UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector

ATLAS Collaboration; Newman, Paul

DOI: 10.1103/PhysRevLett.124.222002

License: Creative Commons: Attribution (CC BY)

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

ATLAS Collaboration & Newman, P 2020, 'Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector', *Physical Review Letters*, vol. 124, no. 22, 222002. https://doi.org/10.1103/PhysRevLett.124.222002

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.

• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector

G. Aad *et al.*^{*} (ATLAS Collaboration)

(Received 8 April 2020; revised manuscript received 6 May 2020; accepted 13 May 2020; published 4 June 2020)

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb⁻¹ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

DOI: 10.1103/PhysRevLett.124.222002

Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD) charge into neutral hadrons is not fully understood. In the soft gluon ("eikonal") picture of jet formation, a quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1,2]. As OCD is nearly scale invariant, this emission pattern is approximately uniform in the twodimensional space spanned by $\ln(1/z)$ and $\ln(1/\theta)$, where z is the momentum fraction of the emitted gluon relative to the primary quark or gluon core and θ is the emission opening angle. This space is called the Lund plane [3]. The Lund plane probability density can be extended to higher orders in QCD and is the basis for many calculations of jet substructure observables [4-7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to construct an observable analog of the Lund plane using jets, which captures the salient features of this representation. Jets are formed using clustering algorithms that sequentially combine pairs of protojets starting from the initial set of constituents [9]. Following the proposal, a jet's constituents are reclustered using the Cambridge/Aachen (C/A) algorithm [10,11], which imposes an angle-ordered hierarchy on the clustering history. Then, the C/A history is followed in reverse ("declustered"), starting from the hardest protojet. The Lund plane can be approximated by using the softer (harder) protojet to represent the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A declustering sequence, an entry is made in the approximate Lund plane (henceforth, the "primary Lund jet plane" or LJP) using the observables ln (1/z) and ln $(R/\Delta R)$, with

$$z = \frac{p_T^{\text{emission}}}{p_T^{\text{emission}} + p_T^{\text{core}}} \quad \text{and}$$
$$\Delta R^2 = (y_{\text{emission}} - y_{\text{core}})^2 + (\phi_{\text{emission}} - \phi_{\text{core}})^2,$$

where p_T is transverse momentum [12], y is rapidity, *R* is the jet radius parameter, and ΔR measures the angular separation. Using this approach, individual jets are represented as a set of points within the LJP. Ensembles of jets may be studied by measuring the double-differential cross section in this space. The substructure of emissions, which may themselves be composite objects, is not considered in this analysis. To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is uniform [8]:

$$\frac{1}{N_{\text{jets}}} \frac{d^2 N_{\text{emissions}}}{d \ln(1/z) d \ln(R/\Delta R)} \propto \text{constant}, \qquad (1)$$

where N_{jets} is the number of jets. This construction of the plane is selected to separate momentum and angular

^{*}Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

FIG. 1. (a) Schematic representation of the LJP. The line $z\theta \lesssim \Lambda_{QCD}$ roughly indicates the transition between regions where either perturbative ($z\theta > \Lambda_{QCD}$) or nonperturbative ($z\theta < \Lambda_{QCD}$) effects are expected to dominate. "UE/MPI" denotes the region where sources of nearly uniform radiation are relevant. (b) The ratio of the Lund jet plane as simulated by the HERWIG7.1.3 MC generator with either an angle-ordered parton shower or a dipole parton shower. (c) The ratio of the Lund jet plane as simulated by the SHERPA2.2.5 MC generator with either the AHADIC cluster-based or Lund string-based hadronization algorithm. (d) The ratio of the LJP as simulated by either the POWHEG+PYTHIA8.230 or PYTHIA8.230 MC generators. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z and ΔR .

measurements, although other choices such as $[\ln(R/\Delta R), k_t = z\Delta R]$ are valid.

The Lund plane has played a central role in state-ofthe-art QCD calculations of jet substructure [13–18] which have so far only been studied with the jet mass m_{jet} [19,20] (which is itself a diagonal line in the LJP: $\ln 1/z \sim \ln m_{jet}^2/p_T^2 - 2 \ln R/\Delta R$) and groomed jet radius [21,22]. The number of emissions within regions of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5]. This Letter presents a double-differential crosssection measurement of the LJP, corrected for detector effects, using an integrated luminosity of 139 fb⁻¹ of \sqrt{s} = 13 TeV proton-proton (*pp*) collision data collected by the ATLAS detector. A unique feature of this measurement is that contributions from various QCD effects such as initial-state radiation, the underlying event and multiparton interactions, hadronization, and perturbative emissions are well localized in the LJP. This factorization is shown in Fig. 1(a), which qualitatively indicates the regions populated by soft vs hard, wide-angle vs collinear, and perturbative vs nonperturbative radiation. Since different regions are dominated by factorized processes, the LJP measurement can be useful for tuning nonperturbative models and for constraining the model parameters of advanced parton shower (PS) Monte Carlo (MC) programs [23–26].

The ATLAS detector [27–29] is a general-purpose particle detector which provides nearly 4π coverage in solid angle. The inner tracking detector (ID) is inside a 2 T magnetic field and measures charged-particle trajectories up to $|\eta| = 2.5$. The innermost component of the ID is a pixelated silicon detector with fine granularity that is able to resolve ambiguities inside the dense hit environment of jet cores [30], surrounded by silicon strip and transition radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected clusters of cells [31] are formed into jets using the anti- k_t algorithm with radius parameter R = 0.4 [32,33]. The jet energy scale is calibrated so that, on average, the detectorlevel jet energy is the same as that of the corresponding particle-level jets [34].

Events are selected using single-jet triggers [35,36]. The leading and subleading jets are used for the measurement and are required to satisfy $p_T^{\text{leading}} > 675$ GeV and $p_T^{\text{leading}} < 1.5 \times p_T^{\text{subleading}}$. This jet- p_T balance simplifies the interpretation of the final state in terms of a $2 \rightarrow 2$ scattering process. Both jets must be within the ID acceptance ($|\eta| < 2.1$). About 29.5 million jets satisfy these selection criteria.

Particle-level charged hadrons and their reconstructed tracks are used for this measurement because individual particle trajectories can be precisely identified with the ID. As the LJP observables are dimensionless and isospin is an approximate symmetry of the strong force, the difference between the LJP observables constructed using all interacting particles and charged particles is small [21]. Tracks are required to have $p_T > 500$ MeV and be associated with the primary vertex with the largest sum of track p_T^2 in the event [37]. Tracks within $\Delta R = 0.4$ of the cores of selected jets are used to construct the LJP observables by clustering them using the C/A algorithm and populating the plane by iterative declustering. The fiducial region of the measurement spans 19 bins in $\ln(1/z)$ between $\ln(1/0.5)$ and $8.4 \times \ln(1/0.5)$, and 13 bins in $\ln(R/\Delta R)$ between 0.0 and 4.33. The maximum ΔR is the jet radius and the minimum ΔR is comparable to the pixel pitch. The maximum z is 0.5 and the minimum is 500 MeV/ $p_{\rm T}^{\rm jet}$.

Samples of dijet events were simulated in order to perform the unfolding and compare with the corrected data. The nominal sample was simulated using PYTHIA8.186 [38,39] with the NNPDF2.3 LO [40] set of parton distribution functions (PDF), a p_T -ordered PS, Lund string hadronization [41,42], and the A14 set of tuned parameters

(tune) [43]. Additional samples were simulated by PYTHIA8.230 [44] with the NNPDF2.3 LO PDF set and the A14 tune, using either the PYTHIA LO matrix elements (MEs) or NLO MEs from POWHEG [45-48]; SHERPA2.1.1 [49] with the CT10LO PDF set, a p_T -ordered PS [50], an ME with up to three partons (merged with the CKKW prescription [51]) and the AHADIC (A HADronization model In C++) cluster-based hadronization model [52,53]; SHERPA2.2.5 with the CT14NNLO PDF set [54] including $2 \rightarrow 2$ MEs and either the AHADIC hadronization model or the Lund string model; and HERWIG7.1.3 [26,55,56] with the MMHT2014NLO PDF set [57] and either the default angle-ordered (Ang. ord.) PS or a dipole PS and cluster hadronization [52]. Further details of these samples may be found in Ref. [58]. The PYTHIA8.186 and SHERPA2.1.1 events were passed through the ATLAS detector simulation [59] based on GEANT4 [60]. The effect of multiple *pp* interactions in the same and neighboring bunch crossings (pileup) was modeled by overlaying the hard-scatter event with minimum-bias pp collisions generated by PYTHIA8 with the A3 tune [61] and the NNPDF2.3 LO PDF set. The distribution of pileup vertices was reweighted to match data, which have an average of 33.7 simultaneous interactions per bunch crossing.

Figures 1(b)–1(d) illustrate the kinematic domains of various physical effects in the LJP using ratios at chargedparticle level between pairs of MC simulations where one component of the simulation is varied. Varying the PS model in HERWIG7.1.3 [Fig. 1(b)] results in differences of up to 50% in the perturbative hard and wide-angle emissions entering the lower-left region of the LJP. Changing the hadronization model in SHERPA2.1.1 [Fig. 1(c)] causes variations up to 50% in a different region of the plane, populated by softer and more collinear emissions at the boundary between perturbative and nonpertu rbative regions. Varying the ME from LO (PYTHIA8.230) to NLO (POWHEG+PYTHIA8.230) [Fig. 1(d)] causes small changes of up to 10% in the region populated by the hardest and widest-angle emissions.

Selected data are unfolded to correct for detector bias, resolution, and acceptance effects by applying iterative Bayesian unfolding [62] with four iterations implemented in RooUnfold [63]. The MC generator used to unfold the data is PYTHIA8.186. The number of iterations was chosen to minimize the total uncertainty. The unfolding procedure corrects the LJP constructed from detector-level objects to charged-particle level, where jets and charged particles are defined similarly to those at detector level: jets are reconstructed using the same anti- k_t algorithm with detector-level stable ($c\tau > 10$ mm) nonpileup particles, excluding muons and neutrinos, as inputs. The same kinematic requirements as for detector-level jets are imposed on these jets; charged particles with $p_T > 500$ MeV within $\Delta R =$ 0.4 of the cores of particle-level jets are used to populate the charged-particle-level LJP.

Emissions at detector level and charged-particle level are uniquely matched in η - ϕ to construct the response matrix. The matching procedure follows the order of the C/A declustering, starting from the widest-angle detector-level emission and iterating towards the jet core. The closest charged-particle-level match with angular separation $\Delta R < 0.1$ takes precedence. Unmatched emissions from tracks not due to a single charged particle (detector level) and from nonreconstructed charged particles (chargedparticle level) are accounted for with purity and efficiency corrections. Corrections are applied before (purity) and after (efficiency) the regularized inversion of the response matrix. Both the purity and efficiency corrections are about 20% for wide-angle, hard emissions (lower-left quadrant of the LJP), increasing to 80% for the most collinear splittings and 50% in the lowest-z bins. For matched emissions, the $\ln(1/z)$ and $\ln(R/\Delta R)$ bin migrations between particle and detector levels are largely independent. Furthermore, since the differential cross section varies slowly across the LJP, the purities and efficiencies are approximately the same across the entire LJP. The $\ln(R/\Delta R)$ migrations in a given $\ln(1/z)$ bin are less than 60% for the smallest opening angles and decrease to less than 40% for the widest angles. The $\ln(1/z)$ migrations decrease from about 50% for the softest to about 20% for the hardest emissions, with some degradation for the softest emissions at small opening angles. Migrations for both observables are nearly symmetric except for $\ln(R/\Delta R) > 3$, where harder-to-resolve small opening angles are measured with asymmetric resolution. In less than 10% of these cases, particle-level and detector-level emissions are mismatched and therefore measured with the wrong $\ln(1/z)$. While the $\ln(R/\Delta R)$ migrations are nearly the same when $\ln(1/z)$ migrates by one bin, the $\ln(1/z)$ migrations increase by about 30% when $\ln(R/\Delta R)$ migrates by one bin.

The unfolded distribution is normalized to the number of jets that pass the event selection, rendering the measurement insensitive to the total jet cross section. After normalization, the integral of the LJP is the average number of emissions within the fiducial region.

Experimental systematic uncertainties are evaluated by applying variations to each source, propagating them through the unfolding procedure, and taking the difference between the modified and nominal results. Theoretical uncertainties arise from jet fragmentation modeling. Different systematic uncertainties are treated as being independent. The size of various sources of uncertainty within selected regions of the LJP is displayed in Fig. 3.

Uncertainties in the jet energy are determined using a mixture of simulation-based and *in situ* techniques [34]. These uncertainties cause the migration of jets into or out of the fiducial acceptance, and are typically above 3% in total, reaching at most 7%. Uncertainties related to the reconstruction of isolated tracks and tracks within dense environments are considered by modifying the measured p_T

of individual tracks or removing them completely [30,64]. These uncertainties are small, contributing less than 0.5%. Other experimental uncertainties related to the modeling of pileup and the stability of the measurement across datataking periods are less than 1% except for the most collinear splittings, where they reach 5%. A data-driven nonclosure uncertainty is determined by unfolding the detector-level distribution following a reweighting based on a comparison of the corresponding simulated detector-level distribution with the data [65]. This uncertainty is less than 1% except for the most collinear splittings, where it approaches 5%. An uncertainty for the matching procedure between emissions at detector and charged-particle levels is determined by repeating the unfolding and iterating through the C/A declustering sequence in reverse (from collinear to wideangle emissions), taking the change in the result as an uncertainty. This uncertainty is less than 1% everywhere.

Theoretical uncertainties arise mainly from the accuracy of jet fragmentation modeling. Variations in jet fragmentation can impact the result through a combination of sources: efficiency or purity corrections, response matrix, and unfolding prior. These contributions are estimated by repeating the unfolding with SHERPA2.2.1. As the correlation between the uncertainty sources is unknown, an envelope of the 100% and 0% correlation hypotheses is taken as the total modeling uncertainty. This uncertainty ranges between 5% and 20% depending on the region (larger for soft-collinear splittings) and is the largest single source of uncertainty. Experimental uncertainties are found to be comparable to those arising from modeling in some regions of the LJP.

FIG. 2. The LJP measured using jets in 13 TeV pp collision data, corrected to particle level. The inner set of axes indicates the coordinates of the LJP itself, while the outer set indicates corresponding values of z and ΔR .

The total systematic uncertainty varies across the LJP; an uncertainty between 5% and 20% is achieved. The uncertainty is found to increase as $k_t = z\Delta R$ decreases: the bin with the smallest k_t is also measured least precisely, and has a total uncertainty of about 20%.

The unfolded LJP is shown in Fig. 2. A triangular region with $k_t \gtrsim \Lambda_{\text{QCD}}$ is populated nearly uniformly by perturbative emissions, agreeing with the LL expectation [Eq. (1)].

A large number of emissions are found at the transition to the nonperturbative regime, as α_s is enhanced for small values of k_t . Emissions beyond the transition fall within the nonperturbative region of the LJP ($k_t \leq \Lambda_{QCD}$), and are suppressed. The average number of emissions in the fiducial region is measured to be 7.34 ± 0.03 (syst) ± 0.11 (stat). The uncertainty is estimated by propagating uncertainties from the measurement in an uncorrelated and symmetrized

FIG. 3. Representative horizontal and vertical slices through the LJP. Unfolded data are compared with particle-level simulation from several MC generators. The uncertainty band includes all sources of systematic and statistical uncertainty. The inset triangle illustrates which slice of the plane is depicted: (a) $0.67 < \ln(R/\Delta R) < 1.00$, (b) $1.80 < \ln(1/z) < 2.08$, (c) $3.33 < \ln(R/\Delta R) < 3.67$, and (d) $5.13 < \ln(1/z) < 5.41$.

manner. The corresponding average emissions for PYTHIA8.230 is 7.64 and 7.67 for POWHEG+PYTHIA8.230. The average value for SHERPA2.2.5 is 6.90 for AHADIC hadronization and 7.30 for Lund string hadronization. The average value for HERWIG7 is 7.41 for the dipole PS and 7.37 for the angle-ordered PS. While a similar bracketing of the data by PYTHIA and SHERPA with AHADIC hadronization was noted in Ref. [66], the particle multiplicity inside jets has not previously been decomposed into perturbative and non-perturbative components.

Figure 3 shows data from four selected horizontal and vertical slices through the LJP, along with a breakdown of the systematic uncertainties [67]. The data are compared with predictions from several MC generators. While no prediction describes the data accurately in all regions, the HERWIG7.1.3 angle-ordered prediction provides the best description across most of the plane. The differences between the PS algorithms implemented in HERWIG7.1.3 are notable at large values of $k_t = z\Delta R$, where the two models disagree most significantly for hard emissions reconstructed at the widest angles [Fig. 3(a) and 3(b)]. The POWHEG+PYTHIA and PYTHIA predictions only differ significantly for hard and wide-angle perturbative emissions, where ME corrections are relevant. The hadronization algorithms implemented in SHERPA2.2.5 are most different at small values of k_t , particularly for soft-collinear splittings at the transition between perturbative and nonperturbative regions of the plane. The ability of the LJP to isolate physical effects is highlighted in Fig. 3(b), where as emissions change from wide angled to more collinear, the distribution passes through a region sensitive to the choice of PS model, and then enters a region which is instead sensitive to the hadronization model. Figures 3(c) and 3(d) show regions dominated by nonperturbative effects. The PYTHIA samples describe the data in the collinear region of the jet core well, but all simulations fail to describe the softest, widest-angle emissions, which are characteristic of contributions from the underlying event. The PYTHIA8.186 and SHERPA2.2.1 predictions are not shown, but are consistent with the PYTHIA8.230 and SHERPA2.2.5 (Lund string hadronization) predictions, respectively. These observations indicate that the LJP may provide useful input to both perturbative and nonperturbative model development and tuning.

In summary, a measurement of the jet substructure based on the Lund jet plane is reported. The analysis dataset corresponds to an integrated luminosity of 139 fb⁻¹ of 13 TeV LHC proton-proton collisions recorded by the ATLAS detector. The measurement is performed on an inclusive selection of dijet events, with a leading jet $p_T > 675$ GeV. Selected jets are reconstructed from topological clusters using the anti- k_t algorithm with R = 0.4, and their associated charged-particle tracks are used to construct the observables of interest. The data are presented as an unfolded double-differential cross section, and compared with several Monte Carlo generators with various degrees of modeling accuracy. This measurement illustrates the ability of the Lund jet plane to isolate various physical effects, and will provide useful input to both perturbative and nonperturbative model development and tuning.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [68].

^[1] J. Gatheral, Exponentiation of eikonal cross sections in nonabelian gauge theories, Phys. Lett. **133B**, 90 (1983).

- [2] J. Frenkel and J. C. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B246, 231 (1984).
- [3] B. Andersson, G. Gustafson, L. Lönnblad, and U. Pettersson, Coherence effects in deep inelastic scattering, Z. Phys. C 43, 625 (1989).
- [4] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, Towards an understanding of jet substructure, J. High Energy Phys. 09 (2013) 029.
- [5] C. Frye, A. J. Larkoski, J. Thaler, and K. Zhou, Casimir meets Poisson: Improved quark/gluon discrimination with counting observables, J. High Energy Phys. 09 (2017) 083.
- [6] M. Dasgupta, F. A. Dreyer, K. Hamilton, P. F. Monni, and G. P. Salam, Logarithmic accuracy of parton showers: A fixed-order study, J. High Energy Phys. 09 (2018) 033.
- [7] G. P. Salam, L. Schunk, and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, J. High Energy Phys. 03 (2017) 022.
- [8] F. A. Dreyer, G. P. Salam, and G. Soyez, The Lund jet plane, J. High Energy Phys. 12 (2018) 064.
- [9] G. P. Salam, Towards jetography, Eur. Phys. J. C 67, 637 (2010).
- [10] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, Better jet clustering algorithms, J. High Energy Phys. 08 (1997) 001.
- [11] M. Wobisch and T. Wengler, Hadronization corrections to Jet Cross-Sections in Deep-Inelastic scattering, in *Monte Carlo generators for HERA physics. Proceedings, Workshop, Hamburg, Germany, 1998* (DESY, Hamburg, 1998), p. 270, https://www.desy.de/~heramc/proceedings/.
- [12] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the *z*-axis along the beam pipe. The *x*-axis points from the IP to the center of the LHC ring, and the *y*-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle ϑ as $\eta = -\ln \tan(\vartheta/2)$.
- [13] C. Frye, A. J. Larkoski, M. D. Schwartz, and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, J. High Energy Phys. 07 (2016) 064.
- [14] C. Frye, A. J. Larkoski, M. D. Schwartz, and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375.
- [15] S. Marzani, L. Schunk, and G. Soyez, A study of jet mass distributions with grooming, J. High Energy Phys. 07 (2017) 132.
- [16] S. Marzani, L. Schunk, and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78, 96 (2018).
- [17] Z.-B. Kang, K. Lee, X. Liu, and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793, 41 (2019).
- [18] Z.-B. Kang, K. Lee, X. Liu, and F. Ringer, The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, J. High Energy Phys. 10 (2018) 137.
- [19] ATLAS Collaboration, Measurement of the Soft-Drop Jet Mass in *pp* Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector, Phys. Rev. Lett. **121**, 092001 (2018).
- [20] CMS Collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events

from proton–proton collisions at $\sqrt{s} = 13$ TeV, J. High Energy Phys. 11 (2018) 113.

- [21] ATLAS Collaboration, A measurement of soft-drop jet observables in *pp* collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV, Phys. Rev. D **101**, 052007 (2020).
- [22] STAR Collaboration, Measurement of groomed jet substructure observables in pp Collisions at $\sqrt{s} = 200$ GeV with STAR, arXiv:2003.02114.
- [23] N. Fischer, S. Prestel, M. Ritzmann, and P. Skands, VINCIA for hadron colliders, Eur. Phys. J. C 76, 589 (2016).
- [24] S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75, 461 (2015).
- [25] Z. Nagy and D. E. Soper, Effects of subleading color in a parton shower, J. High Energy Phys. 07 (2015) 119.
- [26] J. Bellm *et al.*, Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76, 196 (2016).
- [27] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008).
- [28] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report No. ATLAS-TDR-19, 2010, https://cds .cern.ch/record/1291633; Addendum, CERN, Report No. ATLAS-TDR-19-ADD-1, 2012.
- [29] B. Abbott *et al.*, Production and integration of the ATLAS insertable B-layer, J. Instrum. **13**, T05008 (2018).
- [30] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, Eur. Phys. J. C 77, 673 (2017).
- [31] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77, 490 (2017).
- [32] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
- [33] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
- [34] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D **96**, 072002 (2017).
- [35] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).
- [36] ATLAS Collaboration, The performance of the jet trigger for the ATLAS detector during 2011 data taking, Eur. Phys. J. C 76, 526 (2016).
- [37] ATLAS Collaboration, Early Inner Detector Tracking Performance in the 2015 Data at $\sqrt{s} = 13$ TeV, CERN, Report No. ATL-PHYS-PUB-2015-051, 2015https://cds .cern.ch/record/2110140.
- [38] T. Sjöstrand, S. Mrenna, and P.Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.
- [39] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
- [40] R. D. Ball *et al.*, Parton distributions with LHC data, Nucl. Phys. **B867**, 244 (2013).
- [41] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rep. 97, 31 (1983).
- [42] T. Sjöstrand, Jet fragmentation of multiparton configurations in a string framework, Nucl. Phys. B248, 469 (1984).

- [43] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, CERN, Report No. ATL-PHYS-PUB-2014-021, 2014, https://cds.cern.ch/record/1966419.
- [44] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. **191**, 159 (2015).
- [45] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.
- [46] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: The POW-HEG method, J. High Energy Phys. 11 (2007) 070.
- [47] S. Alioli, K. Hamilton, P. Nason, C. Oleari, and E. Re, Jet pair production in POWHEG, J. High Energy Phys. 04 (2011) 081.
- [48] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.
- [49] T. Gleisberg *et al.*, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007.
- [50] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, J. High Energy Phys. 03 (2008) 038.
- [51] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, QCD matrix elements + parton showers: The NLO case, J. High Energy Phys. 04 (2013) 027.
- [52] B. R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys. B238, 492 (1984).
- [53] J.-C. Winter, F. Krauss, and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36, 381 (2004).
- [54] S. Dulat *et al.*, New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93, 033006 (2016).
- [55] M. Bahr *et al.*, Herwig++ physics and manual, Eur. Phys. J. C 58, 639 (2008).

- [56] J. Bellm et al., Herwig 7.1 Release Note, arXiv:1705.06919.
- [57] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75, 204 (2015).
- [58] ATLAS Collaboration, Multijet simulation for 13 TeV ATLAS analyses, Report No. ATL-PHYS-PUB-2019-017, 2019, https://cds.cern.ch/record/2672252.
- [59] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).
- [60] S. Agostinelli *et al.*, Geant4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
- [61] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model, Report No. ATL-PHYS-PUB-2016-017, 2016, https://cds .cern.ch/record/2206965.
- [62] G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).
- [63] T. Adye, Unfolding algorithms and tests using RooUnfold, arXiv:1105.1160.
- [64] ATLAS Collaboration, Study of the material of the ATLAS inner detector for Run 2 of the LHC, J. Instrum. 12, P12009 (2017).
- [65] B. Malaescu, An iterative, dynamically stabilized method of data unfolding, arXiv:0907.3791.
- [66] ATLAS Collaboration, Measurement of the charged-particle multiplicity inside jets from $\sqrt{s} = 8$ TeV *pp* collisions with the ATLAS detector, Eur. Phys. J. C **76**, 322 (2016).
- [67] See the Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.124.222002 for the complete set of comparisons between data and simulation and other details.
- [68] ATLAS Collaboration, ATLAS Computing Acknowledgements, Report No. ATL-GEN-PUB-2016-002, https://cds .cern.ch/record/2202407.

G. Aad,¹⁰² B. Abbott,¹²⁹ D. C. Abbott,¹⁰³ A. Abed Abud,^{71a,71b} K. Abeling,⁵³ D. K. Abhayasinghe,⁹⁴ S. H. Abidi,¹⁶⁷ O. S. AbouZeid,⁴⁰ N. L. Abraham,¹⁵⁶ H. Abramowicz,¹⁶¹ H. Abreu,¹⁶⁰ Y. Abulaiti,⁶ B. S. Acharya,^{67a,67b,b} B. Achkar,⁵³ S. Adachi,¹⁶³ L. Adam,¹⁰⁰ C. Adam Bourdarios,⁵ L. Adamczyk,^{84a} L. Adamek,¹⁶⁷ J. Adelman,¹²¹ M. Adersberger,¹¹⁴ A. Adiguzel,^{12c} S. Adorni,⁵⁴ T. Adye,¹⁴⁴ A. A. Affolder,¹⁴⁶ Y. Afik,¹⁶⁰ C. Agapopoulou,⁶⁵ M. N. Agaras,³⁸ A. Aggarwal,¹¹⁹ C. Agheorghiesei,^{27c} J. A. Aguilar-Saavedra,^{140f,140a,c} F. Ahmadov,⁸⁰ W. S. Ahmed,¹⁰⁴ X. Ai,¹⁸ G. Alielli,^{74a,74b} S. Akatsuka,⁸⁶ T. P. A. Åkesson,⁹⁷ E. Akilli,⁵⁴ A. V. Akimov,¹¹¹ K. Al Khoury,⁶⁵ G. L. Alberghi,^{23b,23a} J. Albert,¹⁷⁶ M. J. Alconada Verzini,¹⁶¹ S. Alderweireldt,³⁶ M. Aleksa,³⁶ I. N. Aleksandrov,⁸⁰ C. Alexa,^{27b} T. Alexopoulos,¹⁰ A. Alfonsi,¹²⁰ F. Alfonsi,^{23b,23a} M. Alhroob,¹²⁹ B. Ali,¹⁴² M. Aliev,¹⁶⁶ G. Alimonti,^{69a} S. P. Alkire,¹⁴⁸ C. Allaire,⁶⁵ B. M. Allbrooke,¹⁵⁶ B. W. Allen,¹³² P. P. Allport,²¹ A. Aloiso,^{70a,70b} A. Alonso,⁴⁰ F. Alonso,⁸⁹ C. Alpigiani,¹⁴⁸ A. A. Alshehri,⁵⁷ M. Alvarez Estevez,⁹⁹ D. Álvarez Piqueras,¹⁷⁴ M. G. Alviggi,^{70a,70b} Y. Amaral Coutinho,^{81b} A. Ambler,¹⁰⁴ L. Ambroz,¹³⁵ C. Amelung,²⁶ D. Amidei,¹⁰⁶ S. P. Amor Dos Santos,^{140a} S. Amoroso,⁴⁶ C. S. Amrouche,⁵⁴ F. An,⁷⁹ C. Anastopoulos,¹⁴⁹ N. Andari,¹⁴⁵ T. Andeen,¹¹ C. F. Anders,^{61b} J. K. Anders,²⁰ A. Andreazza,^{69a,69b} V. Andrei,^{61a} C. R. Anelli,¹⁷⁶ S. Angelidakis,³⁸ A. Angerami,³⁹ A. V. Anisenkov,^{122b,122a} A. Annovi,^{72a} C. Antel,⁵⁴ M. T. Anthony,¹⁴⁹ E. Antipov,¹³⁰ M. Antonelli,⁵¹ D. J. A. Antrim,¹⁷¹ F. Anulli,^{73a} M. Aoki,⁸² J. A. Aparisi Pozo,¹⁷⁴ L. Aperio Bella,^{15a} J. P. Araque,^{140a} V. Araujo Ferraz,^{81b} R. Araujo Pereira,^{81b} C. Arcangeletti,⁵¹ A. T. H. Arce,⁴⁹ F. A. Arduh,⁸⁹ J-F. Arguin,¹¹⁰ S. Argyropoulos,⁷⁸ J.-H. Arling,⁴⁶ A. J. Armbruster,³⁶ A. Armstr

Z. P. Arrubarrena Tame,¹¹⁴ G. Artoni,¹³⁵ S. Artz,¹⁰⁰ S. Asai,¹⁶³ N. Asbah,⁵⁹ E. M. Asimakopoulou,¹⁷² L. Asquith,¹⁵⁶ J. Assahsah,^{35d} K. Assamagan,²⁹ R. Astalos,^{28a} R. J. Atkin,^{33a} M. Atkinson,¹⁷³ N. B. Atlay,¹⁹ H. Atmani,⁶⁵ K. Augsten,¹⁴² J. Assahsah,³⁵⁴ K. Assamagan,²⁹ R. Astalos,^{20a} R. J. Atkin,^{55a} M. Atkinson,¹⁷⁵ N. B. Atlay,¹⁹ H. Atmani,⁶⁵ K. Augsten,¹⁴² G. Avolio,³⁶ R. Avramidou,^{60a} M. K. Ayoub,^{15a} A. M. Azoulay,^{168b} G. Azuelos,^{110,d} H. Bachacou,¹⁴⁵ K. Bachas,^{68a,68b} M. Backes,¹³⁵ F. Backman,^{45a,45b} P. Bagnaia,^{73a,73b} M. Bahmani,⁸⁵ H. Bahrasemani,¹⁵² A. J. Bailey,¹⁷⁴ V. R. Bailey,¹⁷³ J. T. Baines,¹⁴⁴ M. Bajic,⁴⁰ C. Bakalis,¹⁰ O. K. Baker,¹⁸³ P. J. Bakker,¹²⁰ D. Bakshi Gupta,⁸ S. Balaji,¹⁵⁷ E. M. Baldin,^{122b,122a} P. Balek,¹⁸⁰ F. Balli,¹⁴⁵ W. K. Balunas,¹³⁵ J. Balz,¹⁰⁰ E. Banas,⁸⁵ A. Bandyopadhyay,²⁴ Sw. Banerjee,^{181,e}
A. A. E. Bannoura,¹⁸² L. Barak,¹⁶¹ W. M. Barbe,³⁸ E. L. Barberio,¹⁰⁵ D. Barberis,^{55b,55a} M. Barbero,¹⁰² G. Barbour,⁹⁵ T. Barillari,¹¹⁵ M-S. Barisits,³⁶ J. Barkeloo,¹³² T. Barklow,¹⁵³ R. Barnea,¹⁶⁰ S. L. Barnes,^{60c} B. M. Barnett,¹⁴⁴ R. M. Barnett,¹⁸ Z. Barnovska-Blenessy,^{60a} A. Baroncelli,^{60a} G. Barone,²⁹ A. J. Barr,¹³⁵ L. Barranco Navarro,^{45a,45b}
F. Barreiro,⁹⁹ J. Barreiro Guimarães da Costa,^{15a} S. Barsov,¹³⁸ R. Bartoldus,¹⁵³ G. Bartolini,¹⁰² A. E. Barton,⁹⁰ P. Bartos,^{28a} A. Basalaev,⁴⁶ A. Basalaev,⁴⁶ A. Bassalaev,^{65,f} M. L. Barco,¹⁶⁷ P. L. Bates,⁵⁷ S. Patlamour,^{35e} I. P. Patlev,³² P. Patcol,¹⁵¹ A. Basalaev,⁴⁶ A. Basan,¹⁰⁰ A. Bassalat,^{65,f} M. J. Basso,¹⁶⁷ R. L. Bates,⁵⁷ S. Batlamous,^{35e} J. R. Batley,³² B. Batool,¹⁵¹ M. Battaglia,¹⁴⁶ M. Bauce,^{73a,73b} F. Bauer,¹⁴⁵ K. T. Bauer,¹⁷¹ H. S. Bawa,^{31,g} J. B. Beacham,⁴⁹ T. Beau,¹³⁶ M. Battaglia, M. Batte, F. Batter, K. I. Batter, H. S. Bawa, J. B. Beachann, T. Beau,
P. H. Beauchemin,¹⁷⁰ F. Becherer,⁵² P. Bechtle,²⁴ H. C. Beck,⁵³ H. P. Beck,^{20,h} K. Becker,⁵² M. Becker,¹⁰⁰ C. Becot,⁴⁶
A. Beddall,^{12d} A. J. Beddall,^{12a} V. A. Bednyakov,⁸⁰ M. Bedognetti,¹²⁰ C. P. Bee,¹⁵⁵ T. A. Beermann,¹⁸² M. Begalli,^{81b}
M. Begel,²⁹ A. Behera,¹⁵⁵ J. K. Behr,⁴⁶ F. Beisiegel,²⁴ A. S. Bell,⁹⁵ G. Bella,¹⁶¹ L. Bellagamba,^{23b} A. Bellerive,³⁴ P. Bellos,⁹
K. Beloborodov,^{122b,122a} K. Belotskiy,¹¹² N. L. Belyaev,¹¹² D. Benchekroun,^{35a} N. Benekos,¹⁰ Y. Benhammou,¹⁶¹ D. P. Benjamin,⁶ M. Benoit,⁵⁴ J. R. Bensinger,²⁶ S. Bentvelsen,¹²⁰ L. Beresford,¹³⁵ M. Beretta,⁵¹ D. Berge,⁴⁶ D. P. Benjamin,⁶ M. Benoit,⁵⁴ J. R. Bensinger,²⁶ S. Bentvelsen,¹²⁰ L. Beresford,¹³⁵ M. Beretta,⁵¹ D. Berge,⁴⁶
E. Bergeaas Kuutmann,¹⁷² N. Berger,⁵ B. Bergmann,¹⁴² L. J. Bergsten,²⁶ J. Beringer,¹⁸ S. Berlendis,⁷ G. Bernardi,¹³⁶
C. Bernius,¹⁵³ F. U. Bernlochner,²⁴ T. Berry,⁹⁴ P. Berta,¹⁰⁰ C. Bertella,^{15a} I. A. Bertram,⁹⁰ O. Bessidskaia Bylund,¹⁸²
N. Besson,¹⁴⁵ A. Bethani,¹⁰¹ S. Bethke,¹¹⁵ A. Betti,⁴² A. J. Bevan,⁹³ J. Beyer,¹¹⁵ D. S. Bhattacharya,¹⁷⁷ P. Bhattarai,²⁶
R. Bi,¹³⁹ R. M. Bianchi,¹³⁹ O. Biebel,¹¹⁴ D. Biedermann,¹⁹ R. Bielski,³⁶ K. Bierwagen,¹⁰⁰ N. V. Biesuz,^{72a,72b} M. Biglietti,^{75a}
T. R. V. Billoud,¹¹⁰ M. Bindi,⁵³ A. Bingul,^{12d} C. Bini,^{73a,73b} S. Biondi,^{23b,23a} M. Birman,¹⁸⁰ T. Bisanz,⁵³ J. P. Biswal,¹⁶¹
D. Biswas,^{181,e} A. Bitadze,¹⁰¹ C. Bittrich,⁴⁸ K. Bjørke,¹³⁴ K. M. Black,²⁵ T. Blazek,^{28a} I. Bloch,⁴⁶ C. Blocker,²⁶ A. Blue,⁵⁷
U. Blumenschein,⁹³ G. J. Bobbink,¹²⁰ V. S. Bobrovnikov,^{122b,122a} S. S. Bocchetta,⁹⁷ A. Bocci,⁴⁹ D. Boerner,⁴⁶ D. Bogavac,¹⁴
A. G. Bogdanchikov,^{122b,122a} C. Bohm,^{45a} V. Boisvert,⁹⁴ P. Bokan,^{53,172} T. Bold,^{84a} A. S. Boldyrev,¹¹³ A. E. Bolz,^{61b}
M. Bomben,¹³⁶ M. Bona,⁹³ J. S. Bontilla,¹³² M. Boonekamp,¹⁴⁵ C. D. Booth,⁹⁴ H. M. Borecka-Bielska,⁹¹ A. Borisov,¹²³
G. Borissov,⁹⁰ J. Bortfeldt,³⁶ D. Bortoletto,¹³⁵ D. Boscherini,^{23b} M. Bosman,¹⁴ J. D. Bossio Sola,¹⁰⁴ K. Bouaouda,^{35a}
J. Boudreau,¹³⁹ E. V. Bouhova-Thacker,⁹⁰ D. Boumediene,³⁸ S. K. Boutle,⁵⁷ A. Boveia,¹²⁷ J. Bovd.³⁶ D. Bove,^{33c,i} J. Boudreau,¹³⁹ E. V. Bouhova-Thacker,⁹⁰ D. Boumediene,³⁸ S. K. Boutle,⁵⁷ A. Boveia,¹²⁷ J. Boyd,³⁶ D. Boye,^{33c,i} I. R. Boyko, ⁸⁰ A. J. Bozson, ⁹⁴ J. Bracinik, ²¹ N. Brahimi, ¹⁰² G. Brandt, ¹⁸² O. Brandt, ³² F. Braren, ⁴⁶ B. Brau, ¹⁰³ J. E. Brau, ¹³² W. D. Breaden Madden, ⁵⁷ K. Brendlinger, ⁴⁶ L. Brenner, ⁴⁶ R. Brenner, ¹⁷² S. Bressler, ¹⁸⁰ B. Brickwedde, ¹⁰⁰ D. L. Briglin, ²¹ D. Britton, ⁵⁷ D. Britzger, ¹¹⁵ I. Brock, ²⁴ R. Brock, ¹⁰⁷ G. Brooijmans, ³⁹ W. K. Brooks, ^{147d} E. Brost, ¹²¹ J. H. Broughton, ²¹ P. A. Bruckman de Renstrom, ⁸⁵ D. Bruncko, ^{28b} A. Bruni, ^{23b} G. Bruni, ^{23b} L. S. Bruni, ¹²⁰ S. Bruno, ^{74a,74b} M. Bruschi, ^{23b} N. Bruscino, ^{73a,73b} P. Bryant, ³⁷ L. Bryngemark, ⁹⁷ T. Buanes, ¹⁷ Q. Buat, ³⁶ P. Buchholz, ¹⁵¹ A. G. Buckley, ⁵⁷ I. A. Budagov, ⁸⁰ M. K. Bugge,¹³⁴ F. Bührer,⁵² O. Bulekov,¹¹² T. J. Burch,¹²¹ S. Burdin,⁹¹ C. D. Burgard,¹²⁰ A. M. Burger,¹³⁰ B. Burghgrave,⁸ M. K. Bugge, ¹⁵⁴ F. Bührer, ³² O. Bulekov, ¹¹² T. J. Burch, ¹²¹ S. Burdin, ⁹¹ C. D. Burgard, ¹²⁰ A. M. Burger, ¹³⁰ B. Burghgrave, ⁸ J. T. P. Burr, ⁴⁶ C. D. Burton, ¹¹ J. C. Burzynski, ¹⁰³ V. Büscher, ¹⁰⁰ E. Buschmann, ⁵³ P. J. Bussey, ⁵⁷ J. M. Butler, ²⁵ C. M. Buttar, ⁵⁷ J. M. Butterworth, ⁹⁵ P. Butti, ³⁶ W. Buttinger, ³⁶ C. J. Buxo Vazquez, ¹⁰⁷ A. Buzatu, ¹⁵⁸ A. R. Buzykaev, ^{122b,122a} G. Cabras, ^{23b,23a} S. Cabrera Urbán, ¹⁷⁴ D. Caforio, ⁵⁶ H. Cai, ¹⁷³ V. M. M. Cairo, ¹⁵³ O. Cakir, ^{4a} N. Calace, ³⁶ P. Calafiura, ¹⁸ A. Calandri, ¹⁰² G. Calderini, ¹³⁶ P. Calfayan, ⁶⁶ G. Callea, ⁵⁷ L. P. Caloba, ^{81b} A. Caltabiano, ^{74a,74b} S. Calvente Lopez, ⁹⁹ D. Calvet, ³⁸ S. Calvet, ³⁸ T. P. Calvet, ¹⁵⁵ M. Calvetti, ^{72a,72b} R. Camacho Toro, ¹³⁶ S. Camarda, ³⁶ D. Camarero Munoz, ⁹⁹ P. Camarri, ^{74a,74b} D. Cameron, ¹³⁴ R. Caminal Armadans, ¹⁰³ C. Camincher, ³⁶ S. Campana, ³⁶ M. Campanelli, ⁹⁵ A. Camplani, ⁴⁰ A. Campoverde, ¹⁵¹ V. Canale, ^{70a,70b} A. Canesse, ¹⁰⁴ M. Cano Bret, ^{60c} J. Cantero, ¹³⁰ T. Cao, ¹⁶¹ Y. Cao, ¹⁷³ M. D. M. Capeans Garrido, ³⁶ M. Capua, ^{41b,41a} R. Cardarelli, ^{74a} F. Cardillo, ¹⁴⁹ G. Carducci, ^{41b,41a} I. Carli, ¹⁴³ T. Carli, ³⁶ G. Carlino, ^{70a} B. T. Carlson, ¹³⁹ L. Carminati, ^{69a,69b} R. M. D. Carney, ^{45a,45b} S. Caron, ¹¹⁹ E. Carquin, ^{147d} S. Carrá, ⁴⁶ L. W. S. Carter ¹⁶⁷ M. P. Cascalo, ^{14j} A. F. Cascha¹⁶⁷ D. W. Cascer¹⁷¹ R. Castelijin, ¹²⁰ F. L. Castillo, ¹⁷⁴ V. Castillo, ¹⁷⁴ G. Carrá, ⁴⁶ J. W. S. Carter,¹⁶⁷ M. P. Casado,^{14,j} A. F. Casha,¹⁶⁷ D. W. Casper,¹⁷¹ R. Castelijn,¹²⁰ F. L. Castillo,¹⁷⁴ V. Castillo Gimenez,¹⁷⁴ N. F. Castro,^{140a,140e} A. Catinaccio,³⁶ J. R. Catmore,¹³⁴ A. Cattai,³⁶ V. Cavaliere,²⁹ E. Cavallaro,¹⁴ M. Cavalli-Sforza,¹⁴ V. Cavasinni,^{72a,72b} E. Celebi,^{12b} F. Ceradini,^{75a,75b} L. Cerda Alberich,¹⁷⁴ K. Cerny,¹³¹ A. S. Cerqueira,^{81a} A. Cerri,¹⁵⁶ L. Cerrito,^{74a,74b} F. Cerutti,¹⁸ A. Cervelli,^{23b,23a} S. A. Cetin,^{12b} Z. Chadi,^{35a} D. Chakraborty,¹²¹ W. S. Chan,¹²⁰ W. Y. Chan,⁹¹ J. D. Chapman,³² B. Chargeishvili,^{159b} D. G. Charlton,²¹ T. P. Charman,⁹³ C. C. Chau,³⁴ S. Che,¹²⁷ S. Chekanov,⁶ S. V. Chekulaev,^{168a} G. A. Chelkov,⁸⁰ M. A. Chelstowska,³⁶ B. Chen,⁷⁹ C. Chen,^{60a} C. H. Chen,⁷⁹ H. Chen,²⁹ J. Chen,^{60a}

J. Chen,³⁹ S. Chen,¹³⁷ S. J. Chen,^{15c} X. Chen,^{15b} Y-H. Chen,⁴⁶ H. C. Cheng,^{63a} H. J. Cheng,^{15a} A. Cheplakov,⁸⁰ E. Cheremushkina,¹²³ R. Cherkaoui El Moursli,^{35e} E. Cheu,⁷ K. Cheung,⁶⁴ T. J. A. Chevalérias,¹⁴⁵ L. Chevalier,¹⁴⁵ V. Chiarella,⁵¹ G. Chiarelli,^{72a} G. Chiodini,^{68a} A. S. Chisholm,²¹ A. Chitan,^{27b} I. Chiu,¹⁶³ Y. H. Chiu,¹⁷⁶ M. V. Chizhov,⁸⁰ K. Choi,⁶⁶ A. R. Chomont,^{73a,73b} S. Chouridou,¹⁶² Y. S. Chow,¹²⁰ M. C. Chu,^{63a} X. Chu,^{15a,15d} J. Chudoba,¹⁴¹
A. J. Chuinard,¹⁰⁴ J. J. Chwastowski,⁸⁵ L. Chytka,¹³¹ D. Cieri,¹¹⁵ K. M. Ciesla,⁸⁵ D. Cinca,⁴⁷ V. Cindro,⁹² I. A. Cioară,^{27b} A. Ciocio,¹⁸ F. Cirotto,^{70a,70b} Z. H. Citron,^{180,k} M. Citterio,^{69a} D. A. Ciubotaru,^{27b} B. M. Ciungu,¹⁶⁷ A. Clark,⁵⁴
M. R. Clark,³⁹ P. J. Clark,⁵⁰ C. Clement,^{45a,45b} Y. Coadou,¹⁰² M. Cobal,^{67a,67c} A. Coccaro,^{55b} J. Cochran,⁷⁹ H. Cohen,¹⁶¹ A. E. C. Coimbra,³⁶ L. Colasurdo,¹¹⁹ B. Cole,³⁹ A. P. Colijn,¹²⁰ J. Collot,⁵⁸ P. Conde Muiño,^{140a,140h} S. H. Connell,^{33c} I. A. Connelly,⁵⁷ S. Constantinescu,^{27b} F. Corriyeau,^{104,m} A. Cortes-Gonzalez,³⁶ M. L. Costa¹⁷⁴ F. Costanza⁵ I. A. Connelly, ¹⁷S. Constantinescu, ¹⁷F. Conventi, ¹⁶⁴A. M. Cooper-Sarkar, ¹⁶F. Cormier, ¹⁷K. J. R. Cormier, ¹⁸K. J. Costanzo, ¹⁴⁹G. Corradi, ¹⁸K. Crane, ¹⁰K. Crane, ¹⁰K. Craner, ¹²S. J. Crawley, ⁵⁷R. A. Creager, ¹³⁷S. Crépé-Renaudin, ⁵⁸F. Crescioli, ¹³⁶M. Cristinziani, ²⁴V. Croft, ¹²⁰G. Crosetti, ^{41b,41a}A. Cueto, ⁵T. Cuhadar Donszelmann, ¹⁴⁹A. R. Cukierman, ¹⁵³W. R. Cunningham, ⁵⁷S. Czekierda, ⁸⁵P. Czodrowski, ³⁶M. J. Da Cunha Sargedas De Sousa, ^{60b}J. V. Da Fonseca Pinto, ^{81b}C. Da Via, ¹⁰¹W. Dabrowski, ^{84a}F. Dachs, ³⁶T. Dado, ^{28a}S. Dahbi, ^{35e}T. Dai, ¹⁰⁶C. Dallapiccola, ¹⁰³M. Dam, ⁴⁰G. D'amen, ²⁹V. D'Amico, ^{75a,75b}J. Damp, ¹⁰⁰J. R. Dandoy, ¹³⁷M. F. Daneri, ³⁰N. P. Dang, ^{181,e}N. S. Dann, ¹⁰¹M. Danninger, ¹⁷⁵V. Dao, ³⁶G. Darbo, ^{55b}O. Dartsi, ⁵A. Dattagupta, ¹³²T. Decharge, ⁴⁶S. D'Amie, ^{69a,69b}C. Decid ⁴⁶T. Decidel, ¹⁴³D. P. Decid, ⁴⁹L. Decemarg, ⁴⁹K. Dec. Account ⁴⁶Z. D'Amie, ^{50a,69b}L. C. David, ⁴⁷⁰A. Context, ⁴⁶S. D'Amie, ^{69a,69b}C. Decid, ⁴⁶T. Decide, ¹⁴³D. P. Decid, ⁴⁹L. Decemarg, ⁴⁹K. Dec. Account ⁴⁶Z. D'Amie, ^{50a,69b}L. Context, ⁴⁶Z. D'Amie, ^{50a,69b}L. Context, ⁴⁶Z. D'Amie, S. Dahbi, ^{35e} T. Dai, ¹⁰⁶ C. Dallapiccola, ¹⁰⁸ M. Dam, ⁴⁰ G. D'amen, ²⁰ V. D'Amico, ^{78,728} J. Damp, ¹⁰⁰ J. R. Dandoy, ¹³⁷
 M. F. Daneri, ³⁰ N. P. Dang, ¹¹² N. S. Dann, ¹⁰¹ M. Danninger, ¹⁷⁵ V. Dao, ³⁶ G. Darbo, ^{55b} O. Dartsi, ⁵ A. Dattagupta, ¹²²
 T. Daubney, ⁴⁶ S. D'Auria, ^{60a,60b} C. David, ⁴⁶ T. Davidek, ¹⁴³ D. R. Davis, ⁴⁹ I. Dawson, ¹⁴⁹ K. De, ⁸ R. De Asmundis, ^{70a}
 M. De Beurs, ¹²⁰ S. De Castro, ^{22b,22a} S. De Cecco, ^{73a,73b} N. De Grott, ¹¹⁹ P. de Jong, ¹²⁰ H. De la Torre, ¹⁰⁷ A. De Maria, ¹⁵⁶
 D. De Pedis, ^{73a} A. De Salvo, ^{73a} U. De Sanctis, ^{74a,74b} M. De Grott, ¹¹⁹ P. de Jong, ¹²⁰ H. De la Torre, ¹⁰⁷ A. De Maria, ¹⁵⁶
 D. Delgove, ⁶⁵ F. Deliot, ^{145,n} C. M. Delitzsch, ⁷ M. Della Pietra, ^{74a,74b} D. Della Volpe, ⁴ A. Dell'Acqua, ³⁶ L. Dell'Asta, ^{74a,74b}
 M. Delmastro, ⁵ C. Delporte, ⁶⁵ P. A. Delsart, ⁸⁵ D. A. DeMarco, ¹⁶⁷ S. Demers, ¹³³ M. Demichev, ³⁰ G. Demontigny, ¹¹⁰
 S. P. Derisov, ¹²³ L. D'Eramo, ¹³⁶ D. Derendarz, ⁸⁵ J. E. Derkaoui, ^{35d} F. Derue, ¹³⁶ P. Dervan, ⁹¹ K. Desch, ²⁴ C. Deterre, ⁴⁶
 K. Dette, ¹⁶⁷ C. Deutsch, ²⁴ M. R. Devesa, ³⁰ P. O. Deviveiros, ³⁶ A. Dewhurst, ¹⁴⁴ F. A. Di Bello, ⁵⁴ A. Di Ciaccio, ^{74a,74b}
 L. Di Ciaccio, ⁵ W. K. Di Clemente, ¹³⁷ C. Di Donato, ^{706,706} A. Di Girolamo, ³⁶ G. Di Gregorio, ^{72a,72b} B. Di Micco, ^{75a,75b}
 R. Di Nardo, ¹⁰³ K. F. Di Petrillo, ⁵⁹ R. Di Sipio, ¹⁶⁷ D. Di Valentino, ³⁴ C. Diacon, ¹⁰² F. A. Dias, ⁴⁰ T. Dias Do Vale, ^{140a}
 M. A. Diaz, ^{147a} J. Dickinson, ¹⁸ E. B. Diehl, ¹⁰⁶ J. Dietrich, ¹⁹ S. Dícz Cornell, ⁴⁶ A. Dimitrievska, ¹⁸ W. Ding, ¹⁵
 J. Dingfelder, ²⁴ F. Dittus, ³⁶ E. Djama, ¹⁰² T. Djobava, ¹⁵⁹ J. I. Djuvsland, ¹⁷ M. A. B. Do Vale, ^{81c} M. Donofrio, ⁹³
 M. D'Onofrio, ⁹¹ J. Dolejsi, ¹⁴³ Z. Dolezal, A. Farilla, ^{13a} E. M. Farina, ^{11a,11b} T. Farooque, ¹⁰⁷ S. Farrell, ¹⁸ S. M. Farrington, ⁵⁰ P. Farthouat, ⁵⁰ F. Fassi, ^{52e} P. Fassnacht, ⁵⁰ D. Fassouliotis, ⁹ M. Faucci Giannelli, ⁵⁰ W. J. Fawcett, ³² L. Fayard, ⁶⁵ O. L. Fedin, ^{138,p} W. Fedorko, ¹⁷⁵ A. Fehr, ²⁰ M. Feickert, ⁴² L. Feligioni, ¹⁰² A. Fell, ¹⁴⁹ C. Feng, ^{60b} M. Feng, ⁴⁹ M. J. Fenton, ⁵⁷ A. B. Fenyuk, ¹²³ S. W. Ferguson, ⁴³ J. Ferrando, ⁴⁶ A. Ferrante, ¹⁷³ A. Ferrari, ¹⁷² P. Ferrari, ¹²⁰ R. Ferrari, ^{71a} D. E. Ferreira de Lima, ^{61b} A. Ferrer, ¹⁷⁴ D. Ferrere, ⁵⁴ C. Ferretti, ¹⁰⁶ F. Fiedler, ¹⁰⁰ A. Filipčič, ⁹² F. Filthaut, ¹¹⁹ K. D. Finelli, ²⁵ M. C. N. Fiolhais, ^{140a,140c,q} L. Fiorini, ¹⁷⁴ F. Fischer, ¹¹⁴ W. C. Fisher, ¹⁰⁷ I. Fleck, ¹⁵¹ P. Fleischmann, ¹⁰⁶ R. R. M. Fletcher, ¹³⁷ T. Flick, ¹⁸² B. M. Flierl, ¹¹⁴ L. Flores, ¹³⁷ L. R. Flores Castillo, ^{63a} F. M. Follega, ^{76a,76b} N. Fomin, ¹⁷ J. H. Foo, ¹⁶⁷ G. T. Forcolin, ^{76a,76b} A. Formica, ¹⁴⁵ F. A. Förster, ¹⁴ A. C. Forti, ¹⁰¹ A. G. Foster, ²¹ M. G. Foti, ¹³⁵ D. Fournier, ⁶⁵ H. Fox, ⁹⁰ P. Francavilla, ^{72a,72b} S. Francescato, ^{73a,73b} M. Franchini, ^{23b,23a} S. Franchino, ^{61a} D. Francis, ³⁶ L. Franconi, ²⁰ M. Franklin, ⁵⁹ A. N. Fray, ⁹³ P. M. Freeman, ²¹ B. Freund, ¹¹⁰

W. S. Freund, ^{81b} E. M. Freundlich, ⁴⁷ D. C. Frizzell, ¹²⁹ D. Froidevaux, ³⁶ J. A. Frost, ¹³⁵ C. Fukunaga, ¹⁶⁴
E. Fullana Torregrosa, ¹⁷⁴ E. Fumagalli, ^{55b,55a} T. Fusayasu, ¹¹⁶ J. Fuster, ¹⁷⁴ A. Gabrielli, ^{23b,23a} A. Gabrielli, ¹⁸ S. Gadatsch, ⁵⁴ P. Gadow, ¹¹⁵ G. Gagliardi, ^{55b,55a} L. G. Gagnon, ¹¹⁰ C. Galea, ^{27b} B. Galhardo, ^{140a} G. E. Gallardo, ¹³⁵ E. J. Gallas, ¹³⁵
B. J. Gallop, ¹⁴⁴ G. Galster, ⁴⁰ R. Gamboa Goni, ⁹³ K. K. Gan, ¹²⁷ S. Ganguly, ¹⁸⁰ J. Gao, ^{60a} Y. Gao, ⁵⁰ Y. S. Gao, ^{31,g} C. García, ¹⁷⁴ J. E. García Navarro, ¹⁷⁴ J. A. García Pascual, ^{15a} C. Garcia-Argos, ⁵² M. Garcia-Sciveres, ¹⁸ R. W. Gardner, ³⁷ N. Garelli, ¹⁵³
S. Gargiulo, ⁵² V. Garonne, ¹³⁴ P. Gaspar, ^{81b} A. Gaudiello, ^{55b,55a} G. Gaudio, ^{71a} I. L. Gavrilenko, ¹¹¹ A. Gavrilyuk, ¹²⁴ C. Gay, ¹⁷⁵ G. Gaycken, ⁴⁶ E. N. Gazis, ¹⁰ A. A. Geanta, ^{27b} C. M. Gee, ¹⁴⁶ C. N. P. Gee, ¹⁴⁴ J. Geisen, ⁵³ M. Geisen, ¹⁰⁰ C. Gemme, ^{55b} M. H. Genest, ⁵⁸ C. Geng, ¹⁰⁶ S. Gentile, ^{73a,73b} S. George, ⁹⁴ T. Geralis, ⁴⁴ L. O. Gerlach, ⁵³ P. Gessinger-Befurt, ¹⁰⁰ G. Gessner, ⁴⁷ S. Ghasemi, ¹⁵¹ M. Ghasemi Bostanabad, ¹⁷⁶ M. Ghneimat, ¹⁵¹ A. Ghosh, ⁶⁵ A. Ghosh, ⁷⁸ B. Giacobbe, ^{23b} S. Giagui, ^{73a,73b} N. Giangiacomi, ^{23b,23a} P. Giannetti, ^{72a} A. Giannini, ^{70a,70b} G. Giannini, ¹⁴ S. M. Gibson, ⁹⁴ M. Gignac, ¹⁴⁶ S. Giagu,^{73a,73b} N. Giangiacomi,^{23b,23a} P. Giannetti,^{72a} A. Giannini,^{70a,70b} G. Giannini,¹⁴ S. M. Gibson,⁹⁴ M. Gignac,¹⁴⁶ D. Gillberg,³⁴ G. Gilles,¹⁸² D. M. Gingrich,^{3,d} M. P. Giordani,^{67a,67c} F. M. Giorgi,^{23b} P. F. Giraud,¹⁴⁵ G. Giugliarelli,^{67a,67c} D. Giugni,^{69a} F. Giuli,^{74a,74b} S. Gkaitatzis,¹⁶² I. Gkialas,^{9,r} E. L. Gkougkousis,¹⁴ P. Gkountoumis,¹⁰ L. K. Gladilin,¹¹³ D. Giugni,^{69a} F. Giuli,^{74a,74b} S. Gkaitatzis,¹⁶² I. Gkialas,^{9,r} E. L. Gkougkousis,¹⁴ P. Gkountoumis,¹⁰ L. K. Gladilin,¹¹³ C. Glasman,⁹⁹ J. Glatzer,¹⁴ P. C. F. Glaysher,⁴⁶ A. Glazov,⁴⁶ G. R. Gledhill,¹³² M. Goblirsch-Kolb,²⁶ D. Godin,¹¹⁰ S. Goldfarb,¹⁰⁵ T. Golling,⁵⁴ D. Golubkov,¹²³ A. Gomes,^{140a,140b} R. Goncalves Gama,⁵³ R. Gonçalo,^{140a} G. Gonella,⁵² L. Gonella,²¹ A. Gongadze,⁸⁰ F. Gonnella,²¹ J. L. Gonski,³⁹ S. González de la Hoz,¹⁷⁴ S. Gonzalez-Sevilla,⁵⁴ G. R. Gonzalvo Rodriguez,¹⁷⁴ L. Goossens,³⁶ N. A. Gorasia,²¹ P. A. Gorbounov,¹²⁴ H. A. Gordon,²⁹ B. Gorini,³⁶ E. Gorini,^{68a,68b} A. Gorišek,⁹² A. T. Goshaw,⁴⁹ M. I. Gostkin,⁸⁰ C. A. Gottardo,¹¹⁹ M. Gouighri,^{35b} D. Goujdami,^{35c} A. G. Goussiou,¹⁴⁸ N. Govender,^{33c} C. Goy,⁵ E. Gozani,¹⁶⁰ I. Grabowska-Bold,^{84a} E. C. Graham,⁹¹ J. Gramling,¹⁷¹ E. Gramstad,¹³⁴ S. Grancagnolo,¹⁹ M. Grandi,¹⁵⁶ V. Gratchev,¹³⁸ P.M. Gravila,²⁷¹ F.G. Gravili,^{68a,68b} C. Gray,⁵⁷ H. M. Gray,¹⁸ C. Grefe,²⁴ K. Gregersen,⁹⁷ I. M. Gregor,⁴⁶ P. Grenier,¹⁵³ K. Grevtsov,⁴⁶ C. Grieco,¹⁴ N. A. Grieser,¹²⁹ A. A. Grillo,¹⁴⁶ K. Grimm,^{31,s} S. Grinstein,^{14,t} J.-F. Grivaz,⁶⁵ S. Groh,¹⁰⁰ E. Gross,¹⁸⁰ J. Grosse-Knetter,⁵³ Z. J. Grout,⁹⁵ C. Grud,¹⁰⁶ A. Grummer,¹¹⁸ L. Guan,¹⁰⁶ W. Guan,¹⁸¹ C. Gubbels,¹⁷⁵ J. Guenther,³⁶ A. Guerguichon,⁶⁵ J. G. R. Guerrero Rojas,¹⁷⁴ F. Guescini,¹¹⁵ D. Guest,¹⁷¹ R. Gugel,⁵² T. Guillemin,⁵ S. Guindon,³⁶ U. Gul,⁵⁷ J. Guo,^{60c} W. Guo,¹⁰⁶ Y. Guo,^{60a,u} Z. Guo,¹⁰² R. Gurba,¹⁴⁶ S. Gurba,¹²² G. Gustavino,¹²⁹ M. Guth,⁵² P. Gutierrez,¹²⁹ C. Gutschow,⁹⁵ J. G. R. Guerrero Rojas, ¹⁰ F. Guescini, ¹⁰ D. Guest, ¹⁰ R. Gugel, ¹¹ I. Guillemin, ¹² S. Guindon, ¹⁰ U. Gul, ¹¹ J. Guo, ¹⁰
W. Guo, ¹⁰⁶ Y. Guo, ^{60a,u} Z. Guo, ¹⁰² R. Gupta, ⁴⁶ S. Gurbuz, ^{12c} G. Gustavino, ¹²⁹ M. Guth, ⁵² P. Gutierrez, ¹²⁹ C. Gutschow, ⁹⁵
C. Guyot, ¹⁴⁵ C. Gwenlan, ¹³⁵ C. B. Gwilliam, ⁹¹ A. Haas, ¹²⁵ C. Haber, ¹⁸ H. K. Hadavand, ⁸ N. Haddad, ^{35e} A. Hadef, ^{60a}
S. Hageböck, ³⁶ M. Haleem, ¹⁷⁷ J. Haley, ¹³⁰ G. Halladjian, ¹⁰⁷ G. D. Hallewell, ¹⁰² K. Hamacher, ¹⁸² P. Hamal, ¹³¹ K. Hamano, ¹⁷⁶
H. Hamdaoui, ^{35e} M. Hamer, ²⁴ G. N. Hamity, ¹⁴⁹ K. Han, ^{60a,v} L. Han, ^{60a} S. Han, ^{15a} Y. F. Han, ¹⁶⁷ K. Hanagaki, ^{82,w}
M. Hance, ¹⁴⁶ D. M. Handl, ¹¹⁴ B. Haney, ¹³⁷ R. Hankache, ¹³⁶ E. Hansen, ⁹⁷ J. B. Hansen, ⁴⁰ J. D. Hansen, ⁴⁰ M. C. Hansen, ²⁴
P. H. Hansen, ⁴⁰ E. C. Hanson, ¹⁰¹ K. Hara, ¹⁶⁹ T. Harenberg, ¹⁸² S. Harkusha, ¹⁰⁸ P. F. Harrison, ¹⁷⁸ N. M. Hartmann, ¹¹⁴ P. H. Hansen,⁴⁰ E. C. Hanson,¹⁰¹ K. Hara,¹⁰⁹ T. Harenberg,¹⁸² S. Harkusha,¹⁰⁸ P. F. Harrison,¹⁷⁸ N. M. Hartmann,¹¹⁴ Y. Hasegawa,¹⁵⁰ A. Hasib,⁵⁰ S. Hassani,¹⁴⁵ S. Haug,²⁰ R. Hauser,¹⁰⁷ L. B. Havener,³⁹ M. Havranek,¹⁴² C. M. Hawkes,²¹ R. J. Hawkings,³⁶ D. Hayden,¹⁰⁷ C. Hayes,¹⁵⁵ R. L. Hayes,¹⁷⁵ C. P. Hays,¹³⁵ J. M. Hays,⁹³ H. S. Hayward,⁹¹ S. J. Haywood,¹⁴⁴ F. He,^{60a} M. P. Heath,⁵⁰ V. Hedberg,⁹⁷ L. Heelan,⁸ S. Heer,²⁴ K. K. Heidegger,⁵² W. D. Heidorn,⁷⁹ J. Heilman,³⁴ S. Heim,⁴⁶ T. Heim,¹⁸ B. Heinemann,^{46,x} J. J. Heinrich,¹³² L. Heinrich,³⁶ J. Hejbal,¹⁴¹ L. Helary,^{61b} A. Held,¹⁷⁵ S. Hellesund,¹³⁴ C. M. Helling,¹⁴⁶ S. Hellman,^{46,x} D. Heisens,³⁶ R. C. W. Henderson,⁹⁰ Y. Heng,¹⁸¹ L. Henkelmann,^{61a} S. Henkelmann,¹⁷⁵ A. M. Henriques Correia,³⁶ G. H. Herbert,¹⁹ H. Herde,²⁶ V. Herget,¹⁷⁷ Y. Hernández Jiménez,^{33e} H. Herr,¹⁰⁰ M. G. Herrmann,¹¹⁴ T. Herrmann,⁴⁸ G. Herten,⁵² R. Hertenberger,¹¹⁴ L. Hervas,³⁶ T. C. Herwig,¹³⁷ G. G. Hesketh,⁹⁵ N. P. Hessey,^{168a} A. Higashida,¹⁶³ S. Higashino,⁸² E. Higón-Rodriguez,¹⁷⁴ K. Hildebrand,³⁷ E. Hill,¹⁷⁶ J. C. Hill,³² K. K. Hill,²⁹ K. H. Hiller,⁴⁶ S. J. Hillier,²¹ M. Hils,⁴⁸ I. Hinchliffe,¹⁸ F. Hinterkeuser,²⁴ M. Hirose,¹³³ S. Hirose,⁵² D. Hirschbuehl¹⁸² B. Hiti⁹² O. Hladik ¹⁴¹ D. P. Hlaluku^{33e} X. Hoad⁵⁰ L. Hohes¹⁵⁵ N. Hod¹⁸⁰ M. C. Hodgkinson¹⁴⁹ D. Hirschbuehl,¹⁸² B. Hiti,⁹² O. Hladik,¹⁴¹ D. R. Hlaluku,^{33e} X. Hoad,⁵⁰ J. Hobbs,¹⁵⁵ N. Hod,¹⁸⁰ M. C. Hodgkinson,¹⁴⁹ A. Hoecker,³⁶ D. Hohn,⁵² D. Hohov,⁶⁵ T. Holm,²⁴ T. R. Holmes,³⁷ M. Holzbock,¹¹⁴ L. B. A. H. Hommels,³² S. Honda,¹⁶⁹ T. M. Hong,¹³⁹ J. C. Honig,⁵² A. Hönle,¹¹⁵ B. H. Hooberman,¹⁷³ W. H. Hopkins,⁶ Y. Horii,¹¹⁷ P. Horn,⁴⁸ L. A. Horyn,³⁷ S. Hou,¹⁵⁸ A. Hoummada,^{35a} J. Howarth,¹⁰¹ J. Hoya,⁸⁹ M. Hrabovsky,¹³¹ J. Hrdinka,⁷⁷ I. Hristova,¹⁹ J. Hrivnac,⁶⁵ A. Hrynevich,¹⁰⁹ T. Hryn'ova,⁵ P. J. Hsu,⁶⁴ S.-C. Hsu,¹⁴⁸ Q. Hu,²⁹ S. Hu,^{60c} Y. F. Hu,^{15a,15d} D. P. Huang,⁹⁵ Y. Huang,^{60a} A. Hrynevich, ¹⁵ I. Hryn⁵ova, ⁴ P. J. Hsu, ⁴⁵ S.-C. Hsu, ⁴⁶ Q. Hu, ⁵⁵ S. Hu, ⁴⁵ Y. F. Hu, ⁴⁵ D. P. Huang, ⁴⁶ Y. Huang, ^{15a} Z. Hubacek, ¹⁴² F. Hubaut, ¹⁰² M. Huebner, ²⁴ F. Huegging, ²⁴ T. B. Huffman, ¹³⁵ M. Huhtinen, ³⁶ R. F. H. Hunter, ³⁴ P. Huo, ¹⁵⁵ A. M. Hupe, ³⁴ N. Huseynov, ^{80,y} J. Huston, ¹⁰⁷ J. Huth, ⁵⁹ R. Hyneman, ¹⁰⁶ S. Hyrych, ^{28a} G. Iacobucci, ⁵⁴ G. Iakovidis, ²⁹ I. Ibragimov, ¹⁵¹ L. Iconomidou-Fayard, ⁶⁵ Z. Idrissi, ^{35e} P. Iengo, ³⁶ R. Ignazzi, ⁴⁰ O. Igonkina, ^{120,a,z}
R. Iguchi, ¹⁶³ T. Iizawa, ⁵⁴ Y. Ikegami, ⁸² M. Ikeno, ⁸² D. Iliadis, ¹⁶² N. Ilic, ^{119,167,m} F. Iltzsche, ⁴⁸ G. Introzzi, ^{71a,71b} M. Iodice, ^{75a} K. Iordanidou, ^{168a} V. Ippolito, ^{73a,73b} M. F. Isacson, ¹⁷² M. Ishino, ¹⁶³ W. Islam, ¹³⁰ C. Issever, ^{19,46} S. Istin, ¹⁶⁰ F. Ito, ¹⁶⁹ J. M. Iturbe Ponce, ^{63a} R. Iuppa, ^{76a,76b} A. Ivina, ¹⁸⁰ H. Iwasaki, ⁸² J. M. Izen, ⁴³ V. Izzo, ^{70a} P. Jacka, ¹⁴¹ P. Jackson, ¹

R. M. Jacobs,²⁴ B. P. Jaeger,¹⁵² V. Jain,² G. Jäkel,¹⁸² K. B. Jakobi,¹⁰⁰ K. Jakobs,⁵² T. Jakoubek,¹⁴¹ J. Jamisson,⁵⁷ K. W. Janas,^{84a} R. Jansky,⁵⁴ J. Janssen,²⁴ M. Janus,⁵³ P. A. Janus,^{84a} G. Jarlskog,⁹⁷ N. Javadov,^{80,y} T. Javůrek,³⁶ M. Javurkova,¹⁰³ F. Jeanneau,¹⁴⁵ L. Jeanty,¹³² J. Jejelava,^{159a} A. Jelinskas,¹⁷⁸ P. Jenni,^{52,aa} J. Jeong,⁴⁶ N. Jeong,⁴⁶ S. Jézéquel,⁵ H. Ji,¹⁸¹ J. Jia,¹⁵⁵ H. Jiang,⁷⁹ Y. Jiang,^{60a} Z. Jiang,^{153,bb} S. Jiggins,⁵² F. A. Jimenez Morales,³⁸
J. Jimenez Pena,¹¹⁵ S. Jin,^{15c} A. Jinaru,^{27b} O. Jinnouchi,¹⁶⁵ H. Jivan,^{33e} P. Johansson,¹⁴⁹ K. A. Johns,⁷ C. A. Johnson,⁶⁶
K. Jon-And,^{45a,45b} R. W. L. Jones,⁹⁰ S. D. Jones,¹⁵⁶ S. Jones,⁷ T. J. Jones,⁹¹ J. Jongmanns,^{61a} P. M. Jorge,^{140a} J. Jovicevic,³⁶
X. Ju,¹⁸ J. J. Junggeburth,¹¹⁵ A. Juste Rozas,^{14,1} A. Kaczmarska,⁸⁵ M. Kado,^{73a,73b} H. Kagan,¹²⁷ M. Kagan,¹⁵³ A. Kahn,³⁹ C. Kahra,¹⁰⁰ T. Kaji,¹⁷⁹ E. Kajomovitz,¹⁶⁰ C. W. Kalderon,⁹⁷ A. Kaluza,¹⁰⁰ A. Kamenshchikov,¹²³ M. Kaneda,¹⁶³ N. J. Kareem,^{168b} S. N. Karpov,⁸⁰ Z. M. Karpova,⁸⁰ V. Kartvelishvili,⁹⁰ A. N. Karyukhin,¹²³ L. Kashif,¹⁸¹ R. D. Kass,¹²⁷ A. Kastanas,^{45a,45b} C. Kato,^{60d,60c} J. Katzy,⁴⁶ K. Kawade,¹⁵⁰ K. Kawagoe,⁸⁸ T. Kawaguchi,¹¹⁷ T. Kawamoto,¹⁶³ G. Kawamura,⁵³ E. F. Kay,¹⁷⁶ V. F. Kazanin,^{122b,122a} R. Keeler,¹⁷⁶ R. Kehoe,⁴² J. S. Keller,³⁴ E. Kellermann,⁹⁷ D. Kelsey,¹⁵⁶ J. J. Kempster,²¹ J. Kendrick,²¹ K. E. Kennedy,³⁹ O. Kepka,¹⁴¹ S. Kersten,¹⁸² B. P. Kerševan,⁹² S. Ketabchi Haghighat,¹⁶⁷ M. Khader,¹⁷³ F. Khalil-Zada,¹³ M. Khandoga,¹⁴⁵ A. Khanov,¹³⁰ A. G. Kharlamov,^{122b,122a} T. Kharlamova,^{122b,122a} E. E. Khoda,¹⁷⁵ A. Khodinov,¹⁶⁶ T. J. Khoo,⁵⁴ E. Khramov,⁸⁰ J. Khubua,^{159b} S. Kido,⁸³ M. Kiehn,⁵⁴ C. R. Kilby,⁹⁴ Y. K. Kim,³⁷ N. Kimura,⁹⁵ O. M. Kind,¹⁹ B. T. King,^{91,a} D. Kirchmeier,⁴⁸ J. Kirk,¹⁴⁴ A. E. Kiryunin,¹¹⁵ T. Kishimoto,¹⁶³ D. P. K D. P. Kisliuk, ¹⁶⁷ V. Kitali, ⁴⁶ O. Kivernyk, ⁵ T. Klapdor-Kleingrothaus, ⁵² M. Klassen, ^{61a} M. H. Klein, ¹⁰⁶ M. Klein, ⁹¹ U. Klein, ⁹¹ V. Kitali, ⁴⁶ O. Kivernyk, ⁵ T. Klapdor-Kleingrothaus, ⁵² M. Klassen, ^{61a} M. H. Klein, ¹⁰⁶ M. Klein, ⁹¹ U. Klein, ⁹¹ K. Kleinknecht, ¹⁰⁰ P. Klimek, ¹²¹ A. Klimentov, ⁹² T. Klingl, ²⁴ T. Klioutchnikova, ³⁶ F. F. Klitzner, ¹¹⁴ P. Kluit, ¹²⁰ S. Kluth, ¹¹⁵ E. Kneringer, ⁷⁷ E. B. F. G. Knoops, ¹⁰² A. Knue, ⁵² D. Kobayashi, ⁸⁸ T. Kobayashi, ¹⁶³ M. Kobel, ⁴⁸ M. Kocian, ¹⁵³ P. Kodys, ¹⁴³ P. T. Koenig, ²⁴ T. Koffas, ³⁴ N. M. Köhler, ³⁶ T. Koi, ¹⁵³ M. Kolb, ¹⁴⁵ I. Koletsou, ⁵ T. Komarek, ¹³¹ T. Kondo, ⁸² K. Köneke, ⁵² A. X. Y. Kong, ¹ A. C. König, ¹¹⁹ T. Kono, ¹²⁶ R. Konoplich, ^{125,cc} V. Konstantinides, ⁹⁵ N. Konstantinidis, ⁹⁵ B. Konya, ⁹⁷ R. Kopeliansky, ⁶⁶ S. Koperny, ^{84a} K. Korcyl, ⁸⁵ K. Kordas, ¹⁶² G. Koren, ¹⁶¹ A. Korn, ⁹⁵ I. Korolkov, ¹⁴ E. V. Korolkova, ¹⁴⁹ N. Korotkova, ¹¹³ O. Kortner, ¹¹⁵ S. Kortner, ¹¹⁵ T. Kosek, ¹⁴³ V. V. Kostyukhin, ¹⁶⁶ A. Kotsokechagia, ⁶⁵ A. Kotwal, ⁴⁹ A. Koulouris, ¹⁰ A. Kourkoumeli-Charalampidi, ^{71a,71b} C. Kourkoumelis, ⁹ E. Kourlitis, ¹⁴⁹ V. Kouskoura, ²⁹ A. B. Kowalewska, ⁸⁵ R. Kowalewski, ¹⁷⁶ C. Kozakai, ¹⁶³ W. Kozanecki, ¹⁴⁵ A. S. Kozhin, ¹²³ V. A. Kramarenko, ¹¹³ G. Kramberger, ⁹² D. Krasnopevtsev, ^{60a} M. W. Krasny, ¹⁶⁴ A. Krasznahorkay, ³⁶ D. Krauss, ¹¹⁵ J. A. Kremer, ^{84a} J. Kretzschmar, ⁹¹ P. Krieger, ¹⁶⁷ F. Krieter, ¹¹⁴ A. Krishnan, ^{61b} K. Krizka, ¹⁸ K. Kroeninger, ⁴⁷ H. Kroha, ¹¹⁵ J. Kroll, ¹⁴¹ J. Kroll, ¹³⁷ K. S. Krowpman, ¹⁰⁷ J. Krstic, ¹⁶ U. Kruchonak, ⁸⁰ H. Krüger, ²⁴ N. Krunmack, ⁷⁹ M. C. Kruse, ⁴⁹ J. A. Krzysiak, ⁸⁵ T. Kubota, ¹⁰⁶ O. Kuchinskaia, ¹⁶⁶ S. Kuday, ^{4b} J. T. Kuechler, ⁴⁶ S. Kuehn, ³⁶ A. Kugel, ^{61a} T. Kuhl, ⁴⁶ V. Kukhtin, ⁸⁰ R. Kukla, ¹⁰² Y. Kulchitsky, ^{108,dd} S. Kuleshov, ^{147d} Y. P. Kulinich, ¹⁷³ M. Kuna, ⁵⁸ D. P. J. Lack, ¹⁰¹ H. Lacker, ¹⁹ D. Lacour, ¹³⁰ E. Ladygin, ⁸⁰ R. Lafaye, ³ B. Laforge, ¹³⁰ T. Lagouri, ^{32e} S. Lai, ³⁵ I. K. Lakomiec, ^{84a} S. Lammers, ⁶⁶ W. Lampl, ⁷ C. Lampoudis, ¹⁶² E. Lançon, ²⁹ U. Landgraf, ⁵² M. P. J. Landon, ⁹³ M. C. Lanfermann, ⁵⁴ V. S. Lang, ⁴⁶ J. C. Lange, ⁵³ R. J. Langenberg, ¹⁰³ A. J. Lankford, ¹⁷¹ F. Lanni, ²⁹ K. Lantzsch, ²⁴ A. Lanza, ^{71a} A. Lapertosa, ^{55b,55a} S. Laplace, ¹³⁶ J. F. Laporte, ¹⁴⁵ T. Lari, ^{69a} F. Lasagni Manghi, ^{23b,23a} M. Lassnig, ³⁶ T. S. Lau, ^{63a} A. Laudrain, ⁶⁵ A. Laurier, ³⁴ M. Lavorgna, ^{70a,70b} S. D. Lawlor, ⁹⁴ M. Lazzaroni, ^{69a,69b} B. Le, ¹⁰⁵ E. Le Guirriec, ¹⁰² M. LeBlanc, ⁷ T. LeCompte, ⁶ F. Ledroit-Guillon, ⁵⁸ A. C. A. Lee, ⁹⁵ C. A. Lee, ²⁹ G. R. Lee, ¹⁷ L. Lee, ⁵⁹ S. C. Lee, ¹⁵⁸ S. J. Lee, ³⁴ S. Lee, ⁷⁹ B. Lefebvre, ^{168a} H. P. Lefebvre, ⁹⁴ M. Lefebvre, ¹⁷⁶ F. Legger, ¹¹⁴ C. Leggett, ¹⁸ K. Lehmann, ¹⁵² N. Lehmann, ¹⁸² G. Lehmann Miotto, ³⁶ W. A. Leight, ⁴⁶ A. Leisos, ^{162,ee} M. A. L. Leite, ^{81d} C. E. Leitgeb, ¹¹⁴ R. Leitner, ¹⁴³ D. Lellouch, ^{180,a} K. J. C. Leney, ⁴² T. Lenz, ²⁴ R. Leone, ⁷ S. Leone, ^{72a} C. Leonidopoulos, ⁵⁰ A. Leopold, ¹³⁶ C. Leroy, ¹¹⁰ D. Leilouch, ^{180,a} K. J. C. Leney, ⁴³ H. P. Lefebre, ⁵ D. Levin ¹⁰⁶ L. Levin ¹⁸⁰ D. L. Levis, ²¹ D. Li^{15b} D. Li¹⁰⁰ D. Lellouch,^{150,4} K. J. C. Leney,⁴² T. Lenz,²⁴ R. Leone,⁷ S. Leone,⁷²⁴ C. Leonidopoulos,⁵⁰ A. Leopold,¹⁵⁰ C. Leroy,¹¹⁰ R. Les,¹⁶⁷ C. G. Lester,³² M. Levchenko,¹³⁸ J. Levêque,⁵ D. Levin,¹⁰⁶ L. J. Levinson,¹⁸⁰ D. J. Lewis,²¹ B. Li,^{15b} B. Li,¹⁰⁶ C-Q. Li,^{60a} F. Li,^{60c} H. Li,^{60b} J. Li,^{60c} K. Li,¹⁵³ L. Li,^{60c} M. Li,^{15a,15d} Q. Li,^{15a,15d} Q. Y. Li,^{60a} S. Li,^{60d,60c} X. Li,⁴⁶ Y. Li,⁴⁶ Z. Li,^{60b} Z. Liang,^{15a} B. Liberti,^{74a} A. Liblong,¹⁶⁷ K. Lie,^{63c} S. Lim,²⁹ C. Y. Lin,³² K. Lin,¹⁰⁷ T. H. Lin,¹⁰⁰ R. A. Linck,⁶⁶ J. H. Lindon,²¹ A. L. Lionti,⁵⁴ E. Lipeles,¹³⁷ A. Lipniacka,¹⁷ T. M. Liss,^{173,ff} A. Lister,¹⁷⁵ A. M. Litke,¹⁴⁶ J. D. Little,⁸ B. Liu,⁷⁹ B. L. Liu,⁶ H. B. Liu,²⁹ H. Liu,¹⁰⁶ J. B. Liu,^{60a} J. K. K. Liu,¹³⁵ K. Liu,¹³⁶ M. Liu,^{60a} P. Liu,¹⁸ Y. Liu,^{15a,15d} Y. L. Liu,¹⁰⁶ Y. W. Liu,^{60a} M. Livan,^{71a,71b} A. Lleres,⁵⁸ J. Llorente Merino,¹⁵² S. L. Lloyd,⁹³ C. Y. Lo,^{63b} F. Lo Sterzo,⁴² E. M. Lobodzinska,⁴⁶ P. Loch,⁷ S. Loffredo,^{74a,74b} T. Lohse,¹⁹ K. Lohwasser,¹⁴⁹ M. Lokajicek,¹⁴¹ J. D. Long,¹⁷³ R. E. Long,⁹⁰ L. Longo,³⁶ K. A. Looper,¹²⁷ J. A. Lopez,^{147d} I. Lopez Paz,¹⁰¹ A. Lopez Solis,¹⁴⁹ J. Lorenz,¹¹⁴

N. Lorenzo Martinez,⁵ A. M. Lory,¹¹⁴ M. Losada,^{22a} P. J. Lösel,¹¹⁴ A. Lösle,⁵² X. Lou,⁴⁶ X. Lou,^{15a} A. Lounis,⁶⁵ J. Love,⁶ P. A. Love,⁹⁰ J. J. Lozano Bahilo,¹⁷⁴ M. Lu,^{60a} Y. J. Lu,⁶⁴ H. J. Lubatti,¹⁴⁸ C. Luci,^{73a,73b} A. Lucotte,⁵⁸ C. Luedtke,⁵² F. Luehring,⁶⁶ I. Luise,¹³⁶ L. Luminari,^{73a} B. Lund-Jensen,¹⁵⁴ M. S. Lutz,¹⁰³ D. Lynn,²⁹ H. Lyons,⁹¹ R. Lysak,¹⁴¹ E. Lytken,⁹⁷ F. Lyu,^{15a} V. Lyubushkin,⁸⁰ T. Lyubushkina,⁸⁰ H. Ma,²⁹ L. L. Ma,^{60b} Y. Ma,^{60b} G. Maccarrone,⁵¹ A. Macchiolo,¹¹⁵ C. M. Macdonald,¹⁴⁹ J. Machado Miguens,¹³⁷ D. Madaffari,¹⁷⁴ R. Madar,³⁸ W. F. Mader,⁴⁸ N. Madysa,⁴⁸ J. Maeda,⁸³ T. Maeno,²⁹ M. Maerker,⁴⁸ A. S. Maevskiy,¹¹³ V. Magerl,⁵² N. Magini,⁷⁹ D. J. Mahon,³⁹ C. Maidantchik,^{81b} T. Maier,¹¹⁴ A. Maio,^{140a,140b,140d} K. Maj,^{84a} O. Majersky,^{28a} S. Majewski,¹³² Y. Makida,⁸² N. Makovec,⁶⁵ B. Malaescu,¹³⁶ Pa. Malecki,⁸⁵ V. P. Maleev,¹³⁸ F. Malek,⁵⁸ U. Mallik,⁷⁸ D. Malon,⁶ C. Malone,³² S. Maltezos,¹⁰ S. Malyukov,⁸⁰ J. Mamuzic,¹⁷⁴ G. Mancini,⁵¹ I. Mandić,⁹² L. Manhaes de Andrade Filho,^{81a} I. M. Maniatis,¹⁶² J. Manjarres Ramos,⁴⁸ K. H. Mankinen,⁹⁷ A. Mann,¹¹⁴ A. Manousos,⁷⁷ B. Mansoulie,¹⁴⁵ I. Manthos,¹⁶² S. Manzoni,¹²⁰ A. Marantis,¹⁶² G. Marceca,³⁰ L. Marchese,¹³⁵ G. Marchiori,¹³⁶ M. Marcisovsky,¹⁴¹ L. Marcoccia,^{74a,74b} C. Marcon,⁹⁷ C. A. Martin, Tobon,³⁶ M. Marjanovic,¹²⁹ Z. Marshall,¹⁸ M. U. F. Martensson,¹⁷² S. Marti-Garcia,¹⁷⁴ C. B. Martin,¹²⁷ T. A. Martin,¹⁷⁸ V. J. Martin,⁵⁰ B. Martin dit Latour,¹⁷ L. Martinelli,^{75a,75b} M. Martinez,¹⁴⁴ V. I. Martinez Outschoorn,¹⁰³ S. Martin-Haugh,¹⁴⁴ B. Martin dit Latour,¹⁷ L. Martinelli,^{75a,75b} M. Martinez,^{14,t} V. I. Martinez Outschoorn,¹⁰³ S. Martin-Haugh,¹⁴⁴ B. Martin dit Latour,¹⁷ L. Martinelli,^{75a,75b} M. Martinez,^{14,t} V. I. Martinez Outschoorn,¹⁰³ S. Martin-Haugh,¹⁴⁴
V. S. Martoiu,^{27b} A. C. Martyniuk,⁹⁵ A. Marzin,³⁶ S. R. Maschek,¹¹⁵ L. Masetti,¹⁰⁰ T. Mashimo,¹⁶³ R. Mashinistov,¹¹¹
J. Masik,¹⁰¹ A. L. Maslennikov,^{122b,122a} L. Massa,^{74a,74b} P. Massarotti,^{70a,70b} P. Mastrandrea,^{72a,72b} A. Mastroberardino,^{41b,41a}
T. Masubuchi,¹⁶³ D. Matakias,¹⁰ A. Matic,¹¹⁴ N. Matsuzawa,¹⁶³ P. Mättig,²⁴ J. Maurer,^{27b} B. Maček,⁹²
D. A. Maximov,^{122b,122a} R. Mazini,¹⁵⁸ I. Maznas,¹⁶² S. M. Mazza,¹⁴⁶ S. P. Mc Kee,¹⁰⁶ T. G. McCarthy,¹¹⁵
W. P. McCormack,¹⁸ E. F. McDonald,¹⁰⁵ J. A. Mcfayden,³⁶ G. Mchedlidze,^{159b} M. A. McKay,⁴² K. D. McLean,¹⁷⁶
S. J. McMahon,¹⁴⁴ P. C. McNamara,¹⁰⁵ C. J. McNicol,¹⁷⁸ R. A. McPherson,^{176,m} J. E. Mdhluli,^{33e} Z. A. Meadows,¹⁰³
S. Meehan,³⁶ T. Megy,⁵² S. Mehlhase,¹¹⁴ A. Mehta,⁹¹ T. Meideck,⁵⁸ B. Meirose,⁴³ D. Melini,¹⁶⁰ B. R. Mellado Garcia,^{33e}
J. D. Mellenthin,⁵³ M. Melo,^{28a} F. Meloni,⁴⁶ A. Melzer,²⁴ S. B. Menary,¹⁰¹ E. D. Mendes Gouveia,^{140a,140e} L. Meng,³⁶
X. T. Meng,¹⁰⁶ S. Menke,¹¹⁵ E. Meoni,^{41b,41a} S. Mergelmeyer,¹⁹ S. A. M. Merkt,¹³⁹ C. Merlassino,²⁰ P. Mermod,⁵⁴
L. Merola,^{70a,70b} C. Meroni,^{69a} G. Merz,¹⁰⁶ O. Meshkov,^{113,111} J. K. R. Meshreki,¹⁵¹ A. Messina,^{73a,73b} J. Metcalfe,⁶
A. S. Mete,¹⁷¹ C. Meyer,⁶⁶ J-P. Meyer,¹⁴⁵ H. Meyer Zu Theenhausen,^{61a} F. Miano,¹⁵⁶ M. Milcetti,¹⁹ R. P. Middleton,¹⁴⁴
L. Mijović,⁵⁰ G. Mikenberg,¹⁸⁰ M. Mikestikova,¹⁴¹ M. Mikuž,⁹² H. Mildner,¹⁴⁹ M. Milesi,¹⁰⁵ A. Milic,¹⁶⁷ D. A. Millar,⁹³
D. W. Miller,³⁷ A. Milov,¹⁸⁰ D. A. Milstead,^{45a,45b} R. A. Mina,¹⁵³ A. A. Minaenko,¹²³ M. Miñano Moya,¹⁷⁴
I. A. Minashvili,^{159b} A. I. Mincer,¹²⁵ B. Mindur,^{84a} M. Mineev,⁸⁰ Y. Minegishi,¹⁶³ L. M. Mirt,⁴ A. Mirto,^{68a,68b} D. W. Miller,³⁷ A. Milov,¹⁸⁰ D. A. Milstead,^{45a,45b} R. A. Mina,¹⁵³ A. A. Minaenko,¹²³ M. Miñano Moya,¹⁷⁴ I. A. Minashvili,^{159b} A. I. Mincer,¹²⁵ B. Mindur,^{84a} M. Mineev,⁸⁰ Y. Minegishi,¹⁶³ L. M. Mir,¹⁴ A. Mirto,^{68a,68b}
K. P. Mistry,¹³⁷ T. Mitani,¹⁷⁹ J. Mitrevski,¹¹⁴ V. A. Mitsou,¹⁷⁴ M. Mittal,^{60c} O. Miu,¹⁶⁷ A. Miucci,²⁰ P. S. Miyagawa,¹⁴⁹ A. Mizukami,⁸ J. U. Mjörnmark,⁹⁷ T. Mkrtchyan,^{61a} M. Mlynarikova,¹⁴³ T. Moa,^{45a,45b} K. Mochizuki,¹¹⁰ P. Mogg,⁵² S. Mohapatra,³⁹ R. Moles-Valls,²⁴ M. C. Mondragon,¹⁰⁷ K. Mönig,⁴⁶ J. Monk,⁴⁰ E. Monnier,¹⁰² A. Montalbano,¹⁵² J. Montejo Berlingen,³⁶ M. Mortella,⁹⁵ F. Monticelli,⁸⁹ S. Monzani,^{69a} N. Morange,⁶⁵ D. Moreno,^{22a} M. Moreno Llácer,¹⁷⁴ C. Moreno Martinez,¹⁴ P. Morettini,^{55b} M. Morgenstern,¹²⁰ S. Morgenstern,⁴⁸ D. Mori,¹⁵² M. Morii,⁵⁹ M. Morinaga,¹⁷⁰ V. Morisbak,¹³⁴ A. K. Morley,³⁶ G. Mornacchi,³⁶ A. P. Morris,⁹⁵ L. Morvaj,¹⁵⁵ P. Moschovakos,³⁶ B. Moser,¹²⁰ M. Mosidze,^{159b} T. Moskalets,¹⁴⁴ H. J. Moss,³¹⁴⁹ J. Moss,^{31,gg} E. J. W. Moyse,¹⁰³ S. Muanza,¹⁰² J. Mueller,¹³⁹ R. S. P. Mueller,¹¹⁴ D. Muenstermann,⁹⁰ G. A. Mullier,⁹⁷ D. P. Mungo,^{69a,69b} M. Muškinja,¹⁸ C. Mwewa,^{33a}
A. G. Myagkov,^{123,hh} A. A. Myers,¹³⁹ J. Myers,¹³² M. Myska,¹⁴² B. P. Nachman,¹⁸ O. Nackenhorst,⁴⁷ A. Nag Nag,⁴⁸ K. Nagai,¹³⁵ K. Nagano,⁸² Y. Nagasaka,⁶² J. L. Nagle,²⁹ E. Nagy,¹⁰² A. M. Nairz,³⁶ Y. Nakahama,¹¹⁷ K. Nakamura,⁸² T. Nakamura,¹⁶³ I. Nakano,¹²⁸ H. Nanjo,¹³³ F. Napolitano,^{61a} R. F. Naranjo Garcia,⁴⁶ R. Narayan,⁴² I. Naryshkin,¹³⁸ T. Naumann,⁴⁶ G. Navarro,^{22a} P. Y. Nechaeva,¹¹¹ F. Nechansky,⁴⁶ T. J. Neep,²¹ A. Negri,^{71a,71b} M. Negrini,^{23b} C. Nellist,⁵³ M. E. Nelson,^{45a,45b} S. Nemecek,¹⁴¹ P. Nemethy,¹²⁵ M. Nessi,^{36,ii} M. S. Neubauer,¹⁷³ M. Neumann,¹⁸² R. Newhouse,¹⁷⁵ P. R. Newman,²¹ Y. S. Ng,¹⁹ Y. W. Y. Ng,¹⁷¹ B. Ngair,^{35e} H. D. N. Nguyen,¹⁰² T. Nguyen Manh, M. E. Nelson, ^{434,450} S. Nemecek, ¹⁴¹ P. Nemethy, ¹²⁷ M. Nessi, ^{50,41} M. S. Neubauer, ¹⁷⁵ M. Neumann, ⁵⁰ R. Newhouse, ¹⁶⁴ P. R. Newman, ²¹ Y. S. Ng, ¹⁹ Y. W. Y. Ng, ¹⁷¹ B. Ngair, ^{35e} H. D. N. Nguyen, ¹⁰² T. Nguyen Manh, ¹¹⁰ E. Nibigira, ³⁸ R. B. Nickerson, ¹³⁵ R. Nicolaidou, ¹⁴⁵ D. S. Nielsen, ⁴⁰ J. Nielsen, ¹⁴⁶ N. Nikiforou, ¹¹ V. Nikolaenko, ^{123,hh} I. Nikolic-Audit, ¹³⁶ K. Nikolopoulos, ²¹ P. Nilsson, ²⁹ H. R. Nindhito, ⁵⁴ Y. Ninomiya, ⁸² A. Nisati, ^{73a} N. Nishu, ^{60c} R. Nisius, ¹¹⁵ I. Nitsche, ⁴⁷ T. Nitta, ¹⁷⁹ T. Nobe, ¹⁶³ Y. Noguchi, ⁸⁶ I. Nomidis, ¹³⁶ M. A. Nomura, ²⁹ M. Nordberg, ³⁶ N. Norjoharuddeen, ¹³⁵ T. Novak, ⁹² O. Novgorodova, ⁴⁸ R. Novotny, ¹⁴² L. Nozka, ¹³¹ K. Ntekas, ¹⁷¹ E. Nurse, ⁹⁵ F. G. Oakham, ^{34,d} H. Oberlack, ¹¹⁵ J. Ocariz, ¹³⁶ A. Ochi, ⁸³ I. Ochoa, ³⁹ J. P. Ochoa-Ricoux, ^{147a} K. O'Connor, ²⁶ S. Oda, ⁸⁸ S. Odaka, ⁸² S. Oerdek, ⁵³ A. Ogrodnik, ^{84a} A. Oh, ¹⁰¹ S. H. Oh, ⁴⁹ C. C. Ohm, ¹⁵⁴ H. Oide, ¹⁶⁵ M. L. Ojeda, ¹⁶⁷ H. Okawa, ¹⁶⁹ Y. Okazaki, ⁸⁶ M. W. O'Keefe, ⁹¹ Y. Okumura, ¹⁶³ T. Olivera, ⁸² A. Olariy, ^{27b} J. F. Olairo, Saebra, ^{140a} S. A. Oliveras, ^{167a} D. Oliveira, Damazio, ²⁹ J. L. Oliver, ¹ T. Okuyama,⁸² A. Olariu,^{27b} L. F. Oleiro Seabra,^{140a} S. A. Olivares Pino,^{147a} D. Oliveira Damazio,²⁹ J. L. Oliver,¹

M. J. R. Olsson,¹⁷¹ A. Olszewski,⁸⁵ J. Olszowska,⁸⁵ D. C. O'Neil,¹⁵² A. P. O'neill,¹³⁵ A. Onofre,^{140a,140e} P. U. E. Onyisi,¹¹ H. Oppen,¹³⁴ M. J. Oreglia,³⁷ G. E. Orellana,⁸⁹ D. Orestano,^{75a,75b} N. Orlando,¹⁴ R. S. Orr,¹⁶⁷ V. O'Shea,⁵⁷ R. Ospanov,^{60a} G. Otero y Garzon,³⁰ H. Otono,⁸⁸ P. S. Ott,^{61a} M. Ouchrif,^{35d} J. Ouellette,²⁹ F. Ould-Saada,¹³⁴ A. Ouraou,¹⁴⁵ Q. Ouyang,^{15a} M. Owen,⁵⁷ R. E. Owen,²¹ V. E. Ozcan,^{12c} N. Ozturk,⁸ J. Pacalt,¹³¹ H. A. Pacey,³² K. Pachal,⁴⁹ A. Pacheco Pages,¹⁴
C. Padilla Aranda,¹⁴ S. Pagan Griso,¹⁸ M. Paganini,¹⁸³ G. Palacino,⁶⁶ S. Palazzo,⁵⁰ S. Palestini,³⁶ M. Palka,^{84b} D. Pallin,³⁸ C. Padilla Aranda,¹⁴ S. Pagan Griso,¹⁸ M. Paganini,¹⁸³ G. Palacino,⁶⁶ S. Palazzo,⁵⁰ S. Palestini,³⁶ M. Palka,^{84b} D. Pallin,³⁸
I. Panagoulias,¹⁰ C. E. Pandini,³⁶ J. G. Panduro Vazquez,⁹⁴ P. Pani,⁴⁶ G. Panizzo,^{67a,67c} L. Paolozzi,⁵⁴ C. Papadatos,¹¹⁰ K. Papageorgiou,^{9,r} S. Parajuli,⁴³ A. Paramonov,⁶ D. Paredes Hernandez,^{63b} S. R. Paredes Saenz,¹³⁵ B. Parida,¹⁶⁶ T. H. Park,¹⁶⁷ A. J. Parker,³¹ M. A. Parker,³² F. Parodi,^{55b,55a} E. W. Parrish,¹²¹ J. A. Parsons,³⁹ U. Parzefall,⁵² L. Pascual Dominguez,¹³⁶ V. R. Pascuzzi,¹⁶⁷ J. M. P. Pasner,¹⁴⁶ F. Pasquali,¹²⁰ E. Pasqualucci,^{73a} S. Passaggio,^{55b} F. Pastore,⁹⁴ P. Pasuwan,^{45a,45b} S. Pataraia,¹⁰⁰ J. R. Pater,¹⁰¹ A. Pathak,^{181,e} T. Pauly,³⁶ J. Pearkes,¹⁵³ B. Pearson,¹¹⁵ M. Pedersen,¹³⁴ L. Pedraza Diaz,¹¹⁹ R. Pedro,^{140a} T. Peiffer,⁵³ S. V. Peleganchuk,^{122b,122a} O. Penc,¹⁴¹ H. Peng,^{60a}
B. S. Peralva,^{81a} M. M. Perego,⁶⁵ A. P. Pereira Peixoto,^{140a} D. V. Perepelitsa,²⁹ F. Peri,¹⁹ L. Perini,^{69a,69b} H. Pernegger,³⁶
S. Perrella,^{70a,70b} A. Perrevoort,¹²⁰ K. Peters,⁴⁶ R. F. Y. Peters,¹⁰¹ B. A. Petersen,³⁶ T. C. Petersen,⁴⁰ E. Petit,¹⁰² A. Petridis,¹
C. Petridou,¹⁶² P. Petroff,⁶⁵ M. Petrov,¹³⁵ F. Petrucci,^{75a,75b} M. Pettee,¹⁸³ N. E. Pettersson,¹⁰³ K. Petukhova,¹⁴³ A. Peyaud,¹⁴⁵ R. Pezoa,¹⁴⁷⁴ L. Pezzotti,^{71a,71b} T. Pham,¹⁰⁵ F. H. Phillips,¹⁰⁷ P. W. Phillips,¹⁴⁴ M. W. Phipps,¹⁷³ G. Piacquadio,¹⁵⁵ E. Pianori,¹⁸ A. Picazio,¹⁰³ R. H. Pickles,¹⁰¹ R. Piegaia,³⁰ D. Pietreanu,^{27b} J. E. Pilcher,³⁷ A. D. Pilkington,¹⁰¹ M. Pinamonti,^{67a,67c} J. L. Pinfold,³ M. Pitt,¹⁶¹ L. Pizzimento,^{74a,74b} M.-A. Pleier.²⁹ V. Pleskot.¹⁴³ F. Plotnikova⁸⁰ M. Pinamonti,^{67a,67c} J. L. Pinfold,³ M. Pitt,¹⁶¹ L. Pizzimento,^{74a,74b} M.-A. Pleier,²⁹ V. Pleskot,¹⁴³ E. Plotnikova,⁸⁰ P. Podberezko, ^{122b,122a} R. Poettgen,⁹⁷ R. Poggi,⁵⁴ L. Poggioli,⁶⁵ I. Pogrebnyak,¹⁰⁷ D. Pohl,²⁴ I. Pokharel,⁵³ G. Polesello,^{71a} A. Poley,¹⁸ A. Policicchio,^{73a,73b} R. Polifka,¹⁴³ A. Polini,^{23b} C. S. Pollard,⁴⁶ V. Polychronakos,²⁹ D. Ponomarenko,¹¹² L. Pontecorvo,³⁶ S. Popa,^{27a} G. A. Popeneciu,^{27d} L. Portales,⁵ D. M. Portillo Quintero,⁵⁸ S. Pospisil,¹⁴² K. Potamianos,⁴⁶ I. N. Potrap,⁸⁰ C. J. Potter,³² H. Potti,¹¹ T. Poulsen,⁹⁷ J. Poveda,³⁶ T. D. Powell,¹⁴⁹ G. Pownall,⁴⁶ M. E. Pozo Astigarraga,³⁶ I. N. Potrap, ⁴C. J. Potter, ⁴H. Potti, ¹I. Poulsen, ⁴J. Poveda, ⁴I. D. Powell, ⁴G. Pownall, ⁴M. E. Pozo Astigarraga, ⁴P. Pralavorio, ¹⁰² S. Prell, ⁷⁹ D. Price, ¹⁰¹ M. Primavera, ^{68a} S. Prince, ¹⁰⁴ M. L. Proffitt, ¹⁴⁸ N. Proklova, ¹¹² K. Prokofiev, ^{63c} F. Prokoshin, ⁸⁰ S. Protopopescu, ²⁹ J. Proudfoot, ⁶ M. Przybycien, ^{84a} D. Pudzha, ¹³⁸ A. Puri, ¹⁷³ P. Puzo, ⁶⁵ J. Qian, ¹⁰⁶ Y. Qin, ¹⁰¹ A. Quadt, ⁵³ M. Queitsch-Maitland, ³⁶ A. Qureshi, ¹M. Racko, ^{28a} F. Ragusa, ^{69a,69b} G. Rahal, ⁹⁸ J. A. Raine, ⁵⁴ S. Rajagopalan, ²⁹ A. Ramirez Morales, ⁹³ K. Ran, ^{15a,15d} T. Rashid, ⁶⁵ S. Raspopov, ⁵ D. M. Rauch, ⁴⁶ F. Rauscher, ¹¹⁴ S. Rave, ¹⁰⁰ B. Ravina, ¹⁴⁹ I. Ravinovich, ¹⁸⁰ J. H. Rawling, ¹⁰¹ M. Raymond, ³⁶ A. L. Read, ¹³⁴ N. P. Readioff, ⁵⁸ M. Reale, ^{68a,68b} D. M. Rebuzzi, ^{71a,71b} A. Redelbach, ¹⁷⁷ G. Redlinger, ²⁹ K. Reeves, ⁴³ L. Rehnisch, ¹⁹ J. Reichert, ¹³⁷ S. P.ttie, ¹⁷⁵ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁹ M. Paceira, ^{73a} S. Paceira, ¹⁶⁹ P. Paceira, ¹³⁷ S. P.ttie, ¹⁷⁵ P. Puzo, ⁴¹² F. Puzo, ⁴²¹ F. Puzo, ⁴²¹ F. Puzo, ⁴²¹ F. Puzo, ⁴²² F. Puzo, ⁴²² F. Puzo, ⁴²² F. Puzo, ⁴²² F. Puzo, ⁴²⁴ P. Puzo, ⁴²⁴ P. Puzo, ⁴²⁵ F. Puzo, ⁴²⁵ F. Puzo, ⁴²⁵ F. Puzo, ⁴²⁶ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁶ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁶ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁷ F. Puzo, ⁴²⁶ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁷ F. Puzo, ⁴²⁸ P. Puzo, ⁴²⁷ F. Puzo, ⁴²⁸ P. Puzo, ⁴⁴⁸ P. Puzo, ⁴⁴⁹ P. Puz A. Rederozeri, G. Redniger, R. Reeves, E. Reinisch, J. Reichert, D. Reichert, A. Reiss, A. Rej,
C. Rembser,³⁶ M. Renda,^{27b} M. Rescigno,^{73a} S. Resconi,^{69a} E. D. Resseguie,¹³⁷ S. Rettie,¹⁷⁵ B. Reynolds,¹²⁷ E. Reynolds,²¹ O. L. Rezanova,^{122b,122a} P. Reznicek,¹⁴³ E. Ricci,^{76a,76b} R. Richter,¹¹⁵ S. Richter,⁴⁶ E. Richter-Was,^{84b} O. Ricken,²⁴ M. Ridel,¹³⁶ P. Rieck,¹¹⁵ O. Rifki,⁴⁶ M. Rijssenbeek,¹⁵⁵ A. Rimoldi,^{71a,71b} M. Rimoldi,⁴⁶ L. Rinaldi,^{23b} G. Ripellino,¹⁵⁴ I. Riu,¹⁴ J. C. Rivera Vergara,¹⁷⁶ F. Rizatdinova,¹³⁰ E. Rizvi,⁹³ C. Rizzi,³⁶ R. T. Roberts,¹⁰¹ S. H. Robertson,^{104,m} M. Robin,⁴⁶ D. Robinson,³² J. E. M. Robinson,⁴⁶ C. M. Robles Gajardo,^{147d} A. Robson,⁵⁷ A. Rocchi,^{74a,74b} E. Rocco,¹⁰⁰ C. Roda,^{72a,72b} S. Bodrigueg Borog,¹⁴ D. Bodrigueg Borog,¹⁴ D. Bodrigueg,¹⁷⁴ A. M. Bodrigueg,¹⁷⁴ A. M. Bodrigueg,¹⁵⁴ O. B. de Landi,¹³⁴ D. Roomson, J. E. M. Roomson, C. M. Robes Gajardo, A. Robson, A. Rocchi, ¹¹² E. Rocco, ¹⁰⁵ C. Roda, ¹²⁴ P. S. Rodriguez Bosca, ¹⁷⁴ A. Rodriguez Perez, ¹⁴ D. Rodriguez Rodriguez, ¹⁷⁴ A. M. Rodríguez Vera, ^{168b} S. Roe, ³⁶ O. Røhne, ¹³⁴ R. Röhrig, ¹¹⁵ R. A. Rojas, ^{147d} C. P. A. Roland, ⁶⁶ J. Roloff, ²⁹ A. Romaniouk, ¹¹² M. Romano, ^{23b,23a} N. Rompotis, ⁹¹ M. Ronzani, ¹²⁵ L. Roos, ¹³⁶ S. Rosati, ^{73a} G. Rosin, ¹⁰³ B. J. Rosser, ¹³⁷ E. Rossi, ⁴⁶ E. Rossi, ^{75a,75b} E. Rossi, ^{70a,70b} L. P. Rossi, ^{55b} L. Rossini, ^{69a,69b} R. Rosten, ¹⁴ M. Rotaru, ^{27b} J. Rothberg, ¹⁴⁸ D. Rousseau, ⁶⁵ G. Rovelli, ^{71a,71b} A. Roy, ¹¹ D. Roy, ^{33e} D. Rosser, ¹⁰² V. D. ³³⁶ F. Britt, ⁵² A. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rossini, ⁶⁹ A. Rosser, ¹⁰² V. D. ³³⁶ F. Britt, ⁵² A. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ³⁶ F. Rossini, ⁶⁹ A. Rosser, ¹⁰² V. D. ³³⁶ F. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ¹⁰² V. D. ³³⁶ F. Britt, ⁵² A. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ¹⁰⁵ A. Rosser, ¹⁰⁶ V. D. ³³⁶ F. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ¹⁶ G. Rovelli, ^{71a,71b} A. Roy, ¹¹ D. Roy, ^{33e} A. Britt, ¹⁰⁵ A. Rosser, ¹⁰⁶ V. D. ³³⁶ F. Britt, ⁵² A. Britt, ¹⁷⁴ A. Rosser, ¹⁷⁴ A. Rosser, ¹⁶⁵ A. Rosser, ¹⁰⁷ A. Rosser, ¹⁰⁷ A. Rosser, ¹⁰⁸ A. Rosser, ¹⁰⁸ A. Rosser, ¹⁰⁹ A. Rozanov,¹⁰² Y. Rozen,¹⁶⁰ X. Ruan,^{33e} F. Rühr,⁵² A. Ruiz-Martinez,¹⁷⁴ A. Rummler,³⁶ Z. Rurikova,⁵² N. A. Rusakovich,⁸⁰ H. L. Russell,¹⁰⁴ L. Rustige,^{38,47} J. P. Rutherfoord,⁷ E. M. Rüttinger,¹⁴⁹ M. Rybar,³⁹ G. Rybkin,⁶⁵ E. B. Rye,¹³⁴ A. Ryzhov,¹²³ J. A. Sabater Iglesias, ⁴⁶ P. Sabatini, ⁵³ G. Sabato, ¹²⁰ S. Sacerdoti, ⁶⁵ H. F-W. Sadrozinski, ¹⁴⁶ R. Sadykov, ⁸⁰ F. Safai Tehrani, ^{73a} B. Safarzadeh Samani, ¹⁵⁶ P. Saha, ¹²¹ S. Saha, ¹⁰⁴ M. Sahinsoy, ^{61a} A. Sahu, ¹⁸² M. Saimpert, ⁴⁶ M. Saito, ¹⁶³ T. Saito, ¹⁶³ H. Sakamoto, ¹⁶³ A. Sakharov, ^{125,cc} D. Salamani, ⁵⁴ G. Salamanna, ^{75a,75b} J. E. Salazar Loyola, ^{147d} A. Salnikov, ¹⁵³ J. Salt, ¹⁷⁴ D. Salvatore, ^{41b,41a} F. Salvatore, ¹⁵⁶ A. Salvucci, ^{63a,63b,63c} A. Salzburger, ³⁶ J. Samarati, ³⁶ D. Sammel, ⁵² D. Sampsonidis, ¹⁶² D. Sampsonidou, ¹⁶² J. Sánchez, ¹⁷⁴ A. Sanchez Pineda, ^{67a,36,67c} H. Sandaker, ¹³⁴ C. O. Sander, ⁴⁶ I. G. Sanderswood, ⁹⁰ M. Sandhoff, ¹⁸² C. Sandoval, ^{22a} D. P. C. Sankey, ¹⁴⁴ M. Sannino, ^{55b,55a} Y. Sano, ¹¹⁷ A. Sansoni, ⁵¹ C. Santoni, ³⁸ H. Santos, ^{140a,140b} S. N. Santpur, ¹⁸ A. Santra, ¹⁷⁴ A. Sapronov, ⁸⁰ J. G. Saraiva, ^{140a,140d} O. Sasaki, ⁸² K. Sato, ¹⁶⁹ F. Sauerburger, ⁵² E. Sauvan, ⁵ P. Savard, ^{167,d} N. Savic, ¹¹⁵ R. Sawada, ¹⁶³ C. Sawyer, ¹⁴⁴ L. Sawyer, ^{96,jj} C. Sbarra, ^{23b} C. Santra, ¹⁴⁰ A. Sbrizzi,^{23a} T. Scanlon,⁹⁵ J. Schaarschmidt,¹⁴⁸ P. Schacht,¹¹⁵ B. M. Schachtner,¹¹⁴ D. Schaefer,³⁷ L. Schaefer,¹³⁷
J. Schaeffer,¹⁰⁰ S. Schaepe,³⁶ U. Schäfer,¹⁰⁰ A. C. Schaffer,⁶⁵ D. Schaile,¹¹⁴ R. D. Schamberger,¹⁵⁵ N. Scharmberg,¹⁰¹
V. A. Schegelsky,¹³⁸ D. Scheirich,¹⁴³ F. Schenck,¹⁹ M. Schernau,¹⁷¹ C. Schiavi,^{55b,55a} S. Schier,¹⁴⁶ L. K. Schildgen,²⁴

Z. M. Schillaci,²⁶ E. J. Schioppa,³⁶ M. Schioppa,^{41b,41a} K. E. Schleicher,⁵² S. Schlenker,³⁶ K. R. Schmidt-Sommerfeld,¹¹⁵ K. Schmiden,³⁶ C. Schmitt,¹⁰⁰ S. Schmitt,⁴⁶ S. Schmitz,¹⁰⁰ J. C. Schmoeckel,⁴⁶ U. Schnoor,⁵² L. Schoeffel,¹⁴⁵
A. Schoening,^{61b} P. G. Scholer,⁵² E. Schopf,¹³⁵ M. Schott,¹⁰⁰ J. F. P. Schouwenberg,¹¹⁹ J. Schovancova,³⁶ S. Schramm,⁵⁴ F. Schroeder,¹⁸² A. Schulte,¹⁰⁰ H-C. Schultz-Coulon,^{61a} M. Schumacher,⁵² B. A. Schumm,¹⁴⁶ Ph. Schune,¹⁴⁵ A. Schwartzman,¹⁵³ T. A. Schwarz,¹⁰⁶ Ph. Schwemling,¹⁴⁵ R. Schwienhorst,¹⁰⁷ A. Sciandra,¹⁴⁶ G. Sciolla,²⁶
M. Scodeggio,⁴⁶ M. Scornajenghi,^{41b,41a} F. Scuri,^{72a} F. Scutti,¹⁰⁵ L. M. Scyboz,¹¹⁵ C. D. Sebastiani,^{73a,73b} P. Seema,¹⁹
S. C. Seidel,¹¹⁸ A. Seiden,¹⁴⁶ B. D. Seidlitz,²⁹ T. Seiss,³⁷ J. M. Seixas,^{81b} G. Sekhniaidze,^{70a} K. Sekhon,¹⁰⁶ S. J. Sekula,⁴²
N. Semprini-Cesari,^{23b,23a} S. Sen,⁴⁹ C. Serfon,⁷⁷ L. Serin,⁶⁵ L. Serkin,^{67a,67b} M. Sessa,^{60a} H. Severini,¹²⁹ T. Šfiligoj,⁹²
F. Sforza,^{55b,55a} A. Sfyrla,⁵⁴ E. Shabalina,⁵³ J. D. Shahinian,¹⁴⁶ N. W. Shaikh,^{45a,45b} D. Shaked Renous,¹⁸⁰ L. Y. Shan,^{15a}
J. T. Shank,²⁵ M. Shapiro,¹⁸ A. Sharma,¹³⁵ A. S. Sharma,¹ P. B. Shatalov,¹²⁴ K. Shaw,¹⁵⁶ S. M. Shaw,¹⁰¹ M. Shehade,¹¹⁰
M. Shimojima,¹¹⁶ I. P. J. Shipsey,¹³⁵ S. Shirabe,¹⁶⁵ M. Shiyakova,^{80,11} J. Shlomi,¹⁸⁰ A. Shmeleva,¹¹¹ M. J. Shochet,³⁷
J. Shojaii,¹⁰⁵ D. R. Shope,¹²⁹ S. Shrestha,¹²⁷ E. M. Shirif,³³ E. Shulga,¹⁸⁰ P. Sicho,¹⁴¹ A. M. Sickles,¹⁷³ P. E. Sidebo,¹⁵⁴
E. Sideras Haddad,^{33e} O. Sidiropoulou,³⁶ A. Sidoti,^{23b,23a} F. Siegert,⁴⁸ D. Sinevo,¹⁶⁷ V. Sinetckii,¹¹³ M. V. Silva Oliveira,^{81a}
S. B. Silverstein,^{45a} S. Simion,⁶⁵ R. Simoniello,¹⁰⁰ S. Simsek,^{12b} P. Sinervo,¹⁶⁷ V. Sinetckii,¹¹³ M. S. Sinev,¹³² S. Singh,¹⁵²
M. Sioli,^{23b,23a} I. Siral,¹³² S. Yu. Sivoklokov,¹¹³ J Z. M. Schillaci,²⁶ E. J. Schioppa,³⁶ M. Schioppa,^{41b,41a} K. E. Schleicher,⁵² S. Schlenker,³⁶ K. R. Schmidt-Sommerfeld,¹¹⁵ R. Slovak,¹⁴³ V. Smakhtin,¹⁸⁰ B. H. Smart,¹⁴⁴ J. Smiesko,^{28a} N. Smirnov,¹¹² S. Yu. Smirnov,¹¹² Y. Smirnov,¹¹²
L. N. Smirnova,^{113,mm} O. Smirnova,⁹⁷ J. W. Smith,⁵³ M. Smizanska,⁹⁰ K. Smolek,¹⁴² A. Smykiewicz,⁸⁵ A. A. Snesarev,¹¹¹
H. L. Snoek,¹²⁰ I. M. Snyder,¹³² S. Snyder,²⁹ R. Sobie,^{176,m} A. Soffer,¹⁶¹ A. Søgaard,⁵⁰ F. Sohns,⁵³ C. A. Solans Sanchez,³⁶
E. Yu. Soldatov,¹¹² U. Soldevila,¹⁷⁴ A. A. Solodkov,¹²³ A. Soloshenko,⁸⁰ O. V. Solovyanov,¹²³ V. Solovyev,¹³⁸ P. Sommer,¹⁴⁹
H. Son,¹⁷⁰ W. Song,¹⁴⁴ W. Y. Song,^{168b} A. Sopczak,¹⁴² A. L. Sopio,⁹⁵ F. Sopkova,^{28b} C. L. Sotiropoulou,^{72a,72b}
S. Sottocornola,^{71a,71b} R. Soualah,^{67a,67c,nn} A. M. Soukharev,^{122b,122a} D. South,⁴⁶ S. Spagnolo,^{68a,68b} M. Spalla,¹¹⁵
M. Spangenberg,¹⁷⁸ F. Spanò,⁹⁴ D. Sperlich,⁵² T. M. Spieker,^{61a} R. Spighi,^{23b} G. Spigo,³⁶ M. Spina,¹⁵⁶ D. P. Spiteri,⁵⁷
M. Spousta,¹⁴³ A. Stabile,^{69a,69b} B. L. Stamas,¹²¹ R. Stamen,^{61a} M. Stamenkovic,¹²⁰ E. Stanecka,⁸⁵ B. Stanislaus,¹³⁵
M. M. Stanitzki,⁴⁶ M. Stankaityte,¹³⁵ B. Stapf,¹²⁰ E. A. Starchenko,¹²³ G. H. Stark,¹⁴⁴ J. Stark,⁵⁸ S. H. Stark,⁴⁰ P. Staroba,¹⁴¹
P. Starovoitov,^{61a} S. Stärz,¹⁰⁴ R. Staszewski,⁸⁵ G. Stavropoulos,⁵⁴ M. Stegler,⁴⁶ P. Steinberg,²⁹ A. L. Steinhebel,¹³²
B. Stelzer,¹⁵² H. J. Stelzer,¹³⁹ O. Stelzer-Chilton,^{168a} H. Stenzel,⁵⁶ T. J. Stevenson,¹⁵⁶ G. A. Stewart,³⁶ M. C. Stockton,³⁶ G. Stoicea,^{27b} M. Stolarski,^{140a} S. Stonjek,¹¹⁵ A. Straessner,⁴⁸ J. Strandberg,¹⁵⁴ S. Strandberg,^{45a,45b} M. Strauss,¹²⁹
P. Strizenec,^{28b} R. Ströhmer,¹⁷⁷ D. M. Strom,¹³² R. Stroynowski,⁴² A. Strubig,⁵⁰ S. A. Stucci,²⁹ B. Stugu,¹⁷ J. Stupak,¹²⁹
N. A. Styles,⁴⁶ D. Su,¹⁵³ S. Suchek,^{61a} V. V. Sulin,¹¹¹ M. J. Sullivan,⁹¹ D. M. S. Sultan,⁵⁴ S. Sultansoy,^{4c} T. Sumida,⁸⁶ P. Strizenec, ^{28b} R. Ströhmer, ¹⁷⁷ D. M. Strom, ¹³² R. Stroynowski, ⁴² A. Strubig, ⁵⁰ S. A. Stucci, ²⁹ B. Stugu, ¹⁷ J. Stupak, ¹²⁹ N. A. Styles, ⁴⁶ D. Su, ¹⁵³ S. Suchek, ^{61a} V. V. Sulin, ¹¹¹ M. J. Sullivan, ⁹¹ D. M. S. Sultan, ⁵⁴ S. Sultansoy, ^{4c} T. Sumida, ⁸⁶ S. Sun, ¹⁰⁶ X. Sun, ³ K. Suruliz, ¹⁵⁶ C. J. E. Suster, ¹⁵⁷ M. R. Sutton, ¹⁵⁶ S. Suzuki, ⁸² M. Svatos, ¹⁴¹ M. Swiatlowski, ³⁷ S. P. Swift, ² T. Swirski, ¹⁷⁷ A. Sydorenko, ¹⁰⁰ I. Sykora, ^{28a} M. Sykora, ¹⁴³ T. Sykora, ¹⁴³ D. Ta, ¹⁰⁰ K. Tackmann, ^{46,00} J. Taenzer, ¹⁶¹ A. Taffard, ¹⁷¹ R. Tafirout, ^{168a} H. Takai, ²⁹ R. Takashima, ⁸⁷ K. Takeda, ⁸³ T. Takeshita, ¹⁵⁰ E. P. Takeva, ⁵⁰ Y. Takubo, ⁸² M. Talby, ¹⁰² A. A. Talyshev, ^{122b,122a} N. M. Tamir, ¹⁶¹ J. Tanaka, ¹⁶³ M. Tanaka, ¹⁶⁵ R. Tanaka, ⁶⁵ S. Tapia Araya, ¹⁷³ S. Tapprogge, ¹⁰⁰ A. Tarek Abouelfadl Mohamed, ¹³⁶ S. Tarem, ¹⁶⁰ K. Tariq, ^{60b} G. Tarna, ^{27b,pp} G. F. Tartarelli, ^{69a} P. Tas, ¹⁴³ M. Tasevsky, ¹⁴¹ T. Tashiro, ⁸⁶ E. Tassi, ^{41b,41a} A. Tavares Delgado, ^{140a} Y. Tayalati, ^{35e} A. J. Taylor, ⁵⁰ G. N. Taylor, ¹⁰⁵ W. Taylor, ^{168b} A. S. Tee, ⁹⁰ R. Teixeira De Lima, ¹⁵³ P. Teixeira-Dias, ⁹⁴ H. Ten Kate, ³⁶ J. J. Teoh, ¹²⁰ S. Terada, ⁸² K. Terashi, ¹⁶³ J. Terron, ⁹⁹ S. Terzo, ¹⁴ M. Testa, ⁵¹ R. J. Teuscher, ^{167,m} S. J. Thais, ¹⁸³ T. Theveneaux-Pelzer, ⁴⁶ F. Thiele, ⁴⁰ D. W. Thomas, ⁹⁴ J. O. Thomas, ⁴² J. P. Thomas, ²¹ A. S. Thompson, ⁵⁷ P. D. Thompson, ²¹ J. A. Thomson, ¹⁸³ F. Thomson, ¹³⁷ F. J. Thorpe, ⁹³ J. Terron,⁹⁹ S. Terzo,¹⁴ M. Testa,⁵¹ R. J. Teuscher,^{167,m} S. J. Thais,¹⁸³ T. Theveneaux-Pelzer,⁴⁶ F. Thiele,⁴⁰ D. W. Thomas,⁹⁴ J. O. Thomas,⁴² J. P. Thomas,²¹ A. S. Thompson,⁵⁷ P. D. Thompson,²¹ L. A. Thomsen,¹⁸³ E. Thomson,¹³⁷ E. J. Thorpe,⁹³ R. E. Ticse Torres,⁵³ V. O. Tikhomirov,^{111,qq} Yu. A. Tikhonov,^{122b,122a} S. Timoshenko,¹¹² P. Tipton,¹⁸³ S. Tisserant,¹⁰² K. Todome,^{23b,23a} S. Todorova-Nova,⁵ S. Todt,⁴⁸ J. Tojo,⁸⁸ S. Tokár,^{28a} K. Tokushuku,⁸² E. Tolley,¹²⁷ K. G. Tomiwa,^{33e} M. Tomoto,¹¹⁷ L. Tompkins,^{153,bb} B. Tong,⁵⁹ P. Tornambe,¹⁰³ E. Torrence,¹³² H. Torres,⁴⁸ E. Torró Pastor,¹⁴⁸ C. Tosciri,¹³⁵ J. Toth,^{102,rr} D. R. Tovey,¹⁴⁹ A. Traeet,¹⁷ C. J. Treado,¹²⁵ T. Trefzger,¹⁷⁷ F. Tresoldi,¹⁵⁶ A. Tricoli,²⁹ I. M. Trigger,^{168a} S. Trincaz-Duvoid,¹³⁶ D. A. Trischuk,¹⁷⁵ W. Trischuk,¹⁶⁷ B. Trocmé,⁵⁸ A. Trofymov,¹⁴⁵ C. Troncon,^{69a} M. Trovatelli,¹⁷⁶ F. Trovato,¹⁵⁶ L. Truong,^{33c} M. Trzebinski,⁸⁵ A. Trzupek,⁸⁵ F. Tsai,⁴⁶ J.C-L. Tseng,¹³⁵ P. V. Tsiareshka,^{108,dd}
A. Tsirigotis,^{162,ee} V. Tsiskaridze,¹⁵⁵ E. G. Tskhadadze,^{159a} M. Tsopoulou,¹⁶² I. I. Tsukerman,¹²⁴ V. Tsulaia,¹⁸ S. Tsuno,⁸² D. Tsybychev,¹⁵⁵ Y. Tu,^{63b} A. Tudorache,^{27b} V. Tudorache,^{27b} T. T. Tulbure,^{27a} A. N. Tuna,⁵⁹ S. Turchikhin,⁸⁰
D. Turgeman,¹⁸⁰ I. Turk Cakir,^{4b,ss} R. J. Turner,²¹ R. T. Turra,^{69a} P. M. Tuts,³⁹ S. Tzamarias,¹⁶² E. Tzovara,¹⁰⁰ G. Ucchielli,⁴⁷ K. Uchida,¹⁶³ I. Ueda,⁸² F. Ukegawa,¹⁶⁹ G. Unal,³⁶ A. Undrus,²⁹ G. Unel,¹⁷¹ F. C. Ungaro,¹⁰⁵ Y. Unno,⁸² K. Uno,¹⁶³

J. Urban,^{28b} P. Urquijo,¹⁰⁵ G. Usai,⁸ Z. Uysal,^{12d} V. Vacek,¹⁴² B. Vachon,¹⁰⁴ K. O. H. Vadla,¹³⁴ A. Vaidya,⁹⁵ C. Valderanis,¹¹⁴ E. Valdes Santurio,^{45a,45b} M. Valente,⁵⁴ S. Valentinetti,^{23b,23a} A. Valero,¹⁷⁴ L. Valéry,⁴⁶ R. A. Vallance,²¹ A. Vallier,³⁶ J. Urban, "P. Orquijo, G. Usai, Z. Oysai, V. vacek, B. vacnon, K. O. H. vada, "A. valdy," C. valderanis, E. Valdes Santurio, ^{45a,45b} M. Valente,⁵⁴ S. Valentinetti, ^{23b,23a} A. Valero, ¹⁷⁴ L. Valéry,⁴⁶ R. A. Vallance,²¹ A. Vallier,³⁶ J. A. Valls Ferrer,¹⁷⁴ T. R. Van Daalen, ¹⁴ P. Van Gemmeren,⁶ I. Van Vulpen,¹²⁰ M. Vanadia, ^{74a,74b} W. Vandelli,³⁶
M. Vandenbroucke,¹⁴⁵ E. R. Vandewall,¹³⁰ A. Vaniachine,¹⁶⁶ D. Vannicola, ^{73a,73b} R. Vari, ^{73a} E. W. Varnes, ⁷ C. Varni, ^{55b,55a} T. Varol,¹⁵⁸ D. Varouchas,⁶⁵ K. E. Varvell,¹⁵⁷ M. E. Vasile,^{27b} G. A. Vasquez,¹⁷⁶ F. Vazeille,³⁸ D. Vazquez Furelos,¹⁴
T. Vazquez Schroeder,³⁶ J. Veatch,⁵³ V. Vecchio,^{75a,75b} M. J. Veen,¹²⁰ L. M. Veloce,¹⁶⁷ F. Veloso,^{140a,140c} S. Veneziano,^{73a} A. Ventura,^{68a,68b} N. Venturi,³⁶ A. Verbytskyi,¹¹⁵ V. Vercesi,^{71a} M. Verducci,^{72a,72b} C. M. Vergel Infante,⁷⁹ C. Vergis,²⁴
W. Verkerke,¹²⁰ A. T. Vermeulen,¹²⁰ J. C. Vermeulen,¹²⁰ M. C. Vetterli,^{152,d} N. Viaux Maira,^{147d} M. Vicente Barreto Pinto,⁵⁴ T. Vickey,¹⁴⁹ O. E. Vickey Boeriu,¹⁴⁹ G. H. A. Vishwakarma,⁴⁶ C. Vittori,^{23b,23a} I. Vivarelli,¹⁵⁶ M. Vogel,¹⁸² P. Vokac,¹⁴² S. E. von Buddenbrock,³³ E. Von Toerne,²⁴ V. Vorobel,¹⁴³ K. Vorobev,¹¹² M. Vos,¹⁷⁴ J. H. Vossebeld,⁹¹ M. Vozak.¹⁰¹ N. Vranjes,¹⁶ M. Vranjes Milosavljevic,¹⁶ V. Vrba,¹⁴² M. Vreeswijk,¹²⁰ R. Vuillermet,³⁶ I. Vukotic,³⁷ P. Wagner,²⁴ W. Wagner,¹⁸² J. Wagner-Kuhr,¹¹⁴ S. Wahdan,¹⁸² H. Wahlberg,⁸⁹ V. M. Walbrecht,¹¹⁵ J. Walder,⁹⁰ R. Walker,¹¹⁴ S. D. Walker,⁹⁴ W. Walkowiak,¹⁵¹ V. Wallag,⁶¹⁶ P. Wang,^{60a} Y. Wang,^{60a} Y. Wang,^{60a} Y. Wang,^{60a} Y. Wang,^{60a} Y. Wang,^{60a} C. Wang,^{60b} F. Wang,^{60a} R. Wang,⁶⁵ S. M. Wang,¹⁵⁵ J. Wang,⁶¹⁵ P. Wang,⁶¹⁶ P. Wang,⁶² Z. Wang,^{60c} C. Wang,^{60a} R. Wang,⁶⁵ S. M. Wang,¹⁵⁸ M. S. Weber,³⁰ S. A. Weber,³⁰ S. M. Weber,¹⁸¹ H. Wang,¹⁸ H. Wang,⁵⁶ N. Warack,⁵⁷ A. Washbrook,⁵⁰ A. T. Watson,²¹ M. F. W L. A. M. Wilk-Fuchs, ⁵² F. Wilk, ¹⁰¹ H. G. Wilkens, ³⁶ L. J. Wilkins, ⁹⁴ H. H. Williams, ¹³⁷ S. Williams, ³² C. Willis, ¹⁰⁷ S. Williams, ³² C. Willis, ¹⁰⁷ S. Williams, ³² C. Willis, ¹⁰⁷ S. Willsen, ¹³³ A. Wols, ⁹⁶ A. Wolf, ¹⁰⁰ T. M. H. Wolf, ¹²⁰ R. Wolff, ¹⁰² R. Wolker, ¹³⁵ J. Wollrath, ⁵² M. W. Wolter, ⁸⁵ M. Wobisch, ⁹⁶ A. Wolf, ¹⁰⁰ T. M. H. Wolf, ¹²⁰ R. Wolff, ¹⁰² R. Wolker, ¹³⁵ J. Wollrath, ⁵² M. W. Wolter, ⁸⁵ K. Waight, ⁵⁷ S. L. Wu, ¹⁸¹ X. Wu, ⁵⁴ Y. Wu, ^{60a} T. R. Wyatt, ¹⁰¹ B. M. Wynne, ⁵⁰ S. Xella, ⁴⁰ Z. Xi, ¹⁰⁶ L. Xia, ¹⁷⁸ X. Xiao, ¹⁰⁶ I. Xiotidis, ¹⁵⁶ D. Xu, ^{15a} H. Xu, ^{60a} T. R. Wyatt, ¹⁰¹ B. M. Wynne, ⁵⁰ S. Xella, ⁴⁰ Z. Xi, ¹⁵⁰ K. Yamazuki, ¹⁶³ Y. Yamazuki, ¹³³ D. P. Yallup, ⁵⁵ N. Yamaguchi, ⁸⁸ Y. Yamaguchi, ¹⁶⁵ A. Yamamoto, ⁸² M. Yamatani, ¹⁶³ T. Yamazaki, ¹⁶³ Y. Yamazaki, ⁸³ Z. Yan, ²⁵ H. J. Yang, ^{60c,60d} H. T. Yang, ¹⁸ S. Yang, ⁷⁸ X. Yang, ^{60b,58} Y. Yang, ¹⁶³ W-M. Yao, ¹⁸ Y. C. Yap, ⁴⁶ Y. Yasu, ⁸² E. Yatsenko, ^{60c,60d} J. Ye, ⁴² S. Ye, ²⁹ I. Yeletskikh, ⁸⁰ M. R. Yexley, ⁹⁰ E. Yigitbasi, ²⁵ K. Yorita, ¹⁷⁹ K. Yoshihara, ¹³⁷ C. J. S. Young, ³⁶ C. Young, ¹⁵³ J. Yu, ⁷⁹ R. Yuan, ^{60b,tt} X. Yue, ^{61a} S. P. Y. Yuen, ²⁴ M. Zaazoua, ^{35e} B. Zabinski, ⁸⁵ G. Zacharis, ¹⁰ E. Zaffaroni, ⁵⁴ J. Zahreddine, ¹³⁶ A. M. Zaitsev, ^{123,hh} T. Zakareishvili, ^{159b} N. Zakharchuk, ³⁴ S. Zambito, ⁵⁹ D. Zanzi, ³⁶ M. Zgubič, ¹³⁵ B. Zhang, ^{15c} D. F. Zhang, ^{15b} G. Zhang, ^{15a} H. Zhang, ^{15c} J. Zhang, ⁶ L. Zhang, ^{15c} L. Zhang, ^{60a} M. Zhang, ^{15a,15d} Z. Zhang, ^{65a} Z. Zhang, ⁶⁵ P. Zhao, ⁴⁹ Y. Zhao, ^{60b} Z. Zhao, ^{60a} A. Zhenchugov, ⁸⁰ Z. Zheng, ¹⁰⁶ D. Zhong, ¹⁷³ B. Zhou, ¹⁰⁶ C. Zhou, ¹⁸¹ M. S. Zhou, ¹⁵⁵ N. Zhou, ^{60c} Y. Zhao, ^{60a} A. Zhang, ^{15a,15d} H. Lang, ^{15a,15d} M. Zhou, ^{15a,15d} M. Zhou, ¹⁵⁵ N. Zhou, ^{60c} Y. Zhao, ^{60a} Y. Zhao, ^{60b} Z. Zhao, ^{60a} K. Zhang, ^{60b} Y. Zhao, ^{60b} Y. Zhao, ^{60b} Z. Zhao, ^{60a} K. Zha A. Zoccoli,^{23b,23a} K. Zoch,⁵³ T. G. Zorbas,¹⁴⁹ R. Zou,³⁷ and L. Zwalinski³⁶

(ATLAS Collaboration)

¹Department of Physics, University of Adelaide, Adelaide, Australia

²Physics Department, SUNY Albany, Albany NY, United States of America

³Department of Physics, University of Alberta, Edmonton AB, Canada

^{4a}Department of Physics, Ankara University, Ankara, Turkey

^{4b}Istanbul Aydin University, Istanbul, Turkey

⁴^cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey

⁵LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France

⁶High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America

⁷Department of Physics, University of Arizona, Tucson AZ, United States of America

⁸Department of Physics, University of Texas at Arlington, Arlington TX, United States of America

⁹Physics Department, National and Kapodistrian University of Athens, Athens, Greece

¹⁰Physics Department, National Technical University of Athens, Zografou, Greece

¹¹Department of Physics, University of Texas at Austin, Austin TX, United States of America

^{12a}Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey

^{12b}Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey ^{12c}Department of Physics, Bogazici University, Istanbul, Turkey

^{12d}Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey

³Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

¹⁴Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain

^{5a}Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

^{15b}Physics Department, Tsinghua University, Beijing, China

^{15c}Department of Physics, Nanjing University, Nanjing, China

^{15d}University of Chinese Academy of Science (UCAS), Beijing, China

¹⁶Institute of Physics, University of Belgrade, Belgrade, Serbia

¹⁷Department for Physics and Technology, University of Bergen, Bergen, Norway

¹⁸Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

¹⁹Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany

²⁰Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

¹¹School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

^{22a}Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia

^bDepartamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, Colombia

^{23a}INFN Bologna and Universita' di Bologna, Dipartimento di Fisica, Italy

^{23b}INFN Sezione di Bologna, Italy

²⁴Physikalisches Institut, Universität Bonn, Bonn, Germany

²⁵Department of Physics, Boston University, Boston MA, United States of America

²⁶Department of Physics, Brandeis University, Waltham MA, United States of America ^{27a}Transilvania University of Brasov, Brasov, Romania

^{27b}Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

²⁷ Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

^{27d}National Institute for Research and Development of Isotopic and Molecular Technologies,

Physics Department, Cluj-Napoca, Romania

^{27e}University Politehnica Bucharest, Bucharest, Romania

^{27f}West University in Timisoara, Timisoara, Romania

^{28a}Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

^{28b}Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

²⁹Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

³⁰Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

³¹California State University, CA, United States of America

³²Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

^{33a}Department of Physics, University of Cape Town, Cape Town, South Africa ^{33b}iThemba Labs, Western Cape, South Africa

^{33c}Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa ^{33d}University of South Africa, Department of Physics, Pretoria, South Africa

^{33e}School of Physics, University of the Witwatersrand, Johannesburg, South Africa

⁴Department of Physics, Carleton University, Ottawa ON, Canada

^{35a}Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II,

Casablanca, Morocco

^{35b}Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco

^{35c}Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

^{35d}Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

^{35e}Faculté des sciences, Université Mohammed V, Rabat, Morocco

³⁶CERN, Geneva, Switzerland

³⁷Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

³⁸LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France

³⁹Nevis Laboratory, Columbia University, Irvington NY, United States of America

⁴⁰Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

^{41a}Dipartimento di Fisica, Università della Calabria, Rende, Italy

^{41b}INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

⁴²Physics Department, Southern Methodist University, Dallas TX, United States of America

⁴³Physics Department, University of Texas at Dallas, Richardson TX, United States of America

⁴⁴National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece

^{45a}Department of Physics, Stockholm University, Sweden

^{45b}Oskar Klein Centre, Stockholm, Sweden

⁴⁶Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany

⁴⁷Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

⁴⁸Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

⁴⁹Department of Physics, Duke University, Durham NC, United States of America

⁵⁰SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ⁵¹INFN e Laboratori Nazionali di Frascati, Frascati, Italy

⁵²Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

⁵³II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

⁵⁴Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland

^{55a}Dipartimento di Fisica, Università di Genova, Genova, Italy

^{55b}INFN Sezione di Genova, Italy

⁵⁶II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

⁵⁷SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁸LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

⁵⁹Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

^{50a}Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei, China

^{60b}Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China

^{60c}School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China ^{60d}Tsung-Dao Lee Institute, Shanghai, China

^{61a}Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

^{61b}Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

⁶²Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

^{63a}Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

^{63b}Department of Physics, University of Hong Kong, Hong Kong, China

^{63c}Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, China

⁶⁴Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

⁶⁵IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France

⁶⁶Department of Physics, Indiana University, Bloomington IN, United States of America

^{67a}INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy ^{67b}ICTP, Trieste, Italy

⁶⁷^cDipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy ⁶⁸^aINFN Sezione di Lecce, Italy

^{68b}Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

^{69a}INFN Sezione di Milano, Italy

^{69b}Dipartimento di Fisica, Università di Milano, Milano, Italy

^{70a}INFN Sezione di Napoli, Italy

^{70b}Dipartimento di Fisica, Università di Napoli, Napoli, Italy

^{71a}INFN Sezione di Pavia, Italy

^{71b}Dipartimento di Fisica, Università di Pavia, Pavia, Italy

^{72a}INFN Sezione di Pisa, Italy

^{72b}Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

^{73a}INFN Sezione di Roma, Italy

^{73b}Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

^{74a}INFN Sezione di Roma Tor Vergata, Italy

^{74b}Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

^{75a}INFN Sezione di Roma Tre, Italy

^{75b}Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

^{76a}INFN-TIFPA, Italy

^{76b}Università degli Studi di Trento, Trento, Italy

⁷⁷Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

⁷⁸University of Iowa, Iowa City IA, United States of America

⁷⁹Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

PHYSICAL REVIEW LETTERS 124, 222002 (2020)

⁸⁰Joint Institute for Nuclear Research, Dubna, Russia

^{81a}Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil

^{81b}Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

⁸¹^cUniversidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil

^{81d}Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

⁸²KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

⁸³Graduate School of Science, Kobe University, Kobe, Japan

^{84a}AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

^{84b}Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

⁸⁵Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

⁷Kyoto University of Education, Kyoto, Japan

⁸⁸Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

⁹⁰Physics Department, Lancaster University, Lancaster, United Kingdom

⁹¹Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁹²Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana,

Ljubljana, Slovenia

⁹³School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

⁴Department of Physics, Royal Holloway University of London, Egham, United Kingdom

⁹⁵Department of Physics and Astronomy, University College London, London, United Kingdom

⁶Louisiana Tech University, Ruston LA, United States of America

⁷Fysiska institutionen, Lunds universitet, Lund, Sweden

⁹⁸Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

⁹⁹Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

⁰⁰Institut für Physik, Universität Mainz, Mainz, Germany

¹⁰¹School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

¹⁰²CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

¹⁰³Department of Physics, University of Massachusetts, Amherst MA, United States of America

¹⁰⁴Department of Physics, McGill University, Montreal QC, Canada

¹⁰⁵School of Physics, University of Melbourne, Victoria, Australia

¹⁰⁶Department of Physics, University of Michigan, Ann Arbor MI, United States of America

¹⁰⁷Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

¹⁰⁸B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

¹⁰⁹Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

¹¹⁰Group of Particle Physics, University of Montreal, Montreal QC, Canada

¹¹¹P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

¹¹²National Research Nuclear University MEPhI, Moscow, Russia

¹¹³D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

¹¹⁴Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

¹¹⁵Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

¹¹⁶Nagasaki Institute of Applied Science, Nagasaki, Japan

¹¹⁷Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

¹¹⁸Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

¹¹⁹Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands ¹²⁰Nikhef, National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

^{122a}Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia

^{122b}Novosibirsk State University Novosibirsk, Russia

¹²³Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia

¹²⁴Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute",

Moscow, Russia

¹²⁵Department of Physics, New York University, New York NY, United States of America

¹²⁶Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan

¹²⁷Ohio State University, Columbus OH, United States of America

¹²⁸Faculty of Science, Okayama University, Okayama, Japan

¹²⁹Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

¹³⁰Department of Physics, Oklahoma State University, Stillwater OK, United States of America

¹Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic

¹³²Institute for Fundamental Science, University of Oregon, Eugene, OR, United States of America

PHYSICAL REVIEW LETTERS 124, 222002 (2020)

¹³³Graduate School of Science, Osaka University, Osaka, Japan ¹³⁴Department of Physics, University of Oslo, Oslo, Norway ¹³⁵Department of Physics, Oxford University, Oxford, United Kingdom ¹³⁶LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France ¹³⁷Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America ¹³⁸Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg, Russia ¹³⁹Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America ^{140a}Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal ^{140b}Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal ¹⁴⁰ Departamento de Física, Universidade de Coimbra, Coimbra, Portugal ^{140d}Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal ^{140e}Departamento de Física, Universidade do Minho, Braga, Portugal ^{140f}Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain ^{140g}Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal ^{140h}Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal ¹⁴¹Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic ⁴²Czech Technical University in Prague, Prague, Czech Republic

¹⁴³Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

¹⁴⁴Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

¹⁴⁵IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

¹⁴⁶Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

^{147a}Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile ^{147b}Universidad Andres Bello, Department of Physics, Santiago, Chile

¹⁴⁷cInstituto de Alta Investigación, Universidad de Tarapacá, Chile

^{147d}Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

¹⁴⁸Department of Physics, University of Washington, Seattle WA, United States of America

¹⁴⁹Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

⁵⁰Department of Physics, Shinshu University, Nagano, Japan

¹⁵¹Department Physik, Universität Siegen, Siegen, Germany

¹⁵²Department of Physics, Simon Fraser University, Burnaby BC, Canada

¹⁵³SLAC National Accelerator Laboratory, Stanford CA, United States of America

¹⁵⁴Physics Department, Royal Institute of Technology, Stockholm, Sweden

¹⁵⁵Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America

¹⁵⁶Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

¹⁵⁸Institute of Physics, Academia Sinica, Taipei, Taiwan

^{159a}E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

^{159b}High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

¹⁶⁰Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel

¹⁶¹Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

¹⁶²Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

¹⁶³International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan

¹⁶⁴Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan ¹⁶⁵Department of Physics, Tokyo Institute of Technology, Tokyo, Japan ¹⁶⁶Tomsk State University, Tomsk, Russia

¹⁶⁷Department of Physics, University of Toronto, Toronto ON, Canada ^{168a}TRIUMF, Vancouver BC, Canada

^{168b}Department of Physics and Astronomy, York University, Toronto ON, Canada

¹⁶⁹Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences,

University of Tsukuba, Tsukuba, Japan

¹⁷⁰Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

¹⁷¹Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

¹⁷²Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

¹⁷³Department of Physics, University of Illinois, Urbana IL, United States of America

¹⁷⁴Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain ¹⁷⁵Department of Physics, University of British Columbia, Vancouver BC, Canada

¹⁷⁶Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

¹⁷⁷Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany ¹⁷⁸Department of Physics, University of Warwick, Coventry, United Kingdom

PHYSICAL REVIEW LETTERS 124, 222002 (2020)

¹⁷⁹Waseda University, Tokyo, Japan

¹⁸⁰Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel

¹⁸¹Department of Physics, University of Wisconsin, Madison WI, United States of America

¹⁸²Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

¹⁸³Department of Physics, Yale University, New Haven CT, United States of America

^aDeceased.

- ^bAlso at Department of Physics, King's College London, London, United Kingdom
- ^cAlso at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain
- ^dAlso at TRIUMF, Vancouver BC, Canada
- ^eAlso at Department of Physics and Astronomy, University of Louisville, Louisville, KY, United States of America
- ^fAlso at Physics Department, An-Najah National University, Nablus, Palestine
- ^gAlso at Department of Physics, California State University, Fresno, United States of America
- ^hAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland
- ⁱAlso at Physics Dept, University of South Africa, Pretoria, South Africa
- ^jAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
- ^kAlso at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
- ¹Also at Universita di Napoli Parthenope, Napoli, Italy
- ^mAlso at Institute of Particle Physics (IPP), Vancouver, Canada
- ⁿAlso at Department of Physics, University of Adelaide, Adelaide, Australia
- ^oAlso at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy
- ^pAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
- ^qAlso at Borough of Manhattan Community College, City University of New York, New York NY, United States of America
- ^rAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
- ^sAlso at Department of Physics, California State University, East Bay, United States of America
- ^tAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
- ^uAlso at Department of Physics, University of Michigan, Ann Arbor MI, United States of America
- ^vAlso at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
- ^wAlso at Graduate School of Science, Osaka University, Osaka, Japan
- ^xAlso at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- ^yAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
- ^zAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

^{aa}Also at CERN, Geneva, Switzerland

- ^{bb}Also at Department of Physics, Stanford University, Stanford CA, United States of America
- ^{cc}Also at Manhattan College, New York NY, United States of America
- ^{dd}Also at Joint Institute for Nuclear Research, Dubna, Russia
- ee Also at Hellenic Open University, Patras, Greece
- ^{ff}Also at The City College of New York, New York NY, United States of America
- ^{gg}Also at Department of Physics, California State University, Sacramento, United States of America
- ^{hh}Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
- ⁱⁱAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
- ^{jj}Also at Louisiana Tech University, Ruston LA, United States of America
- ^{kk}Also at School of Physics, Sun Yat-sen University, Guangzhou, China
- ¹¹Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
- mm Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
- ⁿⁿAlso at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates
- ^{oo}Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
- ^{pp}Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
- ^{qq}Also at National Research Nuclear University MEPhI, Moscow, Russia
- ^{rr}Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
- ^{ss}Also at Giresun University, Faculty of Engineering, Giresun, Turkey
- ^{tt}Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America