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Characterization of t-affine differences and related forms

ANDRZEJ OLBRYS

Abstract. In the present paper we are concerned with the problem of characterization of
maps which can be expressed as an affine difference i.e. a map of the form

tf(z) + (1 =) f(y) — fltz + (1 - t)y),

where ¢t € (0,1) is a given number. We give a general solution of the functional equation
associated with this problem.

Mathematics Subject Classification. 39B05, 39B52.

Keywords. Cocycle functional equation, Cauchy difference, Jensen difference, t-affine differ-

ence.

1. Introduction

The well-known cocycle functional equation
Fz+y,2) + Fz,y) = F(z,y +2) + F(y, 2)

and its applications have a long history in connection with many areas of
mathematics, as discussed for example in [1,5-7]. It has occurred in different
fields, including homological algebra, the Dehan theory of polyhedra, statistics
and information theory. The general solution of the cocycle functional equation
on abelian groups has been known for about half a century (see [1,6,7]). Tt
turns out that a function F': G — H (where G and H stand for abelian and a
divisible abelian group, respectively) is a solution to the system of functional
equations

Flx+y,2)+ F(z,y) = F(z,y +2)+ F(y,2), z,y,2€G
F(z,y) = F(y,z), z,y€G
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if and only if the function F' is representable as a Cauchy difference i.e. it has
the form

Fx,y) = f(z)+ fly) = fle+y), zyeC
for some one-place function f : G — H. The above characterization have been
proved first by Erdds in [6] for real functions, then by Jessen, Karpf and Thou-
rup in [7] on abelian groups. An interesting method for finding the symmetric
solutions of the cocycle functional equation on commutative semigroups was
given by B. Ebanks in [4].
A similar characterization for differences of the form

Az,y) = f(@) + fly) = Af(u(z + ),
where f is arbitrary function and A and p are given parameters has been given
by Ebanks in [3]. In particular, he has characterized a Jensen differences

Az, y) = f(z) + f(y) — 2f (Jf + y)

2

as a special case A\ = 2,y = % The above form is called Jensen difference
because it vanishes exactly when f is a solution of the Jensen functional
equation. In our main result we generalize the following statement which is
a particular case of result proved by Bruce Ebanks [3, Corollary 7]

Theorem 1. Let G be a uniquely 2-divisible abelian group, and let X be a ratio-
nal vector space. Then a map A : G x G — X satisfies conditions:

(a) A(z,z) =0, z€G,
(b) Alz,y) =A(y,z), z,y€q,
(¢) Alw,y)+A(w)+28 (T, =) = Adw,2)+ Ay, w)+24 (252, 152,
r,y,w,z € G,
if and only if there exists a function f: G — X such that

Ay) = f@) + 1) -2 (5 Y), ayec

A key tool we are going to use in the proof of our main result is the following
theorem from [5, Theorem 3.3]. This theorem gives a general solution of the
most general form of the cocycle functional equation.

Theorem 2. Let G be an abelian group and X a rational vector space. The
general solution F; : G x G — X (i=1,...,6) of
Fi(a4y, )+ Fa(y+ 2 2) + Fy(z+a,y) + Fala, ) + Fs(y, 2) + Folz,2) = 0 (1)
s given by
Fi(z,y) = Ai(z,y) + fs(2) = (fs + f1)(Y) + fro(z +y) — Ba(z +y,9),
Fy(z,y) = Bi(z,y) + fo(x) — (f1 + f8)(y) + fu1(z +y) — Ba(z +y,9),
Fy(z,y) = Ci(z,y) + fo(z) = (fo + f1)(y) — (fro + fu)(z +y) + Ba(z + y,2),
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Fy(z,y) = —Bi(y, ) — Ci(z,y) + fi(x) + faly) — fa(z +y),
Fs(z,y) = —Ci(y,x) — Ar(,y) + fa(x) + f5(y) — fo(z +y),
Fo(z,y) = —Ai(y, ) — Bi(z,y) + fr(x) + fs(y) — folz +y),

where A1, B1,Cy : GX G — X are additive in the first variable, By : G X G —
X is additive in its second variable, and f; : G — X (i =1,...,11) is arbitrary.

2. Results

Let t € (0,1) be a fixed number. Throughout this paper X and Y stand for
linear spaces over the field K such that Q(¢t) € K C R, where Q(¢) is the
smallest field containing a singleton {t}. Clearly, Q@ C Q(¢), where Q denotes
the field of rational numbers. The assumptions about X and Y will not be
repeated in the sequel. The purpose of the present paper is to characterize a
difference of the form

af(z,y,t) = tf(x) + (1 =) f(y) = f{tz + (1 = t)y),
where ¢ € (0,1) is a given number. Let us recall that a function f: X — R is
said to be t-convex, t-concave, t-affine if

af(x,y7t)20, af(x7y,t)§07 af(if,y,t):(), I,C7yEX,

respectively. The above difference we will call a t-affine difference because it
vanishes exactly when f is a t-affine function (see [8] for more information
about t-affine and t-convex functions). It can be easily seen that the t-affine
difference has the following two properties:

(i) ap(z,z,t) =0, =zeX,
(i) af(z,y,t) =as(y,z,1—1t), z,y€X.
Furthermore, let us observe that a satisfies the following functional equation:
(iii) tap(u,z,t)+ (1 —t)af(v,y,t) —ap(tu+ (1 —t)v, te+ (1 —t)y,t)
=tas(u,v,t) + (1 —t)as(z,y,t) —ap(tu+ (1 —t)z, to + (1 — t)y,t).
Indeed, for arbitrary u,z,y,v € X we get
tag(u,z,t) + (1 —t)ar(v,y,t) —ay(tu+ (1 —t)v, tz + (1 — t)y,t)
=t[tf(u)+ (1 —t)f(x) — fltu+ (1 —t)z)]
+A =) [tf(v) + (1 =) f(y) — ftv+ (1= t)y)]
—tf(tu+ (1 —t)v)— (1 —=t)f(tz + (1 — t)y)
+f(ttu+ (L =t)v]+ (1 =)tz + (1 — t)y))
=t[tf(u)+ (1 —t)f(v) = fltu+ (1 —t)v)]
H(1=0)[tf(2) + (1= 1)f(y) — fte + (1~ t)y)]
—tf(tu+ (1 —t)x) — (1 —¢t)f(tv+ (1 — t)y)
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+f(ttu+ (1 —t)z] + (1 = t)[tv + (1 — t)y])
=tas(u,v,t) + (1 —t)as(z,y,t) — af(tu+ (1 — t)z, tv + (1 — t)y, ).

In our main result we show that conditions (i)—(iii) characterize exactly
those maps w : X x X x {¢t,1—t} — [0, 00) which can be expressed as a t-affine
difference ay for some t-convex function f: X — R. In [9] we have proved the
following result in this spirit.

Theorem 3. Let D be a t-convex subset of a real linear space i.e. tD+(1—t)D C
D and let the maps f,g : D — R and w : D x D x [0,1] — R satisfy the
mequalities

fltz+ (1A =t)y) —tf(x) — (1 -1)f(y) <w(z,y,1)
<glte+ (1 —-t)y) —tg(z) — (1 -t)g(y), z,yeD,
where
g(x) < f(z), =€ D.
Then there exists a function h : D — R such that
w(z,y,t) =ap(z,y,t), z,ye€ D and g(z)<h(z)< f(z), =€ D,
if and only if for all x,y,u,v € D the map w satisfies the functional equation:
tw(u,z,t) + (1 — w(v,y,t) —wltu+ (1 — t)v, tz + (1 — t)y,t)
=tw(u,v,t) + (1 —Hw(z,y,t) —wltu+ (1 — )z, tv + (1 — t)y,t).
The following theorem gives a general solution of the functional equation
corresponding to equation (iii).
Theorem 4. The general solution w : X x X — Y of the functional equation
tw(u, z) + (1 — tHw(v,y) — w(tu + (1 — t)v, tz + (1 — t)y)
=tw(u,v) + (1 — w(z,y) — wltu + (1 — )z, tv + (1 — t)y) (2)
is given by
w(z,y) =d(@)+ry)+tn(z)+(1—t)n(y) —nltz+(1-t)y)+c, z,ye€ X, (3)
where d,r : X — Y are additive functions satisfying the condition
(d+r)tz) =t(d+r)(z), xe€lX, (4)
¢ €Y is an arbitrary constant and n : X — Y is an arbitrary function.

Proof. Tt is easy to verify that w given by (3) with (4) is a solution of (2).
Conversely, suppose that (2) holds. Put y = 0 in (2) to get

tw(u,z) + (1 —t)w(v,0) — w(tu + (1 — t)v, tx)
=tw(u,v) + (1 —t)w(z,0) —w(tu + (1 — t)x, tv).
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This equation can be rewritten in the form

0=w <(1 — 1) (x 4 tu) ,tv) + (1 = D, 0) + te(u, )

1—-1¢

oy <(1 —4) <v + 1ttu) ,m) — (1 = w(z,0) — tw(u,v).  (5)
Putting in (5) u = %y we get
1—-1¢
0=w((1-=t)(x+y),tv)+ (1 —t)w(,0)+ tw (Ty,x>
—w((1 = D)+ ), tz) — (1 — Dw(,0) — tw (%;, v)
=w((@ -t (z+y),tv) + (1 —t)w(,0) — [w((1 =) (v +y),tz) + (1 — t)w(z, 0)]
1—-t 1—-t
+tw <Ty, m) — tw (Ty,v) .
We can rewrite the above equation in the form

Fi(z+y,v)+ F(y+v,2) + F3(v+ x,y) + Fi(z,y) + Fs(y,v) + Fs(v,x2) =0,

where,

Fi(z,y) = w((1 —t)z, ty) + (1 — t)w(y, 0),
F2(xay) = _w((l - t)x,ty) - (1 - t)w(y,()),
F3(1U, y) =0,

F4(xay) =tw <1;tyax> ’

1—t¢
F5(x,y)——tw< n ‘ray>a
F6 (.T, y) =0.
Choosing the fourth line of the solution in Theorem 2, we see that
1-1t 1 1 1 1 1
o (Fne) = =3 Bilnn) - 1010 0) 4 1 A1) + 100) ~ 1alo +0)

where B1,C; : X x X — Y are additive functions in the first variable and
f1, f2, f3 : X — Y are arbitrary. If we replace —%Bl by A, —%Cl(y,x) by
As(x,y) and %fl, %fg, %fg by g, f, h, respectively, we get

w(:c,y) - Al <1t_txay> +A2 <1t_txay> +f <1itx)
+g(y)—h(y+ 1;3@),

and finally by putting o := 15 we obtain

w(z,y) = Ai(az,y) + As(aw, y) + flax) +9(y) — h(y +ax),  (6)
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where A; : X x X — Y is an additive map with respect to the i-th variable,
for i =1,2 and f,g,h : X — Y are arbitrary. Now, we substitute (6) into (2)
and obtain after rearrangement

t(Ar (au,x) — Ay (au,v)) + (1 = t) Ay (afv — 2], y)
+A; (aftu+ (1 —t)z], tv+ (1 — t)y) — A (aftu+ (1 —t)v], tx + (1 — t)y)
+tAx(au,z —v) + (1 —t) (Az (v, y) — As(ax,y))
+As(aftu+ (1 —t)z],tv+ (1 — t)y) — As(aftu + (1 —t)v], tx + (1 —t)y)
= (1 =t)(flaz) = f(aw)) + flaftu+ (1 = t)v]) = flaftu+ (1 - t)z])
T(g(0) — g(x)) + gtz + (1 — t)y) — gltw + (1 — t)y)
+t(h(z + au) — h(v + au)) + (1 — t)(h(y + av) — h(y + ax)). (7)
Put v = 0 in (7) to obtain
(I =t)A1(afv —2],y) + A1 (tx,tv + (1 — t)y) — Ay (tv, tz + (1 — t)y)
—tA2(0,2 —v) + (1 — t)(Az(av, y) — Aa(ax,y))
+As(tz,tv 4+ (1 —t)y) — As(tv, tz + (1 — t)y)
= (1= t)(flaz) = flaw)) + f(tv) — f(tz)
+i(g(v) —g(x)) + gtz + (1 —t)y) — g(tv+ (1 - t)y)
+t (h(z) — h(v))+ (1 —1t) (h(y + av) — h(y + ax)). (8)
Subtracting (8) from (7) we get
t(Ar(au, ) — Ay (qu,v)) + Ar(aftu + (1 — t)a], tv + (1 —t)y
—Az(aftu+ (1 =t)v],tx + (1 —t)y) — A1 (tz, tv + (1 — t)y)
+A; (tv, tr + (1 — t)y) +t (Az(au, z — v) — A2(0,z — v)
+As(aftu + (1 —t)z], to+ (1 — t)y) — As(tz,to+ (1 — ¢
—Ag(aftu+ (1 — )], te + (1 — t)y) + Ag(tv, to + (1 — ¢t
— flaltu+ (1~ t)e]) — f(t0) — flaftu+ (1 — t)a]) + f(tz
Tt (h(z + aw) — h(z)) + £ (b(v) — h(v + o)) )

Y)

)
)
)
)
)Y)
)

We see that the right hand side of (9) is independent of y. Therefore the left-
hand side left unchanged upon setting y = 0. That is, after some calculation,
we get

Aq(atu, tv + (1 —t)y) — Ar(atu, tx + (1 — t)y) — Ay (atu, tv) + Ay (atu, tx)
= —As(atu + tx, (1 — t)y) + Az (tz, (1 —t)y)
+As(atu + tv, (1 — t)y) — Az(tv, (1 — t)y).

Setting u,v,y,x in the palace of atu,tv, (1 — t)y, and tx, respectively, we
obtain

Ai(u,v+y) — Ay (u,z +y) — Ay (u,v) + Ay (u, x)
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= —Aa(u+2,y) + Az(2,y) + A2(u + v,y) — Az(v,y). (10)
From this we see that for arbitrary fixed u, v,z € X the map
y— Ai(u,v+y) — A1 (u,z +y) — Ay (u,v) + Ay (u, x)

is additive, consequently

Ai(u,v+y+2)—Ai(u,z+y+2) + Ar(u,x +y) + Ay (u, x + 2)

— A1 (0 + y) — A0+ 2) + Ay (1, ) — Ay () = 0,

for all u,v,z,y,z € X. Putting z := y and v := x + y we get

Ay (u,z + 3y) — 3A1(u, x + 2y) + 3A1 (u, x + y) — Ai(u,x) =0,

for any x,y,u € X, hence the function x — Aj;(u, z) is a polynomial function
of second order for arbitrary u € X. Therefore, by a result of Djokovié¢ [2],
this map can be written as the sum of a constant, an additive map and the
diagonalization of a symmetric bi-additive map i.e.

Ar(u,x) = ap(u) + a1 (u, x) + as(u, z,z), u,z e X. (11)

It is easy to observe that ag, a1, as are additive with respect to the first variable.
By a similar argument we deduce that

AQ(xay) :bo(y)+b1(z,y)+b2(a§,x,y), ‘T7y€X (12)
where by(y) is constant (with respect to z), © — by(z,-) is additive, and
x — bo(x,x,-) is a diagonalization of a symmetric bi-additive map. It is not
hard to check that by, b1, b are additive with respect to y.

Inserting (11) and (12) back into (10) and simplifying we get
GQ(U,’Ufﬂ'J,y):bQ(U,'U*ZC,y), u,v,x,yGX,
hence, ay = by, in particular; as is a 3-additive and symmetric function.
Put v = 0 in (9) and rewrite this equation using the representations (11)
and (12). After rearrangement we get
te(au, x) — c(atu, tx) + tlas(ou, x, z) + as(au, au, )]
—az(atu, te, tr) — ag(atu, atu, tr)
= th(z + au) — f(t[lz + au]) + th(0) — £(0)
—(th(au) — f(atu)) — (th(z) — f(tx)),
where here and in the sequel ¢(z,y) := a1(z,y) + b1(z,y), z,y € X. Replace
in the above equation au by w and define the functions b,p : X — Y by the
formulas
p(x) : =th(z) — f(tz), ze€X (13)
bz, y) : = te(z,y) — clta, ty), 2,y € X, (14)
’7(1772172) : :tQQ(Iayvz)7a2(t‘r7ty7tz)7 Iay;ZEXa (15)
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to get the form

Since the right hand side of (16) is symmetric in x and u, the function b is
bi-additive and symmetric. Observe that the function § : X — Y given by the
formula

1 1
§(z) = p(z) - 3blx,z) = 3(z,z,2) —p(0), @€ X, (17)
is additive. Indeed, for arbitrary u,z € X by virtue of (16), bi-additivity and
symmetry of b, the 3-additivity and symmetry of v we have
S(u+x)—0(u)—d(x) = (u—{—x)—fb(u—l—x u+ x)
1
—gv(u +z,u+z,u+x)—p0)

S0(0,) + 5 ,w) + p(0) — pl) + bl )

1
+37(@,3,2) +p(0)

=p(u+z) —p(u) — p(z) +p(0) — b(u, ) — y(u,u, ) —y(u, 2, ) = 0.

Therefore on account of (13) and (17) f has the form

for=h(3) -3 (3) - B (D) (B 52 v wex 0

where ¢; = —p(0) = f(0) — th(0).
Now, we return to equation (7). Put y = 0 in (7) to obtain

t(Ar(au,x) — A1 (au,v)) + (1 — t) A1 (a(v — x),0) + Ar(aftu + (1 — t)x], tv)

—p(u) +

—Aj(aftu+ (1 —t)v], tx) + tAs(u, x — v) + As(aftu + (1 — t)a], tv)

—Az(aftu + (1 - t)v], tz)

= (1 =t)(flaz) = flav)) + flaftu + (1 = t)v]) = flaftu + (1 = t)z])
+t(g(v) — g(x)) + g(tx) — g(tv)

+t(h(z + au) — h(v + au)) + (1 — t)(h(av) — h(ax)).
Subtracting the resulting equation from (7), we get
(1 =)[Ar(a(v —2),y) — Ai(a (U —x),0)] + Ar(aftu+ (1 —t)z], tv + (1 - t)y)
—Aj(aftu+ (1 —t)z],tv) — Ay (aftu + (1 — t)v], tx + (1 —t)y)
+A; (aftu+ (1 = t)v], tz) + Az (aftu + (1 —t)z],tv + (1 — t)y)
—As(aftu + (1 —t)x],tv) — As(aftu + (1 — t)v], te + (1 —t)y)
+As(aftu + (1 —t)v], tz) + (1 — t)(Az(av, y) — Ax(ax,y))
= g(tr + (1 = t)y) — g(tx) — g(tv + (1 = t)y) + g(tv)
)+ (1 -

+(1 = t)(h(y + av) — h(av)) + t)(h(azx) — h(y + ax)). (19)
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Put w = v = 0in Eq. (19). Having the forms (11) and (12) in mind we obtain
ctz, (L —t)y) — (1 —t)c(az,y) + az(tz, (1 — )y, (1 — t)y)
+ag(tz, tz, (1 —t)y) — (1 — t)][az(ax,y,y) + az(az, az,y)]
= (1= t)h(ax) = g(tz) + (1 = H)h(y) — g((1 = t)y)
~[(1 = t)h(az +y) — g((1 = t)(az +y))] — [(1 = )2(0) — g(0)].

Replace in the above equation oz by x and define the functions b,1,q: X — Y
by the formulas

q(x) 1= (1 =t)h(z) —g((1 -t)z), z€X,
b(z,y): = c((1 = t)a, (1 = t)y) — (1 = t)e(z,y), x,y€ X,
Wa,y,2) i = aa((1 —t)x, (1 = t)y, (1 —t)z) — (1 — t)as(x,y,2), z,y,z € X,
to get the form
b(x,y) + Uz, 2,y) + 1(z,y,9) = q(z) + q(y) — q(z +y) — q(0).

Similarly as before one can check that the function k : X — Y given by the
formula

k(z) = g(z) + %B(m, ) + %l(x,x, 2) = (0),

is additive, moreover, we get the representation

g(z) = (1 -t)h (L) —k (1it>

1- T T 1 T T T

i (R S 2
a0 1—t’1—t>+3l(1—t’1—t’1—t>+02’ (20)

(1—-t

(

where ¢; = g(0) — .
Now, put (11), (12), (18) and (20) into Eq. (6) to get

w(z,y) = Ai(az,y) + A2(ax,y) + f(az) + g(y) — h(y + ax)
= aO(am) + al(axvy) + ag(ax, y,y) + bO(y) + bl(axay)
+as(az, ax,y) — h(y + ax)

T 1 T T
+th<1—t) 6(1—t>_2b<1—t’1—t)
_1 T T T n
37 t71 a &1

y 1 Yy Yy
+( t)h<1—t> k(l ) 2 <1—t’1—t>

1 Yy
=1
+3 <1—t _ t>+02

(=l
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+e(ax,y)+¢
+as(ax,y,y) + as(ax, ax,y)
+

S R
7% :tc (1: 1:) - c(ax,aaz)}

171 T x T
-3 tas ( ) — az(ax,ax,ax)}

1—t’'1—¢t"1—-t

% cly,y) — (1 —t)c (1yt lytﬂ

1 Y Y Y
+3 a2(y7y7y) (]' t)a2<1_t’1_t71_t>:|

— ag(az) — <1”“"_t> +bo(y)
—k <1zt) + clax,y) + ¢

+a2(0¢x, y7y) + CLQ(O{Z‘,O(Z‘,ZJ)

T Yy

1_ _— i

+th(1t)+( t>h(1t> h(ax +y)
L[t

2 \1—-t'1—¢
+1a x x x
3P\t 11—t

1 Y Y

—(1 — — _—
( t){2c(1—t’1—t>

1 y Yy oy
+3a2(1—t’1—t’1—t)]

1 1
+§c(ax, azx) + §a2(0433, oz, ax)

1 1
+§c(y,y) + gag(y,y,y)

= ap(az) — 0 <1xt> +bo(y)

—k (1y—t) + clax,y) + ¢+ az(ax,y,y) + az(ar, ax,y)
1 1

—Ec(ax, y) — 50(97 ax)
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—ao (aa:, ox, y) — az(ax, Y, y)

+t|h T _lc r T
1—t 2 \1—-t"1—t

1 x x z \]
—=a
3P\1—t1—t1-t)]

1
_ [h(y +az) — Ec(y + az,y + azx)
1
_gag(y +ar,y+az,y+ am)]

= dl) + 1ly) + lela, ) — ely,az)
+tn(x)+ (1 —t)n(y) —nltz+ (1 —t)y) +¢

where

and

o= (7)o (1)
1

x x x
3" (1—t’1—t’1—t>’ vex.
Finally, set v = y = 0 in (2) and substitute the new form of w into Eq. (2) to
obtain after rearrangement
dit(v—1z)) —td(v —z) +r(t(v —x)) — tr(v — x)
= c(tv, ta) — c(tx, tv), x,ve€ X.

Put Bz and Sv in the place of x and v, respectively, for § € Q \ {0}. Since
any additive function is Q-homogeneous we get

d(t(v —x)) —td(v —z) + r(t(v —z)) — tr(v — x)
= Ble(tv, tx) — c(tx,tv)], =z,ve X,
consequently,

(d+7)(tx) =t(d+r)(z), ze€X,
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and hence
c(z,v) =c(v,z), z,veX.
This completes the proof of the theorem. O

Remark 1. It follows from the Proof of Theorem 4 that it is also true in the
case where ¢ € R\ {0, 1}.

As an immediate consequence of the previous theorem we obtain the fol-
lowing corollary.

Corollary 1. A map w : X x X — Y satisfies the functional Eq. (2) and
vanishes on the diagonal i.e.

w(z,z) =0, z€X, (21)
if and only if it has the form
w(z,y) =d(z —y) +ar(z,y,t), z,y€X,
where d : X — 'Y is an additive function and f: X — Y is an arbitrary map.

Proof. Assume that w satisfies Eq. (2) and vanishes on the diagonal. On
account of Theorem 4 w has the form

w(z,y) =d(x) +r(y) +as(z,y,t) +¢, x,y€X,

where ¢ € Y is a constant, d,r : X — Y are additive and f : X — Y is
arbitrary. Since the t-affine difference vanishes on the diagonal,

dz)+r(x)=—¢, zelX.

Because d + r is an additive map, by putting x = 0 we get ¢ = 0 and conse-
quently

r(z) =—d(z), zeX.
O

In order to present our next result we need some kind of symmetry of w
and this leads us to the consideration of w as a map of three variables. The
following theorem generalizes Corollary 8 from [3] in the case where G is a
linear space.

Theorem 5. A map w : X x X x{t,1—t} — Y satisfies the functional equation
tw(u,z,t) + (1 — t)w(z,y,t) —w(tu+ (1 —t)z,tx + (1 — t)y, t)
=tw(u, z,t) + (1 — hw(z,y,t) —w(tu+ (1 — )z, tz + (1 — t)y,t), (22)

vanishes on the diagonal and is symmetric i.e.

wz,y,t) =w(y,z,1-t), z,yeclX, (23)
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if and only if there exist an additive functiond : X — Y andamapg: X — Y
such that

w(x,y,s):d((2s—1)(x—y))+ag(x,y,s), xvyer Se{tvl_t}' (24)
Proof. Obviously, the function w of the form (24) is symmetric, vanishes on
the diagonal and satisfies Eq. (22).

Conversely, assume that w vanishes on the diagonal and satisfies (22) and

(23). According to Corollary 1 there exist functions g, h : X — Y and additive
maps a,b : X — Y such that

w(z,y,t) =alz —y) +ag(z,y,t), w(z,y,l—t)=blz—y)+an(z,y,1—1),
for x,y € X. Since
w(z,y,t) =wy,z,1 —1t), =zyelX,
then
a(lr —y) +b(x —y) = ap—g(z,y,t), z,ye€X.
By putting
m(x) = a(x) +b(z), p(z):=hz)—g(x), =X,
we can rewrite the above equation in the form
m(x —y) = tp(z) + (1 = )p(y) —pltz + (1 - t)y), x,yeX.
It follows from the above identity and the additivity of m that
ptz+ (1 —t)2)+ptz+ (1 —t)y) =pltz+ (1 —t)y) + p(z), =z,9,2z€ X.
Putting z = 0 and replacing tz by = and (1 — ¢)y by y we have
p(z) +ply) =p(z +y) +p0), x,yeX,
so subtracting 2p(0) from the both sides of this equation we get
(p(z) = p(0)) + (p(y) = p(0)) = (p(z +y) = p(0)), x,y€X.
Therefore, a function r : X — Y given by the formula
r(z) ==p(x) —p(0), =€X,
is additive and consequently,
m(z —y) =tr(z —y) —r(tz—y), zyeX,
moreover,
hz)=g(x)+r(x)+¢ zeX,
where ¢ = p(0). Hence we have
w(z,y,1 —t) =blx —y) + ag(z,y,1 —t) + ar(z,y,1 —t)
=b(x—y) +ag(z,y, 1 —1) +r(t(z —y)) —tr(z —y)
=b(xz—y) —alz—y) = bz —y) +ag(z,y,1 —t)
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= a’(y - Z‘) + ag(x,y, 1- t)
This implies that
_ a(x_y)+ag(x7y7t)7 s=t1
w(®,y,8) = {a(y—z) +ag(z,y,1—1t),s=1—t.
Finally, defining a new additive function d : X — Y by the formula

we get a desired form of w
w(x,y,s):d((QSf1)($7y))+ag(x,y,s), Z',yEX, SG{t,l*t}.
The proof of the theorem is completed. O

Now, we present a particular case of Theorem 9 from [10] (for D = X)
which we are going to use in our last result.

Theorem 6. Assume that for some pointy € X amap w : X x X x {t,1—t} —
[0,00) satisfies the following three conditions:

(a‘) w(y, yvt) = 03

(b) w(x,z,t) =w(z,z,1—1t),

(c) sw(u,z,8)+ (1 —3s)w(v, z,8) —w(su+(1—s)v,z,8) < sw(u,v,s) —w(sut+

(1—-s)z,sv4+ (1 —s)z,9),

for all x,z € X and s € {t,1 —t}. Then for arbitrary ¢ € R there exists a
t-concave function g, : X — R such that g,(y) = ¢, gy(x) <e¢, v € X, and

w(z, 2, t) = gy(te + (1 —t)z) —tgy(z) — (1 —t)gy(2), z,z€X.
Our main result reads as follows
Theorem 7. A map w: X x X x {t,1—t} — [0,00) is symmetric (i.e. satisfies

(23)), vanishes on the diagonal and satisfies the functional Eq. (22) if and only
if there exists a t-convex function f : X — R such that

w(xay7t):a'f(x7y7t)a x,yeX.

Proof. It is easy to see that an affine difference ay satisfies conditions (a)-(c)
from Theorem 6. Conversely, assume that w is symmetric, vanishes on the
diagonal and satisfies the functional Eq. (22). On account of Theorem 5 there
exist a function h : X — R and an additive function a : X — R such that

w(m,y,s) = a’((QS - 1))(‘T - y)) + ah(l',y,S), T,y € Xa s € {tv 1- t}

As it can be easily checked the function w of the above form satisfies conditions
(a)—(c) from Theorem 6 then there exists a concave function g : X — R such
that

w(z,y,t) =gtz + (1 —t)y) —tg(z) — (1 = t)g(y), z,y€ X,
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Finally, by putting f := —g we see that f is t-convex, moreover,

w(z,y,t) = ay(z,y,t), x,ycX.
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