rural South African context. South 
Africa is well known to have a high and increasing 
burden of both CVD risk and morbidity and mortality.28 29 
This study confirms these findings by demonstrating the 
highest level of CVD risk factors among the three South 
African sites, with more than one-quarter of each site’s 
population having at least three risk factors and more 
than one-third of Soweto’s population having at least 
three risk factors.

Our findings confirm the expected high level of CVD 
risk regardless of algorithm—a result of the epidemiolog-
ical transition underway in Africa. Of concern, this study 
found nearly half of participants had at least two CVD 
risk factors and, depending on the algorithm used, the 
total 10-year risk of a future CVD event across all sites 
ranged from 2.6% to 6.5%, representing the population-
level probability of experiencing a CVD event in the next 
10 years. While our results likely reflect true inter-country 
variation in CVD risk, the interpretation of the level of 
risk at both the country and individual level remains 
obscured given the variation by algorithm as well as by 
the fact that the study population from each site was not 
nationally representative.

Little data from LMICs (especially from Africa) on 
10-year CVD risk exist, making comparison of our results 

to previous studies difficult. However, the Research on 
Obesity and Diabetes among African Migrants (RODAM) 
Study has looked at CVD risk in Ghana, and when 
comparing our AWI-Gen Ghanaian findings to those 
of Boateng and colleagues,13 we found a lower propor-
tion to be high risk using both the Framingham BMI 
and Framingham lipid algorithms (7.3% vs 19.4% and 
1.8% vs 12.3%, respectively). Two possible reasons for 
these observed differences are the older ages included 
in the RODAM sample (40–70 years) versus the AWI-
Gen sample (40–60 years), and the location of the study 
(both rural and urban in the RODAM study vs only rural 
Ghanaian participants in this study).30

Regardless of the algorithm employed, men were found 
to have higher levels of predicted 10-year risk than women 
across all sites. It is generally agreed that CVD affects 
women 7–10 years later than men31 and this is thought 
to be related to menopause, with endogenous oestrogen 
exposure delaying the development of atherosclerosis.32 
Comparing CVD risk profiles of men to women 10 years 
older in high-income countries, one finds similar risk 
levels.33 This finding may differ in African populations as 
women from lower-income settings may undergo meno-
pause earlier than women in higher-income settings.34 In 
the present study, the median (and mean) ages of study 
participants of both sexes were similar, likely resulting in 
the higher overall CVD risk seen in men. Yet as the African 
population continues to age, the expected increase in 
CVD risk between sexes may not be equal, with greater 
increases possible among women compared with men.35

Variation in CVD risk by algorithm
Using three commonly used CVD risk algorithms and 
their non lab-based variants, this study found substantial 
variation within sites, by algorithm. Comparing the lab 
and non-lab-based variants, there was generally better 
agreement, notably between the two Globorisk variants. 
The differences between algorithm variants are a likely 
result of the differing weight each risk factor contributes 
to the algorithm. Previous smaller African studies have 
examined differences between the two Framingham 
algorithms, and the pooled cohort equation algorithm in 
Ghanaian migrant and home populations13 and a single 
urban Kenyan site27 and our findings are similar with 
regards to the substantial variation of risk levels when 
using different algorithms. However, the current study 
goes beyond these earlier works by finding variation by 
algorithm across and within six diverse African sites. 
Previous studies also largely found similar trends in risk 
level—with Framingham office algorithms predicting 
higher CVD risk than laboratory algorithms.13 36 Previous 
cohort studies conducted outside of Africa have also 
shown the Framingham algorithms to overestimate coro-
nary heart disease risk37 38 and require recalibration.39 
In a large study from India, the Framingham algorithm 
was found to result in higher levels of risk compared with 
the Globorisk algorithm.40 Due to the fact that the WHO-
CVD risk algorithm was only released in late 2019, to our 

Figure 2  Proportion of people at low (<10%), moderate 
(10%–20%) or high (>20%) 10-year CVD risk by algorithm. 
(A) Total; (B) men; (C) women and (D) showing CVD risk levels 
calculated using WHO-CVD (office) and WHO-CVD (lab), by 
AWI-Gen site with an adjusted scale for ease of showing the 
differences. AWI-Gen, Africa-Wits-INDEPTH partnership for 
Genomic studies; CVD, cardiovascular disease.
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knowledge, no study has sought to compare this new 
algorithm with other algorithms as was done in this study.

From this study, it is not possible to determine which 
algorithm most accurately estimates risk and there are 
likely to be a number of factors contributing to the vari-
ation in risk seen when using different algorithms. First, 
it is important to note that the calculated risk output 
definitions differ slightly by algorithm. For example, the 
Framingham algorithm output includes fatal and non-
fatal CVD events including transient ischaemic attack 
and angina, while the Globorisk algorithms do not 
include transient ischaemic attack and angina.24 25 This 
could contribute to some of the increased risk levels 
seen when using the Framingham algorithm, but is 
unlikely to be the only factor. Another consideration 
likely contributing to the variation is the input variables. 
Framingham takes into account lipid levels, diabetes 
status and treatment for hypertension, while Globorisk 
does not, and WHO-CVD only includes diabetes status. 

Future analysis examining the role that the output and 
input factors described above play in predicting CVD 
risk is needed.

Each algorithm relies on coefficients derived from the 
analysis of population cohorts largely from the USA and 
Europe, with the Globorisk and WHO-CVD algorithms 
then re-calibrating the models using nationally repre-
sentative health surveys or data from the GBD to derive 
more contextually relevant algorithms.14 15 24 However, 
data from GBD methods are challenged by studies being 
small, out of date, or reliant on modelling. Confirming 
the level of risk that each variable confers on an indi-
vidual in a specific context would allow for the validation, 
or further recalibration, of these tools. It is possible that 
certain known CVD risk factors confer different levels of 
risk, depending on context and underlying genetics.41 42 
However, there is a paucity of research on this topic on 
the African continent that hopefully studies like AWI-Gen, 
the CRSN Heidelberg Aging Study43 and the Health and 

Table 3  Proportion of individuals at high 10-year risk for a CVD event by each algorithm who self-report as being under 
clinical management (%), AWI-Gen baseline data

Framingham (office)
Framingham 
(lab)

Globorisk 
(office) Globorisk (lab)

WHO-CVD 
(office)

WHO-CVD 
(lab)

Agincourt

Men 47/107 (43.9) 23/49 (46.9) 19/62 (30.6) 16/45 (35.6) 1/1 (100) 1/1 (100)

Women 32/45 (71.1) 17/24 (70.8) 9/21 (42.9) 7/11 (63.6) 0/0 0/0

All 79/152 (52.0) 40/73 (54.8) 28/83 (33.7) 23/56 (41.1) 1/1 (100) 1/1 (100)

Dikgale

Men 29/92 (31.5) 21/52 (40.4) 7/37 (18.9) 11/34 (32.4) 0/0 0/0

Women 24/32 (70.6) 12/19 (63.2) 3/13 (23.1) 7/14 (50.0) 0/0 0/0

All 53/126 (42.1) 33/71 (46.5) 10/50 (20.0) 18/48 (37.5) 0/0 0/0

Nairobi

Men 13/72 (18.1) 10/41 (24.4) 0/2 (0) 0/4 (0) 0/1 (0) 0/2 (0)

Women 14/18 (77.8) 7/8 (87.5) 0/0 0/0 0/0 0/0

All 27/90 (30.0) 1749/ (34.7) 0/2 (0) 0/4 (0) 0/1 (0) 0/2 (0)

Nanoro

Men 15/45 (33.3) 7/19 (36.8) 3/8 (37.5) 0/6 (0) 0/0 0/0

Women 3/3 (100) 1/1 (100) 0/0 0/0 0/0 0/0

All 18/48 (37.5) 8/20 (40.0) 3/8 (37.5) 0/6 (0) 0/0 0/0

Navrongo

Men 13/122 (10.7) 5/28 (17.9) 3/32 (9.4) 2/26 (7.7) 0/0 0/0

Women 16/23 (69.6) 5/8 (62.5) 10/26 (38.5) 6/19 (31.6) 0/0 0/0

All 29/145 (20.0) 10.36 (27.8) 13/58 (22.4) 8/45 (17.8) 0/0 0/0

Soweto

Men 37/245 (15.1) 24/140 (17.1) 13/148 (8.8) 27/125 (21.6) 0/3 (0) 1/1 (100)

Overall

Men 154/683 (22.6) 90/329 (27.4) 45/289 (15.6) 56/240 (23.3) 1/5 (20.0) 2/6 (33.3)

Women* 89/123 (72.4) 42/60 (70.0) 22/60 (36.7) 20/44 (45.5) 0/0 0/0

All* 243/803 (30.2) 132/389 (33.9) 67/349 (19.2) 76/284 (26.8) 1/5 (20.0) 2/6 (33.3)

% on treatment <10% 11%–20% 21%–40% 41%–60% 61%–80% >81%

*Excluding Soweto women (due to missing treatment data).
AWI-Gen, Africa-Wits-INDEPTH partnership for Genomic studies; CVD, cardiovascular disease.

by copyright.
 on F

ebruary 9, 2021 at B
arnes Library M

edical S
chool. P

rotected
http://gh.bm

j.com
/

B
M

J G
lob H

ealth: first published as 10.1136/bm
jgh-2020-003499 on 21 January 2021. D

ow
nloaded from

 

http://gh.bmj.com/


Wagner RG, et al. BMJ Global Health 2021;6:e003499. doi:10.1136/bmjgh-2020-003499 9

BMJ Global Health

Aging in Africa: A Longitudinal Study in an INDEPTH 
community12 44 can begin to address.

Levels of treatment by algorithm
In predicting population CVD treatment needs, it is 
important to choose a locally validated tool, given the 
substantial variation in risk levels that these results high-
light. Using the recently released WHO-CVD risk predic-
tion models, we see extremely low numbers of individuals 
with estimated high CVD risk across each study site. This 
has major cost and policy implications, as many treat-
ment guidelines, such as WHO’s package for essential 
noncommunicable diseases in primary healthcare, which 
many LMICs use, take into account risk scores for eval-
uation and planned treatment.14 33 Based on the results 
of this study, the proportion of the population requiring 
treatment could vary by as much as 14% in urban South 
Africa, depending on the risk predictor algorithm used 
(Framingham BMI vs WHO-CVD (lab)). Given the recent 
release of the WHO-CVD algorithms, it will be impor-
tant to examine the veracity of the CVD risk predictions 
generated by these algorithms over the coming years.

Strengths and limitations
This study has several strengths. First, the analysis was 
carried out using data from a large multisite, multicountry 

population-based sample of ageing Africans in diverse 
settings. The study employed rigorous, harmonised data 
collection methods in well-established research sites, 
ensuring that the input variables used in the algorithms 
were accurate, with the outcomes likely to represent the 
10-year CVD risk in the studied populations. However, this 
study also has limitations. Treatment data from Soweto 
women are missing and having it would have allowed for 
a greater appreciation of treatment levels among urban 
women in a context of high CVD risk. Furthermore, the 
treatment analysis defined an individual as being under 
clinical management if they self-reported being on treat-
ment for diabetes, hypertension or dyslipidaemia. We did 
not explore whether the individual was on the correct 
treatment for a specific condition. The intent of the anal-
ysis was to highlight the proportion of high-risk individ-
uals, defined by the various 10-year CVD risk algorithms, 
that had also been identified by the healthcare system as 
requiring treatment. Related to this, it is possible that our 
estimates may have underestimated the proportion of 
high-risk individuals under clinical management as indi-
viduals who are on treatment may actually not be defined 
as ‘high risk’ due to the positive effects of their current 
treatment regimen. Second, many of the CVD risk factors 
rely on self-report and may be influenced by recall bias 

Table 4  Agreement and correlation of 10-year CVD risk algorithms across the entire study population, AWI-Gen baseline 
data

WHO-CVD (lab) WHO-CVD (office) Globorisk (lab) Globorisk (office) Framingham (lab)

Framingham 
(office)

kappa (95% CI) 0.03 (0.03–0.04)** 0.04 (0.04–0.05)* 0.41 (0.39–0.43)** 0.52 (0.51–0.55)** 0.52 (0.51–0.54)**

Spearman’s 
correlation

0.28** 0.32** 0.64** 0.70** 0.70**

Framingham (lab)

kappa (95% CI) 0.08 (0.07–0.93)** 0.12 (0.11–0.13)** 0.55 (0.53–0.57)* 0.52 (0.50–0.54)**

Spearman’s 
correlation

0.32** 0.36** 0.66** 0.64**

Globorisk (office)

kappa (95% CI) 0.10 (0.09–0.12)** 0.12 (0.10–0.13)** 0.64 (0.62–0.67)*

Spearman’s 
correlation

0.32** 0.40** 0.74**

Globorisk (lab)

kappa (95% CI) 0.12 (0.11–0.14)** 0.18 (0.16–0.20)**

Spearman’s 
correlation

0.38** 0.42**

WHO-CVD (office)

kappa (95% CI) 0.58 (0.52–0.63)**

Spearman’s 
correlation

0.61**

kappa agreement <0.4 (poor) 0.41–0.60 (moderate) 0.61–0.80 
(substantial)

*p<0.05; **p<0.0001.
AWI-GEN, Africa-Wits-INDEPTH partnership for Genomic studies; CVD, cardiovascular disease.
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or social preference; however, the results of this work are 
largely aligned to previous findings from similar African 
studies.12 45 46 Finally, it is important to acknowledge that 
these population risk prediction levels are based on 
models, developed from studies largely carried out in 
high-income countries. Previous studies have suggested 
poor estimation of risk among minority groups.47 48 As 
such, employing these algorithms in LMICs, such as the 
six African sites of this study, may result in incorrect risk 
prediction. While the Globorisk and WHO-CVD algo-
rithms attempt to take into account the likely contextual 
differences by re-calibrating their models using nation-
ally representative data from diverse settings, more needs 
to be done to confirm the accuracy of the predicted risk 
in diverse populations, especially given the recent emer-
gence of the WHO-CVD algorithm. The study populations 
in this research are not nationally representative and, as 
such, the results are unlikely to represent national levels 
of CVD risk. Only through the establishment of African 
cohorts and the careful follow-up and recording of CVD 
events, will these algorithms be validated, or adjusted, 
to account for the genetic, environmental, dietary and 
behavioural diversity found on the African continent. 
Context-specific CVD risk equations, or at least validation 
of existing tools, are needed as the African continent 
continues to experience rising levels of NCDs.

CONCLUSION
Africa continues to undergo an epidemiological transi-
tion marked by increasing levels of CVD, largely driven by 
the high prevalence of potentially modifiable risk factors. 
In order to adequately quantify and properly address the 
growing burden of CVD at both the population and indi-
vidual level, the development and validation of CVD risk 
predictor algorithms is important. This study has high-
lighted substantial heterogeneity, with a significant lack 
of correlation and generally poor agreement, between 
algorithms. Furthermore, we found the proportion of 
estimated high-risk individuals under clinical manage-
ment to vary considerably depending on the algorithm 
used to determine risk. Taken together, these findings 
re-affirm the need to derive context-specific CVD risk 
equations to allow policymakers, scientists, clinicians 
and individuals, the ability to correctly quantify risk and 
develop policies, treatment guidelines, treatment plans 
and behaviours that address this growing burden of CVD 
on the African continent. The collective advocacy by poli-
cymakers, clinicians and researchers for better CVD risk 
algorithms for LMICs can be an important first step.
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