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Chapter 1 

1 Introduction  

 

This thesis deals with efficient designs for two types of observational studies, that is, surveys 

for mean estimation in multilevel populations, and normative studies for estimating reference 

values (or norms) to compare individuals with the reference population. Examples of the first 

type of studies are school-based surveys for monitoring substance use among adolescents, such 

as the European School Survey Project on Alcohol and Other Drugs (ESPAD Group, 2016), 

and national surveys for estimating the average length of stay for discharges from hospitals, 

such as the National Hospital Discharge Survey (DeFrances et al., 2008). Examples of 

normative studies are the development of norms for patients’ orientation toward chronic pain 

as measured by the Pain Catastrophizing and the Internal Control subscales of the Pain 

Cognition List (Van Breukelen & Vlaeyen, 2005), and the development of norms for 

information processing speed and associated brain dysfunction as measured by the oral and 

written version of the Letter Digit Substitution test  (Van der Elst et al., 2006a). Surveys for 

mean estimation are important because they allow researchers to compare different populations 

with respect to their means (e.g. comparing European countries in terms of average alcohol 

consumption among adolescents, like in the ESPAD study). Normative studies are important 

because they allow clinicians to interpret individuals’ performance on a test by comparing their 

scores with those of their peers (e.g. individuals with the same age, sex, and education) in the 

reference population, and then to make decisions about, for instance, clinical treatments. Given 

the practical importance of these two types of studies, estimates of population means or of 

reference values should be precise. This goal can be attained by a careful design of the study. 

Specifically, maximum precision in mean or norms estimation is achieved by drawing a sample 
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as prescribed by the optimal design, where the definition of optimal design differs in the two 

types of studies. Furthermore, to derive an optimal design a statistical model for describing the 

population under study should be assumed, and this entails a dependency of the optimal design 

on the assumed model. Before introducing the different definitions of optimal design, the 

models used in this thesis, and the approach adopted to overcome the model dependency of the 

optimal design, the position of this thesis with respect to the literature for each type of study is 

explained first. 

 Survey sampling for mean estimation in multilevel populations 

Multilevel populations arise when individuals (e.g. students, patients) are nested within clusters 

(e.g. schools, hospitals). For these populations, there are two population means that can be the 

target of inference: the average of all individual outcomes ignoring cluster membership (i.e. 

first, pooling all students from all schools in the population, and then computing the mean 

alcohol consumption), and the average of all cluster means (i.e. first, computing the mean 

alcohol consumption within each school, and then taking the average of all school means). The 

first population mean can be interpreted as the expected outcome for an individual randomly 

sampled from the population ignoring cluster membership, so it should be the target of inference 

when the main interest is on individuals and not on the multilevel structure of the population 

(e.g. the researcher wants to estimate the average alcohol consumption among Dutch 

adolescents and the fact that these are nested within schools is not of scientific interest, but it 

can facilitate the collection of the sample as will be explained later). The second population 

mean can be interpreted as the expected outcome for the average individual from the average 

cluster, thus it should be the target of inference when the multilevel structure of the population 

is of scientific interest (e.g. the researcher wants to estimate the average alcohol consumption 

for the average Dutch adolescent from the average school, so that school averages can be 

compared with this population mean). This thesis focuses on the first population mean, as 

typically done in survey sampling literature (see, for instance, Cochran (1977), Lohr (2010), 

and Valliant et al. (2000)). 

 In drawing the sample to estimate either of these two population means cluster 

membership can be either ignored or taken into account, as shown in Figure 1.1. In the first 

case, a simple random sample (SRS) of individuals is directly drawn from the population. In 

the second case, a sample of clusters is drawn first, and then individuals within each selected 
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cluster are sampled. This latter sampling scheme is called two-stage sampling (TSS). In 

practice, clusters vary in size (e.g. number of students enrolled in a school, number of patients 

admitted to a hospital), and this leads to (at least) three alternative TSS schemes: (i) sampling 

clusters with probability proportional to cluster size and then sampling the same number of 

individuals from each selected cluster (TSS1); (ii) sampling clusters with equal probability and 

then sampling per selected cluster a number of individuals proportional to cluster size (TSS2); 

(iii) sampling clusters with equal probability and then sampling the same number of individuals 

per selected cluster (TSS3). These three TSS schemes are illustrated in Figure 1.2.  

 

Figure 1.1. Simple random sampling of individuals (left side), and two-stage sampling (right side). 

 

In practice cluster size can not only vary, but also can be related to the outcome variable 

of interest, and in this case is said to be informative. For instance, cluster size is informative 

when the amount of alcohol consumed by an adolescent is related to the number of students 

enrolled in the school, as small schools might provide a more supportive environment. Another 

example can be the length of stay in a hospital for a patient that might be shorter for patients 

admitted to hospitals with fewer patients, because healthcare workers are not overwhelmed and 
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can dedicate enough time to each patient. In the informative cluster size literature (Nevalainen 

et al., 2014; Panageas et al., 2007; Seaman et al., 2014), the main focus has been on how to 

handle informative cluster size when the target of inference is the association between the 

outcome variable and some covariates. For instance, Seaman et al. (2014) have reviewed several 

methods available in the literature to make cluster-specific inferences with Generalized Linear 

Mixed Models and population-average inferences with Generalized Estimating Equations when 

cluster size is informative. This thesis focuses on unbiased and efficient estimation of the 

average of all individual outcomes (as opposed to the average of all cluster means) with the 

three aforementioned TSS schemes, and on sample size planning for these sampling schemes, 

when cluster size is informative.  

 

Figure 1.2. The three two-stage sampling schemes considered in this thesis. TSS1 samples clusters with 
probability proportional to cluster size, and the same number of individuals per selected cluster. TSS2 
samples clusters with equal probability, and the same percentage of individuals per selected cluster. 
TSS3 samples clusters with equal probability, and the same number of individuals per selected cluster. 

 

Survey sampling literature (Chambers & Clark, 2012; Cochran, 1977; Lohr, 2010; 

Särndal et al, 1992; Sukhatme, 1954; Valliant et al, 2000) has dealt with the issue of estimating 

the average of all individual outcomes with SRS, and with TSS when there is either no cluster 

size variation or cluster size varies but is non-informative. In this setting, it has also been 

established that, under the constraint of a fixed total sample size (i.e. fixed total number of 
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individuals in the sample), SRS is more efficient than TSS, and sampling clusters with 

probability proportional to size tends to be more efficient than equal probability sampling. 

Furthermore, optimal sample size equations for TSS (i.e. the combination of number of clusters 

and number of individuals per selected cluster that minimizes the sampling variance of the 

population mean estimator under the constraint of a fixed budget for sampling and measuring) 

are available in the literature when there is no cluster size variation (i.e. when TSS1, TSS2, and 

TSS3 coincide), which are similar to those for cluster randomized trials with homogeneous 

costs and variances (see, for instance, Moerbeek et al., 2000).  

This thesis extends the results available in survey sampling literature to informative 

cluster size, as follows: (i) conditions under which the two types of population means in a 

multilevel population coincide are derived, (ii) the unbiased (or approximately unbiased) 

estimators of the average of all individual outcomes for the three aforementioned TSS schemes 

are given, (iii) conditions under which TSS1 is more efficient than TSS2 and TSS3, under the 

constraint of a fixed total sample size, are given, (iv) optimal sample sizes equations for TSS1, 

TSS2, and TSS3 are derived, and consequences of ignoring cluster size informativeness at the 

design phase of the study are investigated, (v) conditions under which TSS is more efficient 

than SRS, and TSS1 is more efficient than TSS2 and TSS3, under the constraint of a fixed 

budget for sampling and measuring (as opposed to a fixed total sample size), are derived, (vi) 

an approach is proposed to deal with uncertainty about model parameters needed for sample 

size planning, and (vii) a sample size calculation procedure is proposed for comparing two 

populations in terms of their population means. 

 Normative studies for deriving reference values 

In normative studies, a representative sample of individuals is drawn from the reference 

population (e.g. adults aged 18 to 80 years), a test or questionnaire is administered to the 

participants and, based on their scores, reference values (or norms) are estimated in order to be 

able to compare future subjects with the reference population. Reference values can be provided 

in terms of several types of norm statistic (Oosterhuis et al., 2017): mean test score and standard 

deviation, percentiles (i.e. the test score value below which a given percentage of individuals 

falls), percentile rank scores (i.e. the percentage of individuals with a test score equal to or 

lower than a certain value), and Z-scores (i.e. how many standard deviations the individual’s 

test score is below or above the average). There are two approaches to norming: the traditional 
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approach and the regression-based approach. The traditional approach consists of first splitting 

the sample drawn for norming into subgroups based on some relevant demographic factors (e.g. 

age and sex), and then computing the norm statistics of interest within each subgroup. This is 

illustrated in the top figure of Figure 1.3, with, for instance, an equal number of persons per age 

group, and the same sex distribution per age group. The regression-based approach consists of 

two steps (Van Breukelen & Vlaeyen, 2005): first, a regression of the test score on some 

relevant predictors is performed, and then norm statistics are estimated from the cumulative 

distribution of the standardized residuals obtained from the model. The regression-based 

approach has three main advantages over the traditional approach. First, it uses the whole 

sample to establish norms instead of norming per subgroup, thereby increasing the precision of 

the norms. Second, it allows researchers to identify which independent variables (e.g. 

demographic factors) affect the test score, thereby increasing the validity of the norms. Third, 

under the assumption of a specific regression model for relating the test score to relevant 

predictors, it is possible to express the sampling variance of the norm statistic of interest as a 

function of the joint distribution of the predictors (e.g. the age distribution per sex, and the sex 

distribution) in the normative sample. This allows to find the joint distribution of the predictors 

that minimizes the sampling variance of the norm statistic and thus maximizes the precision of 

the norms under the assumed regression model. This is illustrated in Figure 1.3, where the 

middle figure shows the optimal distribution of age and sex under the assumption of a linear 

age effect on the test score, and the bottom figure for a quadratic age effect on the test score. 

This joint distribution will be called the optimal design for the normative study. A limitation of 

the regression-based approach is that the validity of the norms depends on whether the model 

assumptions are met, for instance about the linearity of an age effect, or the homoscedasticity 

of residual variances. 
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Figure 1.3. Illustration of the two approaches to norming: the traditional approach (top figure), which 
splits the sample in subgroups based on demographic factors (i.e. age and sex), and the regression-based 
approach (two bottom figures), which under the assumption of a model relating the test score to relevant 
predictors (e.g. age and sex) allows to derive the joint distribution of the predictors in the sample that 
maximizes precision of norms estimation (i.e. the optimal design). The figure in the middle shows the 
optimal distribution of age and sex under the assumption of a linear age effect, while the bottom figure 
shows it for a quadratic age effect.   

 

To maximize precision of norms estimation, the size and the design of the sample on 

which the norms are based should be carefully planned. Oosterhuis et al. (2016) have provided 

sample size requirements for percentile estimation under both traditional and regression-based 

norming. However, these sample size requirements were based on a simulation study and thus 

limited to the considered scenarios. Furthermore, no equations to derive the optimal design (i.e. 
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variance formula for the percentile estimator) were given in Oosterhuis et al. (2016). Oosterhuis 

et al. (2017) have derived variance formulas for several norm statistics under the traditional 

norming approach, but this approach requires larger sample sizes than the regression-based 

approach (Oosterhuis et al, 2016), and has the limitation that, without the assumption of a 

model, the optimal design cannot be derived. Another practical problem in norming, besides 

sample size calculation, is the fact that normative studies often derive norms for several 

outcome variables with the same sample. Van der Elst et al. (2017) have extended the 

regression-based approach to norming of several tests by proposing to use multivariate 

regression instead of fitting a univariate regression model for each test separately. However, in 

Van der Elst et al. (2017)’s multivariate regression-based approach, once the relevant predictors 

have been identified, and the parameters of the multivariate regression model have been 

estimated, each test is normed separately like in univariate regression-based norming. In other 

words, this approach targets the performance of an individual on each single test, and gives no 

guidelines on how to combine all norm statistic values obtained for an individual, one per test, 

in order to evaluate his/her overall performance across all administered tests.  

In this thesis, the results available in the literature for univariate and multivariate 

regression-based norming are extended as follows: (i) a new multivariate regression-based 

approach is proposed that combines the several test scores obtained for an individual in the 

Mahalanobis distance, which is used as a measure of the overall performance across all 

administered tests, thus taking into account the correlation between these test scores, (ii) 

sampling variance formulas are derived for three types of norm statistics, namely Z-score, 

percentile rank score, and Mahalanobis distance, (iii) based on these variance formulas, optimal 

designs are derived for five regression models representing the reference population, (iv) 

efficient designs that are robust against misspecification of the regression model are provided, 

and (v) procedures are proposed to determine the required sample size for the optimal design 

of the normative sample such that individuals’ positions relative to the derived norms can be 

assessed with pre-specified power and precision. 

In the next section, the model-based approach adopted in this thesis is motivated, and 

the models considered in this work are briefly introduced.  
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 Model-based approach 

In this thesis a model-based approach is adopted, that is, the population under study is described 

by a statistical model. This is not the only possible approach to inference. As seen in the 

previous section, the traditional approach to norming did not involve models. Likewise, in the 

survey sampling literature the dominant paradigm is the design-based approach, in which 

inference is not based on a model for the outcome variable of interest (which is assumed to be 

a fixed unknown quantity in the design-based approach), but on the distribution of the inclusion 

indicator over repeated samples with a probability sampling design, where the inclusion 

indicator is a binary variable indicating whether the person is included into the sample or not. 

A model-free approach, such as the design-based approach to survey sampling and the 

traditional approach to norming, has the advantage of being robust in the sense of not being 

dependent on model assumptions. However, robustness comes at the price of efficiency (Little, 

2004). Specifically, assuming a model allows to find the design that maximizes precision of 

estimation, that is, the optimal design. Furthermore, the assumption of a model facilitates the 

comparison between sampling schemes in survey sampling, and the identification of relevant 

predictors of the outcome variable of interest in normative studies. Since the main objective of 

this thesis is to improve the design of surveys and normative studies in order to obtain precise 

estimates, the model-based approach is adopted. Strategies to find robust designs (i.e. designs 

that are a trade-off between robustness and efficiency) will be discussed in section 1.5. In the 

next sections, the models considered in this thesis are presented. 

1.3.1 Models for two-stage sampling 

Suppose that a researcher is interested in estimating the mean alcohol consumption among 

students nested within schools. The outcome variable is quantitative (i.e. alcohol consumption) 

and measured at the individual (e.g. student) level. Students are sampled with two-stage 

sampling (i.e. first, schools are sampled, and then students within the selected schools are 

drawn), thus sampling error occurs at each design level. This is taken into account by assuming 

the following two-level random intercept model for the alcohol consumption 𝑦  of the 𝑖-th 

student from the 𝑗-th school 

𝑦 = 𝛽 + 𝑢 + 𝜀  
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where 𝛽  is the average of all school-specific means, 𝑢  is the random effect of school j, and 𝜀  

is the residual (i.e. individual deviation from the school average) of student i nested within 

school j. The school and the student effects are assumed to be unrelated. The student residual 

𝜀  is normally distributed with zero mean and variance 𝜎 . When cluster size is non-

informative, the school effect 𝑢  is also normally distributed with zero mean and variance 𝜎 . 

However, in this thesis school size is allowed to be informative. Specifically, a linear relation 

between the school effect 𝑢  and the school size 𝑁  is assumed, that is, 𝑢 = 𝛾 𝑁 − 𝜃 + 𝜈 , 

where 𝛾 is the slope of this relation, 𝜃  is the mean school size in the population, and 𝜈  is the 

random component of the school effect that does not depend on school size. This latter 

component 𝜈  is assumed to be normally distributed with zero mean, and variance 𝜎 . Hence, 

the conditional distribution of the school effect 𝑢  given the school size 𝑁  is a normal 

distribution with mean 𝛾 𝑁 − 𝜃  and variance 𝜎 . 

1.3.2 Models for norming 

Univariate regression-based norming. Suppose that a researcher wants to derive norms for 

the oral version of the Letter Digit Substitution Test (LDST) for assessing information 

processing speed in adults aged 20 to 80 years. A representative sample is drawn from the 

reference population. The reference population can be modeled with a multiple linear regression 

model, as follows  

𝑦 = 𝛽 + 𝛽 𝑥 +. . . +𝛽 𝑥 + 𝜀 = 𝒙 ′𝜷 + 𝜀  

where 𝑦  is the test score of the 𝑖-th participant, 𝒙 = [𝑥 , . . . , 𝑥 ]′ is a vector of the 

participant’s scores on the 𝑘 predictors (e.g. the participant’s age and sex), 𝜷 = [𝛽 , 𝛽 . . . , 𝛽 ]′ 

is the vector of regression coefficients of the predictors, and 𝜀  is the residual of the 𝑖-th 

participant that is assumed to follow a normal distribution with zero mean and variance 𝜎 . 

 Multivariate regression-based norming. Suppose now that the researcher wants to 

compare subjects’ oral and written performance on the LDST with the reference population. 

The oral and written versions of the LDST are normed using the same sample of participants. 

For participant i, the model for the test score on the oral version of the LDST is 

𝑦 = 𝛽 + 𝛽 𝑥 +. . . +𝛽 𝑥 + 𝜀 , 
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and that for the written version of the LDST is 

𝑦 = 𝛽 + 𝛽 𝑥 +. . . +𝛽 𝑥 + 𝜀 . 

To take into account the correlation between the test scores of the same individual (i.e. between 

𝑦  and 𝑦 ), these two models are combined in the following multivariate linear regression 

model 

𝒚 = 𝑩′𝒙 + 𝜺  

where 𝒚 = [𝑦 , 𝑦 ]′ is the vector with the two test scores of the 𝑖-th participant, 𝑩 =

𝛽 𝛽
⋮ ⋮

𝛽 𝛽
 is the matrix of the regression coefficients for both test scores (note that each 

column contains the regression coefficients for one test score), 𝒙 = [𝑥 , . . . , 𝑥 ]′ is the vector 

with predictor scores, and 𝜺 = [𝜀 , 𝜀 ]′ is the vector of residuals of the 𝑖-th participant, which 

is assumed to follow a multivariate normal distribution with zero means vector and variance-

covariance matrix 𝚺 =
𝜎 𝜎

𝜎 𝜎
, where 𝜎  is the variance of 𝜀 , 𝜎  is the variance of 𝜀 , 

and 𝜎 = 𝜎  is the covariance between 𝜀  and 𝜀 . Note that scores of the same participant 

can be correlated, while scores of different participants are unrelated 

 In the next section, the optimality criteria used to find the optimal sampling design for 

mean estimation respectively test norming in this thesis are presented. 

 Optimal design 

As explained in the previous section, the first step to derive an optimal design is to specify a 

model for the population under study. The next step is to choose an optimality criterion that 

defines the optimal design. Since the aim is to maximize precision of estimation, the optimality 

criterion used in this thesis is the sampling variance (i.e. squared standard error) of the estimator 

of interest (e.g. mean estimator, Z-score estimator). The optimal design is thus defined as the 

design that minimizes this sampling variance. However, how this minimization is done depends 

on the type of study.  
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Optimal two-stage sampling for mean estimation in multilevel populations. The 

sampling variance 𝑉(�̂�) of the population mean estimator �̂� is a decreasing function of the 

sample size at each design stage (i.e. number of clusters and number of individuals per cluster). 

Clearly, taking each of these sample sizes as large as possible minimizes the sampling variance 

𝑉(�̂�) and thereby maximizes the precision of �̂�. However, resources (i.e. time and money) are 

limited in practice, and this can be taken into account by minimizing 𝑉(�̂�) subject to a cost 

constraint. Thus, the optimal design for mean estimation with a two-stage sampling scheme is 

defined as the combination of number of clusters and number of individuals per selected cluster 

that minimizes 𝑉(�̂�) subject to the cost constraint. 

Optimal design for maximizing precision of norms estimation. A design 𝜉 is defined 

as a joint distribution of the predictors in the normative sample, given the sample size. Under 

the assumption of a regression model like those given in section 1.3.2, the sampling variance 

of the norm statistic of interest (i.e. Z-score, percentile rank score, Mahalanobis distance) is a 

function of the distribution of the scores on the predictors (e.g. age and sex) in the normative 

sample. The optimal design is then defined as the joint distribution of the predictors’ scores that 

minimizes the sampling variance of the norm statistic over the set of all possible joint 

distributions of the predictors’ scores, that is, over the design region. The sampling variance of 

the norm statistic turns out to depend on the design 𝜉 of the normative sample only through the 

so-called standardized prediction variance 𝑑(𝑿, 𝜉). This is the variance of a predicted value for 

a subject, multiplied by the sample size and divided by the error variance. The optimal design 

can then be obtained simply by minimizing the standardized prediction variance.  

The G-optimality criterion is an optimality criterion that targets the standardized 

prediction variance 𝑑(𝑿, 𝜉). Specifically, the G-optimality criterion defines the optimal design 

as the design of the normative sample that minimizes the maximum of 𝑑(𝑿, 𝜉), where the 

maximum is taken over all possible combinations of the predictor values (e.g. all possible 

combinations of age and sex) for which predictions can be done. This corresponds to 

minimizing the maximum of the sampling variance of the norm statistic over the design region. 

However, when the residuals 𝜺 have equal variance-covariance matrix 𝚺, G-optimality is 

equivalent to D-optimality (Wong, 1995), which defines the optimal design as the design that 

minimizes the determinant of the variance-covariance matrix of the regression coefficients 

estimators (i.e. 𝜷 for univariate norming, 𝑩 for multivariate norming). For the multivariate 

regression-based approach, another optimality criterion is furthermore introduced. Under the 
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multivariate regression-based approach proposed by Van der Elst et al. (2017), multiple norm 

statistic values are obtained for each individual. Since this approach does not take into account 

the correlation between them, a suitable optimality criterion is A-optimality, that is, to minimize 

the sum of the sampling variances of the norm statistics for the same individual. Since these 

sampling variances are functions of the standardized prediction variance, also in this case the 

optimal design can be obtained with the G-optimality criterion.  

In the next section, in order to cope with model uncertainty in the design stage, strategies 

to find robust designs are presented. 

 Maximin design 

Two issues can arise with the optimal designs presented in the previous section. First, optimal 

designs for survey sampling can require prior knowledge of some model parameter values (e.g. 

variances or correlations), which is known as the local optimality problem in optimal design 

literature (Atkinson et al., 2007; Berger & Wong, 2009; Goos & Jones, 2011). Second, the 

optimal design of a normative study depends on the assumed model, but at the design phase of 

a study there is often uncertainty about the “true” model (e.g. whether the age effect on a test 

score is linear or not). Strategies to find designs that are robust against misspecification of the 

unknown parameter values or of the best model are presented in the next sections. The use of 

these robust designs (instead of the optimal design) in sample size calculation procedures allows 

to find a compromise between efficiency and robustness. 

1.5.1 Local optimality problem 

The local optimality problem occurs when the optimal design is optimal only for certain values 

of the model parameters. This is the case, for instance, for the optimal designs derived for the 

three aforementioned TSS schemes, because these optimal designs depend on the prior 

knowledge of some features of the cluster size distribution in the population, the degree of 

informativeness of cluster size, and the correlation between the outcomes for two individuals 

belonging to the same cluster. The approach adopted in this thesis to overcome this issue is the 

maximin approach (Atkinson et al., 2007; Berger & Wong, 2009; Wong, 1992). This approach 

has been applied in several contexts, such as longitudinal studies (Ouwens et al,., 2002; Tekle 

et al., 2008; Winkens et al., 2007), fMRI experiments (Maus et al., 2010), cluster randomized 

and multicentre trials (Candel & Van Breukelen, 2015; Van Breukelen & Candel, 2018; Wu et 
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al., 2017), cost-effectiveness studies (Manju et al., 2014; Manju et al., 2015), life-event studies 

(Safarkhani et al., 2014; Tan, 2010), test construction (Berger et al., 2000), and biological and 

pharmacological studies (Dette & Biedermann, 2003; Dette et al., 2006; King & Wong, 2000; 

Pronzato & Walter, 1988), because it has the advantage of being relatively simple to implement. 

An alternative approach to deal with the local optimality problem is the Bayesian approach, 

which assumes a prior distribution for the model parameters and derives the optimal design by 

averaging over the prior information (Abebe et al., 2015; Chaloner, 1984; Chaloner & 

Verdinelli, 1995; Dette, 1996; Goos et al., 2010; Han & Chaloner, 2004; Yu et al., 2008). 

The local optimality problem is solved by the maximin approach as follows: First, a 

range of plausible values is defined for each unknown model parameter. Second, for each 

feasible design (i.e. combination of number of clusters and number of individuals per selected 

cluster), the values of the model parameters that minimize the efficiency 𝑉(�̂�)  are searched 

within the ranges of plausible values defined in the first step. Third and last, the design that 

maximizes the minimum efficiency obtained in the second step is chosen. That design is called 

the maximin design, and is the optimal design for the worst-case scenario. By maximizing the 

minimum efficiency over the ranges of plausible parameter values, the maximin design is robust 

against misspecification of the unknown parameters.  

1.5.2 Model-dependence 

A limitation of the optimal design for a normative study is that it depends on the assumed model, 

for instance on whether we assume the age effect on a test score to be linear or not, or to differ 

between males and females or not. This is important because, in practice, there is uncertainty 

about the “true” model. The maximin approach can also be applied to overcome this issue. In 

this setting, the first step is to choose a criterion for defining a design as the most robust design 

against misspecification of the model. Two possible choices are the efficiency criterion (i.e. the 

reciprocal of the sampling variance), and the relative efficiency (i.e. the ratio of the sampling 

variances of two competing designs). The second step is to define a set of plausible models, and 

to find the optimal design for each of these models. The third step is to find, for each design, 

the minimum efficiency value or the minimum relative efficiency value (i.e. relative to the 

optimal design for the model under consideration) across all plausible models. The most robust 

design is the design which maximizes the minimum efficiency or the minimum relative 

efficiency across all feasible designs. The resulting design is called the absolute maximin design 
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under the efficiency criterion, and the RE maximin design under the relative efficiency 

criterion.  

 Outline of the thesis 

The chapters in this thesis can be read as self-contained articles. The notation can vary between 

chapters, but each chapter has a table summarizing the notation to increase readability. The 

topics of each chapter are as follows. 

Chapter 2 deals with unbiased and efficient estimation of the average of all individual 

outcomes in a multilevel population for the sampling schemes SRS of individuals, TSS1, TSS2, 

and TSS3 when cluster size is informative. The unbiased (or approximately unbiased) estimator 

of the population mean is given for each sampling scheme. Furthermore, to establish which is 

the most efficient sampling scheme, the three TSS schemes are compared with each other and 

with SRS under the constraint of a fixed total sample size (i.e. number of individuals). These 

results are obtained under the assumption of a model for the multilevel population, that is, under 

the model-based approach. Since in survey sampling literature the dominant paradigm is the 

design-based approach, the two approaches are compared in the considered setting of estimating 

the average of all individual outcomes for each of the four considered sampling schemes when 

cluster size is informative. 

Chapter 3 extends the results obtained in chapter 2 by deriving the optimal design for 

TSS1, TSS2 and TSS3, that is, the number of clusters and number of individuals per selected 

cluster that minimizes the sampling variance of the population mean estimator subject to a 

budget constraint instead of a constraint on the total sample size. Relatedly, the effects of 

ignoring informative cluster size on the optimal design are investigated. Furthermore, under the 

constraint of a fixed budget for sampling and measuring, the optimal designs for the three TSS 

schemes are compared in terms of efficiency with each other and with SRS. Since the optimal 

design depends on unknown model parameters, maximin designs are derived to overcome this 

dependency. Finally, a procedure is proposed for computing maximin sample sizes to compare 

the means of two populations. 

Chapter 4 deals with sample size calculation and optimal design for univariate 

regression-based norming. Sampling variance formulas are derived for two norm statistics often 

used in practice: the Z-score and percentile rank score. Based on these variance formulas, 
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optimal designs are obtained for five regression models with a quantitative and a qualitative 

predictor, differing in whether they allow for interaction and nonlinearity. Since at the design 

phase of a study there is uncertainty about the “true” norming model, designs robust against 

misspecification of the model are derived based on two criteria: efficiency, and relative 

efficiency. Also a procedure is proposed to determine the required sample size for the optimal 

design of the normative sample.  

In chapter 5, a new approach to multivariate regression-based norming is proposed. This 

approach differs from that available in the literature in that it combines all the scores obtained 

for an individual through the Mahalanobis distance, instead of providing separate norms for 

each outcome variable. Sampling variance formulas are derived for the two norm statistics used 

in the two multivariate regression-based approaches, that is, the Z-score and Mahalanobis 

distance. Furthermore, for both multivariate regression-based approaches optimal designs are 

derived for the multivariate version of the five regression models considered in chapter 4. To 

deal with the uncertainty about the “true” model, also robust designs are obtained based on the 

efficiency and the relative efficiency criteria. Finally, a sample size calculation procedure is 

proposed only for the Mahalanobis distance-based approach, because it is not hampered by 

multiple testing issues. 

In chapter 6, some practical guidelines for planning surveys and normative studies are 

given, and ideas for future research are outlined. Each chapter of the thesis is summarized in 

chapter 7, and the scientific and social impact of the results of this thesis are discussed in chapter 

8. For the sake of brevity, online supplementary materials for chapters 2, 3, 4, and 5 are not 

included into this thesis but are available upon request. A table of contents of the online 

supplementary materials can be found at the end of each chapter. 
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Abstract 

In multilevel populations there are two types of population means of an outcome variable: the 

average of all individual outcomes ignoring cluster membership, and the average of cluster-

specific means. To estimate the first mean, individuals can be sampled directly with simple 

random sampling or with two-stage sampling, that is, sampling clusters first, and then 

individuals within the sampled clusters. When cluster size varies in the population, three two-

stage sampling schemes can be considered: sampling clusters with probability proportional to 

cluster size and then sampling the same number of individuals per cluster; sampling clusters 

with equal probability and then sampling the same percentage of individuals per cluster; 

sampling clusters with equal probability and then sampling the same number of individuals per 

cluster. Unbiased estimation of the average of all individual outcomes is discussed under each 

sampling scheme assuming cluster size to be informative. Furthermore, the three two-stage 

sampling schemes are compared in terms of efficiency with each other and with simple random 

sampling under the constraint of a fixed total sample size. The relative efficiency of the 

sampling schemes is shown to vary across different cluster size distributions. However, 

sampling clusters with probability proportional to size is the most efficient two-stage sampling 

scheme for many cluster size distributions. Model-based and design-based inference are 

compared and are shown to give similar results. The results are applied to the distribution of 

high school size in Italy, and the distribution of patient list size for general practices in England. 

 

 

Keywords: design-based inference; hierarchical population; informative cluster size; model-

based inference; two-stage sampling 
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 Introduction 

Hierarchical or multilevel populations arise when individuals or micro-units are nested within 

clusters or macro-units (Goldstein, 2011; Snijders & Bosker, 2012). Considering, for the sake 

of simplicity, only populations with two levels of nesting, examples include patients clustered 

in general practices, elderly people nested in nursing homes, and students grouped in schools. 

In these populations the overall mean of an outcome variable (e.g. cholesterol level, blood 

pressure, body mass index) can be defined in two ways: as the mean of all individuals in the 

population ignoring cluster membership (i.e. first, pooling all patients from all clusters in the 

population, and then computing the average cholesterol level), or as the mean of all cluster-

specific means (i.e. first, computing the mean cholesterol level within each cluster, and then 

averaging all the cluster-specific means). These two definitions coincide only under special 

conditions, as will be seen later, but this paper focuses on the first definition only. Related to 

these two definitions, is the concept of informative cluster size.  

 When clusters vary in size in the population (e.g. small versus large general practices), 

cluster sizes can be seen as realizations of a random variable (Van Breukelen et al., 2007), and 

the outcome variable of interest may be related to cluster size (e.g. surgeons operating on many 

patients might have better performances than those operating on fewer patients, see Panageas 

et al., 2007). If this is the case, then cluster size is said to be informative (Seaman et al., 2014). 

Nevalainen et al. (2014) describe and give practical examples of three data-generating 

mechanisms that can lead to informative cluster size. Briefly, a latent variable (e.g. the 

competence of the surgeon) influences cluster size (e.g. the number of patients) and the outcome 

variable (e.g. success of the operation) at the same time; or cluster size affects the outcome 

variable (e.g. surgeons become better by practice); or vice versa, the outcome variable affects 

cluster size (e.g. better surgeons get more referrals). Relatedly, Seaman et al. (2014) point out 

that the standard methods to analyse clustered data, namely Generalized Linear Mixed Models 

(GLMM) and Generalized Estimating Equations (GEE), implicitly assume that cluster size is 

unrelated to the outcome variable, and discuss different methods to handle informative cluster 

size for cluster-specific inference with GLMM and population-average inference with GEE. 

 The topic of this paper is the unbiased and efficient estimation of the population mean 

in the presence of informative cluster size. To estimate the population mean, individuals can be 

sampled either with Simple Random Sampling (SRS), that is, directly from the population, or 

with Two-Stage Sampling (TSS), that is, sampling first clusters and then individuals within the 
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sampled clusters (Cochran, 1977; Lohr, 2010; Särndal et al., 1992). Given cluster size variation 

in the population, at least three alternative TSS schemes can be considered: 

1. Sampling clusters with probability proportional to cluster size and then sampling the same 

number of individuals from each sampled cluster. 

2. Sampling clusters with equal probability and then sampling per sampled cluster a number 

of individuals proportional to cluster size. 

3. Sampling clusters with equal probability and then sampling the same number of individuals 

per cluster. 

 In order to evaluate each sampling scheme in terms of unbiasedness and efficiency of 

mean estimation, it is useful to distinguish two approaches to inference in survey sampling 

literature (Skinner & Wakefield, 2017): the design-based paradigm (Cochran, 1977; Lohr, 

2010; Särndal et al., 1992),  and the model-based approach (Chambers & Clark, 2012; Little, 

2004; Valliant et al., 2000). In the design-based approach, the outcome value for each unit (e.g. 

patient) in the population is assumed to be a fixed unknown quantity. The random variable is 

then the inclusion indicator, that is, the variable that states whether or not a unit is included into 

the sample. Thus, inference is based on the distribution of the inclusion indicator over repeated 

samples with a probability sampling design. In contrast, the model-based approach assumes 

that the outcome value in the real finite population is a realization of a stochastic model, 

representing a hypothetical infinite population. Inference is then based on the probabilistic 

model. As long as the assumptions of the model are met, model-based inference can then ignore 

the sampling scheme and condition on the observed sample (Chambers & Clark, 2012; Little, 

2004; Lohr, 2010; Skinner & Wakefield, 2017). However, if the model residuals (i.e. the 

stochastic part) are correlated with the variables which determine the sampling probabilities 

(and then with the sampling probabilities themselves), the sampling design is said to be 

informative (Little, 2004; Pfeffermann, 1993; Pfeffermann et al., 1998; Skinner & Wakefield, 

2017; Snijders & Bosker, 2012, p. 222; Sudgen & Smith, 1984). When this is the case, model-

based analysis is biased, unless the sampling design is taken into account (Snijders & Bosker, 

2012, p. 237). In the multilevel modelling literature, many authors have investigated unbiased 

estimation when two-stage sampling with unequal sampling probabilities is informative,  but 

they assumed non-informative cluster size (Asparouhov, 2006; Grilli & Pratesi, 2004; Koziol 

et al., 2017; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006). In this paper this 

sampling scheme is informative due to the cluster size being informative.  
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 In this paper, cluster size is treated as a random variable and assumed to be informative, 

but the special case of non-informative cluster size will also be covered briefly. Furthermore, a 

simple hierarchical linear model (Goldstein, 2011; Snijders & Bosker, 2012), for the outcome 

variable in the population, is assumed and used to define the parameter of interest (i.e. the 

population mean). We thus adopt a model-based approach but will also make a comparison 

with design-based inference. It will be shown that the type of analysis (i.e. unweighted versus 

weighted analysis) needed for unbiased estimation of the population mean depends on the 

chosen sampling scheme. Furthermore, the three aforementioned TSS schemes will be 

compared with each other and with SRS in terms of their efficiency under the constraint of a 

fixed total sample size. It will also be shown that their relative efficiencies depend on the cluster 

size distribution. 

 The rest of the paper is organized as follows. In section 2.2, the assumptions on which 

our findings are based and the considered sampling schemes are presented in more detail. In 

section 2.3, the population mean is derived under a linear mixed model for a two-level 

hierarchical population with varying and informative cluster size. Furthermore, section 2.3 

deals with the estimation of the population mean under different sampling schemes, presenting 

both the expectation and sampling variance of the estimator under each scheme. In section 2.4, 

the three TSS schemes are compared with each other and with SRS in terms of efficiency for a 

given total sample size (number of individuals). In section 2.5, the relative efficiencies of the 

three TSS schemes are derived under the design-based approach, and compared with those 

obtained under the model-based framework. The results of this paper are applied in section 2.6 

to two real populations: high schools in Italy, and general practices in England. Some final 

remarks are offered in section 2.7. The online Supplementary Material contains part of the 

derivations of the equations given in this paper, as well as additional tables and figures. 

 Assumptions and sampling schemes 

The structure of the data is hierarchical with two levels of nesting (e.g. pupils are nested within 

schools, patients within general practitioners (GPs)).The results of this paper are based on the 

following assumptions (the notation is summarized in Table 2.A in appendix C):   

Assumption 1: The population is composed of 𝐾 clusters (e.g. schools, GPs) and each cluster 

j contains 𝑁   individuals (e.g. students, patients), that is, clusters are allowed to have different 
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sizes. The total number of individuals in the population (i.e. the population size) is 𝑁 =

∑ 𝑁 .  

Assumption 2: Sampling is either Simple Random Sampling (SRS) of individuals in one stage, 

or else Two-Stage Sampling (TSS). In TSS, we first sample 𝑘 clusters, and then sample 𝑛 or 𝑛  

individuals from each sampled cluster 𝑗. In case of TSS, the population is very large relative to 

the sample size at each design level, that is, → 0 and → 0, where 𝑛 =
∑

  is the average 

number of individuals sampled per sampled cluster and 𝜃 =  is the mean cluster size in 

the population. In case of SRS, 𝑁  is very large relative to 𝑚, the number of individuals 

sampled (i.e. → 0). 

Assumption 3: The outcome variable 𝑌  is quantitative (e.g. cholesterol level) and measured 

at the individual (e.g. patient) level. Further, 𝑌  shows variation at the cluster level as well as 

at the individual level. Therefore, sampling error occurs at each design level. This is taken into 

account by assuming the following two-level random intercept model for the outcome of the 𝑖-

th individual from the 𝑗-th cluster 

 𝑦 = 𝛽 + 𝑢 + 𝜀  (2.1) 

where 𝑢 𝑁 ~𝑁 𝛾 𝑁 − 𝜃 , 𝜎 , 𝜀 ~𝑁(0, 𝜎 ), 𝑢 ⊥ 𝜀 , and 𝛾 and 𝜎  will be defined in the 

next assumption. Note that multilevel models, such as equation (2.1), are not only a standard 

procedure for modelling hierarchical populations (Goldstein, 2011; Snijders & Bosker, 2012), 

but also a natural way for taking into account the clustering induced by Two-Stage Sampling 

in a model-based approach (Chambers & Clark, 2012, p. 65; Goldstein, 2011, pp. 212-213; 

Little, 2004; Lohr, 2010, pp. 200, 262-264; Makela et al., 2018; Skinner & Wakefield, 2017; 

Snijders & Bosker, 2012, pp. 218, 223; Valliant et al., 2000, p. 256; Zheng & Little, 2004). 

Assumption 4: The cluster effect 𝑢  is allowed to be linearly related to the size of the cluster 

in the population 𝑁 , that is, 𝑢 = 𝛼 + 𝛾𝑁 + 𝜈 = 𝛾 𝑁 − 𝜃 + 𝜈 , where 𝛼 = −𝛾𝜃  for 

model identifiability, 𝜈 ~𝑁(0, 𝜎 ), and 𝜈 ⊥ 𝑁 . 

 In order to deal with cluster size variation and informative cluster size in estimating 

the population mean (i.e. the average of all individual outcomes), three competing TSS schemes 
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are considered, which will be compared with SRS of individuals and with each other, under the 

constraint that all sampling schemes have the same total sample size. 

Two-Stage Sampling 1 (TSS1):   

Stage 1: Sample 𝑘 clusters with probability proportional to cluster size 𝑁 , that is, 
∑

  is the 

probability of cluster j being sampled if one cluster is randomly sampled, and so the inclusion 

probability for the j-th cluster, that is, the probability that cluster j is sampled given a total of 𝑘 

sampled clusters, is 𝜋 = 1 − 1 −
∑

 (Särndal et al., 1992, p. 51).  If  
∑

→ 0,   ∀ 𝑗 =

1, … , 𝐾, then  𝜋 ≈
∑

; this approximation will be used.  

Stage 2: Sample the same number of individuals 𝑛 per cluster, so that 𝜋 | = , where 𝜋 |  

denotes the probability of including the i-th individual from cluster 𝑗 in the sample, given that, 

at the first stage, the j-th cluster is sampled.  

Note that, under this sampling scheme, all individuals have the same unconditional probability 

of selection, that is,  𝜋 = 𝜋 𝜋 | ≈
∑

= . A potential drawback of TSS1 is that we 

must know the sizes of all clusters in the population in order to draw the 𝑘 clusters for the 

sample.  

Two-Stage Sampling 2 (TSS2):   

Stage 1: Sample 𝑘 clusters with Simple Random Sampling (SRS), that is, 𝜋 = ,   ∀𝑗 =

1, … , 𝐾.  

Stage 2: Sample the same percentage of individuals per cluster 𝑝, that is, the number of 

individuals sampled per cluster (i.e. 𝑛 ) is proportional to the cluster size in the population (i.e. 

𝑁 ), and so 𝜋 | = = 𝑝  ∀𝑖 = 1, … , 𝑁   and  ∀𝑗 = 1, … , 𝐾.  

Under this sampling scheme the unconditional probability of being included into the sample is 

the same for all individuals, that is, 𝜋 = 𝜋 𝜋 | = = 𝑝. In contrast to what was the case 

for TSS1,  we now need to know only the cluster sizes for the sampled clusters before sampling 

individuals from those sampled clusters.  
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Two-Stage Sampling 3 (TSS3):   

Stage 1: Sample 𝑘 clusters with SRS, that is, 𝜋 = ,   ∀𝑗 = 1, … , 𝐾.  

Stage 2: Sample the same number of individuals 𝑛 per cluster, then 𝜋 | = .  

The unconditional sample inclusion probability of the i-th individual in the j-th cluster is 𝜋 =

𝜋 𝜋 | = . Thus, individuals from different clusters have a different probability to be drawn 

from their cluster (the larger 𝑁 , the smaller this probability). This has consequences for the 

data analysis as will be seen in the next section.  

 As a final remark on this section, note that the three TSS schemes considered here can 

be seen as three particular cases of a larger family of alternative TSS schemes. At the first stage, 

a more general expression for 𝜋  is 𝜋 =
∑

, where 𝑋  is an arbitrary auxiliary variable 

available before sampling. At the second stage, a general form for 𝜋 |  is 𝜋 | =
∑

, where 

𝑍  is an auxiliary variable for individuals prior of sampling. Thus, TSS1 follows by imposing 

𝑋 = 𝑁 , 𝑍 = 1, and 𝑛 = 𝑛. Instead, TSS2 results from 𝑋 = 1, 𝑍 = 1, and 𝑛 = 𝑝𝑁 , while 

TSS3 is obtained with 𝑋 = 1, 𝑍 = 1, and 𝑛 = 𝑛. 

 Definition and estimation of the population mean 𝝁 

To find the population mean 𝐸 𝑌  and variance 𝑉 𝑌 , defined from model (2.1) as the 

marginal expectation and variance of 𝑌  over cluster effect 𝑢  and individual effect 𝜀 , the 

marginal expectation and variance of cluster effect 𝑢  (i.e. 𝐸 𝑢  and 𝑉 𝑢 , respectively) are 

needed.  If cluster size is non-informative (i.e. 𝛾 = 0 in assumption 4), then 𝐸 𝑢 = 0 and  

𝑉 𝑢 = 𝜎  leading to  𝐸 𝑌 = 𝛽  and 𝑉 𝑌 = 𝜎 = 𝜎 + 𝜎 . In contrast, if cluster size is 

informative (i.e. 𝛾 ≠ 0 in assumption 4), 𝐸 𝑢 = 0 or 𝐸 𝑢 ≠ 0 depending on the sampling 

scheme.  To prevent misunderstanding, note that the cluster effect 𝑢  in the population does not 

depend on the sampling design, and its marginal distribution in the population is 𝑓 𝑢 =

∫ 𝑓 𝑢 𝑁 𝑓 𝑁 𝑑𝑁  (where 𝑓(. ) indicates a probability density function). Nevertheless, the 

sampling design determines the cluster effect sampling distribution, which is, for a sample of 
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size one, equal to  ∫ 𝑓 𝑢 𝑁 𝑓 𝑁 𝑑𝑁  if clusters are sampled with equal probabilities, and 

equal to ∫ 𝑓 𝑢 𝑁 𝑓 𝑁 𝑑𝑁 , if clusters are sampled with probabilities proportional to 

their size.  

 Under TSS2 or TSS3, the 𝑘 clusters are sampled with equal probabilities from the 

population of 𝐾 clusters, and then (for proofs, see appendix A) 

 (a)   𝐸 / 𝑢 = 0,     and     (b)  𝑉 / 𝑢 = 𝜎 + 𝛾 𝜎 = 𝜎 . (2.2) 

Note that 𝛾 𝜎  is the component of 𝑉 / 𝑢  explained by 𝑁 , and 𝜎  is the unexplained 

variance of 𝑢 . Hence, the following expression for 𝐸 𝑌  comes from model (2.1) and equation 

(2.2.a)  

 𝐸 / 𝑌 = 𝛽 , (2.3) 

which can be interpreted as the expected outcome for an arbitrary individual (i.e. 𝐸 𝜀 = 0) 

from an arbitrary cluster (i.e. 𝐸 𝑢 = 0). To estimate 𝛽  unbiasedly, large and small clusters 

should be weighted equally, both in the sampling scheme and in the estimator (see appendix 

B). However, 𝛽  is not the parameter of interest in this paper. 

Under SRS 𝑚 individuals are sampled directly from the population of 𝑁 = ∑ 𝑁  

individuals and with equal probabilities (i.e. 𝜋 =   ∀𝑖 = 1, … , 𝑁 ). Now, the probability 

that a selected individual belongs to a cluster of size 𝑁  is proportional to cluster size, meaning 

that large clusters have higher chance of being represented in the SRS sample. Hence, under 

SRS, 𝑘  clusters are indirectly sampled from the population with sampling probability 

proportional to size, and 𝑘  can run from 1 to 𝑚. Likewise, under TSS1 𝑘 clusters are sampled 

with probabilities proportional to their size, and so large clusters are more likely to be drawn. 

Therefore, under SRS and TSS1, the marginal expectation and variance of cluster effect 𝑢  are 

(for proofs, see appendix A) 

(a) 𝐸 / 𝑢 = 𝛾𝜃 𝜏 , and (b) 𝑉 / 𝑢 = 𝜎 + 𝛾 𝜎 [𝜏 (𝜁 − 𝜏 ) + 1] (2.4) 
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where 𝜏 =   and 𝜁 =   are the coefficient of variation and the skewness of cluster 

size distribution in the population, respectively. Note that 𝑉 / 𝑢 = 𝑉 / 𝑢  if 

one of the following conditions holds: (i) 𝜏 = 0 (i.e. no cluster size variation), (ii)  𝛾 = 0 (i.e. 

cluster size is non-informative), (iii) 𝜁 = 𝜏  (e.g. 𝑁  is Poisson distributed, see Table S.M.1 

in the Supplementary Material). Likewise, 𝐸 / 𝑢 = 𝐸 / 𝑢  if either condition 

(i) or (ii) holds. Thus, from model (2.1) and equation (2.4.a) the population mean that we here 

want to estimate follows 

  𝐸 / 𝑌 = 𝛽 + 𝛾𝜃 𝜏 = 𝜇. (2.5) 

This mean can be interpreted as the expected outcome for an individual randomly sampled from 

the population ignoring cluster membership by SRS. Note that the two definitions of 𝐸 𝑌  in 

equations (2.3) and (2.5) coincide if either clusters have the same size in the population (i.e. 

𝜏 = 0) or cluster size is not related to the outcome (i.e. 𝛾 = 0).  Given the focus of this paper 

on 𝜇, model (2.1) can be rewritten from equation (2.5) as follows  

 𝑦 = 𝜇 + 𝑏 + 𝜀 , (2.6) 

where 𝑏 = 𝑢 − 𝛾𝜃 𝜏 = 𝑢 − 𝐸 / 𝑢  (see equation (2.4.a)) with 𝐸 / 𝑏 = 0 

and 𝑉 / 𝑏 = 𝑉 / 𝑢  (see equation (2.4.b)). 

 To estimate 𝜇 unbiasedly, the weight of a cluster should be proportional to its size, 

either in the sampling scheme or in the estimator (for details, see appendices A and B). For each 

sampling scheme, the first row of Table 2.1 presents the unbiased or approximately unbiased 

(i.e. for 𝑘 sufficiently large) estimator of 𝜇 under model (2.6), the second and third row present 

the conditional expectation and variance of �̂�, the fourth row gives the marginal expectation of 

�̂�, and the last two rows show the two components of the marginal variance of �̂� (i.e. 𝑉𝑎𝑟(�̂�) =

𝐸 𝑉(�̂�|𝑵∗) + 𝑉 𝐸(�̂�|𝑵∗) , where 𝑵∗ = 𝑵 = (𝑁 , … , 𝑁 )  under TSS and 𝑵∗ = 𝑵 =

𝑁 , … , 𝑁  under SRS) (for proofs, see appendix B). As the first row of Table 2.1 shows, 

the estimator of 𝜇 is a weighted sum of cluster means in each sampling scheme, but the weights 

differ between schemes. Under SRS 𝑘  clusters are indirectly sampled from the population 

and large clusters have higher chance of being sampled, thus the unweighted estimator is 

unbiased for 𝜇 (recall that from assumption 2, → 0 which implies that 𝑘 → 𝑚). Under 
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TSS1 clusters are sampled with probabilities proportional to their size, and so 𝜇 is estimated 

unbiasedly by the unweighted average of cluster means. Under TSS3 and TSS2 cluster means 

must be weighted by cluster size (i.e. 𝑁  in TSS3, and also in TSS2 since 𝑛 = 𝑝𝑁 ) in the 

analysis, because clusters are weighted equally by these sampling designs, that is, all clusters 

have equal sampling probability (for details, see appendix B). An exception to this is the special 

case of non-informative cluster size (i.e. 𝛾 = 0), in which the two definitions of population 

means coincide (i.e. 𝜇 = 𝛽 ). It then follows that 𝐸 𝑢 = 0 for any sampling scheme (see 

appendix A), and from model (2.1), then results that 𝐸 𝑦 = 𝛽 . Thus, any estimator of 𝜇 =

𝛽  of the form �̂� =
∑

∑
 is unbiased then, although some weights 𝑤  are more efficient than 

others (Searle & Pukelsheim, 1986; Van Breukelen & Candel, 2012).  

 Relative efficiencies of TSS schemes versus SRS and each other 

Under the constraint of a fixed total sample size (i.e. 𝑚 = 𝑛𝑘), the efficiency of the three TSS 

schemes can be investigated by computing their relative efficiencies, defined as the ratio of the 

sampling variances of �̂� under two competing sampling schemes (i.e. the variances obtained as 

the sum of the last two rows of Table 2.1). For instance, the relative efficiency of TSS1 versus 

SRS is defined as the ratio of 𝑉(�̂� ) for SRS to 𝑉(�̂� ) for TSS1 (i.e. 𝑅𝐸(𝑇𝑆𝑆1 𝑣𝑠 𝑆𝑅𝑆) =

𝑉(�̂� )/𝑉(�̂� )). The relative efficiencies are given in Table 2.2 (for proof, see section 2 of 

the Supplementary Material), while the relative efficiency of TSS2 versus TSS1 is plotted in 

Figure 2.1. As shown by Table 2.2, the numerator and denominator of the relative efficiency 

are both a weighted sum of two components, respectively 𝐸(𝑉(�̂�|𝑵)) and 𝑉(𝐸(�̂�|𝑵)) from last 

two rows of Table 2.1, with weights determined by the correlation between cluster effect and 

cluster size 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 . The component 𝐸(𝑉(�̂�|𝑵)) with weight 1 − 𝑐𝑜𝑟𝑟 𝑢 , 𝑁  

depends on the intraclass correlation 𝜌 = , the coefficient of variation of cluster size 𝜏 , 

and the average number of individuals sampled per cluster 𝑛. The other component, 

𝑉(𝐸(�̂�|𝑵)), weighted by 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 , is a function of the coefficient of variation 𝜏 , the 

skewness 𝜁 , and (for TSS2 and TSS3 only) the kurtosis  𝜂  of cluster size distribution. Denote 

by ω the relative efficiency under non-informative cluster size (i.e. 𝑅𝐸 = ω if 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 =

0), and by λ the relative efficiency under a perfect linear relation between 𝑢  and 𝑁  (i.e. 𝑅𝐸 =

λ if  𝑐𝑜𝑟𝑟 𝑢 , 𝑁 = 1). These two extremes can be derived directly from Table 2.2 and Figure 
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2.1, which plots the 𝑅𝐸 against 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 . Therefore, the 𝑅𝐸 moves from ω to λ as 

𝑐𝑜𝑟𝑟 𝑢 , 𝑁  moves from zero to one. For small to moderate correlations (say, 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 <

0.7), ω receives more weight in the relative efficiency. If ω and λ are both smaller than or equal 

to one, the relative efficiency is also smaller than or equal to one. Now, the ω’s shown in Table 

2.2 are all smaller than one, which entails the following ordering of the sampling schemes in 

terms of efficiency based on ω (from most to least efficient): SRS, TSS1, TSS2, and TSS3. 

Under a perfect linear relation between cluster effect and cluster size (i.e. 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 = 1), 

𝑅𝐸 = λ and SRS is more efficient than TSS1, while TSS2 and TSS3 are equally efficient. 

Furthermore, TSS1 is more efficient than TSS2 and TSS3 (i.e. λ ≤ 1) if one of the following 

conditions is met (for proofs, see section 2 of the Supplementary Material): the cluster size 

distribution is positively skewed (i.e. 𝜁 > 0) with 𝜏 ∈ [0, 𝜁 ], or is symmetric (i.e. 𝜁 = 0) 

with 𝜏 ∈ [0,1] and 𝑘 ∈ 1, , or is Normal. Thus, for any value of 𝑐𝑜𝑟𝑟 𝑢 , 𝑁  

the ordering of the sampling schemes in terms of efficiency based on 𝑉(�̂�) is (from most to 

least efficient): SRS, TSS1, TSS2, and TSS3. However, if none of the aforementioned 

conditions is met, λ might be bigger than one and then, to see whether TSS1 is more efficient 

than TSS2 and TSS3, the relative efficiency must be computed for the specific cluster size 

distribution. 

 Given that 𝑅𝐸 = ω if 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 = 0 and ω has more weight than λ in the 𝑅𝐸 for 

𝑐𝑜𝑟𝑟 𝑢 , 𝑁 < 0.7, it is useful to have a closer look at the patterns of the ω’s shown in Table 

2.2. First, the ω of any TSS scheme versus SRS is a decreasing function of the intraclass 

correlation 𝜌, the average number of individuals sampled per cluster 𝑛, and (only for TSS2 and 

TSS3) of the coefficient of variation of cluster size 𝜏 . Second, ω(𝑇𝑆𝑆2𝑣𝑠𝑇𝑆𝑆1), 

ω(𝑇𝑆𝑆3𝑣𝑠𝑇𝑆𝑆1), and ω(𝑇𝑆𝑆3𝑣𝑠𝑇𝑆𝑆2) are decreasing functions of the coefficient of variation 

of cluster size 𝜏 . Third, as the intraclass correlation 𝜌 and/or the average number of individuals 

sampled per cluster 𝑛 increase, TSS2 moves away from TSS1 and towards TSS3 in terms of 

efficiency as expressed by ω (see Figure 2.2). 

 When the outcome variable is unrelated to the cluster size (i.e. 𝛾 = 0 and so also 

𝑐𝑜𝑟𝑟 𝑢 , 𝑁 = 0), the population mean 𝜇 is equal to 𝛽  as shown in section 2.3. In this special 

case, any estimator of 𝜇 of the form �̂� =
∑

∑
 is unbiased. However, some weights are more 
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efficient than others. For TSS2, weighting cluster means by their inverse variance (i.e. 𝑤 =

𝑉𝑎𝑟 𝑦 = 𝜎 + , where 𝜎 = 𝜎  since 𝛾 = 0) is optimal, and unweighted analysis 

(i.e. 𝑤 = 1) is more or less efficient than cluster size weighting (i.e. 𝑤 = 𝑝𝑁 ), depending on 

the intraclass correlation 𝜌 and the average cluster size in the sample (Searle & Pukelsheim, 

1986; Van Breukelen et al., 2007). The conditional variance of the optimal estimator is 

𝑉𝑎𝑟
∑

∑
𝑵 = ∑  (Van Breukelen et al., 2007, eq. (6)). Under 

TSS1 and TSS3, the same number of individuals is sampled per cluster (i.e. 𝑛 = 𝑛, ∀𝑗 =

1, … , 𝑘), so the estimator with 𝑤 = 𝑉𝑎𝑟 𝑦  reduces to 
∑

. Thus, for TSS1 and TSS3, 

𝑤 = 1 is optimal and its sampling variance is given in the fifth row of the TSS1 column in 

Table 2.1 (for proof, see appendix B or section 2.3 of the Supplementary Material), so TSS1 

and TSS3 are equally efficient then, given equal weighting of cluster means, but TSS3 is more 

practical because, unlike TSS1, it does not require the knowledge of all cluster sizes in the 

population. The optimal estimator of TSS2 is less efficient than that of TSS3 and TSS1 (i.e. 

𝑅𝐸
∑

∑
𝑣𝑠 

∑
≤ 1, for proof see section 2.3 of the Supplementary Material). 

Therefore, TSS3 combined with 
∑

 is the best strategy to estimate 𝜇 if cluster size is not 

informative. To prevent misunderstanding, note that the ordering of sampling schemes in this 

last paragraph only holds if non-informative cluster size is combined with optimal weighting 

of cluster means. Those weights differ from the ones in Table 2.1 first row, on which Table 2.2 

and Figures 2.1 and 2.2 are based, and which are needed for unbiased estimation of the 

population mean if cluster size is informative. 
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Relative efficiency of TSS2 versus TSS1 under the model-based approach 

 

Figure 2.1. Model-based relative efficiency of TSS2 versus TSS1, for a given total sample size 𝑛𝑘, as 
a function of the (absolute value of the) correlation between cluster effect and cluster size (i.e. 
𝑐𝑜𝑟𝑟(𝑢 , 𝑁 )), for different values of the average number of individuals sampled per cluster (i.e. 𝑛) and 
of the coefficient of variation of cluster size (i.e. 𝜏 ) (curves), and different cluster size distributions 
(panels). The values of the relative efficiency at 𝑐𝑜𝑟𝑟(𝑢 , 𝑁 ) = 0 and 𝑐𝑜𝑟𝑟(𝑢 , 𝑁 ) = 1 refer to ω and 
λ, respectively. 
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Relative efficiency of TSS3 versus TSS2 under the model-based approach and non-

informative cluster size 

 

Figure 2.2. Model-based relative efficiencies of TSS3 versus TSS2, for a given total sample size 𝑛𝑘 
and non-informative cluster size (i.e. 𝛾 = 0), as a function of the coefficient of variation of cluster size 
(i.e. 𝜏 ), for different values of the intraclass correlation (i.e. 𝜌) (curves) and for different average 
numbers of individuals sampled per cluster (i.e. 𝑛) (panels). 

 Design-based inference for two-stage sampling when cluster size is 

informative 

The aim of this section is to study the relative efficiencies of the three TSS schemes compared 

with SRS and with each other under the design-based approach. It is important to emphasize 

that the inferential framework of this section is different from the model-based approach 

adopted in the rest of the paper. So far, the outcome variable 𝑌  and cluster size 𝑁  were both 

seen as random variables, and inference was based on the probability distribution of 𝑌  given 

in model (2.1). In contrast, in the design-based approach (i.e. this section), the outcome variable 

𝑌  and cluster size 𝑁  are fixed quantities, the inclusion indicator is the only random variable 

(e.g. for cluster 𝑗, it is defined as 𝐼 = 1 if cluster 𝑗 is included into the sample, which occurs 

with probability 𝜋 , and 𝐼 = 0 otherwise), and inference is based on the probability distribution 

induced by the sampling scheme.  

 The notation of this section remains the same as before with the important distinction 

that all population quantities here must be interpreted as relating to the finite population. Thus, 
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the two types of population means can be expressed as 𝜇 =
∑

∑
 and 𝛽 =

∑
, 

respectively, where 𝑌  is the mean of all 𝑁  individuals within cluster 𝑗. Furthermore, in the 

population the outcome variable for the 𝑖-th individual within the 𝑗-th cluster can be 

decomposed (combining model (2.1) with assumption 4) as follows 

 𝑌 = 𝛽 + 𝛾 𝑁 − 𝜃 + ν + 𝜀 , (2.7) 

where 𝜈  is the cluster effect with 𝐸 𝜈 =
∑

= 0 and 𝑉 𝜈 =
∑

= 𝜎 , and 𝜈 ⊥ 𝑁 , 

while 𝜀  is the individual effect with 𝐸 𝜀 =
∑

= 0, 𝑉 𝜀 =
∑

= 𝜎 , and 𝜈 ⊥ 𝜀 , 

which entails that 𝑌  here represents 𝛽 + 𝑢  in model (2.1). Note that, in this section, no 

distributional assumptions are made for equation (2.7), all quantities (i.e. 𝑌 , 𝑁 , 𝜈 , and 𝜀 ) 

are just fixed constants, the only random variable is the inclusion indicator and its probability 

distribution is the foundation of inference. From equation (2.7), it follows that 𝜇 = 𝛽 + 𝛾𝜃 𝜏 , 

an expression that is similar to equation (2.5) but refers to the finite population (for proof, see 

section 3 of the Supplementary Material). Hence, under both inferential paradigms, the two 

population means coincide (i.e. 𝜇 = 𝛽 ) only if either there is no cluster size variation in the 

population (i.e. 𝜏 = 0), or cluster size is non-informative (i.e. 𝛾 = 0). 

 For each sampling scheme, Table 2.3 shows in the first row the estimator of the 

population mean 𝜇, in the second row the sampling variance of �̂� as available in the design-

based literature (Cochran, 1977; Lohr, 2010; Särndal et al., 1992; Sukhatme, 1954), and in the 

third row again the sampling variance of �̂� but under the assumption that equation (2.7) 

describes the outcome variable 𝑌  in the population (for proofs, see section 3 of the 

Supplementary Material).  For large enough 𝑘 (say, 𝑘 ≥ 30), the model-based variances given 

in Table 2.1 are equal to the design-based variances given in the third row of Table 2.3. 

Furthermore, the estimators of Table 2.3 are the same as those of the model-based approach 

(i.e. Table 2.1, first row). The estimators under SRS and TSS1 are unbiased (Cochran, 1977, p. 

308; Lohr, 2010, p. 236), while the estimator under TSS2 and TSS3, the so-called ratio 

estimator, is only approximately unbiased (Lohr, 2010, p. 186; Sukhatme, 1954, pp. 323-324) 

and then the number of sampled clusters 𝑘 is assumed to be large enough to neglect this bias. 

It is important to emphasize that, under the design-based paradigm, the properties of an 

estimator (i.e. approximate unbiasedness, variance as given in the second row of Table 2.3) are 
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based only on the sampling scheme (Lohr, 2010, p. 147; Särndal et al., 1992, p. 239). The 

assumption that the outcome variable is described by equation (2.7) (i.e. Table 2.3, third row) 

is needed to allow a fair comparison with the results obtained under the model-based approach. 

However, the assumption of a model, like equation (2.7), to evaluate competing sampling 

schemes is appropriate under the design-based framework, provided that inference is then based 

on the sampling scheme only (Cochran, 1977, p. 256; Hansen et al., 1983; Lohr, 2010, p. 205; 

Smith, 1994).  

 Similarly to section 2.4, the relative efficiency of two competing sampling schemes is 

defined as the ratio of their variances (as given in the third row of Table 2.3). For large enough 

𝑘 (say, 𝑘 ≥ 30), it turns out that these relative efficiencies (given in Table S.M.2 and shown in 

Figures S.M.1-2 of the Supplementary Material) are approximately equal to those shown in 

Table 2.2 because the variances in Table 2.1 and those in the third row of  Table 2.3 are 

approximately equal. The only distinction to be made is that 𝑐𝑜𝑟𝑟 𝑢 , 𝑁  is replaced with the 

correlation between cluster mean and cluster size 𝑐𝑜𝑟𝑟 𝑌 , 𝑁 .  Like in section 2.4, numerator 

and denominator of the relative efficiency are both made up of two components, weighted by 

𝑐𝑜𝑟𝑟 𝑌 , 𝑁  and 1 − 𝑐𝑜𝑟𝑟 𝑌 , 𝑁 , respectively, and only the component weighted by 

𝑐𝑜𝑟𝑟 𝑌 , 𝑁  depends on the skewness and kurtosis of the cluster size distribution. The extreme 

cases of the relative efficiency, namely under non-informative cluster size and a perfect relation 

between cluster mean and cluster size, are denoted by 𝜔 and 𝜆, respectively. The patterns and 

the ordering of the relative efficiencies are then those of section 2.4. Specifically, for any value 

of 𝑐𝑜𝑟𝑟 𝑌 , 𝑁 , SRS is the most efficient sampling scheme, followed by TSS1 (under the 

conditions given in section 2.4), TSS2, and finally TSS3. 

 To conclude, even though the mathematical foundations of the two inferential 

approaches are different, in the considered setting, they yield almost the same results: the 

population mean estimators are the same, as well as the relative efficiencies, provided that 𝑘 is 

large enough and equation (2.7) holds in the population. An advantage of the design-based 

approach is robustness because the unbiasedness and the variance of a design-based estimator 

do not depend on the assumptions of a model. Nevertheless, the model-based approach has a 

practical advantage when designing a survey, more specifically for choosing a sampling scheme 

and computing the sample size. The sampling variances in Table 2.1 (last two rows) and Table 

2.3 (last row), and the relative efficiencies in Table 2.2, all based on equation (2.7), can be 
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obtained by specifying the intraclass correlation 𝜌, the correlation 𝑐𝑜𝑟𝑟 𝑢 , 𝑁 , and four 

parameters of cluster size distribution (i.e. 𝜃 , 𝜏 , 𝜁 , and 𝜂 ). In contrast, the sampling 

variances in Table 2.3 (second row) from the design-based approach require the knowledge of 

cluster size 𝑁  and cluster mean 𝑌  for all the 𝐾 clusters in the population. If that information 

were available, then the population mean 𝜇 would also be known, making the survey 

superfluous.  
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 Application to two real cluster size distributions 

With the aim of planning a survey to estimate the population mean 𝜇 of a quantitative outcome 

variable 𝑌  in a two-level population, we want to establish whether TSS1 is more efficient than 

TSS2 for the population under study and assess its efficiency gain relative to TSS2. The 

outcome variable 𝑌  is assumed to be decomposed as shown in equation (2.7), but the analysis 

is carried out for both the model-based and the design-based approach. Two real cluster size 

distributions are considered: the distribution of public high school size in Italy, and the 

distribution of patient list size for general practices in England. 

 School size and alcohol consumption. In adolescent health literature it has been 

shown that greater connection between students and school (e.g. positive relations with teachers 

and peers, participation in school activities) is associated with less emotional distress, substance 

consumption (e.g. alcohol, cigarettes, marijuana), violence, and suicidal intentions (Resnick et 

al., 1997). Furthermore, it has been found that school connectedness and school size are 

inversely related (McNeely et al., 2002; Thompson et al., 2006), which suggests that school 

size can be informative for health risk behaviours in adolescents. Suppose that we want to 

estimate the average weekly alcohol consumption (in litres) among high school students in Italy. 

According to the Italian Ministry of Education (DGCASIS, 2018), in the school year 2016/2017 

in Italy there were 6,235 = 𝐾 public high schools with a total of 2,515,060 = 𝑁  students 

enrolled. The distribution of public high school size in Italy (with parameters 𝜃 = 403, 𝜏 =

0.912, 𝜁 = 1.256, and 𝜂 = 4.315) is plotted in Figure 2.3 (first column, first row). The first 

row of Figure 2.3 also shows the relative efficiency of TSS2 versus TSS1, for a sample of 50 =

𝑘 schools and 20 = 𝑛 students per school, as a function of the (absolute value of the) correlation 

between school size and school specific-mean, for different values of the intraclass correlation, 

under the model-based (second column) and the design-based approach (third column). As can 

be seen from Figure 2.3, under both inferential approaches TSS1 is more efficient than TSS2 

and allows a sizeable efficiency gain (about 15%) even for non-informative school size and a 

small intraclass correlation (𝜌 = 0.01). 

 Patient list size for general practices and government expenditure on health. 

According to Eurostat (Eurostat, 2018), in 2016 health was the second largest area of 

government expenditure in the United Kingdom with a share of 7.6% of the Gross Domestic 

Product (GDP). Spending for hospital services represented the largest component of the 
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government expenditure on health, with a share of 5.7% of the GDP (Eurostat, 2018). In 

reducing such costs, general practices can play a role by effectively treating those conditions, 

which can lead to avoidable hospitalisations (e.g. influenza, diabetic complications). Kelly and 

Stoye (2014) have found that small practices (defined as those with three or fewer full-time 

equivalent (FTE) practitioners) had higher rates of hospitalisations for such preventable 

conditions in 2010/2011 in England. This suggests that patient list size can be informative for 

government expenditure on health, given that patients per general practice were proportional to 

the number of FTE practitioners (see figure 2.6 and table 2.3 in Kelly & Stoye, 2014). Suppose 

we want to estimate the average per capita government expenditure on health in England. 

According to the Health and Social Care Information Centre (Salt, 2017), in October 2017, 

58,719,921= 𝑁  patients were registered at 7,353 = 𝐾 general practices in England. The 

distribution of patient list size for general practices in England (with parameters 𝜃 = 7,986 , 

𝜏 = 0.633, 𝜁 = 2.12, and 𝜂 = 14.549) is plotted in Figure 2.3 (first column, second row). 

The second row of Figure 2.3 shows the relative efficiency of TSS2 versus TSS1, for a sample 

of 50 = 𝑘 practices and 20 = 𝑛 patients per practice, as a function of the (absolute value of 

the) correlation between patient list size and general practice specific-mean, for different values 

of the intraclass correlation, under the model-based (second column) and the design-based 

approach (third column). As shown in the second row of Figure 2.3, TSS1 is more efficient than 

TSS2 under both inferential paradigms and its efficiency gain increases as the intraclass 

correlation and/or the correlation between patient list size and the general practice specific-

mean increase. 

 To conclude, the two examples show that TSS2 leads to important efficiency losses 

relative to TSS1, and that in planning a survey it is more practical to use variances based on a 

model, like those given in Table 2.1 or third row of Table 2.3, than the design-based variances 

in the second row of Table 2.3, which require the prior knowledge of all cluster sizes 𝑁  as well 

as all cluster means 𝑌  in the population.  
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Relative efficiency of TSS2 versus TSS1 for two real cluster size distributions 

 

Figure 2.3. First column: Distribution of public high school size in Italy (first row), distribution of 
patient list size for general practices in England (second row). Second column: Model-based relative 
efficiency of TSS2 versus TSS1, as a function of the (absolute value of the) correlation between cluster 
effect and cluster size (i.e. 𝑐𝑜𝑟𝑟(𝑢 , 𝑁 )), for different values of the intraclass correlation coefficient 𝜌 
(curves). Third column: Design-based relative efficiency of TSS2 versus TSS1, as a function of the 
(absolute value of the) correlation between cluster mean and cluster size (i.e. 𝑐𝑜𝑟𝑟(𝑌 , 𝑁 )), for different 
values of the intraclass correlation coefficient 𝜌 (curves). 
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 Discussion 

In multilevel populations, two types of overall means can be defined: the mean of all individual 

outcomes in the population ignoring cluster membership, and the mean of all cluster-specific 

means. For unbiased estimation of the first population mean, individuals can be sampled not 

only by SRS, but also with three alternative TSS schemes: sampling clusters with probability 

proportional to cluster size and then taking a SRS of the same number of individuals within 

sampled clusters (i.e. TSS1); drawing a SRS of clusters and then sampling the same percentage 

of individuals per cluster (i.e. TSS2); taking a SRS of clusters and then of individuals within 

the sampled clusters (i.e. TSS3).   

 The results of this paper are the following. First, it was shown that the first population 

mean gives equal weight to all individuals and thus more weight to large clusters than to small 

clusters, the second mean gives equal weight to all clusters irrespective their size, and these two 

means coincide only if cluster size does not vary or is unrelated (i.e. non-informative) to the 

outcome variable of interest. Second, for estimation of the first population mean (i.e. the 

average of all individual outcomes), the unweighted average of cluster means is unbiased under 

TSS1, and weighting cluster means by cluster size is asymptotically unbiased under TSS2 or 

TSS3. Third, it was shown that the relative efficiency of any TSS scheme versus SRS is a 

decreasing function of the intraclass correlation, the average number of individuals sampled per 

cluster and (only for TSS2 and TSS3) of the coefficient of variation of cluster size. Furthermore, 

the relative efficiencies of TSS2 and TSS3 versus TSS1, and of TSS3 versus TSS2 are 

decreasing functions of the coefficient of variation of cluster size, but the efficiency loss of 

TSS3 compared with TSS2 improves with an increase of the intraclass correlation and/or the 

average number of individuals sampled per cluster. All relative efficiencies also depend on 

other features of the cluster size distribution, in particular on its skewness and (only for those 

involving TSS2 and TSS3) kurtosis. Nevertheless, SRS is always the most efficient sampling 

scheme, followed (for many cluster size distributions) by TSS1, and then by TSS2, which, in 

turn, is always more efficient than TSS3. With respect to choosing between the three TSS 

schemes, we do not expect TSS1 to be less efficient than TSS2 in practice, and thus we 

recommend TSS1 provided all cluster sizes are known before sampling. Fourth, it was shown 

that model-based and design-based inference in survey sampling yield almost the same results, 

at least if the model assumptions are met. 
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 Although design-based inference has the advantage of being robust against violations 

of the model assumptions, comparing  the four sampling schemes in terms of their relative 

efficiencies, as well as sample size planning, can only be done taking a model-based approach. 

Sample size planning within the design-based approach would require knowledge of the size 

and outcome mean of all clusters in the population (see Table 2.3, second row), which in turn 

would imply that the population mean is already known. Furthermore, models are also needed 

to deal with missing data and measurement error (Särndal et al., 1992). 

 The results of this paper could be extended by (i) deriving the optimal design of these 

three TSS schemes under a cost constraint and comparing their efficiencies under that constraint 

instead of the present constraint of a fixed total sample size, (ii) investigating different variance 

estimation methods, (iii) considering binary outcome variables, and (iv) deriving the optimal 

design for a scheme which samples different numbers and percentages of individuals at the 

second stage, that is, a sampling scheme in-between TSS2 and TSS3. 
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Appendix A: Derivation of the population mean 𝝁 

Assuming that 𝑢 = 𝛾 𝑁 − 𝜃 + 𝜈  (i.e. assumption 4) and then plugging this equation into 

model (2.1) give  

 𝑦 = 𝛽 + 𝛾 𝑁 − 𝜃 + ν + 𝜀 . (2.A.1) 

Now, before deriving the population mean 𝜇 under model (2.1) with informative cluster size as 

in (2.A.1), we will first show how the sampling scheme affects the sampling distribution of 

cluster size, which, in turn, influences the cluster effect sampling distribution if cluster size is 

informative. 

 Denote by 𝑓 𝑁 |𝜃 , 𝜎  the probability density function of cluster size 𝑁 , where 𝜃  

and 𝜎  are its mean and variance, respectively, and by 𝑵 = (𝑁 , … , 𝑁 )  the vector of the 

cluster sizes of the 𝑘 sampled clusters. Under TSS2 or TSS3, the 𝑘 clusters are sampled with 

equal probabilities from the population of 𝐾 clusters, then 

𝑓 / 𝑁 = 𝑓(𝑁 ),    and     𝑓 / (𝑁 , … , 𝑁 ) = ∏ 𝑓 𝑁  

where the subscript of 𝑓∗(. ) (here, TSS2/TSS3) indicates how the 𝑘 clusters are drawn at the 

first stage (here, with equal probabilities, i.e. under TSS2 or TSS3). Thus, under TSS2 or TSS3, 

clusters are weighted equally in the cluster size sampling distribution, and then integrating over 

that distribution gives  

 (a)  𝐸 / 𝑁 = 𝜃 ,      and      (b)  𝑉 / 𝑁 = 𝜎 . (2.A.2) 

In contrast, under SRS 𝑚 individuals are sampled directly from the population of 𝑁  

individuals. The probability that a selected individual belongs to a cluster of size 𝑁  is 

( )

∫ ( )
 and then, under SRS, 𝑘  clusters are indirectly sampled from the population, 

where 𝑘  can run from 1 to 𝑚. Thus, large clusters have higher chance of being represented 

in a SRS sample, as well as, in a TSS1 sample, because under both sampling schemes clusters 

are sampled (directly or indirectly) with probabilities proportional to their size. Denote by 𝑘∗ 

the number of clusters sampled with an arbitrary sampling scheme, then 𝑘∗ = 𝑘  under SRS 

and 𝑘∗ = 𝑘 under any TSS scheme. Thus, under SRS or TSS1 we have that 
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𝑓 / 𝑁 =
( )

∫ ( )
,  and  𝑓 / 𝑁 , … , 𝑁

∗
= ∏

( )

∫ ( )
∗  

and so each cluster of size 𝑁  is weighted by the factor  in the cluster size sampling 

distribution, which gives (for proofs, see section 1 in the Supplementary Material): 

 𝐸 / 𝑁 = 𝐸 / 𝑁 (𝜏 + 1) (2.A.3a) 

 𝑉 / 𝑁 = 𝑉 / 𝑁 [𝜏 (𝜁 − 𝜏 ) + 1]. (2.A.3b) 

where 𝜏 =   and 𝜁 =   are the coefficient of variation and the skewness of cluster 

size distribution in the population, respectively.  

 Now, let us consider how the sampling distribution of cluster effect 𝑢  is affected by 

the sampling distribution of cluster size 𝑁 . For all sampling schemes, the expectation and the 

variance of cluster effect 𝑢  conditional on 𝑁  are  

 𝐸 𝑢 |𝑁 = 𝐸 𝛾 𝑁 − 𝜃 + 𝜈 |𝑁 = 𝛾 𝑁 − 𝜃  (2.A.4a) 

 𝑉 𝑢 |𝑁 = 𝑉 𝛾 𝑁 − 𝜃 + 𝜈 |𝑁 = 𝜎 . (2.A.4b) 

In contrast, the marginal expectation (i.e. 𝐸 𝑢 = 𝐸 𝐸 𝑢 |𝑁 ) and the marginal variance 

(i.e. 𝑉 𝑢 = 𝐸 𝑉 𝑢 |𝑁 + 𝑉 𝐸 𝑢 |𝑁 ) of 𝑢  are affected by the sampling scheme 

because they are obtained by integrating 𝐸 𝑢 |𝑁  and 𝑉 𝑢 |𝑁  over the cluster size sampling 

distribution. Thus, if clusters are weighted equally in the cluster size sampling distribution (i.e. 

under TSS2 or TSS3), it follows from (2.A.2) that 

𝐸 / 𝑢 = 𝐸 / 𝛾 𝑁 − 𝜃 = 0 

𝑉 / 𝑢 = 𝐸 / (𝜎 ) + 𝑉 / 𝛾 𝑁 − 𝜃 = 𝜎 + 𝛾 𝜎 = 𝜎 , 
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that is, equations (2.2.a) and (2.2.b), respectively. In contrast, if each cluster of  size 𝑁  is 

weighted by the factor   in the cluster size sampling distribution (i.e. under SRS or TSS1), it 

follows from (2.A.3) that 

𝐸 / 𝑢 = 𝐸 / 𝛾 𝑁 − 𝜃 = 𝛾𝜃 𝜏  

𝑉 / 𝑢 = 𝐸 / (𝜎 ) + 𝑉 / 𝛾 𝑁 − 𝜃 = 𝜎 + 𝛾 𝜎 [𝜏 (𝜁 − 𝜏 ) + 1], 

that is, equations (2.4.a) and (2.4.b), respectively. The two definitions of population means (i.e. 

equations (2.3) and (2.5)) now follow from 𝐸 / 𝑢  and 𝐸 / 𝑢 , respectively, 

given model (2.1). 
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Appendix B: Results of Table 2.1 

The following facts will be used in this appendix. First, 𝑵 = (𝑁 , … , 𝑁 )  denotes the vector 

of the cluster sizes of the 𝑘 clusters drawn with TSS, 𝑵 = 𝑁 , … , 𝑁 is the vector of 

the cluster sizes of the 𝑘  clusters indirectly sampled with SRS, while 𝑵∗ is used when the 

sampling scheme is not specified (i.e. 𝑵∗ = 𝑵 for TSS and 𝑵∗ = 𝑵  for SRS). Second, note 

that the four estimators in the first row of Table 2.1 are all of the form  �̂� =
∑ ∗

∑ ∗
, where 

𝑘∗ = 𝑘 for the three TSS schemes and 𝑘∗ = 𝑘  for SRS (recall that → 0 (i.e. assumption 

2), which entails that 𝑘 → 𝑚). Third, from equation (2.A.1) we have that 𝑌 = 𝛽 +

𝛾 𝑁 − 𝜃 + 𝜈 + 𝜀̅ . 

Conditional expectations and unbiasedness 

The conditional expectation of any estimator in Table 2.1 has the form 𝐸(�̂�|𝑵∗) =

∑ |𝑵∗
∗

∑ ∗
, where 𝐸 𝑦 |𝑵∗ = 𝛽 + 𝛾 𝑁 − 𝜃 . Thus, the second row of Table 2.1 

follows: 𝐸(�̂� |𝑵) = 𝛽 + 𝛾(𝑁 − 𝜃 ) since 𝑤 = 1, where 𝑁 =
∑

; 𝐸(�̂� |𝑵) = 𝛽 +

𝛾(𝑁(𝐶𝑉 + 1) − 𝜃 ) since 𝑤 = 𝑁  and 
∑

∑
= = 𝑁(𝐶𝑉 + 1), where 𝑆 =

∑
 ; 𝐸(�̂� |𝑵) = 𝐸(�̂� |𝑵) because 𝑤 = 𝑛 = 𝑝𝑁 ; 𝐸(�̂� |𝑵 ) = 𝛽 +

𝛾(𝑁 − 𝜃 ) because 𝑤 = 1, where 𝑁 =
∑

. 

 To prove the unbiasedness of the four estimators (fourth row of Table 2.1), we need to 

derive their marginal expectation, that is, integrating the conditional expectation over the cluster 

size sampling distribution. Thus, equation (2.A.3a) implies that  �̂�  and �̂�  are unbiased 

because 𝐸(�̂� ) = 𝐸 𝐸(�̂� |𝑵) = 𝛽 + 𝛾(𝐸 (𝑁) − 𝜃 ) = 𝛽 + 𝛾𝜃 𝜏 = 𝜇 and 

𝐸(�̂� ) = 𝐸 𝐸(�̂� |𝑵 ) = 𝛽 + 𝛾(𝐸 (𝑁 ) − 𝜃 ) = 𝛽 + 𝛾𝜃 𝜏 = 𝜇. In 

contrast, �̂�  and �̂�  are asymptotically unbiased, because 𝐸(�̂� ) = 𝐸(�̂� ) =

𝐸 𝐸(�̂� |𝑵) = 𝐸 𝐸(�̂� |𝑵) = 𝛽 + 𝛾 𝐸 / − 𝜃 ≈ 𝛽 +

𝛾𝜃 𝜏 ≈ 𝜇, 
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 where 𝐸 2/ = 𝐸 = 𝐸 𝑁(𝐶𝑉 + 1) ≈ 𝜃 𝜏 + 1  comes from 

(i) 𝐸(𝑆 ) = 𝜎 , and  (ii) the multivariate version of the delta method (Casella & Berger, 

2002, pp. 241-242). To better understand why the unweighted average of cluster means is an 

unbiased estimator of 𝜇 under SRS and TSS1 but biased under TSS2 and TSS3, note that (i) 

𝐸 ∑
∗

∗ 𝑵∗ = 𝛽 + 𝛾(𝑁∗ − 𝜃 ) for any sampling scheme, and (ii) 𝐸 𝑁  depends on the 

sampling scheme (see equations (2.A.2a) and (2.A.3a)), and so 

𝐸 / 𝐸 ∑ 𝑵 = 𝛽 + 𝛾 𝐸 / (𝑁) − 𝜃 = 𝛽 ≠ 𝜇. 

This also points out that the unweighted average of cluster means is a biased estimator for 𝛽  

under SRS and TSS1 because clusters are weighted proportionally to their size by the latter two 

sampling schemes. 

Conditional variances 

The conditional variance of any estimator in Table 2.1 has the form 𝑉(�̂�|𝑵∗) =
∑ 𝑵∗

∗

∑ ∗
. 

Furthermore, note that under TSS1 and TSS3 𝑛 individuals are sampled per cluster and so 

𝑉 𝑦 𝑵 = 𝜎 + , whereas under TSS2 𝑛  individuals are sampled per cluster, then 

𝑉 𝑦 𝑵 = 𝜎 + . Under SRS 𝑘  clusters are sampled indirectly from the population, but 

given that 𝑘 → 𝑚 (which follows from → 0 in assumption 2) we have that 

𝑉 𝑦 𝑵 = 𝜎 + 𝜎 . Thus, the third row of Table 2.1 follows: 𝑉(�̂� |𝑵) =    since 

𝑤 = 1; 𝑉(�̂� |𝑵) =   × (𝐶𝑉 + 1) since 𝑤 = 𝑁  and 
∑

∑
= = ; 

𝑉(�̂� |𝑵) =  since 𝑤 = 𝑛 = 𝑝𝑁  and
∑

∑
=

∑

∑
; and 

𝑉(�̂� |𝑵 ) =   since 𝑤 = 1. 
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Marginal variances 

Recall that the marginal variance is defined as 𝑉(�̂�) = 𝐸 𝑉(�̂�|𝑵∗) + 𝑉 𝐸(�̂�|𝑵∗) . From 

equation (2.A.3b) follows that 𝑉(�̂� ) = 𝐸 + 𝑉 1 𝛽 + 𝛾(𝑁 − 𝜃 ) =

+ 𝛾
( )

= + 𝛾
[ ( ) ]

, and that 𝑉(�̂� ) = 𝐸 +

𝑉 𝛽 + 𝛾(𝑁 − 𝜃 ) = + 𝛾
( )

=
[ ( ) ]

. The derivation of 

the marginal variances of TSS3 and TSS2 requires more steps. The first component of 𝑉(�̂�) 

(fifth row of Table 2.1) for TSS3 and TSS2 are, respectively, 𝐸 𝑉(�̂� |𝑵) =

× (𝐸(𝐶𝑉 ) + 1) ≈ × , and E 𝑉(�̂� |𝑵) = +

𝐸 ≈ , where both 𝐸(𝐶𝑉 ) + 1 = 𝐸 + 1 ≈
( )

+ 1 = +

1 =  and 𝐸 ≈  follow from the delta method (Casella & Berger, 2002, pp. 241-

242). The second component of 𝑉(�̂�)  (sixth row of Table 2.1) is the same under TSS2 and 

TSS3 since 𝐸(�̂� |𝑵) = 𝐸(�̂� |𝑵) (see Table 2.1, second row), then 𝑉 𝐸(�̂� |𝑵) =

𝑉 𝐸(�̂� |𝑵) = 𝛾 𝑉 / ≈ 𝛾 𝜏 𝜂 − + 𝜏 (𝜏 − 2𝜁 ) +

2 𝜏 (𝜁 − 𝜏 ) + 1 , which is derived as follows. To apply the delta method, compute 

the first derivatives of 𝑔(𝑆 , 𝑁) =  at 𝐸(𝑆 ), 𝐸(𝑁) : 

,

,
= ,    

,

,
= 1 − 𝜏 . 

Then, plug these derivatives into equation (5.5.9) in Casella and Berger (2002, p. 242):  

Var 𝑔(𝑆 , 𝑁) ≈ 𝑉𝑎𝑟(𝑆 ) + 1 − 𝜏 𝑉𝑎𝑟(𝑁) + 2 1 − 𝜏 𝐶𝑜𝑣(𝑆 , 𝑁). 

Finally, in the previous expression replace 𝑉𝑎𝑟(𝑆 ), 𝑉𝑎𝑟(𝑁), and 𝐶𝑜𝑣(𝑆 , 𝑁) with  

𝑉𝑎𝑟(𝑆 ) =  𝑉𝑎𝑟
∑

= 𝜂 −  (Theorem 2, p. 229, in Mood 

et al., 1974), where 𝜂 = 𝐸  is the kurtosis of cluster size distribution, 𝑉𝑎𝑟(𝑁) =

, and C𝑜𝑣(𝑆 , 𝑁) =  (Zhang, 2007). 
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Appendix C: Notation, and table of contents of the online supplementary 

material 

Table 2.A summarizes the notation used in this chapter, while Table 2.B gives the table of 

contents of the online supplementary material, and the link to download it. 

Table 2.A. Notation. 

 Population Sample 

Number of clusters 𝐾 𝑘 

Number of individuals within 
cluster j 

𝑁  𝑛  or 𝑛 

Number of individuals 𝑁 = 𝑁  𝑚 = 𝑛𝑘 = 𝑛  

Average cluster size 𝜃  𝑁 =
∑ 𝑁

𝑘
 

Cluster size variance 𝜎  𝑆 =
∑ 𝑁 − 𝑁

𝑘
 

Coefficient of variation of 
cluster size 

𝜏 =
𝜎

𝜃
 𝐶𝑉 =

𝑆

𝑁
 

Skewness of cluster size 
distribution 𝜁 =

𝐸 𝑁 − 𝜃

𝜎
 

 

Kurtosis of cluster size 
distribution 𝜂 =

𝐸 𝑁 − 𝜃

𝜎
 

 

Correlation between cluster 
effect and cluster size 

𝑐𝑜𝑟𝑟 𝑢 , 𝑁   

Unexplained between-cluster 
variance 

𝜎   

Within-cluster variance 𝜎   

Total unexplained outcome 
variance 

𝜎 = 𝜎 + 𝜎   

Intraclass correlation 
coefficient 

𝜌 =
𝜎

𝜎
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Table 2.B. Table of contents of the supplementary material, and link to download it. 

Contents 

1. Expectation and variance of cluster size sampling distribution under SRS or TSS1 

2. Relative efficiencies of TSS schemes versus SRS and each other (i.e. section 2.4) 

2.1. Relative efficiencies 

2.2. Extremes of the relative efficiencies 

2.3. Relative efficiencies of the optimal estimators for non-informative cluster size 

3. Design-based inference: results of section 2.5 

The online supplementary material can be downloaded at the following link: 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fsim.8070&fi
le=SIM_8070-Supp-0001-SIM8070_online_Supplementary_Material.pdf  
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Abstract 

To estimate the mean of a quantitative variable in a hierarchical population, it is logistically 

convenient to sample in two stages (two-stage sampling), i.e. selecting first clusters, and then 

individuals from the sampled clusters. Allowing cluster size to vary in the population and to be 

related to the mean of the outcome variable of interest (informative cluster size), the following 

competing sampling designs are considered: sampling clusters with probability proportional to 

cluster size, and then the same number of individuals per cluster; drawing clusters with equal 

probability, and then the same percentage of individuals per cluster; selecting clusters with 

equal probability, and then the same number of individuals per cluster. For each design, optimal 

sample sizes are derived under a budget constraint. The three optimal two-stage sampling 

designs are compared, in terms of efficiency, with each other and with simple random sampling 

of individuals. Sampling clusters with probability proportional to size is recommended. To 

overcome the dependency of the optimal design on unknown nuisance parameters, maximin 

designs are derived. The results are illustrated, assuming probability proportional to size 

sampling of clusters, with the planning of a hypothetical survey to compare adolescent alcohol 

consumption between France and Italy. 

 

 

Keywords: cross-national comparisons; informative cluster size; maximin design; optimal 

design; sample size calculation; two-stage sampling 
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 Introduction 

For the purpose of estimating the mean or prevalence of an outcome variable (e.g. alcohol 

consumption or smoking) in a hierarchical population (e.g. students within schools, patients 

within general practices), or of comparing subpopulations with respect to such a mean or 

prevalence, it is often convenient, for economic or logistic reasons, to sample in two stages: 

first, clusters (e.g. schools, general practices) are sampled and then individuals (e.g. students, 

patients) are drawn from the sampled clusters (Chambers & Clark, 2012; Cochran, 1977; Lohr, 

2010). Examples of these multi-stage sampling designs include school-based surveys for 

monitoring substance use among adolescents (ESPAD Group, 2016; Patton et al., 1995; Warren 

et al., 2000), and national surveys for estimating the average length of stay for discharges from 

hospitals (DeFrances et al., 2008), or nursing homes (Jones, 2002). The topic of this paper is 

the efficient design of Two-Stage Sampling (TSS) schemes for estimating the mean of a 

quantitative outcome variable in a two-level population. 

In practice, clusters usually vary in size (e.g. small versus large schools) and then, to 

estimate the population mean, a sample can be drawn with at least three alternative TSS 

schemes: sampling clusters with probability proportional to cluster size, and then sampling the 

same number of individuals from each selected cluster (TSS1); sampling clusters with equal 

probability, and then sampling the same percentage of individuals from each sampled cluster 

(TSS2); sampling clusters with equal probability, and then sampling the same number of 

individuals per cluster (TSS3). These three TSS schemes will be considered in this paper and 

compared with Simple Random Sampling (SRS) of individuals. 

Additionally to cluster size variation, further complications arise with informative 

cluster sizes, that is, when cluster size is related to the outcome of interest (Nevalainen et al., 

2014; Seaman et al., 2014). For instance, cluster size is informative when the amount of alcohol 

consumed by an adolescent is related to the number of students enrolled in the school, as small 

schools might provide a more supportive environment (McNeely et al., 2002; Resnick et al., 

1997; Thompson et al., 2006), or when the number of patients registered to a general practice 

affects its efficacy in preventing expensive hospitalisations (Kelly & Stoye, 2014), thus 

impacting on public expenditure on health per patient. Informative cluster sizes not only can 

have direct policy implications, such as introducing a limit to school or general practice size, 

they also have consequences for statistical data analysis and sample size planning. In 

informative cluster size literature (see the review by Seaman et al. (2014), and references 
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therein), the main focus has been on how to handle informative cluster size when the target of 

inference is the association between the outcome variable and some covariates (e.g. a risk 

factor). For instance, Seaman et al. (2014) have discussed several methods to make cluster-

specific inferences with Generalized Linear Mixed Models and population-average inferences 

with Generalized Estimating Equations when cluster size is informative. Innocenti et al. (2019), 

instead, have investigated a different topic: the implications of informative cluster size for 

unbiased and efficient estimation of a population mean in surveys conducted with the three 

aforementioned TSS schemes. The present paper is also about mean estimation for these three 

TSS schemes when cluster size is informative, but focuses instead on sample size planning, and 

the consequences of informative cluster size for the required sample sizes and budget. 

Innocenti et al. (2019)’s results are the starting point of this paper and therefore 

summarized here. First, there are two definitions of overall mean in a two-level population, 

namely the average of all individual outcomes and the average of all cluster-specific means. 

These two definitions coincide only if cluster sizes are either equal or non-informative. Second, 

when cluster size is informative, estimation of the mean of all individual outcomes (i.e. the 

definition used in this paper) is unbiased under TSS1 with the unweighted average of cluster 

means, and asymptotically unbiased under TSS2 and TSS3 with the average of cluster means 

weighted by cluster size. In contrast, when cluster size is non-informative, the unweighted 

average of cluster means is unbiased for all sampling schemes, but optimally efficient for TSS1 

and TSS3 only. Third, under the constraint of a fixed total sample size, SRS is more efficient 

than any TSS scheme, TSS3 is the least efficient TSS scheme, and TSS1 is the most efficient 

for many cluster size distributions. Indeed, when cluster size is informative, the relative 

efficiency of these sampling schemes depends on some features of the cluster size distribution 

in the population, such as the coefficient of variation, the skewness, and the kurtosis. However, 

when cluster size is non-informative, TSS1 and TSS3 are equally efficient and outperform 

TSS2. Fourth, the two inferential paradigms in survey sampling, namely the model-based 

(Chambers & Clark, 2012) and the design-based approach (Cochran, 1977; Lohr, 2010), give 

similar results in terms of unbiased and efficient estimation of the average of all individual 

outcomes with the three aforementioned TSS schemes, at least if the model assumptions are 

met. Furthermore, sample size planning and sampling schemes comparisons, which are the 

topics of this paper, are much more feasible with the assumption of a model for the outcome 

variable of interest (Innocenti et al., 2019). For these two reasons, the model-based approach is 

adopted here.  
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This work extends the results of Innocenti et al. (2019) in the following ways. First, for 

each of the three aforementioned TSS schemes, the optimal design is derived. Here, the optimal 

design is defined as that design (i.e. number of clusters and number of individuals per cluster) 

that minimizes the sampling variance of the population mean estimator subject to a cost 

constraint. Second, the three optimal TSS schemes are compared with SRS and with each other 

under the constraint of a fixed budget. Third, to take care of uncertainty with respect to model 

parameters and distributional features of cluster size, as a practical alternative, maximin designs 

are derived. Fourth, sample size calculations for making comparisons between populations are 

derived and illustrated. 

This paper is structured as follows. In section 3.2, the assumptions of this paper are 

presented, as well as the sampling schemes and the corresponding mean estimators. 

Furthermore, the findings of a simulation study to assess the accuracy of some results in 

Innocenti et al. (2019) that are relevant to the present paper are summarized. In section 3.3, the 

optimal design for each TSS scheme is derived, and these optimal TSS designs are compared 

with each other and with SRS for a fixed budget. Furthermore, the consequences of ignoring 

informative cluster size at the design phase of a study are investigated. Section 3.4 deals with 

the maximin approach, that is, a strategy to solve the dependency of the optimal design on 

unknown nuisance parameters. Section 3.5 provides a procedure for computing sample sizes 

for surveys aimed to make cross-population comparisons, and the procedure is illustrated in 

planning a survey for comparing the average alcohol consumption among adolescents in France 

and Italy. Section 3.6 offers some final remarks. The mathematical derivations of the results, 

the description of the simulation study discussed in section 3.2, and additional figures and tables 

can be found in the Supplementary Material 1 (S.M.1). The Supplementary Material 2 (S.M.2) 

provides the R (R Core Team, 2020) code of the simulation study and other R codes to apply 

some of the mathematical results of this paper. 

 Assumptions, sampling schemes and mean estimators 

The results of Innocenti et al. (2019) and this paper are based on the following assumptions (the 

notation used in the main text is summarized in Table 3.A in the appendix). 

Assumption 1: The population is composed of 𝐾 clusters and each cluster 𝑗 contains 𝑁   

individuals, that is, in the population clusters vary in size (𝑁 ). The population size is 𝑁 =

∑ 𝑁 .  
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Assumption 2: Sampling is either SRS of individuals in one stage, or else TSS. In TSS, we 

first sample 𝑘 clusters, and then sample 𝑛 or 𝑛  individuals per selected cluster 𝑗. In case of 

TSS, the population is very large relative to the sample size at each design level (i.e. → 0 and 

→ 0, where 𝑛 =
∑

  is the average sample size per sampled cluster, and 𝜃 =  is the 

population mean of cluster size). In case of SRS, 𝑁  is very large relative to 𝑚, the number 

of individuals sampled (i.e. → 0).  

Assumption 3: The outcome variable 𝑌  is quantitative (e.g. alcohol consumption) and 

measured at the individual level. Further, 𝑌  shows variation at the cluster level as well as at 

the individual level. Therefore, sampling error occurs at each design level. This is taken into 

account by assuming the following two-level random intercept model for the outcome of the 𝑖-

th individual from the 𝑗-th cluster (Chambers & Clark, 2012; Goldstein, 2011) 

 𝑦 = 𝛽 + 𝑢 + 𝜀  (3.1) 

where 𝜀 ~𝑁(0, 𝜎 ), and cluster effect 𝑢  and individual effect 𝜀  are unrelated (i.e. 𝑢 ⊥ 𝜀 ). 

The distribution of 𝑢  will be defined in the next assumption. 

Assumption 4: Cluster effect 𝑢  is linearly related to cluster size 𝑁 , that is,

  𝑢 = 𝛼 + 𝛼 𝑁 + 𝜈 = 𝛼 𝑁 − 𝜃 + 𝜈 , where 𝛼 = −𝛼 𝜃  for model 

identifiability, 𝜈 ~𝑁(0, 𝜎 ), and 𝜈  is the component of cluster effect 𝑢  that does not depend 

on cluster size (i.e. 𝜈 ⊥ 𝑁 ). Thus, the conditional distribution of 𝑢  given 𝑁  is 

𝑢 𝑁 ~𝑁 𝛼 𝑁 − 𝜃 , 𝜎 . 

Innocenti et al. (2019) show that 𝛽  in model (3.1) is the average of all cluster-specific means 

in the population, and differs from the average of all individual outcomes in the population 𝜇, 

unless cluster size is non-informative (𝛼 = 0) or constant across clusters, as can be seen from 

the following expression 

 
𝜇 = 𝛽 + 𝛼 𝜃 𝜏 , (3.2) 

where 𝜃 , 𝜏 = , and 𝜎  are, respectively, the population mean, the coefficient of variation, 

and the variance of cluster size. The distinction between 𝛽  and 𝜇 comes from considering the 

distribution of cluster effect 𝑢  over either the population of clusters (which yields 𝛽 ) or the 
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population of individuals (which yields 𝜇, see Innocenti et al., 2019). This paper focuses on 𝜇. 

With the aim of estimating 𝜇, the three aforementioned TSS schemes are studied in this 

paper. For each of these TSS schemes and SRS, Table 3.1 summarizes the sampling procedure 

(i.e. sample size and inclusion probability per design stage) and the required knowledge before 

sampling. Furthermore, Table 3.1 shows the population mean estimator �̂� and the sampling 

variance 𝑉(�̂�) for each sampling scheme. Denote by 𝜌 = =

 the correlation between 𝑢  and 𝑁 , where 𝐸 𝑢 = 0 and 𝑉 𝑢 = 𝜎 = 𝜎 +

𝛼 𝜎 , and by 𝜓 =  the degree of informativeness of cluster size. From Table 3.1, note 

that 𝑛 =
∑

= 𝑛 for TSS1 and TSS3, while 𝑛 =
∑

= 𝑝
∑

= 𝑝𝑁 for TSS2, where 

𝑁 is the average population size of the 𝑘 sampled clusters (not to be confused with 𝑛, that is, 

the average sample size of the sampled clusters) . Furthermore, for TSS2 𝑛 = 𝐸(𝑛) = 𝑝𝐸(𝑁) =

𝑝𝜃 . The sampling variances in Table 3.1 are functions of the total unexplained outcome 

variance 𝜎 = 𝜎 + 𝜎 , the intraclass correlation coefficient 𝜌 = ∈ [0,1], the sample sizes 

(𝑘, 𝑛), the parameter 𝜓, and some features of the cluster size distribution in the population: the 

coefficient of variation 𝜏 , the skewness 𝜁 , and (for TSS2 and TSS3 only) the kurtosis 𝜂 . 

When cluster size is non-informative (𝜓 = 0), 𝑉(�̂�) depends only on 𝜎 , 𝜌, 𝑘, 𝑛, and (for TSS2 

and TSS3 only) 𝜏 . The estimators �̂� associated with SRS and TSS1 are unbiased, and their 

sampling variances 𝑉(�̂�) are exact expressions (Innocenti et al., 2019).  

 The estimators associated with TSS2 and TSS3 are only asymptotically unbiased, and 

the corresponding sampling variances are based on first-order Taylor series approximations 

(Innocenti et al., 2019). The accuracy of these approximations was evaluated through a 

simulation study discussed in supplementary material S.M.1 (section 1), but the main findings 

are summarized here. Sampling 𝑘 = 20 clusters guarantees nearly unbiased estimates of 𝜇 

under TSS2 and TSS3 independently of the cluster size distribution, and fair accuracy (i.e. bias 

≤ 5%) of the variances in Table 3.1 (TSS2 and TSS3 row) when |𝜌 | ≤ 0.75 , 𝜌 ≤ 0.3, and 

𝜁  and 𝜂  are relatively close (say, ±1.5) to those of the Normal distribution (i.e. 𝜁 = 0 and 

𝜂 = 3). However, for cluster size distributions with extreme skewness and kurtosis (e.g. 𝜁 ≥

2 and 𝜂 ≥ 9) at least 𝑘 = 100 clusters must be sampled to achieve a reasonable accuracy (i.e. 

bias ≤6%) of the sampling variances in Table 3.1, for 𝜌 ≤ 0.5 and 𝜌 ≤ 0.3. Furthermore, the 
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simulations showed that the two lower-bounds for 𝑘 (i.e. 20, and 100) guarantee the 

corresponding accuracy level across different values for 𝑛 (at least for 2 ≤ 𝑛 ≤ 100). To 

contextualize these two lower-bounds for 𝑘, in a school-based survey for studying substance 

use among adolescents in 21 European countries, Shackleton et al. (2016) have reported that, 

across countries, 𝑘 ∈ [36,531] (Median= 123) and 𝑛 ∈ [5.92,119.62] (Median= 20.74). 
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 Optimal design and relative efficiencies for a given budget 

3.3.1 Optimal design 

For any sampling scheme, the precision of the estimator �̂�, and thus also the width of a 

confidence interval for 𝜇 and the statistical power for testing a hypothesis on 𝜇, depends on the 

number of clusters and on the sample size per cluster (Table 3.1). This raises the question of 

the best combination of sample sizes at each design stage (i.e. sampling many clusters versus 

sampling many individuals per cluster). Define the optimal design as that design (i.e. number 

of clusters and number of individuals per cluster), which minimizes 𝑉(�̂�) subject to a cost 

constraint, given that time and budget are limited in practice. For TSS, the cost constraint is 

assumed to be 𝐶 = 𝑘(𝑐 + 𝑐 𝑛), where 𝐶 is the budget for sampling and measuring (excluding 

costs for constructing the sampling frame and other costs not related to sample size). From now 

on 𝐶 is called the research budget. Furthermore, 𝑐  is the average cost for sampling a cluster, 

𝑐  is the average cost for sampling an individual from a sampled cluster, and (𝑐 + 𝑐 𝑛) is the 

cost per cluster including the costs for sampling 𝑛 individuals from that cluster (recall that for 

TSS2 𝑛 = 𝑝𝜃 ). For SRS, the cost constraint is 𝐶 = 𝑐 + 𝑐 𝑚, where 𝑚 is the number of 

individuals to sample, 𝑐  is the average cost for sampling an individual directly from the 

population, and 𝑐  represents the extra-cost due to constructing the sampling frame for a SRS 

compared with the sampling frame for a TSS.  

For each TSS scheme the optimal design (i.e. the optimal sample sizes 𝑘∗ and 𝑛∗) for 

estimating 𝜇 and the optimal variance 𝑉(�̂�)∗ (i.e. 𝑉(�̂�) under the optimal design) are given in 

Table 3.2 (for proofs, see section 2.2 of S.M.1). For TSS2, one can obtain the optimal proportion 

of individuals to sample per cluster 𝑝∗ from the optimal 𝑛∗, by dividing 𝑛∗ as given in Table 

3.2 (TSS2 row) by 𝜃 . The optimal TSS2 and TSS3 designs depend on two approximations of 

 𝑉(�̂�): the first-order Taylor approximation mentioned in section 3.2 and evaluated in S.M.1 

(section 1), which underlies the equations in Table 3.1, and an approximation based on large 𝑘 

(i.e. 𝑘 such that ≈ 0, ≈ 1, and ≈ 1) to simplify the expressions in Table 3.1. These 

two approximations give (for details, see section 2.1 of S.M.1) 

𝑉 (�̂�) ≈
𝜎

𝑛𝑘
1 + 𝜌 𝑛 (𝜏 + 1) + 𝜓(𝜏 + 𝜏 (𝜂 − 3) + 2𝜁 𝜏 (1 − 𝜏 ) + 1) − 1  (3.3) 

and 
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𝑉 (�̂�) ≈ {𝜏 + 1 + 𝜌[(𝜏 + 1)(𝑛 − 1) + 𝑛𝜓(𝜏 + 𝜏 (𝜂 − 3) + 2𝜁 𝜏 (1 − 𝜏 ) + 1)]}, (3.4) 

where for TSS2 𝑛 = 𝑝𝜃 . Recall from section 3.2 that, for TSS2 and TSS3, 𝑘 must be large 

anyway, because the estimators �̂�  and �̂�  given in Table 3.1 are only asymptotically 

unbiased. As a special case, 𝜓 = 0 gives the optimal design and optimal variance for non-

informative cluster size (for which case 𝛽 = 𝜇), which under TSS1 coincide with the equations 

available for cluster randomized trials (for instance, see Moerbeek et al., 2000). There is no 

such equivalence under TSS2 due to sample size variation between clusters, and under TSS3 

due to weighting cluster means by cluster size if informative cluster size is assumed in the 

design phase. Indeed, under non-informative cluster size, no weighting is needed under TSS3 

(Innocenti et al., 2019), and then the optimal design equations for TSS1 apply to TSS3 as well.  

Note from Table 3.2 that the optimal number of clusters 𝑘∗ and the optimal number of 

individuals per cluster 𝑛∗ are inversely related, and that 𝑛∗ is an increasing function of the 

cluster-to-individual cost ratio 𝑐 = > 1 and a decreasing function of 𝜌 and 𝜓. These 

relations between the optimal design and 𝑐 , 𝜌, and 𝜓 hold, under TSS1, for 𝜁 > 𝜏 − , and 

always under TSS2 and TSS3 (for proof, see section 2.1 of S.M.1). The condition 𝜁 > 𝜏 −

 is met by all the distributions in Tables S.2 and S.7 (S.M.1). Hence, this condition is assumed 

to be satisfied when considering results for TSS1 in the sequel.  
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3.3.2 Effect of cluster size informativeness on the optimal design and study budget 

needed  

The optimal number of individuals per cluster 𝑛∗ for TSS1 and TSS3 is plotted in Figure 3.1, 

for two real-life cluster size distributions: the general practice list size distribution in England, 

and the public high school size distribution in Italy (both distributions are shown in Figure S.1, 

S.M.1). The behaviour of 𝑛∗ for other cluster size distributions is shown in Figures S.2 and S.4 

(S.M.1) for TSS1 and TSS3, respectively, and in Figure S.3 (S.M.1) for TSS2. In most scenarios 

in Figure 3.1 and Figures S.2-S.4 (S.M.1), the difference between 𝑛∗ for 𝜓 = 0.35 (i.e. 𝜌 =

±0.51) and 𝑛∗ for 𝜓 = 0 (i.e. 𝜌 = 0) is small, which means that the ratio of 𝑉(�̂�) under the 

design assuming 𝜓 = 0.35 to 𝑉(�̂�) under the design assuming 𝜓 = 0, when the true 𝜓 = 0.35, 

is close to 1. So, the optimal designs in Table 3.2 are quite robust against misspecification of 

𝜓, in the sense of being efficient relative to the optimal design for the true 𝜓 and given a fixed 

research budget 𝐶. However, ignoring informativeness can lead to serious underestimation of 

the sampling variance of the mean estimator, and thereby also of the budget needed, as will be 

seen below. Further, the optimal design depends not only on 𝜓, but also on 𝜌 and the cluster 

size distribution (𝜏 , 𝜁 , 𝜂 ). That dependence will be addressed in section 3.4. 

An example will now show that (a) given a study budget, the optimal design is robust 

against misspecification of cluster size informativeness, but (b) the budget needed is very 

sensitive to misspecification. Suppose we plan a survey to estimate 𝜇 in the population of all 

patients of all general practices in England. The parameters of the general practice patient list 

size distribution are 𝜏 = 0.633, 𝜁 = 2.12, and 𝜂 = 14.549 (Table S.2, S.M.1). 

Furthermore, suppose that 𝜌 = 0.05, 𝑐 = 10, and 𝐶/𝑐 = 1000. The optimal TSS1 samples 

𝑛∗ = 10.74 individuals and 𝑘∗ = 48.22 clusters assuming 𝜓 = 1/3, and 𝑛∗ = 13.78 and 𝑘∗ =

42.04 assuming 𝜓 = 0 (see Table 3.2, TSS1 row). If the true 𝜓 = 1/3, 𝑉(�̂�) = 𝜎 × 0.00354 

for the design correctly assuming 𝜓 = 1/3, and 𝑉(�̂�) = 𝜎 × 0.00360 for the design 

incorrectly assuming 𝜓 = 0 (see variance equation in Table 3.1, TSS1 row), giving a variance 

ratio 0.00354/0.00360 = 0.983. Additional results for TSS1, TSS2, and TSS3 are given in 

Table S.8 (S.M.1), which shows that even in some more extreme cases (e.g. 𝜓 = 1, i.e. 𝜌 =

±0.707) the variance ratio still exceeds 0.8. The example given here and those in Table S.8 

(S.M.1) show that the optimal designs in Table 3.2 are quite robust against misspecification of 

𝜓, in the sense of being efficient relative to the optimal design for the true 𝜓 and given a fixed 

research budget 𝐶. 
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However, ignoring informativeness can lead to serious underestimation of the budget 

needed. Suppose one wants to test the null hypothesis 𝐻  that 𝜇 = 𝜇  against the alternative 

hypothesis 𝐻  that 𝜇 ≠ 𝜇 . The budget that guarantees the desired power level 1 − 𝛾 for the 

chosen type I error rate 𝛼, is then obtained by equating 𝑉(�̂�)∗ in Table 3.2 with , 

where 𝑧  is the 𝑞th percentile of the standard normal distribution. This gives 𝐶 =

( , )

, where 𝑔(𝜌, 𝜓) is the numerator of 𝑉(�̂�)∗ in Table 3.2 excluding 𝜎 , and 

𝑑 =  is the standardized difference between true mean and mean according to 𝐻 . Since 

𝑔(𝜌, 𝜓) is an increasing function of 𝑐 , 𝑐 , and 𝜓, the required budget 𝐶 for the desired power 

level also increases with 𝑐 , 𝑐 , and 𝜓. Likewise, 𝐶 increases with 𝜌, at least up to 𝜌 = 0.5 (for 

proofs, see section 2.2 in S.M.1). The required budget 𝐶 to detect a standardized difference of 

medium size (𝑑 = 0.5), with 90% power and two-tailed 𝛼 = 0.05, is plotted in Figure 3.2 for 

TSS1 and TSS3, as function of 𝜓, for the general practice list size distribution in England and 

the public high school size distribution in Italy, and assuming 𝑐 = 10. As can be seen in Figure 

3.2, the research budget 𝐶 is not robust against misspecification of 𝜓. For example, the required 

budget 𝐶 for the optimal TSS1, assuming the English general practice list size distribution, 𝑐 =

30, 𝑐 = 10, and 𝜌 = 0.10 (Figure 3.2, left column, first row), is underestimated by 29% if one 

incorrectly assumes 𝜓 = 0 when the true 𝜓 = 0.35. The required budget 𝐶 is also shown, for 

other cluster size distributions, in Figures S.5 and S.7 (S.M.1) for TSS1 and TSS3, respectively, 

and in Figure S.6 (S.M.1) for TSS2. These figures show that 𝐶 increases with 𝜌, 𝑐 , and 𝜓, and 

that the impact of the cluster size distribution on 𝐶 becomes more relevant as 𝜓 increases. 

Hence, ignoring informative cluster size at the design phase of the survey can lead to 

underestimating the required budget for the chosen effect size and desired power level. Finally, 

for the desired power level, the required budget is smallest with the optimal TSS1, and largest 

with the optimal TSS3.  
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Figure 3.1. Optimal number of individuals per cluster 𝑛∗ under TSS1 (left column), and TSS3 (right 
column), as a function of 𝜌, for different values of 𝑐  and 𝜓 (curves), and different cluster size 
distributions (rows). The cluster size distributions are shown in Figure S.1 (S.M.1). Note that 𝜓 = 0.35 
corresponds to 𝜌 = ±0.51. 
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Figure 3.2. Budget 𝐶 needed for the optimal design to detect a standardized difference between 
hypothesized and true population mean of medium size (𝑑 = 0.5), with 90% power using a two-tailed 
test with 𝛼 = 0.05, as a function of 𝜓, for different values of 𝜌 and 𝑐  (curves) with 𝑐 = 10, different 
sampling schemes (columns), and different cluster size distributions (rows). The cluster size 
distributions are shown in Figure S.1 (S.M.1). Note that 𝜓 ∈ [0,1.3] corresponds to 𝜌 ∈
[−0.75, +0.75]. 

3.3.3 Relative efficiencies for a given budget 

We now compare the efficiency of the optimal designs in Table 3.2 with each other and with 

SRS, under the constraint of a fixed research budget. The relative efficiency (𝑅𝐸) of the optimal 

designs for two sampling schemes is defined as the ratio of their optimal variances 𝑉(�̂�)∗ in 

Table 3.2, more specifically, RE(𝐷1 𝑣𝑠 𝐷2) =
( )∗

( )∗
. These 𝑅𝐸s are shown in Table 3.3 (for 
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proofs, see section 2.3, S.M.1), which also gives the sufficient (but not necessary) conditions 

under which each 𝑅𝐸 is smaller than one.  

The 𝑅𝐸 of a TSS scheme compared with SRS (Table 3.3, first three rows) is composed 

of three ratios. The first ratio is a function of 𝜌,  𝜓, 𝜏 , 𝜁 , 𝜂 , and 𝑐 , and is always smaller 

than one for 𝜓 = 0, and also for 𝜓 ≠ 0 at least under the conditions for 𝜁   given in the 

rightmost column of Table 3.3 (for proofs, see section 2.3, S.M.1). The other two components 

of 𝑅𝐸(𝑇𝑆𝑆 𝑣𝑠 𝑆𝑅𝑆) are the ratio , for the costs per individual in SRS relative to TSS, and 

the budget ratio . Since sampling an individual directly from the population will be more 

expensive than sampling an individual after having sampled the cluster to which he/she belongs 

(i.e. 𝑐 > 𝑐 ), and constructing the sampling frame for a SRS has extra-costs compared with 

constructing the sampling frame for a TSS (i.e. 𝑐 > 0), the ratios  and   will always be 

at least one and often larger than one. As a result, the RE can become larger than one, implying 

that SRS can be less efficient than TSS under the constraint of a fixed budget. 

The 𝑅𝐸s of the optimal TSS1 and TSS3 versus SRS are shown in Figure 3.3, for the 

general practice list size distribution in England and the public high school size distribution in 

Italy, and assuming = = 1 (note that values greater than 1 give a higher 𝑅𝐸 of 

TSS versus SRS). Further, Figures S.8-S.10 (S.M.1) show the 𝑅𝐸s of the optimal TSS1, TSS2, 

and TSS3 versus SRS for other cluster size distributions. For 𝜓 = 0, the 𝑅𝐸 of any optimal TSS 

versus SRS is a decreasing function of (i) 𝑐  (Table 3.3), (ii) 𝜌 (at least for 𝜌 ≤ 0.5, see Figure 

3.3, and Figures S.8-S.10 in S.M.1), and (iii), only for TSS2 and TSS3, 𝜏  (Table 3.3). For 𝜓 ≠

0, the patterns remain almost the same as before and the 𝑅𝐸s also do not seem to vary much 

across cluster size distributions (Figure 3.3, and Figures S.8-S.10 in S.M.1).  

The 𝑅𝐸s of the three TSS schemes compared with each other (Table 3.3, last three rows) 

are functions of 𝜌, 𝑐 ,  𝜓, 𝜏 , 𝜁 , and 𝜂 . The optimal TSS2 is more efficient than the optimal 

TSS3 since 𝑅𝐸(𝑇𝑆𝑆3 𝑣𝑠 𝑇𝑆𝑆2) < 1 (unless 𝜏 = 0, Table 3.3, or 𝜌 ≈ ±1 , Innocenti et al. 

(2019), since in both cases 𝑅𝐸(𝑇𝑆𝑆3 𝑣𝑠 𝑇𝑆𝑆2) = 1). The 𝑅𝐸s of TSS2 and TSS3 versus TSS1 

are smaller than one, and so the optimal TSS1 is the most efficient TSS scheme, at least for 

cluster size distributions satisfying the conditions in Table 3.3 (rightmost column), such as all 

distributions in Table S.7 (S.M.1). For other cluster size distributions, one must compute the 

𝑅𝐸 for that particular distribution to see whether 𝑅𝐸 < 1. However, for 𝜓 = 0, the 𝑅𝐸s in the 
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last three rows of Table 3.3 are all smaller than one for any cluster size distribution, making 

TSS1 the most efficient TSS scheme, followed by TSS2. Note that this only holds if informative 

cluster size (𝜓 ≠ 0) is assumed at the design stage, such that in TSS3 cluster means are 

weighted by cluster size to estimate 𝜇 (Table 3.1). If non-informative cluster size (𝜓 = 0) is 

assumed already in the design stage, then no weighting is needed for TSS3 (Innocenti et al., 

2019), and TSS3 then is as efficient as TSS1. 

 The 𝑅𝐸 of the optimal TSS2 and TSS3 versus the optimal TSS1 are shown in Figure 

3.4, for the general practice list size distribution in England and the public high school size 

distribution in Italy, and in Figures S.11-S.12 (S.M.1) for other four cluster size distributions. 

For 𝜓 = 0, these reduce to 𝑅𝐸(𝑇𝑆𝑆2 𝑣𝑠 𝑇𝑆𝑆1) =  and 

 𝑅𝐸(𝑇𝑆𝑆3 𝑣𝑠 𝑇𝑆𝑆1) = , which are both decreasing functions of  𝜏 , but  

𝑅𝐸(𝑇𝑆𝑆2 𝑣𝑠 𝑇𝑆𝑆1) also decreases as 𝜌 and/or 𝑐  increases. For 𝜓 ≠ 0, the patterns are the 

same as before with two major differences. First, both 𝑅𝐸s decrease as 𝜂  increases (Table 

3.3). Second, for 𝜓 = 0.35, both 𝑅𝐸s differ at most 6% from their values at 𝜓 = 0 (Figure 3.4, 

and Figures S.11-S.12 in S.M.1), except for the English general practice (GP) list size 

distribution that, having an extreme kurtosis (i.e. 𝜂 = 14.55), shows a drop in 𝑅𝐸 (compared 

with the case 𝜓 = 0) larger than 20%. Note that TSS1 is the most efficient design in Figure 3.4 

and Figures S.11-S.12 (S.M.1). 
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Figure 3.3. Relative efficiency of the optimal TSS1 versus SRS (left column), and of the optimal TSS3 
versus SRS (right column), for a given research budget 𝐶 and assuming (𝑐 /𝑐 ) = (𝐶/(𝐶 − 𝑐 )) = 1 
(values greater than 1 give a higher RE of TSS versus SRS), as a function of 𝜌, for different values of 
𝑐  and 𝜓 (curves), and different cluster size distributions (rows). The cluster size distributions are shown 
in Figure S.1 (S.M.1). Note that 𝜓 = 0.35 corresponds to 𝜌 = ±0.51. 
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Figure 3.4. Relative efficiency of the optimal TSS2 versus the optimal TSS1 (left column), and of the 
optimal TSS3 versus the optimal TSS1 (right column), for a given research budget, as a function of 𝜌, 
for different values of 𝑐  and 𝜓 (curves), and different cluster size distributions (rows). The cluster size 
distributions are shown in Figure S.1 (S.M.1). Note that 𝜓 = 0.35 corresponds to 𝜌 = ±0.51. 
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 Maximin design 

In section 3.3.2 it has been noticed that the optimal designs in Table 3.2 require a priori 

knowledge of some nuisance parameters (i.e. 𝜌, 𝜏 , 𝜁 , 𝜂 , and 𝜓). This is known as the local 

optimality problem in optimal design literature (Atkinson et al., 2007; Berger & Wong, 2009). 

Basically, this means that the optimal design is optimal only for certain values of these nuisance 

parameters. In this paper, the local optimality problem is solved taking a maximin approach 

(Atkinson et al., 2007; Berger & Wong, 2009; Wong, 1992). This approach has been applied in 

several contexts, such as longitudinal studies (Ouwens et al,., 2002; Tekle et al., 2008; Winkens 

et al., 2007), fMRI experiments (Maus et al., 2010), cluster randomized and multicentre trials 

(Candel & Van Breukelen, 2015; Van Breukelen & Candel, 2018; Wu et al., 2017), cost-

effectiveness studies (Manju et al., 2014; Manju et al., 2015), life-event studies (Tan, 2010), 

test construction (Berger et al., 2000), and biological and pharmacological studies (Dette & 

Biedermann, 2003; Dette et al., 2006; King & Wong, 2000; Pronzato & Walter, 1988). The 

maximin approach is composed of the following steps:  

1. Define the parameter space, that is, for each unknown parameter (i.e. 𝜌, 𝜏 , 𝜁 , 𝜂 , and 𝜓) 

determine the range of plausible values (e.g. 𝜌 ∈ [0,0.30]). 

2. Define the design space, that is, the set of all candidate designs (𝑛, 𝑘). In this step, one can 

rule out those designs that are unfeasible in practice (e.g. too many clusters to cover 

relative to the time available for data collection), thus preventing sample size adjustments 

afterwards.  

3. For each design (𝑛, 𝑘) in the design space, find those values of the nuisance parameters 

which minimize the efficiency 𝑉(�̂�)  (and thus maximize 𝑉(�̂�)) within the range of their 

plausible values, as defined in step 1. 

4. Choose that design that maximizes the minimum efficiency obtained in step 3. In other 

words, choose those values of 𝑘 and 𝑛 that minimize 𝑉(�̂�) given the worst-case values of 

the nuisance parameters chosen in step 3. 

The resulting design is called the maximin design, which is the optimal design for the worst-

case scenario, as defined by that set of parameter values chosen in step 3. The advantage of the 

maximin design is that it not only maximizes the efficiency and the power in the worst-case 

scenario, but it also guarantees at least that same efficiency and power level for all the other 

parameter values within the parameter space. Indeed, 𝑉(�̂�) is smaller and the power for 
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hypothesis testing on 𝜇 is larger, for all other parameter values than for the worst-case values 

chosen in step 3, given any fixed sample size (i.e. 𝑘 and 𝑛). 

Following the four steps above, we now explain how to find the maximin design for 

each sampling scheme. The optimal design for TSS1 depends on 𝜌, 𝜏 , 𝜁 , and 𝜓. However, to 

draw a TSS1 sample we need to know the cluster size distribution in the population anyway, 

which means that 𝜏  and 𝜁  are also known before sampling. Thus, for TSS1, only 𝜌 and 𝜓 are 

unknown. The maximin design for TSS1 is obtained by plugging into the optimal sample sizes 

equations (Table 3.2, TSS1 row) the largest realistic values of 𝜌 and 𝜓 (for proofs, see section 

3.1 in S.M.1). Unlike for TSS1, when sampling with TSS2 or TSS3 the researcher needs no 

prior knowledge of the whole cluster size distribution. Indeed, if such information is available, 

sampling with TSS1 is a better choice (Table 3.3). The maximin design for TSS2 and TSS3 is 

obtained by plugging into the optimal design equations (Table 3.2) the upper-bounds of the 

ranges for 𝜌, 𝜁 , 𝜂 , and 𝜓, and the worst-case value of 𝜏  (for proofs, see section 3.1 in S.M.1). 

The latter value can be obtained with an R function given in S.M.2 (section 2), which searches 

numerically for the value of 𝜏  that maximizes 𝑉(�̂�) (i.e. equations (3.3) and (3.4)) within its 

range of plausible values, given the worst-case values for 𝜌, 𝜁 , 𝜂 , and 𝜓.  For several upper-

bounds for 𝜌, 𝜁 , 𝜂 , and 𝜓, a numerical evaluation was performed and this always gave 𝜏 =

1 as worst-case value of 𝜏  within the range [0,1] (for details, see section 3.2 in S.M.1).  

To be on the safe side in sample size planning, one can assume for 𝜌 the parameter range 

[0, 0.10] in health and medical research (Adams et al., 2004; Eldridge et al., 2004), and [0, 0.25] 

in educational research (Hedges & Hedberg, 2007; Shackleton et al., 2016). Lacking empirical 

evidence for 𝜓 or 𝜌 , we propose 𝜓 ∈ [0, 0.35], which corresponds to 𝜌 ∈ [−0.51, 0.51].  

The range 𝜏 ∈ [0,1] can be justified by considering Table S.7 (S.M.1), and the extreme cases 

of an exponential cluster size distribution, for which 𝜏 = 1, and of a binary distribution with 

half of all clusters having size 2 and the other half having size 2𝜃 − 2, for which 𝜏 ≈ 1. 

Finally, for 𝜁  and 𝜂  the ranges 𝜁 ∈ [0.5, 2] and 𝜂 ∈ [3, 15] can be chosen based on Table 

S.7 (S.M.1).  Since 𝑉(�̂�) under TSS2 and TSS3 is an increasing function of 𝜁  and 𝜂  (at least 

if 𝜏 ≤ 1, which will usually hold), assuming positive skewness and positive excess kurtosis 

(i.e. 𝜂 − 3 > 0) is a safe choice.  

As mentioned in section 3.3.1, the optimal design for TSS2 and TSS3 depends on two 

approximations: the first-order Taylor series approximation used to derive 𝑉(�̂�) for TSS2 and 

TSS3 in Table 3.1, and the large 𝑘 approximation to simplify the equations in Table 3.1 into 
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equations (3.3) and (3.4). Since the maximin design is the optimal design for the worst-case 

scenario, the same approximations also underlie the maximin design. Based on the simulation 

study and the numerical evaluation discussed in S.M.1 (sections 1 and 3.3), it turned out that 

each approximation induces a bias of at most 5% in the 𝑉(�̂�) used to derive the 

optimal/maximin design if the optimal/maximin 𝑘  ≥ 20, or, for 𝜁 ≥ 2 and 𝜂 ≥ 9, 𝑘 ≥

100. Since 𝑉(�̂�) ∝ , a simple solution is to increase the maximin 𝑘  with 10% to ensure 

sufficient power at the expense of a 10% higher budget 𝐶. However, if the maximin 𝑘 < 20 

or (for 𝜁 ≥ 2 and 𝜂 ≥ 9) 𝑘 < 100 both approximations are biased by more than 5%. A 

solution is to first increase 𝐶 such that maximin 𝑘  ≥ 20 or (for 𝜁 ≥ 2 and 𝜂 ≥ 9) 𝑘 ≥

100, and then further increase 𝐶 by 10%.  

 Sample size calculation for cross-population comparisons 

The results of the previous sections allow to efficiently plan a survey not only for estimating a 

mean, but also for comparing different populations, if the samples are independent. An example 

of such a study is the ESPAD study (ESPAD Group, 2016), which compares substance use 

among 15/16 year old students across 35 European countries. For a fixed separate budget per 

population, the optimal design per population is given in Table 3.2 and the maximin design in 

section 3.4. However, the design can be further optimized by constraining the total budget (i.e. 

the sum of the separate budgets) instead of each separate budget and finding the optimal (or 

maximin) budget split between populations (for details, see section 4 of S.M.1). For the case of 

comparing two populations, this optimization was formalized into a procedure to compute 

maximin sample sizes per population and the maximin budget split between populations, 

obtained by extending Van Breukelen and Candel (2018) to TSS1 with informative cluster sizes 

and different cluster size distributions per population. This procedure for comparing two 

populations is implemented in an R code given in section 4 in S.M.2. To use this program, the 

researcher needs to specify 𝑐  and 𝑐  per population, 𝜏  and 𝜁  of the cluster size distribution 

of each population, the largest plausible values for 𝜌 and 𝜓, a range for the ratio of the outcome 

standard deviations (𝜎 ) between the two populations, the smallest difference 𝜇 − 𝜇  that is 

worthwhile being detected, the maximum sum of outcome variances in both populations 𝑉 , 

the power level 1 − 𝛾, and the type I error rate 𝛼. The R code (S.M.2, section 4) returns the 

maximin sample sizes per population and the maximin budget split. The steps of this procedure 
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are given in S.M.1 (section 4). This procedure is presented only for TSS1, because it is the most 

efficient sampling scheme for many cluster size distributions. 

 Let us demonstrate the procedure with the following example. Suppose that we want 

to plan a survey to estimate and compare the average alcohol consumption among high school 

students between France and Italy. Similar to the ESPAD study (ESPAD Group, 2016), alcohol 

consumption 𝑌  is measured as the average volume of ethanol (in centilitres) consumed on the 

last drinking day. Based on adolescent health literature, at the design stage, school size (i.e. 

total number of students) can be assumed to be informative, that is, related to alcohol 

consumption. Indeed, it has been found that school size and school connectedness, broadly 

defined as the degree of belonging at school, are inversely related (McNeely et al., 2002; 

Thompson et al., 2006), as well as school connectedness and alcohol use (Resnick et al., 1997). 

TSS1 is the most efficient two-stage sampling scheme for both high school size distributions 

(this can be verified by checking the conditions in the rightmost column of Table 3.3, with the 

numbers given in the second and third row of Table S.7 of S.M.1), and so it is chosen for both 

populations. Suppose that we want to test the null hypothesis 𝐻  that 𝜇 = 𝜇  against the 

alternative hypothesis 𝐻  that 𝜇 ≠ 𝜇 , where 𝜇  and 𝜇  are the population means of alcohol 

consumption in France and Italy, respectively. Since the French and the Italian samples are 

independent, we can apply the procedure above to determine how many schools and how many 

students per school one has to sample per country, and how to split the total budget between 

countries. 

 The results are shown in Table 3.4 for four different cost scenarios. Two largest 

plausible values are assumed for 𝜌 and 𝜓, respectively, 𝜌(𝑚𝑎𝑥) = {0.1,0.2} and 𝜓(𝑚𝑎𝑥) =

{0,0.35}. This combination of costs and model parameters (Table 3.4, first six columns) gives 

a total of 4 × 2 × 2 = 16 scenarios, each corresponding to a row in Table 3.4. The seventh 

column in Table 3.4 gives the maximin budget split  (i.e. the ratio of the budget for France, 𝐶 , 

to that for Italy, 𝐶 ), and from the eighth to the eleventh column the maximin sample sizes per 

country are shown. Finally, the rightmost column of Table 3.4 shows the total budget required 

to detect a standardized difference of medium size (𝑑 = = 0.5), with 90% power using 

a two-tailed test with 𝛼 = 0.05. From Table 3.4, it can be seen that the maximin 𝑛  per 

country is an increasing function of 𝑐 , a decreasing function of 𝜌 and 𝜓, and is inversely related 

to the maximin 𝑘 . Furthermore, the maximin budget split = 1 only for 𝜓 = 0 and 
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homogeneous costs (𝑐 , = 𝑐 ,  and 𝑐 , = 𝑐 , ). In all other scenarios < 1, meaning that 

more budget is allocated to the Italian sample than to the French sample. Given that 𝜌(𝑚𝑎𝑥) 

and 𝜓(𝑚𝑎𝑥) are the same for both countries,  < 1 because (i) sampling a student is more 

expensive in Italy than in France (𝑐 , < 𝑐 , ), or (ii) sampling a school is more expensive in 

Italy than in France (𝑐 , < 𝑐 , ), or (iii), only for 𝜓 = 0.35, the school size distribution in Italy 

is such that 𝜏 (𝜁 − 𝜏 ) is larger than in France (see Tables S.7 and S.9 of S.M.1). Finally, the 

total budget 𝐶 required for the desired power is larger for 𝜓 = 0.35 than for 𝜓 = 0 (Table 3.4, 

rightmost column), suggesting that ignoring informative cluster size at the design stage has the 

consequence of determining a research budget which is too low for the desired power level. 

Specifically, informative cluster size requires 𝐶 to increase with 23-32% depending on the 

scenario (the larger 𝜌 and/or 𝑐 , , the larger this relative increase, see Table 3.4, rightmost 

column).  
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 Discussion 

To estimate an overall mean, Two-Stage Sampling is a logistically convenient way to collect 

data from a multilevel population. In practice, resources (time and money) for sampling are 

limited. Thus, this paper presents optimal sample sizes per design stage that either maximize 

the precision of the population mean estimate for the available research budget, or minimize 

the research budget for the required precision for estimation. Such optimal designs were derived 

for three TSS schemes: sampling clusters with probability proportional to cluster size, and then 

the same number of individuals per cluster (TSS1); sampling clusters with equal probability, 

and then the same percentage of individuals per cluster (TSS2); sampling clusters with equal 

probability, and then the same number of individuals per cluster (TSS3).  

The optimal sample size equations were derived allowing cluster size to be informative, 

that is, to be related to the outcome variable of interest. It turned out that the optimal designs 

given in Table 3.2 are quite robust against misspecification of the degree of informativeness of 

cluster size 𝜓. As shown in section 3.3.2 and in Table S.8 (S.M.1), the relative efficiency of the 

optimal TSS1 assuming 𝜓 = 0 (i.e. non-informative cluster size) versus the optimal TSS1 

assuming 𝜓 > 0 (i.e. informative cluster size), when the true 𝜓 > 0, was close to one. 

Nevertheless, ignoring informative cluster size is risky for two reasons. First, assuming 𝜓 = 0 

one would be tempted to combine the unweighted average of cluster means with TSS3, because 

this strategy (i.e. combination of sampling scheme and estimator) is unbiased and efficient for 

𝜓 = 0. However, this strategy is biased and inefficient if the true 𝜓 > 0. Thus, assuming 𝜓 >

0 is always prudent because it leads to combining the unweighted average of cluster means with 

TSS1, that is, choosing a strategy which is unbiased and highly efficient both for informative 

and non-informative cluster size. Second, assuming 𝜓 = 0 can lead to underestimating the 

research budget for the desired power level, because the research budget is an increasing 

function of 𝜓 (see Figure 3.2, and Table 3.4, rightmost column). This applies not only to TSS1, 

but also if, because of practical constraints, one has to choose TSS2 or TSS3 as a sampling 

scheme. For these two reasons, we recommend assuming 𝜓 > 0 at the design stage of the 

survey. 

The optimal designs of the three TSS schemes were compared with each other and with 

SRS under the constraint of a fixed budget. In contrast to what was the case under the constraint 

of a fixed total sample size (Innocenti et al., 2019), SRS can be less efficient than TSS, because 
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it is more expensive to construct a sampling frame of all individuals in the population than of 

those from the selected clusters only (𝑐 > 0), and because it is more costly to sample and 

measure geographically dispersed individuals than those that are grouped in a natural cluster 

(e.g. school, general practice) (𝑐 > 𝑐 ). Under informative cluster size, the optimal TSS1 was 

shown to be the most efficient sampling scheme for many cluster size distributions, followed 

by TSS2, and then TSS3. We thus recommend TSS1, provided all cluster sizes are known 

before sampling. 

The optimal design depends on several unknown parameters (i.e. the intraclass 

correlation 𝜌, the informativeness parameter 𝜓, and the cluster size distribution’s coefficient of 

variation 𝜏 , skewness 𝜁 , and kurtosis 𝜂 ). To address this issue the maximin approach was 

proposed. For the considered TSS schemes, this strategy consists of plugging the worst-case 

value for each unknown parameter into the optimal design equations in Table 3.2. For 𝜌, 𝜓, and 

𝜂 , the largest plausible value is the worst-case value. If all plausible values for 𝜏 ≤ 1, then 

the largest plausible value for 𝜁  is also the worst-case value. The worst-case value for 𝜏  can 

be obtained with an R code, given in S.M.2 (section 2). However, a numerical evaluation 

showed that if the largest plausible value for 𝜏  is 1, this is the worst-case value for 𝜏 . The R 

code also returns the worst-case value for 𝜁  in the rather unrealistic case that some plausible 

values for 𝜏 > 1. The maximin approach has the advantages of being relatively simple to 

implement, and being robust against misspecification of the unknown parameters by 

maximizing the minimum efficiency over the ranges of their plausible values. An alternative 

approach is to obtain estimates of the nuisance parameters from a pilot study and use these in 

the sample size calculation. However, 𝜌 risks to be underestimated (and thus the main survey 

to be under-powered), unless the pilot study samples a large number of clusters and of 

individuals per cluster, which means a sizeable portion of the limited resources for the main 

survey has to be devoted to the pilot study (Eldridge et al., 2016). The underestimation is likely 

to be even more severe for skewness and kurtosis, given that their traditional estimators are 

biased downwards unless the sample size is large or (only for the skewness) cluster size is 

normally distributed (Joanes & Gill, 1998). For all these reasons, we recommend the maximin 

approach. Relatedly, to improve the planning of future surveys, empirical studies should report 

values of these nuisance parameters like in Table S.7 (S.M.1). 

The results of this paper also allow to efficiently plan surveys for comparing different 

populations, provided the samples are independent. For TSS1, a procedure to derive maximin 
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sample sizes and maximin budget split between populations was obtained by extending Van 

Breukelen and Candel (2018)’s findings to informative cluster size. Analogous extensions for 

TSS2 and TSS3 could be explored. However, when either cluster size is non-informative (𝜓 =

0), or the cluster size distribution as well as the informativeness parameter 𝛼  are the same in 

both populations (e.g. treated and control groups in a cluster randomized trial), we have that 

𝜇 − 𝜇 = 𝛽 , − 𝛽 ,  (see equation (3.2)) and then the equations given in this paper reduce to 

simpler expressions as also derived by Van Breukelen and Candel (2018) (i.e. those for TSS1 

with 𝜓 = 0).  

Finally, in this paper the model-based approach to survey sampling was adopted. 

However, the results of this paper are valid also under the design-based approach, provided 

model (3.1) and assumption 4 hold and inference is then based on the sampling scheme 

(Innocenti et al., 2019). Future research could extend the results of this paper by considering 

dichotomous outcomes, three-level populations, and by deriving the optimal design for 

longitudinal studies to monitor trends. 
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Appendix: Notation, and table of contents of the online supplementary 

materials  

The notation used in the main text is listed in Table 3.A, which provides for each symbol the 

section where it was introduced for the first time, and its definition in words. Table 3.B shows 

the table of contents of the online supplementary materials, and the link to download them. 

Table 3.A. Notation used in the main text. 

Section Symbol Definition 

3.2 𝐾 Number of clusters in the population 

𝑗 Index for clusters 

𝑁  Size of cluster 𝑗 in the population 

𝑁 = 𝑁  Population size 

𝑘 Number of clusters in the sample 

𝜃 =
𝑁

𝐾
 Population mean of cluster size 

𝜎  Population variance of cluster size 

𝜏 =
𝜎

𝜃
 Population coefficient of variation of cluster 

size 

𝜁 =
𝐸 𝑁 − 𝜃

𝜎
 Population skewness of cluster size 

𝜂 =
𝐸 𝑁 − 𝜃

𝜎
 Population kurtosis of cluster size 

𝑁 =
∑ 𝑁

𝑘
 

Average population size of the sampled 
clusters 

𝑚 Number of individuals sampled with SRS 

𝑖 Index for individuals 

𝑌  Outcome variable of interest 

𝜀  Effect of individual 𝑖 in cluster 𝑗 

𝜎  Population variance of 𝜀  

𝜈  Component of cluster effect that does not 
depend on cluster size 

𝜎  Population variance of 𝜈  
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Section Symbol Definition 

𝛽  
Average of all cluster-specific means in the 

population 

𝛼  
Intercept of the relation between cluster effect 

and cluster size 

𝛼  
Slope of the relation between cluster effect and 

cluster size 

𝑢 = 𝛼 + 𝛼 𝑁 + 𝜈  Effect of cluster 𝑗 

𝐸 𝑢 = 0 and 𝑉 𝑢 = 𝜎 =

𝜎 + 𝛼 𝜎  
Population mean and variance of 𝑢  

𝜇 
Average of all individual outcomes in the 

population 

�̂� Population mean estimator 

𝑉(�̂�) Sampling variance of �̂� 

𝜌 =
𝐸 𝑢 𝑁 − 𝜃

𝜎 + 𝛼 𝜎 𝜎
 Correlation between 𝑢  and 𝑁  

𝜓 =
𝜌

1 − 𝜌
 Degree of informativeness of cluster size 

𝜎 = 𝜎 + 𝜎  Total unexplained outcome variance 

𝜌 =
𝜎

𝜎
 Intraclass correlation coefficient 

𝜋  Inclusion probability of cluster 𝑗 

𝜋 |  Conditional inclusion probability of individual 
𝑖 

𝑛  Number of individuals sampled per cluster for 
TSS2 

𝑝 =
𝑛

𝑁
 Proportion of individuals sampled per cluster 

for TSS2 

𝑛 =
∑ 𝑛

𝑘
 Average sample size of the sampled clusters 

𝑛 
Number of individuals sampled per cluster for 
TSS1 and TSS3. Expected value of 𝑛 for TSS2 

𝜋  Inclusion probability of individual 𝑖 under SRS 

3.3.1 𝐶 Budget for sampling and measuring 

𝑐  (Average) cost for sampling a cluster 

𝑐  
(Average) cost for sampling an individual from 

a sampled cluster 
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Section Symbol Definition 

𝑐  
Extra-cost due to constructing the sampling 
frame for SRS compared with the sampling 

frame for TSS 

𝑐  
(Average) cost for sampling an individual 

directly from the population 

𝑉(�̂�)∗ 
Sampling variance of �̂� under the optimal 

design 

𝑛∗ Optimal number of individuals per cluster 

𝑘∗ Optimal number of clusters 

𝑝∗ =
𝑛∗

𝜃
 

Optimal proportion of individuals to sample 
per cluster for TSS2 

𝑐 =
𝑐

𝑐
 Cluster-to-individual cost ratio 

3.3.2 𝛼 Type I error rate 

𝛾 Type II error rate 

𝑧  𝑞th percentile of the standard normal 
distribution 

𝑔(𝜌, 𝜓) Numerator of 𝑉(�̂�)∗ in Table 3.2 excluding 𝜎  

𝜇  Value of 𝜇 under 𝐻  

𝑑 =
𝜇 − 𝜇

𝜎
 Standardized difference for one-sample t-test 

3.3.3 
𝑅𝐸(𝐷1 𝑣𝑠 𝐷2) =

𝑉 (�̂�)∗

𝑉 (�̂�)∗
 

Relative efficiency of optimal design  𝐷1 
versus optimal design 𝐷2 

3.4 𝑘  Maximin number of clusters 

3.5 
𝜇 , 𝜇 , 𝜎 , , 𝜎 ,  Population mean and total unexplained 

outcome variance in France (F), and Italy (I) 

𝑉 ≥ 𝜎 , + 𝜎 ,  
Maximum plausible upper-bound for 𝜎 , +

𝜎 ,  

𝜌(𝑚𝑎𝑥) 𝑎𝑛𝑑 𝜓(𝑚𝑎𝑥) Largest plausible values assumed for 𝜌 and 𝜓 

𝑑 =
𝜇 − 𝜇

𝑉
2

 Standardized difference for unpaired two-
sample t-test 

𝑛  Maximin number of individuals per cluster 
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Table 3.B. Table of contents of the online supplementary materials, and link to download them. 

 Contents 

Supplementary 

Material 1 (S.M.1) 

1. A simulation study for the evaluation of the accuracy of the 

approximations for 𝐸(�̂�) and 𝑉(�̂�) under TSS2 and TSS3 

1.1. Cluster size distributions 

1.2. Simulation procedure 

1.3. Simulation results 

2. Optimal design and relative efficiencies for a given budget 

2.1. Sampling variances 

2.2. Derivation of the optimal design 

2.3. Relative efficiencies 

3. Local optimality problem and maximin design 

3.1. Derivation of the maximin design 

3.2. A general program in R to find the maximin parameter 

values 

3.3. Accounting for the approximations in the maximin design 

for TSS2 and TSS3 

4. Sample size calculation for cross-population comparisons 

Supplementary 

Material 2 (S.M.2) 

1. R code of the simulation study 

2. R code to find the maximin parameter values when estimating 

one population mean 

3. R code to numerically evaluate the ratio between 𝑉(�̂�)∆  and 

𝑉(�̂�)  (i.e. section 3.3, Supplementary Material 1) 

4. R code to compute the maximin TSS1 design for comparing two 

population means 

Both supplementary materials can be downloaded at the following link: 
 
https://journals.sagepub.com/doi/suppl/10.1177/0962280220952833 
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Chapter 4 

4 Sample size calculation and optimal 

design for regression-based norming of 

tests and questionnaires 
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Chapter 5 

5 Sample size calculation and optimal 

design for multivariate regression-based 

norming 
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Chapter 6 

6 Discussion 

The focus of this thesis has been on the efficient design of two types of observational studies, 

namely surveys for estimating means in multilevel populations and normative studies to derive 

norms for tests and questionnaires. As seen in the previous chapters, these two types of studies 

are quite different, and their design poses different challenges. However, two common 

challenges can be pointed out.  

The first common challenge comes from the use of models. On the one hand, models 

are extremely useful in planning these studies because they allow to derive designs that yield 

maximum efficiency (i.e. the optimal design). On the other hand, the choice of the model is 

crucial, because a design that is optimal under a certain model can be sub-optimal under other 

models. For instance, two-stage sampling scheme TSS3 is optimal under non-informative 

cluster size but is the least efficient TSS scheme under a linear relation between cluster size and 

cluster effect (see chapter 3). As another example, the balanced three equidistant age levels 

design is optimal for test norming in case of a quadratic age effect but sub-optimal for a linear 

effect (see chapters 4 and 5). Hence, one has to find a trade-off between efficiency and 

robustness in planning these studies. In this thesis, designs that are a trade-off between 

efficiency and robustness have been derived with the maximin approach. This strategy is 

relatively simple to implement, and maximizes efficiency (or relative efficiency) under the 

worst-case scenario.  

The second common challenge is the derivation of the sampling variance of the statistic 

of interest (i.e. mean estimator in TSS, Z-score, percentile rank score, and Mahalanobis 

distance) needed to derive the optimal design. Most of the sampling variance formulas in this 
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thesis were derived with the delta method, that is, were based on approximations, and 

simulation studies were needed to assess the bias induced by these approximations (see chapters 

3, 4, and 5). From these simulation studies, lower-bounds for the sample size were obtained, 

that is, values of the sample size below which the sampling variance formula is not accurate 

(i.e. the bias is too large). These lower-bounds for the sample size should be taken into account 

in sample size calculation. 

In the next section, some practical guidelines for designing surveys and normative 

studies are presented. 

 Guidelines  

The main results of this thesis can be summarized in terms of a few practical guidelines on how 

to design each type of study. 

Guidelines for designing a survey for mean estimation in multilevel populations  

1. To decide on the best two-stage sampling scheme: Is the cluster size distribution in the 

population known before sampling? 

a. Yes, then sample with TSS1, and estimate the population mean with the 

unweighted average of cluster means. 

b. No. Based on prior knowledge, can informative cluster size be ruled out? 

i. Yes, then sample with TSS3, and estimate the population mean with the 

unweighted average of cluster means. 

ii. No, then sample with TSS2, and estimate the population mean with the 

average of cluster means weighted by cluster size. 

2. To compute the required sample size (i.e. number of clusters, number of individuals per 

cluster): Use the maximin design instead of the optimal design. For each TSS scheme, 

detailed guidelines on the range of plausible values for each unknown model parameter 

can be found in section 3.4. 

These guidelines are shown in the form of a decision tree in Figure 6.1 
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Figure 6.1. Decision tree on the best strategy (i.e. most efficient sampling scheme and unbiased mean 
estimator) to estimate the average of all individual outcomes in a two-level population with two-stage 
sampling. 

 

Guidelines for designing a normative study  

1. To decide upon the analysis technique for deriving norms: How many tests are to be 

normed? 

a. One, then use univariate regression (see chapter 4). 

b. More than one, then use multivariate regression (see chapter 5), because it allows 

to take into account the correlation between test scores of the same individual in 

testing hypotheses on the regression coefficients (Johnson & Wichern, 2007), and 

allows to compare individuals with the reference population based on the 

Mahalanobis distance. 

2. In the choice of the predictors and of the regression model, the following results should be 

kept in mind: 

a. A model without interactions and a model including all possible interactions have 

the same optimal design (for two predictors, see chapters 4 and 5, for an arbitrary 

number of predictors, see Schwabe (1996)). However, the required sample size for 

the optimal design is an increasing function of the number of regression weights in 
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the model, and that number depends on whether interactions are included into the 

model (see chapters 4 and 5). 

b. For quantitative predictors (e.g. age, number of years of education): The optimal 

design for a polynomial effect of order ℎ (e.g. ℎ = 2 for a quadratic effect) 

consists of (not necessarily equidistant) ℎ + 1 levels only (Berger & Wong, 2009, 

p. 67). Including additional levels of the predictor into the normative sample yields 

a loss of efficiency, under the constraint of a fixed total sample size (see chapter 

4). 

c. For categorical predictors (e.g. sex, educational level): Increasing the number of 

categories increases the required sample size for a given optimal design (see 

chapter 4).  

3. If there is uncertainty about the regression model for norming (e.g. about the best fitting 

polynomial for a quantitative predictor, or about how many interactions between 

predictors are nonzero), use the maximin design instead of the optimal design. 

 In Figure 6.2, these guidelines are applied to the univariate and multivariate regression 

models considered in chapters 4 and 5, which have only a quantitative predictor (e.g. age) and 

a categorical predictor (e.g. sex).  

In the next section, ideas for future research are discussed. 
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Figure 6.2. Decision tree on the choice of the regression model for norming and the corresponding best 
design (for details, see chapters 4 and 5). This decision tree is valid for univariate and multivariate 
regression models with only a quantitative predictor (e.g. age) and a categorical predictor (e.g. sex), as 
in chapters 4 and 5. 
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 Ideas for future research 

The work presented in this thesis can be extended in several ways. The results in chapters 2 and 

3 could be extended to three-level populations (e.g. students nested within classes nested within 

schools), which raises two issues: (i) cluster size can be informative not only at the first level 

(i.e. number of students per class) but also at the second level (i.e. number of classes per school), 

and (ii) several three-stage sampling schemes need to be compared in terms of efficiency. 

Furthermore, the results of chapters 2 and 3 were restricted to a linear effect of cluster size on 

the outcome variable of interest, so the present results could be extended to account for higher 

order polynomial effects of cluster size. Another possible extension could be to consider 

without-replacement sampling, that is, to relax the assumption that the number of clusters in 

the population is very large relative to the number of sampled clusters. However, the results of 

chapters 2 and 3 could still be relevant, though as a conservative approach because with-

replacement variances are bigger than without-replacement variances (Lohr, 2010). 

Furthermore, future research could deal with two-stage sampling schemes for estimating 

multiple means in a multilevel population, because surveys often target several variables (e.g. 

body mass index, cholesterol level, blood pressure). Optimal designs for such multipurpose 

surveys could be derived with a multivariate criterion, such as the volume of the 95% 

confidence ellipsoid for the population means of interest (i.e. D-optimality). Another interesting 

extension of chapters 2 and 3 could be the derivation of optimal designs for estimating a 

prevalence (i.e. the mean of a binary outcome) with the three considered TSS schemes. 

However, previous research on optimal designs for multilevel logistic models has shown that 

the optimal design for these models depends on the unknown regression coefficients (Abebe et 

al., 2015; Moerbeek et al., 2001; Tekle et al., 2008), so one can expect that the local optimality 

problem in optimal TSS designs for prevalence estimation will be more complicated than that 

it was for continuous outcomes. 

 Chapters 4 and 5 focused on test norming in one-level populations, so future research 

could extend the results of this thesis to multilevel populations. This extension is particularly 

relevant for normative studies of educational measures (e.g. arithmetic or language tests) in 

children, because they are nested within schools. Investigating the effect of informative cluster 

size on test norming could also be interesting. Furthermore, normality and homoscedasticity of 

the regression residuals were assumed in chapters 4 and 5, but these assumptions are not always 

realistic. Promising approaches to norming in such situations seem to be the use of generalized 
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additive models for location, scale, and shape (GAMLSS), which allow to model a wide range 

of test score distributions (see Voncken et al., 2019a, 2019b), and quantile regression that allows 

to directly model conditional percentiles of the test score of interest (see Sherwood et al., 2016). 

Optimal designs for model-based norming with GAMLSS models or quantile regression could 

be an interesting extension. Furthermore, future research could derive optimal designs for the 

models in chapters 4 and 5 using the I-optimality criterion, which minimizes the average of the 

standardized prediction variance over the design region (Goos & Jones, 2011), instead of the 

G-optimality criterion, which minimizes the maximum of the standardized prediction variance 

over the design region (see chapters 4 and 5). However, if the norms are expected to be mainly 

used for individuals at the extreme (or close to the extreme) of the quantitative predictor (e.g. 

neuropsychological tests to detect dementia for persons with or close to the highest age), 

minimizing the maximum of the standardized prediction variance is more approriate.  Finally, 

in chapter 5 the Mahalanobis distance-based approach was compared with two classification 

rules (i.e. the conjunctive and the disjunctive rules) to combine Z-scores of the same individual 

under Van der Elst et al. (2017)’s multivariate approach. The comparison has shown that the 

Mahalanobis distance-based approach defines “abnormality” as unlikely performance (e.g. a 

high score on one test and a low score on the other test, when the two tests are positively 

correlated), whereas the conjunctive and the disjunctive rules identify “abnormality” with 

extreme performance (e.g. a high score on one or both tests). To detect this latter type of  

“abnormality” with the Mahalanobis distance-based approach one can assume zero correlation 

or use a lower percentile than the 95th percentile of the cumulative distribution of the 

Mahalanobis distance as cut-off for decision making (for details, see chapter 5). However, this 

comparison was limited to two tests, so it could be interesting to extend it to more than two 

tests. As the number of tests 𝑃 increases, the conjunctive rule could become too conservative 

as definition of  “abnormality” (e.g. a subject with 𝑃 − 1 extreme Z-scores is classified as 

“normal” under this rule), while the disjunctive rule could become too liberal (e.g. a subject 

with only one extreme Z-score out of 𝑃 is classified as “abnormal” under this rule). 

Consequently, the Mahalanobis distance-based approach, which combines the 𝑃 test scores into 

a single norm score and takes into account the pairwise correlations between Z-scores, could 

become more appealing as 𝑃 increases. Furthermore, the derivation of sample size calculation 

formulas for the conjunctive and disjunctive rules, which are affected by multiple testing issues, 

is an interesting topic for future research. 
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Chapter 7 

7 Summary  

This thesis deals with sample size planning and optimal design for two types of observational 

studies: (1) surveys for mean estimation in multilevel populations, such as school-based surveys 

for estimating mean alcohol consumption among high school students (see, for instance, 

ESPAD Group, 2016), and (2) normative studies to derive reference values for tests and 

questionnaires, such as neuropsychological tests to assess information processing speed (see, 

for instance, Van der Elst et al., 2006a), and clinical questionnaires to measure patients’ 

orientation toward chronic pain (see, for instance, Van Breukelen & Vlaeyen, 2005).  

Chapter 1 provides an introduction to these two types of studies. Specifically, the 

practical importance of these studies is explained, real-life examples are provided, the main 

results available in the literature are summarized, and the statistical models for analysing data 

obtained with these studies are introduced. Furthermore, a definition of optimal design for each 

type of study is given, and strategies to find robust designs are presented. Chapter 1 ends with 

an outline of the thesis. 

Chapter 2 is on unbiased and efficient estimation of the average of all individual 

outcomes in two-level populations, with either simple random sampling (SRS) of individuals 

(i.e. individuals are drawn directly from the population) or two-stage sampling (TSS) (i.e. first 

clusters are sampled, and then individuals are sampled from the selected clusters). Cluster sizes 

are allowed to vary and to be related to the outcome variable of interest (i.e. cluster size is 

informative). Three TSS schemes are considered: sampling clusters with probability 

proportional to cluster size and then taking a SRS of the same number of individuals within 

each sampled cluster (TSS1); drawing a SRS of clusters and then sampling the same percentage 

of individuals per cluster (TSS2); taking a SRS of clusters and then the same number of 

individuals per sampled clusters (TSS3). In this chapter, it is shown that the average of all 
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individual outcomes and the average of all cluster-specific means (i.e. the two definitions of 

population means in a two-level population) coincide only if cluster sizes are either equal or 

non-informative. Unbiased estimation of the average of all individual outcomes is discussed 

under each sampling scheme. Furthermore, the three TSS schemes are compared in terms of 

efficiency with each other and with SRS of individuals, under the constraint of a fixed total 

sample size. The relative efficiency of the sampling schemes is shown to vary across different 

cluster size distributions. However, TSS1 is the most efficient TSS scheme for many cluster 

size distributions. Model-based and design-based inference are compared and are shown to give 

similar results, at least if the model assumptions are met. The results of this chapter are applied 

to two real-life cluster size distributions, that is, the distribution of high school size in Italy, and 

the distribution of patient list size in England. 

Chapter 3 deals with optimal TSS schemes for mean estimation in two-level 

populations, when cluster size is informative. A simulation study is performed to assess the bias 

in the sampling variance formulas derived for TSS2 and TSS3 in chapter 2, because these 

variances are based on approximations. Optimal sample size equations are derived for each TSS 

scheme considered in chapter 2. The optimal design is the number of clusters and number of 

individuals per cluster that minimizes the sampling variance of the population mean estimator, 

subject to a cost constraint. The consequences for the optimal design of ignoring informative 

cluster size are investigated. It turns out that the optimal TSS designs are quite robust against 

misspecification of the degree of informativeness of cluster size, but assuming non-informative 

cluster size can lead to serious underestimation of the required research budget for the desired 

power level. Furthermore, the three optimal TSS schemes are compared, in terms of efficiency, 

with each other and with SRS of individuals, under the constraint of a fixed budget for sampling 

and measuring. The optimal TSS1 is shown to be the most efficient sampling scheme for many 

cluster size distributions. To overcome the dependency of the optimal designs on the prior 

knowledge of some model parameters, maximin designs are derived for each TSS scheme. 

Finally, a procedure is proposed to derive maximin sample sizes and a maximin budget split 

between two surveys to estimate and compare the means of two populations with TSS1. This 

procedure is illustrated when planning a hypothetical survey to compare adolescent alcohol 

consumption between France and Italy, using the real distributions of high school size in these 

two countries. 

Chapter 4 focuses on normative studies to derive reference values or norms for tests and 

questionnaires. In this chapter, the regression-based approach to norming is adopted, because it 
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has three advantages over the traditional approach of norming per subgroup defined in terms of 

age and sex (or other demographic variables): (i) it is more efficient, that is, it requires a smaller 

sample size, (ii) it allows to identify the predictors that affect the test score of interest, and (iii) 

it allows to derive the optimal design, which is defined as the joint distribution of scores on the 

predictors that minimizes the sampling variance of the norm statistic under the assumed 

norming model. In chapter 4, sampling variance formulas are derived for commonly used norm 

statistics, that is, Z-scores and percentile rank scores. Since these variance formulas are based 

on approximations, two simulation studies are performed to assess the bias induced by these 

approximations. These sampling variance formulas are used to derive optimal designs for five 

regression models including a quantitative and a qualitative predictor, differing in whether they 

allow for interaction and nonlinearity. Efficient designs that are robust against misspecification 

of the norming model are derived using the maximin strategy with efficiency and relative 

efficiency as criteria. It is shown that, for the five considered regression models, the most robust 

designs obtained under these two criteria are the same. Furthermore, for the optimal design 

formulas are proposed to determine the required size of the normative sample for each norm 

statistic (i.e. Z-score and percentile rank score). These formulas can be used to ensure either the 

desired power level for hypothesis testing or the desired margin of error for interval estimation. 

The results of this chapter are illustrated using Van der Elst et al. (2006b)’s normative study of 

the Profession Naming verbal fluency test. 

Chapter 5 extends chapter 4 to a scenario of several tests to be normed with the same 

sample. To take into account the correlation between test scores of the same individual, a 

multivariate regression model is used (Van der Elst et al., 2017), instead of estimating a 

univariate regression model for each test. However, in the multivariate regression-based 

approach of Van der Elst et al. (2017), each test is normed separately, thus ignoring the 

correlation between norm statistic values of the same individual. In chapter 5, a new 

multivariate regression-based approach is proposed that combines all separate scores for an 

individual in the Mahalanobis distance (i.e. between the multivariate test score for an individual 

and the multivariate average in the reference population), thus providing an indicator of the 

individual’s overall performance across all tests. Furthermore, sampling variance and 

covariance formulas are derived for the Z-score estimator, as well as a sampling variance 

formula for the Mahalanobis distance estimator. Since all these formulas are based on 

approximations, two simulation studies are performed to assess the bias induced by these 

approximations, thus extending the results of the simulation studies in chapter 4 to the case of 
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two tests to be normed. For both multivariate regression-based approaches, optimal designs are 

derived for the multivariate version of the five regression models as considered in chapter 4, 

and efficient designs that are robust against model misspecification are obtained using the 

maximin strategy with efficiency and relative efficiency as criteria. It is shown that the most 

robust designs obtained under the two criteria coincide. Formulas to derive the required size for 

the optimal design of the normative sample are proposed for the Mahalanobis distance-based 

approach only, because Van der Elst et al. (2017)’s approach is hampered by multiple testing 

issues. The results of this chapter are illustrated using Van der Elst et al. (2006a)’s normative 

study of the oral and written versions of the Letter Digit Substitution Test. 

Chapter 6 has provided some considerations about common challenges that are 

encountered in planning surveys and normative studies. Furthermore, a few practical guidelines 

on how to design each type of study have been given, and ideas for future research have been 

discussed.  

In the next chapter, a reflection is given on the scientific and social impact of this thesis. 
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Chapter 8 

8 Scientific and social impact of the thesis 

A crucial step in the research process is the choice of the design of the study, because a poorly 

designed study can have serious consequences for science (e.g. biased or unreliable results) and 

society (e.g. a waste of resources or bad decisions in health and education based on invalid 

research conclusions). This thesis deals with the design of two types of studies, that is, surveys 

for mean estimation in multilevel populations (e.g. students grouped in schools, patients 

clustered in hospitals), and normative studies for estimating reference values (or norms) for 

tests (e.g. IQ test) and questionnaires (e.g. to measure patients’ symptoms). Both types of 

studies are of practical importance. By allowing comparisons between different populations 

with respect to their means (e.g. comparing countries in terms of average length of stay for 

discharges from hospitals), surveys for mean estimation can be useful, for instance, for the 

implementation of new governmental policies (e.g. new interventions to reduce length of stay 

in public hospitals). Normative studies, instead, provide reference values that clinicians and 

educators need in order to compare individuals’ performance on a test with the reference 

population (e.g. individuals with the same age, sex, and education), and to make decisions about 

individuals (e.g. assignment of a patient to a treatment or of a student to remedial teaching). 

Thus, it is important that population means and reference values are estimated with the highest 

possible precision, and without wasting resources (i.e. time and money). This goal can be 

attained by a careful design of the study. Hence, the main objective of this thesis is to provide 

guidelines for planning both types of studies in order to achieve precise estimates using 

minimum resources.  

This thesis addresses three design issues of surveys for mean estimation in multilevel 

populations. First, it identifies the best strategy to draw a sample from the population (i.e. the 
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most efficient sampling scheme) and to analyse the data (i.e. the unbiased mean estimation). 

Specifically, data should be collected by sampling clusters (e.g. schools, hospitals) with 

probability proportional to their size (i.e. number of individuals belonging to a cluster) first, 

and then by sampling the same number of individuals per selected cluster. Furthermore, the 

average of all individual outcomes in the population (i.e. the population mean) should be 

estimated by computing the average of the means of the sampled clusters. Second, this thesis 

provides formulas to compute optimal sample sizes (i.e. number of clusters and number of 

individuals per cluster) that allow to either maximize precision of mean estimation for the 

available budget for sampling and measuring, or to minimize the budget for the required 

precision of estimation, thus avoiding a waste of the limited resources. Third, a strategy is 

proposed to overcome the dependency of the optimal sample sizes on some unknown model 

parameters. This strategy consists of defining a range of plausible values for each unknown 

parameter first, and then deriving the sample sizes (i.e. number of clusters and number of 

individuals per cluster) that maximize precision of estimation under the worst-case scenario 

that can occur within these parameter ranges. These results have a direct impact on science by 

extending the results available in survey sampling literature (Chambers & Clark, 2012; 

Cochran, 1977; Lohr, 2010; Särndal et al, 1992; Sukhatme, 1954; Valliant et al, 2000) to a 

scenario where cluster size affects individuals’ outcome variables (e.g. when the length of stay 

of a patient in a hospital depends on the number of patients admitted to the hospital), and have 

an indirect impact on society by helping researchers in planning surveys for monitoring 

important social issues, such as alcohol consumption among adolescents or government 

expenditure on health, without wasting resources (i.e. time and money). 

Three design issues of normative studies are addressed in this thesis. First, it provides 

the sample composition (e.g. which age groups to include) that maximizes precision of the 

estimation of reference values (i.e. the optimal design) under five regression models for the 

reference population. Second, since a design that is optimal under one regression model can be 

very inefficient under another regression model, and at the design phase of a study there is 

uncertainty about the “true” model, highly (but not maximally) efficient designs that are robust 

against the choice of the wrong model in the design stage are presented. Third, this thesis 

provides formulas to determine how many individuals must be sampled under the optimal 

design in order to achieve a desired statistical power for testing hypotheses on an individual’s 

performance, or to achieve a desired margin of error in estimating an individual’s performance. 

These results have a direct impact on science because they extend previous research on sample 
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size requirements for normative studies (Oosterhuis et al., 2016), by providing formulas to 

compute the required sample size (instead of plots based on simulation studies), and by 

providing efficient robust designs, not only for studies that derive norms for a single test but 

also for studies norming multiple tests with the same sample. These results have an indirect 

impact on society because these guidelines can be used by researchers to carefully plan 

normative studies, thus preventing mistakes in the assessment of individuals (e.g. not 

recommending remedial teaching because imprecise norms based on a poorly designed 

normative study lead to an overestimation of a child’s vocabulary size and arithmetic skills). 

The results of this thesis are relevant for scientists (not necessarily statisticians) carrying 

out these two types of studies, because they can find in this work helpful guidelines for planning 

such studies. Since surveys are often performed by governmental institutions, such as national 

statistical institutes, chapters 2 and 3 might be more interesting for researchers based at these 

organizations. Normative studies, instead, are mainly conducted in educational, clinical, and 

neuropsychological research, so chapters 4 and 5 might be more relevant for researchers from 

these fields. Furthermore, chapters 2-5 of this thesis can also be used as teaching materials for 

mathematical statistics students, whereas the application sections of these chapters could be 

used to introduce students without a mathematical statistics background to the design of 

research studies. 

 In order to make the results of this thesis available to these target groups, chapters 2,  

3, and 4 have been published in three international scientific journals, and chapter 5 has been 

submitted for publication. Furthermore, chapters 2 and 4 have been presented at two 

international scientific conferences. To compute the required size of the sample with the sample 

size formulas in chapters 3-5, R codes have been developed that will be made available when 

the chapter to which a code belongs has been published. However, more user-friendly software 

for applying the results of this thesis could be developed and made freely available to 

researchers. Such software could be accompanied by a non-technical summary or tutorial paper 

for a psychological, social, biomedical or health science journal, where the results of this thesis 

are further illustrated. 
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9 Samenvatting 

Efficiënte ontwerpen voor gemiddelde schatting in 
multilevel populaties en testnormering 

 

Dit proefschrift behandelt de planning van de steekproefgrootte en het optimale ontwerp 

(design) voor twee soorten observationele studies: (1) surveys voor het schatten van een  

gemiddelde in multilevel populaties, zoals  de gemiddelde alcoholconsumptie onder middelbare 

scholieren (zie, bijvoorbeeld, ESPAD Group, 2016) en (2) normatieve studies om 

referentiewaarden af te leiden voor tests en vragenlijsten, zoals neuropsychologische tests om 

de snelheid van de informatieverwerking te beoordelen (zie, bijvoorbeeld, Van der Elst et al., 

2006a), en klinische vragenlijsten om de oriëntatie van patiënten op chronische pijn te meten 

(zie, bijvoorbeeld, Van Breukelen & Vlaeyen, 2005). 

 Hoofdstuk 1 geeft een inleiding tot deze twee soorten studies. Het praktische belang 

van deze studies wordt uitgelegd, er worden praktijkvoorbeelden gegeven, de belangrijkste 

resultaten in de literatuur worden samengevat en de statistische modellen voor het analyseren 

van gegevens die met deze studies zijn verkregen worden geïntroduceerd. Verder wordt een 

definitie gegeven van het optimale ontwerp (optimal design) voor elk soort studie en worden 

strategieën gepresenteerd om robuuste ontwerpen te vinden. Hoofdstuk 1 eindigt met een 

overzicht van het proefschrift. 

 Hoofdstuk 2 gaat over zuivere en efficiënte schatting van het gemiddelde van alle 

individuele uitkomsten in twee-niveau populaties, met ofwel simple random sampling (SRS) 

van individuen (d.w.z. individuen worden rechtstreeks uit de populatie getrokken) of two-stage 

sampling (TSS) (d.w.z. eerst worden clusters getrokken,  en vervolgens worden individuen uit 

de geselecteerde clusters getrokken). Clustergroottes mogen variëren en gerelateerd zijn aan de 

uitkomstvariabele van belang (d.w.z. de clustergrootte is informatief). Er worden drie TSS 

methoden onderzocht: Het trekken van clusters met een waarschijnlijkheid evenredig aan de 

clustergrootte, en het vervolgens trekken van een SRS van hetzelfde aantal individuen binnen 

elk getrokken cluster (TSS1); Het trekken van een SRS van clusters en het vervolgens trekken 

van  hetzelfde percentage individuen per getrokken cluster (TSS2); Het trekken van een SRS 
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van clusters en het vervolgens trekken van hetzelfde aantal individuen per getrokken cluster 

(TSS3). In dit hoofdstuk wordt aangetoond dat het gemiddelde van alle individuele uitkomsten 

en het gemiddelde van alle clusterspecifieke gemiddelden (d.w.z. de twee definities van 

populatiegemiddeldes in een twee-niveau populatie) alleen samenvallen als de clustergrootten 

gelijk of niet-informatief zijn. Zuivere schatting van het gemiddelde van alle individuele 

uitkomsten wordt voor elke steekproefmethode (sampling scheme) besproken. Bovendien 

worden de drie TSS-methoden in termen van efficiëntie met elkaar en met SRS van individuen 

vergeleken, uitgaande van een vastgestelde totale steekproefomvang. Aangetoond wordt dat de 

relatieve efficiëntie van de sampling schemes afhangt van de verdeling van de clustergrootte. 

TSS1 is echter de meest efficiënte TSS methode voor veel clustergrootte verdelingen. Model-

based en design-based inference worden met elkaar vergeleken en er wordt aangetoond dat zij 

vergelijkbare resultaten opleveren indien aan de modelaannames wordt voldaan. De resultaten 

van dit hoofdstuk worden toegepast op twee echte clustergrootte verdelingen: de verdeling van 

de middelbare schoolgrootte in Italië, en de verdeling van de grootte van huisartspraktijken in 

Engeland. 

 Hoofdstuk 3 gaat over optimale TSS designs voor het schatten van het gemiddelde in 

twee-niveau populaties wanneer de clustergrootte informatief is. Er wordt een simulatiestudie 

uitgevoerd om de bias te beoordelen in de steekproefvariantie (sampling variance) formules die 

zijn afgeleid voor TSS2 en TSS3 in hoofdstuk 2, omdat deze varianties gebaseerd zijn op 

benaderingen. Voor elke TSS methode die in hoofdstuk 2 wordt beschouwd, worden 

vergelijkingen voor de optimale steekproefomvang afgeleid. Het optimale ontwerp (optimal 

design) is het aantal  clusters en het aantal  personen per cluster dat de steekproefvariantie 

(sampling variance) van de schatter van het populatiegemiddelde minimaliseert, onder een 

kostenbeperking. De gevolgen voor het optimale ontwerp (optimal design) van het negeren van 

informatieve clustergrootte worden onderzocht. Het blijkt dat de optimale TSS-ontwerpen heel 

robuust zijn tegen misspecificatie van de mate van informativiteit van clustergrootte, maar 

aannemen dat clustergrootte niet informatief is kan leiden tot ernstige onderschatting van het 

vereiste onderzoeksbudget voor het gewenste power niveau. Bovendien worden de drie 

optimale TSS methoden in termen van efficiëntie met elkaar en met SRS van individuen 

vergeleken uitgaande van een vastgesteld budget voor steekproeftrekking en meting. 

Aangetoond wordt dat de optimale TSS1  het meest efficiënte design is voor veel clustergrootte 

verdelingen. Om de afhankelijkheid van de optimale ontwerpen (optimal designs) van 

voorkennis over sommige modelparameters te overwinnen, worden maximin ontwerpen 
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(maximin designs) afgeleid voor elke TSS methode. Ten slotte wordt een procedure voorgesteld 

om maximin steekproefomvangen van, en maximin budgetverdeling (budget split) tussen, twee 

surveys af te leiden om de gemiddelden van twee populaties te schatten en te vergelijken met 

TSS1. Deze procedure wordt geïllustreerd met de planning van een hypothetische survey om 

het alcoholgebruik van adolescenten te vergelijken tussen Frankrijk en Italië, gebruikmakend 

van  de echte verdelingen van de middelbare schoolgrootte in deze twee landen. 

 Hoofdstuk 4 richt zich op normatieve studies om referentiewaarden of normen voor 

tests en vragenlijsten af te leiden. In dit hoofdstuk wordt de regression-based benadering van 

normering gevolgd, omdat die drie voordelen heeft ten opzichte van de traditionele benadering 

van normering per subgroep gedefinieerd in termen van leeftijd en geslacht (of andere 

demografische variabelen): (i) de regression-based benadering is efficiënter, dat wil zeggen, 

deze vereist een kleinere steekproefomvang, (ii) en maakt het mogelijk om de voorspellers te 

identificeren die de testscore  beïnvloeden, en (iii) en maakt het mogelijk om het optimale 

ontwerp (optimal design) af te leiden, dat wordt gedefinieerd als de gezamenlijke verdeling van 

scores op de voorspellers die de steekproefvariantie (sampling variance) van de 

referentiewaarde of norm onder het veronderstelde regressiemodel minimaliseert. In hoofdstuk 

4 worden steekproefvariantie (sampling variance) formules afgeleid voor veelgebruikte normen 

nl. Z-scores en percentile rank scores. Aangezien deze variantieformules gebaseerd zijn op 

benaderingen, worden twee simulatiestudies uitgevoerd om de bias te beoordelen die door deze 

benaderingen wordt veroorzaakt. Deze steekproefvariantie (sampling variance) formules 

worden gebruikt om optimale ontwerpen (optimal designs) af te leiden voor vijf 

regressiemodellen met daarin een kwantitatieve en kwalitatieve voorspeller, die verschillen in 

of ze interactie en niet-lineariteit toelaten. Efficiënte ontwerpen (efficient designs) die robuust 

zijn tegen misspecificaties van het regressiemodel worden afgeleid met behulp van de maximin 

strategie (maximin strategy), met efficiëntie en relatieve efficiëntie als criteria. Aangetoond 

wordt dat voor de vijf onderzochte regressiemodellen de meest robuuste ontwerpen (robust 

designs) die voor deze twee criteria verkregen zijn, dezelfde zijn. Bovendien worden voor het 

optimale ontwerp (optimal design) formules voorgesteld om de vereiste omvang van de 

normatieve steekproef voor elke norm (d.w.z. Z-score en percentile rank score) te bepalen. Deze 

formules kunnen worden gebruikt om het gewenste power niveau voor hypothese toetsing of 

de gewenste foutmarge (margin of error) voor intervalschatting te garanderen. De resultaten 

van dit hoofdstuk worden geïllustreerd aan de hand van een normatieve studie van de Profession 

Naming Verbal Fluency Test (zie Van der Elst et al., 2006b). 
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 Hoofdstuk 5 breidt hoofdstuk 4 uit tot een scenario van verschillende tests die met 

dezelfde steekproef moeten worden genormeerd. Om rekening te houden met de correlatie 

tussen de testscores van hetzelfde individu, wordt een multivariaat regressiemodel gebruikt 

(Van der Elst et al., 2017), in plaats van een univariaat regressiemodel voor elke test te schatten. 

In de multivariate regression-based benadering van Van der Elst et al. (2017) wordt elke test 

echter afzonderlijk genormeerd, waardoor de correlatie tussen normwaarden van hetzelfde 

individu wordt genegeerd. In hoofdstuk 5 wordt een nieuwe multivariate regression-based 

benadering voorgesteld die alle afzonderlijke scores voor een individu in de Mahalanobis-

distance  (d.w.z. de afstand tussen de multivariate testscore voor een individu en het 

multivariate gemiddelde in de referentiepopulatie) combineert, waardoor een indicator van de 

algehele prestatie van het individu op alle tests wordt verkregen. Bovendien worden 

steekproefvariantie (sampling variance) en covariantie formules afgeleid voor de Z-score 

schatter, evenals een steekproefvariantie (sampling variance) formule voor de Mahalanobis-

distance schatter. Aangezien al deze formules gebaseerd zijn op benaderingen, worden twee 

simulatiestudies uitgevoerd om de door deze benaderingen veroorzaakte bias te beoordelen, 

waarbij de resultaten van de simulatiestudies in hoofdstuk 4 worden uitgebreid tot het geval van 

twee te normeren tests. Voor beide multivariate regression-based benaderingen worden 

optimale ontwerpen (optimal designs) afgeleid voor de multivariate versie van de vijf 

regressiemodellen zoals beschouwd in hoofdstuk 4, en worden efficiënte ontwerpen (efficient 

designs) die robuust zijn tegen modelmisspecificatie verkregen met behulp van de maximin 

strategie (maximin strategy), met efficiëntie en relatieve efficiëntie als criteria. Aangetoond 

wordt dat de meest robuuste ontwerpen (robust designs) die op grond van de twee criteria zijn 

verkregen, samenvallen. Formules om de vereiste omvang af te leiden voor het optimale 

ontwerp (optimal design) van de normatieve steekproef worden alleen gepresenteerd voor de 

Mahalanobis distance-based benadering, omdat de benadering van Van der Elst et al. (2017) 

gehinderd wordt door het probleem van multiple testing. De resultaten van dit hoofdstuk 

worden geïllustreerd aan de hand van de normatieve studie van de mondelinge en schriftelijke 

versies van de Letter Digit Substitution Test (zie Van der Elst et al., 2006a). 

Hoofdstuk 6 geeft een aantal overwegingen  over gemeenschappelijke uitdagingen die 

worden ondervonden bij het ontwerpen van enquêtes (surveys) en normatieve studies. Verder 

worden er enkele praktische richtlijnen gegeven voor het ontwerpen van elk soort studie en 

worden ideeën voor toekomstig onderzoek besproken. 
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