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SUMMARY

Bundle Sheath Defective 2, BSD2, is a stroma-targeted protein initially identified as a factor required for the

biogenesis of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in maize. Plants and algae uni-

versally have a homologous gene for BSD2 and its deficiency causes a RuBisCO-less phenotype. As RuBisCO

can be the rate-limiting step in CO2 assimilation, the overexpression of BSD2 might improve photosynthesis

and productivity through the accumulation of RuBisCO. To examine this hypothesis, we produced BSD2

overexpression lines in Arabidopsis. Compared with wild type, the BSD2 overexpression lines BSD2ox-2 and

BSD2ox-3 expressed 4.8-fold and 8.8-fold higher BSD2 mRNA, respectively, whereas the empty-vector (EV)

harbouring plants had a comparable expression level. The overexpression lines showed a significantly

higher CO2 assimilation rate per available CO2 and productivity than EV plants. The maximum carboxylation

rate per total catalytic site was accelerated in the overexpression lines, while the number of total catalytic

sites and RuBisCO content were unaffected. We then isolated recombinant BSD2 (rBSD2) from E. coli and

found that rBSD2 reduces disulfide bonds using reductants present in vivo, for example glutathione, and

that rBSD2 has the ability to reactivate RuBisCO that has been inactivated by oxidants. Furthermore, 15% of

RuBisCO freshly isolated from leaves of EV was oxidatively inactivated, as compared with 0% in BSD2-over-

expression lines, suggesting that the overexpression of BSD2 maintains RuBisCO to be in the reduced active

form in vivo. Our results demonstrated that the overexpression of BSD2 improves photosynthetic efficiency

in Arabidopsis and we conclude that it is involved in mediating RuBisCO activation.

Keywords: Arabidopsis thaliana, BSD2, disulfide bonds, oxidative stress, protein disulfide reductase, redox,

RuBisCO, Zn finger domain.

INTRODUCTION

The first step of CO2 fixation is catalyzed by ribulose 1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) in the

chloroplast stroma, and is often the rate-limiting step of

photosynthesis in the natural environment (Sage et al.,

2008). RuBisCO is required in high amounts in C3 plant

chloroplast due to its low catalytic turnover rate and lim-

ited specificity for CO2 versus O2 (Parry et al., 2013). There-

fore, RuBisCO has been targeted to be artificially modified

to improve photosynthesis and plant productivity.
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However, manipulations of RuBisCO in either catalytic

properties or quantity are not straightforward partly

because putting 16 protein subunits together (L8:S8; eight

large and eight small subunits) in one RuBisCO is a com-

plex task requiring numerous chaperones (Whitney et al.,

2011; Aigner et al., 2017). Furthermore, auxiliary factors are

also required for the activation of mature RuBisCO, impos-

ing additional limitations on the apparent catalytic perfor-

mance (Portis, 2003; Sage et al., 2008).

RuBisCO activity is determined in a light-dependent

manner and is active in the light and inactive in the dark.

Sequential binding of CO2 and Mg2+ is a pre-requisite for

RuBisCO catalysis (Portis, 2003). This process is inhibited

by a range of sugar phosphates that tightly bind to the

active site in the large subunit. Upon illumination, ATP-de-

pendent RuBisCO activase promotes RuBisCO activation

by releasing these ligands when the stromal ATP/ADP ratio

increases with photophosphorylation (Scales et al., 2014).

Active photosynthetic electron transport also triggers the

release of Mg2+ from the thylakoid to the stroma pool,

thereby facilitating RuBisCO activation.

Aside from its regulation by carbamylation, RuBisCO

activity is also redox regulated. It has been shown that

reactive oxygen species (ROS), such as hydrogen peroxide

(H2O2), inactivate RuBisCO (Moreno et al., 2008). The pro-

duction of ROS is accelerated in conditions where the

absorbed light energy is excessive for photosynthesis, for

example during environmental stress. Therefore, it is

assumed that RuBisCO tends to be inactivated by ROS

under such stressful conditions (Zaffagnini et al., 2012). In

laboratory experiments, the oxidatively inactivated

RuBisCO has been demonstrated to be reactivated by the

addition of reducing agents, for example dithiothreitol

(DTT), indicating that this inactivation is reversible (Sud-

hani and Moreno, 2015). However, it is unknown if oxida-

tively inactivated RuBisCO is reactivated in vivo or if any

enzyme is involved in this process.

BUNDLE SHEATH DEFECTIVE2 (BSD2), a small stroma-

targeted protein, was initially identified as an essential fac-

tor for RuBisCO biogenesis in maize (Brutnell et al., 1999),

and now appears to be universal in green algae and plants

(Doron et al., 2014; Aigner et al., 2017). BSD2-deficient

plants cannot accumulate the large subunit of RuBisCO

despite its active translation and transcription (Brutnell

et al., 1999; Wostrikoff and Stern, 2007). Several studies

have proposed that BSD2 acts in post-translational modifi-

cation of nascent large subunit or RuBisCO assembly (Brut-

nell et al., 1999; Wostrikoff and Stern, 2007; Doron et al.,

2014; Aigner et al., 2017). The recent success in recombi-

nant expression of plant RuBisCO in Escherichia coli identi-

fied BSD2 as the late-stage assembly factor which seems

to stabilize the premature L8 complex (Aigner et al., 2017).

This view is consistent with the protein annotation of

BSD2 homologues, which uniquely conserve the cysteine

(Cys) rich Zn finger domains of the DnaJ chaperone in

E. coli (Brutnell et al., 1999).

As BSD2 was shown to be involved in the production

and accumulation of RuBisCO in plants it is conceivable

that overexpression of BSD2 improves photosynthesis and

productivity through accumulating RuBisCO. Conlan et al.

(2018) recently showed that overexpressing BSD2 in

tobacco chloroplasts did not alter RuBisCO content, activa-

tion status, leaf photosynthesis rate, or plant growth. Here,

we produced BSD2-overexpressing lines, BSD2ox-2 and

BSD2ox-3, in Arabidopsis. Our results demonstrate that the

overexpression of BSD2 increases the CO2 assimilation

rate and plant biomass by increasing the maximum car-

boxylation rate by increasing the proportion of active cat-

alytic sites, but not by increasing the number of total

catalytic sites or RuBisCO content. To understand its mech-

anism, we isolated recombinant BSD2 (rBSD2) from E. coli

and found that BSD2 has the ability to reactivate oxida-

tively inactivated RuBisCO in vitro. In this study, we

examined how overexpression of BSD2 improves photo-

synthesis and productivity and discuss a physiological

function of BSD2 in plants. Our results demonstrated that

BSD2 is a key component in the mechanism to reactive

oxidized RuBisCO, thereby maintaining photosynthetic effi-

ciency in plants.

RESULTS

Overexpression of BSD2 improves photosynthetic

efficiency and increases plant biomass

The full-length open reading frame of BSD2 cDNA was

used to generate an overexpression vector pG2CYO2. Fol-

lowing floral dipping, transgenic Arabidopsis plants were

selected on both kanamycin-containing and hygromycin-

containing medium (Nakagawa et al., 2007). We isolated 15

BSD2-overexpressing lines, and the two lines (BSD2ox-2

and BSD2ox-3) showing the highest levels of BSD2

(At3g47650) transcripts at T3 generation were selected for

this study. The levels of BSD2 transcripts in BSD2ox-2 and

BSD2ox-3 were 4.8-fold and 8.8-fold higher than in the wild

type, respectively, and there was no significant difference

between wild type and the empty-vector control (Figure 1a).

Along with their higher BSD2 gene expression, the BSD2ox

lines accumulated 74–78% more BSD2 protein in leaves

than the control plants (Figure 1b). Conversely, the results

of SDS-PAGE analysis indicated the amounts of both

RuBisCO large and small subunits were comparable

between the BSD2ox and control leaves (Figure 1c; Fig-

ure S1). Nevertheless, the BSD2ox lines increased their leaf

area relative to the control (Figure 1d; Figure S2). The

increased leaf area was due to an increase in the size of

individual leaves (Figure 1e; Figure S3) but not the number

of leaves (Figure S4). Eventually, the BSD2ox lines had a

1.23–1.35-fold larger shoot dry mass than the control at 35

© 2019 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), 102, 129–137

130 Florian A. Busch et al.



days after seeding (Figure 1e). In gellan gum-grown plants,

the shoot/root ratio was similar between the BSD2ox lines

and control (Figure S5), suggesting that the carbon-parti-

tioning was unaltered.

To see the effect of overexpression of BSD2 on photo-

synthesis, CO2 assimilation rate per leaf area (A) in

response to varying CO2 concentrations was measured

under saturating irradiance. The response of A to the CO2

concentration in either the intercellular airspace (Ci;

Figure S6) or at the site of carboxylation (Cc; Figure 2a)

showed greater photosynthetic capacity in the BSD2ox

leaves. Fitting a photosynthetic model to these A–Cc plots,

we estimated the maximum RuBisCO carboxylation rate

(Vcmax) and the photosynthetic electron transport rate (J)

(Figure 2b). The BSD2ox leaves had higher Vcmax than con-

trol leaves by 19–26%. J also tended to be higher in the

BSD2ox leaves, resulting in similar J/Vcmax ratios (Fig-

ure 2b). This indicates that photosynthetic electron trans-

port capacity is increasing in parallel with Vcmax in the

BSD2ox plants. It is therefore likely that the increase in bio-

mass in the BSD2ox plants is caused by this increase in

photosynthetic capacity. Furthermore, the number of

RuBisCO total catalytic sites per leaf area in those leaves

for the photosynthesis measurements was not significantly

different between the overexpression lines and control

(Figure 2c). Nevertheless, the apparent catalytic efficiency

for RuBisCO carboxylation, estimated as Vcmax per total

catalytic site, was higher in the BSD2ox lines (Figure 2c).

This indicates that proportion of active catalytic sites to

total catalytic sites of RuBisCO was increased in the

BSD2ox leaves. Overall, in vivo catalytic efficiency rather

than RuBisCO content was enhanced in the BSD2ox leaves,

resulting in higher overall photosynthetic capacity and

growth.

BSD2 catalyzes reduction of disulfide bonds

To understand how the overexpression of BSD2 enhanced

the catalytic efficiency for RuBisCO carboxylation in vivo,

we isolated rBSD2 protein from E. coli and studied its char-

acteristics. BSD2 orthologues in green plants contain two

Cys4-type Zn finger motifs (CXXCXGXG) (Brutnell et al.,

1999; Wostrikoff and Stern, 2007; Doron et al., 2014), which

show either chaperone activity or thiol-disulfide oxidore-

ductase activity in E. coli DnaJ (Tang and Wang, 2001). In

chloroplasts, four other proteins likewise contain a DnaJ-

like domain: CYO1/SCO2 (Shimada et al., 2007; Albrecht

et al., 2008), LQY1 (Lu et al., 2011) and HCF222 (Hartings

et al., 2017) in/at the thylakoid membrane, and PSA2 in the

thylakoid lumen (Fristedt et al., 2014). They all exhibit pro-

tein disulfide reductase (PDR) activity like DnaJ (de Crouy-

Chanel et al., 1995). We then tested whether rBSD2 also

has PDR activity with a protein disulfide isomerase (PDI)

assay (Raturi and Mutus, 2007; Muranaka et al., 2012). In

this assay, fluorescence increases if the reduction of disul-

fide bonds is mediated by dieosin glutathione (Di-E-GSSG).

When purified rBSD2 and a non-specific reductant (i.e.

DTT) was added to PDI assay solution containing Di-E-

GSSG, the fluorescence signal significantly increased (Fig-

ure 3a). However, such an increase did not happen in the

presence of DTT without rBSD2. These results demonstrate

that rBSD2 has PDR activity, which is further supported by

the dependency of the reaction rate on the substrate con-

centration (Figure 3b).

Figure 1. Gene expression, protein accumulation, and growth in wild type

(Col-0) and transgenic plants transformed either with an empty vector

(Empty vector) or the BSD2 overexpression vector (BSD2ox-2, BSD2ox-3).

(a) Expression of BSD2 gene transcript in leaves of 3-week-old transgenic

lines relative to Col-0 (mean � SE; n = 4). (b) Western blotting analysis for

BSD2 protein in leaves of 3-week-old plants. Values relative to Col-0 are

shown (mean � SE; n = 3). (c) SDS-PAGE analysis for large and small sub-

units of RuBisCO (RBCL and RBCS) in leaves of 3-week-old plants. Relative

values to Col-0 are shown (mean � SE; n = 6). (d) Change of total leaf area

at 2 and 5 weeks after seeding (mean � SE; n = 7). (e) Total leaf area per

plant, average leaf area per individual leaf, and shoot dry weight of 35-day-

old plants (mean � SE; n = 7). P-values by Student’s t-test are indicated if

less than 0.1 (*P < 0.05, **P < 0.01).

© 2019 The Authors
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Each of CYO1, LQY1, HCF222 and PSA2 is associated

with membrane-embedded photosynthetic complexes

involved in thylakoid biogenesis/homeostasis (Lu et al.,

2011; Muranaka et al., 2012; Tanz et al., 2012; Fristedt et al.,

2014). Considering BSD2 is a stromal protein, we expect

that the catalytic properties of BSD2 are different from the

membrane-embedded proteins. We then estimated PDR

kinetics of rBSD2 from the Michaelis–Menten curve (Fig-

ure 3b), as was done for the recombinant CYO1 in Ara-

bidopsis (Muranaka et al., 2012) and rice (Tominaga et al.,

2016). Km and Kcat values for rBSD2 were 9.19 µM and

3.39 min�1, respectively, which are higher than those of

CYO1 (Table 1), suggesting that BSD2 has a lower affinity

for its substrate. This distinctive feature may reflect differ-

ences in accessibility to and/or abundance of their sub-

strates in the highly crowded macromolecular solution.

PDR activity of rBSD2 relies on the presence of reduc-

tant. To examine whether rBSD2 can use biological reduc-

tants, we measured the PDR activity of rBSD2 in the

presence of reduced glutathione (GSH), NADPH, or NADH.

Our results demonstrated that GSH is the most effective

reductant among them and its efficiency is comparable to

DTT (Figure 3c).

BSD2 reactivates oxidized RuBisCO

Previous studies have demonstrated that RuBisCO loses

activity through the oxidation of its cysteine residues (Mar-

cus et al., 2003; Moreno et al., 2008). We therefore tested

whether BSD2 can reduce and thereby reactivate oxidized

RuBisCO. Carboxylation rates of purified RuBisCO

decreased by 60% after being oxidized with 5 mM H2O2

(Figure 4a). We then tested the effect of rBSD2 on the

recovery of the carboxylation rate in the presence of 1 mM

DTT. In our experimental condition, the carboxylation rate

did not change in the absence of rBSD2, although higher

concentrations of DTT might be able to reactivate oxidized

RuBisCO (Sudhani and Moreno, 2015). However, in the

presence of rBSD2, the rate partially, but significantly,

recovered (Figure 4b). Our results demonstrate that rBSD2

can reactivate oxidized RuBisCO.

Figure 2. Photosynthesis in leaves of empty-vector control plants (Empty vector) and BSD2-overexpressing plants (BSD2ox-2,3). (a) Response of CO2 assimila-

tion (A) to chloroplastic CO2 concentration in leaves (Cc) (mean � SE; n = 4–5). (b) Maximum RuBisCO carboxylation rate (Vcmax) and photosynthetic electron

transport rate (J) fitted to the A–Cc response curves in (a), and the J/Vcmax ratio. (c) Number of RuBisCO total catalytic sites per leaf area, and the maximum

RuBisCO carboxylation rate (Vcmax) per total catalytic site (mean � SE; n = 4–5). Both Vcmax in (b) and total catalytic sites in (c) were measured in the same

leaves as used in (a). P-values by Student’s t-test are indicated if less than 0.1 (*P < 0.05).
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To examine whether the overexpression of BSD2 influ-

ences the redox state of RuBisCO in leaves, we isolated

crude protein samples from leaves without adding reduc-

tants and subsequently measured the RuBisCO carboxyla-

tion rate after incubating the sample with or without DTT

for 30 min. In the empty-vector control, the RuBisCO car-

boxylation rate in samples incubated with DTT was 15%

higher than when incubated without DTT, indicating that

15% of RuBisCO catalytic sites was inactive due to oxida-

tion (Figure 5). Conversely, RuBisCO carboxylation rate in

the BSD2 overexpression lines could not be increased by

adding the reductant DTT, showing that there was no activ-

ity loss due to oxidation in the extracted protein samples

(Figure 5). Our results demonstrated that RuBisCO from

freshly isolated leaves consists of a higher proportion of

the reduced active form in the BSD2 overexpression lines

than in the control.

DISCUSSION

Our results demonstrate that BSD2 overexpression

improves both photosynthesis and productivity in our

study organism Arabidopsis. BSD2 overexpression did not

change the RuBisCO content or the number of total cat-

alytic sites, but improved the in vivo maximum carboxyla-

tion efficiency probably through increasing the pool of

reduced RuBisCO.

Incubation of isolated RuBisCO in oxidants, including

ROS, decreases RuBisCO activity (Marcus et al., 2003). The

Figure 3. PDR assay of rBSD2. (a) Change in fluorescence intensity after a

solution containing 1 µM Di-E-GSSG was incubated with 5 µM DTT in the

presence (solid line) or absence (broken line) of 100 nM rBSD2. (b)

Michaelis–Menten curve for PDR kinetics with 5 µM DTT. Km and Vmax of

rBSD2 were estimated to be 9.189 µM and 339 nM min�1, respectively

(mean � SD; n = 3). (c) Effect of 5 µM reductants on the PDR activity. Values

relative to DTT are shown (mean � SD; n = 3). Different letters indicate sig-

nificant difference among reductants (Tukey’s test, P < 0.05).

Table 1 Kinetic properties of BSD2 and CYO1 in Arabidopsis thali-
ana and Oryza sativa. Data for CYO1 were obtained in previous
studies (Muranaka et al., 2012; Tominaga et al., 2016)

Species Km (µM) Kcat (min–1)
Kcat Km

–1

(9103 M
�1 sec�1)

BSD2 A. thaliana 9.19 � 0.93 3.39 � 0.16 6.2 � 0.8
CYO1 A. thaliana 0.82 � 0.09 0.53 � 0.02 10.7 � 1.5

O. sativa 3.16 � 0.88 0.53 � 0.05 2.8 � 0.4

Means � SE (n = 3).

Figure 4. RuBisCO reactivation assay. (a) RuBisCO carboxylation rate after

incubation with 1 mM DTT (reduced) or 5 mM H2O2 (oxidized) for 30 min

(mean � SD; n = 3). (b) Change in carboxylation rate of the pre-oxidized

80 nM RuBisCO in the presence (closed circles) or absence (open circles) of

40 nM rBSD2 (mean � SD; n = 3). (*P < 0.05, ***P < 0.001, by Student’s

t-test).

© 2019 The Authors
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oxidatively inactivated RuBisCO has been demonstrated

in vitro to be reactivated by reductants, such as DTT

(Garc�ıa-Ferris and Moreno, 1993; Marcus et al., 2003; Sud-

hani and Moreno, 2015). In the present study, we demon-

strated that rBSD2 can reactivate the oxidatively

inactivated RuBisCO and can act as a catalyst for this

reduction. As a consequence, photosynthetic efficiency is

improved despite no observed increase in absolute

RuBisCO content. This is consistent with results showing

that the overexpression of BSD2 increases the apparent

carboxylation efficiency of RuBisCO (Figure 2) and that the

reduced form of RuBisCO was more abundant in the BSD2

overexpression lines than in the control (Figure 5). How-

ever, we need to note that the effect of overexpression of

BSD2 on the RuBisCO catalysis and photosynthesis might

differ among plants and environments, depending on the

sensitivity of RuBisCO to the oxidants, such as ROS.

Indeed, the overexpression of BSD2 has not improved pho-

tosynthesis in tobacco (Conlan et al., 2018).

PDR activity of BSD2 reactivates oxidatively inactivated

RuBisCO

Oxidation of RuBisCO by oxidants, including ROS, inacti-

vates RuBisCO, but its mechanism remained unknown.

However, as RuBisCO possesses cysteine residues that are

sensitive to oxidants, it is conceivable that the oxidation of

cysteine residues is associated with the inactivation of

RuBisCO. Importantly, RuBisCO oxidized by disulfides such

as cystamine can be reactivated by thiols like DTT and cys-

teamine (Garc�ıa-Ferris and Moreno, 1993; Marcus et al.,

2003; Sudhani and Moreno, 2015). Therefore, the

inactivation of RuBisCO by oxidants is reversible, most

likely through the reduction of oxidized cysteine residues.

In the present study, we showed that rBSD2 has PDR activ-

ity, suggesting that reactivation of oxidatively inactivated

RuBisCO by BSD2 is associated with the direct thiol trans-

actions between oxidized RuBisCO and BSD2. In practice,

this reaction occurs only if effective reductants are avail-

able at the site of RuBisCO (i.e. in the stroma). We con-

firmed that glutathione, NADPH, and NADH, which also

exist in the stroma, could initiate the PDR reaction and that

glutathione was the most effective of these reductants (Fig-

ure 3c). A similar preference for reductants has also been

observed in CYO1 (Muranaka et al., 2012; Tominaga et al.,

2016). It is known that RuBisCO is a potential target of both

thioredoxins (Balmer et al., 2004; Lemaire et al., 2004) and

glutaredoxins (Zaffagnini et al., 2012). Although thioredox-

ins can target vicinal Cys pairs of RuBisCO, they are unli-

kely to be involved in the reactivation as these disulfides

are not critical for the catalytic activity (Ranty et al., 1991;

Moreno and Spreitzer, 1999; Mar�ın-Navarro and Moreno,

2006), and the concentration of thioredoxins is not suffi-

cient to reduce the large pool of RuBisCO (Peltier et al.,

2006; Sudhani and Moreno, 2015). Conversely, glutathione

and ascorbate are very abundant in the chloroplast stroma

ranging between 0.5–3.5 and 20–300 mM, respectively,

thereby constituting a pool of redox buffers against oxi-

dants (Foyer and Noctor, 2011; Dietz et al., 2016). In con-

trast with the light-dependent ferredoxin–thioredoxin
system, the glutathione pool (i.e. GSH/GSSG ratio) may

not be oxidized very much when photosynthetic electron

transport is low (e.g. in the dark, under stress conditions,

and during senescence) owing to decreased metabolic

demands and catabolic supply of reducing equivalents

(Foyer and Noctor, 2011). Therefore, chloroplastic glu-

tathione would allow BSD2 to continuously reduce, and

thereby maintain RuBisCO to be in the active form (Sud-

hani and Moreno, 2015). It is noteworthy that a drop in the

GSH/GSSG ratio in response to excess ROS may cause a

translational arrest of the RuBisCO large subunit, related to

oxidation of the nascent polypeptide (Irihimovitch and

Shapira, 2000).

In our experiments, rBSD2 reactivated oxidatively inac-

tivated RuBisCO, but the RuBisCO activity did not recover

to the initial level (Figure 4). This result suggests that the

oxidatively inactivated RuBisCO includes reversible and

irreversible states. Previous studies have demonstrated

that the oxidation of RuBisCO decreases the number of

catalytic sites, resulting in an irreversible deactivation

(Marcus et al., 2003). Furthermore, it has been demon-

strated that ROS can cause direct fragmentation of the

large subunit in vitro (Ishida et al., 1998) and in intact

chloroplasts (Nakano et al., 2006). The unrecoverable

activity of H2O2-oxidized RuBisCO after BSD2 treatment

(Figure 4b) might therefore represent either irreversible

Figure 5. Redox-dependent inactivation of RuBisCO. The RuBisCO oxidation

ratio was calculated as a remaining proportion of the RuBisCO carboxyla-

tion rate estimated without DTT present (w/o DTT) relative to that with DTT

present (w DTT) 1� w=oDTT
wDTT

� �
� 100

h i
. Means � SE (n = 3) are shown.

(**P < 0.01, ***P < 0.001, by Student’s t-test).
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conformational change or decomposition of the RuBisCO

complex.

Physiological function of BSD2 in vivo

It has been widely accepted that BSD2 is a critical chaperone

in RuBisCO assembly in plants and green algae. During

RuBisCO biogenesis BSD2 appears to function in preventing

an end-state assembly intermediate from the aggregation

until the small subunits become available (Brutnell et al.,

1999; Wostrikoff and Stern, 2007; Aigner et al., 2017). It has

also been suggested that BSD2 is a co-translational chaper-

one that protects nascent large subunit chains from misfold-

ing (Doron et al., 2014). Here, we confirmed the hypothesis

that BSD2 may also target the post-assembled RuBisCO and

reactivate oxidatively inactivated RuBisCO. It has been fre-

quently noted that oxidation of RuBisCO is physiologically

relevant to senescence or stress scenarios, which are known

to trigger a fast catabolism of RuBisCO (Garc�ıa-Ferris and

Moreno, 1993; Moreno and Spreitzer, 1999; Marcus et al.,

2003; Mar�ın-Navarro and Moreno 2003). The reactivation of

RuBisCO by BSD2 might be therefore important for alleviat-

ing senescence or stress scenarios, as well as for maintain-

ing functional photosynthesis.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

The full-length open reading frame of BSD2 cDNA was used to gen-
erate an overexpression vector pG2CYO2. The full-length ORF of
BSD2 cDNA was amplified using primers At3g47650-F-attB1 (50-
AAAAAGCAGGCTATATGGCGAATTCACTATGCTTCTTCTCTTCTCC-
30) and At3g47650-attB2 (50-AGAAAGCTGGGTACTCATCGAAGGTG
CTCAAGAACCCACC-30). The resulting amplified product was
cloned into pDONR/Zeo (Invitrogen, ThermoFisher, Carlsbad, CA,
USA) to make pD3gORFull, and the sequence was confirmed. The
full-length ORF was introduced into the pGWB2 Gateway vector
(Nakagawa et al., 2007) by recombination from the pD3gORFull to
make pG2BSD2. The pG2BSD2 vector was introduced into wild
type Arabidopsis thaliana (Columbia-0) by floral dipping (Clough
and Bent, 1998) using Agrobacterium tumefaciens GV3101. Fifteen
transgenic lines were obtained, and T3 was used for the study.

Plants were grown at 22–23°C, 60–85% (relative humidity) under
a 16-h fluorescent light (100 lmol m�2 sec�1)/8-h dark cycles on
½MS plates or in soil.

Photosynthesis measurements

Photosynthetic gas exchange of 5-week old Col-0 and BSD2 over-
expression plants were measured using a Licor 6400XT gas
exchange system equipped with a leaf chamber fluorometer (LI-
COR, Lincoln, Nebraska USA). Measurements were performed at a
leaf temperature of 25°C and a VPD of 1 kPa. CO2 response curves
were measured at a saturating light intensity of 1200 lmol
m�2 sec�1. The curves were fitted for Vcmax, J, and gm with the
Excel fitting tool provided by Sharkey et al. (2007), which was
parameterized with the RuBisCO kinetic parameters of Arabidopsis
described elsewhere (Walker et al., 2013). CO2 concentrations at
the site of carboxylation (Cc) were calculated according to Fick’s
law as Cc ¼ Ci � A=gm.

SDS-PAGE and immunoblot analysis

Rosette leaves (100 mg fresh weight) from each 3-week-old plant
were ground with a mortar and pestle in liquid nitrogen and trans-
ferred to a new 1.5-ml tube and homogenized in 5 volumes (v/w) of
extraction buffer containing 15 mM Tris–HCl, pH 8.0, 50 mM NaCl,
10 mM ethylenediaminetetraacetic acid (EDTA) and 1.0% protease
inhibitor cocktail (Sigma-Aldrich, Tokyo, Japan). The samples were
incubated on ice 10 min with vigorous vortexing every minute and
centrifuged (20 000 g, 20 min, 4°C). The supernatant equivalent of
1.5 mg of fresh weight was electrophoresed on a 16.5% Tris–tricine
SDS-PAGE gel and electroblotted onto polyvinylidene difluoride
(PVDF) membrane. The membrane was immunoreacted with anti-
BSD2 antibody (a kind gift from Spencer M. Whitney, Australian
National University) and detected using an ECL Select kit (GE
Healthcare, Chicago, IL, USA). Ribulose 1,5-bisphosphate carboxy-
lase/oxygenase subunits RBCL and RBCS were visualized by stain-
ing the gel with Coomassie Brilliant Blue R250.

Expression and purification of the rBSD2 protein

Truncated BSD2 cDNA was amplified by reverse transcriptase
polymerase chain reaction (RT-PCR) using primers that contained
sites for NdeI (At3g47650-Nde, 50-GGGCATATGGCCGCAAACAA
TAATCCTCAGGGCACTAAACC-30) and XhoI (At3g47650-Xho, 50-CC
CCTCGAGCTCATCGAAGGTGCTCAAGAACCCACC-30). The ampli-
fied DNA fragments encoded the BSD2 protein containing amino
acids 57 to 136. The DNA fragments were digested with NdeI and
XhoI and ligated into the expression vector pET-24b(+) (Novagen,
Sigma-Aldrich, St. Louis, MD, USA). The sequence of the DNA
fragment was confirmed. The E. coli strain BL21(DE3) was used
for expression of the truncated BSD2 fusion proteins with 69 His
tags. Overnight cultured BL21(DE3) cells harbouring the truncated
BSD2 gene were diluted 1:20 with fresh culture medium and
grown at 37°C for 1 h. Isopropyl-b-D-thiogalactopyranoside was
then added to a final concentration of 1.0 mM, and the cells were
cultured at 20°C overnight. The cells were centrifuged for 10 min
at 5000 g and 4°C. The cell pellets were suspended in suspension
buffer (15.0 mM Tris–HCl, pH 7.0, 50.0 mM NaCl, 0.1 mM DTT, and
1.0 mM phenylmethylsulfonyl fluoride). The cells were sonicated
and the crude extract centrifuged for 10 min at 12 000 g and 4°C.
The supernatant was incubated for 1 h with nickel-nitrilotriacetic
acid agarose (Qiagen, Venlo, the Netherlands) at 4°C. The agarose
was washed with suspension buffer containing 30 mM imidazole.
rBSD2 protein bound to the agarose was eluted with suspension
buffer containing 200 mM imidazole. The eluted proteins were dia-
lyzed with phosphate-buffered saline buffer at 4°C overnight.

Assay for PDR-dependent disulfide reduction

Dieosin glutathione disulfide, Di-E-GSSG, was prepared as
described in previous study (Muranaka et al., 2012). PDI disulfide
reduction assay was conducted in PDI assay buffer (100 mM potas-
sium phosphate, pH 7.0) containing 100 nM rBSD2 and Di-E-GSSG
(100–1500 nM) with 5 µM DTT. The increase in fluorescence at
545 nm was monitored with excitation at 525 nm. The kinetic
parameters were calculated using KaleidaGraph software (Syn-
ergy Software, Reading, PA, USA).

RuBisCO purification and assay

Leaves from 4-week-old Arabidopsis plants were frozen in liquid
nitrogen, and RuBisCO was purified by ion-exchange chromatogra-
phy (Sharwood et al., 2008) as follows. The frozen leaves were
homogenized in glass homogenizer in ice-cold 50 mM Tris–HCl pH
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7.6, 1 mM EDTA, 1% (w/v) polyvinylpyrrolidone, 5 mM DTT, plant
protease inhibitor cocktail (Sigma, St. Louis, MD, USA, Product #
P9599; 200 µl per 25 ml solution), then centrifuged at 16 000 g for
15 min at 4°C. Next, the supernatant was added to a 5-ml Bio-Scale
Mini Macro-prep High Q cartridge (Bio-Rad, Hercules, CA, USA)
equilibrated with 50 mM Tris–HCl, pH 7.6, 1 mM EDTA under the con-
trol of an AKTA chromatography system. The elution system con-
sisted of a 35-ml gradient of a 0–1 M NaCl at a flow rate of
2 ml min–1, and 2-ml fractions were collected. Fractions containing
RuBisCO activity (determined by the 14CO2 RuBisCO activity assay
described below) were pooled and dialyzed overnight at 4°C
against 1 L of 50 mM Tris–HCl, pH 7.6, 1 mM EDTA, 20% (v/v) glyc-
erol. Aliquots were frozen in liquid nitrogen and stored at �80°C.
Before the RuBisCO activity assay, purified RuBisCO was activated
in 50 mM EPPS-NaOH, pH 8.0, 15 mM NaHCO3, 15 mM MgCl2 for
10 min, and then duplicate aliquots were used to measure RuBisCO
activity by the [14C]CABP assay (10 or 30 µM) (Ruuska et al., 1998) in
the presence of 1 mM DTT or 5 mM H2O2 for 30 min to reduce or
oxidize RuBisCO, respectively. To minimize the effects of excess
DTT or H2O2, each reaction solution was diluted 20-fold with 50 mM

EPPS-NaOH, pH 8.0, 20 mM MgCl2, 20 mM NaHCO3, 1 mM EDTA
and then concentrated on an Amicon Ultra-15 Centrifugal Filter Unit
(Merck Millipore, Burlington, MA, USA). The dilution/concentration
process was repeated before the use.

The carboxylation rate was measured with the NADH-coupled
spectrophotometric assay at 25°C by measuring the absorption at
340 nm with spectrophotometer (Sharwood et al., 2016). The final
concentrations of purified RuBisCO or rBSD2 in the assay solution
were 80 nM (i.e. 10 nM per RuBisCO active site) and 40 nM, respec-
tively. The assay was initiated by adding 0.5 mM ribulose 1,5-bis-
phosphate purified according to Kane et al. (1994) and Sharwood
et al. (2016).

To estimate the ratio of oxidatively inactive to active RuBisCO in
leaf, the frozen leaf was homogenized in glass homogenizer in
ice-cold 50 mM Tris–HCl pH 7.6, 1 mM EDTA, 1% (w/v)
polyvinylpyrrolidone, plant protease inhibitor cocktail (200 µM/
25 ml solution) without DTT, and centrifuged at 16 000 g for
15 min at 4°C. The supernatants were incubated with or without
5 mM DTT (final concentration) on ice for 30 min, and RuBisCO
carboxylation rate was measured with NADH-coupled spectropho-
tometric assay (Sharwood et al., 2016) but without adding DTT.
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