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same animals. Overall, our findings suggest that LTP of the EC input 
increases the excitation/inhibition balance, and facilitates activity 
propagation to the next station in the circuit by recruiting an interneu-
ron-interneuron network that inhibits the tight control of basket cells 
over DGgc firing.
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The Neuroscience Gateway (NSG) has been serving the computa-
tional neuroscience community since early 2013. Its initial goal was to 
reduce technical and administrative barriers that neuroscientists face 
in accessing and using high performance computing (HPC) resources 
needed for large scale neuronal modeling projects. For this purpose, 
NSG provided tools and software that require and run efficiently on 
HPC resources available as a part of the US XSEDE (Extreme Science 
and Engineering Discovery Environment) program that coordinates 
usage of academic supercomputers. Since around 2017 experimental-
ists such as cognitive neuroscientists, psychologists and biomedical 
researchers started to use NSG for their neuroscience data process-
ing, analysis and machine learning work. Data processing workloads 
are more suitable on high throughput computing (HTC) resources that 
are suitable for single core jobs typically run to process individual data 
sets of subjects. Machine learning (ML) workloads require use of GPUs 
for well-known ML frameworks such as TensorFlow. NSG is adapting 
to respond to the needs of experimental neuroscientists by provid-
ing HTC resources, in addition to already enabling successfully the 
computational neuroscience community for many years by providing 
HPC resources. Data processing focused work of experimentalists also 
require NSG to add various data functionalities, such as ability to trans-
fer/store large data to/on NSG, validate the data, process same data by 
multiple users, publish final data products, visualize the data, search 
the data etc. These features are being add to NSG currently. Separately 
there is a demand from the neuroscience community to make NSG an 
environment where neuroscience tool developers can test, bench-
mark, and scale their newly developed tools and eventually dissemi-
nate their tools via the NSG for neuroscience users.
The poster will describe NSG from its beginning and how it is evolv-
ing for the future needs of the neuroscience community such as: 
(i) NSG has been successfully serving primarily the computational 
neuroscience community, as well as some data processing focused 
neuroscience researchers, until now; (ii) new features are added to 
make it a suitable and efficient dissemination environment for lab-
developed neuroscience tools. These will allow tool developers to 
disseminate their lab-developed tools on NSG taking advantage of 
the current functionalities that are being well served on NSG for the 
last seven years such as a growing user base, an easy user interface, 

an open environment, the ability to access and run jobs on powerful 
compute resources, availability of free supercomputer time, a well-
established training and outreach program, and a functioning user 
support system. All of these well-functioning features of NSG will 
make it an ideal environment for dissemination and use of lab-devel-
oped computational and data processing neuroscience tools; (iii) NSG 
is being enhanced such that it can have more seamless access to HTC 
resources provided by the Open Science Grid (OSG) and commercial 
cloud. This will allow data processing and machine learning oriented 
workloads to be able to take advantage of HTC and cloud resources 
including GPUs; (iv) New data management features are being added 
to NSG and these include the ability to transfer/upload large data, vali-
date uploaded data, share and publish data etc.
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The responses of excitatory pyramidal cells and inhibitory interneu-
rons in cortical networks are shaped by each neuron’s place in the 
network (connectivity of the network) and its biophysical properties 
(ion channel expression [1]), which are modulated by top-down neu-
romodulatory input, including dopamine. Using a recently developed 
ex vivo method [2], we showed that the activation of the D1 receptor 
(D1R) increases the information transfer of fast spiking, but not regular 
spiking, cells, by decreasing their threshold [3]. Moreover, we showed 
that these differences in neural responses are accompanied by faster 
decision-making on a behavioural level. However, how the single-cell 
changes in spike responses result in these behavioural changes is still 
unclear. Here, we aim to bridge the gap between behavioural and sin-
gle cell effects by considering the effects of D1R activation on a net-
work level.
We took a 3-step approach and simulated the effects of dopamine by 
lowering the thresholds of inhibitory but not excitatory neurons:
1) Network construction. We created a balanced network of L2/3 and 

L4 of the barrel cortex, consisting of locally connected integrate-
and-fire neurons. We reconstructed the somatosensory cortex in 
soma resolution ([4], Fig. 1A), and adapted the number and ratio 
of excitatory and inhibitory neurons and the number of thalamic 
inputs accordingly.

2) Activity of the balanced state. The adaptations in the neural popula-
tions and connectivity resulted in a heterogeneous asynchronous 
regime [5] in L2/3, with highly variable single-neuron firing rates 
and suggesting a functional role of stimulus separation, and a ‘clas-
sical’ asynchronous regime in L 4, with more constant firing rates 
and suggestive of an information transmission role (Fig. 1B).

3) Functional effects. We used a spike-based FORCE learning [6,7] 
application, trained on either a gap-crossing task (data from [8]) or 
on a pole detection task (publicly available data from [9], Fig. 1C). 
We compared the results against a benchmark test consisting of a 
3-layer deep neural net with a recurrent layer.




