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ARTICLE

Neural mechanisms for learning self and other
ownership
Patricia L. Lockwood 1,2, Marco K. Wittmann 1,2, Matthew A.J. Apps1,2, Miriam C. Klein-Flügge 1,2,

Molly J. Crockett 1,3, Glyn W. Humphreys1 & Matthew F.S. Rushworth1,2

Sense of ownership is a ubiquitous and fundamental aspect of human cognition. Here we

used model-based functional magnetic resonance imaging and a novel minimal ownership

paradigm to probe the behavioural and neural mechanisms underpinning ownership acqui-

sition for ourselves, friends and strangers. We find a self-ownership bias at multiple levels

of behaviour from initial preferences to reaction times and computational learning rates.

Ventromedial prefrontal cortex (vmPFC) and anterior cingulate sulcus (ACCs) responded

more to self vs. stranger associations, but despite a pervasive neural bias to track self-

ownership, no brain area tracked self-ownership exclusively. However, ACC gyrus (ACCg)

specifically coded ownership prediction errors for strangers and ownership associative

strength for friends and strangers but not for self. Core neural mechanisms for associative

learning are biased to learn in reference to self but also engaged when learning in reference to

others. In contrast, ACC gyrus exhibits specialization for learning about others.

DOI: 10.1038/s41467-018-07231-9 OPEN

1 Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, UK. 2Wellcome Centre for Integrative Neuroimaging, Department of
Experimental Psychology, University of Oxford, Oxford, UK. 3 Department of Psychology, Yale University, New Haven, CT 06511, USA. These authors
contributed equally: Patricia L. Lockwood, Marco K. Wittmann. Deceased: Glyn W. Humphreys. Correspondence and requests for materials should be
addressed to P.L.L.(email: patricia.lockwood@psy.ox.ac.uk)

NATURE COMMUNICATIONS |          (2018) 9:4747 | DOI: 10.1038/s41467-018-07231-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7195-9559
http://orcid.org/0000-0001-7195-9559
http://orcid.org/0000-0001-7195-9559
http://orcid.org/0000-0001-7195-9559
http://orcid.org/0000-0001-7195-9559
http://orcid.org/0000-0001-5229-7457
http://orcid.org/0000-0001-5229-7457
http://orcid.org/0000-0001-5229-7457
http://orcid.org/0000-0001-5229-7457
http://orcid.org/0000-0001-5229-7457
http://orcid.org/0000-0002-5156-9833
http://orcid.org/0000-0002-5156-9833
http://orcid.org/0000-0002-5156-9833
http://orcid.org/0000-0002-5156-9833
http://orcid.org/0000-0002-5156-9833
http://orcid.org/0000-0001-8800-410X
http://orcid.org/0000-0001-8800-410X
http://orcid.org/0000-0001-8800-410X
http://orcid.org/0000-0001-8800-410X
http://orcid.org/0000-0001-8800-410X
mailto:patricia.lockwood@psy.ox.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Sense of ownership is such a fundamental aspect of human
cognition that it influences the grammar of many human
languages. For example, words are changed and used

in special ways such as the genitive case or the construct state
to indicate ownership associations. Psychological ownership—
the feeling of ownership over objects both material and imma-
terial that develops over time1—is distinct from legal ownership
in terms of malleability, responsibility and genesis1. Several
studies suggest that acquiring a sense of ownership can pro-
foundly change our perception, memory, attention and decision-
making2–8. It has long been thought, since the time of William
James, that ownership may be underpinned by associative pro-
cesses9 and it is this possibility that we examine empirically here.

Associating shapes with oneself alters perceptual processing,
making people faster and more accurate than when the same
associations are formed with other people (reviewed by Sui and
Humphreys7). Memory recall is enhanced when stimuli are
categorized in relation to oneself than to others3,4,10,11. People
put in more effort to help themselves than others12 and learning
rates are higher when learning about one’s own reward outcomes
than another person’s13. At a basic level, ownership of an item
increases its value and desirability, as shown in economic studies
of the endowment effect6 and in social psychological studies of
mere ownership2,5. Together, these studies suggest that the pro-
cessing of information related to ourselves is facilitated, such that
it is better recalled, processed more rapidly, and biases our pre-
ferences, learning and decision-making, compared to information
related to other people. This ‘self-ownership bias’ could therefore
have important implications for studying learning, decision-
making and social cognition. However, how ownership associa-
tions are formed, and the computational and neural mechanisms
that underpin them are poorly understood.

Associative learning theory provides a powerful theoretical
framework to understand the behavioural and neural basis of
how we acquire associations between stimuli and responses
in social and non-social contexts14,15. In this framework,
stimulus–response outcome associations are updated over time by
prediction errors that signal the discrepancy between expectations
and outcomes15,16. Can the sense of ownership be understood
using the same associative processes assumed to underlie reward-
based learning? The ventromedial prefrontal cortex (vmPFC) has
been consistently linked to associative value representations at the
time of choice, while the ventral striatum is linked to prediction
error signals at the time of an outcome15,17–22.

Intriguingly, the same area, vmPFC and adjacent medial pre-
frontal cortex (mPFC), including areas 14 and 11 m23,24, have
been linked to the processing of self-relevant information7,8,25–27.
Several studies have reported greater responses in this area when
processing self-relevant as opposed to other-relevant information,
suggesting that vmPFC is specifically concerned with processing
the self (reviewed in ref. 7). However, vmPFC has also been linked
to simulated reward associations for self and other28, as well as
value-based choice and value difference19,29–33. Therefore, an
alternative hypothesis is possible: social information is processed
in reference to oneself, and vmPFC should reflect ownership
associations relating not just to self but also to others. By using a
parametric design, it is possible to examine whether vmPFC
activity in relation to ownership is the same or distinct for dif-
ferent types of ownership association. Finally, there is evidence
that mPFC may reflect self and other relevant information in a
spatial gradient with self-related activity increasingly prominent
as one moves towards vmPFC and other related processing
increasingly prominent as one moves towards dorsal–medial PFC
(dmPFC)34.

Other studies have suggested brain regions in which social
information may be preferentially processed. In particular, dorsal

portions of the mPFC, such as area 9, have been linked to
processing information specifically about others35, during men-
talizing36 and tracking others’ performance37. The anterior and
mid-cingulate contains several sub-regions. Some parts of the
gyrus of the dorsal anterior and mid-cingulate cortex may be
particularly concerned with social learning16,35,38–44, whereas
a more dorsal region in the anterior cingulate cortex (ACC)
sulcus has a general role in learning and decision making in
relation to both self and others35,39,41,42,44. Following previous
authors16,39,41,42,44, we refer to these two subregions in the sulcus
and gyrus as ACCs and ACCg, respectively. By utilizing an
associative learning framework to probe agent–object associations
over time, we might be able to understand the roles of these
different regions in self and other ownership acquisition.

Here we employ associative learning models to examine the
emergence of self and other ownership. We use a ‘minimal
ownership’ paradigm: participants repeatedly encounter abstract
pictures and learn whether they belong to themselves or to a close
friend or a stranger (Fig. 1). We used two types of other agents
because there is evidence that different neural mechanisms are
engaged when processing others based on similarity to the self45.
This paradigm, inspired by social psychological studies of mini-
mal groups (reviewed in ref. 46), has the important advantage of
controlling for previous stimuli associations. We could also the-
oretically match irrelevant features such as familiarity of the
different stimuli.

Importantly, ownership entails an association between an agent
(self, friend, stranger) and an object9, which in itself has no
intrinsic reward value. We therefore designed a paradigm where
ownership did not entail receipt of reward. We fit an associative
learning model to behaviour that allowed us to probe different
learning rates, brain regions that track ownership associative
strength (OAS) at the time of choice, and regions that track
ownership prediction errors (OPEs) at the time of feedback.

We find a bias to form ownership associations in relation to
oneself as opposed to others. We refer to this as a 'self-ownership
bias' and it occurs at multiple levels of behaviour, from initial
preferences through to reaction times and computationally
defined learning rates. Several areas within medial frontal cortex
track OAS between objects and all agents, with an increased
response in vmPFC and ACCs to self vs. stranger. However, no
brain area only tracks self-relevant information. In contrast,
tracking of information for others has a distinct neural correlate;
ACCg signals OPEs for strangers and OAS for strangers and
friends but not oneself. Therefore, most neural mechanisms for
associative learning are biased to learn in reference to oneself, but
are also engaged when learning in reference to others. In contrast,
ACCg is specialized for learning about other people.

Results
Self-ownership bias at multiple levels of behaviour. We first
examined whether there was a self-ownership bias in how people
responded to and learnt about associations between agents and
objects. We observed such a bias at multiple levels of behaviour
(Fig. 2). People were more likely to say that a picture belonged to
themselves than to another person on the first presentation of
each picture, that is, there was a tendency to indicate pictures
belonged to oneself when faced with no prior knowledge of
ownership (analysis of variance (ANOVA) main effect of agent
(F(2,76)= 5.26, p= .007, η2= .12), main effect of trial number
(F(9,342)= 93.36, p < .001, η2= .71) indicating significant learn-
ing over the course of the experiment, and agent ×trial number
interaction (F(18,684)= 5.56, p < .001, η2= .13). This average
tendency to label pictures as ‘mine’ was therefore used as a
starting value in our computational model.
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We also observed that participants were quicker to respond
correctly to self-stimuli (ANOVA main effect of agent (F(2,76)=
23.72, p < .001, η2= .38; self median= 603.87, SD= 86.15; friend
median= 659.34, SD= 109.90; Stranger median= 701.67, SD=
130.58, all p < .007) and more accurate at correctly assigning the
ownership of pictures that belonged to themselves compared to
others (ANOVA main effect of agent (F(2,76)= 7.50, p= .001,
η2= .17; self correct= 53.85, SD= 12.67; friend correct= 49.64,
SD= 11.27; stranger correct= 46.72, SD= 12.33, p < .03). Next,
we considered whether faster reaction times and accuracy
might simply result from participants initial bias to indicate that
stimuli were owned by the self. An additional control analysis
(Supplementary Note 1) showed that this was not the case.

We then assessed whether there was evidence for a self-
ownership bias in learning. We analysed the proportion of next
trials (trial t+ 1) on which participants correctly chose the same
agent–picture association again after having received correct
feedback for their choice on the current trial (trial t), and the
proportion of trials (trial t+ 1) on which they correctly switched
away from an agent after incorrect feedback on the current
trial (t). Several studies have suggested a confirmation bias in
associative learning, with people learning more from correct than
incorrect feedback47–49. We therefore tested whether there was a
self-bias in learning, a confirmation bias in learning, and whether
the two effects interacted. Compared with friend and stranger
choice trials, we found a self-bias in learning (ANOVA main
effect of agent, F(2,76)= 8.51, p < .001, η2= .18), with a higher
likelihood of repeating a correct self choice after being correct and
a higher likelihood of switching away from a self choice after
being incorrect (p= .008 compared to friend, p < .001 compared
to stranger). There was no significant difference between friend
and stranger (p= .228). We also found a confirmation bias with
participants more likely to repeat a correct choice after positive
feedback than to switch away from an incorrect choice after
negative feedback (ANOVA main effect of stay/switch (F(1,38)=
89.06, p < .001, η2= .70)). However, there was no interaction
between the self-bias and confirmation bias (F(2,76)= .95,
p= .393, η2= .02) suggesting relatively independent effects of
self-ownership bias and confirmation bias on decision-making.

Another way to assess whether participants have a self-
ownership bias in learning is to examine whether there was a
higher learning rate for self. We found a significant main effect
of agent on learning rates (ANOVA F(2,76)= 3.14, p < .05,
η2= .08), with a higher learning rate for self-picture associations
(M= .47, SD= .29) than stranger–picture associations (M= .34,
SD= .26, p= .017), but not friend–picture associations (M= .37,
SD= .30, p= .097). There was no significant difference between
agents in inverse temperature (F(2,76)= .21, p > .80, η2= .006).

Our model of learning employs gradual changes in OAS. We
took this approach because such models frequently provide good
accounts of learning even when associations are deterministic
(either right or wrong)50. Nevertheless, we performed a final set
of behavioural analyses to examine whether an alternative
deterministic learning model provided a better account of our
data and also a model that treated the initial self bias as a free
parameter. The original model provided the better account of
participant behaviour compared to a number of other alternative
models. (Supplementary Figure 1, Supplementary Table 1 and
Supplementary Note 2).

Common coding of ownership. For the trial-by-trial tracking
of OAS and OPE, we first examined areas that commonly coded
ownership associations for all three agents by performing con-
junction analyses (this is possible because of the statistical
independence of the key regressors; Supplementary Figure 2).
All results are reported at whole-brain family-wise error (FWE)-
corrected or small-volume corrected (SVC) using a combined
anatomical mask of several mPFC regions (see Methods section).
We tested whether areas typically activated in studies of reward
associative learning, particularly ventral striatum, responded
to OPEs.

Several areas of the mPFC and temporoparietal junction (TPJ)
commonly tracked OAS for all agents (see Supplementary
Table 2). Importantly, these regions included area 8/9 in the
dmPFC and the TPJ, areas consistently linked to social
processing35,51. However, these regions tracked OAS for self
and other, rather than signalling self exclusively7,8 or other-
related information36 as suggested in previous studies.
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Fig. 1 Associative learning of self and other ownership. Participants performed an associative learning task where they learnt about pictures that belonged
to themselves, their best friend, or to a stranger. Participants were presented with a fractal image and learnt by trial and error the ownership of the different
fractals. We used an associative learning model to calculate parametric values of ownership associative strength (OAS) between picture and label at the
time of the picture (the strength of ownership) and the size of the ownership prediction error (OPE) at the time of the outcome. Each fractal image was
presented ten times in a pseudorandom order. There were eight pictures per each agent presented over two blocks to encourage learning while minimizing
working memory load
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Consistent with several studies of associative learning13,15,16,22,52,
the bilateral ventral striatum (Left: x=−14, y= 10, z=−8; Z=
7.23, k= 959, p < .001 FWE-whole brain and Right: x= 16, y= 6,
z=−12; Z= 6.37, k= 554, p < 0.001 FWE-whole brain, Fig. 3)
signalled prediction errors in all three learning conditions (see
Supplementary Table 2). We also found responses in the superior
frontal gyrus in the vicinity of area 8m (ref. 24; x=−18, y= 30,
z= 56; Z= 4.73, k= 404, p= .029 FWE-whole brain). Activity
in area 9 in the dmPFC-coded OPEs for all agents (x=−6, y= 66,
z= 16; Z= 4.13, k= 24, p < .05 FWE-SVC). No other brain area
significantly tracked OPEs in all learning conditions.

Ownership by the self and vmPFC. To identify neural responses
that underpin a self-ownership effect, we next examined
neural responses that tracked OAS between agent and object
for self more than stranger. For all analyses of specific coding,
we focused on linear contrasts of agent (1 0 −1 and −1 0 1)
corresponding to the self, friend, stranger conditions. We

found that only the vmPFC showed stronger tracking of self
compared to stranger (area 14 m extending into area 11 m; MNI
coordinates: x=−6, y= 28, z=−14; Z= 3.91, k= 212, p < .05
and x= 6, y= 22, z=−14, p < .05 voxel-level SVC-FWE,
Fig. 4a, b). Intriguingly, however, although vmPFC responded
to self OAS more than stranger OAS, it tracked ownership
information about all three agents, with responses to OAS sig-
nificantly above 0 in all three learning conditions (all ps < .008)
(Fig. 4). No other brain area showed this pattern. Response in the
vmPFC also remained unchanged even after controlling for trial-
by-trial reaction time (see Methods), suggesting that differences
in activity in this area for self compared to stranger did not
simply reflect the reaction time differences between conditions.
We also re-ran all analyses using parametric values from a model
with a single, rather than separate, learning rates and found the
same results.

As mentioned previously, vmPFC has been argued, on the one
hand, to mediate a self-bias effect7,8,26 but, on the other hand,
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stimulus–agent associations across the experimental session. However, a significant interaction between stimulus repetition×agent (with participants more
correct on the first trial for self compared to friend or stranger) indicated a self-bias—a bias to label pictures as belonging to themselves with no prior
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represent standard error of the mean. All n= 39
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associated with decision signals more generally18,21,31,32,53,54. We
therefore tested whether learning rates in the three conditions
were correlated with responses in vmPFC to understand whether
increased vmPFC tracking of self vs. stranger-related OAS simply
reflected a higher learning rate for self compared to other agents
or a self-ownership bias independent from learning rate. Note
that this analysis is statistically orthogonal to the whole-brain
contrast used to define the cluster.

As hypothesized, we found a significant correlation between
vmPFC responses to self-OAS and the self learning rate
(r(39)= .41, p= .01, 95% confidence interval (CI): .11, .64, Fig. 4c).
Intriguingly, however, there was no significant correlation between
vmPFC responses to friend and friend learning rate (r(39)= .00
p= .99, 95% CI: −.32, .32) or between vmPFC responses to
stranger and stranger learning rate (r(39)= .070, p= .68, 95%
CI: −.25, .38). Moreover, the correlation between self learning rate
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and self OAS tracking in vmPFC was significantly stronger than
associations with the other agents (see Supplementary Note 3). We
next tested whether average responses in this independent region of
interest (ROI) from the OAS period also tracked OPEs at the time
of feedback and found significant average effects for all learning
conditions (see Supplementary Note 3). We also observed
significant correlations with the learning rate for self and self
vmPFC responses to OPEs (Fig. 4d), and again these were
significantly higher than stranger responses, but not friend
responses (see Supplementary Note 3). Finally, we also examined
whether there was any evidence for a spatial gradient of ownership
spanning ventral to dorsal portions of mPFC, as suggested in
previous studies34,55. However, we found no evidence for a gradient
reflecting self/other, but we did observe a gradient of stranger OAS
from ventral (weakest) to dorsal (strongest) parts of mPFC (see
Supplementary Figure 3 and Supplementary Note 4 for full details
of analyses and statistics).

Together, these findings suggest that the self-ownership bias in
associative learning is reflected in neural signals tracking both OAS
at the time of decision making and OPE at the time of feedback.
The difference was most clear when ownership relating to the self
was compared with ownership relating to other agents that were
most different to the self, that is, strangers, as opposed to other
agents that were perceived as similar to the self, such as friends.

Ownership by the self and ACCs. We next examined the reverse
contrast for areas encoding stranger OAS more than self OAS.
We identified responses at the whole-brain level in the ACCs
and adjacent mPFC (x=−8, y= 12, z= 48; Z= 5.57, k= 318,
p < .001 whole-brain FWE-corrected, Fig. 4e, f). Initially this
might be taken as evidence of a relative specialization for other-
related processing in ACCs. However, on closer inspection
activity in this area in fact simply had a negative relation with
the OAS of the choice taken, as has previously been reported even
in many other situations including non-social tasks56–58.

The explanation for this negative coding pattern has been
debated elsewhere57–59. In the present context, the negative
coding scheme in ACCs and adjacent mPFC suggests that rather
than concluding that the activity tracked other-referenced
associations more strongly than self-referenced ones it seemed
more parsimonious to conclude that it negatively tracked OAS for
all three agents. Moreover, as in the vmPFC, the coding pattern
was present for all three agents, self, friend and stranger, with the
pattern for self stronger than for other agents that were strangers
(all ps < .010) (Fig. 4c). However, unlike with vmPFC, we did not
observe any significant correlations between learning rates and
ACCs. Moreover, as for vmPFC, including reaction time in the
generalized linear model (GLM) did not change this result. No
other brain area showed this pattern.

Specific ownership learning signals in ACCg for others. The
ACCg, a dorsal cingulate region that lies dorsal to the callosum
but ventral to the ACCs in Fig. 4c has been linked to the encoding
of social information39,42,44. We therefore took special care to
investigate activity in the anatomical region (area 24) described
by Neubert et al.24 in which such effects have been reported. We
observed OPEs that were specifically related to learning about
strangers in ACCg (x= 10, y= 38, z= 6; Z= 4.33, p < .02 and x
= 6, y= 30; z = 28; Z= 4.25, p < .03, k= 202, FWE-SVC) (see
Fig. 5 and Supplementary Figure 4)). We used this specific cluster
of ACCg to test whether OAS signals when learning about
strangers were also coded in ACCg by taking the average para-
meter estimates over the whole ROI. We found that there was
also a significant response in ACCg that tracked stranger OAS
(t(38)= 1.95, p= .03). Further analysis of the same ROI found
that while ACCg also tracked friend OAS (t(38)= 2.09, p= .02),

it did not track self OAS (t(38)= .93, p= .18). We also conducted
a reverse inference meta-analysis using Neurosynth60 combining
masks of n= 1220 studies linked to keywords of ‘value’ and
‘learning’ to test whether this ACCg area is commonly seen in
studies of learning and value in non-social settings. We found no
significant responses in ACCg that overlapped with domain-
general areas responding to value and learning (see Supplemen-
tary Note 5, Supplementary Figure 5 and Supplementary
Figure 6).

In summary, while we had found that it was incorrect to
characterize vmPFC as specialized solely for self-related associa-
tions, ACCg does appear relatively specialized for information
relating to agents other than the self. OPE signals for strangers
were specifically tracked in ACCg, and OAS was significantly
represented for both friends and strangers but not for self. These
findings point to a key role for ACCg in social learning.

Because we had found evidence for relative specialization in
ACCg for OAS for agents other than the self, we also re-examined
activity in the vmPFC for evidence of other related processing
specialization (contrast −1 0 1). We found a smaller cluster
surviving SVC in dorsal parts of area 11 m (x= 10, y= 50, z=
−6; Z= 3.99, k= 83, p < .04 FWE-SVC, Fig. 6) that responded to
stranger more than self, but in fact tracked prediction errors for
both friend (p= .004) and stranger (p < .001). At the whole-brain
level, we also found stranger-specific OPEs in posterior cingulate
cortex (x=−10, y=−26, z= 32; Z= 5.19, k= 692, p < .01
FWE-whole brain) and a ventral portion of the mid insula (BA
13; x=−36, y= 8, z=−12; Z= 4.61, k= 104, p < .05 FWE-
whole brain). No other brain area showed this pattern.

In summary, vmPFC and ACCs have a fundamental role in
tracking OAS. While not specialized for self-related processing,
these regions are biased to code information in regard to the self.
Moreover, the rate at which people formed ownership associa-
tions between their own selves and objects is most strongly
tracked in vmPFC. By contrast, adjacent to both these well-
studied regions, most notably in ACCg but to a lesser extent in
dorsal 11 m in vmPFC, we found evidence for specialized areas
coding for a learning-related signal, prediction errors, in relation
to other agents.

Discussion
It has long been thought that acquiring a sense of ownership
over an object requires an association between the object and the
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Fig. 5 Specific coding of ownership prediction errors (OPEs) for strangers in
ACCg. ACCg (area 24) specifically coded ownership prediction errors when
learning about the ownership of strangers (p < .03, FWE-SVC for an
anatomical mask of the medial prefrontal cortex). Activation overlaid on an
anatomical scan of the medial surface. Error bars indicate standard error of
the mean. N= 39
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self9. Multiple studies have shown how this sense of ownership
pervades our perception, attention, memory, learning and
decision-making5–7, but the associative mechanisms mediating
the link between ourselves, others and ownership are unknown.

We found evidence for a self-ownership bias at multiple
levels of behaviour. Participants had an initial preference to
say that pictures belonged to themselves, when theoretically
they should have designated ownership with equal probability
to all three possible agents. They were faster to respond and
more accurate when learning about self-related objects than
objects linked to other people, and they formed representations
between themselves and objects more rapidly as indexed by
a higher learning rate when acquiring self-referenced associations.

We were, however, unable to find evidence of a brain region
solely concerned with the forging of associations with the self.
Instead, we found evidence that two cortical regions, already
known to have a role in learning reward outcome-related
associations and reward outcome association-guided decision
making, vmPFC and ACCs (and adjacent medial frontal cortex),
had a broad role in learning associations with all three types
of agents. Significant coding of other as well as self-related
information in vmPFC is concordant with other studies showing
a role for vmPFC in simulating others decisions28. Nevertheless,
in both vmPFC and ACCs, there was a bias towards coding
object associations in relation to the self. For example, in vmPFC
self-related activity was stronger that other-related activity
(Fig. 4a) and individual variation in self-related activity was
correlated with individual variation in self-learning rates (Fig. 4c,
d). The association between learning rates for self and vmPFC
was also significantly stronger than association between vmPFC
signals for other agents and learning rates for other agents.
Therefore, correlations between behaviour and vmPFC response
did not simply reflect a higher learning rate for self but also a
self-ownership bias in behaviour. Our findings highlight the
vmPFC as fundamental for self-related processing by showing
that vmPFC is biased to learn in reference to oneself. However,
by using a parametric design we show that although this area
is biased to learn in reference to oneself, vmPFC also significantly
tracks information about the ownership of other agents.
Our finding could have important implications for understanding
the role of vmPFC in learning and decision-making, suggesting
that this area may track self and other associations even outside of
the context of reward-based learning.

Activity in ACCs exhibited a similar self-ownership bias.
However, the pattern of activity in ACCs requires more careful
explanation. On first examination ACCs appeared to be more
concerned with agents other than the self; a whole-brain analysis
found that ACCs activity was more negatively related to self than
to friend or stranger (Fig. 4f). However, closer analysis revealed
that activity in ACCs covaried negatively with the strengths of
association for all three agents and that this negative activity
pattern was most prominent in the case of self associations. This
is consistent with a large number of studies that have found
activity in ACCs negatively covarying with strength of reward
association for an action that will be chosen as opposed to an
action that will not currently be chosen57,58. The ACC pattern
may reflect the evidence for making an alternative choice in a
subsequent decision. Importantly, closer tracking of OAS for self
compared to strangers was not associated with the trial-by-trial
reaction time, suggesting that the self-bias is not explainable in
terms of response selection difficulty or conflict and extends
beyond a behavioural reaction time advantage when processing
information about the self.

While we did not observe any brain area exclusively concerned
with self-referenced associations, this is not entirely unexpected.
Indeed, representations of one’s self, such as how one forms a
sense of ownership over one’s own face, are highly malleable, and
are readily manipulated in bodily illusions61. We did, however,
identify an area, ACCg, that seemed particularly concerned with
learning in relation to those agents that were most distinct to the
self. The activity was most prominent in area 2424 in the supra-
callosal part of the cingulate cortex in what is often referred to as
the dorsal ACC or dACC. However, in most non-social learning
and decision-making studies, dACC activity is most prominent in
the cingulate sulcus35,52,57,58. In the current study, we have
considered the sulcal and gyral divisions of dACC separately and
followed previous studies in referring to them as ACCg and
ACCs38,40,41,43.

When humans and monkeys learn about the reward prospects
of individuals other than themselves, then it is activity in ACCg
that reflects these reward associations39,42. Similarly, activity in
ACCg may reflect other non-reward-related associations, such as
those mediating the link between agent and object that is central
to ownership, when these associations involve agents distinct
from the self. Knowledge of such other-referenced associations
may be necessary for capacities such as empathy that have also
been linked to ACCg42,43,62. In the current study, we observed
OAS signals in ACCg that were related to tracking ownership by
friends and strangers. We also found learning signals specifically
related to others most different from the self (strangers). This
dovetails with several studies reporting other-referenced reward
prediction errors and value signals in ACCg39,41,42. However, our
results suggest that even at the level of abstract ownership
learning, after controlling for the receipt of reward or pain by the
other agent, ACCg may show relative specialization for proces-
sing information pertaining to other agents, thus going beyond
other recent work on the role of this area in social cognition39,42.

We also observed responses in other brain areas previously
linked to socio-cognitive processing, in particular the TPJ and
dmPFC35,51,63. Intriguingly, these areas tracked owner-
ship associative strength for all three agents rather than specifically
responding to stranger or friend and stranger like ACCg. Although
these areas covaried in a domain general way with associative
strength, this tracking could still reflect a process crucial for social
cognition, that is, forming basic associations between agents and
objects. Adjacent to dmPFC, we found that the superior frontal
gyrus also showed a domain general response to all agents, but
when tracking prediction error signals at the time of the outcome.
The superior frontal gyrus is not often found in studies of
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Fig. 6 Distinct coding of ownership prediction errors in area 11 m. Dorsal
parts of area 11 m (x= 10, y= 50, z=−6; Z= 3.99, k= 83, p < .04 FWE-
SVC) signalled prediction errors for stranger more than self but in fact
tracked prediction errors for both friend (p= .004) and stranger (p < .001)
and not self (p > .05). Activation overlaid on an anatomical scan of the
medial surface. Error bars indicate standard error of the mean. N= 39
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associative learning and it would be interesting for future studies to
examine further the role of this area in forming ownership asso-
ciations. We did not see any responses in subgenual ACC, another
area previously linked to social prediction error signalling64 during
prosocial learning13 and when receiving feedback about being liked
by others65. Moreover, we also tested for a self-other ventral–dorsal
spatial gradient in mPFC as an alternative hypothesis for how self
vs. other relevant information may be processed in vmPFC34. Our
findings again suggested that self-ownership-related activity pre-
vailed throughout much of mPFC. There was, however, some evi-
dence that, while always weaker than self-related activity, stranger-
related activity effects became stronger more dorsally in dmPFC
compared to vmPFC. Our finding fits with other studies suggesting
that other related information is more strongly encoded in dorsal
compared to ventral–medial prefrontal areas35,51.

Although several studies have documented biases related to
processing information that is relevant for oneself, other studies
have emphasized how it is information related to other people
that is preferentially processed. People will rapidly shift their
preferences to closely align with those of other people55,66,67.
When making moral decisions people are more harm aversive
when considering others than themselves68 and the performance
of others can bias how we view our own abilities37. One expla-
nation for both self and other biases in information processing is
that core regions for learning and decision-making, such as
vmPFC and ACCs, exhibit the first bias, that is they are pre-
ferentially recruited to process self-relevant information as we
have shown here. In contrast, other areas, particularly ACCg, may
be somewhat specialized for processing social information and
therefore have an ‘other’ associative bias. Importantly, we show
that forming a sense of ownership over arbitrary fractals changes
participants’ behaviour in terms of speed of responding, accuracy
and learning. Future studies could examine the effects of minimal
ownership on other aspects cognition and behaviour, for example,
by including a post-scanning memory task or asking participants
whether they would give up money to view the different fractals.
Relatedly, it would be interesting for future studies to compare
the effects of learning about real material objects that participants
would be able to take home after the study.

Overall, we show that people have a self-ownership bias when
learning about objects in the environment. They are more likely
to say things belong to themselves than to others, are faster and
more accurate at making self-relevant decisions and learn at a
higher rate than when learning about other owned objects. While
much of the brain’s learning and decision-making apparatus may
track associations in relation to the self, other related information
may be particularly prominent in ACCg. These findings could
have important implications for learning and decision-making as
well as disorders associated with aberrant ownership repre-
sentations and problems with social cognition.

Methods
Participants. Forty right-handed healthy adults (21 females, age 19–34 years) were
recruited through university participant databases. Exclusion criteria included
previous or current neurological or psychiatric disorder, non-normal or non-
corrected to normal vision and contraindications that prohibited magnetic reso-
nance imaging (MRI) scanning. One participant was excluded from the analysis
due to neurological abnormalities identified during scanning, leaving a final sample
of 39. We conducted an a priori power calculation based on our planned sample
size and desired power (80% at α p= .05) to show that with 39 subjects we had 80%
power to detect a ‘medium’ effect size of d= 0.46 at α= .05 (two-tailed) in any of
our behavioural measures, an effect size smaller than typically reported in this field,
indicating sufficient power. All participants gave written informed consent and the
study was approved by the University of Oxford Central Research Ethics
Committee.

Experimental task. Participants performed an associative-learning task where they
were required to learn the picture–agent pairings (Fig. 1). The task was

deterministic such that participants were told the same pictures would always
belong to the same agents. There were four pictures associated with each agent
(self, friend, stranger) in the first block and a further four pictures in the
second block. Based on a behavioural pilot, we designed our task such that par-
ticipants would not have fully learnt all stimulus–agent associations by the end of
the task. This ensured that we could assess the formation of ownership associations
and limited scanning time for when all associations were fully learnt. We chose not
to use probabilistic picture–agent pairings in order to more realistically reflect real-
life ownership where objects are either owned or not owned. Note that several
studies within the framework of associative learning theory have used determi-
nistic, rather than probabilistic, paradigms50,69. Indeed, classical associative
learning theory70–72 describes how human and non-human animals learn about
associations between different stimuli and responses, but is agnostic as to whether
these pairings are deterministic or probabilistic. The finding that dopamine neu-
rons encode reward prediction errors and that over time these neurons begin to
respond to reward predicting cues has been made in deterministic learning
regimes50. Subsequently, the learning of such stimulus–reward associations has
been extended to account for probabilistic outcomes, but importantly testing assays
still included deterministic associations (probability of outcome either 0 or 1) just
as probabilistic ones73.

We also introduced six additional pictures that were pseudorandomly
interspersed in the first mini-block and were only presented once. These pictures
were introduced because a prior behavioural pilot revealed that participants had an
unexpected bias to say that pictures belonged to themselves on the first trial, even
though it might have been expected that they would, on average, choose each of the
agent labels with equal probability (33%). These extra trials, combined with the first
instance of each picture, made possible estimation of the general self-bias—the
tendency to say a picture was ‘mine’—and this bias was used to model starting
action values in the computational model. Responses to this single presentation of
the additional images were not used in any other analysis. Therefore, there were 24
pictures in total that were each shown 10 times. To ensure that there were equal
opportunities for learning the ownership of all three agents, the pictures were
presented in mini-blocks of 12 stimuli so that the maximum length of time between
the presentations of a particular picture was controlled. Before scanning,
participants practiced learning three picture–agent pairings to familiarize
themselves with the experimental task.

Procedure. At the beginning of each trial, participants were presented with a
fractal picture that was displayed for 800 ms. They were then presented with
three options about whom the picture belonged to, ‘mine’ if the picture was
their own, ‘friend’: the name of their best friend (changed for each subject based
on their nomination of a gender-matched friend) and finally ‘stranger’: the name of
a gender-matched ‘stranger’. The stranger names came from a list of names
(five male, five female) that were plausible but uncommon in the United Kingdom.
Before scanning participants selected a name from this list that they had no
previous association with, that is, they did not know anyone with this name or
the name did not make them identify a particular person. These three options,
henceforth self, friend and stranger, were displayed for 1500 ms. Once selected,
a bar appeared under the option to indicate that it had been chosen, for a
minimum of 300 ms. This was followed by a variable delay of 2000–400 ms and
then the display of an outcome of ‘correct’ or ‘incorrect’ for 800 ms. There was
an inter-trial interval of 1500–3000 ms. Participants performed a block of trials
where they learned 12 picture–agent pairings. This was followed by a 15 s break
and then a new set of 12 picture–agent pairings were presented. Before scanning,
participants practiced 18 trials where they were required to learn three
picture–agent pairings.

Computational modelling of behavioural data. Learning behaviour for self,
friend and stranger was modelled using an associative learning (AL) algorithm74.
The AL model has been used in previous studies to examine the behavioural and
neural basis of arbitrary visuomotor associations in both non-social and social
contexts16,38,43. Importantly, although the self-bias has been linked to associative
learning processes (e.g. ref. 7), associative learning models have not, to our
knowledge, been used to understand the mechanisms of ownership, despite pro-
viding a powerful tool to define how agent-object association are formed over time.
We used this model to examine blood oxygenation-level-dependent (BOLD) sig-
nals that scaled parametrically with two parameters, the OAS between picture and
agent at the time of the picture, and the size of the OPE at the time of an outcome.

The AL model comprises OAS estimates for self, friend and stranger. On each
trial t, the OAS estimate for the chosen agent is updated by the choice feedback
(correct/incorrect) via a OPE:

OPEchosenAgent tð Þ¼ Feedback tð Þ�OASchosenAgent tð Þ; ð1Þ

OASchosenAgent t þ 1ð Þ ¼ OASchosenAgent tð Þ þ α ´OPEchosenAgent tð Þ: ð2Þ

This means that only the OAS of the choice actually made was changed on each
trial. The OAS of the remaining two agents were carried over to the next trial
unchanged. The learning rate ‘α‘ scales the degree to which the prediction error
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updates the OAS. In our deterministic paradigm, participants are optimal if they
have a learning rate closest to ‘1’. The OAS for self, friend and stranger before a
new stimulus was encountered for the first time was set to each subject’s average
tendency to select self, friend or stranger (see Experimental Task section,
Supplementary Note 2 and Supplementary Figure 1 for further details of model
selection and comparison).

The probability that a subject makes the choice that is actually observed is
calculated via a standard softmax function weighting the OAS of the observed
choice by the sum of all three possible choices:

pðchosenAgentÞ ¼ eOAS chosenAgentð Þ=β

eOAS selfð Þ=β þ eOAS friendð Þ=β þ eOAS strangerð Þ=β : ð3Þ

The temperature parameter ‘β’ captures the precision with which the choice is
based on the OAS. In addition to the three learning rates, three separate β
parameters were estimated for self, friend and stranger stimuli (one β per true
stimulus ownership). Thus, the parameter set θ of the model comprised six free
parameters. We fitted the model by minimizing the negative log likelihood of the
observed choices over all trials N individually for each subject:

nLL ¼ �
XN

t¼1

logðpðchosenAgenttÞÞ: ð4Þ

We fitted three separate learning rates for self, friend and stranger OAS updates
for several reasons. Based on earlier findings13, and previous data showing faster
reaction times when making judgements about self-shape pairings compared to
stranger-shape pairings8, our hypothesis was that these ‘self-biases’ might be
explained by people forming associations more rapidly between themselves and
objects, and that this would be reflected in a higher learning rate for self. When we
examine the model parameters from the separate learning rate parameter model,
we can see that this is the case with a main effect of agent learning rate and a
significantly higher learning rate for self compared to stranger (Fig. 2e). This three
learning rate model also allowed us to explore brain–behaviour correlations in the
three learning conditions showing that vmPFC responses for self OAS are
correlated with the self learning rate significantly more strongly than vmPFC
responses to friend and the friend learning rate and vmPFC responses to stranger
and the stranger learning rate. However, when we compared this model to a
simpler model with one learning rate and one β the simpler model provided a
slightly better fit to the data (Supplementary Table 1). To make sure, that
differential functional magnetic resonance imaging (fMRI) effects for self and
others could not only be driven by differences in learning rates and were not
reflective of using a more complex model, we also ran all of our fMRI analyses with
the parameter values from the simpler model using a single learning rate for all
agents and found no differences in neural responses between the simpler model
and our favoured model that allowed us to examine individual differences in
behaviour and neural responses. To further assess the suitability of our model, we
tested whether our reinforcement learning model explained choices significantly
better than chance. First, we calculated the log likelihood of a model in which each
choice is made by chance (33% selection probability for each choice). Second, we
performed a likelihood ratio test of our model against the chance model75.
We found that our model indeed explained choices significantly better than the
chance model in all our subjects (all p < .005; all χ2(6) > 18.55). We also compared
our model to several other plausible control models but our full model still
performed better (see Supplementary Note 2 and Supplementary Figure 1).

Statistical analysis of behavioural data. Analyses of behavioural data were
performed in SPSS 24 (IBM Corp, Armonk, NY, USA). We examined differences
between conditions in the learning rate at the group level using repeated-measures
ANOVAs, with three levels (self, friend and stranger). We examined bivariate
associations between the learning rates for self, friend and stranger and neural
responses.

fMRI acquisition and analysis. A Siemens Prisma 3 T MRI scanner was used to
acquire multiband T2*-weighted echo planar imaging (EPI) volumes with BOLD
contrast. The EPI volumes were acquired in an ascending manner, at an oblique
angle (≈30°) to the AC-PC line to decrease the impact of susceptibility artefacts in
the orbitofrontal cortex and had the following acquisition parameters: voxel size
2 × 2 × 2, 1 mm gap; TE= 30 ms; repetition time= 1570 ms; flip angle= 90°; field
of view= 216 mm. The structural scan was acquired using a magnetization pre-
pared rapid gradient echo sequence with 192 slices; slice thickness= 1 mm; TR=
1900 ms; TE= 3.97 ms; field of view= 192 mm × 192mm; voxel size= 1 × 1 × 1
mm resolution.

Imaging data were analysed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm).
Images were bias corrected then realigned and co-registered to the participant’s
own anatomical image. The anatomical image was processed using a unified
segmentation procedure combining segmentation, bias correction, and spatial
normalization to the MNI template using the New Segment procedure; the same
normalization parameters were then used to normalize the EPI images. Lastly, a
Gaussian kernel of 8 mm full-width at half-maximum was applied to spatially
smooth the images.

Before the study, example first-level design matrices were checked to ensure that
estimable GLMs could be performed with independence between the parametric
regressors: OAS and OPE for the three types of ownership. This allowed us to look
at OAS-related and OPE-related responses independent of one another. The OAS
regressors and OPE regressors were also checked to ensure independence at the
choice onset and outcome onset. The average correlation between these regressors
at the particular time points was <|0.32| (see Supplementary Figure 2) ensuring
estimable GLMs.

Four event types were used to construct regressors in which event timings were
convolved with SPM’s canonical haemodynamic response function. The onsets of
all pictures were modelled with a single regressor and the onsets of the outcomes
separated for each agent based on the participants’ choice. These events were
modelled as stick functions with 0 duration. Each of these regressors was associated
with parametric modulators taken from the computational model. At the time of
the picture this was the OAS for self, friend and stranger. Orthogonalisation was
turned off and the three parametric modulators were allowed to compete for
variance. At the time of the outcome, the ownership PE (calculated as in Eq. 1
above) for self accompanied the outcomes of self choices, friend ownership PE
accompanied the outcomes of friend choices and stranger ownership PE
accompanied the outcomes of stranger choices. The OAS and OPEs were estimated
using average learning rates across the group for each condition to give reliable
estimates75. In some participants, an eleventh regressor modelled all missed trials,
on which participants did not select one of the three agents in the response
window. Six head motion parameters modelled the residual effects of head motion
as covariates of no interest. Data were high-pass filtered at 128 s to remove low-
frequency drifts, and the statistical model included an AR(1) autoregressive
function to account for autocorrelations intrinsic to the fMRI time series.

Contrast images from the first level were input into 2 second-level flexible-
factorial designs. The first tested for areas that parametrically tracked the OAS at
the time of picture presentation (self OAS, friend OAS and stranger OAS) and the
second modelled the ownership prediction error at the time of the outcome (self
OPE, friend OPE, stranger OPE). All contrasts were examined coding for the linear
effect of agent (1 0 −1 and −1 0 1 corresponding to the self, friend and stranger
conditions). All common coding analyses were tested using conjunction analysis
(AND) to assess significant overlap in neural response. Main effects are reported at
p < .05, FWE-corrected at the voxel level across the whole brain or p < .05 SVC at
the voxel level using a combined mask of regions in the mPFC where we had a
strong a priori hypothesis and in the subgenual anterior cingulate cortex (ACC) as
an additional ROI (see below). We also tested regions that coded OAS and OPEs
based on a model with a single learning rate and temperature parameter, to ensure
our neural results did not simply reflect the different learning rates for self, friend
and stranger. All reported neural results remained the same using parametric
values from a two parameter model. We also ran a further GLM that included trial-
by-trial reaction times as an additional parametric modulator on the picture period.
All reported neural results also remained the same when including reaction time as
an additional parametric modulator.

ROI selection and fMRI contrasts. The a priori ROIs were defined anatomically
using masks taken from the atlases of the mPFC in Neubert et al24. Mackey and
Petrides23 have identified similar sub-regions in their analysis of human ven-
tromedial frontal cortical anatomy. We created a combined mask of all our ROIs
comprising areas 11 and 14 m (to cover vmPFC), area 9 (to cover dorsomedial
prefrontal cortex) and area 24 (to cover the gyral portion of the ACC, extending
into dorsal parts of vmPFC). We selected these areas based on previous studies
linking responses in these areas to self and/or other7,8,26,35,37,39. We also tested
whether there were any effects in the subgenual ACC (areas s24 and 25 from the
Anatomy Toolbox) as an additional ROI on the basis of a previous study13.

Code availability. Custom Matlab code to implement the learning models is
available from the corresponding author upon reasonable request.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying all figures is available at: https://doi.org/10.17605/OSF.
IO/NWUZ8. Unthresholded statistical parametric maps are available at: https://
neurovault.org/collections/4257/. A reporting summary for this article is available
as a Supplementary Information file.
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