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Abstract
Diurnal rhythms and light availability affect transcription–translation feedback loops that regulate the synthesis of photo-
synthetic proteins. The CO2-fixing enzyme Rubisco is the most abundant protein in the leaves of major crop species and its 
activity depends on interaction with the molecular chaperone Rubisco activase (Rca). In Triticum aestivum L. (wheat), three 
Rca isoforms are present that differ in their regulatory properties. Here, we tested the hypothesis that the relative abundance 
of the redox-sensitive and redox-insensitive Rca isoforms could be differentially regulated throughout light–dark diel cycle 
in wheat. While TaRca1-β expression was consistently negligible throughout the day, transcript levels of both TaRca2-β 
and TaRca2-α were higher and increased at the start of the day, with peak levels occurring at the middle of the photoperiod. 
Abundance of TaRca-β protein was maximal 1.5 h after the peak in TaRca2-β expression, but the abundance of TaRca-α 
remained constant during the entire photoperiod. The redox-sensitive TaRca-α isoform was less abundant, representing 85% 
of the redox-insensitive TaRca-β at the transcript level and 12.5% at the protein level. Expression of Rubisco large and small 
subunit genes did not show a consistent pattern throughout the diel cycle, but the abundance of Rubisco decreased by up 
to 20% during the dark period in fully expanded wheat leaves. These results, combined with a lack of correlation between 
transcript and protein abundance for both Rca isoforms and Rubisco throughout the entire diel cycle, suggest that the abun-
dance of these photosynthetic enzymes is post-transcriptionally regulated.
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Introduction

Photosynthesis is one of the most important physiological 
processes in plants that begins with the absorption of light 
energy and leads to fixation of CO2 (Berry and Downton 
1982). Photosynthesis is regulated by an internal timekeep-
ing system, the circadian clock, which runs in a period of 
24 h and regulates several molecular and physiological 
processes such as growth, enzyme activity and control of 
stomatal aperture (Harmer 2009). In this study, we set out 
to investigate whether the abundance of ribulose-1,5-bispho-
sphate carboxylase/oxygenase (Rubisco) and its molecular 
chaperone, Rubisco activase (Rca), change in concert with 

light availability throughout the diel cycle. Wheat (Triti-
cum aestivum L.) is one of the most important crops world-
wide, supplying more than 20% of the calories consumed 
by humanity (Ray et al. 2013). We have previously shown 
that wheat contains three Rca isoforms (Carmo-Silva et al. 
2015) that differ in their regulatory properties (Perdomo 
et al. 2019). Here, we tested the hypothesis that the rela-
tive abundance of the three Rca isoforms in wheat leaves 
would change throughout the day, with a potential impact 
on Rubisco activity.

Rubisco consists of eight large subunits (LSU), encoded 
by a single gene (rbcL) in the chloroplast, and eight small 
subunits (SSU), encoded by a multigene family (RbcS), 
in the nuclear genome (Schmidt and Mishkind 1986; Roy 
1989). Rubisco is the most abundant protein in plants and is 
responsible for net CO2 assimilation. However, Rubisco has 
been described as one of the most inefficient enzymes due 
to its very low catalytic turnover rate and the susceptibility 
to inhibition by unproductive binding of sugar-phosphate 
derivatives that lock the active sites in a closed conformation 
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(Brooks and Portis 1988; Jordan and Chollet 1983; Portis 
1995). Rubisco activase (Rca) is a catalytic chaperone of 
Rubisco belonging to the AAA+ protein family (Neuwald 
et al. 1999). Rca uses the energy from ATP hydrolysis to 
restore the catalytic competence of Rubisco by promoting 
the release of the inhibitory sugar-phosphates from Rubisco 
active sites (Portis 1995).

In many flowering plant species, Rca exists as two iso-
forms that are almost identical except for a 30–39 amino 
acid extension of the C terminus that is present only in the 
longer Rca-α isoform and differentiates it from the shorter 
Rca-β isoform (Salvucci et al. 1987; Werneke et al. 1989). 
Two cysteine residues at the C-terminal extension confer 
redox-sensitivity to Rca-α (Zhang and Portis 1999; Zhang 
et al. 2001). The Rca-α and Rca-β isoforms are the products 
of either alternative splicing or separate genes depending 
on the species. Three Rca isoforms, two β and one α, are 
encoded by two genes in wheat (Carmo-Silva et al. 2015). 
Expression of the TaRca1 gene produces a Rca1-β isoform, 
whereas alternative splicing of the TaRca2 gene produces 
either a Rca2-β or a Rca2-α isoform. The gene expression 
and abundance of Rca isoforms varies considerably among 
species, with Rca-α sometimes present in similar amount, 
but generally much less abundant than Rca-β (Salvucci et al. 
1987, 2003; Yin et al. 2010).

Rca gene expression in higher plants is almost entirely 
restricted to green tissues, and is developmentally regulated 
by leaf age as well as regulated by light (Orozco and Ogren 
1993; Watillon et al. 1993; Liu et al. 1996). The expression 
of Rca of numerous species including Arabidopsis, tomato, 
apple and rice is regulated by the circadian clock (Pilgrim 
and McClung 1993; Martino-Catt and Ort 1992; Watillon 
et al. 1993; To et al. 1999). In Arabidopsis and tomato, 
these circadian patterns are evident in the rate of net protein 
synthesis alongside with the accumulation of mRNA levels 
(Martino-Catt and Ort 1992; Pilgrim and McClung 1993). 
However, a physiological role for a circadian rhythm in 
Rca transcript accumulation is unclear and the level of Rca 
protein in mature tobacco leaves does not exhibit a similar 
oscillation (Klein and Salvucci 1995). It has been proposed 
that a physiological role in photosynthetic performance may 
exist in early stages of leaf development as Rca levels are 
low and Rca transcript abundance enhanced by circadian 
rhythm could impact protein abundance (Martino-Catt and 
Ort 1992; Pilgrim and McClung 1993).

Rubisco rbcL and RbcS mRNA amounts fluctuate dur-
ing the diurnal cycle with different patterns in different spe-
cies; however, only the RbcS subunit follows a circadian 
rhythm (Pilgrim and McClung 1993; Recuenco-Muñoz 
et al. 2015). In rice, rbcL and RbcS amounts fluctuated dur-
ing diurnal cycle with peak abundance levels during the 
light phase of the photoperiod (Wang and Wang 2011). In 
Arabidopsis plants grown in a light/dark photoperiod, RbcS 

mRNA exhibits a diurnal pattern of expression, with peak 
abundance occurring soon after beginning of the light and 
minimum levels at the end of the light period (Pilgrim and 
McClung 1993). In contrast, the amount of rbcL and RbcS 
transcripts in Chlamydomonas reinhardtii were highest 
in the dark (Recuenco-Muñoz et al. 2015). Other studies 
with C. reinhardtii indicate that rbcL mRNA levels are not 
directly correlated to the amount of functional Rubisco pro-
tein (Winder et al. 1992; Cohen et al. 2006). This lack of 
correlation between gene expression and protein abundance 
suggests that the latter is post-transcriptionally regulated, 
and that transcript levels are insufficient to predict functional 
protein levels (Vogel and Marcotte 2012; Liu et al. 2016).

Despite the characterisation of Rca isoforms in wheat 
(Carmo-Silva et al. 2015; Perdomo et al. 2019) and gene 
expression studies under abiotic stresses such as drought and 
temperature (Zhao et al. 2017; Scafaro et al. 2019a; Degen 
et al. 2021) little is known about diurnal regulation of their 
abundance. The three wheat Rca activate Rubisco at dif-
ferent rates and differ in their sensitivity to light stimuli, 
changes in the ADP/ATP ratio (Perdomo et al. 2019). These 
findings suggest that changes in the relative abundance of 
each isoform could affect the rate of CO2 fixation by Rubisco 
in wheat leaves. The aim of this study was to characterise 
the expression levels of Rubisco and the three Rca isoforms 
present in wheat during the 24 h diel cycle and investigate 
whether the diurnal fluctuations in gene expression are trans-
lated into protein abundance. Likewise, we wanted to iden-
tify the time period when the protein amounts are highest 
and constant during the day.

Materials and methods

Plant material

Plants of T. aestivum L. cultivar Cadenza were grown from 
seed in 1.5 L pots (11 × 11 cm) containing Rothamsted 
description mix compost with 75% medium grade (L&P) 
peat, 12% screened sterilised loam, 3% medium grade 
vermiculite, 10% grit (5 mm screened, lime free). After 
2 weeks, plants were thinned down to have 3 plants per pot, 
with a total of 90 plants (30 pots). Plants were grown in 
controlled environment cabinets (Fitotron Weiss Gallen-
kamp, UK) with an area of 1.68 m2 and growing height of 
1.4 m. Plants were grown under a photoperiod of 16 h light 
with a PPFD of 500 μmol m−2 s−1; lights were on at 00:00 
and off at 16:00 each day (Fig. S1). Air temperature was 
20/18 °C day/night and the relative humidity was maintained 
at 60%. Plants were watered daily. Plants were grown in two 
controlled environment cabinets to have sufficient replica-
tion, 45 plants (15 pots) were placed in each cabinet and the 
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plants in the two cabinets were planted and harvested in two 
consecutive days.

The experimental design was a split-plot in two blocks 
(i.e. two cabinets). Each sample was taken from a separate 
plant, and three samples were taken at each time point from 
each cabinet, resulting in six individual samples (i.e. six bio-
logical replicates) per time of the day, three from each of the 
two cabinets. The samples were taken throughout the diel 
cycle at 20:00, 22:00, 23:00, 24:00, 01:00, 02:00, 04:00, 
06:00, 08:00, 10:00, 12:00, 14:00, 16:00, 17:00 and 18:00 h, 
with good representation of the period in darkness and in 
the light (Fig. S1).

The youngest fully expanded leaf with a visible collar, 
from the main tiller, was harvested 38 days after planting 
(growth stage Zadoks 2.5–3.0; Zadoks et al. 1974). The 
youngest fully expanded leaf was generally the fourth leaf, 
but in some more developed plants it corresponded to the 
fifth leaf. A section of 8 cm in the middle of the leaf, avoid-
ing the leaf base and tip, was divided into four 2-cm-long 
segments and two of each of these used for each of two sub-
samples: one for quantifying Rca and Rubisco protein abun-
dance and another for gene expression analysis by qRT-PCR.

Gene expression and quantification

Gene expression of Rca (TaRca1-β, TaRca2-β, TaRca2-α), 
and Rubisco large and small subunits (TarbcL and TaRbcS), 
were determined by Real-Time Quantitative Reverse Tran-
scription PCR (RT-qPCR). The extraction of total RNA from 
the wheat ~ 4 cm2 leaf samples was completed using a modi-
fied hot phenol method (Shinmachi et al. 2010; Verwoerd 
et al. 1989). The total RNA concentration and quality was 
determined by measuring the absorbance at 230, 260 and 
280 nm with a Nanodrop spectrometer (Thermo Fisher Sci-
entific, Inc., UK) and running on a 1% (w/v) agarose gel. 
A sub-sample of 1 μg of total RNA was used for cDNA 
synthesis, using Superscript III as per the manufacturer’s 
instructions (Life Technologies Ltd., UK).

For qRT-PCR a 1:10 dilution of cDNA was used with 
SYBRGreen (Platinum® SYBR® Green qPCR SuperMix-
UDG w/ROX, Life Technologies, UK), in 25 μL reactions, 
as per the manufacturer’s instructions. Primer pairs specific 
to TaRca1-β, TaRca2-β, TaRca2-α, TarbcL and TaRbcS 
(primers were specific for TaRbcS located on chromosome 
5A, 5B and 5D, group S3 as described by Degen et al. 2021), 
were used for qRT-PCR, alongside primers for two refer-
ence genes (Table S1). Primers were designed to bind to all 
three wheat sub-genomes, except for rbcL, which is encoded 
in the chloroplast genome. The qRT-PCR conditions were: 
50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 
95 °C for 15 s and 60 °C for 1 min. Melt curves were also 
completed: 95 °C for 15 s, 60 °C for 1 min and 95 °C for 

15 s (7500 Real-Time PCR machine, Applied Biosystems, 
Life Technologies, UK).

The mean primer efficiency was estimated using the 
linear phase of all individual reaction amplification curves 
(Ramakers et al. 2003) and calculated using the LinReg-
PCR package (Tuomi et al. 2010). The actin and succinate 
dehydrogenase genes were used as reference genes for the 
normalised relative quantification of expression. The nor-
malised relative quantity (NRQ) of expression was calcu-
lated in relation to the cycle threshold (CT) values and the 
primer efficiency (E) of the target gene (X) and the normalis-
ing reference gene (N), based on Rieu and Powers (2009): 
NRQ = (EX)−CT, X/(EN)−CT, N.

Rubisco and Rubisco activase protein quantification

To determine the amounts of Rubisco and Rca protein in 
the wheat ~ 4 cm2 leaf samples, extracts were prepared as 
described by Perdomo et al. (2018). Total soluble protein 
(TSP) concentration in the crude extracts was determined 
according to the Bradford (1976) method using bovine 
serum albumin as standard. Based on the TSP concentration 
all samples were diluted to 0.6 µg µL−1 and 3 µg of TSP was 
used per sample for Rubisco and Rca quantification. Proteins 
were separated by sodium dodecyl sulphate polyacrylamide 
gel electrophoresis (SDS-PAGE) on 12% gels hand casted 
and either visualised by staining with Coomassie Blue for 
Rubisco, or subject to immunoblotting for Rca. For the lat-
ter, proteins were transferred from the gel to a nitrocellulose 
membrane (iBlot, Thermofisher, UK), probed with a pri-
mary antibody anti-Rca produced in rabbit against cotton 
(Salvucci 2008) and a fluorescent secondary antibody for 
visualisation of Rca using an Odyssey Fc imaging (LI-COR, 
Lincoln, USA).

For Rca quantification, purified wheat Rca was used to 
load in each gel a series of four standards with increasing 
quantities, 0.01, 0.05, 0.1 and 0.15 µg, to prepare a calibra-
tion curve (Fig. S2). For Rubisco quantification, purified 
wheat Rubisco was used to load in each gel a series of four 
standards with increasing quantities, 0.1, 0.5, 1.0 and 1.5 µg, 
to prepare a calibration curve (Fig. S2).

Data analysis and modelling

Data were analysed using R 3.6.2 (R Core Team 2020) and 
RSTUDIO 1.2.5033 (RStudio Team 2020), and graphs were 
prepared using the GGPLOT 2 package (Wickham 2017). 
Linear Mixed Effects Regression (LMER) was used to assess 
the significance of differences in the gene expression and 
protein abundance of Rca and Rubisco between the different 
sampling times. Mean values and standard error of the mean 
(SEM) are shown in figures. To estimate maximum gene 
expression and protein amounts for Rca and Rubisco, and 
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the corresponding times at which the maximum values were 
reached, second- to fourth-order polynomials and general-
ised additive models (GAM) were fitted to the experimental 
data using the gam function from the MGCV 1.8-24 package 
in R (Wood 2017). The model that best-fit the experimental 
data was selected based on the Akaike information crite-
rion (Akaike 1974) using the AIC function (Table S2). The 
‘predict’ function was used to estimate the maximum gene 
expression and protein amount values and the corresponding 
times for each Rca isoform and Rubisco subunits. The stand-
ard error calculated for each model was used to predict 95% 
confidence intervals for each fit (dashed lines in the graphs).

Results

Gene expression of TaRca2 and TaRbcS peaked 
at 8–10 h into the photoperiod

The expression of TaRca1 and TaRca2 encoding the three 
Rca isoforms present in wheat (TaRca1-β, TaRca2-β and 
TaRca2-α), as well as the Rubisco large (rbcL) and small 
(RbcS) subunits, were determined throughout the diel 
cycle using quantitative real-time PCR analysis. TaRca2-β 
and TaRca2-α transcripts were much more abundant than 
TaRca1-β, which was detectable in very small amounts. 

The expression of TaRca2-β was highest at the middle of 
the light phase, 8 h into the photoperiod, while TaRca2-α 
had the highest expression levels occurring 10  h into 
the photoperiod. The expression of both TaRca2-β and 
TaRca2-α decreased significantly in the second half of 
the light phase, reaching a minimum at the end of the 
light phase and remaining low and constant during the 
dark phase (Fig. 1). The ratio between the TaRca2-α and 
TaRca2-β relative gene expression remained mostly con-
stant throughout the diel cycle, with the expression of 
TaRca2-α corresponding to approximately 85 ± 3% rela-
tive to the TaRca2-β isoform (Fig. S3).

The relative expression of the TaRca1 gene was 
extremely low, with Normalised Relative Quantity values 
(NRQ) from 0.001 to 0.008, which are much lower than its 
homologues encoded by the TaRca2 gene. No significant 
differences in TaRca1-β expression were detected between 
time points throughout the diel cycle.

The relative gene expression of the Rubisco subunits, 
TarbcL and TaRbcS, also fluctuated during the diel cycle; 
however, these fluctuations were only significant for the 
small subunit, TaRbcS, which showed lowest expression 
at 4 h into the photoperiod and highest expression at 10 h 
into the photoperiod (Fig. 2). The relative expression lev-
els of both Rubisco subunits, TarbcL and TaRbcS, did not 
show a consistent trend during the dark phase, remaining 
mostly stable.

Fig. 1   TaRca1-β, TaRca2-β and TaRca2-α expression throughout the 
diel cycle in young fully expanded leaves of wheat. Samples were 
taken from individual plants 38 days after planting (vegetative stage) 
at the indicated times during the night (“Dark”, black background) 
and day (“Light”, white background). Gene expression was estimated 

as normalised relative quantification (NRQ) using actin and succinate 
dehydrogenase as reference genes. Values are means ± SEM (n = 4–6 
biological replicates). Arrows mean significant, positive and nega-
tive, correlations between gene expression and time of the day for 
TaRca2β and TaRca2α (Pearson correlation analysis, P < 0.01)
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TaRca‑β was more abundant than TaRca‑α 
and the isoform ratio remained unchanged 
during the diel cycle

The protein abundance of TaRca-β and TaRca-α in young 
fully expanded leaves of wheat plants throughout the 
diel cycle was estimated by immunoblotting. Because of 
the barely detectable transcript abundance of TaRca1-β 
(Fig. 1), we assumed that the antibody reactivity to the 

shorter Rca-β represents mainly TaRca2-β. TaRca-β was 
much more abundant than TaRca-α during the entire diel 
cycle (Fig. 3). Although the TaRca-β amounts appeared 
highest at 10 h into the photoperiod, there were no signifi-
cant differences between the time points at which measure-
ments were taken during the diel cycle. Similarly, TaRca-α 
remained constant during the entire diel cycle (Fig. 3). The 
protein ratio between the isoforms TaRca-α and TaRca-β 
was 12.5 ± 0.5% throughout the diel cycle (Fig. S3).

Fig. 2   TarbcL and TaRbcS expression throughout the diel cycle in 
young fully expanded leaves of wheat. Samples were taken from indi-
vidual plants 38 days after planting (vegetative stage) at the indicated 
times during the night (“Dark”, black background) and day (“Light”, 
white background). Gene expression was estimated as normalised rel-
ative quantification (NRQ) using actin and succinate dehydrogenase 
as reference genes. TaRbcS expression used primers specific to the 

genes in chromosome 5 (group S3). Values are means ± SEM (n = 4–6 
biological replicates). There was a significant effect of time of day 
on the expression of TaRbcS (ANOVA, P < 0.05). The times of day 
which are significantly different are marked with asterisks [Tukey’s 
honestly significant difference (HSD) mean-separation test, *P < 0.05 
and **P < 0.01]

Fig. 3   TaRca-β and TaRca-α 
protein amounts throughout 
the diel cycle in young fully 
expanded leaves of wheat. 
Samples were taken from 
individual plants 38 days after 
planting (vegetative stage) at 
the indicated times during the 
night (“Dark”, black back-
ground) and day (“Light”, white 
background). Rca amount was 
estimated by reference to a 
calibration curve prepared with 
increasing amounts of purified 
TaRca. Values are means ± SEM 
(n = 4–6 biological replicates). 
There were no significant dif-
ferences between time of day 
and TaRca amount (ANOVA, 
P > 0.05)
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Rubisco abundance decreased during the dark 
period

The amount of Rubisco protein estimated by SDS-PAGE 
based on the abundance of the large subunit relative to total 
soluble protein remained constant throughout the photoper-
iod but decreased in the dark period (Fig. 4). Rubisco abun-
dance was lowest 4 h into the dark period, with a significant 
difference between the value at the middle of the dark period 
(20:00 h) and most of the values during the photoperiod. 
Moreover, there was a significant decrease in Rubisco 
abundance in the first half of the dark period followed by 
a significant increase in the second half of the photoperiod 
(Fig. 4). The higher level of abundance observed at the start 
of the photoperiod was maintained during the light phase.

TaRca‑β exhibited a time‑lag between gene 
expression and protein amount

To estimate the maximum gene expression and protein 
amount for Rca isoforms and Rubisco, and the correspond-
ing times at which the maximum values are obtained, a 
generalised additive model (GAM) was fitted to the experi-
mental data (Figs. S4, S5). Based on the model predictions, 
TaRca2-β and TaRca2-α had their maximum relative gene 
expression values (117.1 and 85.1 NRQ, respectively) at 
09:15 h into the photoperiod (Table 1). By comparison, 
the maximum predicted amount of TaRca-β protein was 

42.5 mg g−1 TSP at 10:45 h (1.5 h after the peak in gene 
expression), and there was no peak for TaRca-α protein dur-
ing the photoperiod.

Conversely, for Rubisco, there was a predicted peak in the 
large subunit protein amount at 01:00 h into the photoper-
iod, with no corresponding peak in gene expression, which 
remained constant throughout the light period (Table 1). 
These results show a lag between gene expression and 

Fig. 4   Rubisco amount throughout the diel cycle in young fully 
expanded leaves of wheat. Samples were taken from individual plants 
38  days after planting (vegetative stage) at the indicated times dur-
ing the night (“Dark”, black background) and day (“Light”, white 
background). Rubisco amount was estimated by reference to a cali-
bration curve prepared with increasing amounts of purified enzyme 
and based on density of the large subunit (TarbcL). Values are 

means ± SEM (n = 4–6 biological replicates). The times of day which 
are significantly different are marked with asterisks [Tukey’s hon-
estly significant difference (HSD) mean-separation test, *P < 0.05 and 
**P < 0.01]. Arrows mean significant, positive and negative, correla-
tions between Rubisco amount and time of the day (Pearson correla-
tion analysis, P < 0.05)

Table 1   Predicted values for Rca and Rubisco transcript and protein 
abundance in wheat

The maximum and mean abundances, the times at which these 
occurred and the respective P values (*P<0.05, **P<0.01 and 
***P<0.001)  were estimated from the best-fit models applied to 
describe the diurnal response of Rca and Rubisco gene expression 
and protein amounts (Figs. S4, S5; Table S2)

Isoform/subunit Predicted value Time 
of day 
(hh:mm)

P value

TaRca1-β (mean NRQ) 0.002 (Mean) NA 0.583
TaRca2-β (mean NRQ) 117.1 (Max) 09:15  < 0.001***
TaRca2-α (mean NRQ) 85.1 (Max) 09:15  < 0.001***
TaRca-β (mg g−1 TSP) 42.5 (Max) 10:45  < 0.01**
TaRca-α (mg g−1 TSP) 4.35 (Mean) NA 0.411
TarbcL (mean NRQ) 446.1 (Mean) NA 0.594
TaRbcS (mean NRQ) 185.6 (Max) 10:30  < 0.05*
TarbcL (mg g−1 TSP) 770.0 (Max) 01:00  < 0.001***
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protein abundance for TaRca-β, and a generalised lack of 
correlations between gene expression and protein abundance 
of Rubisco and Rca during the diel cycle (Fig. S6).

Discussion

Rubisco activase (Rca), a molecular chaperone required to 
maintain Rubisco activity, occurs in diverse isoforms. In 
wheat, three isoforms have been described that are known 
to differ in their redox-sensitivity (by inference from results 
with Arabidopsis; Zhang and Portis, 1999; Zhang et al. 
2001) and inhibition by ADP (Perdomo et al. 2019; Degen 
et al. 2020). Here, we show that the relative abundance of the 
redox-sensitive TaRca-α and redox-insensitive TaRca-β iso-
forms remains constant in the leaves of wheat plants grown 
under controlled conditions throughout the entire diel cycle. 
TaRca-α isoform is less abundant, representing 85% of the 
redox-insensitive TaRca-β at the transcript level and 12.5% 
at the protein level.

Rca gene expression has been reported to respond to 
organ-specific signals, light availability and the circadian 
clock in a species-specific manner (Orozco and Ogren 1993; 
Watillon et al. 1993; Liu et al. 1996; Chao et al. 2014). 
The expression of the wheat Rca isoforms TaRca2-α and 
TaRca2-β, encoded by the highly expressed TaRca2 gene, 
increased during the first half of the photoperiod, with 
a peak at 8–10 h after the start of the 16 h photoperiod. 
The expression of TaRca1-β isoform was extremely low, 
in agreement with previous reports (Scafaro et al. 2019a; 
Degen et al. 2021), and remained low throughout the entire 
diel cycle (Fig. 1). Rca expression peaked earlier in the day 
for other species previously characterised: 3 h after the start 
of a 14 h photoperiod in rice (To et al. 1999), 6 h after the 
start of a 14 h photoperiod in Arabidopsis (Pilgrim and 
McClung 1993), 2 h after the start of a 14 h photoperiod 
in soybean (Chao et al. 2014), and 2 h after the start of a 
16 h photoperiod in apple (Watillon et al. 1993). It is also 
possible that the relative expression of Rca isoforms in dif-
ferent species may vary with growth conditions, plant age 
and developmental stage.

The expression of Rubisco large (rbcL) and small (RbcS) 
subunits is controlled by different internal and external fac-
tors such as light signals and temperature (Rodermel et al. 
1996; Spreitzer 2003; Recuenco-Muñoz et al. 2015). The 
expression of TarbcL remained constant during the diel 
cycle, while TaRbcS transcripts abundance was highest 10 h 
into the photoperiod (Fig. 2). Of note is that the primers used 
were specific to the TaRbcS genes in chromosome 5 (group 
S3). As described by Degen et al. (2021), TaRbcS genes can 
be grouped according to their sequence similarity, with gene 
groups S1 and S2 in chromosome 2 and group S3 in chro-
mosome 5. In the same study, the abundance of TaRbcS2 

and TaRbcS3 transcripts was comparable and higher than 
TaRbcS1 in wheat leaves that were sampled only at 4 h after 
the start of a 16 h photoperiod. The results presented here 
are in agreement with previous studies reporting that the 
Rubisco RbcS is regulated by the circadian rhythm, while the 
rbcL is not (Pilgrim and McClung 1991; Cheng et al. 1998; 
Recuenco-Muñoz et al. 2015). In Arabidopsis the peak in 
expression of RbcS was reported earlier in the light phase, 
i.e. 1 h after the start of a 14 h photoperiod, and in C. rein-
hardtii and tomato RbcS expression remained largely con-
stant throughout the diel cycle (Martino-Catt and Ort 1992; 
Pilgrim and McClung 1993; Cheng et al. 1998; Recuenco-
Muñoz et al. 2015), suggesting a species-specific pattern. 
Whether TaRbcS1 and TaRbcS2 show a peak of expression 
at the middle of the photoperiod as observed for TaRbcS3 
remains to be determined.

Rubisco protein abundance was highest at the start of the 
photoperiod and remained constant during the light phase. 
The CO2-fixing enzyme represents a large fraction of the 
total soluble protein (TSP) in wheat leaves, both in plants 
grown under controlled conditions (Fig. 4) and in the field 
(Carmo-Silva et al. 2015, 2017). The decrease in Rubisco 
abundance observed during the night period in the present 
study suggests significant degradation of the enzyme in 
the first 4 h, followed by synthesis prior to the start of the 
photoperiod. The extent of Rubisco degradation cannot be 
accurately determined by SDS-PAGE and requires further 
investigation using more robust methods, including CABP-
binding (Ferreira et al. 2000; Whitney and Sharwood 2014). 
Previous work has suggested that Rubisco is degraded at a 
slow rate both in rice (Mae et al. 1983; Suzuki et al. 2001; 
Irving and Robinson 2006) and in Arabidopsis (Li et al. 
2017; Tivendale et al. 2020). Esquível et al. (1998) found 
the rate of Rubisco degradation to be species-specific; and it 
is likely that the degradation rate changes with leaf and plant 
age, as well as with environmental conditions. Importantly, 
large daily fluctuations of the most abundant leaf protein 
represent a significant cellular energetic burden, and Rubisco 
abundance has been shown to impact wheat grain yields (e.g. 
Lobo et al. 2019). Thus, further investigation is warranted 
into the rates of Rubisco synthesis and degradation, and the 
regulation of Rubisco protein abundance and turnover.

Variation in Rubisco activity during the photoperiod is 
more likely to be controlled via regulation of its activity 
than protein abundance (Li et al. 2020; Davies and Grif-
fiths 2012). The molecular chaperone Rca is a key player 
in the regulation of Rubisco activity. Modelling of Rca iso-
form protein amounts suggested a peak in the abundance of 
TaRca-β at 10:45 h into the photoperiod (Table 1), while 
TaRca-α abundance remained unchanged throughout the 
diel cycle. In tomato, Rca abundance peaked 2 h before the 
start of the photoperiod and was lowest at the middle of the 
photoperiod (Martino-Catt and Ort 1992). The ratio between 
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total Rca and Rubisco abundance remained largely constant 
during the photoperiod, suggesting sufficient amount of the 
molecular chaperone to maintain Rubisco activity through 
the release of inhibitory compounds from active sites.

The relative abundance of the different Rca isoforms dif-
fers among species. In Arabidopsis, Camelina and spinach, 
equal amounts of Rca-α and Rca-β are present, while rice 
and soybean accumulate much more Rca-β than Rca-α (Sal-
vucci et al. 1987; Fukayama et al. 2012; Chao et al. 2014; 
Scafaro et al. 2016). Similarly, in wheat, TaRca-β is much 
more abundant than TaRca-α (Law and Crafts-Brandner 
2001; Degen et al. 2021), and the Rca-α/β ratio remained 
constant during the whole diel cycle (12.5%, Fig. S3). The 
three wheat Rca isoforms have been shown to differ in the 
sensitivity of Rubisco activation activity to inhibition by 
ADP (Perdomo et al. 2019; Scafaro et al. 2019b), as well as 
in response to temperature (Scafaro et al. 2019a; Degen et al. 
2020). It would be conceivable that plants might up-regulate 
the abundance of one or another isoform in adaptation to the 
prevailing environment. Accordingly, the Rca-α/β ratio has 
been reported to increase in Brachypodium distachyon plants 
under drought and salinity stress (Bayramov and Guliyev 
2014), and the relative abundance of TaRca1-β increased in 
wheat at high temperature (Law and Crafts-Brandner 2001; 
Degen et al. 2021).

Coordination between gene expression and protein 
translation enables physiological responses to various envi-
ronmental stimuli, essential for successful plant growth 
and reproduction (Grabsztunowicz et al. 2017). However, 
for both Rca isoforms and Rubisco, there was a mismatch 
between the time of day corresponding to the predicted 
maximum levels of transcript abundance and protein abun-
dance (Table 1). While for TaRca-β the maximum protein 
abundance was predicted to occur 1.5 h after the predicted 
peak of transcript abundance, for TaRca-α and for Rubisco 
there was a peak for transcript abundance and not for pro-
tein abundance or vice-versa. Moreover, the ratio TaRca-α/
TaRca-β was 85% at the transcript level and 12.5% at the 
protein level, and there was no significant correlation 
between gene expression and protein abundance for Rca 
and Rubisco during the diel cycle (Fig. S6). These find-
ings agree with previous studies in wheat and other species 
under control and stress conditions, suggesting that Rca is 
regulated at either the translational level by mRNA silenc-
ing or at post-translational level by more rapid turnover of 
the protein (Law and Crafts-Brandner 2001; DeRidder et al. 
2012; Bayramov and Guliyev 2014). A lack of correlation 
between gene expression and protein synthesis has also been 
reported for Rubisco in Arabidopsis, tobacco, rice and C. 
reinhardtii (Pilgrim and McClung 1993; Rodermel et al. 
1996; Wang and Wang 2011; Recuenco-Muñoz 2015), again 
suggesting that abundance of the CO2-fixing enzyme might 

be regulated post-transcriptionally (Rodermel et al. 1996; 
Law and Crafts-Brandner 2001; Houtz and Portis 2003).

In summary, the results presented here show that the 
redox-sensitive TaRca-α isoform is less abundant than 
the redox-insensitive TaRca-β isoform, the difference in 
abundance is more pronounce at the protein level (12.5% 
α/β) than at the transcript level (85% α/β), and the ratio 
TaRca-α/TaRca-β remains unchanged throughout the diel 
cycle. These results, combined with the lack of correlation 
between transcript and protein abundance for both Rca and 
Rubisco, suggest that the abundance of both enzymes and 
their isoforms is post-transcriptionally regulated.
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