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Abstract
Chronotherapy is a pharmaceutical intervention that considers
the patient’s internal circadian time to adjust dosing time.
Although it can dramatically improve drug efficacy and reduce
toxicity, the large variability in internal time across and within
individuals has prevented chronotherapies from progressing
beyond clinical trials. To translate chronotherapy developments
into a real-world outpatient clinical scenario, a personalized
characterization and analysis of a patient’s internal time is
essential. Here, we describe recent advances in wearable
technology that enable real-time high-resolution tracking of
circadian and ultradian rhythms. We discuss how integrating
wearable data into analysis platforms including systems
modeling and machine learning can pave the way toward
personalized adaptive chronotherapy.
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Introduction
The circadian (w24 h) clock is an innate timing system
that coordinates diverse circadian rhythms seen in
metabolic, physiological, and behavioral processes with
external lightedark cycles [1]. The system is organized
www.sciencedirect.com
in a hierarchical manner, where the master clock in the
suprachiasmatic nucleus (SCN) regulates downstream
clocks in peripheral tissues by sending synchronization
signals such as hormone rhythms (Figure 1) [2,3].
Around 50% of the protein-coding genome is transcribed
rhythmically, and >80% of currently approved drug
targets show rhythmic activity [4e6]. Furthermore, the
mechanisms underpinning pharmacokinetics and phar-

macodynamics, together with key processes such as the
cell cycle and energy metabolism, display circadian
rhythms (Figure 1) [2,7,8].

As a result, the efficacy and toxicity of diverse drugs can
largely depend on dosing time (Figure 1). For example,
melatonin, a clockmodulator, can either delay or advance
the circadian phase when administered in themorning or
early evening, respectively [9]. Simvastatin, a
cholesterol-lowering agent, works better at reducing
levels of cholesterol when administered in the evening

[1]. More than 50 anticancer drugs displayed chro-
notoxicity or chronoefficacy in mouse and human ex-
periments [2,8], andw75% of clinical trials investigating
the impact of timing for 70 drugs found significant
circadian variations of efficacy and toxicity [1].

Despite the potential benefits to patients from proper
dose timing, most clinical trials and regulatory bodies
have largely ignored it [1]. This might be due to the
complexity of implementing chronotherapies in the
clinic and the lack of dedicated technologies. The suc-

cess of chronotherapy depends on precisely measuring
internal circadian time, which has been difficult to do in
real-time before recent advances in wearable technology.
Here, we review how personalized chronotherapy can
improve patients’ quality of life by taking advantage of
wearable data and its analysis through mathematical
modeling and machine learning. Although previous re-
views have addressed the overall benefits and challenges
of adopting wearable systems in medicine [10e14], we
focus on how these devices can be integrated into anal-
ysis platforms that enable personalized chronotherapies.
Challenges to chronotherapy:
heterogeneity in patient circadian rhythms
and response to chronotherapy
Historically, questionnaires have been used to assess the
large inter-individual variability in chronotypes d the
Current Opinion in Systems Biology 2020, 21:9–15
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Figure 1
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The drug efficacy and toxicity depend on dosing time because of circadian rhythms in drug pharmacokinetics and pharmacodynamics. The
circadian timing system, which comprises a hierarchy of oscillators in central and peripheral tissues, regulates key pharmacokinetic factors (e.g. drug
transport and metabolism) and pharmacodynamic factors (e.g. drug targets, cell cycle, and energy metabolism). This leads to a strong dependency of
drug efficacy and toxicity on dosing time. The human icon is adapted from Ballesta et al. [2].
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most extreme being colloquially termed ‘night owls’

(evening types) or ‘morning larks’ (morning types) [15].
The chronotypes depend on factors such as age, gender,
and genetic predisposition (e.g. clock gene poly-
morphisms) [16,17]. However, questionnaires only
provide a static picture of the patient’s circadian
rhythms and may not contain the necessary information
to personalize drug administration. The dim light
melatonin onset (DLMO) has established itself as the
most widely used biomarker of internal time [18]. This
physiological measurement shows that even healthy
individuals with the same sleepewake cycle can have
Current Opinion in Systems Biology 2020, 21:9–15
internal circadian times that differ by up to 5 h [19].

The natural intra-individual and inter-individual vari-
ability of internal time advocates against “one-size-fits-
all” therapeutic strategies and highlights the need for a
personalized approach to chronotherapy [1,20]. How-
ever, with resource-intensive DLMOmeasurement, it is
difficult to track daily variations of circadian time in
free-living conditions, which can be disrupted by
external factors such as jetlag, artificial light exposure at
night, mistiming of meals, or just one night of poor sleep
[21,22]. Furthermore, it only provides information on
one biomarker, whereas the circadian system relies on a
www.sciencedirect.com
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complex interplay between interrelated oscillators
affecting drug responses (Figure 1).

Because of the variability of circadian rhythms, the
effect of chronotherapy also shows large intra-individual
and inter-individual variability. For instance, the effect
of cancer chronotherapy shows a large variation across
patients. A meta-analysis of three clinical trials for

colorectal cancer found that chronomodulation of the
anticancer drugs 5-fluorouracil, leucovorin, and oxali-
platin improves overall survival in men but not in women
[23]. More recently, the chronotoxicity of irinotecan
combined with 5-fluorouracil and oxaliplatin showed
large sex-specific differences: the optimal dosing time
was early morning for men but early afternoon for
women [24]. Furthermore, using a systems pharmaco-
logical model, which accurately captures the intracel-
lular action of a clock modulator inhibiting CK1ε/d on
the core clock molecules in the SCN, the modulator

efficacy has been shown to change depending on expo-
sure environment (e.g. a long/short day) when dosed
even at the same external time as the exposure envi-
ronment affects the phase of the SCN oscillation (i.e.
the internal time) [25,26]. Furthermore, even under the
same environment, as daily dosing of the modulator
keeps altering the internal time, the modulator efficacy
shows daily variations when kept dosed at the same
external time [25,26]. Overall, these findings emphasize
the need for patient-tailored chronotherapies.
Real-time individual monitoring of circadian
and ultradian rhythms through wearables
To develop personalized chronotherapies, we need
technologies that measure circadian rhythms of indi-
vidual patients quantitatively and continuously. When
combined with suitable computer analysis techniques,

wearable devices are the most promising tool for
tracking the internal time from real-time monitoring of
physiological proxies such as resteactivity, heart rate,
sleep, glucose, skin temperature and conductance, and
even exposure to external cues such as light [20,27e31].
Indeed, with multiple wearable devices, daily variations
in 62% of w40 physiological and behavioral measures
including blood pressure, heart rate, and dietary intake
were uncovered [12]. Furthermore, circadian rhythm
disruptions induced by cancer and anticancer drugs have
been identified by measuring rest-activity rhythms with

actimeters [2]. Recently, the PiCADo mobile eHealth
platform identified significant sex- and age-related dif-
ferences in circadian coordination during daily routine
by combining skin temperature with resteactivity data,
which was not detected from resteactivity data alone
[32].

Wearables can also provide information about ultradian,
monthly, and seasonal body rhythms not previously
considered in chronotherapy. Because these rhythms
www.sciencedirect.com
overlap with circadian ones, we can expect that chro-
notherapeutic effects would also depend on these other
rhythms. For instance, glucocorticoids are vital steroid
hormones with ultradian, circadian, and seasonal rhyth-
micity that mediate stress response, metabolism,
cognition, and inflammation [33]. However, the effect
of ultradian and seasonal rhythms on the efficiency of
drugs targeting the glucocorticoid receptor and on hor-

mone replacement therapy has not been considered
[34,35]. Furthermore, glucocorticoids also exert circa-
dian and ultradian regulation of blood glucose, but the
impact of these rhythms in the treatment of metabolic
disorders such as diabetes remains unexplored [36]. In
this direction, wearable continuous glucose monitoring
devices have shown therapeutic potential as they have
enabled the identification of glucotypes in a noninvasive
manner [37], which could help develop chronotherapies
in diabetics under the artificial pancreas [38]. Treat-
ment of sleep disorders can also benefit from analyzing

not only circadian but also intradaily variability of
actigraphy data [39]. Lastly, wearable tracking of resting
heart rate, an ultradian cardiovascular rhythm, as well as
resteactivity rhythms and light exposure can also inform
about the best course of action to fine tune chrono-
therapies in the face of susceptibility to seasonal ail-
ments such as influenza and sleep disorders [40,41].
Taken together, this latest research suggests tracking
changes in dynamics other than circadian rhythms via
wearables can assist the development of novel
chronotherapies.
Integration of high-dimensional data from
wearables toward personalized
chronotherapy
Systems pharmacology and machine learning to
analyze wearable data
Another benefit of using wearables is that large high-
dimensional data from various devices can be easily
incorporated into a single platform via the Internet of
Things and cloud computing (Figure 2)
[14,28,31,32,42,43]. For instance, w900 different apps
based on smartphones and wearables are currently
connected with the Apple HealthKit. To utilize the
high-dimensional data from this platform to personalize
chronotherapy, it is essential to identify key biomarkers
and their complex nonlinear interactions determining
therapeutic effects. The most promising tool to achieve

this is systems pharmacology modeling and machine
learning (Figure 2) [13,20]. For instance, a systems
pharmacology model was used to analyze large variations
in the efficacy of a clock modulator inhibiting CK1ε/
d depending on mutations of various clock genes and
environmental light conditions [26]. Specifically, using
the model, virtual patients having different genetic
causes of circadian disruption were generated. Then,
the source of their heterogeneous responses to the
modulator was investigated. This revealed that the
Current Opinion in Systems Biology 2020, 21:9–15
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Figure 2

Wearable-based systems medicine enables personalized chronotherapy. The real-time rest–activity rhythms, heart rate variability, sleep, glucose,
skin temperature, and exposure to environmental light measured by wearable devices can be integrated into data processing platforms. The collected
high-dimensional data are analyzed via systems pharmacology and machine learning models to estimate the status of key circadian biomarkers in
patients that determine drug efficacy and toxicity. This predicts a proper personalized dosing time in real-time, thus enabling personalized adaptive
chronotherapies coupled to smart drug delivery devices.
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complex efficacy of the modulator is mainly determined

by a single biomarker, the endogenous PER2 level.
Similarly, by generating virtual subjects, another systems
pharmacology model, which compared different dosing
regimens of synthetic glucocorticoids, identified that
gender, homeostatic variability, and chronic stresse
induced regulatory adaptations in the hypothalamuse
pituitaryeadrenal axis are critical for the efficacy of
hormone replacement therapy [44]. Furthermore,
through a variance-based global sensitivity analysis using
a systems pharmacology model, which accurately simu-
lates the pharmacokinetics/dynamics of the anticancer

drug irinotecan, the contribution of model parameters to
the drug toxicity was dissected. This revealed that the
chronotoxicity of irinotecan mainly stems from rhythmic
BMAL1 expression as it regulates the drug’s bio-
activation and detoxification [45]. Recently, the inter-
patient variability in pharmacokinetic parameters of
irinotecan, oxaliplatin, and 5-fluorouracil was assessed
using a nearly unbiased estimator of coefficient of vari-
ation on a physiologically based model, which accurately
captures the delivery dynamics of the anticancer drugs
to the patient blood and their pharmacokinetics. This

revealed that the large interpatient pharmacokinetic
variability of the drugs originated from differences in
drug transport between organs rather than drug clear-
ance [46].

Although systems pharmacology modeling requires data
on the molecular mechanisms underlying dosing effects
[26,45], machine learning is a more flexible alternative
for modeling raw, unstructured wearable data and its
links to internal time [14]. Although machine learning
Current Opinion in Systems Biology 2020, 21:9–15
has not yet been directly applied to chronotherapy, it has

already extracted insight from high-dimensional data
collected with wearables. For example, a machine
learning method based on balanced random forests
successfully classified the activity mode from patterns of
sleep and physical activity measured with wrist-worn
accelerometers [42]. An analysis of acceleration and
heart rate data from wearables with a neural net
approach accurately differentiates wake, NREM sleep,
and REM sleep [28]. Furthermore, a convolutional and
recurrent neural network trained on ECG signals has
successfully predicted hypoglycaemic events [30], and a

similarity-based machine learning analysis using data
from multisensor wearable devices has accurately
predicted heart failure exacerbation and estimated the
risk of rehospitalization [47]. Lastly, a linear regression
modelebased approach using long-term tracking of
resting heart rate has also been investigated as a sur-
veillance tool to monitor seasonal influenza-like illness
[40].

Integrated platforms toward personalized
chronotherapies
The integration of wearable devices and high-
dimensional data platforms enables proactive support-
ive drug interventions and systematic real-time moni-

toring of their efficacy, which facilitates personalized
chronotherapy (Figure 2). For instance, the inCASA
telehealth project, which was named by the EU Com-
mission, aimed to combine resteactivity recording with
self-monitored body weight and self-rated symptoms in
cancer patients receiving chronotherapy at home [43].
This domomedicine platform was further developed to
www.sciencedirect.com
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incorporate a new wearable that records activity, tem-
perature, and position and now constitutes a unique tool
for advancing safe home-based chemotherapy adminis-
tration [32]. This platform is currently being used in the
CIRCADIEM study to evaluate the impact of shift work
schedules on the circadian coordination and sleep of
nurses [32].

The World Health Organization estimates that only
about 50% of people with a chronic illness follow their
prescribed treatment. Thus, keeping the right daily
dosing time, which critically affects patient response
[20], is expected to be challenging. This problem could
be solved by wearable-assisted drug delivery systems
(Figure 2). For example, a portable subcutaneous
infusion pump has shown to improve the timing of
hormone replacement therapy [35]. However, a more
physiological dosing regimen will require dynamic
control of hormone infusion that adapts to bodily needs

in real-time. This can be addressed through practical,
noninvasive wearable biosampling systems that feed
information back to the infusion pump [48,49].
Furthermore, by integrating smart wearable drug de-
livery systems with systems pharmacology models [26],
individual differences in efficacy of time-varying dosing
regimens could be analyzed systematically. This would
provide a unique opportunity to investigate inter-in-
dividual and intra-individual variability in drug efficacy.
This approach constitutes an important step toward
personalized adaptive chronotherapies that dynami-

cally adjust dosing time to achieve the desired effect
[9,26,50].

Identification of new chronotherapy with wearables
Wearables can also be used to identify unknown de-
pendencies of drug effects on dosing time. Because
considering circadian timing adds complexity in clinical
trials, only 1% of all clinical trials incorporate circadian
timing, and it is, therefore, nearly excluded from drug
development [1,5]. On the other hand, unlike in typical
clinical trials, the timing of treatment has been tracked
when wearables have been used to monitor the effect of
various therapies. For instance, the smart inhaler for
asthma developed by Propeller Health has tracked

dosing time and patient response [51]. Dexcom’s
continuous glucose monitor and SleepOn’s Go2Sleep
also have recorded the timing of treatment and re-
sponses in diabetics and sleep apnea patients, respec-
tively [52]. These data will provide a valuable
opportunity to test whether the therapeutic effect de-
pends on the timing of treatment and to initiate new
clinical trials for chronotherapy. Furthermore, compared
with traditional clinical trials, those that involve wear-
ables have better patient recruitment rates and auto-
mated data collection and monitoring. For instance,

Apple ResearchKitepowered apps such as MyHeart
Counts successfully recruitedw10 000 patients in just a
www.sciencedirect.com
day and have monitored their daily activity, fitness, and
cardiovascular risk [53].
Conclusion
Real-time data collection with wearables and analysis
with mathematical modeling and machine learning can
facilitate personalized chronotherapy. However, various
technical challenges remain (see Perez-Pozuelo et al.
[14] for details). Although circadian rhythms are mark-
edly diverse among tissues because of organ-specific
regulation of circadian function, current wearable de-
vices can only measure system-level rhythms rather than
tissue-specific rhythms [54] that can be altered by dis-

ease (e.g. tumors and inflammation) [2,55]. Thus, to
truly personalize chronotherapy, it will be important for
analysis platforms to account for tissue-specific internal
time. This can be achieved by tailoring machine
learningebased algorithms such as TimeTeller [56],
Body Time [57], and CYCLOPS [58] to the target tissue
sample. The personalized adaptive chronotherapies
supported by these platforms promise to improve cur-
rent clinical interventions by taking advantage of a
dimension previously unaccounted for: ‘time.’
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