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Abstract: Copper oxide and Zinc (Zn)-doped Copper oxide nanostructures (CuO-NSs) are success-

fully synthesized by using a hydrothermal technique. The as-obtained pure and Zn-doped CuO-

NSs were tested to study the effect of doping in CuO on structural, optical, and antibacterial prop-

erties. The band gap of the nanostructures is calculated by using the Tauc plot. Our results have 

shown that the band gap of CuO reduces with the addition of Zinc. Optimization of processing 

conditions and concentration of precursors leads to the formation of pine needles and sea urchin-

like nanostructures. The antibacterial properties of obtained Zn-doped CuO-NSs are observed 

against Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli) and Gram-pos-

itive (Staphylococcus aureus) bacteria via the agar well diffusion method. Zn doped s are found to 

have more effective bacterial resistance than pure CuO. The improved antibacterial activity is at-

tributed to the reactive oxygen species (ROS) generation. 

Keywords: copper oxide; zinc-doping; hydrothermal; antibacterial activity 

 

1. Introduction 

The manipulation of size, composition, and morphology of technologically signifi-

cant materials ranging from nanometer to micrometer has been a major challenge for sci-

entists over the past several decades [1]. Metal oxide nanostructures possess special phys-

ical and chemical properties due to their finite size and large surface area. Metal oxides 

have attracted great interest from scientists due to their multi-discipline applications [2–

4]. Copper oxide (Cu) is among the most significant p-type semiconductors, having Cu 

atoms on Face centered cubic (FCC) and oxygen (O) atoms at the center with a band gap 

of 1.2 eV–1.9 eV [5,6]. CuO-based nanomaterials are extensively studied and used in var-

ious applications due to their unique properties, i.e., high physical and chemical stability, 
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non-toxicity, narrow optical band gap, infrared photodetection, and ferromagnetic behav-

ior (because of its opposite surface spin) [7–10]. Moreover, in certain semiconductors and 

oxide-based materials, optical, magnetic, and electronic properties are often observed [7]. 

The three most important oxidation states of copper is Cu+, Cu2+, and Cu3+, causing the 

possibility to dope electrons and holes [8]. These properties make CuO an ideal contender 

for a variety of applications, including gas sensors, solar cell, supercapacitors, lithium-ion 

electrode resources, superconductors, magnetic storage media, and catalysis. So far, vari-

ous copper oxide nanostructures (CuO-NSs) have been reported, including one dimen-

sional, two dimensional, spherical, and hierarchical structures [11–14]. Cu is a well-known 

antibacterial agent due to its high efficacy against bacteria [15,16]. CuO nanoparticles kill 

bacteria by the release of Cu2+ ions [17]. ZnO is also known for its significant inhibition of 

bacterial growth in a wide range of bacteria, caused by the production of reactive oxygen 

species (ROS) formed in water [18,19]. During interaction with water, ZnO reduces oxy-

gen to water and produces three intermediate ROS; hydroxyl radical, hydrogen peroxide, 

and superoxide [20,21]. These types of species play a key role in killing gram-positive and 

gram-negative bacteria. The ROS generation in a nanomaterial structure by zinc oxides 

depends on the existence of defect sites [22]. 

Zn2+ dopant has been documented to be the most successful in producing defects in 

CuO nanostructures that might have the potential for biological applications [23]. Due to 

Cu2+ (0.072 nm) and comparable ionic states being almost the same ionic radius of Zn 

(0.074 nm), Zn2+ is promising in various fields. Zn-doped CuO oxide has been reported as 

an excellent candidate for anti-bacterial resistance. Zn-CuO nanoparticles with antibacte-

rial drugs could be deposited on the cotton substrate to attain an anti-bacterial cotton 

bandage [24]. The combined antibacterial properties of CuO and ZnO can be investigated 

by doping Cu into the matrix of ZnO or doping Zn into the matrix of CuO. The production 

of strong resistance pathways to such hybrid metal particles becomes a challenge for bac-

teria [25]. 

Various preparation methods for nanostructures are described in the literature, such 

as sol-gel combustion, co-precipitation, chemical vapor deposition, laser ablation, hydro-

thermal treatment, ball mill, and microwave-assisted synthesis, etc. [26,27]. An economi-

cal and environmentally-friendly method was developed for the synthesis and function-

alization of copper oxide (CuO) nanosheets by chemical grafting of 3-(chloropropyl) tri-

ethoxysilane (ClPTES), diethanolamine (DEA), and p-amino thiophenol (ATP), with po-

tential uses in catalysis and biomedical applications [28]. Silver-doped CuO was found to 

have promising prospects for potential applications as an inexpensive catalyst in 

wastewater treatment and antibacterial agent in cosmetics [29]. The antibacterial activity 

of Mg-doped ZnO nanoparticles (NPs), synthesized by the green chemistry route using 

malabathricum leaf extract [30], and size-dependent activity of ZnO-NPs, synthesized by 

various concentrations of Mar Ivanios leaf extract, were tested against different clinical 

strains. It was observed that as the concentration of NPs increases, the antibacterial activ-

ity also increases [31]. The ZnO-CuO composites synthesized using colotropis gigantea 

leaf extract by a combustion method shows good antibacterial activity [32]. The synthesis 

of a Zinc (Zn)-doped Copper oxide nanostructure (Zn-doped CuO-NS) and its chemical 

and physical properties, including its crystal structure and magnetization, has been ex-

plored as a function of temperature [33]. Similarly, it was found that doping of magnesium 

in CuO-NSs possesses anti-cancer and antimicrobial activity for various microbial strains 

[34]. There have also been reports on the antimicrobial activity of Zn-doped CuO-coated 

fabrics experienced against E. coli, S. aureus, and multidrug-resistant bacteria [24]. 

Previously, many researchers have carried out doping with transition metal in CuO us-

ing various methods, but only a few of these works are about Zn-doped CuO-NSs. The struc-

tural, morphological, optical, and antibacterial properties of nanomaterials depend mainly on 

the impurities and defects existing in a host matrix. The modification in the properties of CuO 

is observed by introducing dopants into the lattice. Thus, this study examined the effect of 
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pure and Zn-doped CuO-NSs on gram-positive bacterium (S. aureus) and gram-negative bac-

terium (P. aeruginosa, K. pneumonia, E. coli). We observed enhanced killing of gram-negative 

and gram-positive bacterial strains by the Zn-doped CuO-NS. 

2. Materials and Methods 

2.1. Materials 

Zinc chloride (ZnCl2), Copper II chloride dihydrate (CuCl2∙2H2O), and Potassium hy-

droxide (KOH) were purchased from Sigma Aldrich, St. Louis, MI, USA. Structural anal-

ysis of Zn-doped CuO samples was carried out by using an x-ray diffractometer (Ultima 

IV Rigaku International Corp., Tokyo, Japan), scanned and recorded at 20–70° at CuK ra-

diation (λ = 1.54056 Å). The surface morphology of pure and Zn-doped CuO-NSs was 

examined with a FE-SEM (QUANTA 250 FEI). X-ray photoelectron spectroscopy (XPS; 

Thermo specific model K-ALPHA) was used to investigate the surface elemental compo-

sition. To perform the antibacterial activity, four different bacterial strains were used, 

namely, Pseudomonas aeruginosa (ATCC® 10145), Klebsiella pneumonia (ATCC® BAA-1144), 

and Escherichia coli (ATCC® 33876) as gram-negative and while Staphylococcus aureus 

(ATCC® 11632) as gram-positive bacteria. Nutrient agar (Oxoid® CM0003) was purchased 

from Sigma-Aldrich. 

2.2. Synthesis of Zn-Doped CuO-NSs 

CuCl2. 2H2O, ZnCl2, and KOH were taken as precursors. At first, a mixture of 3.4 g of 

CuCl2∙2H2O was dissolved into 40 mL of deionized water. For the doped sample, 0.85 g of 

ZnCl2 was added along with CuCl2∙2H2O. Afterward, 2.7 g of KOH was separately dis-

solved in 40 mL of deionized water and added dropwise to the already made homogene-

ous solution of CuCl2∙2H2O. At room temperature, the solution was stirred for 30 min. The 

final solution was transferred to a (Teflon-lined) autoclave then placed in the oven at 180 

°C for 18 h. As a result, a dark brown and aquamarine precipitate was obtained for pure 

and Zn-doped samples. The as-obtained dark brown and aquamarine precipitate was then 

washed many times with distilled water and ethanol. Finally, the precipitate was kept for 

drying in the oven at 120 °C for 2 h. 

2.3. Screening of Antibacterial Activity 

For screening of antibacterial efficacy of CuO and Zn-doped CuO-NSs, all bacterial 

strains were sub-cultured from their pure cultures in Luria broth media (containing 17% 

glycerol) and subjected to overnight incubation. For the antibacterial assay, the fresh cul-

tures were used by transferring the stock suspensions on nutrient agar (Oxoid® CM0003) 

and incubated at 37 °C for 24 h. Bacterial culture turbidity was settled to the 0.5 McFarland 

(freshly prepared) standard [35], which is equal to 1.5 × 108 CFU/mL bacteria. Every spe-

cies was spread on a nutrient agar Petri plate with the help of a sterile glass spreader. By 

using a sterile polystyrene tip, 4 mm wells were rendered. Pure and Zn-doped CuO-NSs 

with various concentrations, including 3, 5, and 10 mg/mL, were prepared in 20% dime-

thyl sulfoxide (DMSO). In each well, 40 µL concentration was added, which was taken 

from the prepared solution. All the plates were placed in an incubator overnight at 37 °C 

for incubation. By using a caliper, the inhibition zone was measured in millimeters around 

each well. Ciprofloxacin, as a standard reference antibiotic, was used at a 40 µg/mL con-

centration. The mean value was reported for each experiment, carried out in triplicate (N 

= 3). 

3. Results and Discussion 

The characterization of hydrothermally prepared CuO and Zn-doped CuO-NSs was 

performed by using a field emission scanning electron microscope (FE-SEM) to observe 

its apparent shape. Figure 1 a,b shows the FE-SEM micrographs of the synthesized pure 
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CuO in low and high magnifications. Similarly, Figure 1 c,d shows the FE-SEM micro-

graphs of Zn-doped CuO-NSs in lower and high magnifications. The morphologies of 

both pure and Zn-doped CuO-NSs were very interesting. The structure of pure CuO 

seemed to be feather-like and changed to a pine needle-, sea-urchin- [36], or block-like 

structure with Zinc doping. The change in the morphology might be due to Cu2+ (0.73 Å) 

replacement with Zn2+ (0.74 Å) in the CuO lattice. Feather-like structures in pure CuO had 

a thickness in the range of 50–100 nm. The pine needle-like structures in the Zn-doped 

sample varied in the range of 80–100 nm, whereas the block-like structures were found to 

vary in size from 80–200 nm. The observation of the FE-SEM results shows the variation 

in size and morphology of the structures with doping of Zn. The size and shape of CuO-

NSs were found to depend on the Zn additive. These findings were found to be in close 

agreement with the previous findings [37]. 

 

Figure 1. FE-SEM micrographs of the (a,b) pure copper oxide and (c,d) shows the micrographs of 

Zinc (Zn)-doped Copper oxide (Zn-doped CuO). 

The x-ray diffraction (XRD) spectrum of the synthesized CuO and Zn-doped CuO-

NSs were displayed in Figure 2. The compositions, phase, and crystallite size of the mate-

rial were determined by intensities and peak positions of the observed peaks. The peaks 

in the displayed XRD pattern appeared at 2θ different values. According to “Inorganic 

crystal structure database (ICSD) reference No. 01-080-1268”, the peaks found at 29.42°, 

32.53°, 35.5°, 38.7°, 48.6°, 53.51°, 58.29°, 61.51°, 66.17°, and 68.07° corresponded to (210), 

(110), (002), (111), (−202), (020), (202), (−113), (−311), and (220) planes in the monoclinic 

structure of CuO [38–40]. The sharpness of the peaks indicated that pure CuO was highly 

crystalline. In Zn-doped CuO, the XRD pattern peaks appeared at a 2θ value of 26.20°, 

30.97°, 32.42°, 35.64°, 38.97°, 39.86°, 40.97°, 47.74°, 48.59°, 53.6°, 56.41°, 57.52°, 58.41°, 

61.74°, 63.68°, 66.17°, 67.85°, 68.73°, and 69.40°, respectively. These peaks, according to 

“ICSD reference No. 001-1136”, corresponded to (003), (100), (110), (002), (111), (200), (012), 

(102), (−202), (020), (021), (110), (202), (−113), (−311), (112), (220), and (004) planes [41], 

which shows that the Zn2+ ions were incorporated effectively to the site of CuO lattice 

without interrupting the CuO crystal structure. Due to the resemblance in the Zn2+ (0.74 
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Å) and Cu2+ (0.73 Å) radius, Cu2+ ions can be well substituted by Zn2+ ions in the lattice 

structure. 

 

Figure 2. XRD pattern of Zn-doped CuO nanoparticles showing peaks for different content in the sample. 

The particle size and strain were investigated by using the Williamson-Hall (W-H) 

method, as displayed in Figure 3, for pure and Zn-doped CuO-NSs. The W-H method varies 

with tanθ instead of 1/cosθ, as followed in the Debye Scherrer equation. This essential var-

iation allows one to separate the broadening of reflection, along with both microstructural 

reasons (micro-strain and small crystallite size) that occur together. The microstructural pa-

rameters were calculated, including the size of crystallite D and micro-strain (ε) for the pre-

pared samples. It was found that the average size of CuO crystallites increased and ε de-

creased with increasing Zn concentration, as shown in Figure 4. Compared to the core ions, 

this property could be due to the slightly greater ionic radius of the dopant. 
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Figure 3. Williamson-Hall (W-H) analysis for (a) CuO and (b) Zn-doped CuO nanostructures. 

 

Figure 4. Analysis of microstructural parameters, such as crystallite size D and micro-strain (ε), 

with respect to Zinc concentration for the synthesized samples. 

X-ray photoelectron spectroscopy (XPS) was carried out to confirm the composition 

and valence states of the synthesized nanostructures, as shown in Figure 5. The survey of 

prepared Zn-doped CuO-NSs in Figure 5a shows Auger peaks for Zn 2p, Cu 2p, C 1s, and 

O 1s. The presence of the C1s peak in the survey spectrum was due to surface contamina-

tion. The peaks that appeared in Figure 5b were assigned to Zn 2p3/2 and Zn 2p1/2, which 

were positioned at 1024.3 eV and 1047.7 eV. This indicates that Zn oxidized (Zn2+) in the 

CuO nanostructures and was substituted at the Cu2+ site into the CuO lattice. The binding 

energy of major peaks, such as Cu 2p3/2 and Cu 2p1/2, appeared at 937.5 eV and 958.4 eV, 

with a spin-orbit splitting of about 20.1 eV, as shown in Figure 5c. Moreover, the presence 

of two satellite peaks indicated the existence of Cu2+ located at about 10 eV higher than 

those of the Cu 2p3/2 and Cu 2p1/2 [42,43]. The magnified O 1s peak is shown in Figure 5d. 

The broad peak was assigned to O2− ions at a binding energy of 533.2 eV in the Cu–O 
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bonding of the monoclinic structure in oxygen-deficient regions [44]. XPS results confirm 

the structure consisting of a CuO-NS doped with Zn was in good agreement with the 

literature data [45,46]. 

 

Figure 5. (a) X-ray photoelectron spectroscopy (XPS) survey of the as-synthesized Zn-doped CuO nanostructures. (b) High 

resolution Zn 2p, (c) Cu 2p, and (d) O 1s XPS spectra. 

The absorption spectrum of the CuO and Zn-doped CuO-NS is shown in Figure 6. 

The absorption properties for the band gap of nanostructures were recorded in the 230–

800 nm range. The absorption peak for the CuO-NS was observed at 390 nm, which moves 

toward the visible region with Zn doping. The visible light absorption capability was en-

hanced with Zn doping, which can be a potential for photocatalysis. The d-d transition 

among closely spaced Cu2+ and Zn2+ ions was responsible for the enhancement in the ab-

sorption of light in the visible region with Zn doping [47]. The optical band gap (Eg) of 

the Zn doped CuO-NS was measured using the Tauc relation [48]. The band gap of ob-

tained samples was measured by plotting (αhν)2 versus the energy of incident photons 

(i.e., E = hν), as shown in Figure 7. There was an Eg of 2.39 eV in the CuO-NS, which 

indicates important quantum confinement effects in comparison with bulk CuO (1.55 eV) 

Eg [49]. This reduction in Eg can be correlated with the effect of quantum confinement 

[49]. The same Eg value was recorded earlier for the CuO-NS [50]. Zn doping into a CuO-

NS resulted in a decrease of Eg to 1.82 eV for the Zn-doped CuO-NS [51]. The reduction 

of Eg can also be considered as a result of the transition from oxygen 2p state to d state of 

Cu and Zn. Finally, we came to the conclusion that high concentration CuO-NSs doped 

with Zn had a good optical property comparable to pure CuO-NSs [47]. 
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Figure 6. UV-visible absorption spectra of pure and Zinc (Zn)-doped copper oxide nanostructures (Zn-doped CuO-NSs). 

 

Figure 7. Band gap absorption edges of CuO and Zn-doped CuO nanostructures. 
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The antibacterial potential of synthesized CuO-NSs doped with Zn was observed by 

the agar well diffusion method [52] against American type culture collection (ATCC) bac-

terial strains collected from the Department of Microbiology, Hazara University 

Mansehra. A total of 4 bacterial strains (Pseudomonas aeruginosa (ATCC® 10145), Klebsiella 

pneumonia (ATCC® BAA-1144), and Escherichia coli (ATCC® 33876) as gram-negative bacte-

ria and Staphylococcus aureus (ATCC® 11632) as gram-positive bacteria) were used for this 

study. Through various biochemical tests, all bacterial strains were identified, according 

to the method described [53]. A pure culture of bacteria was stored in agar slants at 4 °C 

for later use. 

The cultures were treated with various doses of pure and Zn-doped CuO-NSs (3, 5, 10 

mg/mL) dissolved in 20% DMSO. The results demonstrate that Zn-doped CuO-NSs inhibited 

the growth of all the tested microbes in all the tested doses, as shown in Figure 8 and Figure 

9. The zone of inhibition (ZOI) increases with an increase in the concentration of Cu-doped 

ZnO-NSs. We observed that gram-positive microbes were more susceptible to pure and Zn-

doped CuO-NSs as compared to gram-negative microbes. Among gram-negative microbes, 

P. aeruginosa formed a ZOI of 16 ± 0.21 mm and 17 ± 0.14 m and, E. coli formed 15 ± 0.20 mm 

and 22 ± 0.21 mm ZOI for CuO and Zn-doped CuO, respectively. K. pneumonia was more sen-

sitive to Zn-doped CuO-NS treatment and displayed 20 ± 0.20 mm and 22 ± 0.20 mm ZOI. 

Gram-positive microbes, such as S. aureus, formed a ZOI of 17 ± 0.13 mm and 22 ± 0.13 mm on 

the same dose for pure and Zn-doped CuO-NSs, as shown in Table 1. All the results were 

carried out in triplicate, and the mean diameter of the inhibition zone was recorded and eval-

uated by using SPSS version 25. Inhibition zone vs concentration bar graphs in Figure 10a,b 

show the diameter of the inhibition zone produced by CuO and Zn-doped CuO-NSs against 

gram-positive and gram-negative bacterial strains. 

 

Figure 8. Zone of inhibition formed by CuO-NSs against different bacteria. 
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Figure 9. Zone of inhibition formed by Zn-doped CuO-NSs against different bacteria. 

 

Figure 10. Bar graph showing the diameter of the zone of inhibition (in mm) produced by pure and Zn-doped CuO nano-

particles (NPs) against gram-positive and gram-negative bacteria. 

Table 1. The table summarizes the detail of bacteria and other experimental parameters. 

Bacteria 

CuO Zn Doped CuO 

3  

mg/mL 

5  

mg/mL 

10  

mg/mL 

3  

mg/mL 

5  

mg/mL 

10  

mg/mL 

Gram  

negative 

P. aeruginosa 

In
h

ib
it

io
n

 z
o

n
e 

(m
m

) 

10 ± 0.12 12 ± 0.20 16 ± 0.21 7 ± 0.15 11 ± 0.13 17 ± 0.14 

E. coli 12 ± 0.11 14 ± 0.11 15 ± 0.20 15 ± 0.21 17 ± 0.11 22 ± 0.21 

K. pneumoniae 15 ± 0.20 20 ± 0.15 20 ± 0.20 15 ± 0.12 17 ± 0.20 22 ± 0.20 

Gram  

positive 
S. aureus 9 ± 0.13 15 ± 0.11 17 ± 0.13 12 ± 0.14 14 ± 0.18 22 ± 0.13 
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4. Conclusions 

Pine-needle- and sea urchin-like pure and Zn-doped CuO-NSs were prepared by a 

simple hydrothermal route. A comparative study of the nanostructures of pure and Zn 

doped CuO was carried out to observe the stimulating effect of Zn doping on optical and 

antibacterial characteristics. According to x-ray diffraction analysis, Zn-doped CuO-NSs 

had some additional peaks compared to CuO, which indicates that the Zn2+ effectively 

replaced Cu2+ in CuO crystal lattice. CuO and Zn-doped CuO-NSs were found to inhibit 

the growth of all tested bacteria. The inhibitory effect is enhanced in a dose-dependent 

manner. It has been observed that gram-positive microbes are more susceptible to Zn-

doped CuO-NSs than gram-negative microbes. It is observed that Zn dopant brings great 

improvement in the antibacterial activity of CuO-NSs. This study indicates that doping is 

a successful strategy for the growth of the most efficient antimicrobial material. 

Author Contributions: Conceptualization, A.K., P.A., S.M., I.U.D., M.A.A., and K.A.; data cura-

tion, A.K., P.A., M.U.K., and M.R.; formal analysis, A.K., P.A., A.I.A., S.M., M.R., M.R.I.F., and 

I.U.D.; funding acquisition, M.U.K. and K.A.; investigation, A.K., P.A., A.I.A., S.M., M.R.I.F., 

M.A.A., K.A., and D.A.B.; methodology, A.K., P.A., M.U.K., and M.R.; project administration, 

M.U.K. and K.A.; resources, P.A., A.I.A., M.U.K., M.R., M.R.I.F., I.U.D., and M.A.A.; software, 

M.R.I.F., I.U.D., and M.A.A.; supervision, P.A. and S.M.; validation, K.A., D.A.B., A.I.A., S.M., and 

I.U.D.; writing—original draft, A.K. and P.A.; writing—review and editing, A.K., P.A., A.I.A., 

S.M., M.U.K., M.R., M.R.I.F., I.U.D., M.A.A., K.A., and D.A.B. All authors have read and 

agreed to the published version of the manuscript. 

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Saud 

University for funding this work through research group No. RGP-VPP-246. 

Data Availability Statement: All the data is available within the manuscript.  

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at 

King Saud University for funding this work through research group No. RGP-VPP-246. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Rejith, S.; Krishnan, C. Optical characterizations of Zn-doped CuO nanoparticles. Sci. Acta Xaver 2013, 4, 91. 

2. Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B. Photocatalytic activity of binary metal oxide 

nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B Biol. 

2016, 163, 77–86. 

3. Saleem, S.; Ahmed, B.; Khan, M.S.; Al-Shaeri, M.; Musarrat, J. Inhibition of growth and biofilm formation of clinical bacterial 

isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb. Pathog. 2017, 111, 375–387. 

4. Yin, W.; Wu, L.; Ding, F.; Li, Q.; Wang, P.; Li, J.; Lu, Z.; Han, H. Surface-imprinted SiO2@ Ag nanoparticles for the selective 

detection of BPA using surface enhanced Raman scattering. Sens. Actuators B Chem. 2018, 258, 566–573. 

5. Bayansal, F.; Gülen, Y.; Şahin, B.; Kahraman, S.; Çetinkara, H. CuO nanostructures grown by the SILAR method: Influence of 

Pb-doping on the morphological, structural and optical properties. J. Alloys Compd. 2015, 619, 378–382. 

6. Armelao, L.; Barreca, D.; Bertapelle, M.; Bottaro, G.; Sada, C.; Tondello, E. A sol–gel approach to nanophasic copper oxide thin 

films. Thin Solid Films 2003, 442, 48–52. 

7. Balamurugan, B.; Mehta, B.; Shivaprasad, S. Surface-modified CuO layer in size-stabilized single-phase Cu2O nanoparticles. 

Appl. Phys. Lett. 2001, 79, 3176–3178. 

8. Bahoosh, S.; Apostolov, A.; Apostolova, I.; Wesselinowa, J. Theory of phonon properties in doped and undoped CuO 

nanoparticles. Phys. Lett. A 2012, 376, 2252–2255. 

9. Joseph, D.P.; Venkateswaran, C.; Sambasivam, S.; Choi, B.C. Effect of Fe alloying on the structural, optical, electrical and 

magnetic properties of spray-deposited CuO thin films. J. Korean Phys. Soc. 2012, 61, 449–454. 

10. Jiang, X.; Herricks, T.; Xia, Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–

1338. 

11. Jan, T.; Iqbal, J.; Ismail, M.; Badshah, N.; Mansoor, Q.; Arshad, A.; Ahkam, Q.M. Synthesis, physical properties and antibacterial 

activity of metal oxides nanostructures. Mater. Sci. Semicond. Process. 2014, 21, 154–160. 

12. Li, B.-X.; Wang, Y.-Y.; Wang, Y.-F. Facile synthesis and photocatalytic property of CuO nanostructure arrays. Acta Physico-

Chimica Sinica 2009, 25, 2366–2372. 

13. Liu, J.; Jin, J.; Deng, Z.; Huang, S.-Z.; Hu, Z.-Y.; Wang, L.; Wang, C.; Chen, L.-H.; Li, Y.; Van Tendeloo, G. Tailoring CuO 

nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 2012, 384, 1–9, doi:10.1016/j.jcis.2012.06.044. 



Nanomaterials 2021, 11, 451 12 of 13 
 

 

14. Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against 

Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012, 7, 6003. 

15. Hassan, I.A.; Parkin, I.P.; Nair, S.P.; Carmalt, C.J. Antimicrobial activity of copper and copper (I) oxide thin films deposited via 

aerosol-assisted CVD. J. Mater. Chem. B 2014, 2, 2855–2860. 

16. Santo, C.E.; Morais, P.V.; Grass, G. Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. 

Microbiol. 2010, 76, 1341–1348. 

17. Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of copper oxides in contact killing of bacteria. Langmuir 

2013, 29, 16160–16166. 

18. Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO 

nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. 

19. Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced antibacterial activity of 

nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 2009, 19, 842–852. 

20. Zhao, X.; Ren, X.; Zhu, R.; Luo, Z.; Ren, B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered 

mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol. 2016, 180, 56–70. 

21. Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of 

microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. 

22. Schiek, M.; Al-Shamery, K.; Kunat, M.; Traeger, F.; Wöll, C. Water adsorption on the hydroxylated H-(1 × 1) O-ZnO (0001 

[combining macron]) surface. PCCP 2006, 8, 1505–1512. 

23. Jan, T.; Iqbal, J.; Mansoor, Q.; Ismail, M.; Naqvi, M.S.H.; Gul, A.; Naqvi, S.F.-u.-H.; Abbas, F. Synthesis, physical properties and 

antibacterial activity of Ce doped CuO: A novel nanomaterial. J. Phys. D Appl. Phys. 2014, 47, 355301. 

24. Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. 

Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076. 

25. Eshed, M.; Lellouche, J.; Gedanken, A.; Banin, E. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial 

activities against streptococcus mutans compared to nanosized CuO. Adv. Funct. Mater. 2014, 24, 1382–1390. 

26. Fterich, M.; Nasr, F.B.; Lefi, R.; Toumi, M.; Guermazi, S. Effect of concentration of hexamethylenetetramine in structure, 

microstructure and optical properties of CuO nanoparticles synthesized by hydrothermal route. Mater. Sci. Semicond. Process. 

2016, 43, 114–122. 

27. Singh, J.; Sharma, S.; Soni, S.; Sharma, S.; Singh, R.C. Influence of different milling media on structural, morphological and 

optical properties of the ZnO nanoparticles synthesized by ball milling process. Mater. Sci. Semicond. Process. 2019, 98, 29–38. 

28. Vieillard, J.; Bouazizi, N.; Morshed, M.N.; Clamens, T.; Desriac, F.; Bargougui, R.; Thebault, P.; Lesouhaitier, O.; Le Derf, F.; 

Azzouz, A. CuO nanosheets modified with amine and thiol grafting for high catalytic and antibacterial activities. Ind. Eng. Chem. 

Res. 2019, 58, 10179–10189. 

29. Bouazizi, N.; Vieillard, J.; Thebault, P.; Desriac, F.; Clamens, T.; Bargougui, R.; Couvrat, N.; Thoumire, O.; Brun, N.; Ladam, G. 

Silver nanoparticle embedded copper oxide as an efficient core–shell for the catalytic reduction of 4-nitrophenol and 

antibacterial activity improvement. Dalton Trans. 2018, 47, 9143–9155. 

30. Khan, M.M.; Harunsani, M.H.; Tan, A.L.; Hojamberdiev, M.; Azamay, S.; Ahmad, N. Antibacterial activities of zinc oxide and 

Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess Biosyst. Eng. 2020, 43, 1499–1508. 

31. Saif, S.; Tahir, A.; Asim, T.; Chen, Y.; Khan, M.; Adil, S.F. Green synthesis of ZnO hierarchical microstructures by Cordia myxa 

and their antibacterial activity. Saudi J. Biol. Sci. 2019, 26, 1364–1371. 

32. Abebe, B.; Zereffa, E.A.; Tadesse, A.; Murthy, H.A. A review on enhancing the antibacterial activity of ZnO: Mechanisms and 

microscopic investigation. Nanoscale Res. Lett. 2020, 15, 1–19. 

33. Prabhakaran, D.; Boothroyd, A. Single crystal growth of Zn-doped CuO by the floating-zone method. J. Cryst. Growth 2003, 250, 

77–82. 

34. Din, S.U.; Sajid, M.; Imran, M.; Iqbal, J.; Shah, B.A.; Shah, S. One step facile synthesis, characterization and antimicrobial 

properties of Mg-doped CuO nanostructures. Mater. Res. Express 2019, 6, 085022. 

35. Standards, N.C.f.C.L.; Barry, A.L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; 

National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1999; Volume 19. 

36. Ma, C.-W.; Chang, C.-M.; Huang, P.-C.; Yang, Y.-J. Sea-urchin-like ZnO nanoparticle film for dye-sensitized solar cells. J. 

Nanomater. 2015, 2015, doi:10.1155/2015/679474. 

37. Pung, S.; Ong, C.; Isha, K.M.; Othman, M. Synthesis and characterization of Cu-doped ZnO nanorods. Sains Malays. 2014, 43, 

273–281. 

38. Shirsath, S.R.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Ultrasound assisted synthesis of doped TiO2 nano-

particles: Characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrason. 

Sonochemistry 2013, 20, 277–286, doi:10.1016/j.ultsonch.2012.05.015. 

39. Umar, A.; Harraz, F.A.; Ibrahim, A.A.; Almas, T.; Kumar, R.; Al-Assiri, M.; Baskoutas, S. Iron-doped titanium dioxide 

nanoparticles as potential scaffold for hydrazine chemical sensor applications. Coatings 2020, 10, 182. 

40. Prajapati, B.; Kumar, S.; Kumar, M.; Chatterjee, S.; Ghosh, A.K. Investigation of the physical properties of Fe: TiO 2-diluted 

magnetic semiconductor nanoparticles. J. Mater. Chem. C 2017, 5, 4257–4267. 

41. Wang, D.; Wang, Y.; Jiang, T.; Jia, H.; Yu, M. The preparation of M (M: Mn 2+, Cd 2+, Zn 2+)-doped CuO nanostructures via the 

hydrothermal method and their properties. J. Mater. Sci. Mater. Electron. 2016, 27, 2138–2145. 



Nanomaterials 2021, 11, 451 13 of 13 
 

 

42. Deng, M.-J.; Wang, C.-C.; Ho, P.-J.; Lin, C.-M.; Chen, J.-M.; Lu, K.-T. Facile electrochemical synthesis of 3D nano-architectured 

CuO electrodes for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 12857–12865. 

43. Dubal, D.P.; Gund, G.S.; Holze, R.; Lokhande, C.D. Mild chemical strategy to grow micro-roses and micro-woolen like arranged 

CuO nanosheets for high performance supercapacitors. J. Power Sources 2013, 242, 687–698. 

44. Liu, W.; Tang, X.; Tang, Z.; Chu, F.; Zeng, T.; Tang, N. Role of oxygen defects in magnetic property of Cu doped ZnO. J. Alloy. 

Compd. 2014, 615, 740–744. 

45. Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Network structured SnO2/ZnO heterojunction 

nanocatalyst with high photocatalytic activity. Lnorg. Chem. 2009, 48, 1819–1825. 

46. Navarro, R.; Del Valle, F.; Fierro, J. Photocatalytic hydrogen evolution from CdS–ZnO–CdO systems under visible light 

irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. Int. J. Hydrog. Energy 2008, 33, 4265–4273. 

47. Iqbal, J.; Jan, T.; Ul-Hassan, S.; Ahmed, I.; Mansoor, Q.; Umair Ali, M.; Abbas, F.; Ismail, M. Facile synthesis of Zn doped CuO 

hierarchical nanostructures: Structural, optical and antibacterial properties. Aip. Adv. 2015, 5, 127112. 

48. Perelshtein, I.; Applerot, G.; Perkas, N.; Wehrschuetz-Sigl, E.; Hasmann, A.; Gübitz, G.; Gedanken, A. CuO–cotton 

nanocomposite: Formation, morphology, and antibacterial activity. Surf. Coat. Technol. 2009, 204, 54–57. 

49. Singh, D.P.; Srivastava, O.N. Synthesis and optical properties of different CuO (ellipsoid, ribbon and sheet like) nanostructures. 

J. Nanosci. Nanotechnol. 2009, 9, 5345–5350. 

50. Al-Amri, S.; Shahnawaze Ansari, M.; Rafique, S.; Aldhahri, M.; Rahimuddin, S.; Azam, A.; Memic, A. Ni doped CuO 

nanoparticles: Structural and optical characterizations. Curr. Nanosci. 2015, 11, 191–197. 

51. Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Sonochemical synthesis of Dy-doped ZnO nanostructures and their 

photocatalytic properties. J. Alloy. Compd. 2013, 576, 72–79. 

52. Valgas, C.; de Souza, S.M.; Smânia, E.F.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. 

Braz. J. Microbiol. 2007, 38, 369–380. 

53. Cowan, S.T. Cowan and Steel's Manual for the Identification of Medical Bacteria; Cambridge University Press: Cambridge, UK, 2004. 

 


