
 
 

University of Birmingham

Constraining the lensing of binary black holes from
their stochastic background
Buscicchio, Riccardo; Moore, Chris; Pratten, Geraint; Schmidt, Patricia; Bianconi, Matteo;
Vecchio, Alberto
DOI:
10.1103/PhysRevLett.125.141102

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Buscicchio, R, Moore, C, Pratten, G, Schmidt, P, Bianconi, M & Vecchio, A 2020, 'Constraining the lensing of
binary black holes from their stochastic background', Physical Review Letters, vol. 125, no. 14, 141102.
https://doi.org/10.1103/PhysRevLett.125.141102

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/426749704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevLett.125.141102
https://doi.org/10.1103/PhysRevLett.125.141102
https://research.birmingham.ac.uk/portal/en/publications/constraining-the-lensing-of-binary-black-holes-from-their-stochastic-background(dd7c193f-97e1-4ace-a2ef-fbaa9e7359d7).html


 

Constraining the Lensing of Binary Black Holes from Their Stochastic Background

Riccardo Buscicchio ,1,2,* Christopher J. Moore ,1,2 Geraint Pratten ,1,2 Patricia Schmidt ,1,2

Matteo Bianconi ,1 and Alberto Vecchio 1,2

1School of Physics & Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
2Institute for Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

(Received 8 June 2020; revised 24 July 2020; accepted 25 August 2020; published 30 September 2020)

Gravitational waves (GWs) are subject to gravitational lensing in the same way as electromagnetic
radiation. However, to date, no unequivocal observation of a lensed GW transient has been reported.
Independently, GWobservatories continue to search for the stochastic GW signal that is produced by many
transient events at high redshift. We exploit a surprising connection between the lensing of individual
transients and limits to the background radiation produced by the unresolved population of binary back
hole mergers: we show that it constrains the fraction of individually resolvable lensed binary black holes to
less than ∼4 × 10−5 at present sensitivity. We clarify the interpretation of existing, low redshift GW
observations (obtained assuming no lensing) in terms of their apparent lensed redshifts and masses and
explore constraints from GW observatories at future sensitivity. Based on our results, recent claims of
observations of lensed events are statistically disfavored.

DOI: 10.1103/PhysRevLett.125.141102

Introduction.—Several binary black hole (BBH) mergers
have been detected so far [1,2] and a number of additional
candidates reported [3–6]. Forthcoming gravitational-wave
(GW) detector upgrades will provide increased sensitivity,
which will allow us to probe an even larger spacetime
volume [7].
The current BBH detections are loud and individually

resolvable [8,9]. However, they are part of a much larger
population [7] whose properties, such as the overall merger
rate and the source mass distribution, can be inferred
statistically [10,11]. As new GW events are detected, this
population can be constrained with increasing accuracy.
The GW ensemble redshift distribution and correlations
with source parameters constitute an important piece of
evidence, allowing us to place tighter constraints on
progenitors formation history and evolution channels
[12–19]. Ultimately, observing distinctive features in the
population distribution would provide independent char-
acterization of the expansion history of nearby universe
[20]. Importantly, this population does not only consist of
individually detectable BBHmergers but will contain many
other distant, unresolved events [21]. Their emissions
accumulate across all redshifts as a stochastic background
of GWs (SGWB): an incoherent superposition of signals
whose properties cannot be inferred individually [22,23].
Broadly speaking, events are individually observable

depending on the instrument sensitivities and the choice of
search strategy [24–27]. The majority of events that are not
individually observed contribute instead to the SGWB.
Current estimates predict a detection of a SGWB with a
signal-to-noise ratio (SNR) of 3 after 40 months of
observations [28,29]. The observation of a stochastic

background will complement individual detections, provid-
ing an integrated measure of the cosmological black holes’
population history [30].
GWs from BBHs are generated by the dynamics of

vacuum spacetime, as prescribed by general relativity. As
a consequence, they carry information from an inherently
scale-free physics. Additional assumptions on the formation
mechanism, or observations of a counterpart are necessary to
connect with weak or electromagnetic phenomena thereby
introducing new length and energy scales and breaking the
ubiquitous mass-distance degeneracy [20].
However, GWs are in principle affected by the interven-

ing gravitational potential which influences the inferred
spatial and temporal properties of the signals [31]. At the
simplest level of description, the effect of lensing on a GW
signal is to change its strain amplitude by a multiplicative
magnification factor

ffiffiffi
μ

p
. As a consequence, and in absence

of independent constraints on the lensing magnification, the
mass-distance degeneracy is reestablished even for chirping
sources. Parameter estimation pipelines do not currently
incorporate any lensing model, and therefore infer source
properties agnostically of such a phenomenon. However,
follow-up studies have addressed a number of questions: is
any detection actually magnified? Are there event couples
originating from the same source emission, whose light
path has been altered to mimic independent events? Does
lensing affect the population inference [32–42]?
In this Letter we address one of the above questions,

rephrasing it as a probabilistic statement. Given a set of
observations, how likely is it for a fraction to be magnified
by more than a certain μ? We show that by considering
lensing of the entire population a significant amount of
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information can be leveraged from the SGWB; even the
current nondetection has surprising astrophysical conse-
quences. Significantly, we find the recent claims of lensed
events to be statistically disfavored [40–42].
Modeling.—We now turn our attention to the modeling

assumptions made. First, we describe the effect of lensing
on GW signals, and the parametrization of the lensing
probability model. Second, we summarize the features of
the population model for BBH mergers. Finally, we derive
the associated energy density of the stochastic background
including lensed events. Throughout this Letter we
use G ¼ c ¼ 1.
Lensing probability: Unlensed, chirping binaries pro-

vide a direct measurement of their luminosity distance dL
[43,44]. If associated with electromagnetic counterparts,
this gives an independent estimate of the source redshift z.
Together, these constitute a point measurement in the
expansion history of the universe [45,46]

dLðzÞ
1þ z

¼ 1

H0

Z
z

0

dz0
1

Eðz0Þ ; ð1Þ

whereH0 is the local Hubble constant. EðzÞ is a function of
redshift, proportional to the time derivative of the logarithm
of the scale factor, and encodes the information on the
cosmological density parameters.
Alternatively, assuming a cosmological model breaks the

mass-redshift degeneracy, thereby providing a redshift
estimate for each observed event. However, this degeneracy
is reestablished by the addition of an a priori unknown
lensing magnification μ.
Given a GW event, we focus on its true luminosity

distance dLðzÞ, chirp massM, and lensing magnification μ.
Its strain amplitude is magnified by a multiplicative factorffiffiffi
μ

p
[31]. Independent of the cosmology, the apparent mass

M̃, redshift z̃, and distance d̃L are related to their true
values by the following relationships:

dLðz̃Þffiffiffĩ
μ

p ¼ dLðzÞffiffiffi
μ

p ; M̃ð1þ z̃Þ ¼ Mð1þ zÞ: ð2Þ

The apparent parameters are those inferred by any pipeline
that assumes a certain magnification μ̃. Parameter estimates
provided in published catalogues are computed under the
assumption of no lensing, i.e., μ̃ ¼ 1 [1,4–6].
In order to incorporate the effect of lensing in the

parameter reconstruction, additional independent informa-
tion on the same transient would be required: e.g., the
observation of electromagnetic counterparts, a detailed
knowledge of the lensing potential along the GW travel
path, or an association with a host galaxy. Another
possibility is the association between two or more GW
events, whose apparent properties can be referred back to a
common source that has undergone multiple imaging [33].
In the absence of such additional information, prior

knowledge on μ remains unaltered after any single detec-
tion, because of the above degeneracy.
In this Letter we use a semianalytic lensing model for the

probability of a given magnification dP=d ln μ from equa-
tion (B1) in [36]. We use cubic splines to interpolate the
data from Table I in [36] across the redshift range
z ∈ ½0; 20�. We note that this model correctly captures
the limiting behavior in both the strong and weak lensing
regimes [47,48], and is in agreement with recent hydro-
dynamical simulations [49]. The lensing model is described
in more detail in the Supplemental Material [50].
BBH populations: Following [10,17] (which are based

on [1]), we parametrize the BBH differential merger rate R
as a function of the binary masses m1;2 and redshift z, as

d3R
dm1dm2dz

¼ Rðzjλ; γ; zPÞpðm1; m2jmmin; mmax; αÞ; ð3Þ

where

pðm1; m2jmmin; mmax; αÞ ∝ m−α
1

× Iðm1jmmin; mmaxÞIðm2jmmin; m1Þ: ð4Þ

Here Ið·ja; bÞ are the indicator functions on the interval
½a; b�, and throughout we adopt α ¼ 2.3 and
ðmmin; mmaxÞ ¼ ð5; 50Þ M⊙.
We set the cosmological merger rate to track the star

formation rate (with no delay between formation and
coalescence). This is modeled using a power law with
index λ peaking at zP and tapering off further in the past
with index (λ − γ) [51];

Rðzjλ; γ; zPÞ ¼ R0

ð1þ zÞλ
1þ ½ 1þz

1þzP
�γ : ð5Þ

We tune R0 to match the current estimate for the local
merger rate from GW population analyses [10]. The
uncertainty on the merger rate propagates to all redshifts
affecting the entire population.
A straightforward consequence of fixing the mass and

redshift distributions [Eqs. (4) and (5), respectively] is the
amplitude of the stochastic background accumulated over
the past light cone of the observer. We have considered a
number of merger rate models, varying both λ and γ, while
keeping the star formation rate peak zP fixed. In this Letter,
we present results for two choices of λ, with a fixed γ, that
yield SGWB amplitudes consistent with current upper
limits [30] (see Fig. 1, and Table I, and the discussion
in the following section).
For simplicity, we neglect in both models black hole

spins. Depending on the spin properties of the BBHs, the
enhancement on the overall rate can be significant, up to a
factor of 3 in the mass range of interest for current detectors
[18]. We leave a consistent inclusion of spin effects—i.e.,
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on the intrinsic merger rate, on the spectral shape of the
stochastic signal, and on individual event detectability—to
future work.
We highlight that the local merger rate and mass

distribution used here were obtained with hierarchical
analyses on individual GW source parameters [52–54].
Therefore, in order to remain consistent with the prior
assumptions therein, we have to consider z;m1; m2 as the
apparent redshifts and masses with no intervening lensing,
i.e., assuming μ̃ ¼ 1. Henceforth, building on the notation
in Eq. (2), we denote these parameters z̃; m̃1; m̃2, and
related functions with a superscript tilde.
Lensed stochastic background: The stochastic back-

ground from BBH mergers is the incoherent superposition
of individual GW events [29,55]. We assume a flat ΛCDM
cosmology and a simple leading order post-Newtonian
expression for the GWenergy spectrum from the inspiral of
nonspinning BBHs [56]

dEGWðm1; m2Þ
dfr

¼ ðπÞ2=3
3

Mðm1; m2Þ5=3f−1=3r ; ð6Þ

with fr ¼ fð1þ zÞ the GW frequency in the source rest
frame. Integrating over the cosmological expansion history,
gives a value for the energy density of GWs from BBH
mergers expressed as a fraction of the critical density ρc:
this is a standard result from the GW literature [55], and it
reads

ΩBBHðfÞ ¼
1

ρc

Z
dz

f
H0ð1þ zÞEðzÞ

×
Z

dm1dm2

d3R
dm1dm2dz

dEGW

dfr

����
fr¼fð1þzÞ

: ð7Þ

We stress here that Eq. (7) neglects the effects of lensing.
Here, we seek to instead compute Ω̃BBH, which accounts
for the lensing model. In order to do this we must modify
Eq. (7) by replacing fdz; dm1;2g → fdz̃; dm̃1;2g, use the
apparent differential merger rate d3R̃, and use the apparent
redshifted frequency fr ¼ fð1þ z̃Þ.
We constrain the maximum allowed redshift evolution

—λ in Eq. (5)—by considering upper limits on a SGWB
[28,57], while keeping the local merger rate fixed to the
observed value. We consider the current SGWB limit based
on the O1 and O2 observing runs, using data from the two
LIGO instruments only. As a limit for a nondetection we
assume a signal-to-noise ratio smaller than 2 in a stochastic
search [57]. Similarly, we forecast the projected limits after
two years of observation at design sensitivity and 50% duty
cycle of the network of the two LIGO instruments and
Virgo. We denote the two scenarios O1þO2 and design,
respectively.
As expected and clearly shown in Fig. 1 a nondetection

of a SGWB over longer integration time and with better
sensitivities implies a lower merger rate outside the horizon
for individual detections. The merger rate redshift evolution
considered here is consistent with the results of [30].
Lensing fraction.—Having established the population

models to be considered, we turn to our main task:
quantifying the probability for an individual transient to
be magnified with a particular magnification.
For each apparent redshift shell ½z̃; z̃þ dz̃� we consider

contributions from true redshifts shells up to z ¼ 20, the
maximum extent of the lensing model [36]. The pair ðz; z̃Þ
fixes uniquely the magnification and therefore the relation-
ship between the two redshifts is given by Eq. (2) (with
μ̃ ¼ 1); this transformation, and its Jacobian, j∂z̃=∂zjμ, is
further explored in the Supplemental Material [50].
We use this relationship to write explicitly an expression

for the differential rate of magnified events that is a proxy
for the magnification probability,

FIG. 1. Cosmological merger rate density models considered,
using the parametrization in Eq. (5). Parameter choices are listed
in Table I. Models are matched to the current local estimate for
the BBHmerger rate, and to a stochastic signal with SNR ¼ 2 at a
given sensitivity. The blue line refers to the sensitivity achieved
after O1 and O2. The red line refers to the projected sensitivity
after two years of observation at 50% duty cycle at design
sensitivity. Shaded regions delimit analogous models, tuned to
the upper and lower 90% confidence interval on the local merger
rate estimate.

TABLE I. Parameters modeling the merger rate density. R0 is
tuned to match the current estimate of the local merger rate, while
zP; γ capture the star formation rate peak and decay further out in
redshift. λ is adjusted to provide a stochastic background signal
with a fixed SNR ¼ 2 at the two sensitivities considered. Figure 1
shows the two resulting distributions.

R0 (Gpc−3 yr−1) λ γ zP

O1þO2 57þ40
−25 5.8þ0.4

−0.4 5.6 1.9
Design 57þ40

−25 3.4þ0.6
−0.7 5.6 1.9
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d2R
dzd ln μ

¼ dPðμjzÞ
d ln μ

4πχ2ðzÞ
H0ð1þ zÞEðzÞ

���� ∂z̃∂z
����
μ

×
Z

dm̃1dm̃2

d3R̃
dm̃1dm̃2dz̃

pdetðm̃1; m̃2; z̃Þ: ð8Þ

Additionally, using apparent masses and redshifts we filter
events by their detectability. We use a fixed single detector
threshold SNR ¼ 8 for each given set of source parameters,
and compute the observable fraction of the distribution in
component masses, averaged over the source orientation
[8]. We estimate selection effects pdetðm̃1; m̃2; z̃Þ for both
sensitivities using the publicly available code GWDET [58].

As discussed above, the SGWB should contain only
unresolved events. To be consistent, the same selection
effects should be added to Eq. (7) by the inclusion of a
factor ½1 − pdetðm̃1; m̃2; z̃Þ� in the innermost integral.
However, we neglect this effect here because the region
of parameter space where pdet is nonzero, i.e., at moderate
masses and low redshift, is far from the peak of the
intrinsic rate.
Results are shown in Figs. 2 and 3. Detections are

dominated in both scenarios by low-redshift, unlensed
events (i.e., μ ≈ 1). While at design sensitivity the detec-
tions will extend further out to z ≈ 2, magnifications
smaller than two will likely dominate the population by
at least three orders of magnitude. This is clearly apparent
in Fig. 2, where the contributions across redshifts are
integrated out to a single magnification distribution. For
ease of comparison we show both as cumulative distribu-
tion functions, i.e., factoring out the respective total rate of
detections per year.
Remarkably, a better instrument sensitivity provides

proportionally more events at larger magnification. This
is the net result of a few competing factors. The assumed
nondetection of a SGWB constrains the population to a
shallower redshift distribution: as a consequence both
lensed and unlensed events within the detection horizon
are equally suppressed; however, the population of distant
events at z > 2 is significantly depleted, therefore reducing
their relative contribution to the apparent distribution.
We study the impact on our results of our modeling

choices for (i) the lensing model, (ii) the redshift evolution
of the merger rate, and (iii) the BBH mass distribution.
Overall we find our results to be robust; changing the mass
distribution has the largest effect, increasing the fraction of
lensed event by at most a factor of 2 (see details in the
Supplemental Material [50]).
Conclusions.—A SGWB of astrophysical origin has not

yet been observed. This constrains the redshift dependence

FIG. 2. Complementary cumulative distribution for the lensing
probability of detectable BBH mergers, constrained by the
nondetection of the SGWB for two sensitivity scenarios. Solid
lines and narrow shaded regions are obtained from corresponding
models shown in Fig. 1. The fraction of lensed transients with
μ > 2 is less than ∼4 × 10−5 afterO1 andO2; a nondetection of a
SGWB after two years of operation at design sensitivity would
yield a fraction a factor of 10 higher. The result depends very
weakly on the local merger rate uncertainty, hence the light-blue
shaded region has negligible width.

FIG. 3. Differential rate of detectable lensed events for each redshift and logarithmic magnification bin. Results are shown as solid
lines colored according to magnification. Left (right) panel shows results for theO1 andO2 (design) population models; see Table I and
the accompanying discussion in the text. Moderately magnified events (e.g., μ < 10) dominates the detected population of BBHmergers
by at least three orders of magnitude. At design sensitivity, a nondetection of a stochastic background will imply by itself a significant
reduction of mergers at high redshift, as described by the model in Fig. 1. Concurrently, a better sensitivity enhances detections further
out in redshift, at all magnifications. Predominantly, nonmagnified events will be observed out to z ≈ 2. Avery small fraction of strongly
magnified ones will extend out z ≈ 6. A comparison of the overall improvement integrated over redshift at each magnification, is
presented in Fig. 2.
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of the BBH merger rate, particularly the number of mergers
at high redshift. This in turn has consequences for the
lensing probability of individual events.
In this Letter we exploit this surprising link between the

nondetection of a SGWB and the lensing probability to
quantify the fraction of lensed BBH events. We provide
estimates for the relative contribution of lensed BBHs to the
total rate out to redshifts of z ≤ 20 and magnifications of
μ ≤ 100. Even the current nondetection of a SGWB already
has interesting astrophysical implications; we find a frac-
tion below ∼4 × 10−5 of events to have a magnification
μ ≥ 2. At design sensitivity, in the absence of a SGWB
detection after two years of observation, this fraction
increases by a factor of ∼10.
If and when there is a detection of a SGWB, our

argument will become even more informative. It can be
applied to the BBH merger redshift distribution—-con-
strained jointly from the mergers population and the SGWB
detection—to predict the number of lensed events. For a
detection of a SGWB in less than two years of observation
at design sensitivity, we expect the inferred lensing fraction
to lie between the two curves shown in Fig. 2.
Simultaneously and independently, a similar study using

complementary methods appeared [59] showing agreement
with our results.
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