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Abstract
This study describes a cognitive radar architecture with application to real‐time obstacle
avoidance in mobile robotic platforms. The concept of a world memory map is intro-
duced as a means of providing an enhanced perception of the environment around the
robotic platform. This is combined with a specially designed obstacle avoidance algo-
rithm, Nearest Steering Vector Searching, all capable of operating in real‐time. The study
analytically derives the radar signal processing algorithm, starting from range‐angle maps,
so that a collision free course to a set destination point can be robustly navigated. Finally,
the performance of this cognitive approach is examined through a number of proof‐
of‐concept experiments using a commercial off‐the‐shelf radar mounted on a mobile
ground robotic platform.

1 | INTRODUCTION

Obstacle avoidance, when navigating unknown environments,
is a fundamental problem in mobile robotics and has been the
subject of extensive recent research [1]. To achieve collision‐
free movement, a mobile platform relies on onboard sensors to
perceive its surroundings, detect obstacles in its path, and
inform appropriate evasive action and path planning [2].
Different types of sensors have been considered for this pur-
pose, such as optical, ultrasonic, and lidar. Each of these
operates on different physical principles and therefore have
different relative merits and drawbacks.

Radar systems are another type of sensor that can also be
used for this purpose. Compact radar arrays can be incor-
porated into a mobile platform to generate range‐angle
backscattered information enabling the detection of objects.
However, despite considerable research [3–6], radar systems
have experienced substantially less uptake for autonomous
mobile robotics. This is partly because the information
generated by radar systems generally has lower resolution and
accuracy than other sensing modalities. It is also partly
because the complexity of radar scattering makes reliable
information extraction more challenging. However, radar has
the advantage of working regardless of day or night times and

in all weathers. Hence, for many applications radar is the only
viable sensor.

In this study cognitive radar [7] architectures are considered
as a potential solution able to better overcome the challenges
mentioned above. To address radar scattering uncertainties,
caused by characteristics such as low target reflectivity and radar
cross‐section fluctuations, certainty grids are introduced. The
certainty grids are also used to cope with the fact that obstacles
may stray outside the radar field of view as the robot navigates
and changes orientation. In addition to making detection de-
cisions, the radar can also dynamically increase confidence of an
obstacle's presence by creating and exploiting a form of ‘short‐
term’ or ‘active’ memory. This has some similarities to envi-
ronmental dynamic database concepts used as primary com-
ponents of knowledge‐aid methods (e.g. [8]). This overall
concept was tested in recent similar work [9]. It was experi-
mentally shown that having a memory‐aided architecture sub-
stantially reduces the number of collisions compared to not
employingmemory at all. However, collisions happened in some
of the trials and the trajectories of the robot were not smooth.
Here in this study, short‐term memories are generated from
prior radar data and formed into ‘world memory map’ (WMM)
[10]. The process is part inspired by the in‐motion mapping
concept [11]. However, the WMM technique accumulates
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measurements over a period during the motion of the robot and
then uses the cumulative information to increase confidence as
to the presence or absence of an object. This is used as a core
component of our cognitive radar architecture where we seek to
create a memory‐aided radar mapping to improve the instan-
taneous perception. This is therefore quite different to other
research that has attempted to exploit full transmit‐receive
adaptation for applications such as tracking [12–14] or bio-
mimetic steering using echoic flow [15].

Using such a cognitive radar approach to enhance the
perception of the robot's surroundings, robust and reliable
obstacle avoidance techniques can then be implemented. To
decrease the computational load, a smaller activeWMMregion in
front of the sensor is used to detect obstacles, rather than the
whole field of view [16]. To determine suitable collision‐free
routes, a diagram‐based obstacle avoidancemethod is employed.
This has the additional benefit that the radar is able to set
appropriate safety distance limits from obstacles thus diminish-
ing the chances of a collision. This is unlike conventional tech-
niques such as the nearness diagram [17] or follow‐the‐ gap [18]
methods. To achieve collision‐free navigation, a suitable means
of converting the WMM into an avoidance route is also needed.

This study develops and examines a memory‐aided
cognitive radar architecture to produce reliable maps (percep-
tions) of its surroundings. This enhanced perception is then
used to develop a simple strategy for obstacle avoidance. The
radar signal processing to facilitate both functions is described.
Subsequently, the performance of the proposed cognitive
system, comprising the robotic platform and the radar, is
investigated experimentally. The radar is an off‐the‐shelf,
co‐located multiple‐input‐multiple‐output (MIMO) radar and
this is integrated onto a mobile robotic platform that has the
goal of moving from a starting position to a chosen destination
in the presence of fixed obstacles. There is a taxonomy
framework to classify cognitive radar systems [19]. The levels
of cognition for the radar system in this study are considered as
(planning:memory:decision) ¼ (4:4:3). The levels represent the
classification of cognitive elements within Intelligent Radar
systems. The higher the level, the higher the degree of intel-
ligence. The levels of the proposed radar system are not fixed.
For example, by applying path‐planning algorithm based on
WMM, the planning level will increase accordingly.

The study is organized as follows: Section 2 introduces the
cognitive radar signal processing method. The proposed real‐
time obstacle avoidance method is developed in Section 3. The
experimental campaign and its results are shown in Section 4
and the conclusions are in Section 5.

2 | COGNITIVE RADAR SIGNAL
PROCESSING FOR RADAR PERCEPTION

2.1 | Brief description of the robot working
process

A simplified flowchart of how the robot works with the WMM
is depicted in Figure 1 and comprises the following steps:

In all of the above it is assumed that all obstacles are static
and only the robot is in motion.

2.2 | Range‐angle mapping

This section describes the formation of a range‐angle radar
map from a single radar pulse, from a single robot position.
This is the fundamental data block from which information is
derived enabling the location of obstacles in view of the radar
sensor. The radar used is a MIMO array, and although the
theory of object location from a MIMO array is well‐known
[20], it is included here for completeness. Note, conventional
single beam radars or phased array radars could also be used.

The transmitted signal is a linear frequency modulated
continuous waveform (LFMCW). The echo signals from a
point target, at each receiver and after stretch processing and
quadrature demodulation can be written as (ignoring constant
amplitude and phase terms):

sB½n� ¼ exp
�

j2πf ½n�
�
2r
c

��

; n¼ 0; 1; 2;…;N � 1; ð1Þ

F I GURE 1 Flowchart to show how the robot works with the world
memory map (WMM)

1) Create an initial ‘memory map’ of the entire area sur-
rounding the robot. The resolution of the memory map is
determined by the range and angle resolution of the radar

2) Radar determines the positions of any detected obstacles
according to the radar data

3) Determine the current absolute position of the robot
4) Check if the robot has arrived at the final destination. If the

robot has arrived at the final destination, stop. Otherwise,
update the WMM according to the detected obstacles

5) Based on the information of obstacles from the WMM,
determine the direction for the robot to move and start to
move in that direction

6) Repeat step 2) and continue to repeat the cycle until the
robot reaches its final destination
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where f ½n� ¼ f 0 þ
βn
N ¼

c
λ½n� is the time‐varying frequency of

the receive signal, β is the effective sweep bandwidth, N is the
number of recorded samples, r is the target range and c is the
speed of light.

Consider a co‐located MIMO array with NT Transmitters
(Tx) and MR receivers (Rx) as shown in Figure 2. The Rx el-
ements form a filled sub‐array whose elements are separated by
a distance, dR, and the Tx elements are separated by a distance,
dT . The total received echo can be written as:

sMIMO½n;mT ;mR� ¼ exp
�

j2πf ½n�
dT ½mT �
c

sinðαÞ
�

· exp
�

j2πf ½n�
dR½mR�
c

sinðαÞ
�

sB½n�;
ð2Þ

where mT ¼ 0; 1;…;NT � 1, mR ¼ 0; 1; :::;MR � 1 and α is
the target angle.

This allows creation of a virtual filled array of ðNT �MRÞ
elements with a separation of dR. The MIMO steering vector is

aMIMOðn; αÞ ¼
�

e j2π
dVA ½0�

λ½n� sin α e j2π
dVA ½1�

λ½n� sin αKe j2π
dVA½MVA � 1�

λ½n� sin α

�T

;

ð3Þ

where dVA ¼ dR is the virtual array antenna distance to the
reference antenna, MVA ¼NT �MR is the total number of
the virtual array elements and ½⋅�T means the transpose
operation.

The receive signal snapshot vector is

x ½n� ¼ aMIMOðn; α0ÞsB½n�; ð4Þ

where x ½n� is a MVA � 1 vector and α0 is the target
azimuth.

The estimate of the signal coming from an angle α is

ŝα½n� ¼
1
MVA

aHMIMOðn; αÞx ½n�

¼
1
MVA

∑
MVA� 1

m¼0
exp
�

� j2πf ½n�
dR
c
m sin α

�

x½m; n�;

ð5Þ

where dR is the distance between adjacent radar receive
elements. A Discrete Fourier Transform (DFT) applied to
Equation (5), thus creating a 2‐D power distribution in range
and angle, a range‐angle map. The radar system used in the
experiments has four transmitters and eight receivers. Signals
are transmitted from each element in set sequence as a
function of time. This allows the transmitted signals to be
separately received using time de‐multiplexing and hence
straightforward computation of the range‐angle maps:

where r is the target range, α is the target angle, N is the
number of recorded samples, MVA is the total number of the
virtual array elements, β is the effective sweep bandwidth, c is
the speed of light, f 0 is the start frequency and dR is the
distance between two adjacent virtual array antennas.

2.3 | World memory map construction

The range‐angle maps are the basis for creating the final
perception of the area around the robot. Information is ob-
tained from multiple range‐angle maps, over multiple frames,
and cumulatively combined as the robot moves. In this way the
WMM is eventually created. This can be considered a form of
instantaneous memory, created from the near‐recent past, and
helps improve detection and hence subsequent path planning.

The method used to create the WMM is part inspired by
the notion of certainty grids [16]. In a certainty grid, the whole
radar field of view is represented by a two‐dimensional array of
cells arranged in a Cartesian co‐ordinate frame. The distance
between adjacent cells is set to be the range resolution of the
radar in this study, ΔRWMM . Each cell in the certainty grid
contains an obstacle certainty value (OCV) that represents the
confidence in declaring the presence of obstacles within it. An
accumulation of OCVs, over a number of radar frames, forms
the obstacle certainty cumulative value (OCCV). This is the

F I GURE 2 MIMO array configuration. It is a co‐located MIMO array
with NT Transmitters (Tx) and MR receivers (Rx); MIMO, multiple‐
input‐multiple‐output

Jðr; αÞ ≈ | 1
NMVA

∑
N � 1

n¼0

exp
�

� j2π
�
2rβ
cN

�

n
�

∑
MVA� 1

m¼0
x½m; n�exp

�

� j2π
�

f 0
dR
c

sin α
�

m
� |

2

; ð6Þ
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value within a single cell in the WMM and the value is updated
at every radar detection. To provide illustrative examples of
how the radar iteratively perceives and remembers its envi-
ronment through this approach, example outputs, using our
experimental radar setup, are shown in Figure 3.

1) Calculate the OCV

Consider the radar range‐angle map shown in Figure 3a,
formed from a single radar frame (i.e. for time multiplexed
transmissions processed according to Equation [6]). The radar
is moving within an experiment zone, marked as the black solid
line in the figure. The starting point is shown as the green dot
and the final destination goal is the red dot. The range‐angle
map shows high echo strengths in the direct line‐of‐sight to the
radar and, as might be expected, these are highest at close
proximity, for example, at (X, Y) ¼ (3.1, 1.7) m. These echoes
correspond to an obstacle. However, echoes from beyond the
experimental zone including those from the walls of the lab
can also be observed.

The calculation of the OCV is a binary decision
(i.e. obstacle present or not), where the amplitude in each cell
of the range‐angle map is compared to a radar detection
threshold in a conventional manner Obs1, i.e.

Ampr;α ¼
�

0; Jðr; αÞ <Obs1
1; Jðr; αÞ ≥Obs1

; ð7Þ

where Jðr; αÞ is given by Equation (6). The threshold Obs1 can
be set at a constant value or dynamically adjusted, as for a
constant false alarm rate (CFAR) detector. Here, the former
approach was selected for simplicity, and the value of the set
threshold was determined empirically through trial and error.

A conversion from polar to Cartesian co‐ordinates subse-
quently follows, Ampx;y↔ Ampr;α, where x¼ r cos θ;
y¼ r sin θ. The accumulated obstacle detection value of each
cell is

AmpiWMM ;jWMM ;nF ¼∑Ampx;y
�
jWMM � 1

�
ΔRWMM ≤ x < jWMMΔRWMM

ðIWMM � iWMMÞΔRWMM
≤y < ðIWMM � iWMM þ 1ÞΔRWMM

; ð8Þ

where iWMM is the row index of the WMM, jWMM is the
column index of the WMM, IWMM is the total number of rows
in the WMM and nF is the radar data frame index.

The OCV is then calculated as:

OCV iWMM ;jWMM ;nF ¼
AmpiWMM ;jWMM ;nF

max
iWMM¼1;2;3;:::;IWMM
jWMM¼1;2;3;:::;JWMM

�
AmpiWMM ;jWMM ;nF

�;

ð9Þ

F I GURE 3 WMM construction example(a) range‐angle map obtained
by a single detection in rectangular coordinates, (b) OCV calculation
schematic diagram. The number in each cell represents the fraction
occupied by a detected obstacle, (c) OCVs of the current frame,
(d) WMM after 56 frames of radar data with OCCV; OCV, obstacle
certainty value; OCCV, obstacle certainty cumulative value; WMM, world
memory map
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where JWMM is the total number of columns in the WMM.
A schematic showing the results of an OCV calculation is

shown in Figure 3b. According to Equation (9), the OCV takes
values between 0 and 1. It should be noticed that this value is a
proportion of a single cell that is occupied by an obstacle, not
an indication of likelihood regarding the presence or absence
of an object. For example, a value of 0.5 in Figure 3b means
that half of the cell is occupied by a detected obstacle, while the
remaining half is vacant, while an OCV value of 1 means that
the cell is fully occupied.

Figure 3c shows the OCVs of the range‐angle map cor-
responding to Figure 3a. It shows that the output of the
processing is a single obstacle in the vicinity of the radar, and
corresponds to the actual object location in the experimental
set‐up. The different values in the vicinity of the obstacle show
that the obstacle extends over multiple range‐angle cells, and
that the occupancy of the obstacle across the multiple cells is
now quantified by the OCV.

2) Calculate OCCV

As the robot steers to avoid an obstacle while travelling
towards its goal direction, the obstacle will eventually lie
beyond the radar field of view (e.g., Figure 4).

Unless the radar ‘remembers’ obstacle detections and their
locations from the recent past, the robot may collide with the
obstacle as it attempts to steer back towards its destination
goal. This becomes more problematic as the physical space
that the robot has to manaeuver within decreases. The moti-
vation behind the design of the OCCV is to address this
problem whilst at the same time maximizing confidence in
estimating the presence (or absence) of an object. To achieve
this, the information in each cell is summed cumulatively to
reduce uncertainties in cell occupancy due to the inherent
variability of radar backscatter. This accumulation of detections
is the main difference between the WMM and previously re-
ported methods for generating an obstacle certainty grid [16].
Thus, a strong scatterer (e.g. a wall directly facing the radar)
may appear in a particular range‐angle cell. An example can be
seen in Figure 3a, at (X, Y) ¼ (2.5, 1.2) m. This is actually a

response entering through the beams sidelobe. This is despite
using a Hamming weighting to reduce sidelobes. Sidelobes
from such strong scatterers may instantaneously exceed the
radar detection threshold, Obs1, and hence incorrectly be
classed as obstacles. This then means the steer direction
searching will incorrectly take them into account as if they are
real obstacles at that location. Other instantaneous artefacts
can arise due to multipath. Equally detections can be missed
due to low reflectivity caused by an unfortunate combination
of relative orientations of radar and object. However, in
observing the scene over an extended period, from changing
orientations as the robotic platform moves, it can be expected
that these artefacts may either reduce or move to different
range‐angle cells, and hence are suppressed by the OCCV
processing.

The OCCV is based on all radar frames according to:

OCCV iWMM ;jWMM ;NF ¼∑NF
nF¼1OCV iWMM ;jWMM ;nF ; ð10Þ

where NF is the total number of frames/range‐angle maps
obtained and also represents the current radar frame index.
Thus, the OCCV signifies the cumulative occupancy of a
range‐angle cell in the current radar frame, after an accumu-
lation of NF radar frames. For example, assuming NF ¼ 12, an
OCCV value of 12 means that the cell was 100% occupied by
the target (OCV ¼ 1) in all 12 radar frames. In Figure 3d,
NF ¼ 56 but the maximum OCCV is slightly over 25, which
means that the cell was not fully occupied during all radar
frames. A second threshold, Obs2, is then set to determine
whether a detected high echo strength can be accredited to an
obstacle or has resulted from a measurement artefact, in which
case it is suppressed.

3 | REAL‐TIME OBSTACLE AVOIDANCE

3.1 | Use of an active window

Calculating the WMM obtained over the entire field of view is
computationally intensive for real‐time obstacle avoidance.

To overcome this an active window (AW) is employed
(Figure 5a) to limit the quantity of data to be processed [14]. If
the centre of the AW is the robot centre position ðirobot; jrobotÞ,
and the AW contains ð2ws þ 1Þ � ð2ws þ 1Þ active cells, the
OCCV of each active cell is OCCV iAW ;jAW ;NF where

iAW ¼ irobot � ws; irobot � ws þ 1;…; irobot;…; irobot
þ ws � 1; irobot þ ws;

jAW ¼ jrobot � ws; jrobot � ws þ 1; :::; jrobot; :::; jrobot
þ ws � 1; jrobot þ ws:

ð11Þ

Comparison of OCCV values in the AW with the threshold
Obs2 provides a binary map of cell occupancy (Figure 5b) due
to the presence of obstacles:F I GURE 4 Obstacle out of radar line of sight scenario
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AWiAW ;jAW ;NF ¼

�
0; OCCV iAW ;jAW ;NF <Obs2
1; OCCV iAW ;jAW ;NF ≥Obs2

: ð12Þ

Note that, the optimal number of frames, together with the
optimal value of Obs2, is a complex topic, requiring further
research, as their values depend not only on the radar
parameters, but also the navigation environment (e.g. available
physical space, density of obstacles). This is beyond the scope
of this study. For the purposes of the research described here
the values were found by trial and were determined as NF ¼ 30
and Obs2 ¼ 2. Given these values, a cell occupied for 7.5% or
less over an accumulation of all radar frames would be regis-
tered as not containing an obstacle.

3.2 | AW cells rearrangement

The binary occupancy map is now in a form that can be used
to search for an appropriate steering direction that is free of
obstacles. To do this, it is computationally more efficient to
convert the AW cells from a rectangular arrangement to a
triangular one (Figure 6). In this configuration, the search for a
steering direction becomes one‐, rather than two‐dimensional
(i.e. steering angle instead of (x, y) co‐ordinates).

The corresponding cell in the triangular arrangement map
is TmT ;nT . The mapping relationship between the rectangular
map and the triangular map can be written as:

AWiAW ;jAW ;NF ↔ TmT ;nT ;NF ;
mT ¼max

�
iAW ; jAW

�
;

nT ¼maxðIAW ; JAW Þ þ
�
jAW � iAW

�
;

ð13Þ

where IAW is the total number of rows in the rectangular map
and JAW is the total number of columns.

The cells covered by a straight line between any two points
in rectangular coordinates (the left hand‐side of Figure 6) is the
same as the cells covered by a straight line of the
corresponding two points in the triangular mapping (the right

hand‐side of Figure 6). This means, if there are no obstacles in
the cells connecting the two points in triangular mapping, the
area in the rectangular coordinate system corresponding to
these cells also does not include any obstacles. If the obstacle
distribution in the AW is simple, one steering direction calcu-
lated according to the AW is sufficient and form the output of
this step. If the obstacle distribution in the AW is complex, for
example, there is no one single direction without obstacles
allowing the robot to move towards to the goal position, a path
planning algorithm is needed as the output of this step.

3.3 | Nearest steering vector search

A quadrilateral search window is used as shown in the trian-
gular mapping on the right hand‐side of Figure 7. The centre
of the top edge of the quadrilateral corresponds to the centre
of the robot. The length of the top edge depends on physical
dimensions of the robotic platform. The bottom edge of the
quadrilateral window is on the bottom line of the triangular
map. The length of the bottom edge of the quadrilateral is
determined by both the physical dimensions of the platform
and, if required, a required safe distance between the platform
and an obstacle that acts as an additional precaution that takes
into account radar position measurement errors.

If there are no obstacles present within the quadrilateral
window area, the direction from the robot centre to the centre
of the bottom edge of the quadrilateral window is a feasible
steering direction for the robot. A direction sequence can then
be obtained as:

Dis ¼
�

0; no obstacles in the is th searching window
1; with obstacles in the is th searching window

;

is ¼ 1; 2; 3; :::; 2ðmaxðIAW ; JAW ÞÞ � dsaf e;

ð14Þ

where dsaf e is the safe distance from an obstacle to be main-
tained by the platform, expressed as a number of cells. Suppose

F I GURE 5 Active window (AW) selection. (a) AW position in the WMM, (b) AW with binary OCV; OCV, obstacle certainty value; WMM, world memory
map
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the goal destination of the platform in the triangular map
isðmT ; nT Þ ¼ ½maxðIAW ; JAW Þ; ngoal2�. The steering end point
ðmdir2; ndir2Þ in the triangular map can be calculated as:

mdir2 ¼maxðIAW ; JAW Þ
ndir2 ¼ is þ 1
where is ∈

�
1; 2; 3; :::; 2½maxðIAW ; JAW Þ� � dsaf e

�
;Dis ¼ 0;

|is � ngoal2 |¼ min
is¼1;2;3;:::;2ðmaxðIAW ;JAW ÞÞ� dsaf e

�
| is � ngoal2 |

�
:

ð15Þ

Suppose the centre of the robot in the AW is
ðmrobot1; nrobot1Þ, thus the Nearest Steering Vector to the goal
direction in the AW is

sdir1 ¼ ðndir1 � nrobot1;mdir1 � mrobot1Þ; ð16Þ

where

mdir1 ¼

(
mdir2; mdir2 � ndir2 ≥ 0

2mdir2 � ndir2; mdir2 � ndir2 < 0
:

ndir1 ¼

(
ndir2; mdir2 � ndir2 ≥ 0

mdir2; mdir2 � ndir2 < 0

ð17Þ

The final steering direction angle for the robot is:

θdir ¼ atan 2ðmdir1 � mrobot1; ndir1 � nrobot1Þ: ð18Þ

4 | EXPERIMENTAL TESTING

4.1 | Mobile robot

To assess the feasibility of the robot moving autonomously
from a starting point to a final destination using the radar and
processing algorithms a series of experiment were performed.
The experimental platform (Figure 8 bottom left) consisted of
a commercial MIMO radar system guiding the robot through a
confined space with two obstacles (Figure 8). Both obstacles
were of cylindrical shape. The working space for the robot is a
4.5 m � 3.5 m square free space.

The mobile platform used for experiments is a differential
drive wheeled robot with a physical radius of 0.22 m (Figure 8
bottom left). The robot has two driving wheels at the sides of
the body and two small caster wheels at the front and the rear
of the robot. The robot is equipped with two encoders to
maintain dead reckoning. Based on the signals from the en-
coders, the laptop can obtain the relative position and direction
of the robot in a local co‐ordinate frame. This was used to
record the platform's route to its destination. The starting
position of the robot was (0.40, 2.85) m in a custom local co‐
ordinate system (the origin being the bottom left corner in the
enclosure shown in Figure 8), while the destination position is
at (3.93, 0.60) m, i.e. near the bottom right corner of the
enclosure.

The radar is Inras' Radarbook, which is a 77 GHz, FMCW,
linear array MIMO radar with four transmit and eight receive
elements. The receive and transmit antenna element spacings
were 1.9 mm and 8 � 1.9 mm, respectively. The radar wave-
form characteristics used are shown in Table 1.

F I GURE 6 AW cell mapping relationship. The black cells represent the detected obstacles

F I GURE 7 Steering direction searching. The yellow dashed box represents the searching window
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Both the radar and the robot were interfaced to the same
laptop computer, which performed the radar signal processing
and control of the robot in real‐time. Lastly, the instantaneous
robot location was recorded at every radar frame.

4.2 | Algorithm validation

The robot was started at an initial pose of (0.4 m, 2.85 m,
π/4 rad). The latter parameter is the orientation angle of the
robot (and radar), measured in a clockwise direction with
respect to the x‐axis. The speed of the robot was set at a
constant value of 0.10 m/s, and its angular rotation speed at π3
rad/s. The two cylindrical obstacles were located at (1.66,
1.80) m and (3.11, 1.74) m. The radius of each cylinder is 33
mm. The main purpose of this study is to verify the feasibility
of the algorithm under relatively ideal conditions. Plastic
cylindrical obstacles with same radar cross section (RCS) in
all directions are chosen for the experiments. The type of
obstacle will affect the robustness of the algorithm.
Algorithms with dynamic threshold are added to our future
work plan. In the rest of this study, for simplicity, the robot is
considered as a point and the radius of the obstacles are
inflated by 0.258 m to help account for radar measurement
limitations.

As the robot moves, range‐angle maps are generated for
each radar frame according to the signal processing described
in Section 2. Figure 9a and Figure 10a show two examples of
such maps at different radar frames, and hence different robot
positions. The starting position and the current position of the
robot are also shown for reference. The maps show that as the
robot moves, the radar's perception of the scene changes even
though the scene itself has remained the same. Naturally, this is
because the relative geometry between the radar and the scene
has changed. In Frame 12 (Figure 9a), both obstacles return
high intensity echoes, but so do parts of the wall around the
robot, which results in high levels of sidelobes. In Frame 26
(Figure 10a), the robot has moved forwards towards the
destination. In this new position, However, it can be observed
that the echo intensity of the first obstacle has substantially
reduced, while the robot has not yet surpassed it. This is
because at the current radar position the obstacle is now
outside the field of view of the radar, hence posing a collision
risk. It can also be observed that reflections from the wall are
approximately 15dB less than in Frame 12, highlighting the
variability of radar scattering.

Figures 9b and 10b show the resulting OCVs with a
detection threshold, Obs1, empirically set at � 77 dBm. Both
obstacles are detected in Frame 12, whereas only one has been
detected in Frame 26. In both cases, the percentage of full cell
occupancy measured by the OCV is shown in the Figures, as
well as the degree to which the obstacles extend across multiple
range‐angle cells.

Figure 11a is the WMM (10), accumulated from 26 frames
of radar data. The figure shows both obstacles are now clearly
detected, while their distribution is indicative of the variability
of the scattering from the cylindrical obstacle. For 26 frames,
the absolute maximum OCCV value would be 26, whereas the
value measured is slightly over 12. This means that during the
motion of the robot a cell was fully occupied for just under
half the radar frames. As mentioned earlier, to make a binary
decision on cell occupancy, a second detection threshold was
empirically set at Obs2 ¼ 2, which means that there were at
least two complete obstacle detections at the corresponding
cell in the WMM. The result of this process for the cells
within the AW is shown in Figure 11b. The green line is the
goal direction and the red line is the steering direction arising
from the search result. The Figure shows that the WMM has
now been converted into a binary cell occupancy map, where
the location of echoes from the first obstacle are correctly
marked.

4.3 | Different obstacle avoidance strategy
tests

1) Different safe distances

The proposed approach also allows the setting of a safe
distance, dsaf e (14) to be maintained between the robotic
platform and any nearby obstacles. To test this approach, 10
experiments were conducted with the same starting robot pose

F I GURE 8 Photo of the robot and its working space with two
cylindrical obstacles

TABLE 1 Radar parameters

Description Value Unit

Start frequency 76 GHz

Stop frequency 78 GHz

Ramp up duration 60 μs

Ramp down duration 2 μs

Sampling rate 10 MHz

Range resolution 0.132 M

Beamwidth (angular resolution) 3.151 Degrees
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and experimental setup as in the previous section, but setting
dsaf e at different values of 3, 5, 7, 9, and 11 cells, respectively.
The results are shown in Figure 12, where it can be observed

that the platform adjusts its trajectory to maintain the safe
distance that has been set and the robot reaches its final
destination without collision in all cases. It can also be

F I GURE 9 Range‐angle map and corresponding OCV (Frame 12). (a) Robot trajectory with radar frame 12, (b) the corresponding OCVs of the current
frame; OCV, obstacle certainty value

F I GURE 1 0 Range‐angle map and corresponding OCV (Frame 26). (a) Robot trajectory with radar frame 26, (b) the corresponding OCVs of the current
frame; OCV, obstacle certainty value

F I GURE 1 1 WMM accumulated from 26 frames of radar data. (a) WMM after 26 Frames, (b) cell occupancy within the AW; AW, active window; OCCV,
obstacle certainty cumulative value; WMM, world memory map
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observed that the trajectory of the robot is a little different in
each case. This is because very minor differences in the starting
condition can result in a change in perception that, in turn,
leads to a different path being taken. This is examined further
next.

2) Different starting orientations.

A second set of tests were made to assess the robustness of
the algorithms to different starting orientations. During these
tests, the same experimental setup was used, with the same
platform starting position of (0.40,2.85) m, but with initial
orientations.

Figure 13 shows the results of different initial starting
orientations. The initial orientations are 3π=2, 7π=4 and 0. The
results show that as the starting pose changes, so the route of
the robot towards its destination, varies even more than
observed in the previous experiments. This comes as no sur-
prise as the perception gained through the radar data will be
very different across the range of starting orientations. How-
ever, in all the experiments the robot still reaches its destina-
tion without any collisions.

5 | CONCLUSION

A cognitive radar architecture augmented by WMMs has been
implemented and tested to show that it can be used as a basis
for collision‐free robotic platform navigation in confined
spaces. The creation of the WMM, which mimics a radar
short‐term memory, is a major advantage when obstacles slip
outside the field of view of the radar. Further, it enables a
means of suppressing artefacts arising from variability in radar
scattering which would otherwise create a false perception
and degrade navigation performance. In this way the
improved radar perception can form a much more reliable
and robust basis for path planning and obstacle avoidance.

The radar signal processing algorithms were analytically
derived and experimentally examined in real‐time using an
experimental platform carrying a radar sensor. The results
show the feasibility of the approach, its ability to maintain
user‐defined safe distances from obstacles in its path, and its
robustness to the relative geometry between the radar and the
physical space it navigates in. However, no attempt has
been made to optimize the approach and there is much
further work required in order to fully validate and verify
performance.

Indeed, there are several areas that can be identified for
future work. Other primary areas of interest are the use of
dynamic, rather than fixed, empirically set radar thresholds,
dynamic adaptation of platform speed (which was kept con-
stant in this study), and creation and exploitation radar long‐
term, rather than short‐term memory, including the use of
stored priors or map data bases. Collectively, all of these may
further enhance radar decision considerably beyond that
demonstrated here and hence aid navigation in more complex
environments, particularly the outside world.
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