
 
 

University of Birmingham

Guaranteed renewable life insurance under demand
uncertainty
Hoy, Michael; Mirza, Afrasiab; Sadanand, Asha

DOI:
10.1111/jori.12320

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Hoy, M, Mirza, A & Sadanand, A 2020, 'Guaranteed renewable life insurance under demand uncertainty',
Journal of Risk and Insurance. https://doi.org/10.1111/jori.12320

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2021

https://doi.org/10.1111/jori.12320
https://doi.org/10.1111/jori.12320
https://research.birmingham.ac.uk/portal/en/publications/guaranteed-renewable-life-insurance-under-demand-uncertainty(01535a43-6768-4ad6-bda0-2bfd78287484).html


Journal Risk and Insurance. 2020;1–29. wileyonlinelibrary.com/journal/JORI | 1

Received: 21 February 2019 | Accepted: 30 June 2020

DOI: 10.1111/jori.12320

OR IG INAL ART I C L E

Guaranteed renewable life insurance under
demand uncertainty

Michael Hoy1 | Afrasiab Mirza2 | Asha Sadanand1

1Department of Economics and Finance,
University of Guelph, Guelph, Ontario,
Canada
2Department of Economics, University of
Birmingham, Birmingham, UK

Correspondence
Afrasiab Mirza, Department of Economics,
University of Birmingham, JG Smith
Building, Edgbaston, Birmingham, UK B15
2TT.
Email: a.mirza@bham.ac.uk

Abstract

Guaranteed renewability (GR) is a prominent feature

in many health and life insurance markets. We de-

velop a model that includes unpredictable (and un-

observable) fluctuations in demand for life insurance

as well as changes in risk type (observable) over in-

dividuals' lifetimes. The presence of demand type

heterogeneity leads to the possibility that optimal GR

contracts may have a renewal price that is either

above or below the actuarially fair price of the lowest

risk type in the population. Individuals whose type

turns out to be high risk but low demand renew more

of their GR insurance than is efficient due to the

attractive renewal price. This results in imperfect

insurance against reclassification risk. Although a

first‐best efficient contract is not possible in the pre-

sence of demand type heterogeneity, the presence of

GR contracts nonetheless improves welfare relative to

an environment with only spot markets.
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1 | INTRODUCTION

Guaranteed renewability (GR), which is a prominent feature in health and life insurance markets,
provides an opportunity for individuals to insure against reclassification risk. This works as fol-
lows. Consider a set of ex ante identical individuals each of whom purchases an initial 10‐year
term life insurance contract with a view of possibly purchasing a subsequent policy at the end of
the term. By the end of the contract period, some insureds may have discovered that their
mortality status has changed. If this change is observable to insurers, then the price for a new
insurance contract will reflect that change in risk. Individuals recognize ex ante that their risk type
may change over time and so prefer to avoid the prospect of premium risk associated with
stochastic mortality prospects. GR contracts contain a promise to offer a subsequent insurance
policy at the expiry date of the first contract at a price that is independent of any changes in
mortality risk. The premium for the implicit insurance against reclassification risk is embedded in
the first contract (earlier period) through an extra premium assessment—a phenomenon known as
front loading. This allows insurers to offer insurance to those individuals who turn out to be higher
risk types in the subsequent 10‐year period at a price below their actuarially fair rate. As long as
the amount of front loading is sufficient, the added profit from the first (period) contract com-
pensates for insurers' losses from the second (period) contract.1

In our paper we focus on the implications for GR (and long‐term) insurance to ameliorate
premium risk when individuals face uncertainty over future changes in both mortality risk and
insurance needs. We consider an environment where individuals face no capital market im-
perfections (they can borrow or save at the risk‐free rate) nor other impediments such as the
existence of resettlement or viatical market opportunities that can thwart GR insurance to fully
protect against reclassification risk. We develop a two‐period model of insurance in which in-
dividuals are homogeneous in the first period and hold the same beliefs about the likelihood of
becoming a low‐ or high‐demand type in the second period. An important feature of insurance
demand is how it changes over the life cycle. As noted in Hong and Rios‐Rull (2012), average
demand follows a life cycle pattern that rises from young adulthood to “around age 45 for males
and 35–40 for females” (based on 1990 data). They also show, in their figure 1 (p. 3705), that there
is substantial variation in demand across individuals at all ages and especially around the peak
level of demand. This means that to have an ideal amount of coverage for premium risk in the
future, one may have to hold more insurance than is optimal early in life (i.e., for the younger part
of the life cycle where demand tends to be increasing). This turns out to be a critical factor in
determining the extent to which GR can provide insurance against reclassification risk. We allow
second‐period demand to be higher or lower than first‐period demand for either or both demand
types. Moreover, we also allow for the possibility that demand does not vanish over time. Each
individual's risk type also evolves over time in a similar manner; that is, individuals have the same
mortality risk in the first period but their mortality risk diverges in the second period. Moreover, in
period 1 individuals hold the same beliefs about the evolution of their risk type for period 2.2

1A similar phenomenon may be reflected in short‐term versus long‐term insurance contracts (e.g., 10 vs. 20 years) with
longer contracts providing insurance against reclassification risk through front loading to keep premiums later in the
contract sufficiently low to avoid lapsation by better risks.
2In a similar environment but without differential demand types, Peter, Richter, and Steinorth (2015) consider the
implications of individuals learning imperfectly about their risk type over time with this information being private. Fei,
Fluet, and Schlesinger (2013) also use a model that features demand uncertainty but that does not include risk type
uncertainty nor any dynamic features of insurance demand present in our model of GR insurance.
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There are many potential sources of (evolving) demand type heterogeneity relevant to life
insurance. The amount of coverage an individual desires at any point in time is affected by a
number of factors, including marital status, income of the insured individual, number of
children, earning options for other family members, expenditure requirements for the
survivor family should death of the individual occur, and the insured's pure (altruistic)
preferences among other factors. All of these can change over time.3 Some of these char-
acteristics are unobservable to the insurer and others, while observable, typically have
idiosyncratic and unobservable implications on individuals' preferences for insurance. We
treat demand type as unobservable to the insurer or as noncontractible. Insureds, in contrast,
learn about their demand preferences and change their valuation of insurance accordingly.
This uncertainty in future demand represents a challenge to individuals when deciding how
much GR insurance is appropriate to purchase at a given point in their lifetime, which in
turn compromises the ability of GR insurance contracts to protect consumers against re-
classification risk. Moreover, given the noncontractible nature of demand risk, the combi-
nation of variations in both morality risk and demand risk creates a type of adverse selection
problem, as described below.

One important feature of interest regarding the performance of GR insurance is contract
lapsation. If the renewal terms are not sufficiently attractive to people who discover they have
become relatively low risk, then they will have an incentive to opt out of the first contract at or
before the expiry date and not purchase a subsequent contract at the agreed upon price.
Moreover, if the renewal price is below the actuarially fair rate for high‐risk types, which it
must be to provide protection against reclassification risk, then those with low insurance
demand who turn out to be high risk will wish to renew more insurance than is efficient. This
means the second‐period contract will have a disproportionate share of demand from high‐risk
types which creates a stress on the degree of front loading required to make GR insurance
financially sustainable.4

Our paper contributes to the literature on GR insurance by providing an explicit welfare
analysis of a two‐period model of decision making based on expected utility preferences
which evolve over time.5 Individuals may find their preference for insurance either rises or
falls for the later (second) period under consideration. The various possible demands for
second‐period insurance may not align with first‐period insurance needs and so the only
way for an individual to hold the optimal amount of GR insurance from the second‐period
perspective may be to over‐insure in the first period. This scenario would be expected
during (typically earlier) periods of life when future insurance demand tends to increase
(on average). We illustrate how these two factors compromise the effectiveness of GR
insurance to protect against premium risk. We also see how these patterns influence the
structure of premiums of GR insurance; that is, both the degree of front loading and the
renewal price.

It has been shown (e.g., Hendel & Lizzeri, 2003; Pauly, Kunreuther, & Hirth, 1995) that, in
ideal settings, GR insurance or long‐term insurance with sufficient front loading of premiums

3See the survey by Zietz (2003), and particularly tables 2 and 3, for empirical evidence on the effect of personal
characteristics on the demand for life insurance. Some of these characteristics would typically change stochastically
over a person's lifetime. Using data from the Health and Retirement Study, Fang and Kung (2012, pp. 4, 5) demonstrate
that income and health shocks are relatively more important than bequest motive shocks in explaining lapsation when
policyholders are young, but as they age, the bequest motive shocks play a more important role.
4Evidence of this phenomenon in a health insurance market is provided by Hofmann and Browne (2013).
5In this paper we focus on life insurance, although the basic principles of GR insurance apply also to health insurance.
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can fully eliminate reclassification risk.6 Following Harris and Holmstrom (1982), who develop
a model of one‐sided commitment between firms and their workers, Hendel and Lizzeri (2003)
explore the implications of one‐sided commitment in an insurer—consumer model with in-
surers being the party that can commit. Hendel and Lizzeri (2003) show that more front loading
is consistent with increased efficiency as it generates more “commitment” on the part of
households to renew their GR. However, in the presence of demand fluctuations, this is no
longer true and we show that less commitment and less front loading can improve welfare.
Alternatively, Frick (1998) demonstrates how capital market imperfections can destroy the
potential for GR insurance to provide complete protection against reclassification risk. An
imperfect capital market is but one market characteristic that can limit the ability of GR
insurance to offer protection against reclassification risk.7 In different contexts, Polborn, Hoy,
and Sadanand (2006) and Daily, Hendel, and Lizzeri (2008) show that if there is uncertainty
about future insurance needs as well as risk type and individuals have access to settlement
markets where they can sell their previously purchased (long‐term) insurance coverage, then
GR insurance contracts cannot completely eliminate premium risk.

Fang and Kung (2020) use a model which is very similar to that of Daily et al. (2008) to
investigate why most life insurance policies have little to no cash surrender value as well as to
analyze the welfare implications of a life settlement market. Given our goal of investigating the
pricing and welfare implications of GR term insurance contracts, we use a very different
contract structure. In particular, we assume that insurers do not base renewal prices on risk
type. This is a common feature of such products.8 We also make a number of other different
assumptions, the most important of which involve a more general underlying preference
structure for consumers as well as allowing (costless) saving or borrowing. The implications of
these differences are discussed at appropriate places in our paper.

In our paper, as in Fang and Kung (2020) and Daily et al. (2008), policyholders who let their
insurance policies lapse (partially or fully), do so as a result of low realized (shocks) to their
bequest motive. It is important to recognize other reasons for lapsing and also to investigate
implications of individuals not behaving as fully rational and forward looking agents. Fang and
Wu (2017) consider the effect of consumers being overconfident about their bequest motives or
mortality rates in the presence of a life settlement market. Gottlieb and Smetters (2019) provide
evidence that a majority of observed lapses are due to individuals either forgetting to pay
premiums or underestimating the need for money in the future. Moreover, without imposing
restrictions on the contract space, they develop two theoretical models with behavioral con-
sumers that imply observed policy characteristics not well explained by models of fully rational
consumers.

The rest of the paper is organized as follows. The next section presents the basic model
while Section 3 characterizes the first‐best (social) optimum as well as the characteristics of the

6In an early contribution to this literature, Cochrane (1995) developed an interesting alternative approach to protecting
individuals from reclassification risk by introducing lump‐sum severance payments for individuals whose risk dete-
riorates at the end of a period of insurance cover. The ideal setting in Hendel and Lizzeri (2003) corresponds to
sufficiently low growth in income relative to importance of front loading that individuals are willing to accept sufficient
front loading to cover even protection against reclassification risks for relatively good health states. This follows from
their results (ii) and (iii) of Proposition 1 and conditions explained in footnote 13, p. 310.
7For a more complete discussion, see Peter et al. (2015).
8For example, from Canadian Life and Health Insurance Association—“Guaranteed renewable policies: A feature of an
individual insurance policy where the insurance company guarantees to renew the insurance at the end of a certain
period, regardless of any changes in your health.”
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allocation when (only) spot insurance markets are available and when GR insurance is also
available. The main welfare analysis is provided in Section 4.9 Section 5 provides conclusions.

2 | MODEL

We consider an economy populated by a measure one of ex ante (identical) individuals who buy
life insurance and live at most three periods. Each such individual has a family associated with
him. In case of the individual's death, we refer to his associated family as the survivor family
while in any period that he lives we refer to his associated family as the whole family. No other
members of the family may die. Preferences relate to those of the insurance buyer, albeit he
takes his family members' well‐being into account. For simplicity, we assume he is the only
income earner in the family and receives income y1 at the beginning of period 1. If he survives
to period 2, he receives a further y2 at the beginning of period 2. His risk and demand type
evolve over time. Each individual has a probability of death of p p, 0 < < 1, in the first period
of life. If an individual survives the first period, then his probability of death in the second
period depends on whether he is a high‐ or low‐risk type. We describe risk type by index
∈i L H{ , } for low‐ and high‐risk type, respectively, with associated probabilities p p,L H where

p p0 < < < 1L H . Moreover, we assume all risk types have a higher mortality in period 2 than in
period 1 ( p p p0 < < < < 1L H ; see Hendel & Lizzeri, 2003).

The individuals (and associated families) are homogeneous in all respects in the first period
and discover their risk type associated with second‐period mortality at the beginning of
period 2. Insurers also observe individuals' risk type and so there is no asymmetric information in
this regard. However, individuals also discover their demand type at the beginning of period 2
which insurers do not observe.10 In period 1 individuals perceive their prospects about both risk
type and demand type development according to the actual population portions of ∈q i L H, { , }i

for risk type and ∈r j l h, { , }j for demand type where ∈i L H{ , } represents low‐ and high‐risk type
while ∈j l h{ , } represents low and high‐demand type. Unlike the papers mentioned earlier, we
allow low‐demand types to have some positive bequest motive, albeit less than for high‐demand
types. We do not explore the implications of them having zero bequest motive since such in-
dividuals would not be in the market for period 2 insurance be it from the spot market or through
a GR policy. Adding individuals who would have zero bequest motive, should they turn out to be
low‐demand type, would not change the qualitative nature of our results. Risk and demand type
are not correlated (i.e., the probability of an individual being risk type i and demand type j is
⋅q ri j). These differing preferences (demand type) for life insurance in period 2 are reflected in the

felicities for death state consumption in period 2 as described below.11

So, period 2 decisions depend on both the individual's risk and demand type, characterized
by the pair ij, with ∈i L H{ , } and ∈j l h{ , }. In cases where confusion may occur, we index the
time period and the state (life or death) using superscripts. We refer to the death state by D and
the life state by N (i.e., not death). Thus, consumption in period 2 for a person of type ij is

9See the Supporting Information Appendix for a set of simulation results that help to further an understanding of how
the combination of demand and risk type uncertainty affects the structure of contracts and the welfare effects of GR
contracts.
10It is equivalent to alternatively assume demand characteristics are observable but not contractible.
11Note that one could instead introduce demand heterogeneity through different felicities in the life state. This would
have similar effects as in our model. Note that such an example may be a liquidity shock associated with the life state of
the world. See also Gottlieb and Smetters (2019) for a model of life insurance where agents face liquidity shocks.
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represented by Cij
D2 in the death state and Cij

N2 in the life (i.e., non‐death) state. We write their
felicity for consumption in the life state for period t as ⋅u t( ), = 1, 2t . Their felicities in the
period 2 death state, which depend on demand type j are modeled by the function ⋅v θ( ; )j2

where ≡ ≡
∂

∂

∂

∂
v x θ v x θ′ ( ; ) > ′ ( ; )h

v x θ

x l
v x θ

x2
( ; )

2
( ; )h l for all x > 0 with an abuse of notation in our

use of primes to convey the partial derivative with respect to the first argument. The latter
captures that high‐demand types want more insurance than low‐demand types. The functions
u2 and v2 satisfy the usual assumptions for risk averters (i.e., u v′ , ′ > 02 2 and u v″ , ″ < 02 2 ), as
well as the standard Inada conditions.12

Individuals have homogeneous preferences in period 1 with their felicity in the life state
being ⋅u ( )1 and that in the death state being ⋅v ( )1 , the latter of which is meant to reflect the
insurance purchaser's perspective on the survivor family's future utility (including prospects for
period 2 and beyond).13 This can naturally be different from the felicity in the death state of
period 2. Similar to the above notation for period 2, consumption in the life and death states of
period 1 are C N1 and C D1 , respectively.14 Again, we assume that period 1 felicities satisfy the
usual conditions for risk averters and the corresponding Inada conditions.

Unlike Daily et al. (2008), and Fang and Kung (2020), we allow households to save or
borrow at the risk‐free rate (which we normalize to 1). This is important as it limits the role of
GR contracts in our model to the provision of reclassification risk rather than confounding it
with intertemporal consumption smoothing.

Timing of information revelation and taking of decisions is as follows. At the beginning of
period 1 individuals receive income y1 and decide on: (a) the amount of spot insurance to hold
for period 1 (L1), (b) amount of GR insurance (L G1 ), and (c) the amount of savings, s, which we
allow to be negative to capture borrowing.15L L+ G1 1 is the insurance coverage in period 1 and
savings is also available to the survivor family should the insured die in period 1. If death
occurs, it happens at the end of period 1. Note that s is not deducted from consumption in the
death state as the survivor family gets to use savings from period 1 into the future. The felicity v1

reflects continuation utility for this survivor family. L G1 is the amount of that coverage that
could be renewed at a guaranteed (predetermined) rate in the second period should the insured
survive to period 2. We let π1 be the price of first‐period spot insurance. We assume risk neutral
insurers in a competitive environment with no administrative costs. Insurers can fully commit
to long‐term contracts. Thus, since coverage from first‐period spot insurance expires at the end
of period 1, competition leads to π p=1 (i.e., actuarially fair insurance).

The front loading of GR insurance allows an individual the option to renew at a price which
earns the insurer expected losses. This implies that the unit price of this coverage, π G1 , must

12Intertemporal discounting can also be incorporated into the model through appropriate choices of felicities in period 1
and 2. The Inada conditions preclude the complete loss of bequest motives which maybe unrealistic but such
individuals would not renew or purchase any insurance so this assumption is without loss of generality.
13This is an indirect utility based on how the family's circumstances will evolve should the income earning insurance
buyer die in the first period. The family may be expected to evolve in the sense that a surviving spouse has uncertain
prospects of generating income in period 2 (as well as the remainder of period 1) and so on. That is, death felicities
should be interpreted as continuation utilities. This simplistic “main breadwinner” sort of model could be transformed
to one with two earners and two potential insurance buyers. However, that would lead to a much more complicated
model and, we believe, not significantly improved insights.
14Note that since individuals are homogenous in period 1, there is no subscript pair ij attached to these consumptions.
15In an intertemporal model, insurance purchases shift consumption in a current period into any loss state of a future
period and therefore creates in some degree consumption smoothing, albeit state contingent consumption smoothing.
As shown by Hofmann and Peter (2015), if one omits the savings decision in such a model, the role of insurance
(reimbursement for financial losses) becomes contaminated with the motive for income smoothing.
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exceed p, the expected unit cost of providing first‐period insurance cover (i.e., front loading).
This is explained in greater detail later. As is the case for period 1, income y2 is received at the
beginning of the period while if death occurs, this happens at the end of the period. At the
beginning of period 2, the spot insurance from period 1 expires and individuals learn about their
risk type (i) and their demand type ( j). Insurers know the risk type of insureds but not their
demand type or rather, if they do know their demand type, they are not able to contract upon
that information. Each insured then chooses how much GR insurance that was purchased
in period 1 (L G1 ) to renew (Lij

G2 ) at the predetermined (guaranteed) price of π G2 . This amount
will depend on both risk and demand type with (obviously) ≤L Lij

G G2 1 . Importantly, following
Hendel and Lizzeri (2003) we assume that individuals cannot commit to long‐term contracts.
Therefore, they may opt out of their GR contracts and purchase spot insurance (Lij

2) at the
risk type‐specific price (π p=i i

2 ). Note that if π p>G
L

2 , low‐risk types would not renew any of
their GR insurance from period 1.16 Expected utility from the perspective of the beginning of
period 1 is

∑∑ ( ) ( )EU pv C p u C p q r p v C θ p u C= ( ) + (1 − ) ( ) + (1 − ) ; + (1 − ) ,D N

i j

i j i ij
D

j i ij
N

1
1

1
1

2
2

2
2⎡⎣ ⎤⎦

(1)

where

( )

C y s π L π L

C y π L π L

C y s π L π L

C y s π L π L

= − − − ,

= + (1 − ) + (1 − ) ,

= + − − ,

= + + 1 − + (1 − ) ,

N G G

D G G

ij
N

i ij
G

ij
G

ij
D

i ij
G

ij
G

1
1

1 1 1 1

1
1

1 1 1 1

2
2

2 2 2 2

2
2

2 2 2 2

with constraints

≤ ≤ ≤ ≤ ≤L L L L L0 , 0 , 0 , 0 .G
ij
G G

ij
1 1 2 1 2

In both periods, the death state consumption and felicity reflect the continuation values for
the survivor family. The life state consumption and felicity in period 1 reflect the values for the
whole family including the main breadwinner who in this case survives (at least) to the end of
period 2. The consumption and felicity in the second‐period life state reflect continuation values
for the whole family, including the main breadwinner, for period 2 and beyond. Note that, for
s > 0, saving is deducted from first‐period consumption in the life state but is added back into
consumption in the first‐period death state (since it is available to the survivor family). If the
main breadwinner survives to period 2, then saving from period 1 is available for consumption
in either the life or death state. If s < 0, the amount borrowed is available for consumption in
the life state. We assume that if the main breadwinner dies, the amount borrowed must be
repaid (by his estate) and so borrowing does not augment consumption in the first‐period death

16We also assume that low‐risk types renew all of their L G1 if π p=G
L

2 , the spot price for low‐risk types in period 2. This
is of no consequence since competition means πL

2 is equal to the low‐risk type loss probability which means the
lapsation‐renewal decision has no consequence on insurer profits and hence on π G1 or π G2 .
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state. Should the main breadwinner survive to period 2, any amount borrowed must of course
be repaid in that period in either life or death state.

3 | ALLOCATIONS UNDER FIRST ‐BEST, SPOT,
AND GR CONTRACTS

Before examining the allocations that may be supported with GR contracts, it is instructive to
examine two important alternative allocations: the first‐best and spot markets only. These are
useful to clarify both the value of GR and also its shortcomings.

3.1 | Benchmark: First‐best

The first‐best allocation is obtained by maximizing ex ante utility (i.e., from the per-
spective of individuals in period 1) subject to a set of aggregate resource constraints, one
for each period.17 These resource constraints simply require that the total consumption
across types and states in each period be equal to the total available resources. The first‐
best allocation is the solution to:

∑∑

≡

( ( ) ( ))

EU pv C p u C

p q r p v C θ p u C

max ( ) + (1 − ) ( )

+ (1 − ) ; + (1 − ) s.t.

C C s C C
D N

i j

i j i ij
D

j i ij
N

, , ,{ , } 1
1

1
1

2
2

2
2

D N
ij
D

ij
N1 1 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(2)

≥y pC p C s+ (1 − )( + ),D N
1

1 1 (3)

∑∑≥ ( )y s q r p C p C+ + (1 − ) .
i j

i j i ij
D

i ij
N

2
2 2⎡⎣ ⎤⎦ (4)

As the objective function is strictly concave and the constraints are linear, the solution to this
problem is unique, and can be characterized by the first‐order conditions. This statement
applies to all subsequent optimization problems.

Proposition 1. The social optimum is characterized by:

1. Marginal utilities in all time/state contingent scenarios are equal across all risk and
demand type combinations:

∈

( ) ( )v C u C v C θ u C ij

H L h l

′ ( ) = ′ ( ) = ′ ; = ′ , for all

{ , } × { , }.

D N
ij
D

j ij
N

1
1

1
1

2
2

2
2

(5)

2. Consumption in the life state or death state for each period is independent of risk type.

17As there is a measure one of individuals, aggregates are equal to per capita values.
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3. Second‐period consumption level in the death state for high‐demand types exceeds that
for low‐demand types (but is independent of risk type, as noted above).

Proof. See Appendix B.1. □

It follows directly from this proposition that the first‐best allocation requires marginal
utilities of consumption in each time and state to be equalized. This is an application of the
fundamental theorem of risk‐bearing. This implies that, for a given demand type, consumption
in the period 2 death state is the same for both risk types and likewise for the period 2 life state
consumption. However, since at any given consumption level the marginal utility of con-
sumption of high‐demand types exceeds that for low‐demand types, the first‐best allocation
requires that consumption in the death state be higher for the high‐demand type. This is easily
established as

⇒( ) ( ) ( )v C θ v C θ v C θ C C′ ; = ′ ; < ′ ; > .il
D

l ih
D

h il
D

h ih
D

il
D

2
2

2
2

2
2 2 2 (6)

If it were feasible, one way to decentralize the first‐best allocation would be to allow
individuals to write contracts at time 1 that offer transfers contingent on their realized demand
and risk type at time 2. Such contracts replicate the social planner's ability to effectuate transfers
across agents at time 2.18 Given unobservability of demand type, it is not possible to implement
the first‐best, as those with low demand have incentives to claim to be high demand to obtain
more consumption in the death state (and equal consumption levels in all other situations).
This is akin to Mirrlees (1971) where the unobservability of individual productivity precludes
the ability to implement the first‐best.

3.2 | Spot markets only

Now consider the equilibrium choices of individuals when only spot insurance is available in
period 2. Determining each individual's optimal consumption requires first solving the second‐
period optimization problem for each individual conditional on risk and demand type, which is
known at that point in time, conditional on a given set of first‐period choices (i.e., for s and L1).
We then use the value functions from the second‐period optimization problem to determine
optimal values for decision variables relating to the first period.

Second‐period choice problem is, given type ij:

( ) ( )Z p v C θ p u C= max ; + (1 − ) ,ij
spot

L
i ij

D
j i ij

N
2

2
2

2

ij

2

(7)

where

C y s π L= + − ,ij
N

i ij
2

2
2 2 (8)

18The first‐best may also be decentralized by a tax and transfer scheme that is type contingent.
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( )C y s π L= + + 1 − ,ij
D

i ij
2

2
2 2 (9)

which leads to the first‐order condition:

( ) ( )p v C θ π p u C π′ ; (1 − ) − (1 − ) ′ = 0.i ij
D

j i i ij
N

i2
2

2
2

When spot market prices are actuarially fair (i.e., π p=i i
2 ), we have

( ) ( )v C θ u C′ ; = ′ ,ij
D

j ij
N

2
2

2
2 (10)

in other words, ex post efficiency prevails.
Let Zij

spot be the value function relating to the second‐period optimization problem. Since no
GR insurance is available to purchase in period 1 for potential renewal in period 2, it follows
that the only decision variable from period 1 that carries over to period 2 is s. Note that Z s( )ij

spot

is strictly concave given our assumptions regarding the period 2 felicities, and via the envelope
theorem we obtain:

∂

∂
( ) ( ) ( )

Z s

s
p u C p v C θ u C

( )
= ′ + (1 − ) ′ ; = ′ .

ij
spot

i ij
N

i ij
D

j ij
N

2
2

2
2

2
2

We go back to the first‐period choice problem to complete the description of the optimal plan.
In the first period, households choose savings and spot purchases to maximize expected utility:

∑∑EU pv C p u C p q r Z smax = ( ) + (1 − ) ( ) + (1 − ) ( ),
s L

D N

i j

i j ij
spot

,
1

1
1

1
1

(11)

where

C y s π L C y π L= − − , = + (1 − ) .N D1
1

1 1 1
1

1 1 (12)

First‐order conditions are:

∂

∂

EU

L
pv C π p u C π= ′ ( )(1 − ) + (1 − ) ′ ( )(− ) = 0,D N

1 1
1 1

1
1 1 (13)

∑∑
∂

∂
( )EU

s
p u C p q r u C= (1 − ) ′ ( )(−1) + (1 − ) ′ = 0.N

i j

i j ij
N

1
1

2
2 (14)

Competition ensures first‐period insurance is actuarially fair, π p=1 , and so we get

v C u C′ ( ) = ′ ( ),D N
1

1
1

1 (15)

∑∑ ( )u C q r u C′ ( ) = ′ .N

i j

i j ij
N

1
1

2
2 (16)

The last equation shows that the optimal savings amount equalizes the marginal utility of
consumption in the first‐period life state to the expected marginal utility of consumption in the
second‐period life state. Thus, marginal utilities will generally not be equal over time, con-
firming that spot insurance does not insure individuals against reclassification risk.
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Proposition 2 (Characterization of Allocation Under Spot Insurance Only). If the only
markets for insurance in both periods is spot insurance, then it follows that:

1. Ex post efficiency (in period 2) prevails; that is, for a given risk type, demand type
combination, marginal utility of consumption in the death state is equal to marginal
utility in the life state.

2. Consumption in the life and death states in period 2 are not independent of risk type.
Conditional on a given demand type, high‐risk types have lower consumption in both life
and death states of the world than do low‐risk types. (This follows from the fact that high‐
risk types face a higher price of insurance.)

3. The period two consumption level in the death state for high‐demand types of a given risk
type is higher than that for low‐demand types.

Proof. See Appendix B.2. □

3.3 | GR insurance contracts

We now examine the model of primary interest; that is, the one where GR insurance is
available. Information assumptions are the same as in the preceding model. In this case,
however, in the second period the individuals hold an amount of GR insurance (L G1 ) that they
purchased in the first period. They may renew any amount of this ( ≤L Lij

G G2 1 ) in period 2 at the
predetermined price π G2 . Individuals may also purchase spot insurance in period 2 (Lij

2) which,
since insurers also observe risk type, is priced at the risk type‐specific actuarially fair price (pi).
Formally, individuals solve the following problem:

∑∑

≡

( ( ) ( ))

EU pv C p u C

p q r p v C θ p u C

max ( ) + (1 − ) ( )

+ (1 − ) ; + (1 − ) s.t.

L L s L L
D N

i j

i j i ij
D

j i ij
N

, , ,{ , } 1
1

1
1

2
2

2
2

G
ij ij

G1 1 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(17)

C y s π L π L= − − − ,N G G1
1

1 1 1 1 (18)

C y π L π L= + (1 − ) + (1 − ) ,D G G1
1

1 1 1 1 (19)

C y s π L π L= + − − ,ij
N

i ij
G

ij
G2

2
2 2 2 2 (20)

( )C y s π L π L= + + 1 − + (1 − ) ,ij
D

i ij
G

ij
G2

2
2 2 2 2 (21)

≤L L ,ij
G G2 1 (22)

∑∑π L pL p q r p π L= + (1 − ) ( − ) .G G G

i j

i j i
G

ij
G1 1 1 2 2 (23)

where the final constraint is the zero‐profit condition on GR contracts for insurers.
We solve the dynamic optimization problem in two steps, solving backwards. In Step 1,

we specify the second‐period expected utility function for an individual of type ij, defined as
Zij, conditional on arbitrary levels of first‐period choice variable (s L L, , G1 1 ). We find the
optimal conditions from optimization in period 2. In Step 2, we use the value functions from the
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second‐period optimization problem, Zij, to determine optimal values for decision variables
relating to the first period.

Second‐period choice problem is, given type ij:

( ) ( )Z p v C θ p u C= max ; + (1 − ) ,ij
L L

i ij
D

j i ij
N

,
2

2
2

2

ij ij
G2 2

(24)

where

C y s π L π L= + − − ,ij
N

i ij
G

ij
G2

2
2 2 2 2 (25)

( )C y s π L π L= + + 1 − + (1 − ) ,ij
D

i ij
G

ij
G2

2
2 2 2 2 (26)

≤L L .ij
G G2 1 (27)

We denote the multipliers for each type pair's constraint by λij. The first‐order conditions with
respect to the choice variables are:

( )( ) ( )L p v C θ π p u C π: ′ ; 1 − − (1 − ) ′ = 0,ij i ij
D

j i i ij
N

i
2

2
2 2

2
2 2 (28)

( ) ( )L p v C θ π p u C π λ: ′ ; (1 − ) − (1 − ) ′ − = 0,ij
G

i ij
D

j
G

i ij
N G

ij
2

2
2 2

2
2 2 (29)

( )λ L L− = 0.ij
G

ij
G1 2 (30)

For the scenario with only spot insurance available, the resource constraints are trivial. That
is, spot insurance is actuarially fair in each period which means π p=1 , since individuals have
the same first‐period mortality risk. In period 2 the spot market price is ∈π p i L H= , { , }i i

2 ,
since insurers observe risk type. There is an additional resource constraint for GR insurance
since front loading must be sufficient to cover any second‐period costs associated with any risk
types renewing at a rate that is more favorable than their actuarially fair rate (e.g., for π p<G

i
2 ).

The extent to which the first‐period contract must be front loaded (i.e., the difference π p−G1 )
depends on the extent to which the renewal price falls below the actuarial cost of providing risk
types with insurance as well as the amount of L G1 that is purchased and amounts that will be
renewed in equilibrium by risk types of both low and demand type.

Although insureds who turn out to be low‐demand types but are of high‐risk type may not
renew all of L G1 , they have an incentive to renew more than would a low‐demand type who is
also of low‐risk type since the price is more favorable to them. This means that low‐demand
types who are high‐risk types typically end up with more second‐period insurance coverage
than their low‐demand–low‐risk counterparts.19 From the characterization of the social opti-
mum, we know this cannot be efficient and so insureds would prefer contracts that are designed
so this does not happen. However, once a person knows he is of high‐risk type, he cannot
“resist” renewing more insurance than is necessarily efficient even though, from the ex ante
perspective, everyone would like to prevent such an outcome. This “over renewal” by
Hl types− creates undesirable adverse selection costs which must be covered by a combination

19For this to happen depends on both how different is the desired demand of these two types of individual as well as on
how much GR insurance L G1 they hold entering the second period.
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of increasing the front loading and/or the second‐period renewal price compared to what would
be required if such inefficient behavior could be controlled. The following equation explains
this additional resource constraint which ensures zero expected profits for insurers offering GR
insurance:

∑∑π L pL p q r p π L= + (1 − ) ( − ) .G G G

i j

i j i
G

ij
G1 1 1 2 2

Note that the LHS of this equation represents the total revenue from sales of GR insurance in
period 1. The first term of the RHS is the expected cost of insurance claims of GR insurance in
period 1 while the second term is the sum of net expected costs of claims from all possible risk
and demand types who pay π G2 to renew amount Lij

G2 of their holdings of GR insurance.
The zero‐profit condition can also be written as follows:

∑∑π p p q r p π
L

L
= + (1 − ) ( − ) .G

i j

i j i
G ij

G

G
1 2

2

1
(31)

There are several important points regarding this constraint with some admittedly obvious.
First, the amount of front loading per contract, as measured by the difference π p−G1 , is
increasing with the (average) fraction of GR insurance holdings from the first period that is in
fact renewed in the second period. It is also increasing in the amount of effective subsidy
(p π−i

G2 ) to each risk type i.20 An increase in π G1 will affect the demand for GR insurance (L G1 )
and so affect the amount of front loading that is required through the ratio

L

L

ij
G

G

2

1
. L G1 is also

naturally a function of π G2 since GR insurance is more attractive the lower is its renewal price.
This means that the way to control adverse selection problems arising from those who become
low demand but high risk is not simply through increasing the renewal price as changes in both
prices π G1 and π G2 affects the desirability of GR insurance.

To gain further insights into drivers of GR renewals, note that we write the first‐order
condition for Lij

G2 as follows:

( ) ( ) ( )v C θ u C
π p

π p
v C θ

λ

π p
′ ; − ′ =

−

(1 − )
′ ; +

(1 − )
.ij

D
j ij

N
G

i

G
i

ij
D

j
ij

G
i

2
2

2
2

2

2 2
2

2

⎛
⎝⎜

⎞
⎠⎟

(32)

Equation (32) is helpful in understanding a number of possible scenarios to be discussed more
fully below. Consider, for example, an individual who is both high risk and low demand and so
renews some but not all of first‐period GR ( L L0 < <Hl

G G2 1 ). For such a person the shadow value
of L G1 is zero (λ = 0Hl ) and so the second term on the RHS of Equation (32) is zero. With the
renewal price for high‐risk types being below their actuarially fair rate (π p<G

H
2 ), the RHS of

Equation (32) is negative; that is, ( )v C θ u C′ ; < ′ ( )ij
D

j ij
N

2
2

2
2 and so this person ends up in a

position of overinsurance. In this sense, the renewal price is mispriced from the ex post (period
2) perspective and there are adverse selection costs created in the renewal market for GR. If an
individual renews all of his first‐period GR, then the shadow value of GR is positive (λ > 0Hl )
and so the second term of the RHS of Equation (32) is positive, mitigating the influence of
“mispricing” that leads to overinsurance. Because of the existence of spot markets, an

20Clearly, there will be no market if the renewal price equals or exceeds the actuarially fair cost of insurance of high‐risk
types (i.e., if ≥π pG

H
2 ).

HOY ET AL. | 13



individual will never end up with too little insurance from the perspective of second‐period
consumption choice. However, whenever second‐period spot markets are active, it follows that
individuals are not fully protected against reclassification risk since high‐risk types face a higher
spot price.

We write value functions (indirect utilities) from this exercise as Z L s π π π( , ; , , )ij
G

i
G1 1 2 2 .

Using the envelope theorem, it follows that

∂

∂

Z

L
λ i j= for all , ,

ij

G ij1
(33)

∂

∂
( ) ( )

Z

s
p v C θ p u C i j= ′ ; + (1 − ) ′ for all , .

ij

i ij
D

j i ij
N

2
2

2
2 (34)

This implies that for types that fail to fully renew their GR in period 2, increasing the quantity of
GR ex ante has no impact on their welfare.

We now turn our attention to the period 1 optimization problem to complete the description
of the optimal plan.

∑∑ ⋅EU pv C p u C p q r Zmax = ( ) + (1 − ) ( ) + (1 − ) ( ) ,
s L

D N

i j

i j ij
,

1
1

1
1

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(35)

where

C y s π L π L= − − − ,N G G1
1

1 1 1 1 (36)

C y π L π L= + (1 − ) + (1 − ) .D G G1
1

1 1 1 1 (37)

First‐order conditions are:

∂

∂

EU

L
pv C π p u C π= ′ ( )(1 − ) − (1 − ) ′ ( ) = 0,D N

1 1
1 1

1
1 1 (38)

∑∑
∂

∂

EU

L
pv C π p u C π p q r λ= ′ ( )(1 − ) − (1 − ) ′ ( ) + (1 − ) = 0,

G
D G N G

i j

i j ij1 1
1 1

1
1 1 (39)

∑∑
∂

∂
( ) ( )EU

s
p u C p q r p v C θ p u C= −(1 − ) ′ ( ) + (1 − ) ′ ; + (1 − ) ′ = 0.N

i j

i j i ij
D

j i ij
N

1
1

2
2

2
2⎡⎣ ⎤⎦

(40)

We can re‐write the first‐order condition on savings as follows:

∑∑ ( ) ( )v C u C q r p v C θ p u C′ ( ) = ′ ( ) = ′ ; + (1 − ) ′ .D N

i j

i j i ij
D

j i ij
N

1
1

1
1

2
2

2
2⎡⎣ ⎤⎦ (41)

This demonstrates that the optimal savings (or borrowing if negative) amount allows house-
holds to smooth consumption over time by equalizing marginal utility of consumption in the
first‐period life state to the expected marginal utility of consumption in the second period.
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We can also re‐write the first‐order condition with respect to L G1 as follows:

∑∑

⏟ ⏟
v C u C

p q r λ

p π

π p

p π
v C′ ( ) − ′ ( ) = −

(1 − )

(1 − )
+

−

(1 − )
′ ( ).D N i j i j ij

G

G

G
D

1
1

1
1

1

re‐classification risk effect

1

1 1
1

mispricing effect

⎛
⎝⎜

⎞
⎠⎟

(42)

As for Equation (32), there is a mispricing effect illustrated in Equation (42) but from the perspective
of period 1 insurance purchasing. Due to front loading (π p>G1 ), the second term on the RHS being
positive implies GR is too expensive for their first‐period insurance needs and they would purchase
too little. However, as long as the first‐period spot insurance is active it follows that
v C u C′ ( ) = ′ ( )D N

1
1

1
1 . The first term, which is negative if λ > 0ij for at least some ij pair, reflects the

value of GR in providing protection against reclassification risk (i.e., at least some of λ > 0ij ).
However, if expected demand for insurance in the second period is large relative to first‐period
demand, the value for GR insurance in providing protection against reclassification risk can lead to
excessive first‐period insurance coverage; that is, if all first‐period insurance needs are more than met
by L G1 (overinsurance in period 1) we would have L = 01 and v C u C′ ( ) < ′ ( )D N

1
1

1
1 . The important

conclusions are summarized in the proposition below:

Proposition 3. Characterization of Allocation with GR Insurance Available

If there are markets for both spot and GR insurance, then it follows that

1. Ex post efficiency in period 2 will generally not prevail. In particular, marginal utility in the
death state may be less than marginal utility in the life state for high‐risk types who are also
low‐demand types (overinsurance).

2. Consumption in the life and death states in period 2 are not necessarily independent of risk type.
Conditional on a given demand type, high‐risk types may have lower consumption in both life
and death states of the world than do low‐risk types. This follows if second‐period spot purchases
are non‐zero due to the fact that high‐risk types face a higher spot price of insurance.

3. The period two consumption level for high‐demand types of a given risk type is at least as
high as that for low‐demand types.

There are various patterns of spot and GR insurance purchases that can arise. One im-
portant consideration is the amount of first‐period insurance cover desired relative to second
period for both demand types. We return to this point later. For now, suppose first‐period
demand for insurance is not so low as to deter sufficient purchases of GR to provide protection
against reclassification risk (should the individual become a high‐risk type). As is well known in
the literature, if there is a single demand type and no financial friction or other burden, each
individual will purchase just enough GR in period 1 to completely insure against reclassification
risk. In such a case, no spot market purchases are made in the second period. Provided the
condition on insurance demand in period 1 being sufficiently high relative to insurance demand
in period 2 is met, this is also the case in our model with no demand differences. But more
generally, individuals ex ante anticipate both possibilities of being low‐ and high‐demand type
as well as being either high or low‐risk type. Suppose in anticipation of being a high‐risk–high‐
demand type, an individual purchases sufficient GR insurance in period 1 that he fulfills his
insurance desires through renewing at a favorable price and so doesn't access the spot market in
period 2. This would provide him with full protection against reclassification risk as in the case
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of a single demand type. Ex ante, however, the individual realizes that even if he becomes a
high‐risk type, he may have low demand and so, in this case, the required amount of insurance
to avoid needing to access the spot market to fulfill his low‐demand type insurance needs
imposes an undesirable cost (through front loading). Therefore, the individual will not wish to
hold as much GR insurance as he would if he knew he would be a high‐demand type with
probability one. If the amount of GR is strictly between the amount that would provide the
“desired” or efficient amount of coverage for low‐ and high‐demand types, then in period 2 the
high‐demand types would renew all of his first‐period GR insurance and also purchase some
spot insurance. The low‐demand type will face a renewal price that is more favorable than his
actuarially fair price and so renew more than what would provide him with the efficient level.
This is a source of adverse selection in the renewal market.

Continuing with the set of circumstances described above, suppose that in the optimal
contract the renewal price exceeds the spot market price for low‐risk types. This may happen in
equilibrium due to the adverse selection pressure on the renewal market as described above.
Then those individuals who become low‐risk types, regardless of demand type, will not renew
any of their GR insurance purchased in period 1 (i.e., they choose to let their GR insurance
lapse) and fulfill their second‐period insurance needs through spot market transactions.
Therefore, conditional on demand type, low‐risk types in this scenario end up with equal
marginal utility of consumption in life and death states. However, overall ex post efficiency is
not obtained across all types. Moreover, high‐demand–high‐risk types end up satisfying some
part of their insurance needs through purchases on the spot market at a higher price than do
high‐demand–low‐risk types. Therefore, consumption in life and death states depends on risk
type (second result of Proposition 3).

There are more factors that can arise in an equilibrium with GR contracts available and
further impact conditions required for ex post efficiency. Although these are not without in-
terest, the more important welfare measure is ex ante utility which of course is always at least
weakly higher than with spot markets only. Welfare considerations are investigated more fully
in the following section. However, some factors that affect both pricing and welfare implica-
tions are important to characterize an allocation when GR insurance is available. Conditional
on risk type, high‐demand types have the same marginal utility of consumption in the life state
as do low‐demand types, but higher marginal utility of consumption in the death state. From an
ex ante perspective, an individual would therefore benefit from transfers from low to high‐
demand types for either risk type. As mentioned earlier, this can be achieved between high and
low‐demand types who are both low risk by having the renewal price lower even than the
actuarially fair rate for low‐risk types. Such pricing helps high‐demand types who purchase
(renew) a greater amount and so are advantaged by the low price. This may occur in equili-
brium if demand type differences are sufficiently strong. However, any price lower than the
actuarially fair price for high‐risk types encourages high‐risk–low‐demand types to “renew too
much” and this imposes (undesirable) upward pressure on front loading of first‐period GR
contracts. Given these two conflicting forces, the equilibrium renewal price may be below or
above the actuarially fair rate for low‐risk types.

Relatively low demand for first‐period insurance is another factor that can compromise the
value of GR markets in mitigating reclassification risk and also affect the prices (purchase price
as well as renewal price) and quantity of GR insurance. The price of first‐period GR contains
one component to cover claims in period 1 and another factor representing the front loading
required to cover losses due to subsidizing insurance for high‐risk types in period 2. Suppose the
amount of second‐period coverage desired to be renewed from first‐period GR insurance
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purchases is large (balancing low‐ and high‐demand possibilities) to protect against re-
classification risk. Given the unattractiveness of a large amount being paid for a large quantity
of first‐period insurance, be it spot or GR, the ability of GR to satisfy the needs for protection
against reclassification risk will be compromised. Individuals will not purchase very much GR
in this scenario and high‐risk types may end up with lower consumption than low‐risk types of
either demand type, due to higher spot market prices for high‐risk types and this will have
greater impact for high‐demand types. It is even possible that all types will purchase some spot
insurance in period 2 which would mean equal marginal utility of consumption in life and
death states for any given type. However, avoiding wedges in these marginal utilities does not of
course mean that markets are working efficiently from an ex ante welfare perspective. In fact,
the high level of activity on spot markets suggests ex ante welfare is not being enhanced very
effectively by the presence of GR insurance in such a scenario.

4 | WELFARE ANALYSIS OF GR CONTRACTS

Upon comparing Propositions 1–3, it appears that there are at least as many tendencies toward
inefficiency when GR insurance is available compared to the situation in which only spot
markets are available. However, the presence of GR insurance allows for individuals who turn
out to be high‐risk types to obtain some insurance coverage at a price below the actuarially fair
rate. This ameliorates the inefficiency of reclassification risk (i.e., the pushing apart of con-
sumption levels of any given demand type in both states of period 2 due to risk‐based pricing in
period 2 spot markets). However, GR insurance may also lead to the phenomenon that low‐
demand types who are also high‐risk types will renew so much of their GR insurance that they
end up with greater consumption in the death state of period 2 than that of low‐demand but
low‐risk types. This reflects a type of ex post inefficiency (see the second statement of
Proposition 1).

Proposition 4. In the presence of both demand and risk heterogeneity, the equilibrium
with GR and spot markets is always inefficient relative to first‐best. GR contracts can achieve
a first‐best efficient allocation if and only if:

1. There is no heterogeneity of demand types. (i.e., demand for insurance is identical across
individuals in period 2.)

2. The renewal price is sufficiently attractive and thus front loading sufficiently high that
renewing GR is (weakly) preferable to purchasing spot insurance in period 2 for all
individuals and there is no lapsation.

3. Demand for insurance is nonincreasing overtime.

Proof. See Appendix B.3. □

The reason that one cannot have any heterogeneity of demand type is straightforward.
A first‐best allocation requires equality of the marginal utility of consumption in the second‐
period death for all (four) types. Providing full protection against reclassification risk for high‐
demand–high‐risk types conflicts with ensuring low‐demand–high‐risk types do not end up
with too much insurance. This is the source of the adverse selection in the renewal market and
the reason that the second‐period renewal price may be higher than the rate for low‐risk types.
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If there is only one demand type, then it is possible to achieve a first‐best efficient allocation
through GR insurance. This is achieved if it is optimal (in all senses) for individuals to hold the
unique amount of first‐period GR insurance such that when it is fully renewed by high‐risk
types (at the price equal to the actuarially fair rate for low‐risk types) we end up with equal
marginal utility of consumption in both life and death states for both risk types. The “in all
senses” proviso is that such an amount, call it L*, would not lead to overinsurance in period 1. If
we refer to L* as the required demand for second‐period insurance to avoid any positive amount
of reclassification risk, then this level of demand must not be greater than the optimal amount
of first‐period insurance. If L* is too large, then “solving” the second‐period optimal allocation
problem through GR insurance creates an inefficient allocation for period 1 (i.e., over-
insurance). As noted earlier, the average level of life insurance demand over the life cycle
displays increasing demand when individuals are young (i.e., under 45 for males and under 40
for females). The two factors described above, therefore, suggest important limitations for the
role of simple GR contracts for mitigating reclassification risk. As Proposition 5 demonstrates,
however, introducing GR into a model with only spot markets will improve welfare and pos-
sibly substantially so.

Proposition 5. Making GR insurance available alongside spot markets is always strictly
welfare enhancing in the presence of reclassification risk.

Proof. See Appendix B.4. □

It is obvious that, absent any pecuniary externalities that matter, adding a new market or
type of contract will lead to a weak welfare improvement. We describe below the intuition
behind the condition that ensures a strict welfare improvement is obtained. Although welfare
may improve due to the addition of GR contracts when only demand type heterogeneity is
present, this is not always the case. We explain this assertion as well.

The intuition for the proof is straightforward. Consider starting from a position of only spot
market insurance being available with demand for first‐period insurance being positive
(although possibly “small”). Consider substituting a small amount of first‐period spot insurance
with GR which is renewable at a price at least slightly below the second‐period spot price for
high‐risk types but above the spot price for low‐risk types. This GR insurance will be renewed
only by high‐risk types. The envelope theorem guarantees that there is no first‐order effect on
welfare. However, there is a transfer of consumption from both risk types in period 1 (due to a
small amount of front loading) to only high‐risk types who have a higher marginal utility of
consumption in period 2 due to their higher loss probability. High‐risk types also face a higher
price in the period 2 market for spot insurance. This transfer represents a first‐order im-
provement in welfare.

Note that the above set of steps does not work if there is only demand type heterogeneity.
The reason is that, to transfer consumption from a lower to a higher marginal utility state
(i.e., from low to high‐demand types in period 2) requires that the renewal price for GR
insurance be less than the actuarially fair price in period 2 for all consumers (i.e., since there is
only one risk type). Following the above steps, making a small amount of GR insurance
available which is renewable at a price below the actuarially fair price of insurance in period 2
will lead to all consumers (i.e., both low and high‐demand types) renewing this insurance. This
implies a transfer of consumption from all types in period 1 to all types in period 2. Moreover,
the effect of such a scheme will be undone by all consumers who would reduce savings in
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period 1 to “re‐establish” their privately optimal choices. Therefore, GR will not always provide
a welfare improvement when there is only demand type heterogeneity.

A sufficient condition that will guarantee a welfare improvement in these circumstances
(i.e., when only demand type heterogeneity persists) is that the demand for insurance in period
2 by low‐demand types be less than first‐period demand. In this circumstance, replacing an
amount of first‐period insurance equal to first‐period spot demand plus a small amount extra
with GR insurance that can be renewed at a price marginally below the actuarially fair price for
second‐period insurance (which is the same for all consumers) will transfer consumption from
low‐demand types to high‐demand types who have higher marginal utility of income in the
death state. This transfer will induce a first‐order increase in welfare. This sufficient condition,
however, is not to be taken lightly. Recall that demand for insurance on average is rising for
“young” individuals and so even low‐demand types may have higher demand in period 2 of our
model than in period 1. The proof of this result is available from the authors upon request.

It is useful at this point to compare our assumptions and results to those of Daily et al.
(2008) and Fang and Kung (2020). In their models, “low‐demand types” are essentially “zero
demand types.” That is, low‐demand types are individuals who lose entirely their bequest
motive and so have zero willingness to pay for any quantity of second‐period life insurance.
They adopt a contract structure which requires the insured to renew all or none of his first‐
period holdings of insurance. Moreover, they allow renewal terms to depend on risk (health)
type. These assumptions allow for straightforward implementation of a no lapsation constraint
since their low‐demand types place zero value on the amount of second‐period life insurance
which therefore can be aimed solely at high‐demand types. In our model, conditional on risk
type, the first‐best contracts for high and low‐demand types must cost the same but offer higher
coverage to high‐demand types. Unlike “zero demand types,” our low‐demand types place at
least some positive value on second period life insurance coverage and so prefer the first‐best
contract of high‐demand types to their own first‐best contract. This generates an incentive
compatibility constraint that creates efficiency problems.21 Furthermore, we do not allow
contract renewals to be priced differentially according to realized risk type and individuals may
hold GR contracts which allow for renewing part of their overall coverage rather than forcing
“all or nothing” renewal decisions. The result is that high‐risk types who are of low‐demand
type will wish to renew a greater amount of their first‐period GR purchases than is efficient.

Although our goal is not to find the optimal (second best) design of GR or long‐term
contracts, absent any restrictions on contract space, but rather to uncover some of the properties
of existing real world GR contracts, it is interesting to consider what sort of variations in
contract terms could facilitate improved welfare. We do not engage in a comprehensive analysis
of this question here, but some hints at improvements in contract structure follow from the
above discussion. With our more general preference structure, “all or nothing” renewal terms
could not generally generate first‐best contracts. But suppose low‐demand types place suffi-
ciently small value on second‐period life insurance that requiring insureds to either renew all or
nothing of their coverage reduces adverse selection costs by discouraging low‐demand types
from in fact renewing. The welfare loss to high‐risk but low‐demand types forgoing renewals
may be smaller than this welfare gain. However, individuals could purchase a pair of GR
contracts in period 1 with one contract having a small level of coverage which those who
become low‐demand types would want to fully renew while those discovering that they are

21Note that this would still be an issue in our model if we were to adopt the “all or nothing” contract structure used in
the Daily et al. (2008) and Fang and Kung (2020).
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high‐demand types would wish to fully renew both contracts. This strategy by insureds would
undo the benefits of an all or nothing renewal requirement. Given that life insurance contracts
are typically not sold under conditions of exclusivity (i.e., insureds are allowed to purchase as
many contracts from as many insurers as they like)22 such strategies by insureds cannot be
overlooked.

Since allowing for any additional instrument in contract design is likely to allow for some
improvement in welfare, it is clear that introducing risk (health) type‐specific renewal terms of
insurance purchased in the first period may improve welfare. Similarly, further possible welfare
improvements can be realized if, in addition, we allow in the second‐period menus of risk type‐
specific contracts to enable sorting of demand types. However, it can be shown that for our
model, allowing such flexibility in renewal terms could not generally lead to a first‐best out-
come. The reason is that the incentive compatibility constraint that must be satisfied to ensure
that, for a given risk type, the low‐demand type prefers his first‐best contract to that of high‐
demand types cannot be satisfied since the cost of each of these first‐best contracts must be the
same and low‐demand types will always value (at least a little) the higher coverage involved in
the first‐best contract of high‐demand types. Some distortion is required.

5 | CONCLUSIONS

We have developed a two‐period model of life insurance in which individuals face uncertainty
over future changes in both mortality risk and insurance needs (bequest motives). In the first‐
period individuals are identical in all respects, including their current insurance needs and
beliefs about how their risk and demand type will evolve in the second period. We allow for spot
markets in each period as well as GR (or long‐term insurance) that can be purchased in the first
period. In the second period, individuals may become either a high or low‐demand type as well
as a high or low‐risk type. GR insurance offers the potential to ameliorate reclassification risk.
As in Pauly et al. (1995) and other previous work, we find that when individuals face only
future risk type uncertainty, GR may allow individuals to fully insure against reclassification
risk and achieve a first‐best efficient allocation. However, if insurance demand is increasing
over time, then one can only fully insure against reclassification risk by holding more (GR)
insurance in period 1 than is desirable. The result is that a first‐best efficient allocation is not
possible.

Moreover, if there is also uncertainty about future demand, individuals do not know how
much GR insurance would be ideal to hold for possible use in period 2. This creates problems
for the efficiency of the renewals market. To offer protection against reclassification risk, the
renewal price must be less than the actuarially fair price for (period 2) high‐risk types.
Therefore, individuals who turn out to be low‐demand but high‐risk type will face a renewal
price that is below their actuarially fair price and will renew too much and so end up over‐
insured. This creates a type of adverse selection problem which leads to inefficiency. As a result,
unlike in the model of Pauly et al. (1995), we have shown through simulations that the optimal
GR contract may involve a renewal price which exceeds the actuarially fair price for (period 2)
low‐risk types and so leads to lapsation by some insureds. Through a series of propositions, we
have shown that, although a first‐best efficient outcome is not possible when there is both risk

22Empirical evidence suggests linear pricing is a reasonable assumption in life insurance markets. See Cawley and
Philipson (1999) and Pauly et al. (2003). This feature allows for such a strategy involving “partial renewal.”
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and demand type uncertainty, adding GR contracts to spot contracts does improve social
welfare (i.e., ex ante utilities).

We demonstrate through the use of simulations that, as in Fei et al. (2013), GR insurance
can be effective in smoothing consumption across demand types and so can improve welfare
even if there is no reclassification risk (i.e., individuals are of homogeneous risk type). The
source of the welfare improvement is that first‐period purchases of GR with favorable (“sub-
sidized”) renewal terms allows for shifting second‐period death state consumption toward those
with higher marginal utility of consumption (i.e., toward high‐demand types). However, as
noted above, in the presence of both demand and risk type it may be that the optimal GR
contact involves a renewal price above the actuarially fair price for low‐risk types who allow
their policies to lapse and purchase their second‐period insurance needs from the spot market.
In this scenario, which is not considered in Fei et al. (2013), high‐demand types who are also
low‐risk types are excluded from the benefits of the “subsidy.” Although Polborn et al. (2006)
consider a two‐period model with both demand and risk type uncertainty, they do not model
insurance needs in the first period. Therefore, as with Fei et al. (2013), they do not capture the
importance of the interaction of these characteristics with the possibility of increasing demand
over time which creates an additional obstacle for GR or long‐term insurance to improve
welfare.

Our model has shown the importance of identifying consumers who have higher marginal
utility of consumption due to taste differences in regard to bequest motive and due to risk type
(i.e., high‐demand types of a given risk type have higher marginal utility in the death state as do
high‐risk types of a given demand type). We also demonstrate the importance of life cycle
effects in demand for insurance. There are other reasons for changing preferences over time for
insurance, including health shocks or income shocks which may increase or decrease marginal
utility in the life state versus death states. Our analysis shows the importance of explicitly
modeling such changes when analyzing welfare implications of GR or long‐term versus short‐
term insurance contracts. Future work should use such explicit modeling strategies as reflective
of circumstances both for understanding contracts and for any regulations that may be of
interest (e.g., (partially) enforced GR of health insurance contracts as in the Affordable
Care Act).
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APPENDIX A

APPENDIX B: PROOFS

B. 1 Proof of Proposition 1
Denoting the Lagrange multipliers on the resource constraints in each period by λ1, and λ2, the
necessary optimality conditions for an interior socially optimal allocation are:
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Combining (B1) and (B2) we obtain v C u C λ′ ( ) = ′ ( ) =D N
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1, and similarly combining (B4) and

(B5) we obtain v C θ u C′ ( ; ) = ′ ( ) =ij
D

j ij
N λ

p2
2

2
2

1 −
2 . Then, using (B3), we have

∈( ) ( )v C u C v C θ u C i j H L h l′ ( ) = ′ ( ) = ′ ; = ′ for all pairs ( , ) { , } × { , }.D N
ij
D

j ij
N

1
1

1
1

2
2

2
2

FIGURE A1 Period 1.

FIGURE A2 Period 2.
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This implies that, for a given demand type, consumption in the period 2 death state is the same
for both risk types and likewise for the period 2 life state consumption. However, consumption
in the death state is higher for the high‐demand type than for the low‐demand type. This is
easily established as

⇒( ) ( ) ( )v C θ v C θ v C θ C C′ ; = ′ ; < ′ , > .il
D

l ih
D

h il
D

h ih
D

il
D

2
2

2
2

2
2 2 2 (B6)

Note also that the relationship between the period 2 death state consumption levels according to
demand type is independent of risk type.

B. 2 Proof of Proposition 2
When only spot markets for insurance are available, the first‐order conditions for the households are:
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Actuarially fair spot insurance contracts require π p=1 and π p=i i
2 . Then, using the first and

last conditions above we obtain:
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That is, marginal utilities are equated across life and death for all types ex post and also ex ante.
Now, differentiating the first condition with respect to pi for a given level of savings, and

solving for the change in insurance purchases we obtain:
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For a given demand level θj, this is positive whenever returns to consumption diminish at a
faster rate in the death state. Given that we assume this, higher risk types buy more insurance.
Therefore, high‐risk types consume less in both the life and death states than low‐risk types as
they also face higher prices.

Finally, differentiating the first‐order condition with respect to θj for a given level of savings,
and solving for the change in insurance purchases we obtain:
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This says that for a given risk level, higher demand types buy more insurance and therefore
have more consumption that low‐demand types.

B. 3 Proof of Proposition 4

Proof. We will first show that in the presence of fluctuations in demand, the use of GR
contracts alone to insure against mortality risk is inefficient so that individuals always
have incentives to use spot markets. Then, as long as spot markets are active, we will
show that the equilibrium is inefficient as individuals do not receive full insurance
against reclassification risk. However, we begin by demonstrating two important results
that we will use throughout.

First, it is clear that if demand differences exist then in period 2 at the common price
π G2 , higher demand types will want to purchase more coverage than low‐demand types.
Formally, suppose that low‐demand types renew ≤L Lil

G G2 1 units of their GR. Then, the
difference between their marginal utilities across life and death is always smaller at this
amount of coverage than for the high‐demand types:
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as θ θ>h l so high‐demand types want more coverage.
Second, in period 2 all risk types of a given demand type want to purchase the exact

same coverage at a common price if feasible. To see this note that full insurance is
obtained for a type ij individual in period 2 by renewing ≤L Lij

G G2 1 units of GR when
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Then clearly Lij
G2 will differ across demand types but not across risk types as the above

equation is independent of pi. Now, when renewal of GR contracts are the sole means of
obtaining insurance against mortality risk ex post, there are three possible outcomes in
period 2:

1. Low‐demand types fully renew: λ > 0il . This implies that high‐demand types also fully
renew. However, as they want more insurance than low‐demand types, they are
under‐insured and purchase additional spot insurance. Formally, when all types fully
renew we have:
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so high‐demand types have an incentive to purchase spot insurance as they are under‐
insured when they only renew GR. This case arises when demand for insurance
increases overtime for all types.
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2. High‐demand types do not fully renew: λ = 0ih . This implies that low‐demand types
also do not fully renew their GR contracts as they demand less insurance. However,
they purchase too much GR as is cheap. To see this, note that via (32) the foc on Lil

G2

implies:
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whenever λ = 0il . However, note that if there is sufficient front loading π p>G
i

2 and
therefore low‐demand types are over‐insured. This case arises when demand for in-
surance decreases overtime for all types.

3. High‐demand types fully renew but low‐demand types do not. In this case, we again
have overinsurance by low‐demand types for the exact same reason as in the previous
case. This case arises when demand is increasing for high‐demand types but de-
creasing for low‐demand types over time.

To see the inefficiencies in the first‐period note that in Case 1 above, (42) can be combined
with the zero‐profit condition to yield:
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whenever demand is decreasing over time for all types. This implies
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1 or that there is overinsurance ex ante as excessive amounts of GR

is purchased in period 1. Suppose, instead that we are in Case 2, then (42) implies
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as all the multipliers are zero and π p>G1 due to front loading. This implies that in-
dividuals are under‐insured and have incentives to purchase additional spot coverage
ex ante.

Finally, note that if we are in Case 1 above (e.g., high‐demand types desire more
coverage in period 2), they always fully renew their GR and purchase additional spot
insurance. The latter implies that consumptions depend on risk as the additional coverage
is purchased at different prices for different risk types with the same demand. Hence, in
equilibrium, individuals are not fully insured against reclassification risk. Now, suppose
we are in Case 2 above (e.g., low‐demand types desire less coverage in period 2), then the
amount of GR low‐demand types renew depends on their risk type. This is obvious by
noting that the RHS of Equation (B9) depends on pi. The same is true for Case 3. Hence,
individuals do not receive full coverage against reclassification risk with demand
fluctuations.

Now, to see the second‐part of the result, note that from Proposition 1 first‐best
efficiency requires v C u C v C θ u C′ ( ) = ′ ( ) = ′ ( ; ) = ′ ( )
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2 . Since spot prices differ

by risk type, this means that all insurance in period 2 must be acquired through renewal
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of L G1 (i.e., L = 0ij
2 ). This requires that ≤π pG

L
2 in order that all types (including the

lowest risk type) at least weakly prefer to renew their holding of GR rather than access
the spot market for period 2 insurance needs. Full insurance in period 2 requires the RHS
of (32) be zero. Thus, we must have
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which implies that
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Since ≤π pG
i

2 for all i, it follows that ≥λ 0ij with strict inequality applying to all but the
lowest risk type. Without loss of generality, we can assume that if π p=G

L
2 then L types−

(and hence all types) will renew all of L G1 . (For L types− , this follows by considering
π p ε= −G

L
2 for →ε 0+ and relying on insurance demand being continuous in price. For

all other risk types, λ > 0ij which implies L L=ij
G G2 1 ).No lapsation and no second‐period

spot market activity means
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Therefore, we can write C C=ij
D D2 2 and ∀C C i j= , ,ij

N N2 2 . It follows that
∀v C θ u C j′ ( , ) = ′ ( ),D
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2 which is possible only if θj does not vary with j; that is θ θ=j

for some θ > 0.
We have now shown all conditions for period 2 that are required for first‐best

efficiency are met. We now need to consider conditions required for the first‐period
allocation to satisfy efficiency, for intertemporal efficiency to hold, and for the resource
constraint to be satisfied.First‐best efficiency also requires v C u C′ ( ) = ′ ( )D N

1
1

1
1 . Except for

the possibility of a corner solution, v C u C′ ( ) = ′ ( )D N
1

1
1

1 means L > 01 . Due to the
requirements of no lapsation and no second‐period spot market purchases, this means
that demand for insurance in period 1 L L( + )G1 1 must exceed (or in the case of L = 01 be
equal to) demand for insurance in period 2. This confirms requirement 3 of the
proposition. We now need to check that the above conditions ensure intertemporal
efficiency and satisfaction of the resource constraint. v C u C′ ( ) = ′ ( )D N

1
1

1
1 implies that the

RHS of (42) is zero; that is

∑∑p q r λ π p v C−(1 − ) + ( − ) ′ ( ) = 0
i j

i j ij
G D1

1
1 (B14)

which implies

HOY ET AL. | 27



∑∑π p v C p q r λ( − ) ′ ( ) = (1 − ) .G D

i j

i j ij
1

1
1 (B15)

Using λ p π v C θ= ( − ) ′ ( ; )ij i
G D2

2
2 gives us

∑∑π p v C p v C θ q r p π( − ) ′ ( ) = (1 − ) ′ ( ; ) ( − ).G D D

i j

i j i
G1

1
1

2
2 2 (B16)

Intertemporal efficiency implies v C v C θ′ ( ) = ′ ( ; )D D
1

1
2

2 and so we have

∑∑π p p q r p π= + (1 − ) ( − ).G

i j

i j i
G1 2 (B17)

The zero‐profit condition is

∑∑π L pL p q r p π L= + (1 − ) ( − ) .G G G

i j

i j i
G

ij
1 1 1 2 (B18)

Therefore, no lapsation L L( = )ij
G G2 1 implies the above two equations are consistent; that

is, the resource constraint is satisfied. This completes the proof. □

B. 4 Proof of Proposition 5

Proof. Consider spot markets only equilibrium and let L L sˆ , ˆ , ˆij
1 2

denote the
corresponding equilibrium values. Recall that as spot markets are active, marginal
utilities between life and death are always equated. Suppose now that an ε unit of GR is
offered with some front loading (π p>G1 ), and a second‐period renewal price such that
p π p< <L

G
H

2 . Such a contract is always feasible by making π G2 arbitrarily close to (but
less than) pH and therefore π G1 arbitrarily close to (but above) p for any set of model
parameters and ε. Moreover, such a contract is fully renewed by high risks as GR is
cheaper relative to spot—they will substitute some spot for GR. However, such a contract
does not affect the behavior of low risks—they continue to purchase the same amount of
spot as before.

Then, λ p π v y s p L θ= ( − ) ′ ( + ˆ + (1 − ) ˆ ; )Hj H
G

H Hj j
2

2 2
2

and λ = 0Lj , and the change in
welfare from the marginal unit of GR is non‐negative if:

∂

∂→

EU

L
p π v y p L p π u y s pL

p q r λ q r λ

lim = (1 − ) ′ ( + (1 − ) ˆ ) − (1 − ) ′ ( − ˆ − ˆ )

+ (1 − )( + ) > 0.

ε G
L L ε

G G

H h Hh L l Hl

0 1
= =

1
1 1 1

1
1 1 1

G
Hj
G1 2

(B19)

Note that the zero‐profit condition on the GR contract implies:

π p p q p π− = (1 − ) ( − ),G
H H

G1 2 (B20)
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as it is fully renewed by high risks only. Using this expression and the definitions of λij we
obtain

∑

∑

( )

( )

p π v y p L p π u y s pL p q r λ q r λ

q r p π v y s p L θ v y p L

q p π r v y s p L θ v y p L

(1 − ) ′ ( + (1 − ) ˆ ) − (1 − ) ′ ( − ˆ − ˆ ) + (1 − )( + )

  = ( − ) ′ + ˆ + (1 − ) ˆ ; − ′ ( + (1 − ) ˆ )

  = ( − ) ′ + ˆ + (1 − ) ˆ ; − ′ ( + (1 − ) ˆ ) .

G G
H h Hh L l Hl

j

H j H
G

H Hj j

H H
G

j

j H Hj j

1
1 1 1

1
1 1 1

2
2 2

2
1 1 1

2
2 2

2
1 1 1

⎡⎣⎢ ⎤⎦⎥
⎡⎣⎢ ⎤⎦⎥

Finally, using the first‐order condition on savings, we have

∑∂

∂→

( )
EU

L

q p π q r v y s p L θ

v y s p L θ

lim =

( − ) [ ′ + ˆ + (1 − ) ˆ ;

− ′ ( + ˆ + (1 − ) ˆ ; )] > 0,
ε G

L L ε

H H
G

L

j

j H Hj j

L Lj j

0 1
= =

2
2 2

2

2 2
2G

Hj
G1 2

(B21)

as whenever there is reclassification risk, high risks have higher marginal utility in the
death state than low risks. □
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