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Abstract 

In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-

way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand 

break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the 

recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand 

exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up 

RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of 

these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 

loading step of HR. Protection of stalled forks not only requires separate functions of a number of 

recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. 

Here we discuss how fork protection arises and how its differences with HR give insights into the differing 

contexts of these two pathways. 

 

1. Introduction 

Protection of the reversed replication fork from untimely nuclease attack has emerged as a critical process for 

maintaining genome stability. Recent insights into both the mechanism and fundamental importance of 

replication fork protection have relied on a few key techniques (see BOX 1 and Figure 1), revealing significant 

overlap between factors involved in this process and homologous recombination (HR). Much of this work has 

underscored the relevance of replication fork protection to chemotherapeutic responses, demonstrating the 

potential clinical impact that a greater understanding of this process could hold. Throughout this review, we 

examine the key factors involved in the closely linked processes of replication fork reversal and protection, 

and contrast their distinct functions in fork protection versus HR. 

 

2. Fork reversal and restoration 

During DNA replication, fork progression may be hindered by various obstacles, including DNA lesions, 

torsional stress, secondary structures, nucleotide shortage, transcription complexes and DNA:RNA hybrids 

[1]. Upon encountering many, if not all, of these obstacles, forks stall and are remodelled into a four-way 

junction (also called ‘reversed fork’ or ‘chicken foot’) [2]. This is achieved by the re-annealing of parental 

strands alongside the unwinding and annealing of newly synthesised DNA to form a regressed arm [3].  Fork 

reversal restrains fork progression under conditions of replication stress [4, 5], which may allow time for repair 

machineries to resolve perturbations [3] and prevent progression of DNA synthesis across lesions, which 

might otherwise result in DNA double-strand breaks (DSBs) [6]. Fork reversal also places lesions on the 

parental template back into the context of double-stranded DNA (dsDNA) to facilitate repair [7]. 

 

2.1. Fork reversal 

Fork reversal is mediated by RAD51 [2, 8-10], and the SNF2-family DNA translocases SMARCAL1, ZRANB3 

and HLTF (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A Like 
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1, Zinc Finger RANBP2-Type Containing 3 and Helicase Like Transcription Factor, respectively) [11-17]. 

Inactivation of these SNF2-family remodellers rescues fork protection defects, for example in BRCA1- or 

BRCA2-deficient cells [9, 18], placing remodellers upstream of fork protection.  

SMARCAL1 localises to stalled replication forks through interaction with the single-stranded binding protein 

RPA [16, 19]. Single-molecule experiments suggest that fork reversal by SMARCAL1 is promoted in bursts 

with pausing in between [11, 20]. This pausing, and the inhibition of fork reversal induced by ATR 

phosphorylation of SMARCAL1, have been proposed to prevent excessive fork modelling [21, 22]. Similarly 

human RAD52, a single-stranded DNA (ssDNA) binding protein with many roles in HR (reviewed in [23]), acts 

to restrain SMARCAL1 recruitment to forks [24].  

 

HLTF acts at least in part to oppose the permissive DNA synthesis mediated by FANCJ at stalled forks [5, 25]. 

FANCJ is capable of driving replication through barriers such as secondary DNA structures [26]. Without 

FANCJ, excessive remodelling by HLTF contributes to fork degradation, whereas in cells lacking HLTF, 

replication under conditions of replication stress proceeds at a faster rate [25]. In addition to its dsDNA 

translocase activity, HLTF is an E3 ubiquitin ligase which can polyubiquitinate PCNA [27]. The interaction of 

ZRANB3 with polyubiquitinated PCNA stimulates ZRANB3 fork reversal activity both in vitro and in vivo [4, 12, 

20, 28].  

 

The mechanism of fork regression by SNF2-family translocases is not widely understood, however single-

molecule experiments have suggested that Rad5, the budding yeast orthologue of HLTF, unwinds the leading 

strand at the fork junction upon ATP binding [29]. The four-way junction may then form spontaneously, 

followed by branch migration to extend the regressed arm [29]. While several SNF2-family translocases are 

able to catalyse fork reversal, their roles are not redundant [12]. Given their preferences for distinct 

substrates, it is likely they act upon a variety of replication structures present at stalled forks. HLTF binds to 

free 3’-OH ends on the nascent leading strand [30], while SMARCAL1 and ZRANB3 bind preferentially to 

DNA substrates with splayed arms [31, 32] but are regulated by RPA in contrasting ways. These remodellers 

may also act sequentially in common pathways [20, 21, 33] (Figure 2A and 2B).  

 

Other factors have also been shown to catalyse fork reversal in vitro, including the translocases RAD54 [34, 

35] and FANCM [36, 37], and the RecQ helicases BLM, WRN and RECQL5 [38-40], although their relevance 

in vivo is unclear. The helicase FBH1 is also able to reverse replication forks in vitro and in vivo [10, 41], 

however its role in fork reversal is difficult to define clearly since FBH1 is also involved in modulating RAD51 

filament stability (see section 3.4.4.).  

 

RAD51 co-purifies with replication forks and associates with chromatin during S phase in perturbed and 

unperturbed conditions [42-45]. Depleting RAD51 reduces the proportion of reversed replication structures 

observed under electron microscopy (EM) and increases the frequency of post-replicative ssDNA gaps at the 

replication fork, suggesting that ssDNA at forks acts as a precursor for RAD51-mediated fork reversal [2, 9]. 

RAD51 alone is unable to catalyse fork reversal in vitro [35], but may co-operate with remodelling enzymes to 

mediate reversal. Alternatively, RAD51 binding to reversed forks may capture the DNA ends and shift the 

equilibrium fork state towards reversal [46]. Intriguingly, the RAD51-T131P mutant that is unable to form 

stable filaments can promote fork reversal, suggesting that reversal may not require stable RAD51 filament 

formation [9]. Furthermore, unlike the function of RAD51 in HR or fork protection, RAD51-mediated fork 

reversal can occur independently of BRCA2 [9]. In this context, RAD51 may instead be recruited to replication 

forks by direct interactions with DNA polymerase alpha, RAD54 or RAD51C [15, 35, 47]. The dual role of 

RAD51 in mediating fork reversal and then protecting those reversed forks has led to seemingly contradictory 

observations of protected or degraded forks upon RAD51 depletion [2, 9, 48-50]. This can be resolved by 

evidence that suggests low levels of RAD51 are sufficient for fork reversal but are not sufficient for fork 

protection [51] (Figure 2C). 
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2.2. Restoration of forks and suppression of fork reversal 

The reversed fork can be restored back into a three-way junction to resume DNA synthesis [52]. Resolution is 

mediated by the RECQ1 helicase [3, 53] and regulated by PARP1, which inhibits RECQ1 activity [53] (Figure 

3).  

In yeast and bacteria, the nucleolytic processing of nascent DNA strands at stalled forks inhibits fork reversal 

and promotes the regeneration of functioning replication forks [54, 55]. Human EXD2 is a 3’-5’ exonuclease 

that functionally interacts with MRE11 during HR, acting to accelerate resection through the 3'-5' exonuclease 

activity of MRE11 [56-58]. Thus, EXD2 might be expected to also co-operate with MRE11 in the degradation 

of stalled replication forks. Surprisingly however, recent work suggests EXD2 acts to prevent fork reversal and 

therefore suppresses subsequent MRE11-mediated degradation [59]. Using PARP1 accumulation as an 

indication of fork regression [60], Nieminuszczy et al found that EXD2 loss increases PARP1 accumulation at 

stalled forks. Moreover, purified EXD2 can degrade substrates with extruded, single-stranded nascent DNA 

expected to arise at stalled forks [59]. These experiments suggest a model in which degradation of nascent 

DNA can prevent fork remodelling in mammalian cells. 

Similarly, CtIP directs MRE11-mediated short-range DNA resection in HR [61]. As might be expected for a co-

factor of MRE11, the degradation of stalled forks in BRCA2-mutant cells was prevented by CtIP loss [62]. 

However, depletion of CtIP alone has been shown to have conflicting roles, with either no impact on stalled 

replication structures [8, 62] or increasing their degradation [63]. Thus in some contexts CtIP may prevent fork 

regression or contribute to protection of regressed forks [63]. This activity may be mediated by its specificity in 

binding Y-shaped DNA structures present at stalled forks [64]. 

Observations from crosslinked regressed forks suggest that the annealed nascent DNA comprising the ‘toe’ of 

the regressed fork is chromatinised [65]. These exposed ends, reminiscent of chromatin adjacent to a DSB, 

may engage the E3 ubiquitin ligase RNF168 for H2A ubiquitination, since RNF168, and factors that it recruits, 

are able to suppress fork reversal and promote ongoing replication during unperturbed S phase [65].   

 

 

3. Degradation of reversed forks 

Once reversed into a four-way junction, replication forks can be degraded as part of normal cellular 

physiology. Following prolonged fork stalling in wild-type cells, nascent DNA is progressively degraded by the 

5’-3’ exonuclease DNA2, in partnership with WRN ATPase (helicase) function, but is not degraded by MRE11, 

MUS81, EXO1 or CtIP (although see section 2.2.) [8]. In contrast, in the absence of specific fork protection 

factors, nascent DNA degradation occurs more rapidly. Degradation of deprotected forks involves several 

nucleases in addition to DNA2, including structure-specific nucleases (MUS81-EME1, SLX4-XPF-ERCC1) 

and 3’-5’ exonucleases (MRE11-EXO1). These observations suggest a need to defend the stalled structure at 

several potential nuclease entry points when protective factors are missing. In reports examining fork-

protective factors, a full exploration of which nucleases are not involved is frequently incomplete (Table 1); 

nevertheless the current data suggests there are different branches of fork protection which defend against 

particular nucleases. Given the role of DNA2 in degradation of stalled forks in wild-type cells, it is tempting to 

consider factors that give rise to DNA2 vulnerability as those whose loss further exposes an otherwise 

‘normal’ stalled fork state. Meanwhile loss of factors that expose vulnerabilities to other nucleases implies that 

fork structures in these contexts are abnormal. However, this view is also an oversimplification. For example, 

the WRN helicase assists DNA2 in degrading regressed forks following HU exposure [8], but WRN 

exonuclease activity prevents degradation by MRE11 and EXO1 upon exposure to low doses of camptothecin 

[40]. Thus WRN activities and fork nuclease vulnerabilities differ according to the replicative stress. Our 

current understanding of the precise substrates and vulnerabilities that define the differences between forks 

exposed to different agents or lacking different protective factors is poor. 

 

3.1. Protection against SLX4-associated nuclease activity 

The shorter and less common form of the Werner’s interacting protein, WRNIP1, counteracts degradation 

mediated by the SLX4-interacting structure-specific nuclease XPF-ERCC1 (and to a lesser extent SLX4-

SLX1) [66]. Interestingly, depletion or inhibition of DNA2 also protects forks in WRNIP1-deficient cells [66]. 

Thus one model is that SLX4 targeting of unprotected replication fork structures generates a substrate for 
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DNA2-mediated digestion. In another context, or perhaps depending on the isoform expressed, WRNIP1 can 

also protect against MRE11-mediated degradation [67]. Importantly, WRNIP1 could not protect junctions from 

MUS81-EME1 in vitro and SLX4 is not relevant to fork protection seen in a BRCA2-deficient context [66], 

indicating WRNIP1 and BRCA2 protect replication forks through different mechanisms (Figure 4). 

 

3.2. Protection against DNA2 activity 

A structure-specific role may be relevant to fork protection mediated by Replication Timing Regulatory Factor 

1 (RIF1), which binds to cruciform structures in vitro [68]. RIF1 protects structures from DNA2 nuclease 

activity [69], and this requires its PP1-interaction motif. Loss of PP1 results in fork degradation, possibly 

through deregulating phosphorylation of DNA2 or its helicase partner WRN [70]. 

The Biorientation Of Chromosomes In Cell Division 1 Like protein, BOD1L, also protects forks from 

degradation by DNA2. This is mediated by interaction with the H3K4 histone methyltransferase SETD1A [71, 

72]. SETD1A has two impacts (Figure 5); firstly it inhibits recruitment of the chromatin remodeller CHD4 and 

loss of CHD4, like inhibition of DNA2, rescues fork stability of BOD1L-SETD1A depleted cells; secondly, 

SETD1A enhances the histone chaperone activity of FANCD2 and the subsequent mobilisation of histones 

upstream of RAD51 deposition [72].  

ABRO1 is homologous to CCDC98/Abraxas and acts to prevent DNA2/WRN-mediated, but not MRE11-

mediated, fork degradation [73]. How this is achieved is unclear, but it is intriguing that the association of 

ABRO1 with the de-ubiquitinating enzyme USP7 can decrease ubiquitination of MDM2 and p53 [74], and that 

USP7 in turn is required for ongoing replication [75]. We might speculate ABRO1 acts to prevent inappropriate 

ubiquitination of vital components at the fork to protect the stalled fork structure. 

Thus there are a range of functions in the factors that protect structures from DNA2; some of which bind 

complex DNA structures (WRNIP1, RIF1) and directly counteract the DNA2-WRN nuclease or decrease the 

availability of its substrates, while BOD1L-SETD1A regulation of chromatin remodelling suggests correct 

histone positioning contributes to shielding from DNA2. 

 

3.3. Protection against MUS81-EME1 activity 

While SLX4 is not relevant to fork protection in BRCA2-deficient cells, MUS81-EME1 loss can restore fork 

stability in this context [66, 76]. The MUS81-EME1 complex is a structure-specific endonuclease, with a 

preference for branched DNA structures with a 5'-end at the branch, and plays an important role in rescuing 

stalled replication forks. Enhancer of zeste homologue 2 (EZH2) methylates histone H3K27, and di- or 

trimethylated Lys27 (H3K27me2 and me3) interacts with MUS81 and contributes to MUS81 recruitment to 

stalled forks. EZH2 depletion further improved fork protection conferred by MRE11 depletion in BRCA2-

deficient cells, suggesting that EZH2-MUS81 and the MRE11 complex belong in distinct, additive pathways 

that degrade DNA at stalled replication forks [76]. 

 

3.4. Protection against MRE11-EXO1 nucleases 

Inhibition of MRE11 3’-5’ exonuclease activity with the small-molecule inhibitor mirin prevents fork degradation 

in cells lacking cohesin [77], RECQL5 [78], FANCB [78], FANCD2 [79], BRCA1 or BRCA2 [9, 15, 18, 62, 79-

81], the RAD51 paralogs (RAD51C, XRCC2, XRCC3) [82], WRNIP1 [67], WRN exonuclease [40], RNF168 

[65], EXD2 [59], ATRX [83] or REV1 [84]. The 3’-5’ EXO1 nuclease appears to function in the same pathway 

as MRE11, with EXO1 extending degradation begun by MRE11 in BRCA1- or BRCA2-deficient cells [62]. 

 

3.4.1. MRE11 recruitment 

In addition to inhibiting fork resolution by RECQ1, PARP1 can be activated by stalled replication forks and 

interacts with NBS1-MRE11, facilitating MRE11 recruitment to stalled forks [85, 86]. Resection by MRE11 in 

wild-type cells contributes to timely fork restart [86], but if forks are unprotected, MRE11, and PARP1 activity, 

contribute to fork degradation [81]. Alongside its role in limiting fork reversal, RAD52 interacts with stalled 

replication-like structures and also contributes to MRE11 recruitment to promote fork degradation [9]. In HR, 

RAD52 supports RAD51 and alternative HR-mediated repair mechanisms. The findings of entirely separate 

roles for RAD52 in fork protection is a dramatic illustration of the divergent roles of some proteins between 

these two contexts.  



A Fork in the Road  Tye, Ronson & Morris 

5 

 

 

The PTIP and Mixed-Lineage Leukaemia 3 and 4, MLL3/4 (Lysine Methyltransferases 2C and 2D) complex 

acts to specifically methylate H3K4 [87] which promotes MRE11 recruitment [81]. Targeting the catalytic SET 

domain of MLL4 in BRCA1-deficient B cells rescues fork stability, and loss of the MLL3_4/PTIP/MRE11 

chromatin modifier pathway protects replication forks from degradation in BRCA1- and BRCA2-deficient cells 

[81]. As MLL3/4 promotes MRE11-depedent degradation, and SETD1A prevents DNA2-mediated 

degradation, both apparently through H3K4 methylation [72, 81], further exploration is needed of how 

H3K4me differentially regulates nuclease accessibilities. The nucleosome remodeller CHD4 also mediates 

MRE11 recruitment in BRCA2-deficient cells, and its depletion reverses fork degradation in addition to 

rescuing cisplatin sensitivity and chromosome aberrations in these cells [81, 88]. Since loss of CHD4 similarly 

restores fork stability and genome stability in SETD1A-deficient cells (where forks are sensitive to DNA2, not 

MRE11) [71] there appears to be a toxic influence of remodelling nucleosomes in at least two different 

contexts of stalled forks. 

 

3.4.2. Protection against MRE11 activity 

Cells employ several means to prevent MRE11 nuclease attack of stalled replication forks, including direct 

inhibition, upregulation of translesion synthesis (TLS) and RAD51-mediated inhibition.  

 

ATRX physically interacts with MRE11 and inhibits excessive MRE11 activity at stalled forks, so that loss of 

ATRX leads to compromised fork protection [83]. Both the Fanconi core complex and the mono-ubiquitination 

of FANCD2 contribute to full fork protection from MRE11 [79]. Mono-ubiquitinated FANCD2 binds the TLS 

polymerase REV1 for bypassing lesions, and depletion of REV1 also results in the poor protection of 

replication forks from MRE11 [84]. FANCD2 has several further functions (described in section 3.2. and 

3.4.3.), and its positive role is such that its overexpression is found in tumours lacking BRCA1/BRCA2, where 

it acts to restore the stability of stalled forks [89]. Loss of FANCD2 meanwhile is synthetic lethal with loss of 

BRCA2 [89, 90]. Furthermore, restoration of fork protection by depletion of CHD4 in BRCA2-deficient cells is 

linked to increased PCNA mono-ubiquitination mediated by the E3 ligase RAD18 [81, 88], which drives 

recruitment of TLS polymerases. These observations imply that less stringent polymerases can act to support 

exposed forks.  

 

RAD51 stabilisation is a major determinant in protection of forks against nuclease attack. When bound to 

ATP, RAD51 monomers can associate to form nucleoprotein filaments on ssDNA and dsDNA [91], and these 

filaments can be disassembled upon ATP hydrolysis [92]. In vitro, RAD51 pre-assembled on model replication 

forks prevents degradation by MRE11 [15]. Suppressing the chromatin association of RAD51 by expression of 

the BRCA2-BRC4 peptide also results in MRE11-dependent degradation of nascent DNA in mouse embryonic 

stem cells [80] and depletion of RAD51 from Xenopus extracts results in MRE11-dependent accumulation of 

ssDNA gaps at the replication fork [48]. Conversely, overexpression of RAD51, or stabilisation of filaments 

using an ATPase-defective mutant of RAD51 (RAD51-K133R), rescues fork degradation seen upon HU 

treatment of BRCA2-and FANCD2-deficient mammalian cells [79, 80]. Moreover, RAD51-T131P and A293T 

mutants, which form unstable nucleoprotein filaments [49], were identified as de novo mutations in patients 

displaying Fanconi anaemia-like features [93, 94]. Cells expressing these mutants display extensive fork 

degradation rescued by inhibition of MRE11, as these are able to mediate fork reversal but are defective in 

protecting the reversed forks from nucleases [9, 49, 93, 94]. Intriguingly, cells bearing an experimental 

mutation in RAD51 that disrupts its strand exchange activity (RAD51-II3A) were capable of both fork 

regression and protection [10]. Therefore while nucleoprotein filaments are needed in HR to invade a 

homologous duplex DNA (reviewed in [95]), in the context of a stalled fork they appear to confer mechanical 

protection of DNA from nuclease degradation.  

 

3.4.3. RAD51 stabilisers  

During HR, BRCA2 promotes RAD51 loading onto ssDNA for filament formation [96-98], and also stabilises 

these filaments by limiting ATP hydrolysis by RAD51 [97]. BRCA2 interacts with RAD51 through its eight BRC 

repeat motifs and a C-terminal site [99, 100]. A BRC3-RPA fusion protein linking resected DNA (RPA) to 
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RAD51 loading (BRC3) is sufficient to promote HR [101] but cannot promote replication fork protection, at 

least in part because the BRCA2 C-terminus is also required for fork protection [9, 80]. 

 

BRCA2 is largely recruited by BRCA1 through a bridging interaction with PALB2, required for HR (reviewed in 

[102]). However, the BRCA1-PALB2 interaction face is dispensable for replication fork protection [103, 104]. 

Moreover in some lines of PARPi-resistant BRCA1-deficient cells, RAD51 foci formation is supported by 

PALB2-BRCA2 and ATR, illustrating an ATR-dependent, but BRCA1-independent mechanism for PALB2-

BRCA2 recruitment [105]. PALB2 may be recruited to replication forks by phosphorylated RPA [106] and 

RNF168 [65, 107]. In addition, PALB2 can bind chromatin directly [108-110] and the PALB2 WD40 domain 

also interacts with RAD51 and RAD51C [111] (Figure 6). 

 

Furthermore, BRCA2 may be recruited to stalled forks independently of PALB2. The cohesin complex entraps 

sister chromatids after replication and is enriched on nascent DNA following HU treatment [69]. The cohesin 

cofactor PDS5 directly interacts with BRCA2 [112, 113] and may contribute to BRCA2 recruitment for fork 

protection as loss of PDS5 results in fork degradation, which can be rescued by MRE11 inhibition [77]. 

 

We discovered that BRCA1 is regulated in fork protection by the peptidyl-prolyl isomerase PIN1 [103]. PIN1 

specifically recognises and isomerizes phosphorylated serine/threonine-proline motifs (reviewed in [114]) and 

CDK1/2-mediated phosphorylation of BRCA1 regulates PIN1 interaction [103]. The conformational changes 

resulting from PIN1-mediated isomerisation of BRCA1 increases accessibility to the BRCA1-binding partner 

BARD1, which in turn enhances direct BARD1-RAD51 interaction and RAD51 recruitment to stalled forks. 

Moreover, several mutations, including at the BRCA1 phosphorylation site and at the BARD1-RAD51 

interaction face, result in a BRCA1-BARD1 complex that is unable to fully protect replication forks, yet is 

competent in HR [103]. These surprising findings indicate a direct and distinct role for BRCA1 in fork 

protection compared to HR and add to an emerging theme of unexpected differences between BRCA1 and 

BRCA2 in the protection of stalled replication forks (see BOX 2). 

 

FANCD2-deficient cells show a greater defect in fork protection than those lacking the ubiquitin ligase 

responsible for FANCD2 modification [115], suggesting independent as well as ubiquitin-dependent roles of 

FANCD2 in fork protection. FANCD2 has been implicated in directly stabilising RAD51 nucleoprotein 

filaments. Upon HU treatment, RAD51 foci formation and association with PCNA is reduced in FANCD2-

depleted cells, suggesting that FANCD2 is involved in RAD51 accumulation at stalled replication forks [116]. 

In vitro assays revealed that the FANCD2-FANCI complex stabilises RAD51 filaments on replication fork 

substrates, and protects them from degradation by the nuclease FAN1 [116]. Direct stabilisation of RAD51 

filaments may therefore represent an additional mechanism by which FANCD2 promotes replication fork 

protection.  

 

The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) share sequence homology with 

RAD51 [117] and form various subcomplexes with each other [118, 119] that interact with RAD51 in vitro and 

in vivo [120]. RAD51C, XRCC2 and XRCC3 also protect nascent strands from MRE11-dependent degradation 

in response to HU [82]. These paralogs may function via different mechanisms, as fork protection by RAD51C 

and XRCC3 requires ATP binding but not hydrolysis, whilst XRCC2 requires neither ATP binding nor 

hydrolysis [82]. Furthermore, XRCC2-mediated fork protection is epistatic to BRCA2 and FANCD2 pathways, 

but RAD51C and XRCC3 are not [82]. 

 

Nevertheless, RAD51 paralogs may contribute to RAD51 filament stabilisation. U2OS cells individually 

deficient in each of the RAD51 paralogs show reduced spontaneous RAD51 foci compared to wild-type cells, 

implying a function in RAD51 filament assembly on chromatin [121], although other studies suggest that loss 

of XRCC3 has no effect on RAD51 focus formation [82, 122].The human RAD51B-RAD51C complex also 

stabilises RAD51-ssDNA filaments in vitro [123]. The role of RAD51 paralogs in maintaining fork stability 

through RAD51 stabilisation would correlate with their roles in promoting RAD51 filament formation for HR 

and inter-strand crosslink (ICL) repair (reviewed in [124]).  
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3.4.4. Negative regulators of RAD51 stability 

RAD51 filaments on the regressed arms of reversed forks may initiate inappropriate, ectopic HR, particularly 

in repetitive genomes [125-127], necessitating negative regulators for careful control of RAD51. Filament 

dissociation may also be stimulated to restore replication forks and restart DNA synthesis once replication 

perturbations have been resolved.  

 

RADX is recruited to sites of replication stress and competitively displaces RAD51 from ssDNA [45, 51, 128]. 

Depletion of RADX increases RAD51 accumulation at replication forks and restores fork protection in cells 

deficient in BRCA1, BRCA2, FANCD2 or BOD1L, indicating that the loss of RAD51 stability in these cells can 

be rescued by relieving the negative inhibition on RAD51 [45, 51]. Interestingly, silencing RADX in BRCA2-

deficient cells restores fork protection, but does not restore HR [45].  

 

Additionally, several helicase/translocases associated with regulating HR, through their ability to dissociate 

RAD51 filaments, have also been implicated in regulating fork protection. The RecQ helicase BLM disrupts 

inactive, ADP-bound RAD51 filaments in vitro [129, 130]. In cells, BLM reduces RAD51 foci formation upon 

HU treatment [131], consistent with a role of BLM in destabilising RAD51 filaments. Depletion of BLM largely 

rescues fork degradation in cells with homozygous BRCA1 hypomorphic mutations [132] or those lacking the 

Fanconi core complex component FANCB [78] or FANCD2 [72], and partially rescues degradation in the 

absence of BOD1L [71]. Another RecQ helicase, RECQL5, also has RAD51 dissociation activity [133]. 

Intriguingly, loss of RECQL5 in the absence of FANCB or BOD1L increases fork degradation [71, 78], 

suggesting that RECQL5 plays a role in protecting rather than degrading forks.  

 

FBH1, a member of the UvrD helicase family [134, 135], is recruited to ssDNA regions in response to 

replication stress [136]. FBH1 depletion causes spontaneous RAD51 foci formation [136] and 

hyperrecombination [137]. In vitro the helicase/translocase activity of FBH1 is required to disrupt RAD51-

ssDNA filaments [137]. FBH1 also contains an F-box domain and functions as part of an SCF E3 ubiquitin 

ligase that ubiquitinates RAD51 [138, 139]. Cells expressing ubiquitination-resistant RAD51 (K58/K64R) 

display increased RAD51 foci in response to HU [139]. K64-RAD51 is involved in binding to DNA [140], 

suggesting that ubiquitination of this residue may affect RAD51 interaction with DNA for filament assembly 

[139]. Thus F-box mediated ubiquitination functions alongside the helicase activity of FBH1 to restrain 

unwarranted RAD51 activity. In the absence of BOD1L, SETD1A or WRNIP1, loss of FBH1 rescues fork 

degradation [67, 71, 72]. Similarly a defect in RAD51 foci formation in response to HU is rescued by FBH1 

depletion in cells lacking PARP1/2, suggesting a further role for PARP in RAD51 stabilisation [141].  

 

PARI is another UvrD helicase that suppresses RAD51. However, given that it lacks domains required for 

ATP hydrolysis, and therefore lacks helicase activity, its RAD51 displacement is likely mediated through a 

non-catalytic, stoichiometric interaction with RAD51 [142]. While PARI deficiency suppresses fork 

degradation, it also leads to chromosomal instability – demonstrating how dysregulated RAD51 activity, 

despite appearing to protect replication forks, is detrimental to proliferating cells [143]. PARI recruitment to 

chromatin is mediated by interaction with PCNA, which may confine PARI activity to periods of cellular 

replication for regulation of replication stress responses [142]. 

The abundance of factors involved in fine-tuning RAD51 activity is striking (Figure 7), and exist presumably to 

allow adequate fork protection while preventing excessive RAD51 filament formation, thereby safeguarding 

fork stability and maintaining genome integrity. 

 

4. Replication fork protection in cancer and chemoresistance 

Several mechanisms contribute to the recovery of stalled forks, however for a fork in which the regressed 

arms are degraded, fork recovery by RECQ1-mediated resolution is unavailable. If the stalling leads to fork 

collapse, HR can mediate break-induced replication, involving invasion of the dsDNA end into the sister 

chromatid. This can be RAD51-dependent, or RAD51-independent using RAD52-POLD3 [62, 76]. If forks are 

not processed to breaks, replication may be restarted through HR-mediated template switching of a 
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blocked replicating strand to the undamaged sister chromatid, PCNA-dependent DNA damage bypass, or 

PRIMPOL-mediated repriming downstream of the lesion. However, template switching can lead to genetic 

rearrangements, damage bypass can generate mutation hotspots, and use of repriming leads to ssDNA gaps 

in the post-replicative genome. Elevated use of these potentially mutagenic fork restart pathways could drive 

genomic instability in the absence of efficient replication fork protection. 

Evidence to support this idea is emerging, with the observation of a delay in the restart of fork progression 

under conditions of poor fork protection [62, 69]. This is often accompanied by the generation of ssDNA gaps 

behind the fork [8, 144] and the appearance of chromosome abnormalities, often breaks and gaps [8, 69, 103, 

145]. PRIMPOL-mediated repriming likely contributes to these observations, as its use is associated with a 

poor quality, gapped, post-replicative genome [146] and in therapy-resistant cells engagement of PRIMPOL 

may be an adaptive response to suppress fork reversal [147]. That these abnormalities are likely due to poor 

fork protection is underlined by the fact that aberrations can be prevented by restoring fork protection through 

inhibition of DNA2 or MRE11 [62, 69].  

  

Since replication fork protection acts to suppress genome alterations, a role in cancer predisposition might be 

anticipated. However current evidence is mixed; some mutations resulting in poor fork protection, such as a 

BRCA2 C-terminal mutation and ABRO1 loss, are associated with cancer in mouse models [73, 148, 149] 

while others are not, such as a fork-protection defective Bard1-allele [150]. Mutation of factors involved in fork 

reversal have been linked to cancer, with SMARCAL1 mutations associated with a rare, childhood disorder 

that is sometimes characterized by cancer [11, 151]. ZRANB3 mutations have been observed in endometrial 

cancers [152] and HLTF is commonly found silenced in colorectal cancers [152-154], but whether these 

mutations are significant in tumorigenesis is unclear. 

 

Given the central role of HR in the recovery of aberrant replication structures, an important question has been 

whether restoration of fork protection influences the survival of HR-deficient cells. Deletion of factors that 

promote MRE11 recruitment to stalled forks prior to deletion of BRCA2 allows the emergence of BRCA2-null 

murine cells, when BRCA2 loss is alone is lethal [81, 155]. However, in a non-transformed human mammary 

epithelial cell line, restoration of replication fork protection in BRCA2-mutant cells by similar means was 

unable to restore normal growth kinetics [50]. Nevertheless, restoration of fork protection may significantly 

enhance cell survival in a tumour environment. For example, heterozygous PARP1 loss resulted in 

accelerated tumour growth in mice bearing a conditional deletion of BRCA2, suggesting fork protection may 

allow survival of cells lacking BRCA2, forming a pool from which tumours emerge [155]. Moreover restoration 

of fork protection in BRCA-deficient cells reduces chromosome aberrations caused by cisplatin, camptothecin 

or PARPi, and in platinum-treated patients low expression of PTIP or CHD4, which mediate MRE11 

recruitment, correlates with poor patient response to chemotherapy [81, 88]. BRCA-deficient but PARPi-

resistant mouse tumours [81] and some human cell lines [105] exhibit normal fork protection. Similarly loss of 

EZH2-MUS81 contributes to both fork protection and resistance to PARPi and cisplatin in BRCA2-deficient 

cells [76]. A potential explanation is that the protection of forks reduces the need for their HR-mediated 

recovery, resulting in therapy resistance. Such rewiring in resistant cancer cells could be targeted. For 

example, repression of ATR can re-sensitize cell lines to HR therapies and drive stalled replication fork 

degradation [105]. Mechanistically this may occur through inhibition of PALB2-BRCA2 or RAD51-paralog 

pathways, or by driving hyperactive SMARCAL1-mediated fork regression. 

 

5. Summary 

Recent discoveries of the roles that many HR proteins and other factors have in promoting stalled replication 

fork stability has revealed a pathway critical to genome stability and chemoresistance. Uncovering some of 

the mechanistic details has surprisingly found that fork protection is more than just the RAD51-loading step of 

HR (Table 2). In addition to aspects of HR being dispensable, such as the PALB2-BRCA1 interaction or 

RAD51 strand exchange activity, we are slowly building the view that previously unappreciated functions of 

known proteins contribute to defending reversed forks. We currently have little knowledge of the precise 

vulnerabilities of the fork structure resulting from specific stresses or deficiencies, or how different fork 

protection factors relate to one another. Nevertheless, obtaining greater insights into restored fork protection 
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selected for by exposure to anti-cancer therapies will be important both in understanding the normal process 

and in identifying strategies to treat tumours that depend on this pathway. 
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BOX 1: Examination of fork reversal, fork protection and post replicative gaps  

Fork reversal can be directly examined by two major techniques: electron microscopy (EM) and neutral-

neutral 2D gel electrophoresis. In vivo crosslinking of DNA followed by EM has suggested that fork reversal is 

a universal response to replication stress in eukaryotic cells [2]. Combining EM with DNA fibre spreading, 

described below, has suggested replication fork protection follows fork reversal [9]. Neutral-neutral 2D gel 

electrophoresis separates DNA molecules, allowing X-shaped structures including reversed forks, to be 

resolved [156]. These are powerful techniques but assigning unique structures to distinct electrophoretic shifts 

is difficult and whether EM reflects actual proportions of reversed forks is not clear. EM has also been used to 

study the composition of reversed forks by assessing the relative filament thickness to indicate double-

stranded DNA (dsDNA) versus single-stranded DNA (ssDNA), revealing that nucleases contribute to the 

amount of ssDNA at reversed forks [8].  

 

DNA fibre spreading allows replication fork dynamics to be assessed [157, 158]. Analysis of fork protection 

involves introducing the thymidine analogues CldU and IdU sequentially into cells to label adjacent sections of 

nascent DNA, in combination with incubations with agents that slow or block replication, such as the 

ribonucleotide reductase inhibitor hydroxyurea (HU), which can be added after the second label [80]. HU 

reduces dNTP synthesis, leading to depletion of the cellular dNTP pool and global replication fork slowing and 

stalling [42]. DNA fibres are then spread and stained to measure the lengths of adjacent labels, where a ratio 

of approximately 1 between the two labels is expected. An alternative approach is to introduce the stalling 

agent after a single label and compare track lengths with those in cells untreated with the stalling agent [8, 80] 

A shortening of the label on addition of replication stalling agents, combined with an ability to rescue this 

shortening by nuclease inhibition, is suggestive of a defect in stalled fork protection (Figure 1). This assay is 

extensively used to explore the context of factors contributing to fork protection by depleting or inhibiting 

additional factors to either rescue or exacerbate the defect. Intriguingly, combining the loss of protective 

factors often appears epistatic even when they defend against different nucleases (e.g. [59, 63, 71]). 

Nevertheless, co-depletion of some protective factors results in additive degradation (e.g. RECQL5 + BOD1L 

[71], CtIP+ BRCA1 [63]) therefore revealing evidence for separable pathways using this assay. 

 

EM has also observed occurrence of single-stranded gaps, seen as thin filaments (ssDNA) in replicated 

duplexes. These gaps are suppressed by loss of nucleases involved in the digestion of stalled replication 

forks, suggesting gaps may be a consequence of restart of an unprotected fork [8]. To detect these structures 

in DNA fibre spreading, a modified protocol is used in which the S1 nuclease nicks the ssDNA opposite gaps, 

converting a ssDNA gap into a double-strand break (DSB). This results in loss of the sequence after the gap, 

therefore giving a shorter second label in fibre-spreading assays [159]. 

 

BOX 2: Distinct roles of BRCA1 versus BRCA2 in replication fork protection 

Although BRCA1 and BRCA2 protect replication forks from MRE11-mediated degradation through stabilizing 

RAD51 [79], recent data illustrate that fork protection is uncoupled from the canonical BRCA1-PALB2-BRCA2 

pathway [103]. Moreover, several other observations highlight the differences between BRCA1 and BRCA2 in 

replication fork protection. Increased translesion synthesis (TLS) is thought to contribute to the rescue of fork 

protection in BRCA2-deficient cells when CHD4 is depleted [81, 88]. In contrast, CHD4 loss does not rescue 
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BRCA1-deficient cells [88], and instead toxic TLS is thought to explain why USP1 loss is synthetic lethal with 

BRCA1 depletion [160]. The de-ubiquitinating enzyme USP1 suppresses PCNA ubiquitination, reducing the 

association of TLS polymerases with forks. Strikingly, USP1 loss or inhibition is not synthetic lethal with 

BRCA2 loss [160]. Further differences include the finding that CtIP repression worsens fork degradation in 

BRCA1- but not BRCA2-deficient cells [63]; conversely, depletion of MUS81 confers replication fork protection 

in BRCA2- but not BRCA1-deficient cells [62, 76]. These findings imply different contexts for BRCA1 and 

BRCA2 functions at stalled replication forks, in addition to their independent roles in supporting RAD51 

stability.  

 

 

Table 1. A summary of the known nuclease susceptibilities of fork protection defects triggered by the 

depletion of specific factors. 

 

 

Depletion of nuclease can rescue defect? References 

Factor involved in 

fork protection MRE11 DNA2 MUS81-EME1 SLX4-ERCC1 

 

ABRO1   ? ? [73]. 

ATRX  ? ? ? [83]. 

BOD1L   ? ? [71]. 

BRCA1    ? [62, 76]. 

BRCA2    ? [62, 76, 80]. 

Cohesin  ? ? ? [77]. 

CtIP     [63]. 

EXD2  ? ? ? [59]. 

FANCB  ? ? ? [78]. 

FANCD2  ? ? ? [79]. 

PALB2 ? ? ? ? [103]. 

PDS5B  ? ? ? [77]. 

RAD51  ? ? ? [48, 49]. 

RAD51C  ? ? ? [82].  

RECQ1     [8]. 

RECQL5  ? ? ? [78]. 

REV1  ? ? ? [84]. 

RIF1   ? ? [69]. 

RNF168  ? ? ? [65]. 

SETD1A   ? ? [72] 

WRNIP1  (Long) (short)  (short) [66, 67]. 

XRCC2  ? ? ? [82].  

XRCC3  ? ? ? [82].  
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Table 2. Role of Factors in homologous recombination or inter-strand cross link repair versus 

replication fork protection. 

Factor In DNA repair In fork protection References 

ATR Promote long range resection Promote ‘rewired’ fork protection  [105]. 

BLM Promote end resection, Holliday 

junction dissolution and RAD51 

dissociation during late HR  

Promote RAD51 dissociation [71, 72, 78, 129, 

130, 132]. 

 

BRCA1-

BARD1 

Counteract 53BP1-Shieldin and 

promote PALB2-BRCA2 and 

RAD51 recruitment 

Promote RAD51 recruitment by 

PIN1 

[79, 102, 103]. 

BRCA2 Stabilise RAD51 Stabilise RAD51 [9, 79, 80, 102]. 

CtIP Initiate MRE11-mediated 

resection 

Restrict fork reversal/protect 

reversed forks and aid MRE11-

mediated degradation 

[61-63]. 

 

DNA2 Extend MRE11 resection Resect ‘wild-type’ and de-

protected forks 

[8, 66, 69-71, 73, 

161]. 

EXD2 Promote MRE11 resection Suppress fork reversal [56-59]. 

EXO1 Extend MRE11 resection Extend MRE11 resection [62, 161]. 

FANCD2 Histone mobilisation for ICL 

repair, recruitment of FAN1 

nuclease 

Histone mobilisation, increase 

TLS, direct RAD51 stabilisation 

[72, 84, 116, 162]. 

FBH1 Dissociate RAD51 filaments Promote fork reversal, promote 

RAD51 dissociation 

[10, 41, 67]. 

MRE11 Initiate short-range resection Resect unprotected forks, 

promote fork restart 

[9, 15, 18, 40, 59, 

62, 65-67, 77-84]. 

PALB2 Promote BRCA2 recruitment via 

BRCA1 

BRCA1-independent recruitment 

of BRCA2 

[103-105]. 

PARP Break excision repair, Pol-theta 

mediated end joining 

Inhibit fork restoration, recruit 

MRE11, inhibits fork restoration, 

RAD51 stabilisation 

[53, 86, 141, 163]. 

PDS5 Promote BRCA2 recruitment Promote BRCA2 recruitment [77, 112]. 

RAD51 Strand exchange  Promote fork reversal, protect 

forks from degradation 

[2, 8-10, 15, 48, 49, 

79, 80, 93-95]. 

RAD51 

paralogs 

Stabilise RAD51  Promote RAD51 recruitment [82, 124]. 

RAD52 Promote RAD51 loading, single 

strand annealing, break-

induced-repair 

Suppress SMARCAL1 

recruitment, promote MRE11 

recruitment 

[9, 23, 24]. 

RECQL5 Dissociate RAD51 filaments Protect against degradation [78, 133]. 

RIF1-PP1 Part of the Shieldin complex that 

promotes NHEJ and inhibits 

DNA resection 

Inhibit DNA2/WRN [69, 70]. 

RNF168 Recruit 53BP1 Restrict fork reversal [65, 164, 165]. 

SLX4 Scaffold for nucleases in 

Holliday Junction cleavage 

Scaffold for nucleases involved 

in fork cleavage 

[66, 67]. 

WRN Support DNA2 in long-range 

resection 

Support DNA2 (helicase), 

prevent MRE11-dependent 

degradation (exonuclease) 

[8, 40]. 
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Figure legends 

 

Figure 1. Schematic of the DNA fibre-spreading assay. To assess replication fork protection, cells are 

sequentially incubated with the thymidine analogues CldU and IdU, followed by the addition of a replication 

stress-inducing agent, most commonly HU. After spreading, fixing and staining, the fibres can be visualised. A 

second label tract shorter than the first label may be due to nucleolytic degradation of the nascent strand at 

stalled replication forks, indicating defective fork protection. This protocol can be modified to assay for single-

stranded DNA (ssDNA) gaps, by introducing the S1 nuclease which cleaves opposite gaps to result in a 

shorter second label.   

 

Figure 2. SNF2-family translocases and RAD51 mediate fork reversal. The translocases SMARCAL1, 

ZRANB3 and HLTF may act in a sequential manner. A: SMARCAL1, recruited and stimulated by RPA, may 

catalyse initial fork reversal. Once RPA has been evicted, ZRANB3 activity will no longer be suppressed, 

allowing further fork reversal. B: HLTF polyubiquitinates PCNA, which can recruit ZRANB3 to forks – 

suggesting ZRANB3 may act downstream of HLTF. C: Differential levels of RAD51 are required for fork 

reversal versus fork protection. Strong, near complete, RAD51 depletion prevents fork reversal, leading to fork 

protection. Weaker depletion leaves sufficient RAD51 capable of promoting fork reversal but not enough to 

support fork protection, leading to degradation by MRE11 and other nucleases.  

 

Figure 3. Suppression of replication fork reversal. The nuclease EXD2 may disfavour fork reversal by 

processing a stalled replication fork into a form that is refractory to remodelling. CtIP may also be involved in 

suppressing fork reversal. Reversed replication forks can be restored to a canonical fork by RECQ1 helicase. 

PARP1 negatively regulates RECQ1 activity, controlling the balance between reversal and restoration of 

replication forks. Chromatinisation of the regressed arm may act as a target for H2A ubiquitination by 

RNF168, which may also suppress fork reversal and promote restoration of the fork to restart replication.  

 

 

Figure 4. WRNIP1 protects replication forks in a distinct manner to BRCA2. WRNIP1 is able to bind the 

four-way junction of a reversed replication fork and protects it from cleavage by SLX4(XPF-ERCC1/SLX1). In the 

absence of WRNIP1, cleavage of the fork by SLX4(XPF-ERCC1/SLX1) creates a substrate for nascent DNA 

degradation by DNA2. In contrast, following loss of BRCA2, fork protection is compromised in a distinct 

manner, whereby initial degradation by MRE11 enables cleavage of the fork by MUS81/EME1, subsequently 

facilitating extensive MRE11-mediated degradation of DNA.  

  

Figure 5. H3K4 methylation can promote distinct outcomes at reversed replication forks depending on 

the cellular context. In BRCA2-deficient cells, H3K4 methylation by MLL3/4 and PTIP promotes MRE11 

recruitment to stalled replication forks and contributes to nascent DNA degradation. In contrast, H3K4 

methylation by SETD1A and BOD1L promotes replication fork protection, by preventing the recruitment of 

CHD4 to the fork, and enhancing the histone chaperone function of FANCD2 to facilitate the chromatinisation 

of the reversed nascent strand and prevent DNA2-mediated degradation. 

 

Figure 6. BRCA1 and BRCA2 in homologous recombination versus fork protection. A: In homologous 

recombination, BRCA1 recruits BRCA2 via PALB2 to double-strand breaks. BRCA2 in turn mediates RAD51 

loading and filament formation. B: In fork protection, BRCA2-PALB2 recruitment is not dependent on BRCA1, 

and may instead be mediated by ATR, RNF168 and phosphorylated RPA. PALB2 may also bind directly to 

chromatin. C: BRCA2 may also be recruited independently of PALB2, which may involve the cohesin cofactor 

PDS5. D: BRCA1-BARD1 plays a distinct role in replication fork protection compared to homologous 

recombination. CDK1/2 phosphorylation of BRCA1 recruits the peptidyl-prolyl isomerase PIN1. Subsequent 

isomerisation of BRCA1 increases the accessibility of BARD1, resulting in increased BARD1-RAD51 

interaction which facilitates RAD51 loading onto reversed forks.  
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Figure 7. Factors directly regulating RAD51 filament stability. RAD51 filament formation onto the 

regressed arm of a reversed replication fork is promoted by BRCA1, BRCA2, FANCD2 and the RAD51 

paralogs RAD51C and XRCC2. The RAD51 paralog XRCC3 meanwhile may stabilise filaments downstream 

of RAD51 recruitment. Multiple factors negatively regulate the stability of RAD51 filaments to promote 

disassembly. These can act as translocases to strip RAD51 from the DNA (e.g. BLM or FBH1), or may act in 

a non-enzymatic fashion (e.g. RADX or PARI). In contrast, RECQL5, although able to displace RAD51 

filaments, has been implicated in preventing fork degradation.  
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