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Abstract
We consider Kolmogorov-Petrovskii-Piscounov (KPP)
type models in the presence of a discontinuous cut-
off in reaction rate at concentration 𝑢 = 𝑢𝑐. In Part I,
we examine permanent form traveling wave solutions
(a companion paper, Part II, is devoted to their evolu-
tion in the large time limit). For each fixed cut-off value
0 <𝑢𝑐 <1, we prove the existence of a unique perma-
nent form traveling wave with a continuous and mono-
tone decreasing propagation speed 𝑣∗(𝑢𝑐). We extend
previous asymptotic results in the limit of small 𝑢𝑐 and
present new asymptotic results in the limit of large
𝑢𝑐 which are, respectively, obtained via the system-
atic use of matched and regular asymptotic expansions.
The asymptotic results are confirmed against numerical
results obtained for the particular case of a cut-off Fisher
reaction function.
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1 INTRODUCTION

Traveling waves arise in a wide range of applications in mathematical chemistry and biology (for
example, in combustion1 and in ecology, epidemiology, and genetics2,3). They describe the inva-
sion of chemical or biological reactions and are usually established as a result of the interaction
between molecular diffusion, local growth, and saturation. The simplest model that encapsulates
this interaction is the Kolmogorov-Petrovskii-Piscounov (KPP) reaction-diffusion equation (also
called Fisher-KPP equation4,5). In one spatial dimension, this describes the evolution of the con-
centration 𝑢(𝑥, 𝑡) as

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢), (𝑥, 𝑡) ∈ ℝ × ℝ+, (1a)

with 𝑢(𝑥, 0) = 𝑢0(𝑥), where 𝑢0 ∶ ℝ → ℝ is piecewise continuous and smooth with limits 0 and 1
as 𝑥 → ∞ and 𝑥 → −∞, respectively. This is typically supplemented with boundary conditions

𝑢(𝑥, 𝑡) →

{
1, as 𝑥 → −∞
0, as 𝑥 → ∞

(1b)

with these limits being uniform for 𝑡 ∈ [0, 𝑇] and any 𝑇 > 0. The function 𝑓 ∶ ℝ → ℝ is a nor-
malized KPP-type reaction function which satisfies conditions that 𝑓 ∈ 𝐶1(ℝ) and

𝑓(0) = 𝑓(1) = 0, 𝑓′(0) = 1, 𝑓′(1) < 0 (2a)

and in addition

0 < 𝑓(𝑢) ≤ 𝑢 ∀𝑢 ∈ (0, 1), 𝑓(𝑢) < 0 ∀𝑢 ∈ (1,∞). (2b)

A prototypical example of such a KPP reaction function is the Fisher reaction function4 given by

𝑓(𝑢) = 𝑢(1 − 𝑢). (3a)

An illustration of 𝑓(𝑢) against 𝑢 is given in Figure 1A. Another popular example of a KPP reaction
function is

𝑓(𝑢) = 𝑢(1 − 𝑢2). (3b)

It is well-known2,5–7 that the initial-boundary value problem (1) for the KPP equation supports
a one-parameter family of nonnegative permanent form traveling wave solutions of the form

𝑢(𝑥, 𝑡) = 𝑈(𝑦) = 𝑈(𝑥 − 𝑣𝑡) ∀(𝑥, 𝑡) ∈ ℝ × ℝ+. (4)

These remain steady in time in a reference frame moving in the positive 𝑥 direction with speed
𝑣 ≥ 0 to be determined. Their existence and uniqueness (up to linear translation in origin of the
independent coordinate 𝑦) is established for

𝑣 ≥ 𝑣𝑚 = 2, (5)
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A B

F IGURE 1 A, A sketch of a KPP-type reaction function. B, A sketch of a cut-off KPP-type reaction function

where 𝑣𝑚 denotes theminimum speed of propagation. This is achieved by analyzing the following
nonlinear boundary value problem, namely,

𝑈′′ + 𝑣𝑈′ + 𝑓(𝑈) = 0, −∞ < 𝑦 < ∞, (6a)

𝑈(𝑦) ≥ 0, −∞ < 𝑦 < ∞, (6b)

𝑈 (𝑦) →

{
1, as 𝑦 → −∞
0, as 𝑦 → ∞,

(6c)

where the dash denotes differentiation with respect to 𝑦. This is obtained by inserting (4) into
Equation (1a) and using (1b) together with the initial conditions. The analysis is based on examin-
ing the existence of a unique heteroclinic orbit connecting the stable fixed point (𝑈,𝑈′) = (0, 0)
to the unstable fixed point (𝑈,𝑈′) = (1, 0) in the (𝑈,𝑈′) phase plane of the equivalent two-
dimensional dynamical systemobtained from (6). It is also used to establish that𝑈(𝑦) ismonotone
decreasing in 𝑦 ∈ ℝ. When translational invariance is fixed by requiring that 𝑈(0) = 1∕2, then
explicit expressions for the behavior of the permanent form traveling wave near the two fixed
points are given by

𝑈 (𝑦) ∼

{
(𝐴∞𝑦 + 𝐵∞) 𝑒

−𝑦, as 𝑦 → ∞, 𝑣 = 𝑣 ≥ 𝑣𝑚 = 2
𝐶∞𝑒

𝛼(𝑣)𝑦, as 𝑦 → ∞, 𝑣 > 𝑣 ≥ 𝑣𝑚 = 2
(7a)

and for all 𝑣 ≥ 𝑣𝑚 = 2,

𝑈(𝑦) ∼ 1 − 𝐴−∞𝑒
𝛾(𝑣)𝑦, as 𝑦 → −∞, (7b)

where

𝛼(𝑣) =
1
2
(−𝑣 +

√
𝑣2 − 4) < 0, 𝛾(𝑣) = 1∕2(−𝑣 +

√
𝑣2 + 4|𝑓′(1)|) > 0, (7c)
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with𝐴∞(>0), 𝐵∞, 𝐶∞(>0), and𝐴−∞(>0) being globally determined constants, dependent on the
nonlinearity of the boundary value problem (6) (see, for example, Refs. 2, 8).
A key result is that the initial condition in 𝑢0(𝑥) determines the permanent form traveling wave

solution that emerges at large times. When 𝑢0(𝑥) is sufficiently close to a Heaviside function,
specifically, 𝑢0(𝑥) ≤ 𝑂(𝑒−𝑥) (meaning𝑂(𝑒−𝑥) or 𝑜(𝑒−𝑥)) as 𝑥 → ∞, the solution to the KPP initial-
boundary value problem (1) converges at large times to the permanent form traveling solutionwith
minimum speed 𝑣𝑚 = 2 (see, for example, Refs. 5, 6, 9, 10) at an algebraic rate determined in Refs.
11–13. The mechanism which selects the speed of propagation of the emerging permanent form
traveling wave solution (as well as the rate of convergence) is based on the linearization of the
KPP equation (1a) at the leading edge of the traveling wave. There, the concentration is small and
the dynamics are unstable. As a result, any modification of the dynamics near the leading edge of
the traveling wave would invalidate this speed selection mechanism.
This is precisely the case for the cut-off KPP model that Brunet and Derrida14 proposed and

considered. Motivated by the discrete nature of chemical and biological phenomena at the micro-
scopic level, they took a reaction function that is effectively deactivated at points where the con-
centration 𝑢 lies at or below a threshold value 𝑢𝑐 ∈ (0, 1). This case corresponds to the cut-off KPP
equation given by

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓𝑐(𝑢), (𝑥, 𝑡) ∈ ℝ × ℝ+, (8a)

with 𝑢(𝑥, 0) = 𝑢0(𝑥), which is once more supplemented with the boundary conditions

𝑢 (𝑥, 𝑡) →

{
1, as 𝑥 → −∞
0, as 𝑥 → ∞

(8b)

uniformly for 𝑡 ∈ [0, 𝑇] for all 𝑇 > 0. Themain difference is that the reaction function 𝑓 ∶ ℝ → ℝ
in the KPP equation (1) is replaced with a cut-off reaction function 𝑓𝑐 ∶ ℝ → ℝ given by

𝑓𝑐(𝑢) =

{
𝑓(𝑢), 𝑢 ∈ (𝑢𝑐,∞),
0, 𝑢 ∈ (−∞, 𝑢𝑐],

(8c)

where 𝑓(𝑢) satisfies the KPP conditions (2). An illustration of 𝑓𝑐(𝑢) against 𝑢 is given in
Figure 1B, with 𝑓+𝑐 = 𝑓𝑐(𝑢

+
𝑐 ) where 𝑓𝑐(𝑢+𝑐 ) is the short notation for lim𝑢→𝑢+𝑐

𝑓𝑐(𝑢). We remark
that 𝑓𝑐(𝑢) exhibits similarities with reaction functions arising in models of combustion in which
𝑢𝑐 represents an ignition temperature threshold1,15. Focussing on the initial conditions

𝑢0 (𝑥) =

{
1, for 𝑥 < 0,
0, for 𝑥 ≥ 0,

(8d)

we henceforth refer to this initial-boundary value problem as IVP. Brunet and Derrida14 proposed
(8) as amodel of front propagation arising in discrete systems of interacting particles. Such systems
are for example, lattice models with discrete particles which make diffusive hops to neighboring
sites, and which have some birth-death type of reaction16. In the continuum limit, obtained by
allowing an arbitrarily large number of particles per lattice site, Brunet and Derrida14 conjectured
that discreteness in concentration values can be represented by an effective cut-off 𝑢𝑐 where 𝑢𝑐
may be viewed as the effective mass of a single particle. The idea is that for 𝑢 < 𝑢𝑐, diffusion
dominates over growth. Although the connection between (8) and discrete systems of interacting
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particles is phenomenological, model (8) remains useful in providing insight into their behavior.
Analyzing the specific example (3b), Brunet and Derrida14 considered the behavior of permanent
form traveling wave solutions for small values of 𝑢𝑐. Their main result is a prediction for the prop-
agation speed 𝑣∗(𝑢𝑐) of the unique permanent form traveling wave given by

𝑣∗(𝑢𝑐) ≈ 2 −
𝜋2

(ln 𝑢𝑐)2
, as 𝑢𝑐 → 0+, (9)

which they obtained using a two-region informal point patching procedure (see also Ref. 17 where
(9) was compared against numerical simulations of lattice particle models). This significant result
demonstrates the strong influence of a cut-off on the value of 𝑣∗(𝑢𝑐) for small values of 𝑢𝑐. The
same approximation to 𝑣∗(𝑢𝑐) has also been obtained via an alternative variational approach in
Refs. 18, 19. Subsequently, a more rigorous approach was employed by Dumortier et al20 who used
geometric desingularization, to prove the existence and uniqueness of a permanent form traveling
wave with

𝑣∗(𝑢𝑐) ∼ 2 −
𝜋2

(ln 𝑢𝑐)2
+ 𝑂

(
1| ln 𝑢𝑐|3

)
, as 𝑢𝑐 → 0+. (10)

All these results have restricted validity to the small 𝑢𝑐 limit with specific choices of cut-off KPP-
type reaction function (8d), the most common based on 𝑓(𝑢) given by (3b)1. Expression (10) was
found in Ref. 20 to be generic when considering a slightly more general class of cut-off KPP-type
reaction functions, namely, identical to (8d) when 𝑢 ∈ (𝑢𝑐,∞) but has 𝑓𝑐(𝑢) = 𝑜(1) uniformly for
𝑢 ∈ [0, 𝑢𝑐] as 𝑢𝑐 → 0+.
There are a number of fundamental questions that remain. The first question concerns the exis-

tence and uniqueness of a permanent form traveling wave solution for arbitrary threshold values
𝑢𝑐 and KPP reaction functions 𝑓(𝑢). The second question concerns the propagation speed of such
permanent form traveling wave solutions for arbitrary threshold values 𝑢𝑐. The third question
is with regard to the shape of the permanent form traveling wave solution. The fourth question
concerns a systematic approach that captures the leading as well as higher-order corrections to
the asymptotic behavior of the speed and shape of the permanent form traveling wave solution
as 𝑢𝑐 → 0+ and 𝑢𝑐 → 1−. The second limit may be less relevant for discrete systems of interact-
ing particles. It is however relevant in models of combustion since the ignition temperature that
determines the cut-off is not necessarily small1. A final question concerns the evolution in time
to the permanent form traveling wave solution via the initial boundary value problem IVP. Part
I of this series of papers addresses the first four of these questions while part II addresses the
fifth and last question. In particular, we study classical solutions 𝑢 ∶ ℝ × ℝ

+
→ ℝ to IVP for the

cut-off KPP equation (8). In this paper, we proceed as follows. In Section 2, we reformulate IVP
as a moving boundary problem. We then make a simple coordinate transformation to consider
an equivalent initial-boundary value problem that we refer to as QIVP. In Section 3, we examine
the possibility that QIVP supports permanent form traveling wave solutions 𝑈𝑇(𝑦) = 𝑈𝑇(𝑥 − 𝑣𝑡)
where 𝑈𝑇 ∈ 𝐶1(ℝ) ∩ 𝐶2(ℝ⧵{0}) satisfies the nonlinear boundary value problem,

𝑈′′
𝑇 + 𝑣𝑈

′
𝑇 + 𝑓𝑐(𝑈𝑇) = 0, 𝑦 ∈ ℝ⧵{0}, (11a)

1 There have been a number of results obtained for other cut-off reaction functions (see, for example, Refs. 15, 21–23), but
we focus on the cut-off KPP-type reaction functions.
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𝑈𝑇 ≥ 𝑢𝑐 ∀𝑦 < 0, 0 ≤ 𝑈𝑇 ≤ 𝑢𝑐, ∀𝑦 > 0, (11b)

𝑈𝑇(0) = 𝑢𝑐, (11c)

𝑈𝑇(𝑦) →

{
1, as 𝑦 → −∞
0, as 𝑦 → ∞.

(11d)

We establish the following theorem.

Theorem 1. For each fixed 𝑢𝑐 ∈ (0, 1), QIVP has a unique permanent form traveling wave solution
𝑈𝑇 ∶ ℝ → ℝ, with the propagation speed given by 𝑣∗(𝑢𝑐). Here, 𝑣∗ ∶ (0, 1) → ℝ+ is continuous and
monotone decreasing, with

𝑣∗ (𝑢𝑐) →

{
0, as 𝑢𝑐 → 1−,
2, as 𝑢𝑐 → 0+,

where 2 is the minimum propagation speed of the permanent form traveling wave solution in the
absence of cut-off (𝑢𝑐 = 0). In addition, 𝑈𝑇(𝑦) is strictly monotone decreasing for 𝑦 ∈ ℝ, with
𝑈𝑇(0) = 𝑢𝑐, and

𝑈′′
𝑇 (0

+) − 𝑈′′
𝑇 (0

−) = −𝑓+𝑐 , (12a)

𝑈𝑇(𝑦) = 𝑢𝑐𝑒
−𝑣∗(𝑢𝑐)𝑦 ∀𝑦 ∈ ℝ

+
, (12b)

𝑈𝑇(𝑦) ∼ 1 − 𝐴−∞𝑒
𝜆+(𝑣

∗(𝑢𝑐))𝑦 as 𝑦 → −∞, (12c)

for some global constant 𝐴−∞ > 0 (which depends upon 𝑢𝑐), and

𝜆+(𝑣) =
1
2

(
−𝑣 +

√
𝑣2 + 4|𝑓′𝑐(1)|) > 0.

Furthermore,

𝑣∗(𝑢𝑐) ∼ |𝑓′𝑐(1)| 12 (1 − 𝑢𝑐) as 𝑢𝑐 → 1−. (13)

In Sections 4 and 5, we use matched asymptotic expansions to develop the detailed asymptotic
structure to the permanent form travelingwave solutions as 𝑢𝑐 → 0+ and as 𝑢𝑐 → 1−, respectively.
These are used to obtain higher-order corrections to (10) and (13) in a systematic manner. In the
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first limit, the analysis is carried out on the direct problem (rather than the phase plane). It high-
lights that higher-order corrections are controlled by two global constants 𝐴∞ and 𝐵∞ associated
with the leading behaviour of𝑈𝑚, the permanent form traveling wave solution to the non cut-off
problem (1) with minimal speed 𝑣 = 𝑣𝑚 (see equation (7a)). These global constants represent the
nonlinearity in the problemwhen𝑢𝑐 is small. The analysis is readily generalized to degenerate and
singular KPP conditions, obtained for example when 𝑓′(0) = 0 or 𝑓(𝑢) ∼ 𝑢1∕2 as 𝑢 → 0+, respec-
tively. Section 6 presents numerical examples for the specific Fisher cut-off reaction function (3a).
The paper concludes with a discussion in Section 7.

2 FORMULATION OF EVOLUTION PROBLEMQIVP

Due to the discontinuity in 𝑓𝑐(𝑢) at 𝑢 = 𝑢𝑐, it is convenient to restructure IVP as a moving bound-
ary problem. To this end, we introduce the domains:

𝐷𝐿 = {(𝑥, 𝑡) ∈ ℝ × ℝ+ ∶ 𝑥 < 𝑠(𝑡)},

𝐷𝑅 = {(𝑥, 𝑡) ∈ ℝ × ℝ+ ∶ 𝑥 > 𝑠(𝑡)},
(14a)

and the curve

 =
{
(𝑥, 𝑡) ∈ ℝ × ℝ+ ∶ 𝑥 = 𝑠 (𝑡)

}
, (14b)

that describes themoving boundary between the twodomains. The boundary is expressed in terms
of 𝑠(𝑡)which satisfies𝑢(𝑠(𝑡), 𝑡) = 𝑢𝑐, with𝑢 ≥ 𝑢𝑐 in𝐷

𝐿
and𝑢 ≤ 𝑢𝑐 in𝐷

𝑅
. In this context, a classical

solution will have 𝑢 ∶ ℝ × ℝ
+
→ ℝ and 𝑠 ∶ ℝ

+
→ ℝ such that,

𝑢 ∈ 𝐶(ℝ × ℝ
+
⧵ {(0, 0)}) ∩ 𝐶1,1(ℝ × ℝ+) ∩ 𝐶2,1(𝐷𝐿 ∪ 𝐷𝑅), 𝑠 ∈ 𝐶1(ℝ+), (15a)

𝑠(0+) = 0. (15b)

The moving boundary problem is then formulated as follows:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓𝑐(𝑢), (𝑥, 𝑡) ∈ 𝐷𝐿 ∪ 𝐷𝑅, (16a)

𝑢 ≥ 𝑢𝑐 in 𝐷
𝐿
, 𝑢 ≤ 𝑢𝑐 in 𝐷

𝑅
, (16b)

𝑢(𝑥, 0) =

{
1, for 𝑥 < 0,
0, for 𝑥 ≥ 0,

(16c)
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F IGURE 2 A sketch of the
evolution of the boundary 𝑢 = 𝑢𝑐
in the moving boundary problem

𝑢(𝑥, 𝑡) =

{
1, as 𝑥 → −∞
0, as 𝑥 → ∞

(16d)

uniformly for 𝑡 ∈ [0, 𝑇] for all 𝑇 > 0 and

𝑢(𝑠(𝑡), 𝑡) = 𝑢𝑐, 𝑢𝑥(𝑠(𝑡)
+, 𝑡) = 𝑢𝑥(𝑠(𝑡)

−, 𝑡), 𝑡 ∈ ℝ+, (16e)

𝑠(0+) = 0. (16f)

The situation is illustrated in Figure 2. It is now convenient to make the simple coordinate trans-
formation (𝑥, 𝑡) → (𝑦, 𝑡) with 𝑦 = 𝑥 − 𝑠(𝑡). We then introduce the following domains:

𝑄𝐿 = ℝ− × ℝ+, 𝑄𝑅 = ℝ+ × ℝ+, (17)

with 𝑢 ∶ ℝ × ℝ
+
→ ℝ and 𝑠 ∶ ℝ

+
→ ℝ such that

𝑢 ∈ 𝐶(ℝ × ℝ
+
⧵ {(0, 0)}) ∩ 𝐶1,1(ℝ × ℝ+) ∩ 𝐶2,1(𝑄𝐿 ∪ 𝑄𝑅), 𝑠 ∈ 𝐶1(ℝ+). (18)

The equivalent problem to (16) is then given by

𝑢𝑡 − �̇�(𝑡)𝑢𝑦 = 𝑢𝑦𝑦 + 𝑓𝑐(𝑢), (𝑦, 𝑡) ∈ 𝑄𝐿 ∪ 𝑄𝑅, (19a)

𝑢 ≥ 𝑢𝑐 in 𝑄
𝐿
, 𝑢 ≤ 𝑢𝑐 in 𝑄

𝑅
, (19b)

𝑢 (𝑦, 0) =

{
1, 𝑦 < 0,
0, 𝑦 ≥ 0,

(19c)

𝑢 (𝑦, 𝑡) →

{
1, as 𝑦 → −∞,
0, as 𝑦 → ∞,

(19d)
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uniformly for 𝑡 ∈ [0, 𝑇] for all 𝑇 > 0 and

𝑢(0, 𝑡) = 𝑢𝑐, 𝑢𝑦(0
+, 𝑡) = 𝑢𝑦(0

−, 𝑡), 𝑡 ∈ ℝ+, (19e)

𝑠(0+) = 0, (19f)

where the dot denotes differentiation with respect to time, 𝑡. This initial-boundary value problem
will henceforth be referred to as QIVP. On using the classical maximumprinciple and comparison
theorem (see, for example, Refs. 2 and 24), together with translational invariance in 𝑦, and the
regularity in (18), we can establish the following basic qualitative properties concerning QIVP,
namely,

0 < 𝑢(𝑦, 𝑡) < 𝑢𝑐 ∀(𝑦, 𝑡) ∈ 𝑄𝑅, 𝑢𝑐 < 𝑢(𝑦, 𝑡) < 1 ∀(𝑦, 𝑡) ∈ 𝑄𝐿, (20a)

𝑢(𝑦, 𝑡) is strictly monotone decreasing in 𝑦 ∈ ℝ ∀𝑡 ∈ ℝ+. (20b)

In addition, via the partial differential equation (19a) and the regularity conditions (18), we have

lim
𝑦→0+

𝑢𝑦𝑦(𝑦, 𝑡) = lim
𝑦→0+

(
𝑢𝑡(𝑦, 𝑡) − �̇�(𝑡)𝑢𝑦(𝑦, 𝑡)

)
= −�̇�(𝑡)𝑢𝑦(0, 𝑡) ∀𝑡 ∈ ℝ+, (20c)

lim
𝑦→0−

𝑢𝑦𝑦(𝑦, 𝑡) = lim
𝑦→0−

(
𝑢𝑡(𝑦, 𝑡) − �̇�(𝑡)𝑢𝑦(𝑦, 𝑡) − 𝑓(𝑢(𝑦, 𝑡))

)
= −�̇�(𝑡)𝑢𝑦(0, 𝑡) − 𝑓

+
𝑐 ∀𝑡 ∈ ℝ+, (20d)

with the limits in (20c) and (20d) being uniform for 𝑡 ∈ [𝑡0, 𝑡1] (for any 0 < 𝑡0 < 𝑡1). It follows
from (20c) and (20d) that

[
𝑢𝑦𝑦(𝑦, 𝑡)

]𝑦=0+
𝑦=0−

= 𝑓+𝑐 ∀𝑡 ∈ ℝ+, (20e)

while, using (20b), (20d), and the regularity condition (18), we establish that

𝑢𝑦(𝑦, 𝑡) < 0 ∀(𝑦, 𝑡) ∈ ℝ × ℝ+. (20f)

The remainder of this paper and its companion (part II) concentrates on the analysis of QIVP.
Specifically, in this paper we consider the existence and uniqueness of permanent form traveling
wave solutions to QIVP including their asymptotic behavior in the limits of 𝑢𝑐 → 0+ and 𝑢𝑐 → 1−

via the method of matched and regular asymptotic expansions.
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3 PERMANENT FORM TRAVELINGWAVES IN QIVP

Weanticipate that as 𝑡 → ∞, a permanent form travelingwave solutionwill develop in the solution
to QIVP, advancing with a (nonnegative) propagation speed, allowing for the transition between
the fully reacted state, 𝑢 = 1 as 𝑦 → −∞, to the unreacted state, 𝑢 = 0 as 𝑦 → ∞. Therefore, in this
section we focus attention on the possibility of QIVP supporting permanent form traveling wave
solutions (henceforth referred to as PTW solutions). We begin by establishing the existence and
uniqueness of a PTW to QIVP for each fixed 𝑢𝑐 ∈ (0, 1), denoting the unique propagation speed
by 𝑣 = 𝑣∗(𝑢𝑐). We then consider limiting values of 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 0+ and 𝑢𝑐 → 1−. The results
established in this section provide proof of Theorem 1 as stated in Section 1.

3.1 The existence and uniqueness of a PTW solution to QIVP

A PTW solution to QIVP, with constant speed of propagation 𝑣 ≥ 0, is a steady-state solution to
QIVP with 𝑢 ∶ ℝ × ℝ+ → ℝ and 𝑠 ∶ ℝ

+
→ ℝ such that

𝑢(𝑦, 𝑡) = 𝑈𝑇(𝑦) ∀(𝑦, 𝑡) ∈ ℝ × ℝ+, (21)

�̇�(𝑡) = 𝑣 ∀𝑡 ∈ ℝ+, (22)

where 𝑈𝑇 ∈ 𝐶1(ℝ) ∩ 𝐶2(ℝ ⧵ {0}) and 𝑣 ≥ 0 satisfy the nonlinear boundary value problem,

𝑈′′
𝑇 + 𝑣𝑈

′
𝑇 + 𝑓𝑐(𝑈𝑇) = 0, 𝑦 ∈ ℝ ⧵ {0}, (23a)

𝑈𝑇 ≥ 𝑢𝑐 ∀𝑦 < 0, 0 ≤ 𝑈𝑇 ≤ 𝑢𝑐 ∀𝑦 > 0, (23b)

𝑈𝑇(0) = 𝑢𝑐, (23c)

𝑈𝑇(𝑦) →

{
1, for 𝑦 → −∞,
0, for 𝑦 → ∞,

(23d)

where the dash denotes differentiation with respect to 𝑦. The nonlinear boundary value problem
(23) can be thought of as a nonlinear eigenvalue problem with the eigenvalue being the propaga-
tion speed 𝑣 ≥ 0.
It is convenient to consider the ordinary differential equation (23) as the following equivalent

autonomous first-order two-dimensional dynamical system, with 𝛼 = 𝑈𝑇 and 𝛽 = 𝑈′
𝑇 , namely,

𝛼′ = 𝛽,
𝛽′ = −𝑣𝛽 − 𝑓𝑐(𝛼).

(24)
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We will analyze this dynamical system in the (𝛼, 𝛽) phase plane for 𝑣 ≥ 0. In particular, it is
straightforward to establish that the existence of a solution to (23) is equivalent to the existence of
a heteroclinic connection in the (𝛼, 𝛽) phase plane, for the dynamical system (24), which connects
the equilibriumpoint (1,0), as 𝑦 → −∞, to the equilibriumpoint (0,0), as 𝑦 → ∞ (the translational
invariance is then fixed by condition (23c) which requires that 𝛼(0) = 𝑢𝑐). From (23b), this hetero-
clinic connection must remain in the 𝛼 ≥ 0 half plane of the (𝛼, 𝛽) phase plane, which we denote
by 𝑅+ = {(𝛼, 𝛽) ∶ (𝛼, 𝛽) ∈ ℝ

+
× ℝ}. We henceforth focus on this region of the (𝛼, 𝛽) phase plane.

However, before we proceed further, it is first worth considering the effect of introducing the
cut-off into the reaction function on the dynamical system (24). To that end, we introduce the
function �⃗� ∶ ℝ2 → ℝ2 where �⃗�(𝛼, 𝛽) is given by

�⃗�(𝛼, 𝛽) = (𝛽, −𝑣𝛽 − 𝑓𝑐(𝛼)), (25)

to represent the vector field generating the dynamical system (24). We observe that, in the (𝛼, 𝛽)
phase plane, the effect of the discontinuity in 𝑓𝑐(𝛼) across the line 𝛼 = 𝑢𝑐 is simply to refract the
phase paths passing through this line. In particular, for each 𝛽 ∈ ℝ, there is exactly one phase path
passing through (𝑢𝑐, 𝛽), whichhas tangent vectors, �⃗�(𝑢−𝑐 , 𝛽) = (𝛽, −𝑣𝛽) and �⃗�(𝑢+𝑐 , 𝛽) = (𝛽, −𝑣𝛽 −
𝑓+𝑐 ). Thus, the refraction vector for the phase paths which cross the line 𝛼 = 𝑢𝑐 is

𝑅(𝑢𝑐, 𝛽) = �⃗�(𝑢+𝑐 , 𝛽) − �⃗�(𝑢
−
𝑐 , 𝛽) = (0, −𝑓+𝑐 ). (26)

We observe that the refraction vector (26) is independent of (𝛽, 𝑣) ∈ ℝ × ℝ
+
and depends contin-

uously on 𝑢𝑐 ∈ (0, 1). It follows that

𝑅(𝑢𝑐, 𝛽) → 0⃗ as 𝑢𝑐 → 0, (27)

uniformly in (𝛽, 𝑣) ∈ ℝ × ℝ
+
. After determining the effect of the discontinuity on the phase paths

of the dynamical system (24) in 𝑅+, we next consider the equilibrium points of (24) in 𝑅+. These
are readily found to be at locations

𝑒𝑎 = (𝑎, 0) for each 𝑎 ∈ [0, 𝑢𝑐], 𝑒1 = (1, 0). (28)

We begin by examining the local phase portrait in the neighborhood of the equilibrium point 𝑒1.
We find that 𝑒1 is a hyperbolic equilibrium point. Moreover, 𝑒1 is a saddle point with eigenvalues

𝜆±(𝑣) =
1
2

(
−𝑣 ±

√
𝑣2 + 4|𝑓′𝑐(1)|). (29)

The associated local one-dimensional unstable and stable manifolds of 𝑒1 are, respectively, given
by

𝛽(𝛼) = −𝜆±(𝑣)(1 − 𝛼). (30)

We denote the phase path which forms the part of the (one-dimensional) unstable manifold
entering𝐷+ = {(𝛼, 𝛽) ∶ 0 < 𝛼 < 1, 𝛽 < 0} as +1 . Similarly, we denote as −1 the phase path which
forms part of the (one-dimensional) unstable manifold entering𝐷− = {(𝛼, 𝛽) ∶ 𝛼 > 1, 𝛽 > 0}. The
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F IGURE 3 The local phase portrait
for the equilibrium points of the
dynamical system (24). The thick black
arrows denote the direction of the
vector field �⃗�(𝛼, 𝛽) (see (25)) along the
line segments 𝐿0, 𝐿1 and on the
boundary of 𝐷−

situation is illustrated in Figure 3. We next determine the local phase portrait of the equilib-
rium points 𝑒𝑎 for each 𝑎 ∈ [0, 𝑢𝑐]. For 𝑎 ∈ (0, 𝑢𝑐) and 𝑣 > 0, each of the equilibrium points
𝑒𝑎 is nonhyperbolic with a single (one-dimensional) stable manifold in 𝑅+ given by {(𝛼, 𝛽) ∶
𝛽 = −𝑣(𝛼 − 𝑎); 0 ≤ 𝛼 ≤ 𝑢𝑐}. Also, the equilibrium point 𝑒0 is nonhyperbolic with a single (one-
dimensional) stable manifold in ℝ+ which we will denote by

0 = {(𝛼, 𝛽) ∶ 𝛽 = −𝑣𝛼; 0 ≤ 𝛼 ≤ 𝑢𝑐}. (31)

Finally, the equilibrium point ⃗𝑒𝑢𝑐 is again nonhyperbolic, and, for 0 ≤ 𝛼 ≤ 𝑢𝑐, has a single (one-
dimensional) stable manifold in 𝑅+ given by {(𝛼, 𝛽) ∶ 𝛽 = −𝑣(𝛼 − 𝑢𝑐); 0 ≤ 𝛼 ≤ 𝑢𝑐}. In fact, the
collection of phase paths of the dynamical system (27) in the region {(𝛼, 𝛽) ∶ 0 ≤ 𝛼 ≤ 𝑢𝑐, 𝛽 ≤ 0} is
given by the family of curves 𝛽 = 𝑐 − 𝑣𝛼, for each 𝑐 ∈ ℝ. This is illustrated in Figure 3. Next, for
the line segment {(𝛼, 𝛽) ∶ 𝛼 = 1, 𝛽 > 0}, we observe the following:

�⃗�(𝛼, 𝛽) ⋅ (1, 0) = 𝛽 > 0. (32)

Similarly, for the line segment {(𝛼, 𝛽) ∶ 𝛼 > 1, 𝛽 = 0}, we observe that

�⃗�(𝛼, 𝛽) ⋅ (0, 1) = −𝑓𝑐(𝛼) > 0. (33)

Together with the local structure at the equilibrium point 𝑒1, we conclude from (32) and (33)
that the region 𝐷− is a strictly positively invariant region for the dynamical system (24).We now
examine the line segments 𝐿0 = {(𝛼, 𝛽) ∶ 𝛼 = 1, 𝛽 < 0} and 𝐿1 = {(𝛼, 𝛽) ∶ 𝑢𝑐 < 𝛼 < 1, 𝛽 = 0}, we
observe that

�⃗�(𝛼, 𝛽) ⋅ (−1, 0) = −𝛽 > 0 ∀(𝛼, 𝛽) ∈ 𝐿0, �⃗�(𝛼, 𝛽) ⋅ (0, −1) = 𝑓𝑐(𝛼) > 0 ∀(𝛼, 𝛽) ∈ 𝐿1. (34)

In addition, for 𝑣 > 0, we observe that for all (𝛼, 𝛽) ∈ 𝑅+

∇ ⋅ �⃗�(𝛼, 𝛽) = −𝑣 < 0. (35)

Thus, for any 𝑣 > 0, it follows from the Bendixson negative criterion (see, for example, Ref. 25) that
(27) has no periodic orbits, homoclinic orbits, or heteroclinic cycles in 𝑅+. Finally, we observe that
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F IGURE 4 The phase path
0 which forms part of the
unstable manifold of the
equilibrium point 𝑒1 = (1, 0) of
the dynamical system (24) when
𝑣 = 0

at each (𝛼, 𝛽) ∈ 𝑅+ ⧵ ({𝑒1} ∪ {𝑒𝑎 ∶ 0 ≤ 𝑎 ≤ 𝑢𝑐}) the vector field �⃗�(𝛼, 𝛽) rotates continuously clock-
wise for increasing 𝑣 ≥ 0. At the equilibrium point 𝑒1, the unstable manifold +1 rotates clockwise
for increasing 𝑣 ≥ 0, as does the stable manifold 0 at the equilibrium point 𝑒0. As the phase
path −1 enters 𝐷− on leaving 𝑒1, and we have established that 𝐷− is a strictly positively invariant
region for the dynamical system (24), we conclude that this cannot correspond to a heteroclinic
connection between 𝑒1 and 𝑒0. Thus, at any 𝑣 ≥ 0, the existence of a heteroclinic connection in 𝑅+
connecting 𝑒1, as 𝑦 → −∞, to 𝑒0, as 𝑦 → ∞, is equivalent to the phase path +1 , leaving 𝑒1, being
coincident with the phase path 0, entering 𝑒0. It also follows that, at those 𝑣 ≥ 0 when such a
heteroclinic connection exists, then it is unique.
We are now in a position to investigate forwhich values of 𝑣 ≥ 0, if any, the required heteroclinic

connection exists in𝑅+.When 𝑣 = 0, it follows directly from (24) that the phase path+1 has graph
(𝛼, 𝛽0(𝛼)) where

𝛽0 (𝛼) = −

(
2∫

1

𝛼
𝑓𝑐 (𝛾) 𝑑𝛾

) 1

2

, (36)

for 𝛼 ∈ [0, 1]. Thus, 𝛽0(𝛼) is (non-positive) non-decreasing for 𝛼 ∈ [0, 1] with

𝛽0(0) = −

(
2∫

1

𝑢𝑐

𝑓𝑐(𝛾)𝑑𝛾

) 1

2

< 0 and 𝛽′0(1) =
(
−𝑓′𝑐(1)

) 1
2 . (37)

We also note that 𝛽0(𝛼) is continuous and differentiable except for a jump in derivative at 𝛼 = 𝑢𝑐
when 𝛽′0(𝑢

+
𝑐 ) = −𝑓+𝑐 ∕𝛽0(0) while 𝛽′0(𝑢

−
𝑐 ) = 0.

We denote the phase path +1 |𝑣=0 as 0, and note from (36) that 0 ⊂ 𝐷
+
as illustrated in

Figure 4. We conclude from (37) that when 𝑣 = 0 no heteroclinic connection exists from 𝑒1 to
𝑒0. Moreover, it follows from the rotational properties of the vector field �⃗�(𝛼, 𝛽) with increasing
𝑣 ≥ 0, as discussed earlier, that, for each 𝑣 > 0, we have

�⃗� (𝛼, 𝛽0 (𝛼)) ⋅ 𝑛0 (𝛼) < 0, (38)

for all 𝛼 ∈ [0, 1), where 𝑛0(𝛼) is the unit normal to 0 for 𝛼 ∈ (𝑢𝑐, 1] as shown in Figure 4. We
define the line segments𝐿2 = {(𝛼, 𝛽) ∶ 𝛼 = 0, 𝛽0(0) < 𝛽 < 0} and𝐿3 = {(𝛼, 𝛽) ∶ 0 ≤ 𝛼 ≤ 1, 𝛽 = 0}
and denote the region Ω0 ⊂ 𝐷+ as that region bounded by 𝜕Ω0 = 𝐿2 ∪ 𝐿3 ∪ 0. We observe, via
the rotational properties of +1 at 𝑒1 with increasing 𝑣 ≥ 0, that for any 𝑣 > 0, +1 |𝑣 enters Ω0 on
leaving 𝑒1. Moreover, we recall,Ω0 contains no periodic orbits, homoclinic orbits, or heteroclinic
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cycles. It then follows from (34), (38), and the Poincaré-Bendixson Theorem (see, for example, Ref.
25), that +1 |𝑣 must leave Ω0 through 𝐿2 (at finite 𝑦) or connect with 𝑒𝑎, for some 𝑎 ∈ [0, 𝑢𝑐] (as
𝑦 → ∞). For each 𝑣 ≥ 0, this observation allows us to classify the behavior of+1 |𝑣, by introducing
the following function 𝑠 ∶ ℝ

+
→ ℝ, such that,

𝑠(𝑣) = The distance, measured from the origin of the (𝛼, 𝛽) plane, to the point of intersection
of +1 |𝑣 with 𝐿2 (negative distance) or 𝐿3 (positive distance).

We have immediately that

𝑠(0) = 𝛽0(0) < 0, and 𝛽0(0) < 𝑠(𝑣) ≤ 𝑢𝑐, (39)

for all 𝑣 > 0. Moreover, since �⃗�(𝛼, 𝛽) depends continuously on (𝛼, 𝛽, 𝑣) ∈ 𝐷+ × ℝ
+
⧵ {(𝛽, 𝑢𝑐) ∶

𝛽 ≤ 0} × ℝ
+
, the refraction vector (26) for phase paths crossing the line 𝛼 = 𝑢𝑐 in 𝐷+ is indepen-

dent of (𝛽, 𝑣) ∈ ℝ− × ℝ
+
, andΩ0 is compact, we may conclude that 𝑠 ∈ 𝐶(ℝ

+
). In addition, from

the rotational properties of the vector field �⃗�(𝛼, 𝛽) in 𝑅+ with increasing 𝑣 ≥ 0, we deduce that
𝑠(𝑣2) > 𝑠(𝑣1) ∀𝑣2 > 𝑣1 ≥ 0. Therefore, 𝑠 ∶ ℝ

+
→ ℝ is a continuous and strictly monotone increas-

ing function. Next, take

𝑣 > 𝑣𝑐(𝑢𝑐) =

(
1
𝑢𝑐

sup
𝛾∈(𝑢𝑐,1]

𝑓𝑐(𝛾)

) 1

2

. (40)

Then, with 𝛽𝑐 = −𝑣𝑢𝑐, we have

�⃗� (𝛼, 𝛽𝑐) ⋅ (0, 1) = 𝑣2𝑢𝑐 − 𝑓𝑐 (𝛼) > 𝑠𝑢𝑝
𝛾∈(𝑢𝑐,1]

𝑓𝑐 (𝛾) − 𝑓𝑐 (𝛼) ≥ 0, (41)

for all 𝛼 ∈ (𝑢𝑐, 1], and recall that 0|𝑣 is given by 𝛽 = −𝑣𝛼 for 𝛼 ∈ [0, 𝑢𝑐]. It then follows, from
(41), that

𝑠(𝑣) > 0 ∀𝑣 > 𝑣𝑐(𝑢𝑐). (42)

We now observe that, at any 𝑣 ≥ 0, the dynamical system (24) has a heteroclinic connection
between 𝑒1 and 𝑒0, in 𝑅+ (which is unique, and is, in fact, contained in Ω0 ⊂ 𝑅+) if and only if
𝑠(𝑣) = 0. It follows that since 𝑠 ∶ ℝ

+
→ ℝ is a continuous and strictly monotone increasing func-

tion, which satisfies (39) and (42), then, for each 𝑢𝑐 ∈ (0, 1), there exists a unique 𝑣∗(𝑢𝑐) > 0 such
that

𝑠(𝑣∗(𝑢𝑐)) = 0, (43)

while,

𝑠(𝑣) < 0 ∀𝑣 ∈ [0, 𝑣∗(𝑢𝑐)), and 𝑠(𝑣) > 0 ∀𝑣 ∈ (𝑣∗(𝑢𝑐),∞). (44)
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We conclude that, for each 𝑢𝑐 ∈ (0, 1), QIVP has a PTW solution if and only if 𝑣 = 𝑣∗(𝑢𝑐)(>0)
which we write as 𝑢 = 𝑈𝑇(𝑦), 𝑦 ∈ ℝ. Moreover, this PTW solution is unique. In addition, since
the associated heteroclinic connection between 𝑒1 and 𝑒0 is contained in Ω0, then we conclude
that 𝑈𝑇 ∶ ℝ → ℝ satisfies:

0 < 𝑈𝑇(𝑦) < 1, 𝑈′
𝑇(𝑦) < 0 ∀𝑦 ∈ ℝ, (45a)

with 𝑈𝑇(0) = 𝑢𝑐, and

𝑈′′
𝑇 (0

+) − 𝑈′′
𝑇 (0

−) = −𝑓+𝑐 , (45b)

𝑈𝑇(𝑦) = 𝑢𝑐𝑒
−𝑣∗(𝑢𝑐)𝑦 ∀𝑦 ∈ ℝ

+
, (45c)

𝑈𝑇 (𝑦) ∼ 1 − 𝐴−∞𝑒
𝜆+(𝑣

∗(𝑢𝑐))𝑦 as 𝑦 → −∞, (45d)

for some constant 𝐴−∞ > 0 (depending upon 𝑢𝑐 ∈ (0, 1)), and with the eigenvalue 𝜆+(𝑣) given in
(29).
We next consider 𝑢𝑐 ∈ (0, 1) as a parameter, regarding 𝑣∗ as a function of 𝑢𝑐, with 𝑣∗ ∶ (0, 1) →

ℝ+ such that 𝑣∗ = 𝑣∗(𝑢𝑐), and associated PTW solution 𝑢 = 𝑈𝑇(𝑦, 𝑢𝑐) for (𝑦, 𝑢𝑐) ∈ ℝ × (0, 1). We
recall that the vector field �⃗�(𝛼, 𝛽) is continuously differentiable on (𝛼, 𝛽, 𝑣) ∈ ([0, 𝑢𝑐) ∪ (𝑢𝑐, 1]) ×

ℝ × ℝ
+
, while the refraction vector (26) depends on 𝑢𝑐 ∈ (0, 1) and is continuous. It follows

that on fixing 𝑢0𝑐 ∈ (0, 1), and taking 𝜀 > 0, then with 𝑢𝑐 = 𝑢0𝑐 and 𝑣 = 𝑣∗(𝑢0𝑐 ) − 𝜀, we have that
𝑠(𝑣∗(𝑢0𝑐 ) − 𝜀)|𝑢𝑐=𝑢0𝑐 < 0, where we have used Equation (43). Hence, there exists 𝛿−𝜀 > 0, which
depends on 𝜀 > 0, such that for all 𝑢𝑐 ∈ (𝑢0𝑐 − 𝛿

−
𝜀 , 𝑢

0
𝑐 + 𝛿

−
𝜀 ) = 𝐼−𝜀 , we have 𝑠(𝑣∗(𝑢0𝑐 ) − 𝜀)|𝑢𝑐∈𝐼−𝜀 < 0.

It follows that 𝑣∗(𝑢𝑐) > 𝑣∗(𝑢0𝑐 ) − 𝜀 for all 𝑢𝑐 ∈ 𝐼−𝜀 . Similarly, we establish that there exists 𝛿+𝜀 >
0, which depends on 𝜀 > 0, such that for all 𝑢𝑐 ∈ (𝑢0𝑐 − 𝛿

+
𝜀 , 𝑢

0
𝑐 + 𝛿

+
𝜀 ) = 𝐼+𝜀 , we have 𝑠(𝑣∗(𝑢0𝑐 ) +

𝜀)|𝑢𝑐∈𝐼+𝜀 > 0. It follows that 𝑣∗(𝑢𝑐) < 𝑣∗(𝑢0𝑐 ) + 𝜀 for all 𝑢𝑐 ∈ 𝐼+𝜀 . We now set 𝛿𝜀 = min(𝛿−𝜀 , 𝛿
+
𝜀 ).

Thus, for all 𝑢𝑐 ∈ (𝑢0𝑐 − 𝛿𝜀, 𝑢
0
𝑐 + 𝛿𝜀) = 𝐼𝜀, we have |𝑣∗(𝑢𝑐) − 𝑣∗(𝑢0𝑐 )| < 𝜀. We conclude that 𝑣∗ ∶

(0, 1) → ℝ is continuous. In addition, we recall that

𝑣∗(𝑢𝑐) > 0 ∀𝑢𝑐 ∈ (0, 1). (46)

Next, let 𝑢0𝑐 ∈ (0, 1) and consider +1 |(𝑢0𝑐 ,𝑣∗(𝑢0𝑐 )). It follows from the refraction vector (26) that there
exists 𝛿 > 0, such that on fixing 𝑣 = 𝑣∗(𝑢0𝑐 ), then for any 𝑢𝑐 ∈ (𝑢0𝑐 , 𝑢

0
𝑐 + 𝛿) = 𝑃𝛿, the intersection

point of+1 |(𝑢𝑐,𝑣∗(𝑢0𝑐 ))with the line𝛼 = 𝑢𝑐 lies above the intersection point of the line𝛽 = −𝑣∗(𝑢0𝑐 )𝛼

with the line 𝛼 = 𝑢𝑐. Consequently, 𝑠(𝑣∗(𝑢0𝑐 ))|𝑢𝑐∈𝑃𝛿 > 0, from which we conclude that 𝑣∗(𝑢𝑐) <
𝑣∗(𝑢0𝑐 ) for all 𝑢𝑐 ∈ 𝑃𝛿. Thus, 𝑣∗ ∶ (0, 1) → ℝ is locally decreasing, and continuous, and so 𝑣∗ ∶
(0, 1) → ℝ is strictly monotone decreasing. It then also follows from (46) that 𝑣∗(𝑢𝑐) has a finite
nonnegative limit as 𝑢𝑐 → 1−. Hence, 𝑣∗(𝑢𝑐) → 𝑣∗1 as 𝑢𝑐 → 1−, for some 𝑣∗1 ≥ 0. When (1 − 𝑢𝑐) is
sufficiently small, the linearization theorem (see, for example, Ref. 25) guarantees that +1 can be
approximated in the region (𝛼, 𝛽) ∈ [𝑢𝑐, 1] × ℝ

− by its linearized form at the equilibrium point
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𝑒1; it is then readily established that 𝑣∗1 = 0, and, moreover, that 𝑣∗(𝑢𝑐) ∼ |𝑓′𝑐(1)| 12 (1 − 𝑢𝑐) as 𝑢𝑐 →
1−. We now investigate 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 0+. To begin with we consider the dynamical system (24)
when𝑢𝑐 = 0. In this case, the dynamical system (24) has a (unique) heteroclinic connectionwhich
connects 𝑒1, as 𝑦 → −∞, to 𝑒0, as 𝑦 → ∞, if and only if 𝑣 ∈ [2,∞), see, for example Refs. 5, 6,
9, 10. Moreover, 𝑠(𝑣)|𝑢𝑐=0 < 0 for all 𝑣 ∈ [0, 2). From (26) and (27), it follows that +1 depends
continuously on 𝑢𝑐 ≥ 0. Thus, for 𝜀 > 0, there exists 𝜎𝜀 > 0 such that for 𝑢𝑐 ∈ (0, 𝜎𝜀), then 𝑠(2 −
𝜀)|𝑢𝑐 < 0. Therefore, from (43), we deduce that 𝑣∗(𝑢𝑐) > 2 − 𝜀 for all 𝑢𝑐 ∈ (0, 𝜎𝜀). However, it also
follows from (26) and (27) that 𝑠(2)|𝑢𝑐 > 0 for all 𝑢𝑐 ∈ (0, 1). Thus, 𝑣∗(𝑢𝑐) < 2 for all 𝑢𝑐 ∈ (0, 1).
We conclude that, 2 − 𝜀 < 𝑣∗(𝑢𝑐) < 2 ∀𝑢𝑐 ∈ (0, 𝜎𝜀). Since this holds for all 𝜀 > 0, we conclude
immediately that 𝑣∗(𝑢𝑐) has limit 2 as 𝑢𝑐 → 0+. We conclude that 𝑣∗ ∶ (0, 1) → ℝ is continuous
and monotone decreasing, with

lim
𝑢𝑐→1−

𝑣∗(𝑢𝑐) = 0, lim
𝑢𝑐→0+

𝑣∗(𝑢𝑐) = 2. (47)

This completes the proof of Theorem 1. In the next two sections, we consider the structure of the
PTW solutions in the limits 𝑢𝑐 → 0+ and 𝑢𝑐 → 1−, respectively.

4 ASYMPTOTIC STRUCTURE OF THE PTW SOLUTIONWHEN
𝒖𝒄 → 𝟎+

In this section, we investigate the detailed asymptotic form of 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 0+, in the small cut-
off limit, via the method of matched asymptotic expansions. To that end, we write 𝑢𝑐 = 𝜀 with
0 < 𝜀 ≪ 1. It then follows from Theorem 1 that we may write,

𝑣∗(𝜀) = 2 − 𝑣(𝜀), (48)

where now,

𝑣(𝜀) > 0 ∀ 𝜀 ∈ (0, 1), and 𝑣(𝜀) = 𝑜(1) as 𝜀 → 0+. (49)

With 𝑈𝑇 ∶ ℝ → ℝ being the associated PTW solution, then from (23),

𝑈𝑇𝑦𝑦 + (2 − 𝑣(𝜀))𝑈𝑇𝑦 + 𝑓(𝑈𝑇) = 0, 𝑦 < 0, (50a)

𝑈𝑇(𝑦) > 𝜀 ∀ 𝑦 < 0, (50b)

𝑈𝑇(0) = 𝜀, 𝑈𝑇𝑦(0) = −(2 − 𝑣(𝜀))𝜀, (50c)

𝑈𝑇(𝑦) → 1 as 𝑦 → −∞. (50d)
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It is convenient, in what follows, to make a shift of origin by introducing the coordinate �̄� via

�̄� = �̄�𝑐(𝜀) + 𝑦,

where �̄�𝑐(𝜀) is chosen so that (50) becomes,

𝑈𝑇�̄��̄� + (2 − 𝑣(𝜀))𝑈𝑇�̄� + 𝑓(𝑈𝑇(�̄�)) = 0, �̄� < �̄�𝑐(𝜀), (51a)

𝑈𝑇(�̄�) > 𝜀 ∀ �̄� < �̄�𝑐(𝜀), (51b)

𝑈𝑇(�̄�𝑐(𝜀)) = 𝜀, 𝑈𝑇�̄�(�̄�𝑐(𝜀)) = −(2 − 𝑣(𝜀))𝜀, (51c)

𝑈𝑇(�̄�) → 1 as �̄� → −∞, (51d)

with now the shift of origin fixing

𝑈𝑇(0) =
1
2
. (52)

It follows from (51) and (52) that

�̄�𝑐(𝜀) → +∞ as 𝜀 → 0+. (53)

Our objective is now to examine the boundary value problem (51) and (52) as 𝜀 → 0+, and, in
particular, to determine the asymptotic structure of 𝑣(𝜀) as 𝜀 → 0+. Anticipating the requirement
of outer regions, we begin in an inner region when �̄� = 𝑂(1) and 𝑈𝑇 = 𝑂(1) as 𝜀 → 0+, and we
label this as region 𝐈. In region 𝐈, we thus expand as

𝑈𝑇(�̄�; 𝜀) = 𝑈𝑚(�̄�) + 𝑂(𝑣(𝜀)) as 𝜀 → 0+, (54)

with �̄� = 𝑂(1). On substitution from (54) into (51) and (52), and using (53), we obtain the leading
order problem as

𝑈𝑚�̄��̄� + 2𝑈𝑚�̄� + 𝑓(𝑈𝑚) = 0, −∞ < �̄� < ∞, (55a)

𝑈𝑚(�̄�) > 0, −∞ < �̄� < ∞, (55b)
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𝑈𝑚(�̄�) →

{
1, as �̄� → −∞,
0, as �̄� → ∞,

(55c)

𝑈𝑚(0) =
1
2
. (55d)

The leading order problem is immediately recognized as the boundary value problem (23) for
the permanent form traveling wave solution to the corresponding KPP problem without cut-off
(𝜀 = 0). Let𝑈𝑚 ∶ ℝ → ℝ be the unique solution to (55). For use in what follows, we recall (7) with
higher-order corrections given by

𝑈𝑚(�̄�) =

{
(𝐴∞�̄� + 𝐵∞) 𝑒

−�̄� + 𝑂(�̄�2𝑒−2�̄�), as �̄� → ∞,
1 − 𝐴−∞𝑒

𝛾�̄� + 𝑂(𝑒2𝛾�̄�), as �̄� → −∞,
(56)

where 𝛾 = −1 +
√
1 + |𝑓′(1)| (> 0). On proceeding to 𝑂(𝑣(𝜀)) in region 𝐈, we observe that the

inner region expansion (54) becomes non-uniform when |�̄�|≫ 1, and in particular when (−�̄�) =

𝑂(𝑣(𝜀)
−
1

2 ) and �̄� = 𝑂(𝑣(𝜀)
−
1

2 ). Therefore, to complete the asymptotic structure of the solution to

(51) as 𝜀 → 0+, we must introduce two outer regions, namely, region 𝐈𝐈+ when �̄� = 𝑂(𝑣(𝜀)
−
1

2 ) and

region 𝐈𝐈− when (−�̄�) = 𝑂(𝑣(𝜀)
−
1

2 ). In this context, for any variable 𝜆, we will henceforth write
𝜆 = 𝑂(1) > 0 as 𝜆 = 𝑂(1)+, and correspondingly, 𝜆 = 𝑂(1) < 0 as 𝜆 = 𝑂(1)−. We begin in region
𝐈𝐈−. To formalize region 𝐈𝐈−, we introduce the scaled variable,

�̂� = 𝑣(𝜀)
1

2 �̄�, (57)

so that �̂� = 𝑂(1)− in region 𝐈𝐈− as 𝜀 → 0+. It then follows from (54) and (56) that

𝑈𝑇(�̂�; 𝜀) = 1 − 𝑂

(
𝑒−𝑣(𝜀)

−
1
2

)
, (58)

as 𝜀 → 0+ in region 𝐈𝐈−. It is then straightforward to develop an exponential expansion in region
𝐈𝐈−, which, after matching (following the Van Dyke matching principle26) with region 𝐈, via (54)
and (56), gives the outer expansion in region 𝐈𝐈− as,

𝑈𝑇(�̂�; 𝜀) = 1 − 𝐴−∞ exp

[
𝛾𝑣(𝜀)

−
1

2 (1 + 𝑂(𝑣(𝜀)))�̂�

]
+ 𝑂

(
exp

[
2𝛾𝑣(𝜀)

−
1

2 (1 + 𝑂(𝑣(𝜀)))�̂�

])
, (59)

as 𝜀 → 0+ with �̂� = 𝑂(1)−. Thus, the solution in region 𝐈𝐈− is at this order unaffected by the cut-
off. We now proceed to region 𝐈𝐈+, where �̂� = 𝑂(1)+ as 𝜀 → 0+. It is within this region that the

conditions at �̄� = �̄�𝑐(𝜀)must be satisfied, which then requires �̄�𝑐(𝜀) = 𝑂(𝑣(𝜀)
−
1

2 ) as 𝜀 → 0+, which
is consistent with (53). Thus, we write

�̄�𝑐(𝜀) = 𝑣(𝜀)
−
1

2 �̂�𝑐(𝜀), (60)
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so that now,

�̂�𝑐(𝜀) = 𝑂(1)+ as 𝜀 → 0+. (61)

In region 𝐈𝐈+, it follows from (54) and (56) that

𝑈𝑇(�̂�; 𝜀) = 𝑂

(
𝑣(𝜀)

−
1

2 𝑒−𝑣(𝜀)
−
1
2

)
,

as 𝜀 → 0+. Again, it is then straightforward to develop an exponential expansion in region 𝐈𝐈+,
which, after matching with region 𝐈, via (54) and (56), gives the outer expansion in region
𝐈𝐈+ as,

𝑈𝑇(�̂�; 𝜀) =

(
𝐴∞𝑣(𝜀)

−
1

2 sin (�̂�(1 + 𝑂(𝑣(𝜀)))) + 𝐵∞ cos (�̂�(1 + 𝑂(𝑣(𝜀))))

)

× exp

[
−𝑣(𝜀)

−
1

2 (1 + 𝑂(𝑣(𝜀)))�̂�

]
+ 𝑂

(
exp

[
−2𝑣(𝜀)

−
1

2 (1 + 𝑂(𝑣(𝜀)))�̂�

])
, (62)

as 𝜀 → 0+ with �̂� = 𝑂(1)+. It now remains to apply conditions (51b), and (51c) to (62). In the outer
region 𝐈𝐈+, these conditions become,

𝑈𝑇(�̂�; 𝜀) > 𝜀 ∀𝑂

(
𝑣(𝜀)

−
1

2

)+

< �̂� < �̂�𝑐(𝜀), (63a)

𝑈𝑇(�̂�𝑐(𝜀); 𝜀) = 𝜀, 𝑈𝑇�̂�(�̂�𝑐(𝜀); 𝜀) = −𝜀𝑣(𝜀)
−
1

2 (2 − 𝑣(𝜀)). (63b)

We now turn to conditions (63b). It is convenient to first eliminate 𝜀 explicitly to give,

𝑈𝑇�̂�(�̂�𝑐(𝜀); 𝜀) = −𝑣(𝜀)
−
1

2 (2 − 𝑣(𝜀))𝑈𝑇(�̂�𝑐(𝜀); 𝜀), (64)

which replaces (63b). On substitution from (62) into (64) and expanding, using (49), (50), and (61),
we obtain,

𝐴∞ sin𝜔 = −𝑣(𝜀)
1

2 (𝐴∞ + 𝐵∞) cos 𝜔, 𝜔 = �̂�𝑐(𝜀)(1 + 𝑂(𝑣(𝜀))), (65)

as 𝜀 → 0+. Following (61) and (65), we now expand,

�̂�𝑐(𝜀) = �̂�0𝑐 + �̂�
1
𝑐 𝑣(𝜀)

1

2 + 𝑂(𝑣(𝜀)), (66)

as 𝜀 → 0+, with the constants �̂�0𝑐 (>0) and �̂�1𝑐 to be determined. On substitution from (66) into
(65), we obtain, at 𝑂(1),

𝐴∞ sin �̂�0𝑐 = 0.
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Since𝐴∞ > 0, thenwemust have (recalling �̂�0𝑐 > 0) �̂�0𝑐 = 𝑘𝜋, for some 𝑘 ∈ ℕ. However, condition
(63a), with (62), then requires 𝑘 = 1, and so

�̂�0𝑐 = 𝜋. (67)

Proceeding to 𝑂(𝑣(𝜀)
1

2 ), we find that, on using (67),

�̂�1𝑐 = −
(𝐴∞ + 𝐵∞)

𝐴∞
. (68)

Thus, via (66), (67), and (68) we have,

�̂�𝑐(𝜀) = 𝜋 −
(𝐴∞ + 𝐵∞)

𝐴∞
𝑣(𝜀)

1

2 + 𝑂(𝑣(𝜀)), (69)

as 𝜀 → 0+. It remains to apply the first condition in (63b). Onusing (62) and (69), the first condition
in (63b) becomes

ln 𝜀 = −
𝜋

𝑣(𝜀)
1

2

+

(
(𝐴∞ + 𝐵∞)

𝐴∞
+ ln𝐴∞

)
+ 𝑂(𝑣(𝜀)

1

2 ), (70)

as 𝜀 → 0+. A rearrangement of (70) then gives,

𝑣(𝜀) =
𝜋2

(ln 𝜀)2
+
2𝜋2

(
(𝐴∞ + 𝐵∞)𝐴

−1
∞ + ln𝐴∞

)
(ln 𝜀)3

+ 𝑂

(
1

(ln 𝜀4)

)
, (71)

as 𝜀 → 0+. It then follows from (69) and (71) that,

�̂�𝑐(𝜀) = 𝜋 +
(𝐴∞ + 𝐵∞)𝜋

𝐴∞

1
ln 𝜀

+ 𝑂

(
1

(ln 𝜀2)

)
, (72)

as 𝜀 → 0+. Finally, via (48) and (71), we can construct 𝑣∗(𝜀) as

𝑣∗(𝜀) = 2 −
𝜋2

(ln 𝜀)2
−
2𝜋2

(
(𝐴∞ + 𝐵∞)𝐴

−1
∞ + ln𝐴∞

)
(ln 𝜀)3

+ 𝑂

(
1

(ln 𝜀4)

)
, (73)

as 𝜀 → 0+. For completeness, we give a schematic diagram of the asymptotic structure for𝑈𝑇(�̄�; 𝜀)
in terms of the coordinate �̄� as 𝜀 → 0+ in Figure 5. Returning to (73) we observe that the approx-
imation is decreasing in 𝜀 as 𝜀 → 0+, and is in full accord with the rigorous results established in
Theorem 1. We see immediately that the approximation derived here, agrees in the first two terms
with prediction (9) that Brunet and Derrida14 first obtained and its third term is consistent with
the order of the error term in (10) that Dumortier et al20 derived. However, themethod ofmatched
asymptotic expansions has enabled us to obtain the next correction term in (73), and higher-order
terms could be obtained by systematically following this approach (of course it may also be pos-
sible to obtain the third- and higher-order terms via extending the approach of Ref. 20). In fact,
we may continue the expansion in each region to next order, and after matching, we can readily
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F IGURE 5 A schematic diagram of the asymptotic structure of 𝑈𝑇(�̄�; 𝜀) as 𝑢𝑐 → 0+

obtain that the higher-order correction to (73) is given by

𝑣∗(𝜀) = 2 −
𝜋2

(ln 𝜀)2
−
2𝜋2

(
(𝐴∞ + 𝐵∞)𝐴

−1
∞ + ln𝐴∞

)
(ln 𝑢𝑐)3

+
3𝜋2

(
1

4
𝜋2 −

(
(𝐴∞ + 𝐵∞)𝐴

−1
∞ + ln𝐴∞

)2)
(ln 𝜀)4

+ 𝑂

(
1

(ln 𝜀)5

)
,

(74)

as 𝜀 → 0+. For brevity, we do not provide a derivation to (74). We now consider the asymptotic
structure of the PTW solution to QIVP as 𝑢𝑐 → 1−.

5 ASYMPTOTIC STRUCTURE OF THE PTW SOLUTIONWHEN
𝒖𝒄 → 𝟏−

In this section, we investigate the asymptotic form of 𝑣∗(𝑢𝑐) in the large cut-off limit 𝑢𝑐 → 1−. To
this end, wewrite 𝑢𝑐 = 1 − 𝛿with 0 < 𝛿 ≪ 1. Theorem 1 guarantees the existence and uniqueness
of a PTW solution, whose speed 𝑣∗(𝛿) = 𝑜(1) as 𝛿 → 0+. In this case, it is most convenient to
consider the problem in the (𝛼, 𝛽) phase plane corresponding to the phase path representing the
PTW when 𝑢𝑐 = 1 − 𝛿 and 𝑣 = 𝑣∗(𝛿). Via (27), (29), (30), and (31), this is given by the phase path
𝛽 = 𝛽(𝛼; 𝛿), which satisfies the boundary value problem

𝑑𝛽

𝑑𝛼
= −𝑣∗(𝛿) −

𝑓(𝛼)

𝛽
, 𝛼 ∈ (1 − 𝛿, 1), (75a)

𝛽(𝛼; 𝛿) ∼ −𝜆+(𝑣
∗(𝛿))(1 − 𝛼) as 𝛼 → 1−, (75b)

𝛽(1 − 𝛿; 𝛿) = −𝑣∗(𝛿)(1 − 𝛿). (75c)
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We now examine the boundary value problem (75) as 𝛿 → 0+. Since 𝑣∗(𝛿) = 𝑜(1) as 𝛿 → 0+, we
expand 𝜆+(𝑣∗(𝛿)), via (29), which determines that 𝜆+(𝑣∗(𝛿)) = 𝑂(1) as 𝛿 → 0+. It follows from the
boundary condition (75b), that 𝛽 = 𝑂(𝛿) as 𝛿 → 0+. We therefore introduce the following rescal-
ings:

𝛽 = 𝛿𝑌, 𝛼 = 1 − 𝛿𝑋, (76)

with 𝑌,𝑋 = 𝑂(1) as 𝛿 → 0+. The form of the boundary condition (75c) then necessitates that
𝑣∗(𝛿) = 𝑂(𝛿) as 𝛿 → 0+. Thus, we write

𝑣∗(𝛿) = 𝛿𝑉(𝛿), (77)

where 𝑉(𝛿) = 𝑂(1) as 𝛿 → 0+. These rescalings transform the boundary value problem (75) into

𝑑𝑌
𝑑𝑋

= 𝛿𝑉(𝛿) +
𝑓(1 − 𝛿𝑋)

𝛿𝑌
, 𝑋 ∈ (0, 1), (78a)

𝑌(𝑋; 𝛿) ∼ −𝜆+(𝛿𝑉(𝛿))𝑋 as 𝑋 → 0+, (78b)

𝑌(1; 𝛿) = −𝑉(𝛿)(1 − 𝛿). (78c)

We now expand 𝑌(𝑋; 𝛿) and 𝑉(𝛿) according to,

𝑌(𝑋; 𝛿) = 𝑌0(𝑋) + 𝛿𝑌1(𝑋) + 𝑜(𝛿), 𝑋 ∈ [0, 1], (79a)

𝑉(𝛿) = 𝑉0 + 𝛿𝑉1 + 𝑜(𝛿), (79b)

as 𝛿 → 0+. Substituting the expansions from (79) into the boundary value problem (78) and
expanding, at 𝑂(1), we obtain the following boundary value problem for 𝑌0(𝑋), namely,

𝑑𝑌0
𝑑𝑋

= −𝑓′(1)
𝑋
𝑌0
, 𝑋 ∈ (0, 1), (80a)

𝑌0(𝑋) ∼ −|𝑓′(1)| 12 𝑋 as 𝑋 → 0+, (80b)

𝑌0(1) = −𝑉0. (80c)

The general solution to (80a) is 𝑌20(𝑋) = 𝑐1 − 𝑓
′(1)𝑋2, for𝑋 ∈ [0, 1], where 𝑐1 is an arbitrary con-

stant of integration. Applying the boundary condition (80b) determines 𝑐1 = 0. Therefore,

𝑌0(𝑋) = −|𝑓′(1)| 12 𝑋, 𝑋 ∈ [0, 1]. (81)
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Application of the boundary condition (80c) then determines

𝑉0 = |𝑓′(1)| 12 . (82)

At 𝑂(𝛿), we obtain the following boundary value problem for 𝑌1(𝑋), namely,

𝑑𝑌1
𝑑𝑋

−
𝑌1

𝑌0(𝑋)2
𝑓′(1)𝑋 = 𝑉0 +

1
2
𝑓′′(1)

𝑋2

𝑌0(𝑋)
, 𝑋 ∈ (0, 1), (83a)

𝑌1(𝑋) ∼
1
2
𝑉0𝑋 as 𝑋 → 0+, (83b)

𝑌1(1) = 𝑉0 − 𝑉1. (83c)

On substituting 𝑌0(𝑋), given by (81), into Equation (83a) and solving, we find that the general
solution is

𝑌1(𝑋) =
1
2
𝑉0𝑋 −

1
6

𝑓′′(1)

|𝑓′(1)| 12 𝑋2 +
𝑐2
𝑋
, 𝑋 ∈ (0, 1], (84)

where 𝑐2 is an arbitrary constant of integration. From the boundary condition (83b), 𝑌1(𝑋)
remains bounded as𝑋 → 0+. Therefore, we require 𝑐2 = 0. Thus, we obtain the solution for𝑌1(𝑋)
as

𝑌1(𝑋) =
1
6
|𝑓′(1)| 12 𝑋(3 − 𝑓′′(1)|𝑓′(1)|𝑋

)
, 𝑋 ∈ [0, 1]. (85)

Finally, an application of the boundary condition (86) determines

𝑉1 =
1
6
|𝑓′(1)| 12(3 + 𝑓′′(1)|𝑓′(1)|

)
. (86)

On collecting expressions (79a), (81), and (85), we have established that

𝑌(𝑋; 𝛿) = − |𝑓′(1)| 12 𝑋 +
1
6
𝛿|𝑓′(1)| 12 𝑋(3 − 𝑓′′(1)|𝑓′(1)|𝑋

)
+ 𝑜(𝛿) as 𝛿 → 0+, (87)

uniformly for 𝑋 ∈ [0, 1]. Similarly, on collecting expressions (79b), (82), and (86), we obtain,

𝑉(𝛿) = |𝑓′(1)| 12 + 1
6
𝛿|𝑓′(1)| 12(3 + 𝑓′′(1)|𝑓′(1)|

)
+ 𝑜(𝛿) as 𝛿 → 0+. (88)
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We use (76) to express the PTW solution to QIVP in terms of the cut-off 𝑢𝑐 as

𝛽(𝛼) = −
1
2
|𝑓′(1)| 12 (1 + 𝑢𝑐)(1 − 𝛼) − 1

6

𝑓′′(1)

|𝑓′(1)| 12 (1 − 𝛼)2
+ 𝑜((1 − 𝑢𝑐)

2) as 𝑢𝑐 → 1−, (89)

with 𝛼 ∈ [𝑢𝑐, 1]. Its speed of propagation, via (77) and (88), is given by

𝑣∗(𝑢𝑐) = (1 − 𝑢𝑐)|𝑓′(1)| 12 + 1
6
(1 − 𝑢𝑐)

2|𝑓′(1)| 12(3 + 𝑓′′(1)|𝑓′(1)|
)

+ 𝑜((1 − 𝑢𝑐)
2) as 𝑢𝑐 → 1−. (90)

In the next section, we consider the specific case of a cut-off Fisher reaction, determining𝑈𝑇 ∶
ℝ → ℝ and 𝑣∗ ∶ (0, 1) → ℝ via numerical integration.

6 NUMERICAL EXAMPLE

Wenow focus on the particular case of the cut-off Fisher reaction function, namely, (8d) with (3a).
We obtain numerical approximations of the speed 𝑣∗(𝑢𝑐) and PTW solutions 𝑈𝑇 ∶ ℝ → ℝ for a
range of values of cut-off𝑢𝑐. This is achieved by solving (11) numerically over an interval 𝑦 ∈ [0,𝑀]
for𝑀 ∈ ℝ+ using the MATLAB initial value solver ode45 where 𝑈𝑇(0) = 𝑢𝑐. As “initial” condi-
tion we employ (30) with 7(c) to approximate the unstable manifold near the unstable fixed point
(𝑈𝑇,𝑈

′
𝑇) = (1, 0), taking 𝑈𝑇(0) = 1 − 𝜖 and 𝑈′

𝑇(0) = −𝜆+(𝑣)𝜖 where 𝜖 = 10−12 and prescribe an
absolute and relative tolerance of 10−13. The value of 𝑣 in the second initial condition is not known
a priori. We therefore build the initial value solver into a shooting type algorithm, for which we
guess the value of 𝑣, integrate (11) to obtain 𝑈′

𝑇(0), and then compare 𝑈
′
𝑇(0) to the target value

−𝑣𝑢𝑐. The value of 𝑣 is thenmodified using the bisectionmethod and this integration procedure is
iterated until the absolute error satisfies |𝑈′

𝑇(0) + 𝑣𝑢𝑐| < 10−13. We start with a value of 𝑢𝑐 close to
1 and take 𝑣 = 2 as initial guess to begin the iterationwhich leads to the solutionwith speed 𝑣∗(𝑢𝑐).
We then iterate over decreasing values of 𝑢𝑐 using the previously determined value of 𝑣∗(𝑢𝑐) as an
initial guess to find the next solution.
It is also useful to obtain a numerical approximation of the permanent traveling wave solution

𝑈𝑚 for the Fisher reaction function (3a) in the absence of a cut-off. This is readily achieved by
solving (6) numerically over an interval 𝑦 ∈ [0,𝑁] for 𝑁 ∈ ℝ+ once more using the Matlab ini-
tial value solver ode45. As “initial condition” we employ (7b) and (7c) to approximate the unsta-
ble manifold near the unstable fixed point (𝑈𝑚,𝑈

′
𝑚) = (1, 0), taking 𝑣 = 2, 𝑈𝑚(0) = 1 − 𝜖, and

𝑈′
𝑚(0) = (

√
2 − 1)𝜖, where 𝜖 = 10−12 and prescribe an absolute and relative tolerance of 10−13.

We then determine that value of 𝑦 for which 𝑈𝑚 is equal to 1∕2 and then perform a coordinate
shift to the origin.
Figure 6 contrasts the behavior of 𝑈𝑇 against 𝑈𝑚. A direct comparison between 𝑈𝑇 and 𝑈𝑚 is

achieved when 𝑈𝑇 and 𝑈𝑚 are expressed in terms of �̄� so that 𝑈𝑇(0) = 𝑈𝑚(0) ≈ 0.5. For small
values of 𝑢𝑐, 𝑈𝑇(�̄�) is close to 𝑈𝑚(�̄�) in agreement with the asymptotic theory of Section 4. As
𝑢𝑐 increases, we observe a strong departure of 𝑈𝑇(�̄�) from 𝑈𝑚(�̄�) with the slope of 𝑈𝑇(�̄�) at
�̄� = 0 becoming increasingly steep until it reaches a maximum at 𝑢𝑐 = 0.5. Beyond this value,
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1F IGURE 6 Permanent
form traveling wave solutions
𝑈𝑇(�̄�) computed numerically as
a function of �̄� for selected
cut-off values 𝑢𝑐 . These are
compared against the traveling
wave solution 𝑈𝑚(�̄�) obtained
in the absence of a cut-off
(corresponding to 𝑢𝑐 = 0)

the slope satisfies 𝑈′
𝑇(0) = −𝑣∗(𝑢𝑐)∕2 and therefore becomes increasingly gentle with 𝑢𝑐 (since

𝑣∗(𝑢𝑐) decreases with 𝑢𝑐). When 𝑢𝑐 approaches 1, 𝑈𝑇(�̄�) is in full agreement with the asymptotic
prediction, derived from (89) (not shown).
Figure 7 examines the behavior of the speed 𝑣∗(𝑢𝑐) and compares it to the various asymptotic

expansions obtained as 𝑢𝑐 → 0+ and 𝑢𝑐 → 1− (as derived from (74) and (90), respectively). The
asymptotic expansion (74) obtained for 𝑢𝑐 → 0+ relies on the global constants𝐴∞ and 𝐵∞ associ-
ated with the leading edge behavior of 𝑈𝑚(�̄�) (see (56)). We determine the values of 𝐴∞ and 𝐵∞
by performing a least-squares polynomial fit to the computed𝑈𝑚(�̄�)𝑒

�̄� for �̄� ≳ 10 from where we
obtain to a very good approximation the linear polynomial fit with

𝐴∞ ≈ 3.5 and 𝐵∞ ≈ −11.2. (91)

Figure 7A demonstrates that the two-term asymptotic expansion of 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 1− accu-
rately captures the speed 𝑣∗(𝑢𝑐) for a wide range of values given by 0.4 ≲ 𝑢𝑐 < 1 (when 𝑢𝑐 = 0.4,
𝛿 = 1 − 𝑢𝑐 = 0.6 associated with expansions (79) is no longer small). Figure 7B focusses on the
behavior of the speed obtained for smaller values of 𝑢𝑐. It shows that the curve representing the
two-term expansion based on retaining two terms in (74) and corresponding to the asymptotics
that Brunet and Derrida14 first obtained crosses the numerically computed curve representing
𝑣∗(𝑢𝑐) at 𝑢𝑐 ≈ 10−4 and has a monotonic approach to this curve for smaller values of 𝑢𝑐. We
therefore anticipate that this two-term expansion only becomes genuinely asymptotic for values
of 𝑢𝑐 ≪ 10−4. This implies that any comparison of the three-term and four-term expansions based
on retaining three and four terms in (74), respectively, should only be considered for 𝑢𝑐 ≪ 10−4.
With this in mind, the logarithmic corrections included in our three- and four-term expansions
are an improvement over the two-term expansion for 𝑢𝑐 ≪ 10−4 and a reasonable approxima-
tion to 𝑣∗(𝑢𝑐) with acceptable accuracy, less than 10 percentage error, for 𝑢𝑐 ≲ 8 × 10−3 and for
𝑢𝑐 ≲ 4 × 10−3, respectively. However, the higher-order logarithmic corrections that they neglect
are significant for larger values of 𝑢𝑐.
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A

B

F IGURE 7 A, Propagation speed
𝑣∗(𝑢𝑐) computed numerically as a
function of the cut-off value 𝑢𝑐 for the
particular case of the cut-off Fisher
reaction function (8d) with (3a).
Comparison against the asymptotic
expansions for 𝑣∗(𝑢𝑐) obtained as
𝑢𝑐 → 1− based on retaining one and two
terms in (90) and as 𝑢𝑐 → 0+ based on
retaining two, three, and four terms in
(74). The two-term asymptotic expansion
of 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 0+ corresponds to
prediction (9) first obtained in Brunet
and Derrida14. B, Same as (A) but
focusing on smaller values of 𝑢𝑐

7 CONCLUSIONS

In this paper, we have considered a canonical evolution problem for a reaction-diffusion process
when the reaction function is of standard KPP-type, but experiences a cut-off in the reaction rate
below the normalized cut-off concentration 𝑢𝑐 ∈ (0, 1). We have formulated this evolution prob-
lem in terms of the moving boundary initial-boundary value problem QIVP. In Section 2, we have
obtained some very general results concerning the solution to QIVP. In particular, these general
results indicate that in the large time, as 𝑡 → ∞, the solution to QIVP will involve the propaga-
tion of an advancing nonnegative permanent form traveling wave, effecting the transition from
the unreacting state 𝑢 = 0 (ahead of the wave front) to the fully reacted state 𝑢 = 1 (at the rear
of the wave front). With this in mind, this paper has concentrated on examining the existence
of permanent form traveling wave solutions to QIVP with propagation speed 𝑣 ≥ 0, referred to
as PTW solutions. In Section 3, we have used a phase plane analysis of the nonlinear bound-
ary value problem (23) to establish that (a) for each 𝑢𝑐 ∈ (0, 1), then QIVP has a unique PTW
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solution, with propagation speed 𝑣 = 𝑣∗(𝑢𝑐) > 0 and (b) 𝑣∗ ∶ (0, 1) → ℝ+ is continuous and
monotone decreasing, with 𝑣∗(𝑢𝑐) → 0+ as 𝑢𝑐 → 1−, and 𝑣∗(𝑢𝑐) → 2− as 𝑢𝑐 → 0+. It should be
noted that 2 is the minimum propagation speed of permanent form traveling wave solutions for
the relatedKPP-type function in the absence of cut-off. In Section 4,wehave developed asymptotic
methods to determine the asymptotic forms of 𝑣∗(𝑢𝑐) as 𝑢𝑐 → 0+ and 𝑢𝑐 → 1−. The first limit was
previously considered by Brunet and Derrida14 and Dumortier et al20. The latter employed geo-
metric desingularization to systematically determine the order of the error in Ref. 14.We have here
used matched asymptotics expansions on the direct problem (23) to obtain higher-order correc-
tions in a systematic manner. We show that these are controlled by the detailed structure ahead
of the wave front solution traveling with speed 2 for the related KPP problem obtained in the
absence of a cut-off. The second limit of 𝑢𝑐 → 1− is motivated by applications in combustion1. In
this limit, the asymptotic behavior is obtained via the use of regular asymptotic expansions in the
phase plane.
We anticipate that the approach developed in this paper, for considering PTW solutions to

QIVP, will be readily adaptable to corresponding problems, when the cut-off KPP-type reaction
considered here is replaced by a broader class of cut-off reaction functions, such as those consid-
ered in Refs. 15, 20–23. In comparing the PTW theory for the cut-off KPP-type reaction function
studied here, and its associated KPP-type reaction function without cut-off, we make the observa-
tion that, in the absence of cut-off, a PTW solution exists for each propagation speed 𝑣 ∈ [2,∞),
while at each fixed cut-off value 𝑢𝑐 ∈ (0, 1), a PTW solution exists only at the single propaga-
tion speed 𝑣 = 𝑣∗(𝑢𝑐), with 0 < 𝑣∗(𝑢𝑐) < 2; this observation has been made previously in Ref. 20,
although restricted to sufficiently small cut-off values 𝑢𝑐. This will have implications for the devel-
opment of PTW solutions as large-𝑡 structures in QIVP, with more general classes of initial data.
In the companion paper, we consider the evolution problem QIVP in more detail. Specifically
we establish that, as 𝑡 → ∞, the solution to QIVP does indeed involve the formation of the PTW
solution considered in this paper, and we give the detailed asymptotic structure of the solution to
QIVP as 𝑡 → ∞.
Finally, it is interesting to contrast our results with results obtained for a related problem, the

stochastic KPP equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢) + (�̂�𝑐𝑓(𝑢))
1∕2�̇�, (𝑥, 𝑡) ∈ ℝ × ℝ+, (92)

with 𝑢(𝑥, 0) = 𝑢0(𝑥), where �̇� is a standard space-time white-noise. Similarly to the cut-off KPP
equation (8), Equation (92) arises as a continuum approximation to (microscopic) interacting
particle systems. In particular, for a Fisher reaction function (3a), there is an exact relationship
between this problem and discrete systems of particles which undergo a birth-coagulation type
of reaction in addition to diffusion27,28. Rigorous results have been derived for this model too29,30,
establishing that the average speed of the random traveling wave solutions of (92) is, in the small-
�̂�𝑐 or, weak noise limit, given by

𝑣𝑠(�̂�𝑐) = 2 −
𝜋2

(ln �̂�𝑐)2
+ 𝑂

(
ln | ln �̂�𝑐|| ln �̂�𝑐|3

)
, as �̂�𝑐 → 0+. (93)

Thus, taking �̂�𝑐 = 𝑢𝑐, the difference between (93) and the speed of the PTW solution of the cut-off
KPP model (8) only arises in the third term of the asymptotic expansion of 𝑣𝑠(�̂�𝑐) and 𝑣∗(𝑢𝑐) as
𝑢𝑐 → 0+, a conjecture that was initially made by Brunet and Derrida14,31. The two models behave
very differently when �̂�𝑐 can no longer be regarded as small, as might be anticipated. In the
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large-�̂�𝑐 or, strong noise limit28,32, find that

𝑣𝑠(�̂�𝑐) ∼

√
1
�̂�𝑐
, as �̂�𝑐 → ∞. (94)

The behavior in this limit should be contrasted against expression (90) obtained for 𝑢𝑐 → 1−. A
comparison suggests that �̂�𝑐 and 𝑢𝑐 may in this case be related according to �̂�𝑐 ∼ 1∕(1 − 𝑢𝑐)

2 as
𝑢𝑐 → 1−. It would be interesting to extend this comparison to arbitrary 𝑢𝑐.
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